A Three-Level Analysis of a Simple Acceleration Maneuver, with
Uncertainties

Nancy Lynch
MIT Laboratory for Computer Science
545 Technology Square (NE43-365)
Cambridge, MA 02139, USA
E-madl: lynch@theory.lcs.mit.edu

A mathematical correctness analysis is given for a simple controlled vehicle accel-
eration maneuver in which the vehicle’s response to controller inputs is subject to
some uncertainty. The maneuver is modelled using hybrid (continuous/discrete)
input/output automata. The analysis uses invariant assertion and levels of ab-
straction techniques. Levels of abstraction are used (a) to express the relationship
between a derivative-based description of a system and an explicit description, and
(b) to express the relationship between a system in which corrections are made at
discrete sampling points and a system in which corrections are made continuously.

1 Introduction

In this note, we give a three-level analysis of a toy vehicle acceleration ma-
neuver. The goal of the maneuver is to cause a vehicle, starting at velocity
0 at time 0, to attain a velocity of b (or as close to b as possible) at a later
time a. The vehicle is assumed to provide accurate sampled data every d time
units. The vehicle is assumed to be capable of receiving control signals, one
immediately after each vehicle data output. Each control signal can set an
“acceleration variable”, acc, to an arbitrary real number. However, the actual
acceleration exhibited by the vehicle need not be exactly equal to acc —instead,
we assume that it is defined by an integrable function whose values are always
in the range [acc — ¢, acc].* We can think of this uncertainty as representing,
say, uncertainty in the performance of the vehicle’s propulsion system.

The vehicle interacts with a controller, presumably a computer. In this
note, we describe a particular controller and analyze the behavior of the com-
bination of the vehicle and controller. One conclusion we draw is that the
velocity of the vehicle at time a is in the range [b — ed,b]. That is, the un-
certainty in setting acc combines multiplicatively with the sampling period to
yield the uncertainty in the final velocity of the vehicle. More strongly, we
obtain a range for the velocity of the vehicle at each time in the interval [0, a].

We prove this fact using invariants and levels of abstraction (in particular,

%We could also have included some uncertainty in the upper bound, but that would not add
any interesting features to the example.

simulation methods), based on a new hybrid I/O automaton model of Lynch,
Segala, Vaandrager and Weinberg *. Invariants and levels of abstraction are
standard methods used in computer science for reasoning about discrete sys-
tems. Many of the pieces of the proofs use standard continuous methods, such
as solving algebraic and differential equations. The entire proof represents a
smooth combination of discrete and continuous methods.

The point of this exercise is to demonstrate some simple uses of levels
of abstraction in reasoning about hybrid control problems. We use levels of
abstraction here for two purposes: (a) to express the relationship between a
derivative-based description of a system and an explicit description, and (b)
to express the relationship between a system in which corrections are made at
discrete sampling points and a system in which corrections are made continu-
ously. The uncertainty in the acceleration is treated at all three levels of our
example, and is integrated throughout the presentation.

We do not contribute anything new in the way of techniques for continuous
mathematics; for example, we use standard methods of solving differential
equations. Qur contributions lie, rather, in the smooth combination of discrete
and continuous methods within a single mathematical framework, and in the
application of standard methods of discrete analysis (in particular, invariants
and levels of abstraction) to hybrid systems. Our methods are particularly
good at handling uncertainties and other forms of system nondeterminism.

2 Hybrid Input/Output Automata

We use the Lynch-Segala-Vaandrager-Weinberg hybrid input/output automa-
ton (HIOA) model !, and refer the reader to! for the details. We give a rough
summary here.

A hybrid I/0 automaton (HIOA) is a state machine having a (not neces-
sarily finite) set of states with a subset distinguished as the start states, a set of
discrete actions partitioned into input, output and internal actions, and a set of
variables, similarly partitioned into input, output and internal variables. The
states are simply combinations of values for the variables. An HIOA also has
a set of discrete steps, which are state transitions labelled by discrete actions,
plus a set of trajectories, which are mappings from a left-closed interval of R2°
with left endpoint 0 to states. A trajectory shows how the state evolves during
an interval of time. An HIOA must satisfy a collection of axioms describing
restrictions on the behavior of input actions and variables, closure properties
of trajectories, etc.

The operation of an HIOA is described by hybrid ezecution fragments,
each of which is a finite or infinite alternating sequence, o = womiwyTaws - - -,

2

of trajectories and discrete actions, where successive states match up properly.
A hybrid ezecution is a hybrid execution fragment that begins with a start
state. A state is defined to be reachable if it is the final state of some finite
hybrid execution.

The externally-visible behavior of an HIOA is defined using the notion of a
hybrid trace. The hybrid trace of any hybrid execution fragment « is obtained
from « by projecting all trajectories onto external (input and output) variables,
removing all internal actions, concatenating all consecutive trajectories for
which states match up properly, and inserting a special placeholder symbol 7
between consecutive trajectories for which states do not match up.

The levels of abstraction that we referred to in the introduction are cap-
tured by means of mappings called simulations. A simulation from HIOA A
to HIOA B with the same external actions and the same external variables is
a relation R from states(A) to states(B) satisfying the following conditions:

1. For every start state of A, there is an R-related start state of B.

2. For every discrete step (sa,w,s’y) of A with s4 a reachable state, and
every reachable state sp of B that is R-related to s4, there is a finite
hybrid execution fragment of B that starts with sp, ends with some s/
that is R-related to s/y, and has the same hybrid trace as the given step.

