
Firefly Synchronization with Asynchronous Wake-up

Dan Alistarh
MIT

Alejandro Cornejo
Harvard

Mohsen Ghaffari
MIT

Nancy Lynch
MIT

Abstract

This paper considers biologically-inspired synchronization algorithms for a model with primitive
communication and asynchronous wake-up. Existing averaging-style algorithms for synchronization
implicitly require a coherent round structure to guarantee convergence. We argue that this assumption
is too strong in a distributed setting, and thus investigate the synchronization problem assuming nodes
wake up asynchronously. Our preliminary results show that, under some assumptions, it is possible to
approximate the properties of a coherent round structure given asynchronous wake-up, and leverage this
observation to achieve synchronization in this setting. Achieving general solutions remains an interesting
open question.

1 Introduction

The emergence of synchronous behavior in groups of fireflies [13, 14] is a natural phenomenon which has
garnered significant interest from the scientific community. Some research groups have studied the syn-
chronization of fireflies from a biological perspective, e.g., [4], while others have taken a mathematical
modeling approach, e.g., [9, 10]. Seminal work by Peskin [11], generalized by Mirollo and Strogatz [9],
presented mathematical models which explain the convergence behavior of fireflies. Considerable subse-
quent research extended their models and used these insights to design efficient synchronization algorithms
for systems such as wireless ad-hoc networks.

Early work considered continuous-time models, where the agents are modeled as “integrate-and-fire”
oscillators [11, 9], where the evolution of each agent is described by a differential equation. The collective
dynamics are expressed as a linear dynamical system defined in terms of the communication graph [10].
The behavior of such systems is now relatively well understood, and it has been shown to be related to the
convergence of consensus algorithms [3], and to the collective behavior of flocks and swarms [10].

More recent work [8, 12] considers discrete-time models, where agents are allowed to emit pulses at
continuous points in time, and update their state at the end of rounds of fixed length. Similar to work on
continuous-time models, most discrete-time algorithms [8, 12], use some form of averaging to guarantee
synchronization.

Specifically, the canonical form of an averaging-style synchronization algorithm, e.g., [10], is as follows.
Every node i starts with an arbitrary time offset ti(0). During each round k, which is of fixed length T , every
node i emits a pulse at time ti(k), and records the times when it received the pulses of each of its neighbors.
At the end of round k, every node i sets the next transmission time ti(k + 1) to be the (possibly weighted)
average of the times where itself and its neighbors emitted a pulse in round k. The goal is synchronization:
eventually, all nodes must beep with the same period, and in the same time slot.

This paper revisits the synchronization problem in a discrete-time model with asynchronous wake-up.
We first notice that most known algorithms, e.g. [10, 12], assume a coherent round structure: in each round,

1

each node receives a single pulse/message from each of its neighbors. However, in an asynchronous wake-
up model, this coherent round structure is not necessarily present, which can prevent averaging algorithms
from converging. We then present a time-efficient averaging algorithm which ensures synchronization under
asynchronous wake-up.

Asynchronous wake-up is a natural requirement for synchronization—if nodes wake up at the same time,
they can simply decide to beep in the first slot of every period, trivially solving the problem. On the other
hand, asynchronous wake-up times may cause a node to receive multiple messages, or no messages, from
its neighbors in some rounds. Since rounds are no longer communication-closed, the linear equations used
to characterize the system behavior are no longer meaningful, and in fact the algorithm may not converge.
Figure 1 describes such an execution for the simple case when the communication graph is a clique. (The
reader is also encouraged to try the online version of our simulator [1].)

It appears that divergence is caused by breaking the following assumption: in each period, each node
must perceive exactly one message from each of its neighbors. In a model where nodes are allowed to
communicate by sending full messages (instead of pulses), it would be possible to ensure this assumption by
appending identifiers or counters to the nodes’ messages. Unfortunately, these strategies are not applicable
in primitive communication models such as the one we consider.

