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1 Introdu
tionOne of the fundamental goals of theoreti
al 
omputer s
ien
e is to determine the boundary between problemsthat are, and are not, 
omputable. In distributed 
omputing, the large number of system parameters 
ompoundsthis problem. Computability results depend heavily on the 
ommuni
ation medium, the number of pro
esses inthe system, and the number and type of possible faults. It is dif�
ult in pra
ti
e to extend a result obtained inone system to apply in another, even if only one of the many system parameters differs between the two systems.In this paper, we take the �rst steps toward a formal theory for redu
tion among problems in different modelsof distributed 
omputing. We 
onsider asyn
hronous read/write shared memory systems where pro
esses mayexhibit stopping failures. There is a parameter f asso
iated to a system, whi
h spe
i�es the maximum number ofpro
esses that 
an fail.We des
ribe an algorithm, the BG-simulation algorithm, that allows a set of f + 1 pro
esses with at most ffailures, to �simulate� a larger number n of pro
esses, also with at most f failures. The BG-simulation algorithmis a powerful tool for proving solvability and unsolvability results for fault-prone asyn
hronous systems.To illustrate the power of the BG-simulation algorithm, 
onsider the n-pro
ess k-set agreement problem [8℄, inwhi
h all n pro
esses propose values and de
ide on at most k of the proposed values. We use the BG-simulationalgorithm to 
onvert an arbitrary k-fault-tolerant n-pro
ess solution for the k-set-agreement problem into a wait-free k + 1-pro
ess solution for the same problem. (A wait-free algorithm is one in whi
h any non-failing pro
essterminates, regardless of the failure of any number of the other pro
esses.) Sin
e the k+1-pro
ess k-set-agreementproblem has been shown to have no wait-free solution [5, 18, 26℄, this transformation implies that there is no k-fault-tolerant solution to the n-pro
ess k-set-agreement problem, for any n.As another appli
ation, we show how the BG-simulation algorithm 
an be used to obtain results of [12, 16℄about the 
omputability of some de
ision problems. Other appli
ations of the algorithm (in
luding variants, relatedalgorithms dis
ussed below, and extensions of it) have appeared in [6, 7, 9, 10, 21, 25, 17℄.As these examples suggest, the BG-simulation algorithm is an important tool when studying redu
ibility amongproblems in different models of distributed 
omputing. Thus, it is important to understand pre
isely what thealgorithm guarantees. In this paper, we present a 
omplete and 
areful des
ription of the BG-simulation algorithm,plus a 
areful des
ription of what it a

omplishes, plus a proof of its 
orre
tness.In order to spe
ify the 
ontribution of the BG-simulation algorithm, we de�ne a notion of fault-tolerant re-du
ibility between de
ision problems, and a notion of fault-tolerant simulation between shared memory systems.We show that, in a pre
ise sense, any algorithm that implements the fault-tolerant simulation between two systemsalso implements the redu
ibility between de
ision problems solved by the systems. Then we des
ribe a spe
i�
version of the BG-simulation algorithm that implements the simulation. These notions are quite natural (althoughspe
ially tailored to the BG-simulation algorithm) and we believe they 
an serve as a basis for more general notionsof redu
ibility between de
ision problems and simulation between systems.To highlight the limits of the 
urrent redu
ibility, we give examples of pairs of de
ision problems that do anddo not satisfy our notion of fault-tolerant redu
ibility. For example, the n-pro
ess k-set-agreement problem isf -redu
ible to the n0-pro
ess k0-set-agreement problem if k � k0 and f � min fn; n0g. On the other hand, theseproblems are not redu
ible if k � f < k0. The moral is that one must be 
areful in applying the simulation � thereare s
enarios for whi
h it is appropriate and s
enarios for whi
h it is not. One must verify that the 
onditions forredu
ibility hold.We present and verify the BG-simulation algorithm in terms of I/O automata [23℄. The presentation has a greatdeal of modularity, expressed by I/O automaton 
omposition and both forward and ba
kward simulation relations(see [24℄, for example, for de�nitions). Composition in
ludes a safe agreement module, a simpli�
ation of one in2



[5℄, as a subroutine. Forward and ba
kward simulation relations are used to view the algorithm as implementing amulti-try snapshot strategy. The most interesting part of the proof is the safety argument, whi
h is handled by theforward and ba
kward simulation relations; on
e that is done, the liveness argument is straightforward.We present our main version of the BG-simulation algorithm for a snapshot shared memory system. Thismakes the 
orre
tness proof more modular, and the whole presentation 
learer, and is no loss of generality, sin
e asystem using snapshot shared memory 
an be implemented in a wait-free manner in terms of single-writer multi-reader read/write shared variables [1℄. For 
ompleteness, we brie�y present a version that works in read/writeshared memory systems. Essentially, the version for read/write systems is obtained by repla
ing ea
h snapshotoperation by a sequen
e of reads in arbitrary order. The 
orre
tness of the resulting read/write systems is provedby arguments analogous to those used for snapshot systems, 
ombined with a spe
ial argument showing that theresult of a sequen
e of reads is the same as the result of a snapshot taken somewhere in the interval of the reads.The original idea of the BG-simulation algorithm and its appli
ation to set agreement are due to Borowsky andGafni [5℄. The �rst pre
ise des
ription of the simulation, in
luding a de
omposition into modules, the notion offault-tolerant redu
ibility between de
ision problems, and a proof of 
orre
tness appeared in Lyn
h and Rajsbaum[22℄. The present paper 
ombines the results of [5℄ and [22℄, and adds the abstra
t notion of fault-tolerant simu-lation, extensions for read/write systems, 
omputability results, and other details that were not in
luded in [5, 22℄for la
k of spa
e.Borowsky and Gafni extended the BG-simulation algorithm to systems in
luding set agreement variables [6℄;Chaudhuri and Reiners later formalized this extension in [10, 25℄, following the te
hniques of [22℄.In the 
ontext of 
onsensus, variants of the BG-simulation are used in [9, 21℄ to simulate systems with a

essto general shared obje
ts. The BG-simulation requires pro
esses to agree on the out
ome of ea
h step by solving (arestri
ted form of) Consensus using only (read/write) registers. Instead of having pro
esses agree on the out
omeof the step as in the BG-simulation, these papers use (a similarly restri
ted form of) test&set registers to ensurethat only one pro
ess simulates ea
h step. The simulation of Chandra et al. applies to a 
ontext in whi
h TASregisters are available dire
tly and need not be implemented, while Lo and Hadzila
os present a test test&setimplementation.Afek and Stupp [3℄ use simulation to prove a lower bound on the time-spa
e tradeoff of leader ele
tion algo-rithms that use 
ompare&swap registers. Their simulation redu
es a leader ele
tion algorithm for a system with
ompare&swap registers with limited time and spa
e resour
es to a set agreement algorithm with only read/writevariables. Ea
h simulating pro
ess simulates a group of stati
ally pre-assigned pro
esses in the simulated algo-rithm. The 
oordination is loose, so different exe
utions may end-up being simulated by pro
esses in differentgroups.This paper is organized as follows. We start with the model in Se
tion 2. In Se
tion 3 we de�ne de
isionproblems, what it means to solve a de
ision problem, redu
ibility between de
ision problems, and simulationbetween shared memory systems that solve de
ision problems. In Se
tion 4 we des
ribe a safe agreement modulethat is used in the BG-simulation algorithm. In Se
tion 5 we present the BG-simulation algorithm. In Se
tion 6we present the formal proof of 
orre
tness for the BG-simulation algorithm. This implies Theorem 6.10, our mainresult, whi
h asserts the existen
e of a distributed algorithm that implements the redu
ibility and simulation notionsof Se
tion 3. In Se
tion 7 we show how to modify the BG-simulation algorithm (for snapshot shared memory),to work in a read/write memory system. In Se
tion 8 several appli
ations of the BG-simulation algorithm aredes
ribed. A �nal dis
ussion appears in Se
tion 9.
3



2 The ModelThe underlying model is the I/O automaton model of Lyn
h and Tuttle [23℄, as des
ribed, for example, in Chapter8 of [19℄. Brie�y, an I/O automaton is a state ma
hine whose transitions are labelled with a
tions. A
tions are
lassi�ed as input, output, or internal. The automaton need not be �nite-state, and may have multiple start states.For expressing liveness, ea
h automaton is equipped with a task stru
ture (formally, a partition of its non-inputa
tions), and the exe
ution is assumed to give fair turns to ea
h task. The tra
e of an exe
ution is the sequen
e ofexternal a
tions o

urring in that exe
ution.Most of the systems in this paper are asyn
hronous shared memory systems, as de�ned, for example, in Chapter9 of [19℄. Brie�y, an n-pro
ess asyn
hronous shared memory system 
onsists of n pro
esses intera
ting viainstantaneously-a

essible shared variables. We allow �nitely many or in�nitely many shared variables. (Allowingin�nitely many shared variables is a slight generalization over what appears in [19℄, but it does not affe
t any ofthe properties we require.) Formally, we model the system as a single I/O automaton, whose state 
onsists ofall the pro
ess lo
al state information plus the values of the shared variables, and whose task stru
ture respe
tsthe division into pro
esses. When we dis
uss fault-toleran
e properties, we model pro
ess stopping expli
itly bymeans of stopi input a
tions, one for ea
h pro
ess i. The effe
t of the a
tion stopi is to disable all future non-inputa
tions involving pro
ess i. When we dis
uss safety properties only, we omit 
onsideration of the stop a
tions.In most of this paper, we fo
us on shared memory systems with snapshot shared variables. A snapshot variablefor an n-pro
ess system takes on values that are length n ve
tors of elements of some basi
 data type R. It isa

essible by update and snap operations. An update(i; r) operation has the effe
t of 
hanging the i'th 
omponentof the ve
tor to r; we assume that it 
an be invoked only by pro
ess i. A snap operation 
an be invoked by anypro
ess; it returns the entire ve
tor.We often assume that the i'th 
omponent of a snapshot variable is itself divided into 
omponents. For example,we use a snapshot variablemem, and denote the i'th 
omponent by mem(i); this 
omponent in
ludes a 
omponentsim-mem(j), denoted mem(i):sim-mem(j), for ea
h j in some range. We sometimes allow pro
ess i to 
hangeonly one of its 
omponents, say mem(i):sim-mem(j0), with an update operation; this is permissible sin
e pro
essi 
an remember all the other 
omponents and overwrite them.As we have de�ned it, a snapshot system may have more than one snapshot shared variable. However, anysystem with more than one snapshot variable (even with in�nitely many snapshot variables) 
an easily be �imple-mented� by a system with only a single snapshot variable, with no 
hange in any externally-observable behavior(in
luding behavior in the presen
e of failures) of the system. Likewise, a system using snapshot shared memory
an be �implemented� in terms of single-writer multi-reader read/write shared variables, again with no 
hange inexternally-observable behavior; see, e.g., [1℄ for a 
onstru
tion.In Se
tion 7 we also 
onsider shared memory systems with single-writer multi-reader read/write shared vari-ables (as de�ned, for example, in [19℄).3 De
ision Problems, Redu
ibility and SimulationIn Se
tion 3.1 we de�ne de
ision problems and in Se
tion 3.2 we say what it means for a system to solve a de
isionproblem. In Se
tion 3.3 we de�ne the fault-tolerant redu
ibility between de
ision problems. In Se
tion 3.4 wepresent the notion of simulation.While the notion of redu
ibility relates de
ision problems, we show that the notion of simulation is the equiv-alent 
ounterpart that relates systems. The following diagram represents these relations, where D and D0 are4



de
ision problems, and P and P 0 are systems.D redu
ible�! D0" solves " solvesP simulates�! P 0We use the following notation. A relation fromX to Y is a subset ofX�Y . A relationR fromX to Y is totalif for every x 2 X , there is some y 2 Y su
h that (x; y) 2 R. We write R(x) as shorthand for fy : (x; y) 2 Rg.For a relation R fromX to Y , and a relation S from Y to Z, R � S denotes the relational 
omposition of R and S,whi
h is a relation fromX to Z.3.1 De
ision ProblemsLet V be an arbitrary set of values; we use the same V as the input and output domain for all the de
ision problemsin this paper, and V n denotes the set of all length n ve
tors with entries from the set V .An n-port de
ision problem D = hI;O;�i 
onsists of a set I of input ve
tors, I � V n, a set O of outputve
tors, O � V n, and�, a total relation from I to O.Example 1 In the n-pro
ess k-set-agreement problem over a set of values V , jV j � k + 1, whi
h we abbreviateas the (n; k)-set-agreement problem, I is the set of all length n ve
tors over V , and O is the set of all length nve
tors over V 
ontaining at most k different values. For any w 2 I, �(w) is the set of all ve
tors in O whosevalues are in
luded among those in w.3.2 Solving De
ision ProblemsLetD = hI;O;�i be an n-port de
ision problem; we de�ne what it means for an I/O automatonA (in parti
ular,a shared memory system) to solve D. A is required to have inputs init(v)i and outputs de
ide(v)i, where v 2 Vand 1 � i � n. Ea
h su
h i is asso
iated to a pro
ess of a A, and is used to 
ommuni
ate with other modules viathe 
orresponding input and output a
tions. We say that an init(v)i or de
ide(v)i o