3. For every right-closed trajectory w4 of A starting with a reachable state,
and every reachable state sp that is R-related to the first state of wy,
there is a finite hybrid execution fragment of B that starts with sg, ends
with some s/; that is R-related to the last state of w4, and has the same
hybrid trace as wy.

The important fact about a simulation is:

Theorem 2.1 If there is a simulation from A to B, and if ay is any hybrid
execution of A, then there is a hybrid execution ag of B having the same hybrid
trace.

HIOAs come equipped with a composition operation, based on identifying
actions with the same name and variables with the same name in different
automata. HIOAs also have hiding operations, which simply reclassify some
output actions or output variables as internal. All definitions and results are

given in!.

3 Mathematical Preliminaries

3.1 Assumptions About the Constants

In the informal description in the introduction, we mentioned several constants:
a, b, d and €. All are assumed to be positive real-valued. We assume only that
d divides evenly into a.

3.2 Some Useful Functions

Function f

The following function f : [0, a] — R will be used in the analysis:

_ Z—t—i—e(a—t)log(aa_t) ift €10, a),
I {b ift =a.

In particular, f(0) = 0 and f(a) = b. Function f is continuous over [0, a], since
lim;—q f(t) = f(a). Function f satisfies:

fy =¥~ crog(“=ty o= 12T

a a—1

—,
for all ¢ € (0,a). Moreover, f has a right derivative of % — e at 0, while at a,
f’s left derivative is undefined. (It approaches +00.)

Function f describes the behavior of a continuous process that starts at
time 0 at value 0, always “tries to” set its derivative so as to point to the graph
point (a, b), but consistently “misses low” by exactly e. That is, f is a solution
to the differential equation

; b— f(t)
) =
fiy =18
where t € [0, a), with the boundary condition f(0) = 0. Function f is depicted
in Figure 1.

— ¢,

Function g
We also define the function g : [0, a] — [0, 8], by

bt
t) = —.
9(t) = —
Then ¢(0) = 0 and g(a) = b, and ¢ is continuous over [0,a]. Function ¢

satisfies:
b _b—g(t)

g(t):E a—1

(ab)

(0,0)

Figure 1: Functions f and g.

for all ¢ € (0,a). Moreover, g has a right derivative of g at 0 and a left
derivative, also of g at a. Function ¢ is a solution to the differential equation

bl

gty = 2

a—1

where ¢ € [0,a), with the boundary condition ¢(0) = 0. Function g¢ is also
depicted in Figure 1.

Function f;

The following function f; : [0, a] — R is like f, but it uses the goal of (a, b —ed)
instead of (a,b).

At = { Qedt 4 c(a—t)log(4=L) it € [0, q),
b—ed ift = a.
In particular, f1(0) = 0 and fi(a) = b — ed. Function f; is continuous over
[0, a]. Function f; satisfies:

_ b_Gd—elog(a_t)—e: b—Gd—fl(t)_€

a a—1

A(t)

bl

for all t € (0,a). Moreover, f; has a right derivative of b_a“l — ¢ at 0, while
at a, fi’s left derivative is undefined. (It approaches +00.) Function f; is a
solution to the differential equation

_b-ed=FQ)

a—1

(1) -6

where t € [0,a), with the boundary condition f(0) = 0. The function f; is
depicted in Figure 2.

(ab)
(ab-gf)

(0,0)

Figure 2: Function f;.

Function h
Finally, we consider the function h : [0,a] — [0,b — €a], where

h(t) = b—t — et.

a

In particular, h(0) = 0 and h(a) = b — ea. Also,

for all ¢+ € (0,a), and the half derivatives at the endpoints are also equal to
g — €. Function h satisfies:

b— h(t)

a—1

— €

h(t) <

for all t € [0, a).

4 High Level Specification V

We begin with a high-level system specification. This will not be our final
version of the high-level specification — this preliminary version includes only
the effects of the uncertainty in the acceleration, but not the effects of sampling
delays. We add those later, in V7, in Section 6.1.

4.1 Owverview

Our highest-level system description consists of constraints on the vehicle ve-
locity, embodied in an HIOA V. V simply constrains the vehicle velocity v to
be anywhere within a given region bounded by the continuous functions f and
g. This region is represented by the area under the line and over the curve in

6

Figure 1 above. Note that this region is determined by the parameters a, b
and ¢; in particular, it depends on the uncertainty of acceleration, e.

We imagine that this region delineates the “acceptable” vehicle velocities
at various times. These limitations on velocities might be used to prove some
properties of a system containing the vehicle. This description places no lim-
itations on, say, vehicle acceleration; for example, it permits the vehicle to
accelerate arbitrarily quickly, as long as the velocity remains within the given
region.’

We think that it is reasonable to use such region descriptions to express
system requirements. It might not matter how a system ensures that the
controlled entity remains within the required region — just the region restriction
itself might be enough to ensure that the system behaves as required. For
example, an air traffic control system might operate by allocating regions in
space-time to airplanes. Aslong as the allocated regions are disjoint, planes can
fly without danger of collision. It should not matter how the system ensures
that the planes remain within their regions.

In Section 5, we will give a lower-level description of the system, in terms
of v, the derivative of the velocity. We think of the derivative-based description
as a way of implementing the region description.