These considerations motivate us to investigate the existence of averaging algorithms for the synchro-
nization problem, that work in a primitive communication model, and support asynchronous wake-up.

Specifically, we consider a multi-hop network where time is divided into slots, and at every slot each
node can decide to either listen or beep. A node that beeps receives no feedback in that slot, and a node
that listens in a slot can only distinguish between silence (no neighbor beeped) or the presence of a beep
(one or more neighbors beeped). The beeping model has been considered previously in the context of
wireless deployment [5], and biologically-inspired algorithms [2]. Initially, all nodes are asleep, and they
are woken up at a particular slot either by an adversary, or when one of their neighbors beeps for the first
time (whichever happens first). This asynchronous wake-up model is standard in the clock synchronization
literature, e.g., [6, 7].

Our preliminary work finds that it is possible to design a correct averaging synchronization algorithm,
assuming that the period T is at least 4n, where n is the number of nodes. Moreover, the algorithm converges
in O(TD) time slots, where D is the diameter of the communication graph. We also note that a simple
“adopt-minimum” strategy works in O(TD) time given the same model assumptions.

In sum, our results suggest that there exist simple algorithms that converge under asynchronous wake-up.
Several interesting questions remain open.

• Our solutions make two strong assumptions: that a node automatically wakes up its neighbors by
beeping, and that the period length T is Ω(n). Both assumptions should be relaxed. In particular,
we conjecture that there exist averaging algorithms which work for lower values of T and allow for
asynchronous wake-up. (Lower values of T would also imply faster convergence.)

• Initial synchronization is a prerequisite for many distributed algorithms. It is therefore surprising that
no solution is known for synchronization in the beep model, even for specific values of n and T . For
instance, in the T = 2 case, nodes are simply required to beep in one of every two time slots.

• Even though extremely efficient clock synchronization algorithms are known, e.g. [7], these solutions
tend to be extremely complex. On the other hand, biologically-inspired algorithms are usually simple,
and work under minimal assumptions. Thus, it would be interesting to see if an efficient variant of
the averaging algorithm can be shown to have fast convergence under the standard assumptions of the
gradient clock synchronization problem [6], such as clock drifts and different period lengths.

2

Figure 1: An execution with four nodes connected in a clique with period of eight slots, running an averaging
algorithm. The slot is marked white if the node listens and hears silence, gray if it listens and hears a beep,
and dark gray if the node beeps. The two segments highlighted in red show a cycle in the execution, which
implies that the algorithm will not converge to a solution.

• Many averaging algorithms support dynamic communication graphs seamlessly [10]. It would be
interesting to identify a suitable dynamic graph model for the synchronization problem, and to devise
algorithms which support such a dynamic model.

2 Model and Problem Statement

We assume time is divided into slots, where slot boundaries are synchronized across nodes. (This assumption
can be relaxed to consider the case when slot boundaries are not aligned across nodes, at the cost of a small
constant blowup in the running time [5].) We assume a system of n nodes. Initially, every node is asleep,
and it is woken up either at the first slot when one of its neighbors emits a beep, or at an arbitrary slot chosen
by an adversary (whichever comes first). These wake-up assumptions are consistent with those in the clock
synchronization literature [6, 7].

We model the communication network with a connected graph G = (V,E), where V denotes the
set of n = |V | nodes and E denotes the set of undirected edges between nodes. We define N(v) =
{u | (u, v) ∈ E} as the set of neighbors of a node v ∈ V , and we use ∆ and D to denote the maximum
degree and the diameter of G respectively.

Nodes communicate with each other using beeps. In each slot, a node can either list or beep (emit a
pulse). A beeping node receives no feedback, and a node v that listens at slot i can only distinguish between
silence (all nodes in N(v) listened at slot i) or the presence of a beep (one or more nodes in N(v) beeped at
slot i).

