
A Three-Level Analysis of a Simple Acceleration Maneuver, withUncertaintiesNancy LynchMIT Laboratory for Computer Science545 Technology Square (NE43-365)Cambridge, MA 02139, USAE-mail: lynch@theory.lcs.mit.eduA mathematical correctness analysis is given for a simple controlled vehicle accel-eration maneuver in which the vehicle's response to controller inputs is subject tosome uncertainty. The maneuver is modelled using hybrid (continuous/discrete)input/output automata. The analysis uses invariant assertion and levels of ab-straction techniques. Levels of abstraction are used (a) to express the relationshipbetween a derivative-based description of a system and an explicit description, and(b) to express the relationship between a system in which corrections are made atdiscrete sampling points and a system in which corrections are made continuously.1 IntroductionIn this note, we give a three-level analysis of a toy vehicle acceleration ma-neuver. The goal of the maneuver is to cause a vehicle, starting at velocity0 at time 0, to attain a velocity of b (or as close to b as possible) at a latertime a. The vehicle is assumed to provide accurate sampled data every d timeunits. The vehicle is assumed to be capable of receiving control signals, oneimmediately after each vehicle data output. Each control signal can set an\acceleration variable", acc, to an arbitrary real number. However, the actualacceleration exhibited by the vehicle need not be exactly equal to acc { instead,we assume that it is de�ned by an integrable function whose values are alwaysin the range [acc � �; acc].a We can think of this uncertainty as representing,say, uncertainty in the performance of the vehicle's propulsion system.The vehicle interacts with a controller, presumably a computer. In thisnote, we describe a particular controller and analyze the behavior of the com-bination of the vehicle and controller. One conclusion we draw is that thevelocity of the vehicle at time a is in the range [b � �d; b]. That is, the un-certainty in setting acc combines multiplicatively with the sampling period toyield the uncertainty in the �nal velocity of the vehicle. More strongly, weobtain a range for the velocity of the vehicle at each time in the interval [0; a].We prove this fact using invariants and levels of abstraction (in particular,aWe could also have included some uncertainty in the upper bound, but that would not addany interesting features to the example. 1

simulation methods), based on a new hybrid I/O automaton model of Lynch,Segala, Vaandrager and Weinberg 1. Invariants and levels of abstraction arestandard methods used in computer science for reasoning about discrete sys-tems. Many of the pieces of the proofs use standard continuous methods, suchas solving algebraic and di�erential equations. The entire proof represents asmooth combination of discrete and continuous methods.The point of this exercise is to demonstrate some simple uses of levelsof abstraction in reasoning about hybrid control problems. We use levels ofabstraction here for two purposes: (a) to express the relationship between aderivative-based description of a system and an explicit description, and (b)to express the relationship between a system in which corrections are made atdiscrete sampling points and a system in which corrections are made continu-ously. The uncertainty in the acceleration is treated at all three levels of ourexample, and is integrated throughout the presentation.We do not contribute anything new in the way of techniques for continuousmathematics; for example, we use standard methods of solving di�erentialequations. Our contributions lie, rather, in the smooth combination of discreteand continuous methods within a single mathematical framework, and in theapplication of standard methods of discrete analysis (in particular, invariantsand levels of abstraction) to hybrid systems. Our methods are particularlygood at handling uncertainties and other forms of system nondeterminism.2 Hybrid Input/Output AutomataWe use the Lynch-Segala-Vaandrager-Weinberg hybrid input/output automa-ton (HIOA) model 1, and refer the reader to 1 for the details. We give a roughsummary here.A hybrid I/O automaton (HIOA) is a state machine having a (not neces-sarily �nite) set of states with a subset distinguished as the start states, a set ofdiscrete actions partitioned into input , output and internal actions, and a set ofvariables, similarly partitioned into input , output and internal variables. Thestates are simply combinations of values for the variables. An HIOA also hasa set of discrete steps, which are state transitions labelled by discrete actions,plus a set of trajectories, which are mappings from a left-closed interval of R�0with left endpoint 0 to states. A trajectory shows how the state evolves duringan interval of time. An HIOA must satisfy a collection of axioms describingrestrictions on the behavior of input actions and variables, closure propertiesof trajectories, etc.The operation of an HIOA is described by hybrid execution fragments,each of which is a �nite or in�nite alternating sequence, � = w0�1w1�2w2 � � �,2

of trajectories and discrete actions, where successive states match up properly.A hybrid execution is a hybrid execution fragment that begins with a startstate. A state is de�ned to be reachable if it is the �nal state of some �nitehybrid execution.The externally-visible behavior of an HIOA is de�ned using the notion of ahybrid trace. The hybrid trace of any hybrid execution fragment � is obtainedfrom� by projecting all trajectories onto external (input and output) variables,removing all internal actions, concatenating all consecutive trajectories forwhich states match up properly, and inserting a special placeholder symbol �between consecutive trajectories for which states do not match up.The levels of abstraction that we referred to in the introduction are cap-tured by means of mappings called simulations. A simulation from HIOA Ato HIOA B with the same external actions and the same external variables isa relation R from states(A) to states(B) satisfying the following conditions:1. For every start state of A, there is an R-related start state of B.2. For every discrete step (sA; �; s0A) of A with sA a reachable state, andevery reachable state sB of B that is R-related to sA, there is a �nitehybrid execution fragment of B that starts with sB , ends with some s0Bthat is R-related to s0A, and has the same hybrid trace as the given step.3. For every right-closed trajectory wA of A starting with a reachable state,and every reachable state sB that is R-related to the �rst state of wA,there is a �nite hybrid execution fragment of B that starts with sB , endswith some s0B that is R-related to the last state of wA, and has the samehybrid trace as wA.The important fact about a simulation is:Theorem 2.1 If there is a simulation from A to B, and if �A is any hybridexecution of A, then there is a hybrid execution �B of B having the same hybridtrace.HIOAs come equipped with a composition operation, based on identifyingactions with the same name and variables with the same name in di�erentautomata. HIOAs also have hiding operations, which simply reclassify someoutput actions or output variables as internal. All de�nitions and results aregiven in 1. 3