urs in port i.We 
onsiderA 
omposed with any user automaton U that submits at most one initi on ea
h port i. We say thata set of init(vi)i a
tions, one for ea
h i, 1 � i � n, forms the ve
tor (v1; : : : ; vn). A set of de
ide(vi)i a
tions fordifferent values of i 
an be 
ompleted to a ve
tor in a given set of n-ve
tors, if there is one ve
tor in the set, w,su
h that w(i) = vi for every de
ide(vi)i a
tion. We require the following 
onditions:Well-formedness: A only produ
es a de
idei if there is a pre
eding initi, and A never responds more than on
eon the same port.Corre
t answers: If init events o

ur on all ports, forming a ve
tor w 2 I, then the outputs that appear in de
ideevents 
an be 
ompleted to a ve
tor in�(w).We say that A solves D provided that for any su
h U , the 
omposition A � U guarantees well-formedness and
orre
t answers. In addition, we 
onsider a liveness 
ondition expressing fault-toleran
e:5



f -failure termination: In any fair exe
ution of A � U , if init events o

ur on all ports and stop events o

ur onat most f ports, then a de
ide o

urs on every non-failing port.A is said to guarantee f -failure termination provided that it satis�es the f -failure termination 
ondition for any U ,and A is said to guarantee wait-free termination provided that it guarantees n-failure termination (or, equivalently,n� 1-failure termination).3.3 Fault-Tolerant Redu
ibilityWe de�ne the notion of f -redu
ibility from an n-port de
ision problem D = hI;O;�i to an n0-port de
isionproblemD0 = hI 0;O0;�0i, for an integer f , 0 � f � n0.The redu
ibility is motivated by the way the BG-simulation algorithm operates. In that algorithm, a sharedmemory system P simulates an f -fault-tolerant system P 0 that solvesD0. The simulating system P is supposed tosolve D, and so it obtains from its environment an input ve
tor w 2 I, one 
omponent per pro
ess. Ea
h pro
essi, based on its own input value w(i), determines a �proposed� input ve
tor gi(w(i)) 2 I 0. The a
tual input forea
h simulated pro
ess j of P 0 is 
hosen arbitrarily from among the jth 
omponents of the proposed input ve
tors.Thus, for ea
h w 2 I, there is a set G(w) � I 0, of possible input ve
tors of the simulated system P 0.When the �subroutine� that solves P 0 produ
es a result (a ve
tor in O0), different pro
esses of P 
an obtaindifferent partial information about this result. However, with at most f stopping failures, the only differen
e is thatea
h pro
ess 
an miss at most f 
omponents; the possible variations are 
aptured by the F relation below. Thenea
h pro
ess i of P uses its partial information x(i) to de
ide on a �nal value, hi(x(i)). The values produ
ed inthis way, 
ombined a

ording to theH relation, must form a ve
tor in O. The formal de�nitions follow.For a setW of length n ve
tors and index i 2 f1; : : : ; ng,W (i) denotes fw(i) : w 2 Wg, and �W denotes theCartesian produ
tW (1) �W (2) � : : :�W (n). Thus, �W 
onsists of all the ve
tors that 
an be assembled fromve
tors inW by 
hoosing ea
h 
omponent to be the 
orresponding 
omponent of some ve
tor inW .For a length n ve
tor w of values in V , and 0 � f � n, viewsf (w) denotes the set of length n ve
tors overV [ f?g that are obtained by 
hanging at most f of the 
omponents of w to ?. IfW is a set of length n ve
tors,then viewsf (W ) denotes [w2W fviewsf (w)g.Our redu
ibility is de�ned in terms of three auxiliary parameterized relations G, F and H , depi
ted in thefollowing diagram. The relation G is de�ned by relations g1; : : : ; gn. The relation H is de�ned by relationsh1; : : : ; hn, and f . And the relation F is de�ned by f . Thus we use the notation G = G(g1; g2; : : : ; gn),H = H(f; h1; h2; : : : ; hn), and F = F (f) to emphasize that g1; g2; : : : ; gn, h1; h2; : : : ; hn, and f are the keyparameters whose existen
e is asserted in the following de�nition of redu
ibility.I G�! I 0# � # �0O H � F (O0) F � O01. G = G(g1; g2; : : : ; gn), a total relation from I to I 0; here, ea
h gi is a fun
tion from I(i) to I 0.For any w 2 I, let W � I 0 denote the set of all ve
tors of the form gi(w(i)), 1 � i � n, and de�neG(w) = �W . We assume that for ea
h w 2 I, G(w) � I 0.6



2. F = F (f), a total relation fromO0 to (viewsf (O0))n.For any w 2 O0, F (w) = (viewsf (w))n.3. H = H(f; h1; h2; : : : ; hn), a total (single-valued) relation from (viewsf (O0))n to V n; here, ea
h hi is afun
tion from viewsf (O0) to O(i).For any x 2 (viewsf (O0))n, H(x) 
ontains exa
tly the length n ve
tor w su
h that w(i) = hi(x(i)) forevery i.De�nition 3.1 (f -Redu
ibility) Suppose thatD = hI;O;�i is an n-port de
ision problem,D0 = hI 0;O0;�0i isan n0-port de
ision problem, and 0 � f � n0. Then D is f -redu
ible to D0 via relations G = G(g1; g2; : : : ; gn)andH = H(f; h1; h2; : : : ; hn), written as D �G;Hf D0, provided that G ��0 � F �H � �.The following examples give some pairs of de
ision problems that do and do not satisfy the redu
ibility.Be
ause the redu
ibility expresses the power of the BG-simulation algorithm, the examples indi
ate situationswhere the algorithm 
an and 
annot be used.Example 2 (n; k)-set agreement is f -redu
ible to (n0; k0)-set agreement for k � k0, f < minfn; n0g.This is veri�ed as follows. For v 2 V , de�ne gi(v) to be the ve
tor vn0 . Also, for w 2 viewsf (V n0), de�nehi(w) to be the �rst entry of w different from?. It is easy to 
he
k that De�nition 3.1 is satis�ed.Example 3 (n; k)-set agreement is not f -redu
ible to (n0; k0)-set agreement if k � f < k0.If this redu
ibility held, then the main theorem of this paper, Theorem 6.10, together with the fa
t that (n0; k0)-set agreement is solvable when f < k0 [8℄, would imply the existen
e of an f -fault-tolerant algorithm to solve(n; k)-set-agreement. But this 
ontradi
ts the results of [5, 11, 18, 26℄.3.4 Fault-Tolerant SimulationWe present a spe
i�
ation, in the I/O automata formalism, of a fault-tolerant distributed simulation. In Theorem 3.3we show how this spe
i�
ation 
orresponds to the redu
ibility of Se
tion 3.3. The redu
ibility relates two de
isionproblems, while the simulation relates two shared memory systems.We start, in Se
tion 3.4.1, by des
ribing the simulated system, P 0. Ea
h of the pro
esses in the system, P , thatis going to simulate P 0 gets its own input. These pro
esses have somehow to produ
e, out of their inputs, inputsfor the simulated pro
esses. Also, out of the outputs produ
ed by the simulated pro
esses, they have somehow toprodu
e outputs for themselves. These two (distributed) pro
edures, of input translation and of output translation,are what is unique to the fault-tolerant simulation. Together with the natural, step-by-step simulation of P 0, theyare modeled by an I/O automata 
alled SimpleSpe
, whi
h is des
ribed in Se
tion 3.4.2. Finally, in Se
tion 3.4.3,we present a formal de�nition of simulation, and show that it implements our redu
ibility notion.3.4.1 The Simulated Algorithm P 0We assume that the algorithm to be simulated is given in the form of an n0-pro
ess snapshot sharedmemory system,P 0. It has only a single snapshot shared variable, 
alled mem0. We assume that ea
h 
omponent of mem0 takes onvalues in a set R, with a distinguished initial value r0. Thus, the snapshot shared variablemem0 has a unique initial7



value, 
onsisting of r0 in every 
omponent. Furthermore, we assume that P 0 solves a de
ision problemD0. In thissubse
tion and the next, we 
onsider only safety properties, and so we omit the stop a
tions.We make some simplifying �determinism� assumptions about P 0, without loss of generality: We assume thatea
h pro
ess has only one initial state. Also, ea
h pro
ess has, in any state, at most one non-input a
tion enabled.Moreover, for any a
tion performed from any state, we assume that there is a uniquely-de�ned next state. Also,the initial state of ea
h pro
ess is �quies
ent� � no non-input a
tions are enabled (until an input arrives). For ea
hother state, exa
tly one non-input a
tion is enabled. In any state after a pro
ess has exe
uted a �de
ide�, only lo
ala
tions are enabled.The following is some useful terminology about system P 0. For any state s of a pro
ess j of P 0, de�nenextop(s) to be an element of f�init�; �snap�; �lo
al�g [ f(�update�; r) : r 2 Rg [ f(�de
ide�; v) : v 2 V g.Spe
i�
ally, for a quies
ent state s, nextop(s) = �init�; for a state s in whi
h the next a
tion is a snap, nextop(s) =�snap�; for a state s in whi
h the next a
tion is an update(i; r), nextop(s) = (�update�; r); for a state s in whi
hthe next a
tion is lo
al, nextop(s) = �lo
al�; and for a state s in whi
h the next a
tion is to de
ide on valuev, nextop(s) = (�de
ide�; v). Our determinism assumptions imply that for ea
h state s, nextop(s) is uniquelyde�ned.For any state s of a pro
ess j su
h that nextop(s) = �init� and any v 2 V , de�ne trans-init(s; v) to be thestate that results from applying init(v)j to s. For any state s of a pro
ess j su
h that nextop(s) = �snap� and anyw 2 Rn0 , de�ne trans-snap(s; w) to be the state that results from performing the snapshot operation from states, with the return value for the snapshot being w. Finally, for any state s of a pro
ess j su
h that nextop(s) is an�update�, �lo
al�, or �de
ide� pair, de�ne trans(s) to be the state of j that results from performing the operationfrom state s.3.4.2 The SimpleSpe
 AutomatonConsider algorithm P 0, whi
h solves problem D0 guaranteeing f -failure termination, together with relations Gand H . The de�nition of what we mean by a simulation is based on a safety spe
i�
ation expressed by theSimpleSpe
G;Hf (P 0) automaton, or simply SimpleSpe
. A system of n pro
esses, P , whi
h is supposed to simulateP 0, should implement SimpleSpe
, in a sense des
ribed in Se
tion 3.4.3.The SimpleSpe
 automaton dire
tly simulates system P 0, in a 
entralized manner. Repeatedly, a pro
ess j ofP 0 is 
hosen nondeterministi
ally and its next step simulated. The only unusual feature is the way of 
hoosing theinputs for the P 0 pro
esses and the outputs for the P pro
esses, using G and H relations. In order to determinean input v for a pro
ess j of P 0, a pro
ess i is 
hosen nondeterministi
ally from among those that have re
eivedtheir inputs, and v is set to the j-th 
omponent of the ve
tor gi(input(i)). At any time after at least n0 � f of thepro
esses of P 0 have produ
ed de
ision values, outputs 
an be produ
ed, using the fun
tions hi.We give a formal des
ription of the SimpleSpe
 automaton.SimpleSpe
:Signature:Input:init(v)i , i 2 f1; : : : ; ngOutput:de
ide(v)i , i 2 f1; : : : ; ng Internal:sim-initj , j 2 f1; : : : ; n0gsim-snapj , j 2 f1; : : : ; n0gsim-updatej , j 2 f1; : : : ; n0gsim-lo
alj , j 2 f1; : : : ; n0gsim-de
idej , j 2 f1; : : : ; n0g8



