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1 IntrodutionOne of the fundamental goals of theoretial omputer siene is to determine the boundary between problemsthat are, and are not, omputable. In distributed omputing, the large number of system parameters ompoundsthis problem. Computability results depend heavily on the ommuniation medium, the number of proesses inthe system, and the number and type of possible faults. It is dif�ult in pratie to extend a result obtained inone system to apply in another, even if only one of the many system parameters differs between the two systems.In this paper, we take the �rst steps toward a formal theory for redution among problems in different modelsof distributed omputing. We onsider asynhronous read/write shared memory systems where proesses mayexhibit stopping failures. There is a parameter f assoiated to a system, whih spei�es the maximum number ofproesses that an fail.We desribe an algorithm, the BG-simulation algorithm, that allows a set of f + 1 proesses with at most ffailures, to �simulate� a larger number n of proesses, also with at most f failures. The BG-simulation algorithmis a powerful tool for proving solvability and unsolvability results for fault-prone asynhronous systems.To illustrate the power of the BG-simulation algorithm, onsider the n-proess k-set agreement problem [8℄, inwhih all n proesses propose values and deide on at most k of the proposed values. We use the BG-simulationalgorithm to onvert an arbitrary k-fault-tolerant n-proess solution for the k-set-agreement problem into a wait-free k + 1-proess solution for the same problem. (A wait-free algorithm is one in whih any non-failing proessterminates, regardless of the failure of any number of the other proesses.) Sine the k+1-proess k-set-agreementproblem has been shown to have no wait-free solution [5, 18, 26℄, this transformation implies that there is no k-fault-tolerant solution to the n-proess k-set-agreement problem, for any n.As another appliation, we show how the BG-simulation algorithm an be used to obtain results of [12, 16℄about the omputability of some deision problems. Other appliations of the algorithm (inluding variants, relatedalgorithms disussed below, and extensions of it) have appeared in [6, 7, 9, 10, 21, 25, 17℄.As these examples suggest, the BG-simulation algorithm is an important tool when studying reduibility amongproblems in different models of distributed omputing. Thus, it is important to understand preisely what thealgorithm guarantees. In this paper, we present a omplete and areful desription of the BG-simulation algorithm,plus a areful desription of what it aomplishes, plus a proof of its orretness.In order to speify the ontribution of the BG-simulation algorithm, we de�ne a notion of fault-tolerant re-duibility between deision problems, and a notion of fault-tolerant simulation between shared memory systems.We show that, in a preise sense, any algorithm that implements the fault-tolerant simulation between two systemsalso implements the reduibility between deision problems solved by the systems. Then we desribe a spei�version of the BG-simulation algorithm that implements the simulation. These notions are quite natural (althoughspeially tailored to the BG-simulation algorithm) and we believe they an serve as a basis for more general notionsof reduibility between deision problems and simulation between systems.To highlight the limits of the urrent reduibility, we give examples of pairs of deision problems that do anddo not satisfy our notion of fault-tolerant reduibility. For example, the n-proess k-set-agreement problem isf -reduible to the n0-proess k0-set-agreement problem if k � k0 and f � min fn; n0g. On the other hand, theseproblems are not reduible if k � f < k0. The moral is that one must be areful in applying the simulation � thereare senarios for whih it is appropriate and senarios for whih it is not. One must verify that the onditions forreduibility hold.We present and verify the BG-simulation algorithm in terms of I/O automata [23℄. The presentation has a greatdeal of modularity, expressed by I/O automaton omposition and both forward and bakward simulation relations(see [24℄, for example, for de�nitions). Composition inludes a safe agreement module, a simpli�ation of one in2



[5℄, as a subroutine. Forward and bakward simulation relations are used to view the algorithm as implementing amulti-try snapshot strategy. The most interesting part of the proof is the safety argument, whih is handled by theforward and bakward simulation relations; one that is done, the liveness argument is straightforward.We present our main version of the BG-simulation algorithm for a snapshot shared memory system. Thismakes the orretness proof more modular, and the whole presentation learer, and is no loss of generality, sine asystem using snapshot shared memory an be implemented in a wait-free manner in terms of single-writer multi-reader read/write shared variables [1℄. For ompleteness, we brie�y present a version that works in read/writeshared memory systems. Essentially, the version for read/write systems is obtained by replaing eah snapshotoperation by a sequene of reads in arbitrary order. The orretness of the resulting read/write systems is provedby arguments analogous to those used for snapshot systems, ombined with a speial argument showing that theresult of a sequene of reads is the same as the result of a snapshot taken somewhere in the interval of the reads.The original idea of the BG-simulation algorithm and its appliation to set agreement are due to Borowsky andGafni [5℄. The �rst preise desription of the simulation, inluding a deomposition into modules, the notion offault-tolerant reduibility between deision problems, and a proof of orretness appeared in Lynh and Rajsbaum[22℄. The present paper ombines the results of [5℄ and [22℄, and adds the abstrat notion of fault-tolerant simu-lation, extensions for read/write systems, omputability results, and other details that were not inluded in [5, 22℄for lak of spae.Borowsky and Gafni extended the BG-simulation algorithm to systems inluding set agreement variables [6℄;Chaudhuri and Reiners later formalized this extension in [10, 25℄, following the tehniques of [22℄.In the ontext of onsensus, variants of the BG-simulation are used in [9, 21℄ to simulate systems with aessto general shared objets. The BG-simulation requires proesses to agree on the outome of eah step by solving (arestrited form of) Consensus using only (read/write) registers. Instead of having proesses agree on the outomeof the step as in the BG-simulation, these papers use (a similarly restrited form of) test&set registers to ensurethat only one proess simulates eah step. The simulation of Chandra et al. applies to a ontext in whih TASregisters are available diretly and need not be implemented, while Lo and Hadzilaos present a test test&setimplementation.Afek and Stupp [3℄ use simulation to prove a lower bound on the time-spae tradeoff of leader eletion algo-rithms that use ompare&swap registers. Their simulation redues a leader eletion algorithm for a system withompare&swap registers with limited time and spae resoures to a set agreement algorithm with only read/writevariables. Eah simulating proess simulates a group of statially pre-assigned proesses in the simulated algo-rithm. The oordination is loose, so different exeutions may end-up being simulated by proesses in differentgroups.This paper is organized as follows. We start with the model in Setion 2. In Setion 3 we de�ne deisionproblems, what it means to solve a deision problem, reduibility between deision problems, and simulationbetween shared memory systems that solve deision problems. In Setion 4 we desribe a safe agreement modulethat is used in the BG-simulation algorithm. In Setion 5 we present the BG-simulation algorithm. In Setion 6we present the formal proof of orretness for the BG-simulation algorithm. This implies Theorem 6.10, our mainresult, whih asserts the existene of a distributed algorithm that implements the reduibility and simulation notionsof Setion 3. In Setion 7 we show how to modify the BG-simulation algorithm (for snapshot shared memory),to work in a read/write memory system. In Setion 8 several appliations of the BG-simulation algorithm aredesribed. A �nal disussion appears in Setion 9.
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2 The ModelThe underlying model is the I/O automaton model of Lynh and Tuttle [23℄, as desribed, for example, in Chapter8 of [19℄. Brie�y, an I/O automaton is a state mahine whose transitions are labelled with ations. Ations arelassi�ed as input, output, or internal. The automaton need not be �nite-state, and may have multiple start states.For expressing liveness, eah automaton is equipped with a task struture (formally, a partition of its non-inputations), and the exeution is assumed to give fair turns to eah task. The trae of an exeution is the sequene ofexternal ations ourring in that exeution.Most of the systems in this paper are asynhronous shared memory systems, as de�ned, for example, in Chapter9 of [19℄. Brie�y, an n-proess asynhronous shared memory system onsists of n proesses interating viainstantaneously-aessible shared variables. We allow �nitely many or in�nitely many shared variables. (Allowingin�nitely many shared variables is a slight generalization over what appears in [19℄, but it does not affet any ofthe properties we require.) Formally, we model the system as a single I/O automaton, whose state onsists ofall the proess loal state information plus the values of the shared variables, and whose task struture respetsthe division into proesses. When we disuss fault-tolerane properties, we model proess stopping expliitly bymeans of stopi input ations, one for eah proess i. The effet of the ation stopi is to disable all future non-inputations involving proess i. When we disuss safety properties only, we omit onsideration of the stop ations.In most of this paper, we fous on shared memory systems with snapshot shared variables. A snapshot variablefor an n-proess system takes on values that are length n vetors of elements of some basi data type R. It isaessible by update and snap operations. An update(i; r) operation has the effet of hanging the i'th omponentof the vetor to r; we assume that it an be invoked only by proess i. A snap operation an be invoked by anyproess; it returns the entire vetor.We often assume that the i'th omponent of a snapshot variable is itself divided into omponents. For example,we use a snapshot variablemem, and denote the i'th omponent by mem(i); this omponent inludes a omponentsim-mem(j), denoted mem(i):sim-mem(j), for eah j in some range. We sometimes allow proess i to hangeonly one of its omponents, say mem(i):sim-mem(j0), with an update operation; this is permissible sine proessi an remember all the other omponents and overwrite them.As we have de�ned it, a snapshot system may have more than one snapshot shared variable. However, anysystem with more than one snapshot variable (even with in�nitely many snapshot variables) an easily be �imple-mented� by a system with only a single snapshot variable, with no hange in any externally-observable behavior(inluding behavior in the presene of failures) of the system. Likewise, a system using snapshot shared memoryan be �implemented� in terms of single-writer multi-reader read/write shared variables, again with no hange inexternally-observable behavior; see, e.g., [1℄ for a onstrution.In Setion 7 we also onsider shared memory systems with single-writer multi-reader read/write shared vari-ables (as de�ned, for example, in [19℄).3 Deision Problems, Reduibility and SimulationIn Setion 3.1 we de�ne deision problems and in Setion 3.2 we say what it means for a system to solve a deisionproblem. In Setion 3.3 we de�ne the fault-tolerant reduibility between deision problems. In Setion 3.4 wepresent the notion of simulation.While the notion of reduibility relates deision problems, we show that the notion of simulation is the equiv-alent ounterpart that relates systems. The following diagram represents these relations, where D and D0 are4



deision problems, and P and P 0 are systems.D reduible�! D0" solves " solvesP simulates�! P 0We use the following notation. A relation fromX to Y is a subset ofX�Y . A relationR fromX to Y is totalif for every x 2 X , there is some y 2 Y suh that (x; y) 2 R. We write R(x) as shorthand for fy : (x; y) 2 Rg.For a relation R fromX to Y , and a relation S from Y to Z, R � S denotes the relational omposition of R and S,whih is a relation fromX to Z.3.1 Deision ProblemsLet V be an arbitrary set of values; we use the same V as the input and output domain for all the deision problemsin this paper, and V n denotes the set of all length n vetors with entries from the set V .An n-port deision problem D = hI;O;�i onsists of a set I of input vetors, I � V n, a set O of outputvetors, O � V n, and�, a total relation from I to O.Example 1 In the n-proess k-set-agreement problem over a set of values V , jV j � k + 1, whih we abbreviateas the (n; k)-set-agreement problem, I is the set of all length n vetors over V , and O is the set of all length nvetors over V ontaining at most k different values. For any w 2 I, �(w) is the set of all vetors in O whosevalues are inluded among those in w.3.2 Solving Deision ProblemsLetD = hI;O;�i be an n-port deision problem; we de�ne what it means for an I/O automatonA (in partiular,a shared memory system) to solve D. A is required to have inputs init(v)i and outputs deide(v)i, where v 2 Vand 1 � i � n. Eah suh i is assoiated to a proess of a A, and is used to ommuniate with other modules viathe orresponding input and output ations. We say that an init(v)i or deide(v)i ours in port i.We onsiderA omposed with any user automaton U that submits at most one initi on eah port i. We say thata set of init(vi)i ations, one for eah i, 1 � i � n, forms the vetor (v1; : : : ; vn). A set of deide(vi)i ations fordifferent values of i an be ompleted to a vetor in a given set of n-vetors, if there is one vetor in the set, w,suh that w(i) = vi for every deide(vi)i ation. We require the following onditions:Well-formedness: A only produes a deidei if there is a preeding initi, and A never responds more than oneon the same port.Corret answers: If init events our on all ports, forming a vetor w 2 I, then the outputs that appear in deideevents an be ompleted to a vetor in�(w).We say that A solves D provided that for any suh U , the omposition A � U guarantees well-formedness andorret answers. In addition, we onsider a liveness ondition expressing fault-tolerane:5