4.2 Formal Description

We define a single HIOA V. Automaton V has no discrete actions (except for a
dummy environment action e required as a technicality by the formal model).
It has the following variables:

Input: Internal:
none none
Output:

now € [0,a], initially O
v € R, initially O

The only discrete steps are dummy e-steps that cause no state change.
The trajectories of V are all the mappings w from left-closed subintervals I of
[0, a] to states of V' such that:

1. For all ¢ € I, the following conditions hold in state w(t).
(a) now = w(0).now + t.
(b) v € [f(row), g(now)].

b0Of course, in a practical context, there might also be limitations on acceleration, imposed,
for example, by passenger comfort requirements or physical laws. In such a case, the high-
level specification would be different from what we give here, including restrictions on accel-
eration as well as velocity.

Condition (a) says that the value of now just increases along with the real
time — the difference is that ¢ is a relative time measure, which starts at 0 in
each trajectory, while now is an absolute time measure, which starts at 0 at the
beginning of an entire hybrid execution. Condition (b) describes the envelope
for v. The now variable allows us to express the second condition just in terms
of the automaton state, a useful style for invariant and simulation proofs.

We do not require any other assumptions. For instance, continuity of v
is not required at this level, although it will be guaranteed by any real imple-
mentation. We believe that the continuity condition for v is not important for
using this specification, but only in reasoning about implementations.

Note that our description at this level does not involve any controller. At
the highest level, it is probably appropriate to consider just the behavior of the
controlled system, regarding the controller as a part of the implementation.

In general, we follow the philosophy of using the maximum possible nonde-
terminism in our specifications — in particular, we do not include assumptions
such as continuity or bounds on acceleration until we need them in the proof
of some result.

We give a trivial invariant of V:

Lemma 4.1 In every reachable state of V', it is the case that v € [f(now), g(now)].
Proof: The proof (as usual for invariants of HIOAs) is by induction on the
length, that is, the number of trajectories and discrete steps, in a finite hybrid
execution that leads to the state in question. Here (as usual for such proofs),

we must show three things: that the property is true in every initial state, that

it is preserved by every discrete step, and that it is preserved by every right-
closed trajectory. (Note that we need consider only right-closed trajectories,
and that we need show only that the property holds in the last state of the
trajectory, assuming that it holds in the first state. We do not need to show
anything about the intermediate states in the trajectory.)

In this case, all of these are easy to see. In the unique start state of V| we
have v = 0, now = 0, and f(0) = ¢(0) = 0, so that v € [0, 0], which is what
is needed. The only discrete steps are the dummy e-steps, which obviously
preserve this property. And trajectories are defined explicitly so as to preserve
this property. [|

Note that Lemma 4.1 implies that, in every reachable state of V' in which
now = a, it must be that v = b.
5 Derivative Automaton D

In Section 4, we gave a high-level specification HIOA V| describing a region
that contains the allowed values of the velocity v at all times. Now we give a

8

lower-level description in terms of constraints on the derivative of the velocity,
v; this description is given as another HIOA D). Again, there is no controller.

After defining D), we prove some basic properties of its behavior, and then
show that D implements V| in the sense of hybrid trace inclusion. Finally, we
give an example to show how similar results could be proved for cases where
the differential equations do not have known solutions.

5.1 Formal Description

HIOA D includes a variable ace, which is assumed to always “point to” the
goal point (a,b). For this section, we include no uncertainty in the value of ace
— we assume that it 1s set completely accurately. However, there is uncertainty
in the actual acceleration v — we assume that the value of v is in the interval
[acc — €, acc]. The actual velocity v is derived from the actual acceleration v
using integration.

Formally, HIOA D has a single discrete action (besides the dummy envi-
ronment action e) — an internal reset action that simply resets ¢ arbitrarily, as
long as it preserves the required relationship between v and acc.

The discrete actions of D are:

Input: Internal:
e, the environment action reset
Output:
none

D has the following variables:

Input: Internal:
none acc € R, initially g
Output: ¥ € R, initially any value in [g — ¢, g]

now € [0,a], initially O
v € R, initially O

The e steps cause no state change, while the non-e discrete steps are all of
the form:

reset
Precondition:
true
Effect:

¥ := any value in [acc — ¢, acc]
The trajectories of D are all the mappings w from left-closed subintervals
I of [0, a] to states of D such that:

1. ¥ is an integrable function in w.¢

“More precisely, this means that w(¢).0 is an integrable function of ¢, where t ranges over

9

2. For all ¢ € I, the following conditions hold in state w(t).
(a) now = w(0).now + t.
(b)
(c) If now # a then ¥ € [acc — €, acc].
(d) v=w(0)v+ fot w(z).vdz.

b—w

a—now

If now # a then acc = . (Otherwise, acc is arbitrary).

In D, acc points directly at the “goal” (a,b), but & reflects an uncertainty of
€. The quantity v is simply derived from ¢, using integration.

5.2 Some Properties of D

Lemma 5.1 Let w be any trajectory of D. Then v is a continuous function
in w.?
The following are some obvious invariants.

Lemma 5.2 In every reachable state of D, the following are true.

1. If now # a then acc = =2

2. If now # a then v € [acc — ¢, acc].
Proof: These follow easily from the definition of D. [|

The following invariant is a little less obvious, but is an easy consequence
of Lemma 5.2. The functions f and g used in this lemma are as defined in
Section 3.2.

Lemma 5.3 [In every reachable state of D in which now # a, the following
are true.

1. woilnow) > f(now) — 0.

a—now

9 g(now)—v

a—now

>0 — g(now).
Proof:
1. By definition of f, we have that:

. bh—
F(now) = b= f(now)
a — now
By Lemma 5.2, we have that:
. b—wv
V> acc—e€= ———— — €.
a — now

the interval I.

4This means continuous in the time argument of w.

10

Therefore,

f’(now)_@gw_g_(b_iv_g): U—f(now).

a— now a— now a— now

This 1s as needed.