States: sim-mem, a memory of P 0 (an element of Rn0 ), initially the initial memory (r0)n0for ea
h i 2 f1; : : : ; ng:input(i) 2 V [ f?g, initially ?reported(i), a Boolean, initially falsefor ea
h j 2 f1; : : : ; n0g:sim-state(j), a state of j, initially the initial statesim-de
ision(j) 2 V [ f?g, initially ?Transitions:init(v)iEffe
t:input(i) := vsim-initjPre
ondition:nextop(sim-state(j)) = �init�for some iinput(i) 6=?v = gi(input(i))(j)Effe
t:sim-state(j) := trans-init(sim-state(j); v)sim-snapjPre
ondition:nextop(sim-state(j)) = �snap�Effe
t:sim-state(j) :=trans-snap(sim-state(j); sim-mem)sim-updatejPre
ondition:nextop(sim-state(j)) = (�update�; r)Effe
t:sim-state(j) := trans(sim-state(j))sim-mem(j) := r

sim-lo
aljPre
ondition:nextop(sim-state(j)) = �lo
al�Effe
t:sim-state(j) := trans(sim-state(j))sim-de
idejPre
ondition:nextop(sim-state(j)) = (�de
ide�; v)Effe
t:sim-state(j) := trans(sim-state(j))sim-de
ision(j) := vde
ide(v)iPre
ondition:input(i) 6=?reported(i) = falsew is a �subve
tor� of sim-de
isionjwj � n0 � fv = hi(w)Effe
t:reported(i) := trueTasks: Arbitrary. They are not used in the proof.A sim-initj a
tion is used to simulate an init step of pro
ess j. To simulate any other step of j, the fun
tionnextop is used to determine what the next operation is: �init�, �snap�, (�update�; r), �lo
al�, or (�de
ide�; v).Then the state transition spe
i�ed by P 0 is performed, using the appropriate fun
tion: trans-init, trans-snap ortrans. On
e the simulation of at least n0 � f pro
esses has been 
ompleted a de
ision value for i 
an be produ
ed,using hi. In the 
ode this is expressed by a �subve
tor� of sim-de
ision, where �subve
tor� means repla
ing zeroor more entries of the ve
tor sim-de
ision by ?, and jwj is the number of entries different from?.Theorem 3.1 Assume P 0 solves D0 andD �G;Hf D0.Then SimpleSpe
G;Hf (P 0) solves D. 9



Proof: Following Se
tion 3.2, we 
onsider SimpleSpe
G;Hf (P 0) 
omposed with any user automaton U that sub-mits at most one initi on ea
h port i.To prove well-formedness, we note that it follows dire
tly from the 
ode that SimpleSpe
G;Hf (P 0) only pro-du
es a de
idei if there is a pre
eding initi, and it never responds more than on
e on the same port.To prove 
orre
t answers, assume init events o

ur on all ports, forming a ve
tor w 2 I. Then the 
ode forsim-init guarantees that the inputs for P 0 that are produ
ed 
an be 
ompleted to a ve
tor w0 2 G(w). Then the
ode of SimpleSpe
G;Hf (P 0) simulates a 
entralized exe
ution of P 0 with these inputs, and hen
e the ve
tor w00of output values that is stored in sim-de
ision 
an be 
ompleted to a ve
tor in �0(w0). Then the 
ode for de
ideguarantees that the outputs that appear in de
ide events 
an be 
ompleted to a ve
tor in H(F (w00)). It followsthat the outputs appearing in de
ide events 
an be 
ompleted to a ve
tor in H(F (�0(G(w)))), and hen
e (sin
eD �G;Hf D0) to a ve
tor in�(w). Thus, SimpleSpe
G;Hf (P 0) produ
es 
orre
t answers.3.4.3 De�nition of SimulationWe now de�ne a notion of fault-tolerant simulation; our de�nition in
ludes both safety and liveness 
onditions.We had to make two 
hoi
es for this de�nition. First, on the way the simulating pro
esses produ
e inputs for thesimulated pro
esses from their own inputs, and on the way they produ
e outputs from the outputs of the simulatedpro
esses. Our 
hoi
e was de�ned by the way the the BG-simulation algorithm operates. The se
ond 
hoi
eis about how detailed the simulation should be. One possibility that 
omes to mind is to require a step-by-stepsimulation, exe
uting ea
h instru
tion of ea
h simulated program. Our 
hoi
e was to use the weakest notion ofsimulation that would still be suf�
ient for the appli
ations we present. Our simulation spe
i�
ation deals onlywith external behaviors, and does not require that the program given by P 0 be simulated step-by-step. The keyproperty guaranteed by su
h a simulation is formally stated in Theorem 3.3.We need a preliminary de�nition and lemma. Suppose thatA andB are two I/O automata with the same inputsinit(v)i and outputs de
ide(v)i, v 2 V , 1 � i � n. We 
onsider A and B 
omposed with any user automaton Uthat submits at most one initi on ea
h port i. We say that A solves B provided that for any su
h U , every tra
e ofthe 
ompositionA� U is also a tra
e of the 
ompositionB � U .Lemma 3.2 Suppose that A and B are two I/O automata with the same inputs init(v)i and outputs de
ide(v)i,v 2 V , 1 � i � n. If A solves B and B solves an n-port de
ision problemD then A solves D.Proof: By assumption, every tra
e of A � U is also a tra
e of B � U . Sin
e B solves D, every tra
e of B � Usatis�es well-formedness and 
orre
t answers. Therefore, every tra
e of A � U satis�es well-formedness and
orre
t answers, so A solvesD.De�nition 3.2 (fault-tolerant simulation) Suppose that P is an n-pro
ess shared memory system, P 0 is an n0-pro
ess shared memory system, and 0 � f � n0. Then P f -simulates P 0 via relations G = G(g1; g2; : : : ; gn) andH = H(f; h1; h2; : : : ; hn), written as P simulatesG;Hf P 0, provided that both of the following hold:(1) P solves SimpleSpe
G;Hf (P 0).(2) If P 0 guarantees f -failure termination then P guarantees f -failure termination.Note that 
ondition (1) involves safety only, and so we follow the 
onvention (of Se
tion 2) of not in
ludingthe stop a
tions in P and P 0. However, 
ondition (2) is a fault-toleran
e 
ondition, and so we assume there thatthe stop a
tions are in
luded, a

ording to the 
onvention.The relationship between our simulation and redu
ibility notions is as follows:10



Theorem 3.3 Assume P 0 solves D0 and guarantees f -failure termination. Assume that D �G;Hf D0 and PsimulatesG;Hf P 0. Then P solves D and guarantees f -failure termination.Proof: We �rst show that P solves D. Theorem 3.1 implies that SimpleSpe
G;Hf (P 0) solves D. By property (1)of the de�nition of f -simulation, we have that P solves SimpleSpe
G;Hf (P 0). Therefore, Lemma 3.2 implies thatP solvesD, as needed.Now we show that P guarantees f -failure termination. We know that P 0 guarantees f -failure termination.Sin
e P simulatesG;Hf P 0, property (2) of the de�nition of f -simulation implies that P guarantees f -failure termi-nation, as needed.Later we use Theorem 3.3 to show that if P 0 solves D0 with f -failure termination and D �G;Hf D0, thenthere exists a snapshot shared memory system P that solves D with f -failure termination. The proof 
onsists ofdes
ribing a spe
i�
 snapshot shared memory system P su
h that P simulatesG;Hf P 0. This result is stated inTheorem 6.10; the 
orresponding version for read/write shared memory systems is stated in Theorem 7.5.Noti
e that this simulation spe
i�
ation deals only with external behaviors, and does not require that the pro-gram given by P 0 be simulated step-by-step. This requirement is suf�
ient for the appli
ations we present.4 A Safe Agreement ModuleThe simulation algorithm uses a 
omponent that we 
all a safe agreementmodule. This module solves a variant ofthe ordinary agreement problem and guarantees failure-free termination. In addition, it guarantees a ni
e resilien
yproperty: its sus
eptibility to failure on ea
h port is limited to a designated �unsafe� portion of an exe
ution. Ifno failure o

urs during these unsafe intervals, then de
isions are guaranteed on all non-failing ports on whi
hinvo
ations o

ur.Formally, we assume that the module 
ommuni
ates with its �users� on a set of n ports numbered 1; : : : ; n.Ea
h port i supports input a
tions of the form propose(v)i, v 2 V , by whi
h a user at port i proposes spe
i�
 valuesfor agreement, and output a
tions of the form safei and agree(v)i, v 2 V . The safei a
tion is an announ
ementto the user at port i that the unsafe portion of the exe
ution 
orresponding to port i has been 
ompleted, and theagree(v)i is an announ
ement on port i that the de
ision value is v. In addition, we assume that port i supports aninput a
tion stopi, representing a stopping failure.We say that a sequen
e of proposei, safei and agreei a
tions is well-formed for i provided that it is a pre�xof a sequen
e of the form propose(v)i; safei; agreei. We assume that the users preserve well-formedness on everyport, i.e., there is at most one proposei event for any parti
ular i. Then we require the following properties of anyexe
ution of the module together with its users:Well-formedness: For any i, the intera
tions between the module and its users on port i are well-formed for i.Agreement: All agreement values are identi
al.Validity: Any agreement value must be proposed.In addition, we require two liveness 
onditions, whi
h are stated in terms of fair exe
utions. The �rst 
ondition saysthat any propose event on a non-failing port eventually re
eives a safe announ
ement. This guarantee is requiredin spite of any failures on other ports. 11



Wait-free progress: In any fair exe
ution, for any i, if a proposei event o

urs and no stopi event o

urs, then asafei event o

urs.The se
ond liveness 
ondition says that if the exe
ution does not remain unsafe for any port, then any proposeevent on a non-failing port eventually re
eives an agree announ
ement.Safe termination: In any fair exe
ution, if there is no j su
h that proposej o

urs and safej does not o

ur, thenfor any i, if a proposei event o

urs and no stopi event o

urs, then agreei o

urs.An I/O automaton with the appropriate interfa
e is said to be a safe agreement module provided that it guaranteesall the pre
eding 
onditions (for all users).We now des
ribe a simple design (using snapshot shared memory) for a safe agreement module. It is a slightsimpli�
ation of the one in [5℄.The snapshot shared memory 
ontains a val 
omponent and a level 
omponent for ea
h pro
ess i. Whenpro
ess i re
eives a propose(v)i, it re
ords the value v in its val 
omponent and raises its level to 1. Then i usesa snapshot to determine the level's of the other pro
esses. If i sees that any pro
ess has attained level = 2, then itba
ks off and resets its level to 0, and otherwise, it raises its level to 2.Next, pro
ess i enters a wait loop, repeatedly taking snapshots until it sees a situation where no pro
ess haslevel = 1. When this happens, the set of pro
esses that it sees with level = 2 is nonempty. Let v be the val valueof the pro
ess with the smallest index with level = 2. Then pro
ess i performs an agree(v)i output.In the following 
ode, we do not expli
itly represent the stopi a
tions. We assume that the stopi a
tion justputs pro
ess i in a spe
ial �stopped� state, from whi
h no further non-input steps are enabled, and after whi
h anyinput 
auses no 
hanges.SafeAgreement:Shared variables:x, a length n snapshot value; for ea
h i, x(i) has 
omponents:level 2 f0; 1; 2g, initially 0val 2 V [ f?g, initially ?A
tions of i:Input:propose(v)i , v 2 VOutput:safeiagree(v)i Internal:update1isnap1iupdate2iwaitiStates of i:input 2 V [ f?g, initially ?output 2 V [ f?g, initially ?x-lo
al, a snapshot value; for ea
h j, x-lo
al(j) has 
omponents:level 2 f0; 1; 2g, initially 0val 2 V [ f?g, initially ?status 2 fidle; update1; snap1; update2; safe;wait; reportg, initially idleTransitions of i: 12



propose(v)iEffe
t:input := vstatus := update1update1iPre
ondition:status = update1Effe
t:x(i):level := 1x(i):val := inputstatus := snap1snap1iPre
ondition:status = snap1Effe
t:x-lo
al := xstatus := update2update2iPre
ondition:status = update2Effe
t:if 9j : x-lo
al(j):level = 2then x(i):level := 0else x(i):level := 2status := safe

safeiPre
ondition:status = safeEffe
t:status := waitwaitiPre
ondition:status = waitEffe
t:if 6 9j : x(j):level = 1and 9j : x(j):level = 2 thenk := minfj : x(j):level = 2 goutput := x(k):valstatus := reportagree(v)iPre
ondition:status = reportv = outputEffe
t:status := idle
Tasks of i:All a
tions 
omprise a single task.Theorem 4.1 SafeAgreement is a safe agreement module.Proof: Well-formedness and validity are easy to see. We argue agreement, using an operational argument. Sup-pose that pro
ess i is the �rst to perform a su