f -failure termination: In any fair exeution of A � U , if init events our on all ports and stop events our onat most f ports, then a deide ours on every non-failing port.A is said to guarantee f -failure termination provided that it satis�es the f -failure termination ondition for any U ,and A is said to guarantee wait-free termination provided that it guarantees n-failure termination (or, equivalently,n� 1-failure termination).3.3 Fault-Tolerant ReduibilityWe de�ne the notion of f -reduibility from an n-port deision problem D = hI;O;�i to an n0-port deisionproblemD0 = hI 0;O0;�0i, for an integer f , 0 � f � n0.The reduibility is motivated by the way the BG-simulation algorithm operates. In that algorithm, a sharedmemory system P simulates an f -fault-tolerant system P 0 that solvesD0. The simulating system P is supposed tosolve D, and so it obtains from its environment an input vetor w 2 I, one omponent per proess. Eah proessi, based on its own input value w(i), determines a �proposed� input vetor gi(w(i)) 2 I 0. The atual input foreah simulated proess j of P 0 is hosen arbitrarily from among the jth omponents of the proposed input vetors.Thus, for eah w 2 I, there is a set G(w) � I 0, of possible input vetors of the simulated system P 0.When the �subroutine� that solves P 0 produes a result (a vetor in O0), different proesses of P an obtaindifferent partial information about this result. However, with at most f stopping failures, the only differene is thateah proess an miss at most f omponents; the possible variations are aptured by the F relation below. Theneah proess i of P uses its partial information x(i) to deide on a �nal value, hi(x(i)). The values produed inthis way, ombined aording to theH relation, must form a vetor in O. The formal de�nitions follow.For a setW of length n vetors and index i 2 f1; : : : ; ng,W (i) denotes fw(i) : w 2 Wg, and �W denotes theCartesian produtW (1) �W (2) � : : :�W (n). Thus, �W onsists of all the vetors that an be assembled fromvetors inW by hoosing eah omponent to be the orresponding omponent of some vetor inW .For a length n vetor w of values in V , and 0 � f � n, viewsf (w) denotes the set of length n vetors overV [ f?g that are obtained by hanging at most f of the omponents of w to ?. IfW is a set of length n vetors,then viewsf (W ) denotes [w2W fviewsf (w)g.Our reduibility is de�ned in terms of three auxiliary parameterized relations G, F and H , depited in thefollowing diagram. The relation G is de�ned by relations g1; : : : ; gn. The relation H is de�ned by relationsh1; : : : ; hn, and f . And the relation F is de�ned by f . Thus we use the notation G = G(g1; g2; : : : ; gn),H = H(f; h1; h2; : : : ; hn), and F = F (f) to emphasize that g1; g2; : : : ; gn, h1; h2; : : : ; hn, and f are the keyparameters whose existene is asserted in the following de�nition of reduibility.I G�! I 0# � # �0O H � F (O0) F � O01. G = G(g1; g2; : : : ; gn), a total relation from I to I 0; here, eah gi is a funtion from I(i) to I 0.For any w 2 I, let W � I 0 denote the set of all vetors of the form gi(w(i)), 1 � i � n, and de�neG(w) = �W . We assume that for eah w 2 I, G(w) � I 0.6



2. F = F (f), a total relation fromO0 to (viewsf (O0))n.For any w 2 O0, F (w) = (viewsf (w))n.3. H = H(f; h1; h2; : : : ; hn), a total (single-valued) relation from (viewsf (O0))n to V n; here, eah hi is afuntion from viewsf (O0) to O(i).For any x 2 (viewsf (O0))n, H(x) ontains exatly the length n vetor w suh that w(i) = hi(x(i)) forevery i.De�nition 3.1 (f -Reduibility) Suppose thatD = hI;O;�i is an n-port deision problem,D0 = hI 0;O0;�0i isan n0-port deision problem, and 0 � f � n0. Then D is f -reduible to D0 via relations G = G(g1; g2; : : : ; gn)andH = H(f; h1; h2; : : : ; hn), written as D �G;Hf D0, provided that G ��0 � F �H � �.The following examples give some pairs of deision problems that do and do not satisfy the reduibility.Beause the reduibility expresses the power of the BG-simulation algorithm, the examples indiate situationswhere the algorithm an and annot be used.Example 2 (n; k)-set agreement is f -reduible to (n0; k0)-set agreement for k � k0, f < minfn; n0g.This is veri�ed as follows. For v 2 V , de�ne gi(v) to be the vetor vn0 . Also, for w 2 viewsf (V n0), de�nehi(w) to be the �rst entry of w different from?. It is easy to hek that De�nition 3.1 is satis�ed.Example 3 (n; k)-set agreement is not f -reduible to (n0; k0)-set agreement if k � f < k0.If this reduibility held, then the main theorem of this paper, Theorem 6.10, together with the fat that (n0; k0)-set agreement is solvable when f < k0 [8℄, would imply the existene of an f -fault-tolerant algorithm to solve(n; k)-set-agreement. But this ontradits the results of [5, 11, 18, 26℄.3.4 Fault-Tolerant SimulationWe present a spei�ation, in the I/O automata formalism, of a fault-tolerant distributed simulation. In Theorem 3.3we show how this spei�ation orresponds to the reduibility of Setion 3.3. The reduibility relates two deisionproblems, while the simulation relates two shared memory systems.We start, in Setion 3.4.1, by desribing the simulated system, P 0. Eah of the proesses in the system, P , thatis going to simulate P 0 gets its own input. These proesses have somehow to produe, out of their inputs, inputsfor the simulated proesses. Also, out of the outputs produed by the simulated proesses, they have somehow toprodue outputs for themselves. These two (distributed) proedures, of input translation and of output translation,are what is unique to the fault-tolerant simulation. Together with the natural, step-by-step simulation of P 0, theyare modeled by an I/O automata alled SimpleSpe, whih is desribed in Setion 3.4.2. Finally, in Setion 3.4.3,we present a formal de�nition of simulation, and show that it implements our reduibility notion.3.4.1 The Simulated Algorithm P 0We assume that the algorithm to be simulated is given in the form of an n0-proess snapshot sharedmemory system,P 0. It has only a single snapshot shared variable, alled mem0. We assume that eah omponent of mem0 takes onvalues in a set R, with a distinguished initial value r0. Thus, the snapshot shared variablemem0 has a unique initial7



value, onsisting of r0 in every omponent. Furthermore, we assume that P 0 solves a deision problemD0. In thissubsetion and the next, we onsider only safety properties, and so we omit the stop ations.We make some simplifying �determinism� assumptions about P 0, without loss of generality: We assume thateah proess has only one initial state. Also, eah proess has, in any state, at most one non-input ation enabled.Moreover, for any ation performed from any state, we assume that there is a uniquely-de�ned next state. Also,the initial state of eah proess is �quiesent� � no non-input ations are enabled (until an input arrives). For eahother state, exatly one non-input ation is enabled. In any state after a proess has exeuted a �deide�, only loalations are enabled.The following is some useful terminology about system P 0. For any state s of a proess j of P 0, de�nenextop(s) to be an element of f�init�; �snap�; �loal�g [ f(�update�; r) : r 2 Rg [ f(�deide�; v) : v 2 V g.Spei�ally, for a quiesent state s, nextop(s) = �init�; for a state s in whih the next ation is a snap, nextop(s) =�snap�; for a state s in whih the next ation is an update(i; r), nextop(s) = (�update�; r); for a state s in whihthe next ation is loal, nextop(s) = �loal�; and for a state s in whih the next ation is to deide on valuev, nextop(s) = (�deide�; v). Our determinism assumptions imply that for eah state s, nextop(s) is uniquelyde�ned.For any state s of a proess j suh that nextop(s) = �init� and any v 2 V , de�ne trans-init(s; v) to be thestate that results from applying init(v)j to s. For any state s of a proess j suh that nextop(s) = �snap� and anyw 2 Rn0 , de�ne trans-snap(s; w) to be the state that results from performing the snapshot operation from states, with the return value for the snapshot being w. Finally, for any state s of a proess j suh that nextop(s) is an�update�, �loal�, or �deide� pair, de�ne trans(s) to be the state of j that results from performing the operationfrom state s.3.4.2 The SimpleSpe AutomatonConsider algorithm P 0, whih solves problem D0 guaranteeing f -failure termination, together with relations Gand H . The de�nition of what we mean by a simulation is based on a safety spei�ation expressed by theSimpleSpeG;Hf (P 0) automaton, or simply SimpleSpe. A system of n proesses, P , whih is supposed to simulateP 0, should implement SimpleSpe, in a sense desribed in Setion 3.4.3.The SimpleSpe automaton diretly simulates system P 0, in a entralized manner. Repeatedly, a proess j ofP 0 is hosen nondeterministially and its next step simulated. The only unusual feature is the way of hoosing theinputs for the P 0 proesses and the outputs for the P proesses, using G and H relations. In order to determinean input v for a proess j of P 0, a proess i is hosen nondeterministially from among those that have reeivedtheir inputs, and v is set to the j-th omponent of the vetor gi(input(i)). At any time after at least n0 � f of theproesses of P 0 have produed deision values, outputs an be produed, using the funtions hi.We give a formal desription of the SimpleSpe automaton.SimpleSpe:Signature:Input:init(v)i , i 2 f1; : : : ; ngOutput:deide(v)i , i 2 f1; : : : ; ng Internal:sim-initj , j 2 f1; : : : ; n0gsim-snapj , j 2 f1; : : : ; n0gsim-updatej , j 2 f1; : : : ; n0gsim-loalj , j 2 f1; : : : ; n0gsim-deidej , j 2 f1; : : : ; n0g8