3 Mathematical Preliminaries3.1 Assumptions About the ConstantsIn the informal description in the introduction, we mentioned several constants:a, b, d and �. All are assumed to be positive real-valued. We assume only thatd divides evenly into a.3.2 Some Useful FunctionsFunction fThe following function f : [0; a]! R will be used in the analysis:f(t) = � bta + �(a � t) log(a�ta) if t 2 [0; a),b if t = a.In particular, f(0) = 0 and f(a) = b. Function f is continuous over [0; a], sincelimt!a f(t) = f(a). Function f satis�es:_f (t) = ba � � log(a � ta) � � = b� f(t)a� t � �;for all t 2 (0; a). Moreover, f has a right derivative of ba � � at 0, while at a,f 's left derivative is unde�ned. (It approaches +1.)Function f describes the behavior of a continuous process that starts attime 0 at value 0, always \tries to" set its derivative so as to point to the graphpoint (a; b), but consistently \misses low" by exactly �. That is, f is a solutionto the di�erential equation _f (t) = b� f(t)a� t � �;where t 2 [0; a), with the boundary condition f(0) = 0. Function f is depictedin Figure 1.Function gWe also de�ne the function g : [0; a]! [0; b], byg(t) = bta :Then g(0) = 0 and g(a) = b, and g is continuous over [0; a]. Function gsatis�es: _g(t) = ba = b� g(t)a� t4

(0,0)

g

f

(a,b)Figure 1: Functions f and g.for all t 2 (0; a). Moreover, g has a right derivative of ba at 0 and a leftderivative, also of ba at a. Function g is a solution to the di�erential equation_g(t) = b� g(t)a � t ;where t 2 [0; a), with the boundary condition g(0) = 0. Function g is alsodepicted in Figure 1.Function f1The following function f1 : [0; a]! R is like f , but it uses the goal of (a; b��d)instead of (a; b).f1(t) = � (b��d)ta + �(a� t) log(a�ta) if t 2 [0; a),b� �d if t = a.In particular, f1(0) = 0 and f1(a) = b � �d. Function f1 is continuous over[0; a]. Function f1 satis�es:_f1(t) = b� �da � � log(a � ta) � � = b� �d� f1(t)a � t � �;for all t 2 (0; a). Moreover, f1 has a right derivative of b��da � � at 0, whileat a, f1's left derivative is unde�ned. (It approaches +1.) Function f1 is asolution to the di�erential equation_f (t) = b� �d� f(t)a� t � �;where t 2 [0; a), with the boundary condition f(0) = 0. The function f1 isdepicted in Figure 2. 5

(0,0)

(a,b)

(a,b −ε f)

1
fFigure 2: Function f1.Function hFinally, we consider the function h : [0; a]! [0; b� �a], whereh(t) = bta � �t:In particular, h(0) = 0 and h(a) = b� �a. Also,_h(t) = ba � �for all t 2 (0; a), and the half derivatives at the endpoints are also equal toba � �. Function h satis�es: _h(t) � b� h(t)a� t � �for all t 2 [0; a).4 High Level Speci�cation VWe begin with a high-level system speci�cation. This will not be our �nalversion of the high-level speci�cation { this preliminary version includes onlythe e�ects of the uncertainty in the acceleration, but not the e�ects of samplingdelays. We add those later, in V1, in Section 6.1.4.1 OverviewOur highest-level system description consists of constraints on the vehicle ve-locity, embodied in an HIOA V . V simply constrains the vehicle velocity v tobe anywhere within a given region bounded by the continuous functions f andg. This region is represented by the area under the line and over the curve in6

Figure 1 above. Note that this region is determined by the parameters a, band �; in particular, it depends on the uncertainty of acceleration, �.We imagine that this region delineates the \acceptable" vehicle velocitiesat various times. These limitations on velocities might be used to prove someproperties of a system containing the vehicle. This description places no lim-itations on, say, vehicle acceleration; for example, it permits the vehicle toaccelerate arbitrarily quickly, as long as the velocity remains within the givenregion.bWe think that it is reasonable to use such region descriptions to expresssystem requirements. It might not matter how a system ensures that thecontrolled entity remains within the required region { just the region restrictionitself might be enough to ensure that the system behaves as required. Forexample, an air tra�c control system might operate by allocating regions inspace-time to airplanes. As long as the allocated regions are disjoint, planes can
y without danger of collision. It should not matter how the system ensuresthat the planes remain within their regions.In Section 5, we will give a lower-level description of the system, in termsof _v, the derivative of the velocity. We think of the derivative-based descriptionas a way of implementing the region description.4.2 Formal DescriptionWe de�ne a single HIOA V . Automaton V has no discrete actions (except for adummy environment action e required as a technicality by the formal model).It has the following variables:Input:noneOutput:now 2 [0; a], initially 0v 2 R, initially 0 Internal:noneThe only discrete steps are dummy e-steps that cause no state change.The trajectories of V are all the mappings w from left-closed subintervals I of[0; a] to states of V such that:1. For all t 2 I, the following conditions hold in state w(t).(a) now = w(0):now + t.(b) v 2 [f(now); g(now)].bOf course, in a practical context, there might also be limitations on acceleration, imposed,for example, by passenger comfort requirements or physical laws. In such a case, the high-level speci�cation would be di�erent from what we give here, including restrictions on accel-eration as well as velocity. 7

