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Abstract

The problem of reliable broadcast in various network environments is studied.
Special attention is given to utilizing the network links efficiently to achieve

timely message delivery.



1. INTRODUCTION

This report summarizes our ideas on the reliable broadecast protocol (or so
_called "distributor™), ideas developed in the summer of 1984. The report is organ-
ized and written as a "working paper" or set of notes, not a polished paper. Our
intent is to record the ideas we discussed, so they will not be forgotten and can be
used in subsequent papers. We do not present detailed solutions to algorithms;
instead we simply discuss issues involved and outline possible strategies. The
material is not organized didactically and may hence require reading in several
passes. For example, all of our assumptions are listed in one section, although it
may be difficult to understand some of them until they are actually used later on
in an algorithm. Similarly, most of our examples have been grouped into a single

section.

In a reliable broadcast, a sequence of messages must be transmitted to a set
of computers over a communication network. The messages must all be eventu-
ally delivered; in addition we would like for the messages to be delivered as fast

as possible, given the actual state of the network.

. One application where the need for a reliable broadecast protocol arises is
replicated database management. We have been studying such an application,
developing a system that provides high data availability in the face of network
partitions [Blau83, Gare83, Blau85, Sari85]. In this case, database updates must
be reliably broadeast to nodes that hold a copy of the database, as sodn as the
network permits it and regardless of whether previous updates have already been
broadcast successfully. It is this application that motivates our work on reliable

broadcasts.

In this report we only deal with the single-source case. Extensions to multi-
source should be studied further, but one could run multiple single-source algo-
‘rithms in parallel. Some additional optimization may be possible in the parallel

execution.

We start this report by reviewing our basic model and assumptions. In See-
tion 3, we then discuss our "optional assumptions," i.e., those we have not agreed
upon yet. Each choice of optional assumptions may lead to a different algorithm,

although different algorithms may be combined into one. Next we discuss the
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objectives of the algorithm (Section 4), and some of the general heuristies that

may be useful in order to achieve these objectives (Section 5). This is followed by

some simple illustrative examples (Section 6), and by a presentation of three

"scenarios” (choices of optional assumptions) that we will study in detail (Section

7). The remaining sections discuss each scenario in detail, outlining possible algo-

rithms to solve the reliable broadcast problem.

2. THE MODEL AND BASIC ASSUMPTIONS

(a)

(b)

(e)

(d)

Hosts. We consider a set of interconnected hosts, each having' ‘local non-
volatile storage. One of the hosts is the source S. It runs a source process
that generates a sequence of messages to be reliably broadcast. Each broad-
cast message must be received by all other hosts, and must be handed to a
recipient process that runs there. We refer to the broadcast messages as
data messages in order to distinguish them from others in the network (e.g.,

control messages, point to point messages).

Servers. Each host h is attached to a local communications server, C(h).
(The server may reside on the same physical computer as the host, but there
is a clean interface between them. The server could also be partitioned
between the host and a dedicated communications processor, as occurs in the
ARPANET.) The servers are tied together by a computer communication net-
work.

Costs. Each physical link in the network, whether it is shared or not, has a
cost associated with it. This cost reflects the transmission delay and

bandwidth of the link.

"Eventual Connection. For each data message m to be sent from S to host x,

there may never be a complete communication path over which to transmit
m directly. However, it will always be possible to eventually transmit m
through intermediate hosts. That is, there will always be a sequence of hosts
and '.'sufficiehtly long" (possibly disjoint) time intervals, such that in the first
idterval S can communicate with the first host, in the second interval the
first host can communicate with the second host, and so on, until in the last

interval, the last host can communicate with x. We cannot define
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"sufficiently long" formally without a specific broadeast algorithm in mind,
but intuitively, each period should be long enough to allow the two communi-
cating hosts to discover that they can communicate and to exchange data
messages that have not been seen by each other. (Note that this property
implies that hosfs must have non-volatile storage. If servers have non-
volatile storage, then this property could be stated in terms of a sequence of

hosts and/or servers.)

Hosts Do Not Fail. The hosts are reliable and never fail. (Host crashes can
be "simulated" by server failures, as long as critical host data structures are

kept in stable storage.)
No Bogus Messages. The network does not generate bogus messages.

Transitivity. If host x receives a message from host y, then at that instant it
is as likely for y to be able to communicate with a node z as it is likely for x
to be able to communicate with z. This assumption will be useful in the fol-
lowing scenario. Suppose that a host x in unable to communicate with host
z. To know when communications are restored, x must periodically send
messages to z, and wait for a response. However, if there is a host y in the
same situation as x, and both x and y can communicate, then it is not neces-
sary for both to periodically probe z. Whatever host establishes communica-
tions with z can ibnform the other. The assumption is reasonable because the
network performs adaptive routing. That is, suppose x is probing z, but it is
C(y), not C(x), that is reconnected to C(z). When x sends a message to z,

the message gets through because the network will route it through C(y).

Communication Failures. We make no other assumptions about message
delivery. Specifically, we assume that messages can arrive out of order, can

have ai'bitrary delays, can be duplicated, or can be lost at any point.

Frequency of Failures. Failures are not going to be very frequent. As a
consequence, the performance of the reliable broadcast algorithm is mainly
going to be a function of how fast messages are sent during periods when no
failures occur. ("No failure occurs in time period P" means that no system
component changes its state from functioning to failed, or vice versa, in this

time. However, there could be components in either state in P.) How fast
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the protocol adapts to a failure (or repair), or how efficient it is during the

adaptation phase is not as critical.

Down Time. The length of time between the failure and the repair of a com-

ponent may be significant.

Number of Hosts. The number of hosts participating in the reliable broadcast
protoeol is relatively small, especially compared to the number of computers
in the network. Thus, strictly speaking, we are attempting to solve the reli-
able multicast problem, not the reliable broadcast problem. We do not want
to have the data messages delivered to all computers in the system; only to
hosts, i.e., to those ecomputers participating in our application (replicated
database management). However, since we have been using the word broad-

cast in our discussions, we will continue to use it in this report.

3. OPTIONAL ASSUMPTIONS

We now list the assumptions that are not fixed. Note that there are depen-

dencies among these assuinptions. Specifically, a given choice in one of the

categories may restrict the choices in other categories.

(1

(2)

(3)

Communication Lines.

(a) Lines between servers are point to point only.

(b) Servers are only linked by broadeast (e.g., Ethernet) lines.
(c) Lines can be both point to point and broadcast.
Programmability of Servers.

(a) The implementors of the reliable broadcast protocol can modify (or
rewrite entirely) the code running at the servers and at the network

switching nodes. Thus, we are free to do our own routing at the servers.
(b) The code and routing strategies of the servers and switches is fixed.
Diskless Servers.

(a) Servers and network switches do not have non-volatile (e.g., disk)
storage available. (Or alternatively, they may have itr but it is so lim-

ited that we cannot use it in our protocol.)
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(b) Servers and switches have non-volatile memory. This alternative is only

of interest if the servers are programmable.

Clustering.

(a) Servers fall into clusters, where the available bandwidth between clus-
ter members is relatively high, and the intercluster bandwidth is limited.

Using cost terminology, cluster members are connected by low cost
links, while intercluster links are high cost.

{(b) There are no clusters.

Host/Server Interface.

(a) To send a message, a host gives it to its server, together with one or
more destination addresses. The server then attempts to deliver the
message to all addresses.

(b) The host can only hand the server one address with each message.

Broadcast Facilities. (only applicable for option (5a) above)

(a) The servers have and utilize an efficient multicast algorithm. If server
h receives a data message for delivery to hosts A,B,C,D, and hosts A,B
can be reached via line 1 and hosts C,D can be reached thrdugh line 2,
then a single copy of the message will be sent over each line. At some
later point, each copy will be converted into 2 copies, one for each
intended host. If h and the servers for A,B,C are on an ethernet, then
h will broadéast a single message on the net, that will be received by
each destination server.