Informally, the synchronization problem requires that every node eventually agrees on a frequency and
offset in time. Formally, we say the system reached a synchronized state at slot i, if there exists positive
integers i0 and T > 1 such that for every slot j ≥ i we have all nodes beeping if (j − i0) mod T ≡ 0, and
all nodes listening otherwise.

In the definition above, T is the period of synchronization, and it counts the number of slots between
consecutive beeps. We remark that the algorithm presented in this paper requires that T ≥ 4n and that T
should be known a priori by every node.

3 An Algorithm for the Synchronization Problem

Description. The algorithm is composed of two phases, the wake-up phase, and the averaging phase. We
assume that the parameter T ≥ 4n is fixed and known by all nodes. Each node i divides time locally in
periods of length T , starting at the time when the node wakes up.

3

The Wake-up Phase. Recall that each node v wakes up either when woken up by the adversary, or just
after receiving a first beep from a neighbor. Upon wake-up, each node beeps in the next slot, which wakes
up its sleeping neighbors. It then sets the beginning of its period to be this slot, and its first beeping in the
synchronization phase τv(0) to be at slot T/2. (For simplicity, we assume that T is even.) For example,
node v wakes up in global slot ωv, then beeps in slot ωv + 1, and sets its next beeping time in slot ωv +T/2.

τi(0)← 1;
for each period k ≥ 0 do

buffer ← ∅;
for slots j = 1 to T do

if τi(k) = j then
beep;
buffer [j]← 1;

else
listen;
buffer [j]← (0 if silence, 1 otherwise);

count ← number of 1’s in the buffer ;
τi(k + 1)← b(1/count)

∑T
j=1(j · buffer [j])c;

Algorithm 1: The synchronization algo-
rithm at node i.

The Synchronization Phase. In the second phase,
nodes converge on a single slot. (See Algorithm 1
for the pseudocode.) During every period k ≥ 0, each
node i beeps once at time τi(k), and listens for the rest
of the period. Time slots in which beeps are detected
are marked in an array buffer of length T .1 The only
computation is the update of the beeping time for the
next period. To determine τi(k+ 1), the process aver-
ages the times in which it has heard beeps during the
period (including its current offset). Recall that multi-
ple neighbors may broadcast during the same slot, in
which case the node only perceives one beep. Once
synchronized, a node will no longer update its offset.

Analysis Outline. Note that thanks to the wake up
phase, each two neighbors wake up within at most one
slot of each other and thus, all nodes beep wake up after at most D slots. We argue that throughout the
course of algorithm, for each period k, each two neighboring nodes beep either in the same slot or in two
consecutive slots. Then, we use a potential-function to show that the beeping time τv(k) of each node v for
period k decreases essentially linearly with period number k, until v gets synchronized with the beeps of
the first node (or nodes) that woke up. Thus, all nodes synchronize in at most O(D) periods. We defer the
proof to Appendix A.2.

Theorem 3.1 (Synchronization). For Algorithm 1, when T ≥ 4n, for each period k ≥ 2D + 1 and each
two nodes v, u, we have ωv + τv(k) = ωu + τu(k). That is, after the first 2D+ 1 periods, all nodes beep in
the same slot of every period.

The “Adopt-Min” Algorithm. We remark that, while our analysis shows that in this setting the averaging
algorithm converges and nodes synchronize, an even simpler algorithm achieves the same result with an
almost-trivial proof. (On the other hand, averaging algorithms are still interesting on their own, as research
has indicated them to match the behavior of many biological systems, e.g., fireflies, e.g., [9, 10].) Consider
the protocol that includes the wake-up phase as described above, but instead of the synchronization, makes
each node v set τv(k + 1) = min{j|buffer[j] = 1} in each period. That is, v updates its beeping time to
the minimum observed beeping time. Clearly, the first node that wakes up will always beep in the middle of
its periods (in slot T/2 of each period), and all the other nodes will decrease their beeping times gradually
until they synchronize with the node that woke up first. Considering the shortest path from the first awaken
node to each other node, it is easy to see that global synchronization occurs after at most D periods.