Condition (a) says that the value of now just increases along with the realtime { the di�erence is that t is a relative time measure, which starts at 0 ineach trajectory, while now is an absolute time measure, which starts at 0 at thebeginning of an entire hybrid execution. Condition (b) describes the envelopefor v. The now variable allows us to express the second condition just in termsof the automaton state, a useful style for invariant and simulation proofs.We do not require any other assumptions. For instance, continuity of vis not required at this level, although it will be guaranteed by any real imple-mentation. We believe that the continuity condition for v is not important forusing this speci�cation, but only in reasoning about implementations.Note that our description at this level does not involve any controller. Atthe highest level, it is probably appropriate to consider just the behavior of thecontrolled system, regarding the controller as a part of the implementation.In general, we follow the philosophy of using the maximumpossible nonde-terminism in our speci�cations { in particular, we do not include assumptionssuch as continuity or bounds on acceleration until we need them in the proofof some result.We give a trivial invariant of V :Lemma 4.1 In every reachable state of V , it is the case that v 2 [f(now); g(now)].Proof: The proof (as usual for invariants of HIOAs) is by induction on thelength, that is, the number of trajectories and discrete steps, in a �nite hybridexecution that leads to the state in question. Here (as usual for such proofs),we must show three things: that the property is true in every initial state, thatit is preserved by every discrete step, and that it is preserved by every right-closed trajectory. (Note that we need consider only right-closed trajectories,and that we need show only that the property holds in the last state of thetrajectory, assuming that it holds in the �rst state. We do not need to showanything about the intermediate states in the trajectory.)In this case, all of these are easy to see. In the unique start state of V , wehave v = 0, now = 0, and f(0) = g(0) = 0, so that v 2 [0; 0], which is whatis needed. The only discrete steps are the dummy e-steps, which obviouslypreserve this property. And trajectories are de�ned explicitly so as to preservethis property.Note that Lemma 4.1 implies that, in every reachable state of V in whichnow = a, it must be that v = b.5 Derivative Automaton DIn Section 4, we gave a high-level speci�cation HIOA V , describing a regionthat contains the allowed values of the velocity v at all times. Now we give a8

lower-level description in terms of constraints on the derivative of the velocity,_v; this description is given as another HIOA D. Again, there is no controller.After de�ning D, we prove some basic properties of its behavior, and thenshow that D implements V , in the sense of hybrid trace inclusion. Finally, wegive an example to show how similar results could be proved for cases wherethe di�erential equations do not have known solutions.5.1 Formal DescriptionHIOA D includes a variable acc, which is assumed to always \point to" thegoal point (a; b). For this section, we include no uncertainty in the value of acc{ we assume that it is set completely accurately. However, there is uncertaintyin the actual acceleration _v { we assume that the value of _v is in the interval[acc � �; acc]. The actual velocity v is derived from the actual acceleration _vusing integration.Formally, HIOA D has a single discrete action (besides the dummy envi-ronment action e) { an internal reset action that simply resets _v arbitrarily, aslong as it preserves the required relationship between _v and acc.The discrete actions of D are:Input:e, the environment actionOutput:none Internal:resetD has the following variables:Input:noneOutput:now 2 [0; a], initially 0v 2 R, initially 0 Internal:acc 2 R, initially ba_v 2 R, initially any value in [ba � �; ba]The e steps cause no state change, while the non-e discrete steps are all ofthe form:resetPrecondition:trueE�ect:_v := any value in [acc � �; acc]The trajectories of D are all the mappings w from left-closed subintervalsI of [0; a] to states of D such that:1. _v is an integrable function in w.ccMore precisely, this means that w(t): _v is an integrable function of t, where t ranges over9

2. For all t 2 I, the following conditions hold in state w(t).(a) now = w(0):now + t.(b) If now 6= a then acc = b�va�now . (Otherwise, acc is arbitrary).(c) If now 6= a then _v 2 [acc � �; acc].(d) v = w(0):v+ R t0 w(x): _vdx.In D, acc points directly at the \goal" (a; b), but _v re
ects an uncertainty of�. The quantity v is simply derived from _v, using integration.5.2 Some Properties of DLemma 5.1 Let w be any trajectory of D. Then v is a continuous functionin w.dThe following are some obvious invariants.Lemma 5.2 In every reachable state of D, the following are true.1. If now 6= a then acc = b�va�now .2. If now 6= a then _v 2 [acc � �; acc].Proof: These follow easily from the de�nition of D.The following invariant is a little less obvious, but is an easy consequenceof Lemma 5.2. The functions f and g used in this lemma are as de�ned inSection 3.2.Lemma 5.3 In every reachable state of D in which now 6= a, the followingare true.1. v�f(now)a�now � _f(now) � _v.2. g(now)�va�now � _v � _g(now).Proof:1. By de�nition of f , we have that:_f (now) = b� f(now)a� now � �:By Lemma 5.2, we have that:_v � acc � � = b� va � now � �:the interval I.dThis means continuous in the time argument of w.10

Therefore,_f (now) � _v � b� f(now)a� now � �� (b� va� now � �) = v � f(now)a� now :This is as needed.2. By de�nition of g, we have that:_g(now) = b� g(now)a� now :By Lemma 5.2, we have that:_v � acc = b� va � now :Therefore,_v � _g(now) � b� va� now � b� g(now)a � now = g(now)� va � now :This is as needed.The following are limitations on the rate of change of the velocity in D(for contrast, recall there were no such limitations in V):Lemma 5.4 Let w be any (right-closed or right-open) trajectory of D whosenow values do not include a, and that starts from a reachable state of D. Then:1. The ratio v�f(now)a�now is monotone nondecreasing in w.e2. The ratio g(now)�va�now is monotone nondecreasing in w.This says that v cannot increase too slowly { its distance from f , weightedby the time remaining, cannot decrease. Likewise, v cannot increase too fast{ its distance from g, weighted by the time remaining, cannot decrease.Proof: In each case, it su�ces to show that the �rst derivative of the ratio isalways nonnegative.1. The �rst derivative of the ratio is:(a� now)(_v � _f (now)) � (v � f(now))(�1)(a� now)2eThis means monotone nondecreasing in the time argument of w.11