essful wait step, that is, one that 
auses it to de
ide, and supposethat it de
ides on the val of pro
ess k. Let � be the su

essful waiti step; then at step �, pro
ess i sees thatx(j):level 6= 1 for all j, and k is the smallest index su
h that x(k):level = 2.We 
laim that no pro
ess j subsequently sets x(j):level := 2. Suppose for the sake of 
ontradi
tion that pro
essj does subsequently set x(j):level := 2 in an update2j step, �. Sin
e x(j):level 6= 1when � o

urs, it must be thatpro
ess j must perform an update1j and a snap1j after � and before �. But then pro
ess j must see x(k):level = 2when it performs its snap1j , whi
h 
auses it to ba
k off, setting x(j):level := 0. This is a 
ontradi
tion, whi
himplies that no pro
ess j subsequently sets x(j):level := 2. But this implies that any pro
ess that does a su

essfulwait step will also see k as the smallest index su
h that x(k):level = 2, and will therefore also de
ide on k's val.The wait-free progress property is immediate, be
ause pro
ess i pro
eeds without any delay until it performsits safei output a
tion.To see the safe termination property, assume that there is no j su
h that proposej o

urs and safej does noto

ur. Then there is no j su
h that x(j):level remains equal to 1 forever, so eventually all the level values are in13



f0; 2g. Then any non-failing pro
ess i will su

eed in any subsequent waiti statement, and so eventually performsan agreei output a
tion.5 The BG Simulation AlgorithmIn this se
tion, we present the basi
 snapshot shared memory simulation algorithm, whi
h we will show satis�esDe�nition 3.2.We present the algorithm as an n-pro
ess snapshot shared memory system Q with a single snapshot sharedvariable. This algorithm is assumed to intera
t not only with the usual environment, via init and de
ide a
tions, butalso with a two-dimensional array of safe agreement modules Aj;`, j 2 f1; : : : ; n0g, ` 2 N ,N = f0; 1; 2; : : :g. Inthe �nal version of the simulation algorithm, system P , these safe agreement modules are repla
ed by implemen-tations and the whole thing implemented by a snapshot shared memory system with a single shared variable. Thesystem Q is assumed to intera
t with ea
h Aj;` via outputs propose(w)j;`;i and inputs safej;`;i and agree(w)j;`;i.Here, we subs
ript the safe agreement a
tions by the parti
ular instan
e of the proto
ol. For ` = 0, we havew 2 V .For ` 2 N+, we have w 2 Rn0 .System Q simulates the n0 pro
esses of P 0 (P 0 is des
ribed in Se
tion 3.4.1), using a safe agreement proto
olAj;0 to allow all pro
esses of Q to agree on the input of ea
h pro
ess j, and also a safe agreement proto
ol Aj;`,` 2 N+ to allow all pro
esses to agree on the value returned by the `'th simulated snapshot statement of ea
hpro
ess j. Other steps are simulated dire
tly, with no agreement proto
ol. Ea
h pro
ess i ofQ simulates the stepsof ea
h pro
ess j of P 0 in order, waiting for ea
h to 
omplete before going on to the next one. Pro
ess i works
on
urrently on simulating steps of different pro
esses of P 0. However, it is only permitted to be in the �unsafe�portion of its exe
ution for one pro
ess j of P 0 at a time.To simulate pro
ess j, pro
ess i keeps lo
ally the 
urrent value of the state of j, in sim-state(j), the num-ber of steps that it has simulated for j, in sim-steps(j), and the number of snapshots that it has simulated for j,in sim-snaps(j). The shared memory of Q is a single snapshot variable mem, 
ontaining a portion mem(i) forea
h pro
ess i of Q. In its 
omponent, pro
ess i keeps tra
k of the latest values of all the 
omponents of thesnapshot variable of P 0, a

ording to i's lo
al simulation of P 0. Pro
ess i keeps the value of j's 
omponent inmem(i):sim-mem(j). Along with this value, it keeps a 
ounter in mem(i):sim-steps(j), whi
h 
ounts the num-ber of steps that it has simulated for j, up to and in
luding the latest step at whi
h pro
ess j of P 0 updated its
omponent.A fun
tion latest is used in the snap a
tion to 
ombine the information in the various 
omponents of mem toprodu
e a single length n0 ve
tor ofR values, representing the latest values written by all the pro
esses of P 0. Thisfun
tion operates �pointwise� for ea
h j, sele
ting the sim-mem(j) value asso
iated with the highest sim-steps(j).More pre
isely, assume k = maxifmem(i):sim-steps(j)g. Then, let î be an index su
h thatmem(̂i):sim-steps(j) =k. The fun
tion latest sele
ts, for j, the value mem(̂i):sim-mem(j). As we shall see (in Lemma 6.3), this valuemust be unique.When pro
ess i simulates a de
ision step of j, it stores the de
ision value in the lo
al variable sim-de
ision(j).On
e pro
ess i has simulated de
ision steps of at least n0 � f pro
esses, that is, when jsim-de
isionj � n0 � f , it
omputes a de
ision value v for itself, using the fun
tion hi, that is, v := hi(sim-de
ision).In the following 
ode, we do not represent the stop a
tions, sin
e the dif�
ult part of the 
orre
tness proof is thesafety argument. After the safety argument we give the fault-toleran
e argument, and introdu
e the stop a
tions.14



Simulation System Q:Shared variables:mem, a length n snapshot value; for ea
h i, mem(i) has 
omponents:sim-mem, a ve
tor in Rn0 , initially everywhere r0sim-steps, a ve
tor in Nn0 , initially everywhere 0A
tions of i:Input:init(v)i , v 2 Vsafej;`;i, ` 2 Nagree(v)j;`;i, ` = 0 and v 2 V ,or ` 2 N+ and v 2 RnOutput:de
ide(v)i , v 2 Vpropose(v)j;`;i , ` = 0 and v 2 V ,or ` 2 N+ and v 2 Rn0
Internal:sim-updatej;isnapj;isim-lo
alj;isim-de
idej;i

States of i:input 2 V [ f?g, initially ?reported, a Boolean, initially falsefor ea
h j:sim-state(j), a state of j, initially the initial statesim-steps(j) 2 N , initially 0sim-snaps(j) 2 N , initially 0status(j) 2 fidle; propose; unsafe; safeg, initially idlesim-mem-lo
al(j) 2 Rn0 , initially arbitrarysim-de
ision(j) 2 V [ f?g, initially ?Transitions of i:
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init(v)iEffe
t:input := vpropose(v)j;0;iPre
ondition:status(j) = idle6 9k : status(k) = unsafenextop(sim-state(j)) = �init�input 6=?v = gi(input)(j)Effe
t:status(j) := unsafesafej;`;iEffe
t:status(j) := safeagree(v)j;0;iEffe
t:sim-state(j) :=trans-init(sim-state(j); v)sim-steps(j) := 1status(j) := idlesnapj;iPre
ondition:nextop(sim-state(j)) = �snap�status(j) = idleEffe
t:sim-mem-lo
al(j) := latest(mem)status(j) := proposepropose(w)j;`;i, ` 2 N+Pre
ondition:status(j) = propose6 9k : status(k) = unsafesim-snaps(j) = `� 1w = sim-mem-lo
al(j)Effe
t:status(j) := unsafe

agree(w)j;`;i, ` 2 N+Effe
t:sim-state(j) :=trans-snap(sim-state(j); w)sim-steps(j) := sim-steps(j) + 1sim-snaps(j) := sim-snaps(j) + 1status(j) := idlesim-updatej;iPre
ondition:nextop(sim-state(j)) = (�update�; r)Effe
t:sim-state(j) := trans(sim-state(j))sim-steps(j) := sim-steps(j) + 1mem(i):sim-mem(j) := rmem(i):sim-steps(j) := sim-steps(j)sim-lo
alj;iPre
ondition:nextop(sim-state(j)) = �lo
al�Effe
t:sim-state(j) := trans(sim-state(j))sim-steps(j) := sim-steps(j) + 1sim-de
idej;iPre
ondition:nextop(sim-state(j)) = (�de
ide�; v)Effe
t:sim-state(j) := trans(sim-state(j))sim-steps(j) := sim-steps(j) + 1sim-de
ision(j) := vde
ide(v)iPre
ondition:input 6=?reported = falsejsim-de
isionj � n0 � fv = hi(sim-de
ision)Effe
t:reported := trueTasks of i:fde
ide(v)i : v 2 V gfor ea
h j:all non-input a
tions involving j
16



6 Corre
tness ProofThe liveness proof, whi
h is quite simple, is postponed to the end of this se
tion. We start with the proofs of safetyproperties for the main simulation algorithm. For these, we use invariants involving the states of the safe agreementmodules. Sin
e we do not want these invariants to depend on any parti
ular implementation of safe agreement,we add abstra
t state information, in the form of history variables that are de�nable for all 
orre
t safe agreementimplementations:proposed-vals � V , initially ;agreed-val 2 V [ f?g, initially ?proposed-pro
s � f1; : : : ; ng, initially ;agreed-pro
s � f1; : : : ; ng, initially ;These history variables are maintained by adding the following new effe
ts to a
tions:propose(v)iEffe
t:proposed-vals := proposed-vals [ fvgproposed-pro
s := proposed-pro
s [ fig agree(v)iEffe
t:agreed-val := vagreed-pro
s := agreed-pro
s [ figFor the safety part of the proof, we use three levels of abstra
tion, related by forward and ba
kward simulationrelations. Forward and ba
kward simulation relations are notions used to show that one I/O automaton implementsanother [24℄, or in our 
ase, that one I/O automaton solves another; they have nothing to do with �simulations�in the sense of the BG simulation algorithm. The �rst level of abstra
tion is the spe
i�
ation itself; that is, theSimpleSpe
 automaton. The se
ond level of abstra
tion is the DelayedSpe
 automaton des
ribed next in Se
-tion 6.1. The third level of abstra
tion is the simulation algorithm P itself (obtained by 
omposing Q with safeagreement implementations). We will prove in Se
tion 6.1 thatDelayedSpe
 solves SimpleSpe
, and in Se
tion 6.2that P solves DelayedSpe
. This implies that P solves SimpleSpe
, whi
h is what is needed for the safety part ofDe�nition 3.2.6.1 The DelayedSpe
 AutomatonOur se
ond level of abstra
tion is the DelayedSpe
 automaton. This is a slight modi�
ation of SimpleSpe
, whi
hrepla
es ea
h snapshot step of a pro
ess j ofP 0 (sim-snapj) with a series of snap-tryj steps during whi
h snapshotsare taken and their values re
orded, followed by one snap-su

eedj step in whi
h one of the re
orded snapshotvalues is 
hosen for a
tual use.The DelayedSpe
 automaton is the same as SimpleSpe
, ex
ept for the snapshot attempts. There is an extrastate 
omponent snap-set(j), whi
h keeps tra
k of the set of snapshot ve
tors that result from doing snap-tryja
tions. The sim-snap a
tions are omitted.DelayedSpe
:Signature: 17



Input:As in SimpleSpe
Output:As in SimpleSpe
 Internal:As in SimpleSpe
 but instead of sim-snapj , j 2 f1; : : : ; n0g:snap-tryjsnap-su

eedjStates: As in SimpleSpe
 but in addition:snap-set(j), a set of ve
tors in Rn0 , initially emptyTransitions: As in SimpleSpe
 but instead of sim-snapj :snap-tryjPre
ondition:nextop(sim-state(j)) = �snap�Effe
t:snap-set(j) := snap-set(j) [ fsim-memg snap-su

eedjPre
ondition:nextop(sim-state(j)) = �snap�w 2 snap-set(j)Effe
t:sim-state(j) := trans-snap(sim-state(j); w)snap-set(j) := ;Tasks: As in SimpleSpe
It should not be hard to believe thatDelayedSpe
 solves SimpleSpe
� the result of a sequen
e of snap-try steps plusone snap-su

eed step is the same as if a single sim-snap o

urred at the point of the sele
ted snapshot. Formally,we use a ba
kward simulation to prove the implementation relationship. The reason for the ba
kward simulationis that the de
ision of whi
h snapshot is sele
ted is made after the point of the simulated snapshot step.The ba
kward simulation relation we use (for any �xed U ) is the relation b from states of DelayedSpe
� Uto states of SimpleSpe
 � U that is de�ned as follows. If s is a state of DelayedSpe
 � U and u is a state ofSimpleSpe
� U , then (s; u) 2 b provided that the following all hold:1. The state of U is the same in u and s.2. u:sim-mem = s:sim-mem.3. For ea
h i,(a) u:input(i) = s:input(i).(b) u:reported(i) = s:reported(i).4. For ea
h j,(a) u:sim-state(j) 2 fs:sim-state(j)g [ ftrans-snap(s:sim-state(j); w) : w 2 s:snap-set(j)g.(b) u:sim-de
ision(j) = s:sim-de
ision(j). 18