1The node discards any beeps in the second slot after its wake-up, since these are wake-up phase beeps for the neighbors that
just woke up.

4

References

[1] Simulator for a clique network with random wake-up times in the first period, available at:
http://people.csail.mit.edu/acornejo/p/beepsynch/
(for best results, please use the chrome web browser).

[2] Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro Cornejo, Bernhard Haeupler, and Fabian Kuhn.
Beeping a maximal independent set. In DISC, pages 32–50, 2011.

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and distributed computation. Prentice Hall, 1989.

[4] John Buck. Synchronous rhythmic flashing of fireflies. Quarterly Review of Biology, 1988.

[5] Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In DISC, pages 148–
162, 2010.

[6] Rui Fan and Nancy A. Lynch. Gradient clock synchronization. Distributed Computing, 18(4):255–266,
2006.

[7] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight bounds for clock synchronization.
J. ACM, 57(2), 2010.

[8] Dennis Lucarelli and I-Jeng Wang. Decentralized synchronization protocols with nearest neighbor
communication. In SenSys, pages 62–68, 2004.

[9] Renato E. Mirollo, Steven, and H. Strogatz. Synchronization of pulse-coupled biological oscillators.
SIAM J. Appl. Math, 50:1645–1662, 1990.

[10] Reza Olfati-Saber, J. Alexander Fax, and Richard M. Murray. Reply to ”comments on ”consensus and
cooperation in networked multi-agent systems””. Proceedings of the IEEE, 98(7):1354–1355, 2010.

[11] Charles S. Peskin. Mathematical aspects of heart physiology. 1973.

[12] Osvaldo Simeone, Umberto Spagnolini, Yeheskel Bar-Ness, and S Strogatz. Distributed synchroniza-
tion in wireless networks. Signal Processing Magazine, IEEE, 25(5):81–97, 2008.

[13] Hugh M. Smith. Synchronous flashing of fireflies. Science, 82(2120):151–152, 1935.

[14] Steven H. Strogatz. Sync: The Emerging Science of Spontaneous Order. Hyperion, 1st edition, March
2003.

5

http://people.csail.mit.edu/acornejo/p/beepsynch/

A Analysis of the Averaging Algorithm

In this section, we give a proof of convergence for the averaging algorithm. We first prove some properties
of the round structure, and then proceed to prove the convergence of the algorithm.

A.1 The Round Structure

We start by establishing a few properties of the algorithm’s round structure. We start from the simple obser-
vation that, given the adversarial wake-up procedure from Section 2, all node wake-up times are between 0
(the earliest wake-up time of a process), and D, the diameter of the graph.

Lemma A.1. For every node v, 0 ≤ ωv ≤ D.

Proof. Recall that the wake-up time for node v, ωv, is defined as the minimum between the wake-up time
for the node decided by the adversary, which we denote by αv, and the time when one of its neighbors first
beeps. On the other hand, the wake-up time for each node v is upper bounded by hv, the number of hops
between the first node to wake up and node v, in the communication graph. Clearly, hv ≤ D.

Next, we prove that the following assumption holds.

Assumption 1. In every period, every node perceives exactly one message from each of its active neighbors.

First, notice that, since the period T is at least 4n, then the maximum difference between two wake-up times
is at most T/4. We now show that this is a sufficient condition for Assumption 1 to hold throughout an
execution of the algorithm.

Lemma A.2. Given T ≥ 4n, Assumption 1 holds throughout the synchronization phase.

Proof. Consider an execution from which we erase the beeps pertaining to the wake-up phase. We prove
that Assumption 1 holds throughout the execution by induction on the period number k. The claim is that,
for every period k ≥ 0, every node beeps between (global) slots kT +T/2, and kT + 3T/4. Notice that this
claim implies the Lemma, since this time interval cannot overlap with slots from a previous of subsequent
phase, for any node i, given that every node wakes up between time 0 and T/4.