2. By definition of g, we have that:

bh—
i(now) = L=9(now).
a — now
By Lemma 5.2, we have that:
. b—wv
v<acc = ———.
a — now
Therefore,
o — j(now) < b—v b—g(now) _ g(now)—v.

a— now a — now a — now

This 1s as needed.

The following are limitations on the rate of change of the velocity in D
(for contrast, recall there were no such limitations in V):
Lemma 5.4 Let w be any (right-closed or right-open) trajectory of D whose
now values do not include a, and that starts from a reachable state of D. Then:

- v—f(now) - . .
1. The ratio %Ml 1s monotone nondecreasing in w.®

N now)—v - . .
2. The ratio ﬂmowL 1s monotone nondecreasing in w.

This says that v cannot increase too slowly — its distance from f, weighted
by the time remaining, cannot decrease. Likewise, v cannot increase too fast
— its distance from g, weighted by the time remaining, cannot decrease.
Proof: In each case, it suffices to show that the first derivative of the ratio is
always nonnegative.

1. The first derivative of the ratio is:

(a — now)(v — f(now)) — (v — f(now))(—1)

(a — now)?

¢This means monotone nondecreasing in the time argument of w.

11

_ (a—now)(v — f(now)) +(v— f(now)).

o (a — now)?

(Here we are using the fact that ¢ is the derivative of v — this is justified
formally by the integral definition of the variable v.)

Since the denominator is always positive, i1t suffices to show that:

(a — now) (v — f(now)) + (v — f(now)) > 0
in all states of w. This is equivalent to saying that:

v~ Jinow) f(now) > f(now) -0,
a— now

in all states of w. But this follows immediately from Lemma 5.3 (using
the fact that w starts in a reachable state of D, so all its states are

reachable).

. The derivative of the ratio is:

(a — now)(g(now) — v) — (g(now) — v)(—1)
(a — now)?

(a — now)(g(now) — v) + (g(now) — v) .
(a — now)?

Since the denominator is always positive, i1t suffices to show that:
(a — now)(g(now) —) + (g(now) —v) >0
in all states of w. But this is equivalent to saying that:

7g(n0w) —v >0 — g(now)

a— now

in all states of w. This follows from Lemma 5.3.

5.8 D Implements V

The main result that we want to show about D is the following:
Theorem 5.5 If ap s a hybrid execution of D, then there i1s a hybrid execu-
tion ay of V having the same hybrid trace.

12

Note that the hybrid trace of each of V and D includes just the now
and v values. Theorem 5.5 implies that the changes in now and v that are
exhibited by D are allowed, according to the constraints expressed by V. The
correspondence does not mention the implementation variables acc and v. We
prove Theorem 5.5 using a simulation, as defined informally in Section 2. We
define a relation fsim from states of D to states of V' as follows. If sp is a
state of D and sy is a state of V, then we say that (sp, sy) € fsim provided
that the following hold.

1. sp.now = sy .now.

2. sp.w=sy.n.

We show:
Lemma 5.6 fsim is a stmulation from D to V.
Proof: We show the three conditions in the definition of a simulation. The
start condition is straightforward: If sp 1s any start state of D and sy is the
unique start state of V| then both states have now = 0 and v = 0. It follows
that (sp,sv) € fsim.

Next, we consider discrete steps. Suppose that (sp,w, sp,) is any discrete
step of D, and that (sp,sy) € fsim. Then let the hybrid execution fragment
corresponding to this step consist of the trivial trajectory containing exactly
one state and no steps. Then both the discrete step and the corresponding
fragment have the same hybrid trace, consisting of the values of now and
v that appear in sp. It suffices to show that (s),sv) € fsim. But this is
immediate, because 7 (a reset or e action) does not modify either now or
v. Now we consider trajectories. Suppose that wp i1s an [-trajectory of D,
where [1s right-closed, and suppose that the first state, sp, of wp is reachable
in D. Suppose that sy is a reachable state of V such that (sp,sy) € fsim.
Then let the corresponding hybrid execution fragment of V' consists of a single
trajectory wy, where wy (t).now = wp(t).now and wy (t).v = wp(t).v for all ¢
in the domain of I. It is obvious that the two trajectories have the same hybrid
trace. The only interesting thing to show is that wy is in fact a trajectory of
V. By the definition of a trajectory of V| what we must show is that

1. For all ¢ € I, the following conditions hold in state w(t).
(a) now = w(0).now + t.

(b) v € [f(row), g(now)].

(We must verify these conditions throughout the trajectory, not just at the
beginning and end.) The first condition follows immediately from the same
condition for wp and the definition of wy in terms of wp. The second condition
has two parts, a lower bound and an upper bound.

13

For the lower bound, since sy 1s a reachable state of V, Lemma4.1 implies

that, in sy, v > f(now). By Lemma 5.4 and the definition of wy in terms
of wp, we know that the ratio %ﬁl 1s monotone nondecreasing in wy,
except possibly at the right endpoint of wy if now = a there. It follows that
v > f(now) throughout wy, except possibly at the right endpoint if now = a
there. But since f(now) and v are continuous functions of the time argument
of wy, this inequality must hold at the right endpoint as well.