= (a� now)(_v � _f(now)) + (v � f(now))(a� now)2 :(Here we are using the fact that _v is the derivative of v { this is justi�edformally by the integral de�nition of the variable v.)Since the denominator is always positive, it su�ces to show that:(a � now)(_v � _f (now)) + (v � f(now)) � 0in all states of w. This is equivalent to saying that:v � f(now)a� now � _f (now) � _v;in all states of w. But this follows immediately from Lemma 5.3 (usingthe fact that w starts in a reachable state of D, so all its states arereachable).2. The derivative of the ratio is:(a � now)(_g(now)� _v) � (g(now)� v)(�1)(a� now)2= (a� now)(_g(now)� _v) + (g(now) � v)(a� now)2 :Since the denominator is always positive, it su�ces to show that:(a� now)(_g(now)� _v) + (g(now) � v) � 0in all states of w. But this is equivalent to saying that:g(now)� va� now � _v � _g(now)in all states of w. This follows from Lemma 5.3.5.3 D Implements VThe main result that we want to show about D is the following:Theorem 5.5 If �D is a hybrid execution of D, then there is a hybrid execu-tion �V of V having the same hybrid trace.12

Note that the hybrid trace of each of V and D includes just the nowand v values. Theorem 5.5 implies that the changes in now and v that areexhibited by D are allowed, according to the constraints expressed by V . Thecorrespondence does not mention the implementation variables acc and _v. Weprove Theorem 5.5 using a simulation, as de�ned informally in Section 2. Wede�ne a relation fsim from states of D to states of V as follows. If sD is astate of D and sV is a state of V , then we say that (sD ; sV) 2 fsim providedthat the following hold.1. sD:now = sV :now .2. sD:v = sV :v.We show:Lemma 5.6 fsim is a simulation from D to V .Proof: We show the three conditions in the de�nition of a simulation. Thestart condition is straightforward: If sD is any start state of D and sV is theunique start state of V , then both states have now = 0 and v = 0. It followsthat (sD ; sV) 2 fsim.Next, we consider discrete steps. Suppose that (sD ; �; s0D) is any discretestep of D, and that (sD; sV) 2 fsim. Then let the hybrid execution fragmentcorresponding to this step consist of the trivial trajectory containing exactlyone state and no steps. Then both the discrete step and the correspondingfragment have the same hybrid trace, consisting of the values of now andv that appear in sD. It su�ces to show that (s0D ; sV) 2 fsim. But this isimmediate, because � (a reset or e action) does not modify either now orv. Now we consider trajectories. Suppose that wD is an I-trajectory of D,where I is right-closed, and suppose that the �rst state, sD , of wD is reachablein D. Suppose that sV is a reachable state of V such that (sD ; sV) 2 fsim.Then let the corresponding hybrid execution fragment of V consists of a singletrajectory wV , where wV (t):now = wD(t):now and wV (t):v = wD(t):v for all tin the domain of I. It is obvious that the two trajectories have the same hybridtrace. The only interesting thing to show is that wV is in fact a trajectory ofV . By the de�nition of a trajectory of V , what we must show is that1. For all t 2 I, the following conditions hold in state w(t).(a) now = w(0):now + t.(b) v 2 [f(now); g(now)].(We must verify these conditions throughout the trajectory, not just at thebeginning and end.) The �rst condition follows immediately from the samecondition for wD and the de�nition ofwV in terms ofwD. The second conditionhas two parts, a lower bound and an upper bound.13

For the lower bound, since sV is a reachable state of V , Lemma 4.1 impliesthat, in sV , v � f(now). By Lemma 5.4 and the de�nition of wV in termsof wD, we know that the ratio v�f(now)a�now is monotone nondecreasing in wV ,except possibly at the right endpoint of wV if now = a there. It follows thatv � f(now) throughout wV , except possibly at the right endpoint if now = athere. But since f(now) and v are continuous functions of the time argumentof wV , this inequality must hold at the right endpoint as well.The upper bound argument is analogous. Since sV is reachable, Lemma4.1 implies that, in sV , v � g(now). By Lemma 5.4 and the de�nition of wVin terms of wD, we know that the ratio g(now)�va�now is monotone nondecreasingin wV , except possibly at the right endpoint of wV if now = a there. Itfollows that v � g(now) throughout wV , exept possibly at the right endpointif now = a there. But since g(now) and v are continuous functions of the timeargument of wV , this inequality must hold at the right endpoint as well.Proof: (of Theorem 5.5)By Lemma 5.6 and Theorem 2.1.Note that the correspondence between D and V is only one-way. It says,roughly speaking, that everything that D does is allowed by V . It does not saythat D has to exhibit all the possibilities that are allowed by V . For example,extremely fast increases in v that cannot be achieved by accelerations in theallowed ranges, but that keep v within the allowed envelope, are permitted byV , but do not actually occur in D. Also, note that D performs some activities{ here, changes to acc and _v { that are not explicitly represented in V .Although Theorem 5.5 is very simple, it does demonstrate, at least in asmall way, how one can carry out a correctness proof using invariants andsimulations, integrating discrete and continuous reasoning, and coping withsome uncertainty.5.4 An Approximate ResultThe lower bound function f is de�ned essentially as the solution of a di�erentialequation that is extracted from the de�nition of the trajectories of D. In thiscase, the di�erential equation is easy to solve. But what if it were not so easy?In this case, the same methods could still be used, but now the lower boundproduced might be a loose bound rather than an exact bound.For example, suppose that instead of trying to prove a lower bound of f ,we only tried to prove a lower bound of h, where h is the function de�ned inSection 3.2. Showing that h is a lower bound essentially requires rede�ning V14