States: sim-mem, a memory of P 0 (an element of Rn0 ), initially the initial memory (r0)n0for eah i 2 f1; : : : ; ng:input(i) 2 V [ f?g, initially ?reported(i), a Boolean, initially falsefor eah j 2 f1; : : : ; n0g:sim-state(j), a state of j, initially the initial statesim-deision(j) 2 V [ f?g, initially ?Transitions:init(v)iEffet:input(i) := vsim-initjPreondition:nextop(sim-state(j)) = �init�for some iinput(i) 6=?v = gi(input(i))(j)Effet:sim-state(j) := trans-init(sim-state(j); v)sim-snapjPreondition:nextop(sim-state(j)) = �snap�Effet:sim-state(j) :=trans-snap(sim-state(j); sim-mem)sim-updatejPreondition:nextop(sim-state(j)) = (�update�; r)Effet:sim-state(j) := trans(sim-state(j))sim-mem(j) := r

sim-loaljPreondition:nextop(sim-state(j)) = �loal�Effet:sim-state(j) := trans(sim-state(j))sim-deidejPreondition:nextop(sim-state(j)) = (�deide�; v)Effet:sim-state(j) := trans(sim-state(j))sim-deision(j) := vdeide(v)iPreondition:input(i) 6=?reported(i) = falsew is a �subvetor� of sim-deisionjwj � n0 � fv = hi(w)Effet:reported(i) := trueTasks: Arbitrary. They are not used in the proof.A sim-initj ation is used to simulate an init step of proess j. To simulate any other step of j, the funtionnextop is used to determine what the next operation is: �init�, �snap�, (�update�; r), �loal�, or (�deide�; v).Then the state transition spei�ed by P 0 is performed, using the appropriate funtion: trans-init, trans-snap ortrans. One the simulation of at least n0 � f proesses has been ompleted a deision value for i an be produed,using hi. In the ode this is expressed by a �subvetor� of sim-deision, where �subvetor� means replaing zeroor more entries of the vetor sim-deision by ?, and jwj is the number of entries different from?.Theorem 3.1 Assume P 0 solves D0 andD �G;Hf D0.Then SimpleSpeG;Hf (P 0) solves D. 9



Proof: Following Setion 3.2, we onsider SimpleSpeG;Hf (P 0) omposed with any user automaton U that sub-mits at most one initi on eah port i.To prove well-formedness, we note that it follows diretly from the ode that SimpleSpeG;Hf (P 0) only pro-dues a deidei if there is a preeding initi, and it never responds more than one on the same port.To prove orret answers, assume init events our on all ports, forming a vetor w 2 I. Then the ode forsim-init guarantees that the inputs for P 0 that are produed an be ompleted to a vetor w0 2 G(w). Then theode of SimpleSpeG;Hf (P 0) simulates a entralized exeution of P 0 with these inputs, and hene the vetor w00of output values that is stored in sim-deision an be ompleted to a vetor in �0(w0). Then the ode for deideguarantees that the outputs that appear in deide events an be ompleted to a vetor in H(F (w00)). It followsthat the outputs appearing in deide events an be ompleted to a vetor in H(F (�0(G(w)))), and hene (sineD �G;Hf D0) to a vetor in�(w). Thus, SimpleSpeG;Hf (P 0) produes orret answers.3.4.3 De�nition of SimulationWe now de�ne a notion of fault-tolerant simulation; our de�nition inludes both safety and liveness onditions.We had to make two hoies for this de�nition. First, on the way the simulating proesses produe inputs for thesimulated proesses from their own inputs, and on the way they produe outputs from the outputs of the simulatedproesses. Our hoie was de�ned by the way the the BG-simulation algorithm operates. The seond hoieis about how detailed the simulation should be. One possibility that omes to mind is to require a step-by-stepsimulation, exeuting eah instrution of eah simulated program. Our hoie was to use the weakest notion ofsimulation that would still be suf�ient for the appliations we present. Our simulation spei�ation deals onlywith external behaviors, and does not require that the program given by P 0 be simulated step-by-step. The keyproperty guaranteed by suh a simulation is formally stated in Theorem 3.3.We need a preliminary de�nition and lemma. Suppose thatA andB are two I/O automata with the same inputsinit(v)i and outputs deide(v)i, v 2 V , 1 � i � n. We onsider A and B omposed with any user automaton Uthat submits at most one initi on eah port i. We say that A solves B provided that for any suh U , every trae ofthe ompositionA� U is also a trae of the ompositionB � U .Lemma 3.2 Suppose that A and B are two I/O automata with the same inputs init(v)i and outputs deide(v)i,v 2 V , 1 � i � n. If A solves B and B solves an n-port deision problemD then A solves D.Proof: By assumption, every trae of A � U is also a trae of B � U . Sine B solves D, every trae of B � Usatis�es well-formedness and orret answers. Therefore, every trae of A � U satis�es well-formedness andorret answers, so A solvesD.De�nition 3.2 (fault-tolerant simulation) Suppose that P is an n-proess shared memory system, P 0 is an n0-proess shared memory system, and 0 � f � n0. Then P f -simulates P 0 via relations G = G(g1; g2; : : : ; gn) andH = H(f; h1; h2; : : : ; hn), written as P simulatesG;Hf P 0, provided that both of the following hold:(1) P solves SimpleSpeG;Hf (P 0).(2) If P 0 guarantees f -failure termination then P guarantees f -failure termination.Note that ondition (1) involves safety only, and so we follow the onvention (of Setion 2) of not inludingthe stop ations in P and P 0. However, ondition (2) is a fault-tolerane ondition, and so we assume there thatthe stop ations are inluded, aording to the onvention.The relationship between our simulation and reduibility notions is as follows:10



Theorem 3.3 Assume P 0 solves D0 and guarantees f -failure termination. Assume that D �G;Hf D0 and PsimulatesG;Hf P 0. Then P solves D and guarantees f -failure termination.Proof: We �rst show that P solves D. Theorem 3.1 implies that SimpleSpeG;Hf (P 0) solves D. By property (1)of the de�nition of f -simulation, we have that P solves SimpleSpeG;Hf (P 0). Therefore, Lemma 3.2 implies thatP solvesD, as needed.Now we show that P guarantees f -failure termination. We know that P 0 guarantees f -failure termination.Sine P simulatesG;Hf P 0, property (2) of the de�nition of f -simulation implies that P guarantees f -failure termi-nation, as needed.Later we use Theorem 3.3 to show that if P 0 solves D0 with f -failure termination and D �G;Hf D0, thenthere exists a snapshot shared memory system P that solves D with f -failure termination. The proof onsists ofdesribing a spei� snapshot shared memory system P suh that P simulatesG;Hf P 0. This result is stated inTheorem 6.10; the orresponding version for read/write shared memory systems is stated in Theorem 7.5.Notie that this simulation spei�ation deals only with external behaviors, and does not require that the pro-gram given by P 0 be simulated step-by-step. This requirement is suf�ient for the appliations we present.4 A Safe Agreement ModuleThe simulation algorithm uses a omponent that we all a safe agreementmodule. This module solves a variant ofthe ordinary agreement problem and guarantees failure-free termination. In addition, it guarantees a nie resilienyproperty: its suseptibility to failure on eah port is limited to a designated �unsafe� portion of an exeution. Ifno failure ours during these unsafe intervals, then deisions are guaranteed on all non-failing ports on whihinvoations our.Formally, we assume that the module ommuniates with its �users� on a set of n ports numbered 1; : : : ; n.Eah port i supports input ations of the form propose(v)i, v 2 V , by whih a user at port i proposes spei� valuesfor agreement, and output ations of the form safei and agree(v)i, v 2 V . The safei ation is an announementto the user at port i that the unsafe portion of the exeution orresponding to port i has been ompleted, and theagree(v)i is an announement on port i that the deision value is v. In addition, we assume that port i supports aninput ation stopi, representing a stopping failure.We say that a sequene of proposei, safei and agreei ations is well-formed for i provided that it is a pre�xof a sequene of the form propose(v)i; safei; agreei. We assume that the users preserve well-formedness on everyport, i.e., there is at most one proposei event for any partiular i. Then we require the following properties of anyexeution of the module together with its users:Well-formedness: For any i, the interations between the module and its users on port i are well-formed for i.Agreement: All agreement values are idential.Validity: Any agreement value must be proposed.In addition, we require two liveness onditions, whih are stated in terms of fair exeutions. The �rst ondition saysthat any propose event on a non-failing port eventually reeives a safe announement. This guarantee is requiredin spite of any failures on other ports. 11



Wait-free progress: In any fair exeution, for any i, if a proposei event ours and no stopi event ours, then asafei event ours.The seond liveness ondition says that if the exeution does not remain unsafe for any port, then any proposeevent on a non-failing port eventually reeives an agree announement.Safe termination: In any fair exeution, if there is no j suh that proposej ours and safej does not our, thenfor any i, if a proposei event ours and no stopi event ours, then agreei ours.An I/O automaton with the appropriate interfae is said to be a safe agreement module provided that it guaranteesall the preeding onditions (for all users).We now desribe a simple design (using snapshot shared memory) for a safe agreement module. It is a slightsimpli�ation of the one in [5℄.The snapshot shared memory ontains a val omponent and a level omponent for eah proess i. Whenproess i reeives a propose(v)i, it reords the value v in its val omponent and raises its level to 1. Then i usesa snapshot to determine the level's of the other proesses. If i sees that any proess has attained level = 2, then itbaks off and resets its level to 0, and otherwise, it raises its level to 2.Next, proess i enters a wait loop, repeatedly taking snapshots until it sees a situation where no proess haslevel = 1. When this happens, the set of proesses that it sees with level = 2 is nonempty. Let v be the val valueof the proess with the smallest index with level = 2. Then proess i performs an agree(v)i output.In the following ode, we do not expliitly represent the stopi ations. We assume that the stopi ation justputs proess i in a speial �stopped� state, from whih no further non-input steps are enabled, and after whih anyinput auses no hanges.SafeAgreement:Shared variables:x, a length n snapshot value; for eah i, x(i) has omponents:level 2 f0; 1; 2g, initially 0val 2 V [ f?g, initially ?Ations of i:Input:propose(v)i , v 2 VOutput:safeiagree(v)i Internal:update1isnap1iupdate2iwaitiStates of i:input 2 V [ f?g, initially ?output 2 V [ f?g, initially ?x-loal, a snapshot value; for eah j, x-loal(j) has omponents:level 2 f0; 1; 2g, initially 0val 2 V [ f?g, initially ?status 2 fidle; update1; snap1; update2; safe;wait; reportg, initially idleTransitions of i: 12



propose(v)iEffet:input := vstatus := update1update1iPreondition:status = update1Effet:x(i):level := 1x(i):val := inputstatus := snap1snap1iPreondition:status = snap1Effet:x-loal := xstatus := update2update2iPreondition:status = update2Effet:if 9j : x-loal(j):level = 2then x(i):level := 0else x(i):level := 2status := safe

safeiPreondition:status = safeEffet:status := waitwaitiPreondition:status = waitEffet:if 6 9j : x(j):level = 1and 9j : x(j):level = 2 thenk := minfj : x(j):level = 2 goutput := x(k):valstatus := reportagree(v)iPreondition:status = reportv = outputEffet:status := idle
Tasks of i:All ations omprise a single task.Theorem 4.1 SafeAgreement is a safe agreement module.Proof: Well-formedness and validity are easy to see. We argue agreement, using an operational argument. Sup-pose that proess i is the �rst to perform a suessful wait step, that is, one that auses it to deide, and supposethat it deides on the val of proess k. Let � be the suessful waiti step; then at step �, proess i sees thatx(j):level 6= 1 for all j, and k is the smallest index suh that x(k):level = 2.We laim that no proess j subsequently sets x(j):level := 2. Suppose for the sake of ontradition that proessj does subsequently set x(j):level := 2 in an update2j step, �. Sine x(j):level 6= 1when � ours, it must be thatproess j must perform an update1j and a snap1j after � and before �. But then proess j must see x(k):level = 2when it performs its snap1j , whih auses it to bak off, setting x(j):level := 0. This is a ontradition, whihimplies that no proess j subsequently sets x(j):level := 2. But this implies that any proess that does a suessfulwait step will also see k as the smallest index suh that x(k):level = 2, and will therefore also deide on k's val.The wait-free progress property is immediate, beause proess i proeeds without any delay until it performsits safei output ation.To see the safe termination property, assume that there is no j suh that proposej ours and safej does notour. Then there is no j suh that x(j):level remains equal to 1 forever, so eventually all the level values are in13