The upper bound argument is analogous. Since sy is reachable, Lemma
4.1 implies that, in sy, v < g(now). By Lemma 5.4 and the definition of wy
in terms of wp, we know that the ratio % is monotone nondecreasing
in wy, except possibly at the right endpoint of wy if now = a there. It
follows that v < g(now) throughout wy, exept possibly at the right endpoint
if now = a there. But since g(now) and v are continuous functions of the time

argument of wy , this inequality must hold at the right endpoint as well.
Proof: (of Theorem 5.5)

By Lemma 5.6 and Theorem 2.1. [|

Note that the correspondence between D and V is only one-way. It says,
roughly speaking, that everything that D does is allowed by V. It does not say
that D has to exhibit all the possibilities that are allowed by V. For example,
extremely fast increases in v that cannot be achieved by accelerations in the
allowed ranges, but that keep v within the allowed envelope, are permitted by
V', but do not actually occur in D. Also, note that 1D performs some activities
— here, changes to acc and v — that are not explicitly represented in V.

Although Theorem 5.5 is very simple, it does demonstrate, at least in a
small way, how one can carry out a correctness proof using invariants and
simulations, integrating discrete and continuous reasoning, and coping with
some uncertainty.

5.4 An Approzimate Result

The lower bound function f is defined essentially as the solution of a differential
equation that is extracted from the definition of the trajectories of D. In this
case, the differential equation is easy to solve. But what if it were not so easy?
In this case, the same methods could still be used, but now the lower bound
produced might be a loose bound rather than an exact bound.

For example, suppose that instead of trying to prove a lower bound of f,
we only tried to prove a lower bound of A, where h is the function defined in
Section 3.2. Showing that h is a lower bound essentially requires redefining V'

14

to use h instead of f. Proving the simulation now rests on the fact, stated in
Section 3.2, that

- b— h(t

iy < 2RO

a—1

for all ¢ € [0,a). Using this fact, it is easy to obtain the analog to part 1 of
Lemma 5.3 for h: that in every reachable state of D,

v — h(now)

> h — 9.
pPR— (now) — v

This fact follows as in the proof of part 1 of Lemma 5.3 (but using the inequality
above at one step instead of an equality as before). Next, we can prove the

analog to part 1 of Lemma 5.4 for h: that the ratio % s monotone
nondecreasing in w. This is what is needed to complete the analog to the

proof of Lemma 5.6.

6 Modifications to V and D to Incorporate Periodic Feedback

The discussions and results in Sections 4 and 5 have dealt with hypothetical
systems with continuous control. But recall from the introduction that in the
actual implementation in which we are interested, the sampling outputs and
control signals are not continuous but periodic, at intervals of d. It turns out
that the abstract automata D and V do not quite provide accurate models of
the actual implementation. However, they can be modified easily so that they
do.

We believe that providing accurate models for the handling of uncertain-
ties 18 important. It is not sufficient to give a careful analysis of a situation
without uncertainty, then argue informally about the variations in behavior
that are introduced by uncertainties. Handling uncertainties correctly requires
considering them appropriately at all levels of abstraction.

6.1 Modified High Level Specification Vy

First, we modify V only a tiny bit to get V1, by changing the lower bound f to
the function f; defined in Section 3.2. The upper bound ¢ remains the same as
before. (Of course, we could have written the original V' with parameters, so
that the modifications in this section would just amount to different parameter
settings.)

This modification makes the region of allowable values for v bigger by
making the lower bound function smaller. The particular way that we make
it smaller amount to simply replacing the “goal” of (a,b) in V' with the goal

15

of (a,b — ed) in V1, for the lower bound function only. Thus, the value of v at
time a will be in the range [b — ed, b], instead of always being exactly b.

It was not obvious to us at first that the high-level effect of the sampling
delays is just this simple change of goal point; we discovered this only through
detailed analysis of the behavior of the discrete-sampling system. We do not
expect to use a general rule for determining the high-level effect of uncertain-
ties; indeed, we expect that this will usually require serious work, perhaps
using results of robust control theory. It is important that the high-level ef-
fects of uncertainties be described accurately, though the bounds need not be
as tight as possible.

6.2 Modified Derivative Automaton Dy

Now we modify D to get Dy, again by modifying the lower bound requirement.
Here we do this by introducing uncertainty into acc, allowing it to “point to”
anywhere between (a, b) (where it points in D) to (a, b — ed). We still have the
same uncertainty in ¢ as we do in D. Thus, D; expresses two different types of
uncertainty. We can think of the uncertainty in v as representing propulsion
system uncertainty and the uncertainty in ace as encompassing the sampling
delays.

The modifications are as follows. The states and start states of Dy are the
same as those of D, except for the following changes: The initial value of acc is
any value in the interval [b_a“l, %], and the initial value of v is any value in the
interval [acc — ¢, acc]. The reset action now changes slightly, to allow changes
in acc as well as v. These changes keep acc and v within the desired ranges.

reset
Precondition:
true
Effect:
acc := any value in [Z=¢d=v _b=v
a—now a—now
¥ := any value in [acc — ¢, acc]

The trajectories of Dy are all the mappings w from left-closed subintervals
I of [0, a] to states of Dy such that:

1. 7 is an integrable function in w.

2. For all ¢ € I, the following conditions hold in state w(t).
(a) now = w(0).now + t.
(b) If now # a then acc € [L=Sd=y _b=v]

a—now ' a—now

)
(c) If now # a then ¥ € [acc — €, acc].
(d) v=w(0)v+ fot w(z).vdz.

16

(Again, we could have written the original D with parameters, so that the
modifications in this section would amount to different parameter settings.)

6.3 Modified Correctness Proof

Our claim now is that the arguments that worked to show that D) implements
V' can be modified slightly (and systematically) to show that D; implements
Vi. We give the modified result statements.

Lemma 6.1 Let w be any trajectory of D1. Then v is a continuous function
n w.