That is, all state 
omponents are the same in u and s, with the sole ex
eption that u:sim-state(j) 2fs:sim-state(j)g [ ftrans-snap(s:sim-state(j); w) : w 2 s:snap-set(j)g, that is, u:sim-state(j) is eithers:sim-state(j), or else the result of applying one of the snapshot results to s:sim-state(j). Ea
h sim-stepj stepof SimpleSpe
 is �implemented� by a 
hosen snap-tryj step of Delayed Spe
.Lemma 6.1 Relation b is a ba
kward simulation from DelayedSpe
�U to SimpleSpe
�U .Sket
h of proof: Let (s; �; s0) be a step of DelayedSpe
� U , and let (s0; u0) 2 b. We produ
e a 
orrespondingexe
ution fragment of SimpleSpe
� U , from u to u0, with (s; u) 2 b. The 
onstru
tion is in 
ases based on thetype of a
tion. The interesting 
ases are snap-try and snap-su

eed:1. � = snap-tryj .Let x denote s:sim-mem. If u0:sim-state(j) = trans-snap(s0:simstate(j); x), then let the 
orresponding exe-
ution fragment be (u; sim-snapj ; u0), where u is the same as u0, ex
ept that u:sim-state(j) = s:sim-state(j).This is an exe
ution fragment be
ause s:sim-state(j) = s0:sim-state(j).Otherwise, let the 
orresponding exe
ution fragment be just the single state u0. That is, u =u0. Then we know that, either (i) u0:sim-state(j) = s0:sim-state(j), or (ii) u0:sim-state(j) 2ftrans-snap(s0:sim-state(j); w) : w 2 s0:snap-set(j); w 6= xg. Sin
e u = u0, we need to prove thatu0:sim-state(j) is in the set fs:sim-state(j)g [ ftrans-snap(s:sim-state(j); w) : w 2 s:snap-set(j)g.If 
ase (i) holds the 
laim follows easily from the fa
t that s:sim-state(j) = s0:sim-state(j). Hen
e,assume 
ase (ii) holds. We know that s:snap-set(j) � s0:snap-set(j) � fxg, so u0:sim-state(j) =trans-snap(s0:sim-state(j); w), where w 2 s:snap-set(j). The proof follows sin
e s:sim-state(j) =s0:sim-state(j).2. � = snap-su

eedj .The 
orresponding exe
ution fragment 
onsists of only the single state u0. We must show that (s; u0) 2 b.Fix x 2 s:snap-set(j) to be the snapshot value sele
ted in the step we are 
onsidering.Everything 
arries over immediately, ex
ept for the equation involving the u0:sim-state(j) 
omponent.For this, we know that u0:sim-state(j) 2 fs0:sim-state(j)g [ ftrans-snap(s0:sim-state(j); w) : w 2s0:snap-set(j)g. But by the 
ode for snap-su

eedj , the set s0:snap-set(j) is empty. So it must be thatu0:sim-state(j) = s0:sim-state(j).Now, the 
ode implies that s0:sim-state(j) = trans-snap(s:sim-state(j); x), whi
h implies thatu0:sim-state(j) = trans-snap(s:sim-state(j); x). Therefore, u0:sim-state(j) 2 fs:sim-state(j)g [ftrans-snap(s:sim-state; w) : w 2 s:snap-set(j)g, as needed.This lemma implies that every tra
e of DelayedSpe
� U is a tra
e of SimpleSpe
� U [24℄, that is (re
all thede�nition of �solves� in Se
tion 3.4.3):Corollary 6.2 DelayedSpe
 solves SimpleSpe
.
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6.2 The System Q with Safe Agreement ModulesOur third and �nal level is the system Q, 
omposed with arbitrary safe agreement modules, and with the proposeand agree a
tions re
lassi�ed as internal. We show that this system, 
omposed with a user U that submits at mostone initi a
tion on ea
h port, implementsDelayedSpe
�U in the sense of tra
e in
lusion; that is, this system solvesDelayedSpe
� U (in the sense of Se
tion 3.4.3). The idea is that individual pro
esses of Q that are simulating asnapshot step of a pro
ess j of P 0 �try� to perform the simulated snapshot at the point where they take their a
tualsnapshots. At the point where the appropriate safe agreement module 
hooses the winning a
tual snapshot, thesimulated snapshot �su

eeds�. As in the DelayedSpe
, this 
hoi
e is made after the snapshot attempts.Formally, we use a weak forward simulation [24℄. The word �weak� simply indi
ates that the proof usesinvariants. We need the invariants for the de�nition as well as for the proof of the forward simulation: stri
tlyspeaking, the de�nition of the forward simulation we use is ambiguous without them.Lemma 6.3 gives �
oheren
e� invariants, asserting 
onsisten
y among three things: information kept by thepro
esses of Q, information in the safe agreement modules, and a �run� (as de�ned just below) of an individualpro
ess j of P 0. Note that Lemma 6.3 does not talk about global exe
utions of P 0, but only about runs of anindividual pro
ess of P 0.De�ne a run of pro
ess j of P 0 to be a sequen
e of the form � = s0; 
1; s1; 
2; s2; : : : ; sk, where ea
h si is astate of pro
ess j, and ea
h 
i is a �
hange�, that is, one of the following: (�init�; v), (�snap�; w), (�update�; r),�lo
al�, (�de
ide�; v); the �rst state is the unique start state, and ea
h 
hange yields a transition from the pre
edingto the su

eeding state.A 
onsequen
e of the next lemma is that every pro
ess i that simulates steps of a pro
ess j simulates the samerun of j. As we shall see, the run is determined by the i pro
ess that is furthest ahead in the simulation of j; thus,only su
h an i pro
ess 
an affe
t the out
ome of the next step of j. Moreover, it 
an affe
t only the out
ome ofsnapshot steps. On
e the out
ome of a snapshot step is determined, i 
an pro
eed with the simulation of j lo
ally(without reading the shared variable), up to the next snapshot step.Invariant 1 relates the information in the pro
esses of Q and the safe agreement modules. Invariants 2 and 3relate the pro
esses ofQ and a given run � of pro
ess j. Invariants 4 and 5 relate � and the safe agreement modules.Invariant 6 relates all three types of information: it relates information in 
ertain pro
esses of Q, the run � (thosethat are �
urrent� in their simulation of j, a

ording to �) and the safe agreement modules.Lemma 6.3 For every rea
hable state of Q 
omposed with abstra
t safe agreement modules and a user U , andfor ea
h pro
ess j, there is a run � = s0; 
1; s1; : : : ; sk of pro
ess j su
h that:1. For any i:(a) sim-steps(j)i � 1 if and only if i 2 agreed-pro
sj;0.(b) For any ` � 1, sim-snaps(j)i � ` if and only if i 2 agreed-pro
sj;`.(
) i 2 proposed-pro
sj;0 � agreed-pro
sj;0 if and only if nextop(sim-state(j)i) = �init� and status(j)i 2funsafe; safeg.(d) For any ` � 1, i 2 proposed-pro
sj;` � agreed-pro
sj;` if and only if nextop(sim-state(j)i) = �snap�,sim-snaps(j)i = `� 1, and status(j)i 2 funsafe; safeg.2. k = maxifsim-steps(j)ig.3. For any i, if sim-steps(j)i = ` then: 20



(a) sim-state(j)i = s`.(b) sim-snaps(j)i is the number of �snap�'s among 
1; : : : ; 
`.(
) mem(i):sim-mem(j) is the value written in the last �update� among 
1; : : : ; 
`, if any, else r0.(d) mem(i):sim-steps(j) is the number of the last �update� among 
1; : : : ; 
`, if any, else 0.4. (a) (�init�; v) appears in � if and only if agreed-valj;0 = v.(b) (�snap�; w) is the `'th snapshot in � if and only if agreed-valj;` = w.5. If proposed-valsj;` 6= ; and agreed-valj;` =? for some ` then(a) If ` = 0 then � 
onsists of only one state s, and nextop(s) = �init�.(b) If ` � 1, then nextop(sk) = �snap�, and the number of snaps in � is `� 1.6. For any ` � 1, if nextop(sk) = �snap� and the number of �snaps� in � is ` � 1, then proposed-valsj;` =fsim-mem-lo
al(j)i : sim-steps(j)i = k and status(j)i 2 funsafe; safegg.Proof: Let s be any rea
hable state of Q 
omposed with abstra
t safe agreement modules and a user U . For sequal to the initial state it is simple to 
he
k that the lemma holds. Assume it holds for some state s, and we provethat it holds for any state s0, after a step (s; �; s0). Let � = s0; 
1; s1; : : : ; sk be a run of pro
ess j, 
orrespondingto s, whose existen
e is guaranteed by the lemma. We prove there is a run �0 
orresponding to s0, that satis�es therequirements of the lemma. The run �0 will be either equal to �, or else obtained from � by appending a 
hange
k+1 and a state sk+1. We skip the proof of invariant 1, whi
h is simple and does not talk about �.For state s, k = maxifs:sim-steps(j)ig. Let k0 be the 
orresponding value in s0; that is k0 =maxifs0:sim-steps(j)ig.First assume k0 = k + 1. Then, for some i, � must be one of: agree(w)j;0;i, agree(w)j;`;i for ` 2 N+,sim-updatej;i, sim-lo
alj;i, or sim-de
idej;i, sin
e these are the only 
ases that in
rement a sim-steps 
omponent.Moreover, s.sim-steps(j)i = k, and hen
e, by part 3(a) of the lemma, sk = s.sim-state(j)i. For ea
h one of thesepossibilities, �0 is obtained from � by appending the 
orresponding 
hange: (�init�; w) for an agree(w)j;0;i;(�snap�; w) for an agree(w)j;`;i, ` 2 N+ ; (�update�; r) for a sim-updatej;i; �lo
al� for a sim-lo
alj;i;(�de
ide�; v) for a sim-de
idej;i, and after the 
hange, appending to the run the state sk+1, resulting from the
orresponding transition fun
tion (trans-init, trans-snap, or trans) applied to sk. That is, sk+1 = s0:sim-state(j)i.Thus, in s0, pro
ess i is the �rst one to �nish the simulation of the k0-th step of j and s0:sim-steps(j)i = k0; whilefor every other pro
ess i0, s0:sim-steps(j)i0 < k0.First noti
e that part 2 of the lemma 
learly holds for s0. Consider the 
ase of � = agree(w)j;`;i for ` 2 N+(we omit the proofs of the other 
ases, whi
h are analogous). For part 3 of the lemma, we need to 
onsider onlythe 
ase of ` = k + 1, sin
e the 
ases of ` < k + 1 hold by the indu
tion hypothesis. Thus, we need to 
onsideronly pro
ess i. Part (a) holds by the de�nition of sk+1. Part (b) holds be
ause s:sim-snaps(j)i is the number ofsnap's among 
1; : : : ; 
k, and s0:sim-snaps(j)i = s:sim-snaps(j)i + 1, while 
k+1 = (�snap�; w). Part (
), (d),and part 4(a) of the lemma hold by indu
tion hypothesis. For part 4(b) of the lemma, noti
e that there are ` � 1snap's in �. Thus, in �0 there are ` snap's, and indeed agreed-valj;` = w. Part 5 holds trivially be
ause pro
ess i isthe �rst one to �nish the simulation of the `-th snap of j, and hen
e proposed-valsj;`0 6= ; and agreed-valj;`0 6=?for `0 � `, while proposed-valsj;`0 = ; and agreed-valj;`0 =? for `0 > `. Finally, 
onsider part 6. Sin
e in s0there are no pro
esses i0 with sim-steps(j)i0 = k + 1 and status(j)i0 2 funsafe; safeg, then we have to prove21