to use h instead of f . Proving the simulation now rests on the fact, stated inSection 3.2, that _h(t) � b� h(t)a� t � �for all t 2 [0; a). Using this fact, it is easy to obtain the analog to part 1 ofLemma 5.3 for h: that in every reachable state of D,v � h(now)a � now � _h(now)� _v:This fact follows as in the proof of part 1 of Lemma5.3 (but using the inequalityabove at one step instead of an equality as before). Next, we can prove theanalog to part 1 of Lemma 5.4 for h: that the ratio v�h(now)a�now is monotonenondecreasing in w. This is what is needed to complete the analog to theproof of Lemma 5.6.6 Modi�cations to V and D to Incorporate Periodic FeedbackThe discussions and results in Sections 4 and 5 have dealt with hypotheticalsystems with continuous control. But recall from the introduction that in theactual implementation in which we are interested, the sampling outputs andcontrol signals are not continuous but periodic, at intervals of d. It turns outthat the abstract automata D and V do not quite provide accurate models ofthe actual implementation. However, they can be modi�ed easily so that theydo. We believe that providing accurate models for the handling of uncertain-ties is important. It is not su�cient to give a careful analysis of a situationwithout uncertainty, then argue informally about the variations in behaviorthat are introduced by uncertainties. Handling uncertainties correctly requiresconsidering them appropriately at all levels of abstraction.6.1 Modi�ed High Level Speci�cation V1First, we modify V only a tiny bit to get V1, by changing the lower bound f tothe function f1 de�ned in Section 3.2. The upper bound g remains the same asbefore. (Of course, we could have written the original V with parameters, sothat the modi�cations in this section would just amount to di�erent parametersettings.)This modi�cation makes the region of allowable values for v bigger bymaking the lower bound function smaller. The particular way that we makeit smaller amount to simply replacing the \goal" of (a; b) in V with the goal15

of (a; b� �d) in V1, for the lower bound function only. Thus, the value of v attime a will be in the range [b� �d; b], instead of always being exactly b.It was not obvious to us at �rst that the high-level e�ect of the samplingdelays is just this simple change of goal point; we discovered this only throughdetailed analysis of the behavior of the discrete-sampling system. We do notexpect to use a general rule for determining the high-level e�ect of uncertain-ties; indeed, we expect that this will usually require serious work, perhapsusing results of robust control theory. It is important that the high-level ef-fects of uncertainties be described accurately, though the bounds need not beas tight as possible.6.2 Modi�ed Derivative Automaton D1Now we modifyD to get D1, again by modifying the lower bound requirement.Here we do this by introducing uncertainty into acc, allowing it to \point to"anywhere between (a; b) (where it points in D) to (a; b� �d). We still have thesame uncertainty in _v as we do in D. Thus, D1 expresses two di�erent types ofuncertainty. We can think of the uncertainty in _v as representing propulsionsystem uncertainty and the uncertainty in acc as encompassing the samplingdelays.The modi�cations are as follows. The states and start states of D1 are thesame as those of D, except for the following changes: The initial value of acc isany value in the interval [b��da ; ba], and the initial value of _v is any value in theinterval [acc � �; acc]. The reset action now changes slightly, to allow changesin acc as well as _v. These changes keep acc and _v within the desired ranges.resetPrecondition:trueE�ect:acc := any value in [b��d�va�now ; b�va�now]_v := any value in [acc � �; acc]The trajectories of D1 are all the mappings w from left-closed subintervalsI of [0; a] to states of D1 such that:1. _v is an integrable function in w.2. For all t 2 I, the following conditions hold in state w(t).(a) now = w(0):now + t.(b) If now 6= a then acc 2 [b��d�va�now ; b�va�now].(c) If now 6= a then _v 2 [acc � �; acc].(d) v = w(0):v+ R t0 w(x): _vdx. 16

(Again, we could have written the originalD with parameters, so that themodi�cations in this section would amount to di�erent parameter settings.)6.3 Modi�ed Correctness ProofOur claim now is that the arguments that worked to show that D implementsV can be modi�ed slightly (and systematically) to show that D1 implementsV1. We give the modi�ed result statements.Lemma 6.1 Let w be any trajectory of D1. Then v is a continuous functionin w.Lemma 6.2 In every reachable state of D1, the following are true.1. If now 6= a then acc 2 [b��d�va�now ; b�va�now].2. If now 6= a then _v 2 [acc � �; acc].Lemma 6.3 In every reachable state of D1 in which now 6= a, the followingare true.1. v�f1(now)a�now � _f1(now) � _v.2. g(now)�va�now � _v � _g(now).Proof: We only prove part 1; part 2 is unchanged from the correspondingproof for D. By de�nition of f1, we have that:_f1(now) = b� �d� f1(now)a � now � �:By Lemma 6.2, we have that:_v � acc � � � b� �d� va� now � �:Therefore,_f1(now)� _v � b� �d� f1(now)a� now � �� (b� �d� va� now � �) = v � f1(now)a� now :This is as needed.Lemma 6.4 Let w be any trajectory of D1 whose now values do not includea, and that starts from a reachable state of D1. Then:1. The ratio v�f1(now)a�now is monotone nondecreasing in w.17

2. The ratio g(now)�va�now is monotone nondecreasing in w.Now de�ne the relation fsim1 from states ofD1 to states of V1 as follows. IfsD1 is a state ofD1 and sV1 is a state of V1, then we say that (sD1 ; sV1) 2 fsim1provided that the following hold.1. sD1 :now = sV1 :now .2. sD1 :v = sV1 :v.This de�nition is essentially the same as that for fsim, from D to V .Lemma 6.5 fsim1 is a simulation from D1 to V1.Proof: Similar to the proof of Lemma 5.6.Theorem 6.6 If �D1 is a hybrid execution of D1, then there is a hybrid exe-cution �V1 of V1 having the same hybrid trace.Theorem 6.6 says that the changes in now and v that are exhibited by D1 areallowed by V1.Note that the modi�cations we did to include this uncertainty are quitesimple and systematic. A good general strategy for constructing proofs for im-plementations involving uncertainty is to �rst carry out the development with-out the uncertainty, then try to incorporate the uncertainty later, by makingsimple modi�cations throughout.7 The Implementation ImplNow we are (�nally) ready to describe the actual implementation in whichwe are interested. This one consists of two components, a Vehicle and aController, interacting by discrete actions. Each component is, formally, anHIOA, and the combination is a composition of HIOAs, interacting via discreteactions only, with the common actions hidden.7.1 VehicleThe Vehicle HIOA represents the motion of the vehicle, including its velocityand acceleration. It reports the velocity (accurately, we assume) every d unitsof time, starting at time d. It is capable of receiving control signals that setan acc variable, representing the desired acceleration. However, the actualacceleration can be slightly less than this { within amount �.The actions are:Input:accel (c), c 2 ROutput:sample(u), u 2 R Internal:none 18