Lemma 6.2 In every reachable state of Dy, the following are true.

1. If now # a then acc € [b=<d=y _b=v]

a—now ’ a—now

2. If now # a then v € [acc — ¢, acc].

Lemma 6.3 In every reachable state of Dy in which now # a, the following
are true.

1. =hinow) > fl(now) — 0.

a—now

g, glnow)=v >0 — g(now).

a—now

Proof: We only prove part 1; part 2 is unchanged from the corresponding
proof for D. By definition of f;, we have that:

b—ed— fi(now) 3

fi(now) = a — now
By Lemma 6.2, we have that:
) b—ed—w
v > acc—¢€ > ——— — €.
a — now
Therefore,
: b—ed— b—ed— —
fi(now) — b < ed — fi(now) e ed—v o= v fl(now).
a — now a — now a — now
This is as needed. [|

Lemma 6.4 Let w be any trajectory of D1 whose now wvalues do not include
a, and that starts from a reachable state of Dy. Then:

. y— now) - . .
1. The ratio af_lmw 1s monotone nondecreasing in w.

17

2. The ratio L22=" s monotone nondecreasing in w.

a—now

Now define the relation fsim, from states of Dy to states of V1 as follows. If
sp, is a state of Dy and sy, is a state of V1, then we say that (sp,, sv,) € fsim,
provided that the following hold.

1. sp,.mow = sy, .now.

2. Sp,.v = sy, .U.

This definition is essentially the same as that for fsim, from D to V.
Lemma 6.5 fsim, is a stmulation from Dy to V;.
Proof: Similar to the proof of Lemma 5.6. [|

Theorem 6.6 If ap, is a hybrid execution of Dy, then there s a hybrid exe-
cution ay, of Vi having the same hybrid trace.

Theorem 6.6 says that the changes in now and v that are exhibited by D; are
allowed by V1.

Note that the modifications we did to include this uncertainty are quite
simple and systematic. A good general strategy for constructing proofs for im-
plementations involving uncertainty is to first carry out the development with-
out the uncertainty, then try to incorporate the uncertainty later, by making
simple modifications throughout.

7 The Implementation Impl

Now we are (finally) ready to describe the actual implementation in which
we are interested. This one consists of two components, a Vehicle and a
Controller, interacting by discrete actions. Each component is, formally, an
HIOA, and the combination is a composition of HIOAs, interacting via discrete
actions only, with the common actions hidden.

7.1 Vehicle

The Vehicle HIOA represents the motion of the vehicle, including its velocity
and acceleration. It reports the velocity (accurately, we assume) every d units
of time, starting at time d. It is capable of receiving control signals that set
an acc variable, representing the desired acceleration. However, the actual
acceleration can be slightly less than this — within amount e.

The actions are:

Input: Internal:
accel(c), c €R none
Output:

sample(u), u € R

18

The variables are the same as those of Dy, with the addition of an internal
“deadline variable” last-sample. This deadline variable just keeps track of the
next (absolute) time at which a sample output is scheduled to occur. Also,
the initialization of acc is more constrained than it is in Dy, reflecting the
assumption that the correct acceleration is in effect at the beginning. We can
think of the system as if we initialized it with an initial sample output and
control signal.

Input: Internal:
e acc € R, initially g

Output: ¥ € R, initially any value in [g — ¢, g]
now € [0,a], initially O last-sample € R20, initially d

v € R, initially O

The non-e discrete steps are:

accel(c) sample(u)
Effect: Precondition:
ace := ¢ now = last-sample
¥ := any value in[acc — ¢, acc] u=v
Effect:

last-sample := now + d

Thus, an accel step just sets the ace control variable, and resets the actual
acceleration v accordingly. A sample step just announces the current velocity
— the only information needed by the controller component. It does so exactly
at the time scheduled in last-sample. Then it reschedules the sampling time
to be exactly d in the future.

The trajectories of Vehicle are all the mappings w from left-closed subin-
tervals T of [0, a] to states of Vehicle such that:

1. acc and last-sample are unchanged in w.

2. ¥ is an integrable function in w.

3. For all ¢ € I, the following conditions hold in state w(t).
(a) now = w(0).now + t.
(b)
(c) ¥ € [acc — €, ace].
(d) v=w(0)w+ [w(z).ide.

These trajectories are quite similar to those that are permitted in Dy. The
most important difference is that acc is now not permitted to change during
trajectories; instead, it changes only as a result of discrete inputs (from the
controller, presumably). However, © can change, as long as it stays within the
required bounds. There is also a condition that prevents time from passing
beyond the last-sample deadline. The following invariants are straightforward
to prove.

now < last-sample.

v

19

Lemma 7.1 In every reachable state of Vehicle, the following are true.
1. ¥ € [acec — ¢, acc].

2. last-sample € [now, now + dJ.

7.2 Controller

The Controller HIOA represents the controller that decides on the desirable
acceleration, i.e., the value that should be placed into Vehicle’s variable ace.
It receives reports from the Vehicle of its current velocity v, and uses each
such report to calculate a desired new acceleration. It sends this, before any
further time passage, to the Vehicle in an accel action.

The external actions of the Controller form the “mirror image” of those

of the Vehicle:

Input: Internal:
sample(u), u € R none
e

Output:

accel(c), c €R

The variables are:

Input: Internal:
none now € [0,a], initially O
Output: sampled-vel € R, initially O
none last-accel € R20 U {oo}, initially co

Here, sampled-vel 1s intended to hold the sampled velocity, when the
Controller receives a report about it. The last-accel variable is another dead-
line variable, intended to keep track of the next scheduled (absolute) time for
an accel signal. Initially (until the Controller receives some velocity report),
no signal is scheduled, so last-accel = co.