that proposed-valsj;`+1 = ;. Observe that s:sim-snaps(j)i0 = ` � 1 for any i0 with s:sim-steps(j)i0 = k. Then,s:sim-snaps(j)i0 < ` for all i0, and hen
e no i0 has yet exe
uted a propose(w)j;`+1.Now assume k0 = k. In this 
ase, �0 = �. Clearly part 2 of the lemma holds. The 
ases of � equal toagree(w)j;0;i, agree(w)j;`;i; ` 2 N+, sim-updatej;i, sim-lo
alj;i, or sim-de
idej;i, are similar to ea
h other. Let us
onsider the most interesting: � = agree(w)j;`;i. We have that s:sim-snaps(j)i = `� 1 and s0:sim-snaps(j)i = `.Assume s:sim-steps(j)i = k1, k1 < k. To prove part 3 take ` = k1+1. Part (a) follows be
ause s:sim-state(j)i =sk1 , and w 2 agreed-valj;`, so that the effe
t of � when trans-snap is applied gives sk1+1 = s0:sim-state(j)i. Part(b) follows be
ause s:sim-snaps(j)i is the number of snap's among 
1; : : : ; 
` � 1, and 
` is a snap, and hen
es0:sim-snaps(j)i = s:sim-snaps(j)i + 1 is the number of snap's among 
1; : : : ; 
`. The other parts of the lemmafollow easily by indu
tion.Another 
ase is when � is propose(v)j;0;i, or propose(w)j;`;i; ` 2 N+. Consider the se
ond possibility. To
he
k part 5 of the lemma assume s0:proposed-valsj;` 6= ; and s0:agreed-valj;` =?, while s:proposed-valsj;` = ;and s:agreed-valj;` =?. Then, � is the �rst propose for j and `, and hen
e k = s:sim-steps(j)i. Also,s0:nextop(sim-state(j)i) = �snap� be
ause s:status(j) = propose. Thus nextop(sk) = �snap�. To 
ompletethe proof of the 
laim noti
e that the number of snaps in � is ` � 1, by the indu
tion hypothesis for part 3 (a)and (b). Finally, part 6 of the lemma is easy to 
he
k be
ause w = s:sim-mem-lo
al(j)i is added to the setproposed-valsj;`.The forward simulation relation we use is the relation f from states of Q 
omposed with safe agreementmodules and U to states of DelayedSpe
� U that is de�ned as follows. If s is a state of the Q system and u is astate of DelayedSpe
� U , then (s; u) 2 f provided that the following all hold:1. The state of U is the same in u and s.2. u:sim-mem = latest(s:mem).3. For every i,(a) u:input(i) = s:inputi.(b) u:reported(i) = s:reportedi.4. For every j,(a) u:sim-state(j) = s:sim-state(j)i, where i is the index of the maximum value of s:sim-steps(j).(b) If there exists i with s:sim-de
ision(j)i 6=? then u:sim-de
ision(j) = s:sim-de
ision(j)i for somesu
h i, else u:sim-de
ision(j) =?.(
) If nextop(u:sim-state(j)) = �snap� then u:snap-set(j) = fs:sim-mem-lo
al(j)i : s:sim-steps(j)i =maxkfs:sim-steps(j)kg and s:status(j)i 6= idleg else u:snap-set(j) = ;.Thus, the simulated memory u:sim-mem is determined by the latest information that any of the pro
esses ofQ hasabout the memory, and likewise for the simulated pro
ess states and simulated de
isions. Also, the snapshot setsu:snap-set(j) are determined by the snapshot values saved in lo
al pro
ess states, in Q.Ea
h snap-try step of DelayedSpe
 is �implemented� by a 
urrent snap of Q. Ea
h snap-su

eed step isimplemented by the �rst agree step of the appropriate safe agreement module, and likewise for ea
h sim-init step.Ea
h sim-update step is implemented by the �rst step at whi
h some pro
ess simulates that update, and likewisefor the other types of simulated pro
ess steps. 22



Lemma 6.4 Relation f is a weak forward simulation from Q 
omposed with safe agreement modules and U toDelayedSpe
�U .Sket
h of proof: Let (s; �; s0) be a step of the Q system, and let u be any state of DelayedSpe
� U su
h that(s; u) 2 f . We produ
e an exe
ution fragment of DelayedSpe
� U , from u to a state u0, su
h that (s0; u0) 2 f .The proof is by 
ases, a

ording to �. These are the most interesting 
ases:1. � = snapj;i.If sim-steps(j)i is the maximum value of sim-steps(j) (in both s and s0), then this simulates snap-tryj , elseit simulates no steps.Assume the �rst 
ase: that sim-steps(j)i is the maximum value of sim-steps(j). The 
orresponding exe
u-tion fragment is (u; snap-tryj ; u0), where u0 is the same as u ex
ept that u0:snap-set(j) = u:snap-set(j) [fu:sim-memg. Sin
e (s; �; s0) is a step ofQ, the pre
ondition for � holds in s and nextop(s:sim-state(j)i) =�snap�. Sin
e (s; u) 2 f , it follows that nextop(u:sim-state(j)) = �snap�, by 4(a) of the de�nition of f .Therefore, the pre
ondition for snap-tryj holds in u, and (u; snap-tryj ; u0) is an exe
ution fragment.To prove that (s0; u0) 2 f , the only nontrivial part of the de�nition of f to 
he
k is 4(
); sin
enextop(u0:sim-state(j)) = �snap�, we do have to verify that u0 satis�es part 4(
) of the de�nitionof f . We know that u:snap-set(j) is equal to the set fs:sim-mem-lo
al(j)i : s:sim-steps(j)i =maxkfs:sim-steps(j)kg and s:status(j)i 6= idleg, be
ause (s; u) 2 f . Now, u0:snap-set(j) =u:snap-set(j) [ fu:sim-memg. Also, u:sim-mem = latest(s:mem), by part 3 of the de�nition of f . Af-ter the snapj;i, we get latest(s:mem) = s0:sim-mem-lo
al(j)i. It follows that u0:snap-set(j) is equalto u:snap-set(j) [ fs0:sim-mem-lo
al(j)ig, and hen
e, u0:snap-set(j) is equal to fs0:sim-mem-lo
al(j)i :s0:sim-steps(j)i = maxkfs0:sim-steps(j)kg and s0:status(j)i 6= idleg, as desired.The 
ase where sim-steps(j)i is not the maximum value of sim-steps(j) is trivial.2. � = agree(w)j;`;i, ` 2 N+.If this in
reases the maximum value of sim-steps(j) then it simulates snap-su

eedj with a de
ision valueof w, else simulates no steps.Consider the 
ase where � in
reases the maximum value of sim-steps(j). Let k = maxifs:sim-steps(j)ig.Then, s:sim-steps(j)i = k, and s0:sim-steps(j)i = k + 1. By Lemma 6.3, for state s, there is a runfor j, � = s0; 
1; s1; : : : ; sk, with sk = s:sim-state(j)i. Now, part 1(d) of Lemma 6.3 implies thatnextop(s:sim-state(j)i) = �snap�, s:sim-snaps(j)i = ` � 1, and s:status(j)i 2 funsafe; safeg. Sin
e(s; u) 2 f , u:sim-state(j) = s:sim-state(j)i, and hen
e, nextop(u:sim-state(j)i) = �snap�. We want toprove that (u; snap-su

eedj ; u0) with a de
ision value of w is an exe
ution fragment. Sin
e we alreadyproved that nextop(u:sim-state(j)i) = �snap�, to prove that the pre
ondition of the snap-su

eedj holds itremains to show that w 2 u:snap-set(j).To prove that w 2 u:snap-set(j), re
all that s:sim-snaps(j)i = ` � 1, and hen
e, ` � 1 is the numberof �snap�'s in �, by part 3(b) of Lemma 6.3. Thus, the hypothesis of part 6 of Lemma 6.3 holds, ands:proposed-valsj;` = fs:sim-mem-lo
al(j)i : s:sim-steps(j)i = k and s:status(j)i 2 funsafe; safegg. Weknow that w must be in the set s:proposed-valsj;`, be
ause (s; agree(w)j;`;i; s0) is an exe
ution fragment.Thus, w = s:sim-mem-lo
al(j)i0 , for some i0 with s:sim-steps(j)i0 = k and s:status(j)i0 2 funsafe; safeg.To 
omplete the proof of the 
laim, noti
e that part 4(
) of the de�nition of f implies that u:snap-set(j) =23



fs:sim-mem-lo
al(j)i : s:sim-steps(j)i = maxkfs:sim-steps(j)kg and s:status(j)i 6= idleg. Therefore, wmust be in u:snap-set(j).Finally, it is easy to verify that (s0; u0) 2 f : we need only to 
he
k 
onditions 4(a) and 4(
) of the de�nitionof f . Clearly 4(a) holds. For 4(
) observe that u0:snap-set(j) = ;. If nextop(u0:sim-state(j)) 6= �snap�then 4(
) holds. But if nextop(u0:sim-state(j)) = �snap� 4(
) also holds, sin
e i is the only one a
hievingthe maximum ofmaxkfs0:sim-steps(j)kg, and s0:status(j)i = idle.The 
ase where � does not in
rease the maximum value of sim-steps(j) is simple. Here no steps are simu-lated and u = u0. To see that (s0; u0) 2 f , we need to 
he
k only that parts 4(a) and 4(
) of the de�nition off hold. This follows easily from the fa
t that (s; u) 2 f , and that the maximum value of sim-steps(j) doesnot 
hange.We 
on
lude that every tra
e of Q 
omposed with safe agreement modules and a user U is a tra
e ofDelayedSpe
� U :Corollary 6.5 Q 
omposed with safe agreement modules solves DelayedSpe
.Combining Corollaries 6.5 and 6.2, we obtain:Corollary 6.6 Q 
omposed with safe agreement modules solves SimpleSpe
.Corollary 6.6 is almost, but not quite, what we need. It remains to 
ompose the Q automaton with snapshotshared memory systems that implement all the safe agreement modules, then to merge all the pro
esses of all thesevarious 
omponents systems in order to form a single shared memory system. The resulting system has in�nitelymany snapshot shared variables; we 
ombine all these to yield a system P with a single snapshot shared variable.We 
on
lude that for every user U that submits at most one initi a
tion on ea
h port, every tra
e of P � U is atra
e of SimpleSpe
� U . That is,Lemma 6.7 P solves SimpleSpe
.Lemma 6.7 yields the safety requirements of a fault-tolerant simulation, as expressed by part (1) of De�ni-tion 3.2. Now we prove the fault-toleran
e requirements, as expressed by part (2) of De�nition 3.2. The argumentis reasonably straightforward, based on the fa
t that ea
h pro
ess of Q 
an, at any time, be in the unsafe region of
ode for at most one pro
ess of P 0. As before, sin
e we are reasoning about fault-toleran
e, we 
onsider expli
itstop a
tions.Lemma 6.8 If P 0 guarantees f -failure termination then P guarantees f -failure termination.Proof: Assume that P 0 guarantees f -failure termination.Ea
h pro
ess i of P simulates the steps of ea
h pro
ess j of P 0 in order, waiting for ea
h step to 
ompletebefore going on to the next one. Pro
ess i works 
on
urrently on simulating steps of different pro
esses of P 0.However, it is only permitted to be in the �unsafe� portion of its exe
ution for one pro
ess j of P 0 at a time.Re
all that the spe
i�
ation of safe-agreement stipulates that if a non-failing pro
ess i exe
utes a proposej;`;ia
tion it will get an agreej;`;i a
tion, unless some other pro
ess i0, simulating step ` of j, fails when �unsafe.� In24