(b) A network-wide multicast algorithm is not available. However, if a
source server and the destination servers (or a subset of them) are on
the same broadeast line, then the source will transmit a single message
on this line.

(c) Servers have no multicast facilities. A multi-destination message is
simply converted into multiple copies of the message.

Information on Arriving Message.

(a) When a server delivers an incoming message to a host, the identity of

the sending host is given, but no additional information as to what path




(b)

(c)

was followed is provided.

When a server delivers an incoming message to a host, the identity of
the sending host is given. In addition, a single bit is provided describing
the cost of the path followed by the message. For this, all network links
are classified as cheap or expensive. A link is cheap if its cost is below
a given threshold, and is expensive otherwise. If the message arrived via
cheap links only, the cost bit is set to cheap. If the message traversed
at least one expensive link, then the bit is set to expensive. No addi-

tional information as to what path was followed is provided.

When a server delivers an incoming message to a host, all information on

the path followed, including cost of the links, is given.

(8) Static Information. The following static network information may be avail-

(9)

able to the reliable broadecast protocol:

(a)
(b)

(c)

(d)

(e)

()

Each host knows the static topology of the full network.

Each host only knows its local topology, i.e., the servers (and switches)
that are directly connected to its server.

In addition to the topology (either full or local), a host knows the cost of
the links.

Same as (¢), except that only the classification of links into cheap or
expensive is known. (As discussed earlier, a link is cheap if its cost is
below a given threshold, otherwise it is expensive.)

The topology (local or full) is known, but no cost information is avail-

able.

No static information is available.

Dynamic Information. The following dynamic network information may be

available to the reliable broadecast protocol:

(a)

)

The routing information routing [p,q], but only where p is the server of
this host. (routing [p,q] gives the outgoing link of server p that should

be used to send a message to q.)

The routing information routing [p,q], for all servers p.



(e¢) The up/down status of the servers and hosts.

(d) Other statistics like queue sizes at the nodes, and transit times between

nodes.
(e} Combinations of the above.

{f) None of the above.

4. OBJECTIVES OF ALGORITHM

(a)

(b)

(c)

(d)

Reliability. The broadeast should be reliable, i.e., all messages should be

eventually delivered to the recipient processes.

Low Average Delay. The transmission delay, averaged over all broadeast
messages, should be minimum. The fact that we are interested on all broad-
cast messages is important: we do not want to broadcast one message really

fast, at the expense of following messages.

Limited Interference. The transmission delays of non-broadcast messages
should also be kept reasonable. We do not want to clog the network just to
get our messages through fast. For example, if broadcast messages arrive at
the source every hour, a hot potato algorithm may be tempting: it gets the
broadeast message to the destinations fast. It also floods the network, but by
the time the next broadcast arrives, the congestion would have subsided.
Yet, we reject this strategy because it delays non-broadcast messages. At
the other extreme, we do not want to minimize delay of non-broadcast mes-
sages exclusively, because then we could come up with a broadcast algorithm
that is slow but sends few messages. ‘

Prompt Delivery. The reliable broadcast of a message should not be delayed
simply because a previous message has not been delivered yet. For example,
if & host receives data message n from the source, it should be handed to its
récipient process, even if this process has not seen all data messages that

were generated before n.

‘In summary, the performance objectives are difficult to define precisely, and

even harder to achieve. A truly optimum broadecast algorithm would have to have

perfect knowledge of the topology, of the failures, of the current loads and
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queues at each link, and of the future message arrivals. Since this is not possible,

our algorithm will use heuristies to make decisions. They are rules that are likely

(but not certain) to yield good performance.

5. DISCUSSION AND GENERAL HEURISTICS

(1)

(2)

(3)

4

It is useful to break up the reliable broadeast problem into two components:
(a) The unreliable broadcast problem (UB), and

(b) The gap filling problem (GF).

UB only deals with getting new data messages from the source to the destina-
tions efficiently. A protocol that solves this part of the problem, does not
make any guarantees about message delivery. GF deals with filling in gaps
of data messages that are left by UB. The protocols for both parts may or
may not be combined into one, but we have found this conceptual division of

the problem to be useful in all cases.

If the network provides (unreliable) multicast facilities, we should use them
as much as possible, especially for UB. During no-failure periods (which are
the important ones from the point of view of performance), it is unlikely we

can do better than the network facilities, so let's use them.

If network multicast facilities are not provided, and our algorithm will per-
form broadecasts in no failure periods, then its best to use a tree (rooted at
the source) for this operation (i.e., for UB). Non-tree strategies (e.g., hot
potato [Rose80]) generate too many messages. Let us call the unreliable
broadecast tree the UB tree. The nodes of this tree are the hosts, unless the

servers are programmable, in which case servers may also be nodes.

From our discussion of the objectives, we know that this UB tree must adjust
to failures (i.e., we want to return to efficient broadcasts after a failure
occurs). Of course, it is also desirable to adjust to the changing loads in the
network. To make these adjustments, dynamic information must be
exchanged among the nodes that make up the UB tree. Nodes can either
request this information (polling), or it can be sent to them periodically. The
following information about node j could be useful to node i in trying to
adjust the UB tree (specifically, when i is trying to decide if j should be its
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parent in the tree):
() The up/down status of j.

(b) The sequence number of the latest data message that j has received.

(Awerbuch's algorithm [Awer84] uses only this information.)

(¢) The load (e.g., queue sizes) at j.

(d) The cost of the line(s) that connect (or are most likely to connect) i and
je

(e) The cost of the line(s) that connect (or are most likely to connect) j to

the source. That is, is a message from S likely to go through C(j)?

(f) The time it takes j to respond to a polling request.

() Message transit times and routing information. This inforniation is usu-
ally collected by the routing mechanisms, and may be available to us
without additional message exchanges with j. One way to use routing
information is as follows: if routing[i,S] = j or a server close to j, then
j may be a good candidate father for i. (This is the basic idea of the

Reverse Path Forwarding broadeast algorithm [Dala78].)

For adjusting the UB tree, a child node should use filtering to avoid instabil-
ity. That is, when node i evaluates information about node j, it should not
é.lways decide according to the very "latest" information. For example, if
node i has received up to message 5 from its current father in the UB tree, it
should not select as its new father a node that has just received message 6
(its own father also may have just received it and is in the process of- for-
warding it to i). However, if this node received message 6 a "significant"
amount of time earlier, and i has still not received message 6 form its own
father, then i should consider changing fathers. Similar types of filtering

should be used with the other types of information discussed in (4) above.

The amount of information exchanged for UB tree adjustments must be con-
trolled. For example, if polling is used, the frequency of polling and the
number of sites polled must be limited, to avoid congestmg the network.

There are two cases to cons1der here:

i : i ‘
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(a) Suppose that data messages are arriving at node i with some regularity.
In this case, adjustments to the tree are not absolutely necessary; they
are only done to try to improve performance. Thus, even though we
could actually poll {(or get information from) every node in the system, it
is probably best to restrict ourselves to nodes that are likely to be good

fathers or that are cheap to poll.

(b) Suppose that the father of i (or an ancestor in the tree) has failed, so
that i is not receiving data messages. In this case, node i is forced to
check with every node until it finds one that can give it more data mes-
sages. However, if there are other nodes that i can reach and that are
in its same situation (i.e., disconnected form source), they should all try
to cooperate to avoid having everyone polling everyone. (See Transi-
tivity assumption in Section 2.) For example, the nodes can elect a coor-
dinator. The coordinator can continue to probe all nodes, and can in the
meantime send "I am alive" messages to its subordinates to tell them
that the search is actively continuing. Similarly, the nodes can config-
ure themselves into a tree, where the root is the only probing node. This
tree can be formed with the remains of the UB tree after the failure,
and once a connection is established to the source, can become the new
UB tree. The coordinator or root may also probe nodes with different
frequencies, chee}cing with the nodes that are more likely to be con-

nected to the source more often.