f0; 2g. Then any non-failing proess i will sueed in any subsequent waiti statement, and so eventually performsan agreei output ation.5 The BG Simulation AlgorithmIn this setion, we present the basi snapshot shared memory simulation algorithm, whih we will show satis�esDe�nition 3.2.We present the algorithm as an n-proess snapshot shared memory system Q with a single snapshot sharedvariable. This algorithm is assumed to interat not only with the usual environment, via init and deide ations, butalso with a two-dimensional array of safe agreement modules Aj;`, j 2 f1; : : : ; n0g, ` 2 N ,N = f0; 1; 2; : : :g. Inthe �nal version of the simulation algorithm, system P , these safe agreement modules are replaed by implemen-tations and the whole thing implemented by a snapshot shared memory system with a single shared variable. Thesystem Q is assumed to interat with eah Aj;` via outputs propose(w)j;`;i and inputs safej;`;i and agree(w)j;`;i.Here, we subsript the safe agreement ations by the partiular instane of the protool. For ` = 0, we havew 2 V .For ` 2 N+, we have w 2 Rn0 .System Q simulates the n0 proesses of P 0 (P 0 is desribed in Setion 3.4.1), using a safe agreement protoolAj;0 to allow all proesses of Q to agree on the input of eah proess j, and also a safe agreement protool Aj;`,` 2 N+ to allow all proesses to agree on the value returned by the `'th simulated snapshot statement of eahproess j. Other steps are simulated diretly, with no agreement protool. Eah proess i ofQ simulates the stepsof eah proess j of P 0 in order, waiting for eah to omplete before going on to the next one. Proess i worksonurrently on simulating steps of different proesses of P 0. However, it is only permitted to be in the �unsafe�portion of its exeution for one proess j of P 0 at a time.To simulate proess j, proess i keeps loally the urrent value of the state of j, in sim-state(j), the num-ber of steps that it has simulated for j, in sim-steps(j), and the number of snapshots that it has simulated for j,in sim-snaps(j). The shared memory of Q is a single snapshot variable mem, ontaining a portion mem(i) foreah proess i of Q. In its omponent, proess i keeps trak of the latest values of all the omponents of thesnapshot variable of P 0, aording to i's loal simulation of P 0. Proess i keeps the value of j's omponent inmem(i):sim-mem(j). Along with this value, it keeps a ounter in mem(i):sim-steps(j), whih ounts the num-ber of steps that it has simulated for j, up to and inluding the latest step at whih proess j of P 0 updated itsomponent.A funtion latest is used in the snap ation to ombine the information in the various omponents of mem toprodue a single length n0 vetor ofR values, representing the latest values written by all the proesses of P 0. Thisfuntion operates �pointwise� for eah j, seleting the sim-mem(j) value assoiated with the highest sim-steps(j).More preisely, assume k = maxifmem(i):sim-steps(j)g. Then, let î be an index suh thatmem(̂i):sim-steps(j) =k. The funtion latest selets, for j, the value mem(̂i):sim-mem(j). As we shall see (in Lemma 6.3), this valuemust be unique.When proess i simulates a deision step of j, it stores the deision value in the loal variable sim-deision(j).One proess i has simulated deision steps of at least n0 � f proesses, that is, when jsim-deisionj � n0 � f , itomputes a deision value v for itself, using the funtion hi, that is, v := hi(sim-deision).In the following ode, we do not represent the stop ations, sine the dif�ult part of the orretness proof is thesafety argument. After the safety argument we give the fault-tolerane argument, and introdue the stop ations.14



Simulation System Q:Shared variables:mem, a length n snapshot value; for eah i, mem(i) has omponents:sim-mem, a vetor in Rn0 , initially everywhere r0sim-steps, a vetor in Nn0 , initially everywhere 0Ations of i:Input:init(v)i , v 2 Vsafej;`;i, ` 2 Nagree(v)j;`;i, ` = 0 and v 2 V ,or ` 2 N+ and v 2 RnOutput:deide(v)i , v 2 Vpropose(v)j;`;i , ` = 0 and v 2 V ,or ` 2 N+ and v 2 Rn0
Internal:sim-updatej;isnapj;isim-loalj;isim-deidej;i

States of i:input 2 V [ f?g, initially ?reported, a Boolean, initially falsefor eah j:sim-state(j), a state of j, initially the initial statesim-steps(j) 2 N , initially 0sim-snaps(j) 2 N , initially 0status(j) 2 fidle; propose; unsafe; safeg, initially idlesim-mem-loal(j) 2 Rn0 , initially arbitrarysim-deision(j) 2 V [ f?g, initially ?Transitions of i:
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init(v)iEffet:input := vpropose(v)j;0;iPreondition:status(j) = idle6 9k : status(k) = unsafenextop(sim-state(j)) = �init�input 6=?v = gi(input)(j)Effet:status(j) := unsafesafej;`;iEffet:status(j) := safeagree(v)j;0;iEffet:sim-state(j) :=trans-init(sim-state(j); v)sim-steps(j) := 1status(j) := idlesnapj;iPreondition:nextop(sim-state(j)) = �snap�status(j) = idleEffet:sim-mem-loal(j) := latest(mem)status(j) := proposepropose(w)j;`;i, ` 2 N+Preondition:status(j) = propose6 9k : status(k) = unsafesim-snaps(j) = `� 1w = sim-mem-loal(j)Effet:status(j) := unsafe

agree(w)j;`;i, ` 2 N+Effet:sim-state(j) :=trans-snap(sim-state(j); w)sim-steps(j) := sim-steps(j) + 1sim-snaps(j) := sim-snaps(j) + 1status(j) := idlesim-updatej;iPreondition:nextop(sim-state(j)) = (�update�; r)Effet:sim-state(j) := trans(sim-state(j))sim-steps(j) := sim-steps(j) + 1mem(i):sim-mem(j) := rmem(i):sim-steps(j) := sim-steps(j)sim-loalj;iPreondition:nextop(sim-state(j)) = �loal�Effet:sim-state(j) := trans(sim-state(j))sim-steps(j) := sim-steps(j) + 1sim-deidej;iPreondition:nextop(sim-state(j)) = (�deide�; v)Effet:sim-state(j) := trans(sim-state(j))sim-steps(j) := sim-steps(j) + 1sim-deision(j) := vdeide(v)iPreondition:input 6=?reported = falsejsim-deisionj � n0 � fv = hi(sim-deision)Effet:reported := trueTasks of i:fdeide(v)i : v 2 V gfor eah j:all non-input ations involving j
16



6 Corretness ProofThe liveness proof, whih is quite simple, is postponed to the end of this setion. We start with the proofs of safetyproperties for the main simulation algorithm. For these, we use invariants involving the states of the safe agreementmodules. Sine we do not want these invariants to depend on any partiular implementation of safe agreement,we add abstrat state information, in the form of history variables that are de�nable for all orret safe agreementimplementations:proposed-vals � V , initially ;agreed-val 2 V [ f?g, initially ?proposed-pros � f1; : : : ; ng, initially ;agreed-pros � f1; : : : ; ng, initially ;These history variables are maintained by adding the following new effets to ations:propose(v)iEffet:proposed-vals := proposed-vals [ fvgproposed-pros := proposed-pros [ fig agree(v)iEffet:agreed-val := vagreed-pros := agreed-pros [ figFor the safety part of the proof, we use three levels of abstration, related by forward and bakward simulationrelations. Forward and bakward simulation relations are notions used to show that one I/O automaton implementsanother [24℄, or in our ase, that one I/O automaton solves another; they have nothing to do with �simulations�in the sense of the BG simulation algorithm. The �rst level of abstration is the spei�ation itself; that is, theSimpleSpe automaton. The seond level of abstration is the DelayedSpe automaton desribed next in Se-tion 6.1. The third level of abstration is the simulation algorithm P itself (obtained by omposing Q with safeagreement implementations). We will prove in Setion 6.1 thatDelayedSpe solves SimpleSpe, and in Setion 6.2that P solves DelayedSpe. This implies that P solves SimpleSpe, whih is what is needed for the safety part ofDe�nition 3.2.6.1 The DelayedSpe AutomatonOur seond level of abstration is the DelayedSpe automaton. This is a slight modi�ation of SimpleSpe, whihreplaes eah snapshot step of a proess j ofP 0 (sim-snapj) with a series of snap-tryj steps during whih snapshotsare taken and their values reorded, followed by one snap-sueedj step in whih one of the reorded snapshotvalues is hosen for atual use.The DelayedSpe automaton is the same as SimpleSpe, exept for the snapshot attempts. There is an extrastate omponent snap-set(j), whih keeps trak of the set of snapshot vetors that result from doing snap-tryjations. The sim-snap ations are omitted.DelayedSpe:Signature: 17



Input:As in SimpleSpeOutput:As in SimpleSpe Internal:As in SimpleSpe but instead of sim-snapj , j 2 f1; : : : ; n0g:snap-tryjsnap-sueedjStates: As in SimpleSpe but in addition:snap-set(j), a set of vetors in Rn0 , initially emptyTransitions: As in SimpleSpe but instead of sim-snapj :snap-tryjPreondition:nextop(sim-state(j)) = �snap�Effet:snap-set(j) := snap-set(j) [ fsim-memg snap-sueedjPreondition:nextop(sim-state(j)) = �snap�w 2 snap-set(j)Effet:sim-state(j) := trans-snap(sim-state(j); w)snap-set(j) := ;Tasks: As in SimpleSpeIt should not be hard to believe thatDelayedSpe solves SimpleSpe� the result of a sequene of snap-try steps plusone snap-sueed step is the same as if a single sim-snap ourred at the point of the seleted snapshot. Formally,we use a bakward simulation to prove the implementation relationship. The reason for the bakward simulationis that the deision of whih snapshot is seleted is made after the point of the simulated snapshot step.The bakward simulation relation we use (for any �xed U ) is the relation b from states of DelayedSpe� Uto states of SimpleSpe � U that is de�ned as follows. If s is a state of DelayedSpe � U and u is a state ofSimpleSpe� U , then (s; u) 2 b provided that the following all hold:1. The state of U is the same in u and s.2. u:sim-mem = s:sim-mem.3. For eah i,(a) u:input(i) = s:input(i).(b) u:reported(i) = s:reported(i).4. For eah j,(a) u:sim-state(j) 2 fs:sim-state(j)g [ ftrans-snap(s:sim-state(j); w) : w 2 s:snap-set(j)g.(b) u:sim-deision(j) = s:sim-deision(j). 18