this 
ase i0 
ould blo
k the simulation of j. However, sin
e i0 is allowed to parti
ipate in this safe agreement onlyif it is not 
urrently in the �unsafe� portion of any other safe agreement exe
ution, then i0 
an blo
k at most onesimulated pro
ess. In any exe
ution in whi
h at most f simulator pro
esses fail, at most f simulated pro
essesare blo
ked, and ea
h non-failing simulator i 
an 
omplete the simulation of at least n0 � f pro
esses. Therefore,sin
e P 0 satis�es f -failure termination, a non-failing simulator will eventually exe
ute its de
ide step. Thus thewhole system satis�es f -failure termination.Lemmas 6.7 and 6.8 yield:Theorem 6.9 P is an f -simulation of P 0 via relations G andH .Now, from Theorem 6.9 and Theorem 3.3 we get the result that leads to the appli
ations in Se
tion 8:Theorem 6.10 Suppose that there exists a snapshot shared memory system that solvesD0 and guarantees f -failuretermination, and suppose thatD �G;Hf D0. Then there exists a snapshot shared memory system that solvesD andguarantees f -failure termination.7 Simulation in Read/Write SystemsA system using snapshot shared memory 
an be implemented in a wait-free manner in terms of single-writer multi-reader read/write shared variables [1℄. It follows that Theorem 6.10 extends to read/write systems. However, inthis se
tion we provide a dire
t 
onstru
tion, showing how to produ
e a read/write shared memory system P thatf -simulates a read/write shared memory system P 0. The read/write simulation algorithm is essentially the same asthe snapshot simulation algorithm, ex
ept that a snapshot operation is repla
ed by a sequen
e of reads in arbitraryorder.The reasons why we presented the snapshot simulation algorithm �rst are that it is simpler, and that the 
or-re
tness proof of the read/write simulation algorithm is based on that of the snapshot algorithm.We assume that the system we want to simulate, P 0RW , is an n0-pro
ess read/write shared memory system.We des
ribe an n-pro
ess read/write simulating system QRW . As before, this algorithm is assumed to intera
twith the usual environment, via init and de
ide a
tions, and also with a two-dimensional array of safe agreementmodules Aj;`, j 2 f1; : : : ; n0g, ` 2 N , N = f0; 1; 2; : : :g. In the 
omplete version of the simulation algorithm,denoted PRW , these safe agreement modules are repla
ed by read/write memory implementations and the wholething implemented by a read/write shared memory system.The simulated system P 0RW has a sequen
emem0 of n0 read/write shared variables. Ea
h variablemem0(j) is asingle-writer multi-reader variable, written by pro
ess j of P 0RW , taking on values in R, and with initial value r0.Furthermore, we assume that P 0 solves a de
ision problemD0, guaranteeing f -failure termination.We use terminology about system P 0RW whi
h is similar to that of system P 0, as des
ribed in Se
tion 3.4.1.Namely, for any state s of a pro
ess j of P 0RW , de�ne nextop(s) to be an element of f�init�; �lo
al�g [f(�read�; j0) : 1 � j0 � n0g [ f(�update�; r) : r 2 Rg [ f(�de
ide�; v) : v 2 V g. As before, our deter-minism assumptions imply that ea
h state s has a well de�ned and unique value of nextop(s). For any state s ofa pro
ess j su
h that nextop(s) = �init� and any v 2 V , de�ne trans-init(s; v) to be the state that results fromapplying init(v)j to s. For any state s of a pro
ess j su
h that nextop(s) = (�read�; j0) and any w 2 R, de�netrans-read(s; w) to be the state that results from performing the read operation of the j0th variable from state s,with the return value for the read beingw. Finally, for any state s of a pro
ess j su
h that nextop(s) is an �update�,25



�lo
al�, or �de
ide� pair, de�ne trans(s) to be the state of j that results from performing the operation from states. The system QRW is assumed to intera
t with ea
h Aj;` via outputs propose(w)j;`;i and inputs safej;`;i andagree(w)j;`;i. In fa
t, QRW is very similar to Q. The differen
e is that ea
h snapshot operation used by Q (theonly pla
e snapshots are used is in the 
omputation of latest) is repla
ed by a sequen
e of read operations inQRW ,as des
ribed next.The shared memory of QRW 
onsists of a sequen
e mem-RW of n read/write shared variables. Ea
h variablemem-RW(i) is a single-writer multi-reader variable, written by pro
ess i ofQRW . In mem-RW(i), pro
ess i keepstra
k of the latest values in all the variables of P 0RW , a

ording to i's lo
al simulation of P 0RW . Along with ea
hsu
h value, sim-mem(j), it keeps a tag sim-steps(j), whi
h 
ounts the number of steps that it has simulated for j,up to and in
luding the latest step at whi
h pro
ess j of P 0RW updated its register.The 
ode of QRW has the same transitions as those of Q, ex
ept that the snap is repla
ed by reading andread-done, and the ne
essary synta
ti
 modi�
ations are made to the propose and agree transitions. The for-mal des
ription appears below. Pro
ess i simulates a �read� of variable j0 by pro
ess j, by reading all the vari-ables in mem-RW and 
ombining the information in these variables to produ
e a single value in R: the valueprodu
ed is the latest value written by any of the pro
esses of QRW in its 
opy of the shared variable of j0.More pre
isely, pro
ess i exe
utes a series of n readingj;i a
tions in arbitrary order, one for ea
h i0, sele
ting themem-RW(i0):sim-mem(j0) value asso
iated with the highestmem-RW(i0):sim-steps(j0) (this value must be unique).In the 
ode below, m(j) keeps tra
k of the highest mem-RW(i0):sim-steps(j0) en
ountered so far. m(j) is initial-ized to�1, be
ausemem-RW(i0):sim-steps(j0) takes values greater or equal than 0. There is also read-set(j)whi
hkeeps tra
k of the indexes of pro
esses that have been 
onsidered. Thus, read-set(j) is initially empty. On
e then 
omponents of mem-RW have been read, read-set(j) = f1; : : : ; ng and read-donej;i 
an be exe
uted. This inturn allows 
ompletion of the simulation of the �read� with the exe
ution of the propose(w)j;`;i and agree(w)j;`;ia
tions.Simulation System QRWSame as Q but with the following 
hanges:Shared variables:As inQ but instead of mem:mem-RW, a sequen
e of n read/write variables; for ea
h i, mem-RW(i) has 
omponents:sim-mem, a ve
tor in Rn0 , initially everywhere r0sim-steps, a ve
tor in Nn0 , initially everywhere 0A
tions of i:Input:As inQOutput:As inQ Internal:As in Q but instead of snapj;i:readingj;iread-donej;iStates of i:As inQ ex
ept for:for ea
h j,instead of sim-snaps:sim-reads(j) 2 N , initially 0instead of sim-mem-lo
al: 26



sim-mem-lo
al-RW 2 R, initially arbitraryand in addition:read-set(j) a set of integers, initially emptym(j) 2 N [ f�1g, initially �1Transitions of i:As inQ but instead of snapj;i,readingj;iPre
ondition:nextop(sim-state(j)) = (�read�; j0)status(j) = idlei0 2 f1; : : : ; ng � read-set(j)Effe
t:read-set(j) := read-set(j) [ fi0gif mem-RW(i0):sim-steps(j0) > m(j) thensim-mem-lo
al-RW(j) :=mem-RW(i0):sim-mem(j0)m(j) := mem-RW(i0):sim-steps(j0)read-donej;iPre
ondition:nextop(sim-state(j)) = (�read�; j0)status(j) = idleread-set(j) = f1; : : : ; ngEffe
t:read-set(j) := ;m(j) := �1status(j) := propose

propose(w)j;`;i, ` 2 N+Pre
ondition:status(j) = propose6 9k : status(k) = unsafesim-reads(j) = `� 1w = sim-mem-lo
al-RW(j)Effe
t:status(j) := unsafeagree(w)j;`;i, ` 2 N+Effe
t:sim-state(j) :=trans-read(sim-state(j); w)sim-steps(j) := sim-steps(j) + 1sim-reads(j) := sim-reads(j) + 1status(j) := idle
Tasks of i:As inQ.To prove the 
orre
tness of the read/write simulation algorithm, we de�ne an intermediate system, SnapSim.The only differen
e between QRW and SnapSim is that to simulate a read a
tion of the j0th 
omponent,SnapSim performs a snapshot of mem-RW and applies a fun
tion latestsnp to the result, instead of perform-ing a series of reads. The fun
tion latestsnp for j0 is de�ned as follows. It returns a single value ofR, representing the latest value written by all the pro
esses in the mem-RW variable of j0. That is, letk = maxi0fmem-RW(i0):sim-steps(j0)g, and 
hoose any i00 su
h that mem-RW(i00):sim-steps(j0) = k. Thenlatestsnp(mem-RW; j0) = mem-RW(i00):sim-mem(j0). (We 
laim this is uniquely de�ned.) In the 
ode of SnapSimthe reading and read-done transitions are repla
ed by a read transition:Simulation System SnapSim.:Shared variables:As inQRW 27



A
tions of i:Input:As inQRWOutput:As inQRW Internal:As inQRW , ex
ept that readingj;i and read-donej;i are repla
ed by readj;iStates of i:As inQRWTransitions of i:As inQRW , ex
ept that readingj;i and read-donej;i are repla
ed by readj;i:readj;iPre
ondition:nextop(sim-state(j)) = (�read�; j0)status(j) = idleEffe
t:sim-mem-lo
al-RW(j) := latestsnp(mem-RW; j0)status(j) := proposeTasks of i:As inQRW .It is not hard to verify that an exe
ution of QRW 
orresponds to an exe
ution of SnapSim: Con-sider a read-donej;i and the 
orresponding readingj;i's, for some �xed values j; i. Thus the pre
onditionnextop(sim-state(j)) = (�read�; j0) holds for some parti
ular j0'; �x j0. Also, sim-reads(j) = ` � 1 for somevalue of `. Thus, for the rest of the argument, we have �xed values of `; i; j; j0.Repla
e all of these read-donej;i and readingj;i's by a single readj;i, whi
h o

urs somewhere betweenthe �rst readingj;i and the last readingj;i, at a point when the highest sim-steps(j0) takes the value re
ordedby the read-donej;i. That is, the read is pla
ed at a point where maxi0fmem-RW(i0):sim-steps(j0)g is equalto the value of m(j) at the point of the read-done. Su
h a point exists be
ause the sim-steps variables in-
rease by one unit at a time, and be
ause the �nal value of m(j) satis�es the following: it is at least thevalue of maxi0fmem-RW(i0):sim-steps(j0)g at the moment of the �rst readingj;i, and at most the value ofmaxi0fmem-RW(i0):sim-steps(j0)g at the moment of the last readingj;i.Note that the value of sim-mem-lo
al-RW(j) at the point of the read-done (whi
h is the value returned by thesequen
e of reading steps in QRW ) is the same as the value of mem-RW(i00):sim-mem(j0) at the point where theread is pla
ed, for any i00 with mem-RW(i00):sim-steps(j0) = maxi0fmem-RW(i0):sim-steps(j0)g.It follows that every tra
e of QRW with safe-agreement modules and U is also a tra
e of SnapSim with safe-agreement modules and U . Now, the same proof te
hnique that we used to proof that every tra
e of Q with safe-agreement modules and U is a tra
e of DelayedSpe
� U 
an also be used to prove that every tra
e of SnapSimwith safe-agreement modules and U is a tra
e of DelayedSpe
RW � U , where DelayedSpe
RW is the read/writememory version of DelayedSpe
. Also, the proof te
hnique used for Corollary 6.2 
an be used to prove that every28



tra
e of DelayedSpe
RW � U is a tra
e of SimpleSpe
RW � U , the read/write memory version of SimpleSpe
.Combining all these fa
ts, we see that every tra
e of QRW with safe-agreement modules and U is also a tra
e ofSimpleSpe
RM � U . Therefore:Lemma 7.1 QRW 
omposed with safe agreement modules solves SimpleSpe
RW .As before, we 
ompose QRW with read/write shared memory systems that implement all the safe agreementmodules, and then merge all the pro
esses of all these various 
omponents systems in order to form a single sharedmemory system, PRW . We see that, for every user U that submits at most one initi a
tion on ea
h port, every tra
eof PRW � U is a tra
e of SimpleSpe
RW � U . That is:Lemma 7.2 PRW solves SimpleSpe
RW .The fault-toleran
e argument is analogous to the one for snapshot shared memory systems:Lemma 7.3 If P 0RW guarantees f -failure termination then PRW guarantees f -failure termination.Now Lemmas 7.2 and 7.3 yield (restating De�nition 3.2, the de�nition of f -simulation, in terms ofSimpleSpe
RW ):Theorem 7.4 PRW is an f -simulation of P 0RW via relations G andH .And we get the analogue of Theorem 6.10 (using the analogue of Theorem 3.3 for read/write systems):Theorem 7.5 Suppose that there exists a read/write shared memory system that solvesD0 and guarantees f -failuretermination, and suppose that D �G;Hf D0. Then there exists a read/write shared memory system that solves Dand guarantees f -failure termination.8 Appli
ationsIn Se
tion 8.1, we des
ribe the notion of a 
onvergen
e task [16℄, whi
h is used to spe
ify a family of de
isionproblems, one for ea
h number of pro
esses. For example, binary 
onsensus is a 
onvergen
e task � it yields ade
ision problem for any number of pro
esses. In Theorem 8.1, we show that one de
ision problem in the familyof problems spe
i�ed by a 
onvergen
e task is solvable if and only if any other problem in the family is solvable.The proof is based on Theorem 6.10.In Se
tion 8.2 we use this theorem to obtain various possibility and impossibility results for read/write andsnapshot shared memory systems.8.1 Convergen
e TasksIn Se
tion 3.1 we de�ned an n-port de
ision problem in terms of two sets of n-ve
tors, I and O, and a totalrelation � from I to O. Thus, a de
ision problem is spe
i�ed for a 
ertain number of pro
esses, n. For theappli
ations in the next subse
tion, we would like to talk about a �problem� in general, without spe
ifying thenumber of pro
esses. For example, in the binary 
onsensus problem, any number of pro
esses start with binary29