(7) For gap filling (GF), again, we do not want to have every node polling every-
one. As in section (6b) above, we would prefer that nodes cooperate with
each other to fill their gaps. The same ideas could be used here: a node
could delegate the job of probing the rest of the system for the missing data
messages to his father in a tree; or to its coordinator. (If a tree is used, it

could be the same as the UB tree.)
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6. THE EXAMPLES

The following examples illustrate some of the points made in the previous
sections. They were also the main driving force behind the algorithms we will
outline later in this report. That is, the algorithms were initially designed to try
to make broadeasts efficient in these cases, and every new idea we developed was
always tested against these examples. Thus, it is probably useful to present them

here for reference.
The Simple Example.

(S is the source, X and Y are hosts, and sl, s2, s3 are the servers/switches.) This
~ example illustrates that without a multicast network facility, or without server
programmability, the reliable broadcast algorithm will not be efficient. Specifi;
cally, there should only be one copy of each broadcast message sent from sl to s2.

Then s2 should make two copies, one for X and one for s3.

If s2 cannot handle a multi-destination message, then the hosts must attempt
to do an efficient broadcast job, but "their hands are tied up" because s2 in not
under their control. If S sends a single message to X and then asks X to forward it
to Y, we are using the s1-s2 line efficiently, but the message to Y is being delayed
at X. If, on the other hand, S sends two copies (one for X, one for Y) over the si-
s2 link, this may lead to.congestion on this link. Neither solution is good, and
furthermore, selecting the "less bad" one is difficult: the choice is a function of
the capacity of the s1-s2 link, the load at X, and the non-broadcast message load

currently in the network.

[ o . . _
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The Mountain Example, Part I.
X1 Y1
| !
/--s1 /--s4
/| /|
/ | / |
§-§2--=w- §3========z========g§----- s6-Y2
I |
X2 Y3

(This is really a more complicated version of the simple example.) The source S
and hosts X1, X2 form a cluster, and hosts Y1, Y2, Y3 form another cluster. All

lines are cheap, except the s3-s5 line.

As in the previous example, it is best to have a multicast algorithm that
sends a single copy of each broadeast message on line s3-s5. If this is not possi-
ble, the reliable broadecast algorithm should send one copy to Y3, and then have it
forward the message to Y1, Y2. In other words, the UB tree would have Y3 as
child of X2 (say), and Y1, Y2 as children of Y3.

If failures occur, the tree should adapt. For example, suppose that server s5
fails. When hosts Y1, Y2 notice that their father is not active, they should try to
get in touch with some other node that can provide the missing data messages. As
discussed earlier, it would be preferable to have only one host, say Y1, attempting
this, while the second host, Y2, waits for information from Y1. (At the same
time, host Y3 will also be trying to contact other nodes.)

Suppose that now server s5 is repaired, but that its conneetion to host Y3 is
still down. At this point, Y1 will communicate with a host in the other cluster,
say X2, and make it its new father. (As in the simple example, it is difficult to
tell whether S or X2 would be the best father for Y1.) Host Y2 should then become

a child of Y1 (not of X2), to avoid two message transmissions over the expensive

s3-s5 link.

When the s5-Y3 link comes up again, host Y3 should select Y1 as its father,
to avoid an extra message over the expensive link. However, the resulting tree is
different form the one that existed before the failure, and may not be as good.

Specifically, notice that now each data message traverses the s5-s4 link twice:
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once in going from X2 to Y1, and once going from Y1 to Y3. If this is undesirable,

we may want to have an algorithm that recognizes this, and makes the UB tree

evolve to its original state.

The Mountain Example, Part II (or "The Other Side of the Mountain, Part II"). The
diagram is the same as in part I, except that the s3-s5 link is now an expensive
broadecast link that reaches all servers, s1 through s6. (All servers have packet
radio transmitters/receivers, but servers in different clusters can only communi-

cate if an airplane with a repeater flies overhead.)

The best strategy in this case is for the source to broadcast a single message
over the broadcast link that is heard by everyone. However, the reliable broad-
cast algorithm must recognize the special properties of broadeast links in order to
achieve this. (And of course, the servers must be able to handle multi-address
~ messages from their host, assumptions 5a and 6b.) For example, suppose that after
some failures the UB tree has Y3 as child of S, and Y1, Y2 as children of Y3.
From our discussion in the previous example, Y2 would not want to become a
direct descendant of S, for this would place an additional load on the expensive
link. However, in this case, there is no extra cost in having S send to Y1 and Y2:
the same message to Y3 can be received by these nodes. Thus, the UB tree should

really have Y1, Y2, Y3 all as children of S.
The Local Net Example,

/ | | I I
X s3 s4d ) s6

I | I I
Y1 Y2 Y3 Y4

‘Servers s2 through s6 are on a local area network, of the ethernet type. The
only expensive link is s1-s2. This example is useful in studying how hosts should
cooperate when they are cut off from the source. For example, if link s1-s2 fails,
the hosts should elect a coordinator or root to perform the probing of the rest of
the network. This coordinator should probably be host X. It could send a single "I
am alive" message to Y1, Y2, Y3, Y4 while it is probing. Also, during the election

of X, the protocol could take advantage of the broadecast facilities.
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7. THE SCENARIOS

Given the number of optional assumptions we have presented in Section 3,

there are clearly many cases to consider, and each one can in principle have a

different reliable broadcast algorithm. Instead of trying to study all cases, we

have selected three basic scenarios (plus a few minor variations) which we think

are the most likely to arise in practice:

L

IL

Programmable Servers. For this scenario we make assumptions (lec), (2a),
(3b), (4b), (5b), (6¢c), (7a), (8b, 8e), (9f). The servers and switches are pro-
grammable and they have non-volatile storage. Thus, to take advantage of
these facilities it is best to program the reliable broadcast protocol within
each server, and to have the servers themselves store data messages received
in the past. So in essence, we can forget about hosts in this scenario, and
assume that the source and recipient processes are also running in the

servers.

This scenario arises when the computers that run the applications are linked
directly together, without a communications sub-network like the ARPANET.
It is also the scenario used by Awerbuch [Awer84], except that we have dif-

ferent failure assumptions.

In this case, no dynamic information and multicast facilities are available;
the only static information available is the identity of the nodes directly
connected to each server. However, since the protocol is running at the
servers and switches, it is possible for it to collect some of this information,
if necessary (e.g., if each server adds its identification to each message it
forwards, then the path traversed will be known to the recipient process).

Similarly, if desired, an unreliable multicast algorithm can be implemented.

For simplicity, when we present our protocol for this scenario, we will first
assume that the communication links are all point to point (assumption 1a),

and then we allow the addition of broadcast links (assumption 1le).

Non-Programmable Servers, with No Multicast Facility. For this scenario,
we make assumptions (1c¢), (2b), (3a), (58), (6b). This case arises when there is
a communieations sub-network like the ARPANET that links together the

hosts, but it has no multicast facilities (except if source and destination
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servers are on same broadcast line).
We consider three sub-cases:

(i) The network is completely unknown, and we have no dynamic informa-
tion about it. That is, we make assumptions (4b), (7a), (8f), (9f).

(ii) The routing tables at all servers and switches are available. That is, we
make assumptions (4b), (72), (8a, 8e), (92, 9c).

(iii) We have link cost and clustering information. Specifically, we make
assumptions (4s), (7b), (8a, 8¢), (91).

In some of these sub-cases, we first assume that the network is point to point

only (1a), and then we generalize to the case that includes broadcast links

(1c).