That is, all state omponents are the same in u and s, with the sole exeption that u:sim-state(j) 2fs:sim-state(j)g [ ftrans-snap(s:sim-state(j); w) : w 2 s:snap-set(j)g, that is, u:sim-state(j) is eithers:sim-state(j), or else the result of applying one of the snapshot results to s:sim-state(j). Eah sim-stepj stepof SimpleSpe is �implemented� by a hosen snap-tryj step of Delayed Spe.Lemma 6.1 Relation b is a bakward simulation from DelayedSpe�U to SimpleSpe�U .Sketh of proof: Let (s; �; s0) be a step of DelayedSpe� U , and let (s0; u0) 2 b. We produe a orrespondingexeution fragment of SimpleSpe� U , from u to u0, with (s; u) 2 b. The onstrution is in ases based on thetype of ation. The interesting ases are snap-try and snap-sueed:1. � = snap-tryj .Let x denote s:sim-mem. If u0:sim-state(j) = trans-snap(s0:simstate(j); x), then let the orresponding exe-ution fragment be (u; sim-snapj ; u0), where u is the same as u0, exept that u:sim-state(j) = s:sim-state(j).This is an exeution fragment beause s:sim-state(j) = s0:sim-state(j).Otherwise, let the orresponding exeution fragment be just the single state u0. That is, u =u0. Then we know that, either (i) u0:sim-state(j) = s0:sim-state(j), or (ii) u0:sim-state(j) 2ftrans-snap(s0:sim-state(j); w) : w 2 s0:snap-set(j); w 6= xg. Sine u = u0, we need to prove thatu0:sim-state(j) is in the set fs:sim-state(j)g [ ftrans-snap(s:sim-state(j); w) : w 2 s:snap-set(j)g.If ase (i) holds the laim follows easily from the fat that s:sim-state(j) = s0:sim-state(j). Hene,assume ase (ii) holds. We know that s:snap-set(j) � s0:snap-set(j) � fxg, so u0:sim-state(j) =trans-snap(s0:sim-state(j); w), where w 2 s:snap-set(j). The proof follows sine s:sim-state(j) =s0:sim-state(j).2. � = snap-sueedj .The orresponding exeution fragment onsists of only the single state u0. We must show that (s; u0) 2 b.Fix x 2 s:snap-set(j) to be the snapshot value seleted in the step we are onsidering.Everything arries over immediately, exept for the equation involving the u0:sim-state(j) omponent.For this, we know that u0:sim-state(j) 2 fs0:sim-state(j)g [ ftrans-snap(s0:sim-state(j); w) : w 2s0:snap-set(j)g. But by the ode for snap-sueedj , the set s0:snap-set(j) is empty. So it must be thatu0:sim-state(j) = s0:sim-state(j).Now, the ode implies that s0:sim-state(j) = trans-snap(s:sim-state(j); x), whih implies thatu0:sim-state(j) = trans-snap(s:sim-state(j); x). Therefore, u0:sim-state(j) 2 fs:sim-state(j)g [ftrans-snap(s:sim-state; w) : w 2 s:snap-set(j)g, as needed.This lemma implies that every trae of DelayedSpe� U is a trae of SimpleSpe� U [24℄, that is (reall thede�nition of �solves� in Setion 3.4.3):Corollary 6.2 DelayedSpe solves SimpleSpe.
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6.2 The System Q with Safe Agreement ModulesOur third and �nal level is the system Q, omposed with arbitrary safe agreement modules, and with the proposeand agree ations relassi�ed as internal. We show that this system, omposed with a user U that submits at mostone initi ation on eah port, implementsDelayedSpe�U in the sense of trae inlusion; that is, this system solvesDelayedSpe� U (in the sense of Setion 3.4.3). The idea is that individual proesses of Q that are simulating asnapshot step of a proess j of P 0 �try� to perform the simulated snapshot at the point where they take their atualsnapshots. At the point where the appropriate safe agreement module hooses the winning atual snapshot, thesimulated snapshot �sueeds�. As in the DelayedSpe, this hoie is made after the snapshot attempts.Formally, we use a weak forward simulation [24℄. The word �weak� simply indiates that the proof usesinvariants. We need the invariants for the de�nition as well as for the proof of the forward simulation: stritlyspeaking, the de�nition of the forward simulation we use is ambiguous without them.Lemma 6.3 gives �oherene� invariants, asserting onsisteny among three things: information kept by theproesses of Q, information in the safe agreement modules, and a �run� (as de�ned just below) of an individualproess j of P 0. Note that Lemma 6.3 does not talk about global exeutions of P 0, but only about runs of anindividual proess of P 0.De�ne a run of proess j of P 0 to be a sequene of the form � = s0; 1; s1; 2; s2; : : : ; sk, where eah si is astate of proess j, and eah i is a �hange�, that is, one of the following: (�init�; v), (�snap�; w), (�update�; r),�loal�, (�deide�; v); the �rst state is the unique start state, and eah hange yields a transition from the preedingto the sueeding state.A onsequene of the next lemma is that every proess i that simulates steps of a proess j simulates the samerun of j. As we shall see, the run is determined by the i proess that is furthest ahead in the simulation of j; thus,only suh an i proess an affet the outome of the next step of j. Moreover, it an affet only the outome ofsnapshot steps. One the outome of a snapshot step is determined, i an proeed with the simulation of j loally(without reading the shared variable), up to the next snapshot step.Invariant 1 relates the information in the proesses of Q and the safe agreement modules. Invariants 2 and 3relate the proesses ofQ and a given run � of proess j. Invariants 4 and 5 relate � and the safe agreement modules.Invariant 6 relates all three types of information: it relates information in ertain proesses of Q, the run � (thosethat are �urrent� in their simulation of j, aording to �) and the safe agreement modules.Lemma 6.3 For every reahable state of Q omposed with abstrat safe agreement modules and a user U , andfor eah proess j, there is a run � = s0; 1; s1; : : : ; sk of proess j suh that:1. For any i:(a) sim-steps(j)i � 1 if and only if i 2 agreed-prosj;0.(b) For any ` � 1, sim-snaps(j)i � ` if and only if i 2 agreed-prosj;`.() i 2 proposed-prosj;0 � agreed-prosj;0 if and only if nextop(sim-state(j)i) = �init� and status(j)i 2funsafe; safeg.(d) For any ` � 1, i 2 proposed-prosj;` � agreed-prosj;` if and only if nextop(sim-state(j)i) = �snap�,sim-snaps(j)i = `� 1, and status(j)i 2 funsafe; safeg.2. k = maxifsim-steps(j)ig.3. For any i, if sim-steps(j)i = ` then: 20



(a) sim-state(j)i = s`.(b) sim-snaps(j)i is the number of �snap�'s among 1; : : : ; `.() mem(i):sim-mem(j) is the value written in the last �update� among 1; : : : ; `, if any, else r0.(d) mem(i):sim-steps(j) is the number of the last �update� among 1; : : : ; `, if any, else 0.4. (a) (�init�; v) appears in � if and only if agreed-valj;0 = v.(b) (�snap�; w) is the `'th snapshot in � if and only if agreed-valj;` = w.5. If proposed-valsj;` 6= ; and agreed-valj;` =? for some ` then(a) If ` = 0 then � onsists of only one state s, and nextop(s) = �init�.(b) If ` � 1, then nextop(sk) = �snap�, and the number of snaps in � is `� 1.6. For any ` � 1, if nextop(sk) = �snap� and the number of �snaps� in � is ` � 1, then proposed-valsj;` =fsim-mem-loal(j)i : sim-steps(j)i = k and status(j)i 2 funsafe; safegg.Proof: Let s be any reahable state of Q omposed with abstrat safe agreement modules and a user U . For sequal to the initial state it is simple to hek that the lemma holds. Assume it holds for some state s, and we provethat it holds for any state s0, after a step (s; �; s0). Let � = s0; 1; s1; : : : ; sk be a run of proess j, orrespondingto s, whose existene is guaranteed by the lemma. We prove there is a run �0 orresponding to s0, that satis�es therequirements of the lemma. The run �0 will be either equal to �, or else obtained from � by appending a hangek+1 and a state sk+1. We skip the proof of invariant 1, whih is simple and does not talk about �.For state s, k = maxifs:sim-steps(j)ig. Let k0 be the orresponding value in s0; that is k0 =maxifs0:sim-steps(j)ig.First assume k0 = k + 1. Then, for some i, � must be one of: agree(w)j;0;i, agree(w)j;`;i for ` 2 N+,sim-updatej;i, sim-loalj;i, or sim-deidej;i, sine these are the only ases that inrement a sim-steps omponent.Moreover, s.sim-steps(j)i = k, and hene, by part 3(a) of the lemma, sk = s.sim-state(j)i. For eah one of thesepossibilities, �0 is obtained from � by appending the orresponding hange: (�init�; w) for an agree(w)j;0;i;(�snap�; w) for an agree(w)j;`;i, ` 2 N+ ; (�update�; r) for a sim-updatej;i; �loal� for a sim-loalj;i;(�deide�; v) for a sim-deidej;i, and after the hange, appending to the run the state sk+1, resulting from theorresponding transition funtion (trans-init, trans-snap, or trans) applied to sk. That is, sk+1 = s0:sim-state(j)i.Thus, in s0, proess i is the �rst one to �nish the simulation of the k0-th step of j and s0:sim-steps(j)i = k0; whilefor every other proess i0, s0:sim-steps(j)i0 < k0.First notie that part 2 of the lemma learly holds for s0. Consider the ase of � = agree(w)j;`;i for ` 2 N+(we omit the proofs of the other ases, whih are analogous). For part 3 of the lemma, we need to onsider onlythe ase of ` = k + 1, sine the ases of ` < k + 1 hold by the indution hypothesis. Thus, we need to onsideronly proess i. Part (a) holds by the de�nition of sk+1. Part (b) holds beause s:sim-snaps(j)i is the number ofsnap's among 1; : : : ; k, and s0:sim-snaps(j)i = s:sim-snaps(j)i + 1, while k+1 = (�snap�; w). Part (), (d),and part 4(a) of the lemma hold by indution hypothesis. For part 4(b) of the lemma, notie that there are ` � 1snap's in �. Thus, in �0 there are ` snap's, and indeed agreed-valj;` = w. Part 5 holds trivially beause proess i isthe �rst one to �nish the simulation of the `-th snap of j, and hene proposed-valsj;`0 6= ; and agreed-valj;`0 6=?for `0 � `, while proposed-valsj;`0 = ; and agreed-valj;`0 =? for `0 > `. Finally, onsider part 6. Sine in s0there are no proesses i0 with sim-steps(j)i0 = k + 1 and status(j)i0 2 funsafe; safeg, then we have to prove21



that proposed-valsj;`+1 = ;. Observe that s:sim-snaps(j)i0 = ` � 1 for any i0 with s:sim-steps(j)i0 = k. Then,s:sim-snaps(j)i0 < ` for all i0, and hene no i0 has yet exeuted a propose(w)j;`+1.Now assume k0 = k. In this ase, �0 = �. Clearly part 2 of the lemma holds. The ases of � equal toagree(w)j;0;i, agree(w)j;`;i; ` 2 N+, sim-updatej;i, sim-loalj;i, or sim-deidej;i, are similar to eah other. Let usonsider the most interesting: � = agree(w)j;`;i. We have that s:sim-snaps(j)i = `� 1 and s0:sim-snaps(j)i = `.Assume s:sim-steps(j)i = k1, k1 < k. To prove part 3 take ` = k1+1. Part (a) follows beause s:sim-state(j)i =sk1 , and w 2 agreed-valj;`, so that the effet of � when trans-snap is applied gives sk1+1 = s0:sim-state(j)i. Part(b) follows beause s:sim-snaps(j)i is the number of snap's among 1; : : : ; ` � 1, and ` is a snap, and henes0:sim-snaps(j)i = s:sim-snaps(j)i + 1 is the number of snap's among 1; : : : ; `. The other parts of the lemmafollow easily by indution.Another ase is when � is propose(v)j;0;i, or propose(w)j;`;i; ` 2 N+. Consider the seond possibility. Tohek part 5 of the lemma assume s0:proposed-valsj;` 6= ; and s0:agreed-valj;` =?, while s:proposed-valsj;` = ;and s:agreed-valj;` =?. Then, � is the �rst propose for j and `, and hene k = s:sim-steps(j)i. Also,s0:nextop(sim-state(j)i) = �snap� beause s:status(j) = propose. Thus nextop(sk) = �snap�. To ompletethe proof of the laim notie that the number of snaps in � is ` � 1, by the indution hypothesis for part 3 (a)and (b). Finally, part 6 of the lemma is easy to hek beause w = s:sim-mem-loal(j)i is added to the setproposed-valsj;`.The forward simulation relation we use is the relation f from states of Q omposed with safe agreementmodules and U to states of DelayedSpe� U that is de�ned as follows. If s is a state of the Q system and u is astate of DelayedSpe� U , then (s; u) 2 f provided that the following all hold:1. The state of U is the same in u and s.2. u:sim-mem = latest(s:mem).3. For every i,(a) u:input(i) = s:inputi.(b) u:reported(i) = s:reportedi.4. For every j,(a) u:sim-state(j) = s:sim-state(j)i, where i is the index of the maximum value of s:sim-steps(j).(b) If there exists i with s:sim-deision(j)i 6=? then u:sim-deision(j) = s:sim-deision(j)i for somesuh i, else u:sim-deision(j) =?.() If nextop(u:sim-state(j)) = �snap� then u:snap-set(j) = fs:sim-mem-loal(j)i : s:sim-steps(j)i =maxkfs:sim-steps(j)kg and s:status(j)i 6= idleg else u:snap-set(j) = ;.Thus, the simulated memory u:sim-mem is determined by the latest information that any of the proesses ofQ hasabout the memory, and likewise for the simulated proess states and simulated deisions. Also, the snapshot setsu:snap-set(j) are determined by the snapshot values saved in loal proess states, in Q.Eah snap-try step of DelayedSpe is �implemented� by a urrent snap of Q. Eah snap-sueed step isimplemented by the �rst agree step of the appropriate safe agreement module, and likewise for eah sim-init step.Eah sim-update step is implemented by the �rst step at whih some proess simulates that update, and likewisefor the other types of simulated proess steps. 22