inputs, and have to agree on some pro
ess' input value. Stri
tly speaking, this is not a de
ision problem, but afamily of de
ision problems, one for ea
h n.In prin
iple, one 
ould de�ne a family of de
ision problems, in a way that for two different values of n, the
orresponding de
ision problems are 
ompletely unrelated. But this is not what one would mean by a �family.�We now des
ribe a way of de�ning a family of de
ision problems 
alled 
onvergen
e tasks [16℄. We prove that itis a �family� in the sense, roughly, that one de
ision problem in the family is solvable if and only if any other is.For de�ning 
onvergen
e tasks, it will be 
onvenient to talk about sets instead of ve
tors, sin
e the positionof an element in the ve
tor will be immaterial. That is, in the kind of de
ision problems we will be 
onsidering,any permutation of an input (output) ve
tor will also be an input (output) ve
tor. We 
all a set a simplex, to followthe notation of topology. An element of a simplex is a vertex. A 
omplex is a family of simplexes 
losed under
ontainment.1For a 
omplex K, skelk(K) denotes the sub
omplex formed by all simplexes of K of size at most k + 1. Forexample, skel0(K) 
onsists of all the verti
es of K, and skel1(K) 
onsists of all the verti
es and all the simplexesof size two. Thus skel1(K) 
an be thought of as a graph, with simplexes of size 2 as edges and simplexes of size 1as verti
es.Informally, if S is an input simplex of a 
onvergen
e task, ea
h pro
ess 
an re
eive as input value any vertex ofS, su
h that the input values are a subset of S (two pro
esses may re
eive the same vertex). The 
onvergen
e taskspe
i�es a set of legal output simplexes for S, denoted 	(S). Ea
h pro
ess has to 
hoose an output a vertex (twopro
esses may 
hoose the same vertex), su
h that the verti
es form an output simplex of 	(S). Let n-ve
tors(S)be the set of n-ve
tors of values from S. Thus, if S is an input simplex, then n-ve
tors(S) are input ve
tors, andif L is an output simplex then n-ve
tors(L) are output ve
tors.Let K be a 
omplex. The 
orresponding n-port ve
tor set eKn is de�ned as follows. h~v1; : : : ; ~vni is a ve
tor ineKn if and only if ~v1; : : : ; ~vn (not ne
essarily distin
t) form a simplex in K; that is, eKn = [S2K n-ve
tors(S). Fora ve
tor w, let set(w) be the simplex of values of w. Thus, if w 2 eKn then set(w) 2 K.Formally, a 
onvergen
e task [L;K;	℄ 
onsists of two arbitrary 
omplexes,L and K, 
alled the input 
omplexand the output 
omplex, respe
tively, and a relation 	 
arrying ea
h simplex of L to a non-empty sub
omplex ofK, su
h that if L0 is a fa
e of L1, then 	(L0) � 	(L1).For ea
h n, the n-port de
ision problem of [L;K;	℄ is h eLn; eKn; e	i, where e	 is as follows: e	(w) 
ontainsevery n-ve
tor w0 su
h that w0 2 n-ve
tors(S), for S 2 	(set(w)).In the next subse
tion, we 
onsider the following 
onvergen
e tasks.1. The N -
onsensus 
onvergen
e task is [SN�1; skel0(SN�1); skel0℄, where SN�1 
onsists of a simplex ofsize N , N > 1, and its subsimplexes. Thus, for ea
h n, it yields a 
onsensus de
ision problem [11℄ for npro
esses, where the pro
esses start with N possible input values, whi
h are the verti
es of SN�1. If thepro
esses start with values that form an input simplex S 2 SN�1, they have to de
ide values that form asimplex in skel0(S). Sin
e the only simplexes of skel0(S) are the verti
es of S, the pro
esses have to de
ideon the same vertex, that is, they all have to agree on one of the input verti
es of S.2. The (N; k)-set agreement 
onvergen
e task, 0 < k < N , is [SN�1; skelk�1(SN�1); skelk�1℄. Thus, forea
h n, it yields an n-pro
ess k-set-agreement problem over a set SN�1 ofN values (see Example 1).1Thus the 
omplexes we 
onsider here are �
olorless,� as opposed to the 
olored 
omplexes 
onsidered usually in the topology approa
h todistributed 
omputing (e.g. [7, 18, 15℄), where ea
h element of a simplex has asso
iated a pro
ess id.30



3. The loop agreement 
onvergen
e task [16℄ is [S2;K;�℄, where S2 is the 2-simplex (~s0; ~s1; ~s2) and its sub-simplexes,K is an arbitrary �nite 
omplex with three distinguished verti
es ~v0; ~v1; ~v2, �(~si) = ~vi, �(~si; ~sj)is some path (simplexes of size 1 and 2) �ij with end-points ~vi and ~vj , and �(S2) = K.Other examples of 
onvergen
e tasks appear in [16℄, like un
olored simplex agreement, bary
entri
 agreement,and �-agreement.Theorem 8.1 For a 
onvergen
e task [L;K;	℄, letD = hI;O;�i be the 
orresponding n-port de
ision problem,D0 = hI 0;O0;�0i the n0-port de
ision problem, and f < minfn; n0g. If there exists a snapshot shared memorysystem that solvesD and guarantees f -failure termination then there exists a snapshot shared memory system thatsolves D0 and guarantees f -failure termination.Proof: By Theorem 6.10, it suf�
es to show that D �G;Hf D0, for some G = G(g1; g2; : : : ; gn) and H =H(f; h1; h2; : : : ; hn). De�ne gi(v) to be the n0-ve
tor with all entries equal to v, and hi(w) to be any of theelements of w different from?.Now we prove the requirement G � �0 � F � H � � of De�nition 3.1. Take any input ve
tor w 2 I. Thusset(w) 2 L. For any w1 2 G(w), set(w1) � set(w); (1)and hen
e, set(w1) 2 L, sin
e L is 
losed under 
ontainment. That is, w1 2 I 0.Now, take any w2 2 �0(w1). Thus set(w2) 2 	(set(w1)). By de�nition of H and F , any w3 2 H(F (w2))satis�es set(w3) � set(w2). Thus, set(w3) 2 	(set(w1)), sin
e set(w2) 2 	(set(w1)) and 	(set(w1)) is (a
omplex) 
losed under 
ontainment.Finally, we need to prove that set(w3) 2 	(set(w)), sin
e this implies that w3 2 �(w). This holds be
ause	(set(w1)) � 	(set(w)), by Equation 1.Applying Theorem 7.5 (instead of Theorem 6.10), we get the same result for read/write systems.8.2 Possibility and Impossibility ResultsTheorem 8.1 
an be used to extend results that are known for a small number of pro
esses to larger numbers,for �xed f . In this se
tion we present several appli
ations of this kind. All the appli
ations we present hold forread/write memory systems and for snapshot memory systems, sin
e one 
an use the read/write memory or thesnapshot memory version of Theorem 8.1.Consensus. It is known [11, 20℄ that the 
onsensus de
ision problem is not solvable with f -failure termination,when f � 1. In parti
ular, wait-free 2-pro
ess 
onsensus is unsolvable [13℄. It is possible to use only this parti
ularresult, and Theorem 8.1 to prove the following:Corollary 8.2 The 
onsensus problem is not solvable for f � 1.Set Agreement. It is known from [5, 26, 18℄ that the (n; k)-set agreement problem is not wait-free solvable. Thisresult together with Theorem 8.1 implies:Corollary 8.3 There is no algorithm that solves the (n; k)-set agreement problem with f -failure termination iff � k.Computability. It is known [12℄ that the problem of telling if a de
ision problem for n pro
esses, n � 3, has await-free solution is not 
omputable (i.e., is unde
idable). This was proved2 in [16℄ by showing that the following2In fa
t, in [16℄, the result of Corollary 8.4 is proved dire
tly, and in more general models of shared memory.31



problem is not 
omputable: Given a loop agreement 
onvergen
e task, tell if the n-port 
orresponding de
isionproblem has a wait-free solution. This result, together with Theorem 8.1, implies the following:Corollary 8.4 Let 2 � f < n. The problem of telling if an n-port loop agreement de
ision problem has a solutionwith f -failure termination is not 
omputable.Also, when f = 1, it was proved in [4℄ that the problem of telling if an arbitrary de
ision problem has solutionwith f -failure termination is 
omputable. In parti
ular, the problem is 
omputable for any 2-port de
ision problemobtained from a 
onvergen
e task. It is possible to use only this parti
ular result, and Theorem 8.1, to prove thefollowing:Corollary 8.5 The problem of telling if an n-port de
ision problem 
orresponding to a 
onvergen
e task T has asolution with 1-failure termination is 
omputable.Noti
e that the results in [4℄ apply to general de
ision problems, while this 
orollary is about de
ision problemsprodu
ed by 
onvergen
e tasks. Also, we stress that Corollary 8.5 follows from the results of [4℄. The point hereis that Corollary 8.5 
an be proved by showing only the 
omputability for 2-port, de
ision problems; a problem
on
eivably easier than to prove it dire
tly for arbitrary n.9 Dis
ussionWe have presented the beginnings of a method to translate results in one distributed system model to another. Wehave introdu
ed a general way of simulating a distributed algorithm of n pro
esses and f fault-toleran
e, by adistributed system with a different number of pro
esses and the same fault-toleran
e. We have presented a pre
isedes
ription of this fault-tolerant simulation algorithm, a 
areful des
ription of what it a

omplishes, as well as aproof of 
orre
tness.Spe
i�
ally, we have de�ned a notion of fault-tolerant redu
ibility between de
ision problems, and showedthat the algorithm implements this redu
ibility. The redu
ibility is tailored to the simulation algorithm; it shouldnot be used as a general notion of redu
ibility between de
ision problems. An important moral of this work is thatone must be 
areful in applying the simulation algorithm� it does not work for all pairs of problems, but only forthose that satisfy the redu
ibility. Nevertheless, we have shown that the simulation algorithm is a powerful tool forobtaining possibility and impossibility results.Similarly, we have presented a spe
i�
ation of what it means for one shared memory system to simulateanother, in a fault-tolerant manner. Again, this spe
i�
ation is intended to 
apture the type of simulation thatis studied in this paper. We have given a full and detailed des
ription of a version of the simulation algorithmfor snapshot memory systems. We have proved that this algorithm satis�es the requirements of a fault-tolerantsimulation.We have also shown how to extend this basi
 snapshot memory simulation algorithm to read/write sharedmemory, and hen
e, have shown that it is useful for proving properties of these systems as well. We have �rstpresented the snapshot algorithm and then the read/write variant due to the fa
t that in the snapshot model, theproof is more modular, and the whole presentation 
learer.We have presented several appli
ations of the simulation algorithm to a 
lass of problems that satisfy theredu
ibility, in
luding 
onsensus and set agreement, de�ned by 
onvergen
e tasks [16℄. The appli
ations extend32



results about a system with some number of pro
esses and f failures, to a system with any number of pro
essesand the same number of failures. Further appli
ations are des
ribed in [7℄.Some possible variations on the simulation algorithm of this paper are: (a) Allow ea
h pro
ess i of Q tosimulate only a (stati
ally determined) subset of the pro
esses of P 0 rather than all the pro
esses of P 0. (b) Allowmore 
ompli
ated rules for determining the simulated inputs of P 0 and the a
tual outputs of Q; these rules 
anin
lude f -fault-tolerant distributed proto
ols among the pro
esses ofQ.We hope that one of the greatest 
ontributions of this paper will be in laying the foundation for the developmentof an interesting variety of extensions to the simulation algorithm. One extension is proposed in [6, 7℄, and laterformalized (following our te
hniques) in [10, 25℄, where the pro
esses of Q simulate a system P 0 that has a

essto set agreement variables. Other variants of the simulation, for 
onsensus problems in systems with a

ess togeneral shared obje
ts appear in [9℄ and in [21℄.Redu
ibilities between problems have proved to be useful elsewhere in 
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