Non-Programmable Servers, with Multicast Facility. For this seenario, we

make assumptions (1¢), (2b), (3a), (4a), (5a), (6a), (7a), (8a, 8c), (9f). Although
many networks currently do not have adequate multicast facilities (e.g., the
ARPANET), they may have them in the future, and this makes this case
interesting. Furthermore, the multicast faecility lets us solve the unreliable
broadeast protocol easily and efficiently (with the routing decisions made at
the server/switch level where they should be made), leaving the reliability

problems to the hosts that usually have the non-volatile storage.

In the following sections, we discuss reliable broadcast algorithms for these

scenarios.

8. PROGRAMMABLE SERVERS

This is the simplest case to consider. We consider the case where the net-

work servers are directly programmable, and there is no underlying routing proto-

col. (We are going to do our own routing.) This case is a lot like Awerbuch's

" [Awer84], except that: (a) messages are permitted to get lost, and (b) the network

might not be entirely point-to-point, but might be partly composed of broadcast

channels. We also allow use of synchronized clocks and timeouts where they are

needed.

. ) § ’ . s . § e [ R . . - N .
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Data messages are assumed to be sequence numbered. At any point in time,
a node has a set INFO which records the set of indices of data messages so far
received by that node. It is useful to have a partial ordering on sets of indices of
data messages; we say that A < B provided that the largest element of A is strictly

less than the largest element of B. We use this notation in the rest of the report.

8.1 The Basic Idea

The basic idea is very much like Awerbuch's. The servers configure them-
selves into a UB tree. For this, eacﬁ node except the source attempts to "attach"
to a parent, who will be responsible for transmission of data messages in the nor-
mal course of events. We refer to the resulting structure as the parent graph, not
the UB tree, to stress that a tree is obtained only when there are no partitions and

when failures are handled properly by the algorithm.

In order to avoid eycles in the parent graph, and in order to obtain up-to-date
information, a node will only attach to a parent when it knows that the parent's
INFO set is larger than its own INFO set. (That is, the parent's largest numbered
message has a greater number than its own largest message. This is heuristie 4b
of Section 5.) Moreover, a node will never accept any message larger than its own
largest message from anyone other than its parent. These rules preserve the
invariants that no node ever has a message larger than the largest message of any

of its ancestors, and that no cycle is ever formed.

8.2 Filling Gaps

In Awerbuch's case, all messages were received by all nodes in numerical
order. This was a result of his assumptions about FIFO behavior of links. (This
result could also be achieved by delaying the transmission of some messages until
messages earlier in the sequence were known to have been delivered.) For our

application, it is not important that messages arrive in the proper order. Rather,

it seems preferable to transmit all messages possible, and fill in the gaps by some

separate procedure.

We assume that each node keeps some "map" information containing the

latest set of data messages it knows that each other node has already received.
k.
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This information is kept in an array MAP of sets of message indices, where the
array is indexed by the set of other nodes. The information in MAP must be
updated periodieally; this can be done according to many different policies. (We

discuss one below.) A node which sees that it has a gap in its own received data

message sequence where some other node has a data message can send a request
to that node for that particular data message. Certainly, any time a node
receives a gap-fiuing data message from any other node, no matter for what rea-

son, the node can use that data message to fill its own gap.

If it is considered very important to fill gaps quickly and we are not too con-
cerned about a little extra message traffic, the node might send out several
‘requests to different nodes for the same data message. It is important that such
-requests only be sent out for data messages that are actually gaps, i.e., less than
the requester's largest index message. This is because a node is only supposed to

accept data messages larger than its maximum from its parent.

Gaps could be filled in via the parent graph, but there is no particular reason
to restrict them to be filled in this way. It would be inconvenient to have every-
one trying to fill everyone else's gaps, thereby flooding the network, so some dis-

cipline should be imposed on gap-filling. However, there are many options.

Probably the most natural option is for each node to maintain MAP informa-
tion for each of its network neighbors. (Network neighbors include not only
point-to-point neighbors but also broadcast neighbors.) Nodes could update MAP
by operating eyclically, sending their own INFO set to all network neighbors every

so often (e.g., every half minute).

It seems quite convenient to use the network neighbors for filling gaps, even
though the parent graph neighbors suffice for ordinary message transmission. This
is because gaps might be likely to be filled faster if more neighbors got polled.
Also, if the source happened to get disconnected, in the parent graph, from each
of two subtrees, each of which had the same maximum index data message, but

. with incomparable sets of gaps, there is no way that the ordinary parent graph
would cause the gaps to become filled. The roots of the two subtrees would not
find parents to attach to. Polling network neighbors would cause the two subtrees

to fill in each other's gaps, however.
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8.3 Attachment

Attaching to a new parent involves some polling and an attachment protocol.
Nodes will periodically inform their network neighbors of their highest data mes-
sage index, just in case the neighbors might want to attach to them. (it is not
necessary for a node to send its highest index to a neighbor j for which its MAP[j]
already contains something at least as big as this highest index. This situation
means that j would not find this node an appropriate parent anyhow, since its

highest message is too small.)

Whenever a node i discovers that a neighbor's INFO is larger than i's, i may
choose to try to attach to this node as a new parent. In practice, one might want
to "damp" the effeects of slight extra information, or extra information that per-
sists for a short time. If i decides to try to attach to a new parent j, i first
detaches itself from its old parent, if it has one (by setting its PARENT pointer to
j and sending a DETACH message to the old parent). Then i sends a DECLARE
message to j, with i's highest data message index. Then i waits for an ADOP-
TION acknowledgement from the j; j, if it acknowledges, will include all the
"latest" data messages it has — those messages with indices higher than i's

highest. This protocol is very similar to Awerbuch's.

There are a few technical points worth mentioning, about the attachment
protocol. First, in the interval between when i sets its PARENT pointer to j and
an ADOPTION message is received, it is permissible for i to accept new mes-
sages, even messages bigger than i's largest, from j. This will not violate the
invariants. Second, if an ADOPTION message fails to arrive in a reasonable
amount of time, i should terminate the protocol unilaterally and begin to search
for a new candidate parent; while doing so, it can keep its PARENT pointer point-

ing to j, and continue to accept arbitrary messages from je

Third, there is no guarantee that the DETACH message will get through. If it
does not get through, the old parent will continue to send data messages to i. For
-point-to-point networks, this is no problem. Node i ecan detect this situation, if it
later receives a spurious data message, i.e., one larger than i's largest from some-
one other than the node indicated by i's PARENT pointer, and can send another

DETACH message. (Node i should probably wait some small interval of time to
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make sure it has given the old parent time to receive the first DETACH message.)
Things are a little more complicated in the broadecast subnetwork case, as we will

describe below.

8.4 Propagating Data Messages

Except in the case where nodes poll their network neighbors for data mes-
sages to fill gaps, data messages get propagated along the parent graph only.
There are two cases in which such propagation occurs. The first is the ordinary
broadcast case. The source originates data messages which get sent downward in
the parent graph. The second is the propagation of gap-filling data messages.
When a node fills a gap by obtaining a data message from a network neighbor, it
propagates this data message in all directions in the parent graph. The same gen-
- eral data-message-processing protocol is used in both cases. Namely, when a
node i receives a new data message, it examines its MAP entries for all of its
parent graph neighbors. It sends the message to all neighbors that do not already
have the message index recorded in the appropriate MAP entries. We have
already said that the MAP entries get updated when nodes inform their network
neighbors about their INFO sets. We will also allow i's MAP[j] to get updated
‘whenever i receives a new data message from-j. Then the ordinary broadcast
case will proceed correctly as a special case of the general data-message-
processing protocol described above. (A node knows not to reflect a new message
back to a parent who has just sent it because the node will have recorded that the

parent already has it.)

8.5 Broadcast Subnetworks

We have not yet taken advantage of the broadcast subnetworks. The general
way that the broadecast subnetworks are used is as follows. Whenever a node
wants to send the same message to several network neighbors with which it shares
- a common broadcast channel, the message is broadcast.. There are a couple of
particular places in the algorithm where this broadcast will come in handy. First,
a node might broadcast data messages to several parent graph neighbors at once.