Lemma 6.4 Relation f is a weak forward simulation from Q omposed with safe agreement modules and U toDelayedSpe�U .Sketh of proof: Let (s; �; s0) be a step of the Q system, and let u be any state of DelayedSpe� U suh that(s; u) 2 f . We produe an exeution fragment of DelayedSpe� U , from u to a state u0, suh that (s0; u0) 2 f .The proof is by ases, aording to �. These are the most interesting ases:1. � = snapj;i.If sim-steps(j)i is the maximum value of sim-steps(j) (in both s and s0), then this simulates snap-tryj , elseit simulates no steps.Assume the �rst ase: that sim-steps(j)i is the maximum value of sim-steps(j). The orresponding exeu-tion fragment is (u; snap-tryj ; u0), where u0 is the same as u exept that u0:snap-set(j) = u:snap-set(j) [fu:sim-memg. Sine (s; �; s0) is a step ofQ, the preondition for � holds in s and nextop(s:sim-state(j)i) =�snap�. Sine (s; u) 2 f , it follows that nextop(u:sim-state(j)) = �snap�, by 4(a) of the de�nition of f .Therefore, the preondition for snap-tryj holds in u, and (u; snap-tryj ; u0) is an exeution fragment.To prove that (s0; u0) 2 f , the only nontrivial part of the de�nition of f to hek is 4(); sinenextop(u0:sim-state(j)) = �snap�, we do have to verify that u0 satis�es part 4() of the de�nitionof f . We know that u:snap-set(j) is equal to the set fs:sim-mem-loal(j)i : s:sim-steps(j)i =maxkfs:sim-steps(j)kg and s:status(j)i 6= idleg, beause (s; u) 2 f . Now, u0:snap-set(j) =u:snap-set(j) [ fu:sim-memg. Also, u:sim-mem = latest(s:mem), by part 3 of the de�nition of f . Af-ter the snapj;i, we get latest(s:mem) = s0:sim-mem-loal(j)i. It follows that u0:snap-set(j) is equalto u:snap-set(j) [ fs0:sim-mem-loal(j)ig, and hene, u0:snap-set(j) is equal to fs0:sim-mem-loal(j)i :s0:sim-steps(j)i = maxkfs0:sim-steps(j)kg and s0:status(j)i 6= idleg, as desired.The ase where sim-steps(j)i is not the maximum value of sim-steps(j) is trivial.2. � = agree(w)j;`;i, ` 2 N+.If this inreases the maximum value of sim-steps(j) then it simulates snap-sueedj with a deision valueof w, else simulates no steps.Consider the ase where � inreases the maximum value of sim-steps(j). Let k = maxifs:sim-steps(j)ig.Then, s:sim-steps(j)i = k, and s0:sim-steps(j)i = k + 1. By Lemma 6.3, for state s, there is a runfor j, � = s0; 1; s1; : : : ; sk, with sk = s:sim-state(j)i. Now, part 1(d) of Lemma 6.3 implies thatnextop(s:sim-state(j)i) = �snap�, s:sim-snaps(j)i = ` � 1, and s:status(j)i 2 funsafe; safeg. Sine(s; u) 2 f , u:sim-state(j) = s:sim-state(j)i, and hene, nextop(u:sim-state(j)i) = �snap�. We want toprove that (u; snap-sueedj ; u0) with a deision value of w is an exeution fragment. Sine we alreadyproved that nextop(u:sim-state(j)i) = �snap�, to prove that the preondition of the snap-sueedj holds itremains to show that w 2 u:snap-set(j).To prove that w 2 u:snap-set(j), reall that s:sim-snaps(j)i = ` � 1, and hene, ` � 1 is the numberof �snap�'s in �, by part 3(b) of Lemma 6.3. Thus, the hypothesis of part 6 of Lemma 6.3 holds, ands:proposed-valsj;` = fs:sim-mem-loal(j)i : s:sim-steps(j)i = k and s:status(j)i 2 funsafe; safegg. Weknow that w must be in the set s:proposed-valsj;`, beause (s; agree(w)j;`;i; s0) is an exeution fragment.Thus, w = s:sim-mem-loal(j)i0 , for some i0 with s:sim-steps(j)i0 = k and s:status(j)i0 2 funsafe; safeg.To omplete the proof of the laim, notie that part 4() of the de�nition of f implies that u:snap-set(j) =23



fs:sim-mem-loal(j)i : s:sim-steps(j)i = maxkfs:sim-steps(j)kg and s:status(j)i 6= idleg. Therefore, wmust be in u:snap-set(j).Finally, it is easy to verify that (s0; u0) 2 f : we need only to hek onditions 4(a) and 4() of the de�nitionof f . Clearly 4(a) holds. For 4() observe that u0:snap-set(j) = ;. If nextop(u0:sim-state(j)) 6= �snap�then 4() holds. But if nextop(u0:sim-state(j)) = �snap� 4() also holds, sine i is the only one ahievingthe maximum ofmaxkfs0:sim-steps(j)kg, and s0:status(j)i = idle.The ase where � does not inrease the maximum value of sim-steps(j) is simple. Here no steps are simu-lated and u = u0. To see that (s0; u0) 2 f , we need to hek only that parts 4(a) and 4() of the de�nition off hold. This follows easily from the fat that (s; u) 2 f , and that the maximum value of sim-steps(j) doesnot hange.We onlude that every trae of Q omposed with safe agreement modules and a user U is a trae ofDelayedSpe� U :Corollary 6.5 Q omposed with safe agreement modules solves DelayedSpe.Combining Corollaries 6.5 and 6.2, we obtain:Corollary 6.6 Q omposed with safe agreement modules solves SimpleSpe.Corollary 6.6 is almost, but not quite, what we need. It remains to ompose the Q automaton with snapshotshared memory systems that implement all the safe agreement modules, then to merge all the proesses of all thesevarious omponents systems in order to form a single shared memory system. The resulting system has in�nitelymany snapshot shared variables; we ombine all these to yield a system P with a single snapshot shared variable.We onlude that for every user U that submits at most one initi ation on eah port, every trae of P � U is atrae of SimpleSpe� U . That is,Lemma 6.7 P solves SimpleSpe.Lemma 6.7 yields the safety requirements of a fault-tolerant simulation, as expressed by part (1) of De�ni-tion 3.2. Now we prove the fault-tolerane requirements, as expressed by part (2) of De�nition 3.2. The argumentis reasonably straightforward, based on the fat that eah proess of Q an, at any time, be in the unsafe region ofode for at most one proess of P 0. As before, sine we are reasoning about fault-tolerane, we onsider expliitstop ations.Lemma 6.8 If P 0 guarantees f -failure termination then P guarantees f -failure termination.Proof: Assume that P 0 guarantees f -failure termination.Eah proess i of P simulates the steps of eah proess j of P 0 in order, waiting for eah step to ompletebefore going on to the next one. Proess i works onurrently on simulating steps of different proesses of P 0.However, it is only permitted to be in the �unsafe� portion of its exeution for one proess j of P 0 at a time.Reall that the spei�ation of safe-agreement stipulates that if a non-failing proess i exeutes a proposej;`;iation it will get an agreej;`;i ation, unless some other proess i0, simulating step ` of j, fails when �unsafe.� In24



this ase i0 ould blok the simulation of j. However, sine i0 is allowed to partiipate in this safe agreement onlyif it is not urrently in the �unsafe� portion of any other safe agreement exeution, then i0 an blok at most onesimulated proess. In any exeution in whih at most f simulator proesses fail, at most f simulated proessesare bloked, and eah non-failing simulator i an omplete the simulation of at least n0 � f proesses. Therefore,sine P 0 satis�es f -failure termination, a non-failing simulator will eventually exeute its deide step. Thus thewhole system satis�es f -failure termination.Lemmas 6.7 and 6.8 yield:Theorem 6.9 P is an f -simulation of P 0 via relations G andH .Now, from Theorem 6.9 and Theorem 3.3 we get the result that leads to the appliations in Setion 8:Theorem 6.10 Suppose that there exists a snapshot shared memory system that solvesD0 and guarantees f -failuretermination, and suppose thatD �G;Hf D0. Then there exists a snapshot shared memory system that solvesD andguarantees f -failure termination.7 Simulation in Read/Write SystemsA system using snapshot shared memory an be implemented in a wait-free manner in terms of single-writer multi-reader read/write shared variables [1℄. It follows that Theorem 6.10 extends to read/write systems. However, inthis setion we provide a diret onstrution, showing how to produe a read/write shared memory system P thatf -simulates a read/write shared memory system P 0. The read/write simulation algorithm is essentially the same asthe snapshot simulation algorithm, exept that a snapshot operation is replaed by a sequene of reads in arbitraryorder.The reasons why we presented the snapshot simulation algorithm �rst are that it is simpler, and that the or-retness proof of the read/write simulation algorithm is based on that of the snapshot algorithm.We assume that the system we want to simulate, P 0RW , is an n0-proess read/write shared memory system.We desribe an n-proess read/write simulating system QRW . As before, this algorithm is assumed to interatwith the usual environment, via init and deide ations, and also with a two-dimensional array of safe agreementmodules Aj;`, j 2 f1; : : : ; n0g, ` 2 N , N = f0; 1; 2; : : :g. In the omplete version of the simulation algorithm,denoted PRW , these safe agreement modules are replaed by read/write memory implementations and the wholething implemented by a read/write shared memory system.The simulated system P 0RW has a sequenemem0 of n0 read/write shared variables. Eah variablemem0(j) is asingle-writer multi-reader variable, written by proess j of P 0RW , taking on values in R, and with initial value r0.Furthermore, we assume that P 0 solves a deision problemD0, guaranteeing f -failure termination.We use terminology about system P 0RW whih is similar to that of system P 0, as desribed in Setion 3.4.1.Namely, for any state s of a proess j of P 0RW , de�ne nextop(s) to be an element of f�init�; �loal�g [f(�read�; j0) : 1 � j0 � n0g [ f(�update�; r) : r 2 Rg [ f(�deide�; v) : v 2 V g. As before, our deter-minism assumptions imply that eah state s has a well de�ned and unique value of nextop(s). For any state s ofa proess j suh that nextop(s) = �init� and any v 2 V , de�ne trans-init(s; v) to be the state that results fromapplying init(v)j to s. For any state s of a proess j suh that nextop(s) = (�read�; j0) and any w 2 R, de�netrans-read(s; w) to be the state that results from performing the read operation of the j0th variable from state s,with the return value for the read beingw. Finally, for any state s of a proess j suh that nextop(s) is an �update�,25