For the first period, notice that, by Lemma A.1, every node beeps between global times T/2 and T/2+D
in period 0 of the synchronization phase. Since D < n ≥ T/4, we obtain that every node beeps between
global times T/2 and 3T/4, i.e. τi(0) ∈ [T/2, 3T/4], for all nodes i. Notice that this interval cannot overlap
with the interval of the second period for any node i, therefore the base case holds.

The induction step follows since, for each node i, the beeping time in period k + 1 is a convex combi-
nation of the beeping times in the previous period k.

A.2 Proof of Convergence

Theorem A.3. After 2D + 1 periods from the time that the first node wakes up, all nodes are synchronized.

Proof. Let s0 be the node that wakes up first (or one such node, if more exist). For each node v and each
kth period, let xv(k) = (τv(k) + ωv)− (τs0(k) + ωs0). Note that xv(k) ∈ [0, D]. We first show that

∀k ∈ N, v, u ∈ V such that u ∈ N (v), we have |xv(k)− xu(k)| ≤ 1.

6

We prove this by induction on k. The base case k = 1 holds because each awake node wakes up all its
neighbors which gives |ωv − ωu| ≤ 1, and τv(1) = τu(1) = T/2. Assume the claim for period k − 1.
From this, we get that ∀v′ ∈ V, xv′(k) ∈ [xv′(k − 1) − 1, xv′(k − 1)]. Thus, if xv(k − 1) = xu(k − 1),
we are done. Otherwise, and without loss of generality, suppose xv(k − 1) = xu(k − 1) − 1. Since
∀v′ ∈ N (v), xv′(k − 1) ≥ xv′(k − 1) − 1, and xu(k − 1) = xv(k − 1) + 1, we get xv(k) = xv(k − 1).
This along with xu(k − 1) = xv(k − 1) + 1 and xu(k) ∈ [xu(k − 1)− 1, xu(k − 1)] complete the proof of
the claim.

Now define fv(k) = (1 + 1
D) · xv(k)− distance(v, s0) + k − 1. We claim that

∀k ∈ N, v ∈ V, either xv(k) = 0 or fv(k) ≤ D + 1.

Given this claim, since for any period k > 2D + 1 we have fv(k) > D + 1, we get that for each period
k > 2D + 1 and each node v, we have xv(k) = 0, meaning that all nodes are synchronized.

Proof of the claim is by induction on k. The base case k = 1 is trivial. For the inductive step, suppose
we have the claim for period k− 1 and consider an arbitrary node v. If xv(k− 1) = 0 or if fv(k− 1) ≤ D,
then we are done because we know xv(k − 1) ∈ [xv(k − 1)− 1, xv(k − 1)] from the first part of the proof.
Suppose xv(k − 1) ≥ 1 and fv(k − 1) = D + 1. We show that xv(k) ≤ xv(k − 1) − 1 which gives
fv(k) ≤ D thus completing the proof of the claim. To prove xv(k) ≤ xv(k− 1)− 1, it suffices to show that

∀u ∈ N+(v), xu(k − 1) ≤ xv(k − 1) & ∃u∗ ∈ N+(v), xu∗(k − 1) < xv(k − 1).

The first part is true because if we had xu(k−1) > xv(k−1), then since distance(u, s0) ≤ distance(v, s0)+
1, we would get fu(k − 1) > D + 1 + 1/D, contradicting the induction hypothesis. For the second part,
choose u∗ ∈ N (v) such that distance(u∗, s0) = distance(v, s0) − 1. From the induction hypothesis, we
know that either xu∗(k−1) = 0 or fu∗(k−1) ≤ D+1, which both show that xu∗(k−1) < xv(k−1).

7

	Introduction
	Model and Problem Statement
	An Algorithm for the Synchronization Problem
	Analysis of the Averaging Algorithm
	The Round Structure
	Proof of Convergence