Second, a node might broadeast its INFO to several network neighbors at once.
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A message might actually be received by some nodes for which it was not
intended (i.e., be "overheard"). In cases where this matters, the message can con-
tain the set of intended addresses, but there are some cases in which the nodes
will be able to react appropriately without such tagging. Consider the two cases

mentioned above.

First, if a node i receives an overheard data message, it can use it without
penalty if the message fills a gap; it can discard it if it is larger than i's largest
message. In either case, it can update MAP appropriately. So far, there seems to
be no need for i to know whether i was included in the set of intended addresses.
However, in the description of the attachment protocol above, it was suggested
that receipt of spurious data messages might be used to trigger sending of
DETACH messages. However, if the spurious data message is one that is
overheard, it is not desirable to send such a DETACH message. Thus, it seems
necessary for a node to be able to distinguish those data messages which are
overheard from those which might be arriving from an old parent. The best way to
do this seems to be to include the set of intended addresses in the broadcast mes-
sage.

Second, if node i receives an overheard INFO message, it just uses it as it
would use any INFO message, to update its MAP. It is not necessary to include

addresses here.

It is very desirable to try to have broadcast subnetwork neighbors close in the
parent graph (assuming the broadecast subnetwork is functioning). It seems that
the rules we are already using would tend to do a pretty good job of arranging
this. In particular, the ability to "overhear" broadcast INFO messages and use
them to update MAP, together with the parent-finding rule we are using, seems to
tend to cause nodes to attach to parent-graph ancestors which are on the same

broadecast network.

We could augment this rule by an explicit test, however: we can allow any
node n which is on a broadeast subnetwork to look for any ancestor a which has a
child ¢ such that n, a and ¢ are all on the same broadeast subnetwork. Then n

should attempt to attach to a directly as a parent.
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Searching for such a node eould be done in either of two ways: (1) by periodie
polling of broadecast subnetwork neighbors, or (2) by following PARENT pointers.
There are engineering decisions to be made here, about the frequenecy of search-
ing, and in case (1), about whether all subnetwork neighbors or only some subset

will be examined.

Attachment to node a still requires checking that the inequality on largest
messages holds. (If the search for a is carried out by following PARENT pointers,
then by the time a is found, it might no longer actually be an ancestor of n, so
acyclicity cannot be guaranteed simply by the fact that n is reattaching to an
ancestor.) In order to get the inequality to hold, it might be useful for n to wait,

perhaps disearding some incoming messages from its former parent.

Note that this test involves a static test ~ whether the three nodes are physi-
cally on the same broadcast net. It is possible that the broadeast net might be
down, in which case the effect of this protocol might just be to "collapse" part of
a path in the parent graph. No harm would be done in this case — in fact, message
delay would probably improve, but the savings in messages due to use of ‘the

broadecast would not be realized.

8.6 Optimizations

There are some easy optimizations in space possible. For example, a node
can throw away data messages when its MAP tells it that all its network neighbors
already have them. Also, a node i need not send all of INFO to a neighbor j, just

those indices not in i's MAP[j].

8.7 Code

The code has not been written out completely. The algorithm is to be writ-
ten as an interrupt-driven algorithm, where the interrupts are both the arrival of

messages and the expiration of timers.
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9. NON-PROGRAMMABLE SERVERS; NO MULTICAST

In this section we will assume that the servers are not programmable and that
there is no multicast facility. The network thus consists of "hosts" which are pro-
grammable, and "servers" which are not. Each host is connected to a server, and

the servers are connected in some network of the sort deseribed in Section 2.

For this scenario we consider several cases, based on the server network con-
figuration, the communication primitives provided to the hosts, and the static and

dynamic information available for decision-making.

9.1 Unknown Server Configuration

First, let us consider the extreme caée, where the server network is com-
pletely unknown. It does not seem possible to get optimal performance in this
case. For example, consider once again the Simple Example of Section 6, and
assume that the s1-s2 link in the network is of high cost. The source can send
messages to X and Y separately, but this means that two copies will traverse the
expensive s1-s2 link. Less message traffic flows over this link if the source sends

messages only to X, and X thereafter sends the messages to Y.

It seems impossible to detect such a situation without some information

‘about the server network. We considered doing "experiments" involving trying

alternative routes to see if there was any observable improvement, but it seems
that the observable improvement might be too small. This is especially true if the
application we are programming is assumed to be sharing the server network with
many other applications. Thus, we will not attempt to detect such situations in

the absence of any information about the server network.

In this situation, we can still use some of our ideas, however. An algorithm
similar to the one deseribed in the preceding subsection can be run on hosts rather

than servers, to configure a parent graph. Some differences are as follows. .

First, nodes need to know whom to poll in trying to find a new parent. The
potential parents are now all the nodes of the network. Similarly, nodes need to
know whom to tell their INFO to. Again, potential neighbors for gap-filling are
all the nodes of the network. Each node seems to require a set C of candidates to

t®s(or to favor) for both of these tasks.
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Second, direct use cannot be made of the broadcast subnetworks. We assume
that a server, when presented with a request from a host to send the same mes-
sage m to several nodes, will know to take advantage of network broadcast where
possible. However, the hosts do not have enough information to configure the
parent graph in order to make hosts whose servers can communicate via broadcast
channels adjacent. (Hosts do not "overhear" broadeasts, and the explicit rule can-

not be used.)

Although this algorithm will miss some optimizations, it still serves to imple-

ment reliable broadcast at what is probably a reasonable cost.

In the remainder of Section 9, we assume that, although the servers are not

programmable, we have partial information about the server network.

9.2 Point-to-Point Server Networks: Routing Tables

For simplieity, in this section assume that the server network is all point-to-
point. One of the first kinds of partial information we considered was the server
routing tables. For example, one might consider using "extended reverse-path

forwarding" (ERPF) [Dala78] to construct a tree to use for broadeast.

In order to use the routing tables, the information must be sent somehow to
the hosts. Since not all the servers need correspond to hosts, it might be neces-
sary that some hosts have information about servers other than their own. Assum-
ing that this information can get to the appropriate places, an ERPF tree can then
be set up as usual. All the hosts will appear at leaves of the tree. The ERPF tree
is not used directly for implementing the broadcast; rather, the hosts have to
derive some kind of parent graph of hosts from the ERPF tree. The host parent

graph should be configured as much as possible like the ERPF tree. The (dynami-
cally changing) host parent graph will be used for normal broadeast, but will only
provide unreliable broadcast, both because of lost messages and because of mes-
sages which get missed during changes in the host parent graph. Thus, a gap-
.filling procedure is still needed.

Gap-filling can be done much as before; we must specify which hosts should

try to keep which other hosts informed about their INFO. One possibility is to

‘stick to.parent graph neighbors, but this has the same problem as described
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earlier: if the source dies, disconnected subgraphs will never bring each other up
to date. Another idea is for each node to keep a set C of "close neighbor" hosts in

the network. (Exactly how this information is known is unspecified here, but

~presumably some network topology information can be provided along with the

routing tables.) C is then the preferred set of nodes to use for gap-filling; the

nodes in C are kept informed more frequently than other nodes.

In this ease, where the parent graph is being configured by a separate
method, it does not seem to matter if the gap-filling procedure actually does
more than just fill real gaps; it is allowable for the gap-filling procedure to also
give messages to a node which are larger than the node's largest message. The
policy of only accepting messages larger than the node's largest was required ear-
lier in order to prevent formation of cycles in the parent structure; however, now
the parent structure is constructed by independent methods, so the policy is not
required.

It seems that the strategy of this section should do a good job of handling the
difficulty described in the example of Section 9.1 (i.e., the Simple Example of
Section 6). The ERPF tree would connec_t the servers in a line. Presumably, the

host parent graph would be constructed to connect the hosts in a line also.