�loal�, or �deide� pair, de�ne trans(s) to be the state of j that results from performing the operation from states. The system QRW is assumed to interat with eah Aj;` via outputs propose(w)j;`;i and inputs safej;`;i andagree(w)j;`;i. In fat, QRW is very similar to Q. The differene is that eah snapshot operation used by Q (theonly plae snapshots are used is in the omputation of latest) is replaed by a sequene of read operations inQRW ,as desribed next.The shared memory of QRW onsists of a sequene mem-RW of n read/write shared variables. Eah variablemem-RW(i) is a single-writer multi-reader variable, written by proess i ofQRW . In mem-RW(i), proess i keepstrak of the latest values in all the variables of P 0RW , aording to i's loal simulation of P 0RW . Along with eahsuh value, sim-mem(j), it keeps a tag sim-steps(j), whih ounts the number of steps that it has simulated for j,up to and inluding the latest step at whih proess j of P 0RW updated its register.The ode of QRW has the same transitions as those of Q, exept that the snap is replaed by reading andread-done, and the neessary syntati modi�ations are made to the propose and agree transitions. The for-mal desription appears below. Proess i simulates a �read� of variable j0 by proess j, by reading all the vari-ables in mem-RW and ombining the information in these variables to produe a single value in R: the valueprodued is the latest value written by any of the proesses of QRW in its opy of the shared variable of j0.More preisely, proess i exeutes a series of n readingj;i ations in arbitrary order, one for eah i0, seleting themem-RW(i0):sim-mem(j0) value assoiated with the highestmem-RW(i0):sim-steps(j0) (this value must be unique).In the ode below, m(j) keeps trak of the highest mem-RW(i0):sim-steps(j0) enountered so far. m(j) is initial-ized to�1, beausemem-RW(i0):sim-steps(j0) takes values greater or equal than 0. There is also read-set(j)whihkeeps trak of the indexes of proesses that have been onsidered. Thus, read-set(j) is initially empty. One then omponents of mem-RW have been read, read-set(j) = f1; : : : ; ng and read-donej;i an be exeuted. This inturn allows ompletion of the simulation of the �read� with the exeution of the propose(w)j;`;i and agree(w)j;`;iations.Simulation System QRWSame as Q but with the following hanges:Shared variables:As inQ but instead of mem:mem-RW, a sequene of n read/write variables; for eah i, mem-RW(i) has omponents:sim-mem, a vetor in Rn0 , initially everywhere r0sim-steps, a vetor in Nn0 , initially everywhere 0Ations of i:Input:As inQOutput:As inQ Internal:As in Q but instead of snapj;i:readingj;iread-donej;iStates of i:As inQ exept for:for eah j,instead of sim-snaps:sim-reads(j) 2 N , initially 0instead of sim-mem-loal: 26



sim-mem-loal-RW 2 R, initially arbitraryand in addition:read-set(j) a set of integers, initially emptym(j) 2 N [ f�1g, initially �1Transitions of i:As inQ but instead of snapj;i,readingj;iPreondition:nextop(sim-state(j)) = (�read�; j0)status(j) = idlei0 2 f1; : : : ; ng � read-set(j)Effet:read-set(j) := read-set(j) [ fi0gif mem-RW(i0):sim-steps(j0) > m(j) thensim-mem-loal-RW(j) :=mem-RW(i0):sim-mem(j0)m(j) := mem-RW(i0):sim-steps(j0)read-donej;iPreondition:nextop(sim-state(j)) = (�read�; j0)status(j) = idleread-set(j) = f1; : : : ; ngEffet:read-set(j) := ;m(j) := �1status(j) := propose

propose(w)j;`;i, ` 2 N+Preondition:status(j) = propose6 9k : status(k) = unsafesim-reads(j) = `� 1w = sim-mem-loal-RW(j)Effet:status(j) := unsafeagree(w)j;`;i, ` 2 N+Effet:sim-state(j) :=trans-read(sim-state(j); w)sim-steps(j) := sim-steps(j) + 1sim-reads(j) := sim-reads(j) + 1status(j) := idle
Tasks of i:As inQ.To prove the orretness of the read/write simulation algorithm, we de�ne an intermediate system, SnapSim.The only differene between QRW and SnapSim is that to simulate a read ation of the j0th omponent,SnapSim performs a snapshot of mem-RW and applies a funtion latestsnp to the result, instead of perform-ing a series of reads. The funtion latestsnp for j0 is de�ned as follows. It returns a single value ofR, representing the latest value written by all the proesses in the mem-RW variable of j0. That is, letk = maxi0fmem-RW(i0):sim-steps(j0)g, and hoose any i00 suh that mem-RW(i00):sim-steps(j0) = k. Thenlatestsnp(mem-RW; j0) = mem-RW(i00):sim-mem(j0). (We laim this is uniquely de�ned.) In the ode of SnapSimthe reading and read-done transitions are replaed by a read transition:Simulation System SnapSim.:Shared variables:As inQRW 27



Ations of i:Input:As inQRWOutput:As inQRW Internal:As inQRW , exept that readingj;i and read-donej;i are replaed by readj;iStates of i:As inQRWTransitions of i:As inQRW , exept that readingj;i and read-donej;i are replaed by readj;i:readj;iPreondition:nextop(sim-state(j)) = (�read�; j0)status(j) = idleEffet:sim-mem-loal-RW(j) := latestsnp(mem-RW; j0)status(j) := proposeTasks of i:As inQRW .It is not hard to verify that an exeution of QRW orresponds to an exeution of SnapSim: Con-sider a read-donej;i and the orresponding readingj;i's, for some �xed values j; i. Thus the preonditionnextop(sim-state(j)) = (�read�; j0) holds for some partiular j0'; �x j0. Also, sim-reads(j) = ` � 1 for somevalue of `. Thus, for the rest of the argument, we have �xed values of `; i; j; j0.Replae all of these read-donej;i and readingj;i's by a single readj;i, whih ours somewhere betweenthe �rst readingj;i and the last readingj;i, at a point when the highest sim-steps(j0) takes the value reordedby the read-donej;i. That is, the read is plaed at a point where maxi0fmem-RW(i0):sim-steps(j0)g is equalto the value of m(j) at the point of the read-done. Suh a point exists beause the sim-steps variables in-rease by one unit at a time, and beause the �nal value of m(j) satis�es the following: it is at least thevalue of maxi0fmem-RW(i0):sim-steps(j0)g at the moment of the �rst readingj;i, and at most the value ofmaxi0fmem-RW(i0):sim-steps(j0)g at the moment of the last readingj;i.Note that the value of sim-mem-loal-RW(j) at the point of the read-done (whih is the value returned by thesequene of reading steps in QRW ) is the same as the value of mem-RW(i00):sim-mem(j0) at the point where theread is plaed, for any i00 with mem-RW(i00):sim-steps(j0) = maxi0fmem-RW(i0):sim-steps(j0)g.It follows that every trae of QRW with safe-agreement modules and U is also a trae of SnapSim with safe-agreement modules and U . Now, the same proof tehnique that we used to proof that every trae of Q with safe-agreement modules and U is a trae of DelayedSpe� U an also be used to prove that every trae of SnapSimwith safe-agreement modules and U is a trae of DelayedSpeRW � U , where DelayedSpeRW is the read/writememory version of DelayedSpe. Also, the proof tehnique used for Corollary 6.2 an be used to prove that every28



trae of DelayedSpeRW � U is a trae of SimpleSpeRW � U , the read/write memory version of SimpleSpe.Combining all these fats, we see that every trae of QRW with safe-agreement modules and U is also a trae ofSimpleSpeRM � U . Therefore:Lemma 7.1 QRW omposed with safe agreement modules solves SimpleSpeRW .As before, we ompose QRW with read/write shared memory systems that implement all the safe agreementmodules, and then merge all the proesses of all these various omponents systems in order to form a single sharedmemory system, PRW . We see that, for every user U that submits at most one initi ation on eah port, every traeof PRW � U is a trae of SimpleSpeRW � U . That is:Lemma 7.2 PRW solves SimpleSpeRW .The fault-tolerane argument is analogous to the one for snapshot shared memory systems:Lemma 7.3 If P 0RW guarantees f -failure termination then PRW guarantees f -failure termination.Now Lemmas 7.2 and 7.3 yield (restating De�nition 3.2, the de�nition of f -simulation, in terms ofSimpleSpeRW ):Theorem 7.4 PRW is an f -simulation of P 0RW via relations G andH .And we get the analogue of Theorem 6.10 (using the analogue of Theorem 3.3 for read/write systems):Theorem 7.5 Suppose that there exists a read/write shared memory system that solvesD0 and guarantees f -failuretermination, and suppose that D �G;Hf D0. Then there exists a read/write shared memory system that solves Dand guarantees f -failure termination.8 AppliationsIn Setion 8.1, we desribe the notion of a onvergene task [16℄, whih is used to speify a family of deisionproblems, one for eah number of proesses. For example, binary onsensus is a onvergene task � it yields adeision problem for any number of proesses. In Theorem 8.1, we show that one deision problem in the familyof problems spei�ed by a onvergene task is solvable if and only if any other problem in the family is solvable.The proof is based on Theorem 6.10.In Setion 8.2 we use this theorem to obtain various possibility and impossibility results for read/write andsnapshot shared memory systems.8.1 Convergene TasksIn Setion 3.1 we de�ned an n-port deision problem in terms of two sets of n-vetors, I and O, and a totalrelation � from I to O. Thus, a deision problem is spei�ed for a ertain number of proesses, n. For theappliations in the next subsetion, we would like to talk about a �problem� in general, without speifying thenumber of proesses. For example, in the binary onsensus problem, any number of proesses start with binary29