The variables are the same as those of D1, with the addition of an internal\deadline variable" last-sample. This deadline variable just keeps track of thenext (absolute) time at which a sample output is scheduled to occur. Also,the initialization of acc is more constrained than it is in D1, re
ecting theassumption that the correct acceleration is in e�ect at the beginning. We canthink of the system as if we initialized it with an initial sample output andcontrol signal.Input:eOutput:now 2 [0; a], initially 0v 2 R, initially 0 Internal:acc 2 R, initially ba_v 2 R, initially any value in [ba � �; ba]last-sample 2 R�0, initially dThe non-e discrete steps are:accel (c)E�ect:acc := c_v := any value in[acc � �; acc] sample(u)Precondition:now = last-sampleu = vE�ect:last-sample := now + dThus, an accel step just sets the acc control variable, and resets the actualacceleration _v accordingly. A sample step just announces the current velocity{ the only information needed by the controller component. It does so exactlyat the time scheduled in last-sample. Then it reschedules the sampling timeto be exactly d in the future.The trajectories of Vehicle are all the mappings w from left-closed subin-tervals I of [0; a] to states of Vehicle such that:1. acc and last-sample are unchanged in w.2. _v is an integrable function in w.3. For all t 2 I, the following conditions hold in state w(t).(a) now = w(0):now + t.(b) now � last-sample.(c) _v 2 [acc � �; acc].(d) v = w(0):v+ R t0 w(x): _vdx.These trajectories are quite similar to those that are permitted in D1. Themost important di�erence is that acc is now not permitted to change duringtrajectories; instead, it changes only as a result of discrete inputs (from thecontroller, presumably). However, _v can change, as long as it stays within therequired bounds. There is also a condition that prevents time from passingbeyond the last-sample deadline. The following invariants are straightforwardto prove. 19

Lemma 7.1 In every reachable state of Vehicle, the following are true.1. _v 2 [acc � �; acc].2. last-sample 2 [now ; now + d].7.2 ControllerThe Controller HIOA represents the controller that decides on the desirableacceleration, i.e., the value that should be placed into Vehicle's variable acc.It receives reports from the Vehicle of its current velocity v, and uses eachsuch report to calculate a desired new acceleration. It sends this, before anyfurther time passage, to the Vehicle in an accel action.The external actions of the Controller form the \mirror image" of thoseof the Vehicle:Input:sample(u), u 2 ReOutput:accel (c), c 2 R Internal:noneThe variables are:Input:noneOutput:none Internal:now 2 [0; a], initially 0sampled-vel 2 R, initially 0last-accel 2 R�0 [f1g, initially1Here, sampled-vel is intended to hold the sampled velocity, when theController receives a report about it. The last-accel variable is another dead-line variable, intended to keep track of the next scheduled (absolute) time foran accel signal. Initially (until the Controller receives some velocity report),no signal is scheduled, so last-accel =1.The non-e discrete steps are:sample(u)E�ect:sampled-vel := ulast-accel := now accel (c)Precondition:last-accel = nownow 6= ac = b�sampled-vela�nowE�ect:last-accel :=1The sample action just records the reported velocity, and schedules an accelaction to happen before any further real time elapses. (We could alternativelyhave modelled a system in which there is some bounded delay before the accelaction occurs.) The accel action recalculates the desired velocity, using the20

same formula as in D { pointing at the desired goal (a; b) { but this time,the calculation is based on the sampled velocity instead of the actual velocity.After the accel action, no further accel is scheduled, until a new sample occurs.The trajectories of Controller are trivial { time just passes up to any timethat does not exceed any current deadline. There is no interesting continuousbehavior to be modelled. That is, the trajectories are all the mappings w fromleft-closed subintervals I of [0; a] to states of Controller such that:1. sampled-vel and last-accel are unchanged in w.2. For all t 2 I, the following conditions hold in state w(t).(a) now = w(0):now + t.(b) now � last-accel .7.3 ImplThe complete implementation Impl is the composition of the two HIOAsVehicle and Controller, identifying the sample and accel actions, and thenhiding those actions (making them internal).We give some properties of Impl . The �rst lemma gives simple invariantsabout last-accel. It says that last-accel is only used to schedule an eventimmediately, and that when it is being used, the recorded and actual velocitiesare identical.Lemma 7.2 In every reachable state of Impl, the following are true.1. last-accel 2 fnow ;1g.2. If last-accel = now then v = sampled-vel.The next lemma is a key lemma for the simulation proof. It expressesbounds on the acc variable, no matter where the reference point is in a samplinginterval. The acc variable is set accurately initially, and at each sampling time.But in between, the accuracy of the value of acc can degrade. Lemma 7.3 givesappropriate guarantees at all times, even within the sampling intervals. Somegeneral statement of this sort is needed for the inductive proof of the simulationof D1 by Impl .In the statement of Lemma 7.3, the assumption that last-accel = 1 isused to avoid the case where the implementation automaton is in the middleof processing a new sampling output.Lemma 7.3 In every reachable state of Impl, the following are true.1. If now 6= a and last-accel =1 then acc � b��(now+d�last-sample)�va�now .21