The strategy would also perform well for the Mountain Example (part I) of
Section 6. ERPF would configure a tree of servers, with hosts all at leaves, where )
only a single edge would go over the expensive link s3-s5. When a host parent
graph is constructed from this server graph, it should look as much like the server
graph as possible; thus, it would tend to have few edges going across the expen-
sive link.

The strategy of this section seems to work rather well, assuming that the host
graph could be configured to look a lot like the ERPF graph. But how can this be
done? We have not worked out a complete algorithm to configure and update the

. host parent graph from the information presented in the routing tables. A general
strategy might use the following ideas. Each server needs an "owner" host, a
"nearby" host who will maintain the server's routing information and act as the

server's surrogate in the broadcast tree. The notions of "owner" and "nearby" are

dynamic, however. They seem to depend most naturally on the ERPF tree itself.
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In fact, the best policy seems to be to define the "owner" of a server to be the
nearest host to that server in the ERPF tree. (Ties are broken arbitrariiy.) The
servers with a given owner are all contiguous in the ERPF tree, and are contigu-
ous with the owner. Then the parent of a host i in the host parent graph is defined
as follows. Parent pointers are followed from i just until a server is reached

whose owner is some j < i. Then j is defined to be the parent of i.

This strategy has been described as if central information were available and

the underlying server network and routing tables were unchanging. More work is

required to see how to properly distribute the information. If this algorithm
seems interesting, we will pursue this further.

The ideas in this section should generalize to other means of constrhcting the
broadeast tree besides ERPF. Basically, what has been done here is to break the
- problem up into two pieces — construction of a host parent graph for ordinary
broadecasting, and a gap-filling procedure. Assume that any method is provided
which generates an appropriate host parent graph. Then this graph can be used
for propagation of data messages as before, and the same gap-filling strategies
described earlier in this section can be used to fill gaps (and perhaps add other

messages that do not actually fill gaps).

9.3 Point-to-Point Server Networks: Clusters

In this section, we describe another algorithm, similar to the one in the first
section, designed for a network for which certain static and dynamic information
is provided. Again, assume for simplicity that the server network is point-to-
point only. An important problerﬁ with which we must contend is the variable
bandwidth of the links. As a simplification for a first cut, let us assume that the
links in the server network are divided into "cheap links" (i.e., those of high
bandwidth) and "expensive links", (i.e., those of low bandwidth). Later, a hierar-

chy or continuum of costs could be considered.

. At any point in time, certain pairs of hosts can communicate via cheap links
only. The ability to communicate via cheap links only, defines an egquivalence
relation on the hosts at any fixed time. The equivalence classes will be called

"olusters". The organization of the hosts into clusters changes dynamically. We
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assume that two types of information about the network are available to the
hosts. First, each host has some static information — a set C of potential cluster
neighbors. The set C for node i contains those hosts with whieh it is possible for i
to communicate over cheap links, at least some of the time. The C sets could be
thought of as describing physical network topology. Second, each node obtains
some dynamic information. Every message that arrives from another host carries
with it a single bit saying whether that message arrived via cheap links only, or
whether it traversed at least one expensive link. Note that it is easy for a host to
determine whether a particular potential cluster neighbor is an actual current
cluster neighbor, just by exchanging messages with that node and seeing whether

the messages arrive via cheap links only.

As before, the algorithm will involve constructing a host parent graph, aug-
mented by a gap-filling procedure. The algorithm will be similar to our first algo-
rithm, in that our algorithm explicitly establishes the parent attachments, in a
way involving comparison of the information at the child and parent nodes. As
before, we insure in this way that no cycles get formed and that no child has an
INFO set that is greater than that of any of its ancestors. Therefore, as in the
first section, the gap-filling procedure must be restricted so that it only fills

actual gaps, and never adds a data message larger than the node's largest.

Gap-filling could be done just along the tree, since our construction will
insure that connectivity gets established if possible, even if the source dies. On
the other hand, it might be useful for nodes to attempt to fill gaps for all their
potential cluster neighbors, or maybe for all their current cluster neighbors. (In
all cases, the gap-filling procedure is essentially the same — whatever the chosen
set, a node occasionally informs the nodes in the chosen set of its INFO set. Any
node can ask anyone for a data message if it knows from its MAP that the node
has the data message. What can vary is exactly- what is selected as the chosen

set.)

Now we describe the procedure used to establish the host parent graph. We
would like hosts to use comparison of INFO sets as before, attempting to attach to
a parent with greater INFO. However, we would also like hosts to attach to hosts

in the same cluster if possible, even in preference to attaching to a host in
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another cluster with 2 much greater INFO set.

First, we claim that our previous attachment rule that requires a parent to
have strictly greater INFO is inadequate. Consider the situation where an entire
cluster is equally up-to-date, but all are rather out-of-date. (Perhaps no one is
getting any new information from the source since they were all attached to a
common parent in their own cluster who has just died.) Then new attachments
should form. We would like all of these nodes to form a tree and only one of them
to go outside the cluster looking for a new parent. However, if we use the striet
inequality constraint, no attachments can occur among these nodes. Thus, we
should loosen the constraint on attachment to allow some cases where the parent
does not have strictly greater information than the child. We must be careful

when doing this, however, since we want to avoid cycles. We use the following.

Constraint on attachment: A node i can only attach to a node j provided that one
of the following holds.

1. j's INFO is strictly greater than i's INFO.
2. j's INFO is equal to i's INFO and j is a root.

3. j is already an ancestor of i (and remains an ancestor of i during the reat-

tachment procedure).

It is easy to see that observing this constraint insures that the two invariants
we want are maintained: that no cycles are formed, and that no child ever has
INFO greater than that of any ancestor. (Sketch of proof: There is no way that a
child could ever get INFO greater than an ancestor, since nodes only attach to

parents with INFO at least as great as theirs, and data messages greater than a

node's largest are only accepted from the node's parent. We argue that no cycles’

can occur. Assume that a cycle forms, and consider the step which inserts the
last edge that completes the cycle. That last edge could not be inserted because
of rule 1, because that would mean that a descendant had INFO greater than an
ancestor. Likewise, that last edge could not be inserted because of rule 2,
because the fact that a cyele is being completed implies that the new parent is
not a root. Finally, the last edge could not be inserted because of rule 3, since if

a new cycle is being formed, an old eycle would have already existed.)
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Within this constraint, there is a lot of flexibility for deciding on appropriate
parents. We give some specific rules.

It is useful for a node to know whether its parent is in the same cluster. This
situation can be detected if parents continually send "I'm alive" messages to all
children, when no data messages are being sent. It can be determined from the
messages that they arrived over cheap links only, hence that the sender is in the
same cluster as the receiver.

There is one general rule which seems useful to follow. Namely, if node i's
parent and its grandparent are in the same cluster, then node i should reattach to
its grandparent. This situation is detectable by node i's parent. (The reattach-
ment will probably require some kind of 3-node "atomic transaction", in order to

insure that constraint 3. above remains satisfied.)

There are several cases, in which different policies should be followed.

Case 1): Node i has a parent j which is in the same cluster as i.

In this case, the only way to improve i's situation is for i to find another node
in the same cluster with greater information than i. (This is using Awerbuch's
idea locally within the cluster.) Nodes should periodically inform their cluster
neighbors of their INFO sets. (Actually, telling them the largest index is enough.)

This is sufficient td allow i to determine appropriate candidates for a new parent.

Case 2): Node i has a parent j which is in a different cluster from i.
Then i should try several possibilities, in order of preference:

(a) First, i should look for a node in the same cluster as i but with more informa-
tion than i. This can be done as in Case 1.

(b) Second, i should look for a node j in the same cluster as i with the same
information as i, such that j is a root.