inputs, and have to agree on some proess' input value. Stritly speaking, this is not a deision problem, but afamily of deision problems, one for eah n.In priniple, one ould de�ne a family of deision problems, in a way that for two different values of n, theorresponding deision problems are ompletely unrelated. But this is not what one would mean by a �family.�We now desribe a way of de�ning a family of deision problems alled onvergene tasks [16℄. We prove that itis a �family� in the sense, roughly, that one deision problem in the family is solvable if and only if any other is.For de�ning onvergene tasks, it will be onvenient to talk about sets instead of vetors, sine the positionof an element in the vetor will be immaterial. That is, in the kind of deision problems we will be onsidering,any permutation of an input (output) vetor will also be an input (output) vetor. We all a set a simplex, to followthe notation of topology. An element of a simplex is a vertex. A omplex is a family of simplexes losed underontainment.1For a omplex K, skelk(K) denotes the subomplex formed by all simplexes of K of size at most k + 1. Forexample, skel0(K) onsists of all the verties of K, and skel1(K) onsists of all the verties and all the simplexesof size two. Thus skel1(K) an be thought of as a graph, with simplexes of size 2 as edges and simplexes of size 1as verties.Informally, if S is an input simplex of a onvergene task, eah proess an reeive as input value any vertex ofS, suh that the input values are a subset of S (two proesses may reeive the same vertex). The onvergene taskspei�es a set of legal output simplexes for S, denoted 	(S). Eah proess has to hoose an output a vertex (twoproesses may hoose the same vertex), suh that the verties form an output simplex of 	(S). Let n-vetors(S)be the set of n-vetors of values from S. Thus, if S is an input simplex, then n-vetors(S) are input vetors, andif L is an output simplex then n-vetors(L) are output vetors.Let K be a omplex. The orresponding n-port vetor set eKn is de�ned as follows. h~v1; : : : ; ~vni is a vetor ineKn if and only if ~v1; : : : ; ~vn (not neessarily distint) form a simplex in K; that is, eKn = [S2K n-vetors(S). Fora vetor w, let set(w) be the simplex of values of w. Thus, if w 2 eKn then set(w) 2 K.Formally, a onvergene task [L;K;	℄ onsists of two arbitrary omplexes,L and K, alled the input omplexand the output omplex, respetively, and a relation 	 arrying eah simplex of L to a non-empty subomplex ofK, suh that if L0 is a fae of L1, then 	(L0) � 	(L1).For eah n, the n-port deision problem of [L;K;	℄ is h eLn; eKn; e	i, where e	 is as follows: e	(w) ontainsevery n-vetor w0 suh that w0 2 n-vetors(S), for S 2 	(set(w)).In the next subsetion, we onsider the following onvergene tasks.1. The N -onsensus onvergene task is [SN�1; skel0(SN�1); skel0℄, where SN�1 onsists of a simplex ofsize N , N > 1, and its subsimplexes. Thus, for eah n, it yields a onsensus deision problem [11℄ for nproesses, where the proesses start with N possible input values, whih are the verties of SN�1. If theproesses start with values that form an input simplex S 2 SN�1, they have to deide values that form asimplex in skel0(S). Sine the only simplexes of skel0(S) are the verties of S, the proesses have to deideon the same vertex, that is, they all have to agree on one of the input verties of S.2. The (N; k)-set agreement onvergene task, 0 < k < N , is [SN�1; skelk�1(SN�1); skelk�1℄. Thus, foreah n, it yields an n-proess k-set-agreement problem over a set SN�1 ofN values (see Example 1).1Thus the omplexes we onsider here are �olorless,� as opposed to the olored omplexes onsidered usually in the topology approah todistributed omputing (e.g. [7, 18, 15℄), where eah element of a simplex has assoiated a proess id.30



3. The loop agreement onvergene task [16℄ is [S2;K;�℄, where S2 is the 2-simplex (~s0; ~s1; ~s2) and its sub-simplexes,K is an arbitrary �nite omplex with three distinguished verties ~v0; ~v1; ~v2, �(~si) = ~vi, �(~si; ~sj)is some path (simplexes of size 1 and 2) �ij with end-points ~vi and ~vj , and �(S2) = K.Other examples of onvergene tasks appear in [16℄, like unolored simplex agreement, baryentri agreement,and �-agreement.Theorem 8.1 For a onvergene task [L;K;	℄, letD = hI;O;�i be the orresponding n-port deision problem,D0 = hI 0;O0;�0i the n0-port deision problem, and f < minfn; n0g. If there exists a snapshot shared memorysystem that solvesD and guarantees f -failure termination then there exists a snapshot shared memory system thatsolves D0 and guarantees f -failure termination.Proof: By Theorem 6.10, it suf�es to show that D �G;Hf D0, for some G = G(g1; g2; : : : ; gn) and H =H(f; h1; h2; : : : ; hn). De�ne gi(v) to be the n0-vetor with all entries equal to v, and hi(w) to be any of theelements of w different from?.Now we prove the requirement G � �0 � F � H � � of De�nition 3.1. Take any input vetor w 2 I. Thusset(w) 2 L. For any w1 2 G(w), set(w1) � set(w); (1)and hene, set(w1) 2 L, sine L is losed under ontainment. That is, w1 2 I 0.Now, take any w2 2 �0(w1). Thus set(w2) 2 	(set(w1)). By de�nition of H and F , any w3 2 H(F (w2))satis�es set(w3) � set(w2). Thus, set(w3) 2 	(set(w1)), sine set(w2) 2 	(set(w1)) and 	(set(w1)) is (aomplex) losed under ontainment.Finally, we need to prove that set(w3) 2 	(set(w)), sine this implies that w3 2 �(w). This holds beause	(set(w1)) � 	(set(w)), by Equation 1.Applying Theorem 7.5 (instead of Theorem 6.10), we get the same result for read/write systems.8.2 Possibility and Impossibility ResultsTheorem 8.1 an be used to extend results that are known for a small number of proesses to larger numbers,for �xed f . In this setion we present several appliations of this kind. All the appliations we present hold forread/write memory systems and for snapshot memory systems, sine one an use the read/write memory or thesnapshot memory version of Theorem 8.1.Consensus. It is known [11, 20℄ that the onsensus deision problem is not solvable with f -failure termination,when f � 1. In partiular, wait-free 2-proess onsensus is unsolvable [13℄. It is possible to use only this partiularresult, and Theorem 8.1 to prove the following:Corollary 8.2 The onsensus problem is not solvable for f � 1.Set Agreement. It is known from [5, 26, 18℄ that the (n; k)-set agreement problem is not wait-free solvable. Thisresult together with Theorem 8.1 implies:Corollary 8.3 There is no algorithm that solves the (n; k)-set agreement problem with f -failure termination iff � k.Computability. It is known [12℄ that the problem of telling if a deision problem for n proesses, n � 3, has await-free solution is not omputable (i.e., is undeidable). This was proved2 in [16℄ by showing that the following2In fat, in [16℄, the result of Corollary 8.4 is proved diretly, and in more general models of shared memory.31



problem is not omputable: Given a loop agreement onvergene task, tell if the n-port orresponding deisionproblem has a wait-free solution. This result, together with Theorem 8.1, implies the following:Corollary 8.4 Let 2 � f < n. The problem of telling if an n-port loop agreement deision problem has a solutionwith f -failure termination is not omputable.Also, when f = 1, it was proved in [4℄ that the problem of telling if an arbitrary deision problem has solutionwith f -failure termination is omputable. In partiular, the problem is omputable for any 2-port deision problemobtained from a onvergene task. It is possible to use only this partiular result, and Theorem 8.1, to prove thefollowing:Corollary 8.5 The problem of telling if an n-port deision problem orresponding to a onvergene task T has asolution with 1-failure termination is omputable.Notie that the results in [4℄ apply to general deision problems, while this orollary is about deision problemsprodued by onvergene tasks. Also, we stress that Corollary 8.5 follows from the results of [4℄. The point hereis that Corollary 8.5 an be proved by showing only the omputability for 2-port, deision problems; a problemoneivably easier than to prove it diretly for arbitrary n.9 DisussionWe have presented the beginnings of a method to translate results in one distributed system model to another. Wehave introdued a general way of simulating a distributed algorithm of n proesses and f fault-tolerane, by adistributed system with a different number of proesses and the same fault-tolerane. We have presented a preisedesription of this fault-tolerant simulation algorithm, a areful desription of what it aomplishes, as well as aproof of orretness.Spei�ally, we have de�ned a notion of fault-tolerant reduibility between deision problems, and showedthat the algorithm implements this reduibility. The reduibility is tailored to the simulation algorithm; it shouldnot be used as a general notion of reduibility between deision problems. An important moral of this work is thatone must be areful in applying the simulation algorithm� it does not work for all pairs of problems, but only forthose that satisfy the reduibility. Nevertheless, we have shown that the simulation algorithm is a powerful tool forobtaining possibility and impossibility results.Similarly, we have presented a spei�ation of what it means for one shared memory system to simulateanother, in a fault-tolerant manner. Again, this spei�ation is intended to apture the type of simulation thatis studied in this paper. We have given a full and detailed desription of a version of the simulation algorithmfor snapshot memory systems. We have proved that this algorithm satis�es the requirements of a fault-tolerantsimulation.We have also shown how to extend this basi snapshot memory simulation algorithm to read/write sharedmemory, and hene, have shown that it is useful for proving properties of these systems as well. We have �rstpresented the snapshot algorithm and then the read/write variant due to the fat that in the snapshot model, theproof is more modular, and the whole presentation learer.We have presented several appliations of the simulation algorithm to a lass of problems that satisfy thereduibility, inluding onsensus and set agreement, de�ned by onvergene tasks [16℄. The appliations extend32



results about a system with some number of proesses and f failures, to a system with any number of proessesand the same number of failures. Further appliations are desribed in [7℄.Some possible variations on the simulation algorithm of this paper are: (a) Allow eah proess i of Q tosimulate only a (statially determined) subset of the proesses of P 0 rather than all the proesses of P 0. (b) Allowmore ompliated rules for determining the simulated inputs of P 0 and the atual outputs of Q; these rules aninlude f -fault-tolerant distributed protools among the proesses ofQ.We hope that one of the greatest ontributions of this paper will be in laying the foundation for the developmentof an interesting variety of extensions to the simulation algorithm. One extension is proposed in [6, 7℄, and laterformalized (following our tehniques) in [10, 25℄, where the proesses of Q simulate a system P 0 that has aessto set agreement variables. Other variants of the simulation, for onsensus problems in systems with aess togeneral shared objets appear in [9℄ and in [21℄.Reduibilities between problems have proved to be useful elsewhere in omputer siene (e.g., in reursivefuntion theory and omplexity theory of sequential algorithms), for lassifying problems aording to their solv-ability and omputational omplexity. One would expet that reduibilities would also be useful in distributedomputing theory, for example, for lassifying deision problems aording to their solvability in fault-prone asyn-hronous systems. Our reduibility appears somewhat too speially tailored to the simulation algorithm presentedto serve as a useful general notion. Further researh is needed to determine the limitations of this reduibility andto de�ne a more general-purpose notion.Stronger notions of reduibility (or fault-tolerant simulation) might inlude a loser, �step-by-step� orrespon-dene between the exeution of the simulating system P and the simulated system P 0. Suh a stronger notionseems to be needed to obtain results [7℄ relating the topologial struture of the exeutions of P and P 0. Theseresults seem to indiate that the simulation plays an interesting role in the newly emerging topology approah todistributed omputing (e.g. [7, 18, 15℄).Referenes[1℄ Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt and N. Shavit, �Atomi snapshots of shared memory,�Journal of the ACM, Vol. 40, No. 4, September 1993, 873�890.[2℄ Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rudiger Reishuk, �Renaming in an asyn-hronous environment,� Journal of the ACM, Vol. 37, No. 3, July 1990, 524�548.[3℄ Yehuda Afek, Gideon Stupp, �Synhronization power depends on the register size,� (Preliminary Version),Pro. of the IEEE Symposium on Foundations of Computer Siene (FOCS), 1993, 196�205.[4℄ O. Biran, S. Moran, S. Zaks, �A ombinatorial haraterization of the distributed 1-solvable tasks,� Journalof Algorithms, vol. 11, 1990, 420�440.[5℄ E. Borowsky and E. Gafni, �Generalized FLP impossibility result for t-resilient asynhronous omputations,�in Proeedings of the 1993 ACM Symposium on Theory of Computing, May 1993, 91�100.[6℄ E. Borowsky and E. Gafni, �The impliation of the Borowsky-Gafni simulation on the set onsensus hierar-hy,� Tehnial Report 930021, UCLA Computer Siene Dept., 1993.[7℄ E. Borowsky, �Capturing the power of resilieny and set onsensus in distributed systems,� Ph.D. Thesis,University of California, Los Angeles, Otober 15, 1995.33
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