2. If now 6= a then acc � b�va�now .Notice that the lower bound expressed in case 1 varies during each sam-pling interval. At the beginning of the interval, we have now+d = last-sample,so the bound simpli�es to b�va�now . At the other extreme, at the end of the in-terval, we have now = last-sample, and the bound simpli�es to b��d�va�now . Thecomplete statement �lls in guarantees for the intermediate points as well.Proof:1. The lower bound is proved by induction on the length of a hybrid exe-cution, as usual. The lower bound claim is true initially, since initiallyacc = ba , now = 0, last-sample = d, and v = 0.Now consider a discrete step starting from a reachable state. A samplestep makes last-accel = 1, which makes the claim vacuously true. Onthe other hand, an accel step explicitly sets acc to b�sampled-vela�now , whichis equal to b�va�now by Lemma 7.2, which su�ces to show the inequality.(This uses the fact that last-sample � now+d, which follows from Lemma7.1.)Finally, consider a [0; t]-trajectory w whose �rst state is reachable. In w,acc is unchanged, and _v � acc�� everywhere, by Lemma 7.1. Therefore,w(t):v �w(0):vt � acc � �;that is, w(t):v � w(0):v � (acc � �)t:We know by inductive hypothesis thatacc � b� �(w(0):now + d� last-sample)� w(0):va� w(0):now :In other words,w(0):v � b� �(w(0):now + d� last-sample)� acc(a �w(0):now):Adding, we get:w(t):v � b� �(w(t):now + d� last-sample)� acc(a �w(t):now):22

In other words,acc � b� �(w(t):now + d� last-sample)�w(t):va� w(t):nowThis is what we needed to show.2. For the upper bound, the argument is similar. The upper bound claimis true initially, since initially acc = ba , now = 0 and v = 0.Now consider a discrete step starting from a reachable state. A samplestep does not change any of the quantities mentioned in the inequality,and so it preserves the inequality. On the other hand, an accel stepexplicitly sets acc to b�sampled-vela�now , which is equal to b�va�now by Lemma7.2, which su�ces to show the inequality.Finally, consider a [0; t]-trajectory w whose �rst state is reachable. In w,acc is unchanged, and _v � acc everywhere, by Lemma 7.1. Therefore,w(t):v �w(0):vt � acc;that is, w(t):v � w(0):v � acc � t:We know by inductive hypothesis thatacc � b�w(0):va� w(0):now :In other words, w(0):v � b� acc(a� w(0):now):Adding, we get: w(t):v � b� acc(a� w(t):now):In other words, acc � b�w(t):va� w(t):now :This is what we needed to show.23

7.4 Impl Implements D1We show that Impl implementsD1 (see Theorem 7.5 for the formal statement),using a simulation from Impl to D1.De�ne the relation fsim2 from states of Impl to states of D1 as follows. IfsImpl is a state of Impl and sD1 is a state ofD1, then we say that (sImpl ; sD1) 2fsim2 provided that:1. sImpl :now = sD1 :now .2. sImpl :v = sD1 :v.3. sImpl :acc = sD1 :acc.4. sImpl : _v = sD1 : _v.That is, fsim2 is the identity mapping on all the state components of D1.Note that all the state components of D1 are derived from the Vehicle statein Impl . This is because the abstract system only mentions vehicle behavior,not controller behavior.Lemma 7.4 fsim2 is a simulation from Impl to D1.Proof: For the start condition, note that any combination of initial valuesallowed for all the state components in Impl is also allowed in D1.Next, consider a discrete step (sImpl ; �; s0Impl) of Impl , where sImpl andsD1 are reachable states of Impl andD1, respectively, and (sImpl ; sD1) 2 fsim2.There are two cases (again ignoring the trivial e case):1. � is a sample action.Then we take the corresponding hybrid execution fragment to be trivial{ just the trivial trajectory containing the single state sD1 . It is easy tosee that the step and the trivial trajectory have the same hybrid trace.Also, (s0Impl ; sD1) 2 fsim2, since this step does not change anything thata�ects any of the state components of D1.2. � = accel(c).Now we take the corresponding hybrid execution fragment of D1 to con-sist of a single reset step, (sD1 ; reset; s0D1). The state s0D1 is obtainedfrom the state sD1 by modifying the acc and _v components to their val-ues in s0Impl . The two steps have the same hybrid trace. Since � does notmodify now or v, it should be clear that (s0Impl ; s0D1) 2 fsim2. It remainsto show that (sD1 ; reset; s0D1) is in fact a step of D1.The step of Impl causes acc to be set to b�sampled-vela�now , which is equalto b�va�now by Lemma 7.2. It also causes _v to be set to something in therange [acc � �; acc]. These changes are permitted in a reset step of D1.24

Finally, we consider a [0; t]-trajectory wImpl whose �rst state is reachable.We allow this to correspond to a trajectory wD1 of D1, de�ned by simply pro-jecting the states of Impl on the state components of D1. The correspondencebetween the trajectories is then immediate. It remains to show that wD1 is infact a trajectory of D1. Speci�cally, we show:1. _v is an integrable function in wD1 .This follows from the de�nition of a trajectory of Vehicle.2. For all t 2 I, the following conditions hold in state w(t).(a) now = w(0):now + t.This follows from the de�nition of a trajectory of Vehicle.(b) If now 6= a then acc 2 [b��d�va�now ; b�va�now].The upper bound follows from Lemma 7.3, part 2. For the lowerbound, Lemma 7.3, part 1, implies that, throughout wImpl (exceptpossibly at the right endpoint, if now = a there), we have:acc � b� �(now + d� last-sample) � va� now :(This uses the fact that last-accel =1 throughout a trajectory; thisis true because if not, then last-accel must be equal to now at thebeginning of the trajectory, which would not permit time to pass.)Then the fact that last-sample � now , stated in Lemma 7.1, yieldsthe result.(c) If now 6= a then _v 2 [acc � �; acc].This follows from the de�nition of a trajectory of Vehicle.(d) v = w(0):v + R t0 w(x): _vdx.This follows from the de�nition of a trajectory of Vehicle.Now we can give the basic theorem relating Impl to D1:Theorem 7.5 If �Impl is a hybrid execution of Impl, then there is a hybridexecution �D1 of D1 having the same hybrid trace.Proof: By Lemma 7.4 and Theorem 2.1.Theorem 7.5 implies that the changes in now and v that are exhibitedby Impl are allowed by D1. The theorem does not mention the values of theother variables of D1, acc and _v, but of course those correspond as well. We25