(e) If the first two simple tests fail to yield a parent from the same cluster, the
third thing to try is the following. Node i should look for a node j in the
same cluster as i, with as large INFO as possible (perhaps we should require
that j's INFO be at least as great as i's INFO), such that j is not a "cheap
descendant"” of i in the parent graph.
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Note: We say that j is a "cheap descendant" of i in the parent graph provided
that there is a path directed upward from j to i in the parent graph which

traverses only cluster neighbors.

Node i would like to attach to j, but since the constraint is not satisfied
immediately, all i can do is to wait for a short while to see if the constraint
becomes satisfied. Thus, i can buffer its input data messages for a short
while to keep its own INFO from growing larger, and would check to see if j's
INFO grows larger than i's INFO. If this happens in a short time, i will dis-
card the buffered messages and attach to j. If not, i can process the buf-

fered messages as usual.

The reason that i checks that j is not a cheap descendant is that it would be
impossible for j's INFO to grow larger than i's during i's wait (above) if j
were a descendant of i; it seems too expensive for i to actually test whether
j is a descendant of i, so { makes a weaker test — whether j is a cheap des-
cendant. This weaker test can be made economically, by searching the tree

as long as only cheap descendants are encountered, searching for j.

Tests (a)-(c) are to be made frequently, since it is highly preferable for a
node to attach to a node in the same cluster. However, if they fail, node i
can still look (less frequently) for some further improvement among non-

cluster neighbors. Thus, it makes the following tests.
(d) Node i looks for a non-cluster neighbor with greater INFO than i's.

Some discipline must be exercised in examining arbitrary non-cluster neigh-

bors. It is possible, but possibly undesirable, to have non-cluster neighbors

frequently informing each other of their INFO size. They could inform each

other infrequently, with frequency perhaps depending on static distance. Or,
they could inform upon request: node i could request INFO when this stage of
this case is reached. Exactly whom i requests INFO from will depend on

.some information about the network.
Case 3): Node i has no parent.

This case can arise at initialization of the algorithm, or by timing out on a
parent. (A node expects to receive some messages from its parent, either data

messages or "I'm alive" reassurance messages.) Depending on the protocol used for
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switehing from an old parent to a new parent, this case could also arise after an

old parent is detached, if the new attachment fails to complete.

Node i proceeds just'as in case 2, with one addition. If all else fails, node i

can settle for an arbitrary parent which has equal INFO to i and is a root.

This algorithm appears to have nicebehavior; the given rules appear to cause
gravitation to an acceptable parent graph if the algorithm is initialized with an
arbitrary acyelic parent graph structure, and appear to cause proper adaptation to

cluster partition and merge.

9.4 Combination Point-to-Point and Broadcast Server Networks: Clusters

It remains to be seen how to modify the preceding algorithm if the underly-
ing server network consists of a combination of point-to-point links and broadeast
links instead of just point-to-point links. We assume that the server network can
take advantége of the broadeast subnetworks — when a host wants to broadecast a
message to some set of hosts and the host's server knows that they are all on the
same broadecast subnetwork, the server should make proper use of the broadcast
subnetwork. Thus, if we just used the algorithm verbatim, partial benefit would

be obtainable from the broadeast subnetworks.

In addition, it is desirable to try to have an explicit rule which attempts to
configure the parent graph so that hosts which are part of a common broadcast
subnetwork will be adjacent. Such a rule requires (static) information about
which nodes are on a common broadcast subnetwork. Then a rule might be similar
to one used in the first section: any node i which discovers an ancestor a with a
child ¢ such that i, a and ¢ share a broadcast subnetwork, should reattach to a.
Note that this reattachment should be done even if the connection between i and

a is via an expensive link.

There are two problems with this rule. First, as before, it must be insured
that either constraint (1) or constraint (3) above is satisfied, in order for i to reat-
tachtoa. It seexhs that the natural constraint to try to satisfy is (3), since a was
discovered to be an ancestor of i. However, we need to insure that a is actually
an ancestor of { at the moment of reattachment; this seems to require that the

search for a and the' reattachment be done as an atomic transaction.
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Alternatively and perhaps more simply, we could allow i to wait as before for (1)
to be satisfied.

Second, if we introduce this new rule, we get the possibility of "thrashing" of
nodes reattaching to different parents. Specifically, assume { was previously
attached to node p, where p and i are in the same cluster, and assume that i is to
reattach to a in another cluster because of this new rule. Then immediately after
reattaching, i might try to reattach once again to p, because of the rule in Case
2(c). (It is also conceivable, but unlikely, that i would want to reattach top as a
result of the rule in Case 2(a).) It seems that we might try to disable the rule in
Case 2(c) in this case — i.e., where i has a parent a who has another child ¢ for
which i, a and c are on the same broadcast subnetwork, where i and c are in the
same cluster, but a is in another cluster. However, that is not good enough, for
there would be nothing to cause the pair, i and ¢, to reattach to a node in the
same cluster if that turns out to be possible — each of i and c would be prevented
from reattaching to a cluster neighbor by the fact that the other is also attached
toa!

The idea that seems to work is that we can regard i and ¢ as being tem-
porarily "merged" into a single pseudo-node {i,c}. It is useless to reattach only
one of this pair to something in its cluster, but itvwould be useful to reattach both
of them to something in their own cluster at the same time. When one of them,
say i, discovers a node p that it wants to attach to by one of rules 2(a)-(c), then
before i does so, it enters into & protocol with ¢ to insure that ¢ also is able to
attach to p; if this works out, then they both reattach. Note that it is not impor-
tant that the entire reattachment protocol involving i, p and ¢ be carried out

atomieally, since there is no terrible harm done if only one of i, c reattached.

10. NON-PROGRAMMABLE SERVERS WITH MULTICAST

In this case, the servers and switches are not programmable, but a good mul-
ticast facility is provided by the network. The unreliable multicast facility makes
broadeasting the data messages simple and efficient; however, we must now

ensure that any lost messages are eventually received by the hosts.

X E ] - o N " L
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One of the first issues to resolve in this case is how hosts will detect missing
data messages. Since the data messages are numbered by the source, a host can
detect a gap, or missing message, as soon as it receives a message with a higher
number. However, if the source is disconnected, or if it temporarily not broad-
casting new messages, then the receiving host has no way of detecting the gap,
i.e., of telling if the source is not broadcasting, or if the source is broadcasting
and it has missed the data.

One way to solve the problem is to have each host periodically check with its
"neighbors" to see what messages they have received. If indeed there are gaps,
not only can they be detected, but they can also be filled in by the neighbor. This
is the strategy used by the algorithms of the previous scenarios. Notice that
every node must check, directly or indirectly, with every other node in the system
for gaps. (If one node is missed, then that node could be the one with the infor-
mation to detect and fill a gap.) In the algorithms of the previous sections, hosts
do not check directly with every other host. Instead, hosts form a tree, and a host

delegates the job of checking to its father.

A second way to solve the problem is to have the source broadeast a null data
message if more than D seconds have gone by without a transmission. The null
messages may or may not be sequenced, but for simplicity let us assume that they
are numbered, just as if they were regular data messages. With this strategy,
hosts can detect gaps on their own, without communicating with any neighbors.
Specifically, a gap at data message n is recognized if any message with sequence
number n + 1 or higher arrives, or if more than D seconds go by without the
arrival of message n + 1.

With the second strategy, hosts do not have to send any messages out on a
regular basis, only when a gap (i.e., a failure) occurs. Furthermore, the null mes-
sages use the efficient multicast facility. In the rest of this section we adopt this
null message strategy.

In designing the reliable broadcast algorithm, it is important to note that

there are really two different cases to consider:

(1) The first is filling in sporadic gaps, i.e., gaps that occur due to transient

events in the system. In these cases, we expect both the number of missing




(2)

-34-

data messages and the number of hosts that missed them to be small. Also,
occurrences of these gaps should be infrequent. Given these assumptions,
the strategy we use for filling in sporadic gaps is not eritical. We could sim-
ply have each node that detects a gap query every node in the system, of
course, giving preference to nodes that are close or likely to have the desired

information.