The non-e discrete steps are:

sample (u) accel(c)

Effect: Precondition:
sampled-vel := u last-accel = now
last-accel := now now # a

_ b—sampled-vel
¢= a—now
Effect:
last-accel := oo

The sample action just records the reported velocity, and schedules an accel
action to happen before any further real time elapses. (We could alternatively
have modelled a system in which there is some bounded delay before the accel
action occurs.) The accel action recalculates the desired velocity, using the

20

same formula as in D — pointing at the desired goal (a,b) — but this time,
the calculation is based on the sampled velocity instead of the actual velocity.
After the accel action, no further accel is scheduled, until a new sample occurs.

The trajectories of Controller are trivial — time just passes up to any time
that does not exceed any current deadline. There is no interesting continuous
behavior to be modelled. That is, the trajectories are all the mappings w from
left-closed subintervals I of [0, a] to states of Controller such that:

1. sampled-vel and last-accel are unchanged in w.

2. For all ¢ € I, the following conditions hold in state w(t).
(a) now = w(0).now + t.
(b) now < last-accel.

7.3 Impl

The complete implementation Impl is the composition of the two HIOAs
Vehicle and Controller, identifying the sample and accel actions, and then
hiding those actions (making them internal).

We give some properties of Impl. The first lemma gives simple invariants
about last-accel. It says that last-accel is only used to schedule an event
immediately, and that when it is being used, the recorded and actual velocities
are identical.

Lemma 7.2 In every reachable state of Impl, the following are true.
1. last-accel € {now,c}.
2. If last-accel = now then v = sampled-vel.

The next lemma is a key lemma for the simulation proof. It expresses
bounds on the ace variable, no matter where the reference point is in a sampling
interval. The acc variable is set accurately initially, and at each sampling time.
But in between, the accuracy of the value of acc can degrade. Lemma 7.3 gives
appropriate guarantees at all times, even within the sampling intervals. Some
general statement of this sort is needed for the inductive proof of the simulation
of Dy by Impl.

In the statement of Lemma 7.3, the assumption that last-accel = oo is
used to avoid the case where the implementation automaton 1s in the middle
of processing a new sampling output.

Lemma 7.3 In every reachable state of Impl, the following are true.

b—e(now+d—last-sample)—v

1. If now # a and last-accel = 0o then acc > Fa———

21

2. If now # a then acc < —=2

a—now

Notice that the lower bound expressed in case 1 varies during each sam-
pling interval. At the beginning of the interval, we have now+d = last-sample,
so the bound simplifies to aﬁ_” At the other extreme, at the end of the in-

now’

terval, we have now = last-sample, and the bound simplifies to Z__Ego_l;’. The

complete statement fills in guarantees for the intermediate points as well.

Proof:

1. The lower bound is proved by induction on the length of a hybrid exe-
cution, as usual. The lower bound claim is true initially, since initially

acc = %, now = 0, last-sample = d, and v = 0.

Now consider a discrete step starting from a reachable state. A sample
step makes last-accel = oo, which makes the claim vacuously true. On
the other hand, an accel step explicitly sets acc to W, which
is equal to aE;Zw by Lemma 7.2, which suffices to show the inequality.
(This uses the fact that last-sample < now—+d, which follows from Lemma

7.1)

Finally, consider a [0, {]-trajectory w whose first state is reachable. In w,
acc is unchanged, and © > acc — € everywhere, by Lemma 7.1. Therefore,

w(t).v —w(0).v

7 > acc — €,

that is,
w(t).v — w(0).v > (acc — €)t.
We know by inductive hypothesis that

b—e(w(0).now + d — last-sample) — w(0).v

>
aee = a— w(0).now

In other words,

w(0).v > b — e(w(0).now + d — last-sample) — acc(a — w(0).now).
Adding, we get:

w(t).v > b— e(w(t).now + d — last-sample) — acc(a — w(t).now).

22

In other words,

b—e(w(t).now+ d — last-sample) — w(t).v

>
aee = a— w(t).now

This 1s what we needed to show.

. For the upper bound, the argument is similar. The upper bound claim

is true initially, since initially acc = %, now = 0 and v = 0.

Now consider a discrete step starting from a reachable state. A sample
step does not change any of the quantities mentioned in the inequality,
and so it preserves the inequality. On the other hand, an accel step
explicitly sets acc to M’ which is equal to —2=¢

a—now a—now

7.2, which suffices to show the inequality.

by Lemma
Finally, consider a [0, {]-trajectory w whose first state is reachable. In w,
acc 1s unchanged, and ¢ < acc everywhere, by Lemma 7.1. Therefore,

w(t).v —w(0).v

< acc,
t

that is,
w(t).v — w(0).v < acc - L.

We know by inductive hypothesis that
b—w(0).v

acc < m.
In other words,

w(0).v < b— acc(a — w(0).now).
Adding, we get:

w(t).o < b—ace(a— w(t).now).
In other words,
b—w(t).v

<l -
e = a— w(t).now

This 1s what we needed to show.

23

7.4 Impl Implements Dy

We show that Impl implements D, (see Theorem 7.5 for the formal statement),
using a simulation from Impl to D;.