could have obtained this conclusion simply by regarding acc and _v as outputvariables instead of internal variables.We can combine the results stated in Theorems 7.5 and 6.6 to obtainthe following result, which relates the implementation Impl to the high-levelspeci�cation automaton V1. This is the main result of the paper.Theorem 7.6 If �Impl is a hybrid execution of Impl, then there is a hybridexecution �V1 of V1 having the same hybrid trace.Theorem 7.6 implies that the changes in now and v that are exhibited byImpl are allowed by V1.Proof: By Theorem 7.5 and Theorem 6.6.8 DiscussionWe have described a simple vehicle deceleration maneuver as a compositionImpl of hybrid I/O automata. In this maneuver, deceleration is accomplishedusing a controller that receives accurate velocity information at equally spacedtimes, and instantly responds with control signals containing the desired accel-eration. However, there is some uncertainty, in that the proposed accelerationmight not be exhibited exactly by the vehicle.We have also given a correctness speci�cation for the range of allowed ve-locities at various times, as another HIOA V1. V1 gives, in a simple closedform, an \envelope" that includes the allowed velocities. The envelope is su�-ciently large to encompass the e�ects of both the acceleration uncertainty andthe sampling delays.We have veri�ed, using extensions of standard computer science techniques(methods for reasoning about discrete systems), that the implementation Implmeets the speci�cation V1. In particular, our proof uses invariants and levels ofabstraction. Invariants involve real-world quantities such as the velocity andacceleration, as well as state components of the controller. Our proof inter-poses an additional level of abstraction between the implementation and thespeci�cation, in which the system's behavior is represented using di�erentialequations; uncertainty is included at this level also. Again, the representa-tion is su�cient to encompass the e�ects of both acceleration uncertainty andsampling delay. Ideas from di�erential equations and from discrete analysis �tneatly into the appropriate places in the proof.Our proof that Impl satis�es the speci�cation V1 is broken down intoseparate pieces, corresponding to di�erent facts to be shown and di�erenttypes of mathematical tools. It combines continuous and discrete reasoningcleanly, in a single framework. It gives a completely accurate description of26

the system's guarantees, including correct handling of the uncertainty and thee�ects of sampling delays.Note that some complications of continuous mathematics { de�nability ofderivatives, proper handling of in�nities, etc. { arise at the intermediate levelonly, not at the top and bottom level. The top level just gives an envelopedemarcated by explicitly-de�ned continuous functions. The bottom level givesa discrete algorithm. It is only the intermediate level of abstraction that usesthe derivative representation, and at which the complications of in�nities arise.Of course, this example is very simpli�ed. It remains to generalize itto cases that include more uncertainty: the sampling times might be knownonly approximately, or velocity information might be inexact or out-of-date, orthe control signal might be sent only after some approximately-known delay.We have considered uncertainty only in the lower bound, but of course therecould also be uncertainty in the upper bound. None of these cases appearsto introduce any ideas that are di�erent in principle, so we expect that theproofs we have given should extend to these cases. Another extension is thatthe implementation might be subject to a limit on the achievable acceleration(because of physical limitations or passenger comfort). It should be possibleto use our techniques to reason about this situation also.It should also be possible to continue our example by re�ning further. Anatural extension would be to implement the discrete Controller using a morecomplicated algorithm, for example, a distributed algorithm with its own dif-�culties of communication and uncertainty. Techniques of discrete reasoning(only) could be used to show the correspondence between the more detailedcontroller and the more abstract controller of this paper. Then general com-position theorems about HIOAs could be used to show that the combinationof the new controller implementation and the given Vehicle automaton stillguarantee the proper behavior of the vehicle, as expressed by V1.Our general strategy can be described as: using levels of abstraction torepresent the relationship between a derivative and explicit form of a systemrepresentation, and also between a discrete and a continuous form, while in-corporating uncertainties accurately throughout. It remains to use the samegeneral strategy to model and verify other maneuvers, in particular, more com-plex ones. These two splits seem likely to be useful in many other examples.We could use more levels of abstraction to represent more levels of deriva-tives. For example, if vehicle position at various times were the importantconsideration, then vehicle position only might be constrained at the top level,with velocity at the next level, acceleration at another level below that, andjerk at a fourth level, below the acceleration level. The correspondence be-tween each successive pair of levels related by di�erentiation would use stan-27

dard methods of reasoning about di�erential equations (for the continuousparts of the correspondence).Finally, the sort of reasoning we are doing in this paper admits assistanceby mechanical reasoning tools. We would like to have a combination of atheorem-prover, for carrying out the discrete reasoning, with a tool for manip-ulating continuous function expressions. The two tools must be integrated sothat they can be used together, using a single representation of the system.AcknowledgmentsThis work was supported by ARPA contracts N00014-92-J-4033 and F19628-95-C-0118, AFOSR-ONR contract F49620-94-1-0199,AFOSR contract F49620-97-1-0337, NSF grant 9225124-CCR and DOT contract DTRS95G-0001.We thank Carl Livadas for reading the manuscript and suggesting severalimprovements.References1. Nancy Lynch, Roberto Segala, Frits Vaandrager, and H.B. Weinberg.Hybrid I/O automata. In DIMACS Workshop on Veri�cation and Con-trol of Hybrid Systems, October 1995. To appear in R. Alur, T. Hen-zinger, and E. Sontag, editors, Hybrid Systems III, Lecture Notes inComputer Science, Springer-Verlag.
28