The second case occurs when a group of hosts is disconnected from the
source, i.e., when a network partition occurs. (Hosts in the partitioned group
will timeout after D seconds.) In this case, it is not desirable to have every
node trying to fill its gaps independently because this situation affects all
nodes in the partition (in the same way), and the partition ecould last a long
time. Furthermore, when the reconnection takes place, there may be a large
number missed data messages to transmit, and this should not be done in a
haphazardly fashion. Thus, in this case, it appears to be best to elect a
"eoordinator" (or root) for the group, and to have it probe the rest of the sys-
tem for a reconnection. This eoordinator should know the identity of all its
member hosts. This way, when a connection is established, the list of hosts
can be given to the host(s) that will supply the missed data so it can use the

efficient multicast facility for dissemination the data.

Since case (2) seems to be more important, performance wise, let us look at

it first. Should the nodes in a partition group simply elect & coordinator and com-

municate directly to it, or should they form a tree structure, as in our other algo-

rithms? Studying the communication needs may help answer this question.

At the beginning of the partition, each node must inform the root or coordi-

nator of its status (i.e., received data messages). Let us call this step 1. (One

strategy for doing this will be discussed shortly.) Then the coordinator ack-

nowledges this message, so that the host knows that the coordinator is indeed con- -

sidering it a member of the group. A group id may be included in this acknowledg-

ment to identify the group instance in the future. This is step 2. From then on,

the coordinator sends out "I am alive messages" (with group id) to all members.

This is step 3, and is repeated periodically.
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Step 3 is executed frequently, and it ecan be performed efficiently if the
coordinator uses the multicast facility to send the message to all members at
once. Thus, from the point of view of efficiency of step 3, it seems to be best to

have the coordinator have all members as direct children, i.e., a very bushy tree.

However, if everyone tries to communicate with the coordinator directly in
step 1, especially immediately after a partition, the coordinator may become
congested. Thus, for steps 1 and 2, it may be advisable to form a tree structure.
This tree would only be used selecting the coordinator, but not for broadecasting

the "I am alive" messages.

We now describe one possible way to perform steps 1 and 2. (We are still only
considering partitions, not sporadie gap filling.) Each host is given a "priority list"
that lists all hosts in order of increasing priority. For the time being assume that
all hosts have the same list. For example, for the Mountain Example of Section 6
the list could be (lowest priority) Y2, Y1, Y3, X2, X1, S (highest priority). (For
reference, the network for the Mountain Example is repeated below.) When a host
X detects a disconnected source (timeout after D seconds), it tries to contact the
node with the next highest priority after it. If it cannot be reached, it tries the
next highest priority, and so on, until some node Y responds. Then X asks Y to
carry on this selection process for it. If Y has the messages that were missed by
X, then it gives them to X, and both X and Y return to normal operation. If Y
does not have the messages, then it starts up the selection procedure by trying to
reach nodes of higher priority. If Y was already doing this, then Y adds X to its

list of "late comers" and continues the process.
The Mountain Example, Part I.

X1 Y1
| |
/--s1 /--s54
! /]
/ | / |
s-sz ----- S3=============="—’85 ————— Ss-Yz
| |
X2 Y3
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Eventually, the node in the partition group with the highest pridrity is unable
fo contact other nodes and declares itself coordinator. Then it broadcasts an ack-
nowledgment message to all members (using multicast facility) giving id of all
members, id of common gaps, and group id. Late comers can be added at any
time after this, by having the late comer lists trickle up the tree, and new ack-
nowledgements come down (either directly to the late comers, or in multicast
mode).

Of course, the priority lists must be selected so that they produce good confi-
gurations. In the Mountain Example list, X2 follows Y3, since X2 is the best node
for Y3 to contact first. If all nodes have the same list, the nodes form a linear

structure. For example, in the Mountain Example, if s2 (i.e., S) fails, then Y2

would contact Y1, which in turn would contaet Y3, and in turn would contact X2,
and so on.

If we want both Y1 and Y2 to contact Y3 directly, we can "play games" with

the priority lists. For example, let us make the priority lists as follows:

For Y2: Y2, Y3, Y1, X2, S, X1

For Y1: Y2, Y1, Y3, X2, S, X1

For Y3: Y2,Y1, Y3, X2, S, X1

For X2: Y2,Y1, Y¥3,X2,8,X1

for X1: Y2, Y1, Y3, X2, X1, S
As before, each node only searches for nodes of higher priority. For instance,
node Y1 does not contact Y2; only nodes Y3, X2,..., in that order. With these
lists, after S fails, both Y1 and Y2 become children of Y3 However, if Y3 is also
unavailable, then Y2 becomes a child of Y1, and Y1 is the one that tries to reach
X2.

Of course, we must ensure that these lists do not allow cycles. That is, the
relationship "node x could become a child of y" should be acyclic. In the exam-
ple, if we form a graph with ares from Y2 to its potential coordinators (Y3, Y1,
«sy X1), from Y1 to its potential coordinators (Y3, X2, S, Xl), and so on, we see
that the graph has no cycles.

. ! ' .'!’ . ! . . b ] . ! . ! - ! - ! - - !
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Note that the priority lists we have suggested are static. Therefore the trees
that are created from them may not be the best in all cases. If in the Mountain
Example, suddenly a new high bandwidth link appears between hosts X1 and Y1,
the polling structure will not take full advantage of it. However, the structures
we are creating are used infrequently for failure recovery, not frequently for nor-
mal message broadcast. Thus, we believe the structures will be satisfactory.
Observe that we avoided this type of static structure in previous sections where

the trees were used for normal broadecasts.

Returning to the sporadic gap problem, we could also use the idea of priority
lists in that case (although as we mentioned earlier, whether we do something
fancy here or not is not as critical). Tempdrarily assume that the gap filling algo-
rithm is independent from the partition recovery algorithm we have just
described. Suppose that we have the same lists given above and that Y2 detects a
gap at data message n. Y2 would first check with Y3 (Y3 follows Y2 in the Y2
list). If Y3 has n, then it would give it to Y2 and that would be it. If not, then Y3
takes up the job of finding message n.

What we have here is exactly the same procedure we had described earlier.
Thus, both the gap filling and partition recovery algorithms can be combined into
one. A coordinator is set up whenever a gap, of any type, is found. If the gap is
sporadie, chances are the procedure will be terminated before the coordinator is
selected because the gap is filled. If the gap is caused by a partition, the coordi-

nator will be selected.

In all cases, remember that the coordinator must probe all nodes in the sys-
tem, including nodes in its group. If the coordinator reaches a node with higher
priority but without the desired data, the coordinator search process is resumed:
the old coordinator asks this new node to become coordinator or to continue the
search. If the coordinator reaches a node with lower priority but without the
desired data, it does nothing. (The coordinator may request that this node inform
it of any changes in its status. This way the coordinator will not have to probe it
periodically.)

When a éoordinator finds some or all of the missing data messages, it

instructs the node that has them to broadcast the data to all of its members. In
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some cases the coordinator could find two or more nodes with the data, and in this
case it may decided to split the request. That is, each node with the data could
be instructed to broadeast to a subset of the members, i.e., those members that it

can communicate with easily. Once the data is transmitted, the coordinator can
return to normal operation.

We have sketched one possible solution for the reliable broadcast problem
when a multicast faecility is available. Clearly, many details have been left out,
and several other variations are possible. The most important observation to
make is that the structures needed by the algorithm (i.e., the tree to form a group
and select a coordinator) is not used for significant message traffic. Thus, the
structure need not adapt to changing loads, only to failures. Thus, a simple fixed

strategy like priority lists seems to be adequate.
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