Define the relation fsim, from states of Impl to states of Dy as follows. If
Stmpl 18 a state of Impl and sp, is a state of Dy, then we say that (sppi, sp,) €
fsim, provided that:

1. Spmpi-mow = sp, .now.
2. Simpl-V = Sp, V.

3. Smpl-acc = sp, .acc.
4. S[mpl.ilj = 5D1~7.]~

That is, fsim, is the identity mapping on all the state components of D;.
Note that all the state components of 1Dy are derived from the Vehicle state
in Impl. This is because the abstract system only mentions vehicle behavior,
not controller behavior.

Lemma 7.4 fsim, is a stmulation from Impl to D;.

Proof: For the start condition, note that any combination of initial values
allowed for all the state components in Impl is also allowed in Dy.

Next, consider a discrete step (8rmpt, T, 87p;) of Impl, where sy, and
sp, are reachable states of Impl and D1, respectively, and (simp1, $p,) € fsim,.
There are two cases (again ignoring the trivial e case):

1. 7 1s a sample action.

Then we take the corresponding hybrid execution fragment to be trivial
— just the trivial trajectory containing the single state sp,. It is easy to
see that the step and the trivial trajectory have the same hybrid trace.
Also, (8pmp1s 5Dy) € fsimy, since this step does not change anything that
affects any of the state components of D;.

2. 7 = accel(e).

Now we take the corresponding hybrid execution fragment of Dy to con-
sist of a single reset step, (sp,, reset,s’Dl). The state SlDl is obtained
from the state sp, by modifying the acc and v components to their val-
ues in S/Impl. The two steps have the same hybrid trace. Since # does not
modify now or v, it should be clear that (S/Impl, s,) € fsimy. It remains
to show that (sp,, reset, s,) is in fact a step of D;.

b—sampled-vel

The step of Impl causes acc to be set to PR

b=v_ by Lemma 7.2. It also causes © to be set to something in the
a—now

range [acc — ¢, acc]. These changes are permitted in a reset step of D;.

, which is equal

to

24

Finally, we consider a [0,t]-trajectory wrmp; whose first state is reachable.
We allow this to correspond to a trajectory wp, of Dy, defined by simply pro-
jecting the states of Impl on the state components of D;. The correspondence
between the trajectories is then immediate. It remains to show that wp, 1s in
fact a trajectory of D;. Specifically, we show:

1. ¥ 1s an integrable function in wp,.

This follows from the definition of a trajectory of Vehicle.
2. For all t € I, the following conditions hold in state w(t).

(a) now = w(0).now + ¢.
This follows from the definition of a trajectory of Vehicle.
(b) If now # a then acc € [4=fd=y _b=v_]

a—now ' a—now

The upper bound follows from Lemma 7.3, part 2. For the lower
bound, Lemma 7.3, part 1, implies that, throughout wmpr (except
possibly at the right endpoint, if now = a there), we have:

b—e(now + d — last-sample) — v

acc >
a— now
(This uses the fact that last-accel = oo throughout a trajectory; this
is true because if not, then last-accel must be equal to now at the
beginning of the trajectory, which would not permit time to pass.)
Then the fact that last-sample > now, stated in Lemma 7.1, yields
the result.

(¢) If now # a then v € [acc — €, acc].

This follows from the definition of a trajectory of Vehicle.
(d) v=w(0).v+ fot w(z).vde.

This follows from the definition of a trajectory of Vehicle.

Now we can give the basic theorem relating Impl to Dy:
Theorem 7.5 If apmpr 15 @ hybrid execution of Impl, then there is a hybrid
execution ap, of Dy having the same hybrid trace.
Proof: By Lemma 7.4 and Theorem 2.1. [|

Theorem 7.5 implies that the changes in now and v that are exhibited
by Impl are allowed by D;. The theorem does not mention the values of the
other variables of Dy, acc and v, but of course those correspond as well. We

25

could have obtained this conclusion simply by regarding acc and v as output
variables instead of internal variables.

We can combine the results stated in Theorems 7.5 and 6.6 to obtain
the following result, which relates the implementation Impl to the high-level
specification automaton V;. This is the main result of the paper.

Theorem 7.6 If apmpr 15 @ hybrid execution of Impl, then there is a hybrid
execution ay, of Vi having the same hybrid trace.

Theorem 7.6 implies that the changes in now and v that are exhibited by
Impl are allowed by V1.
Proof: By Theorem 7.5 and Theorem 6.6. [|

8 Discussion

We have described a simple vehicle deceleration maneuver as a composition
Impl of hybrid I/O automata. In this maneuver, deceleration is accomplished
using a controller that receives accurate velocity information at equally spaced
times, and instantly responds with control signals containing the desired accel-
eration. However, there is some uncertainty, in that the proposed acceleration
might not be exhibited exactly by the vehicle.

We have also given a correctness specification for the range of allowed ve-
locities at various times, as another HIOA V;. Vj gives, in a simple closed
form, an “envelope” that includes the allowed velocities. The envelope is suffi-
ciently large to encompass the effects of both the acceleration uncertainty and
the sampling delays.

We have verified, using extensions of standard computer science techniques
(methods for reasoning about discrete systems), that the implementation Impl
meets the specification V7. In particular, our proof uses invariants and levels of
abstraction. Invariants involve real-world quantities such as the velocity and
acceleration, as well as state components of the controller. Our proof inter-
poses an additional level of abstraction between the implementation and the
specification, in which the system’s behavior is represented using differential
equations; uncertainty is included at this level also. Again, the representa-
tion is sufficient to encompass the effects of both acceleration uncertainty and
sampling delay. Ideas from differential equations and from discrete analysis fit
neatly into the appropriate places in the proof.

Our proof that Impl satisfies the specification V7 is broken down into
separate pieces, corresponding to different facts to be shown and different
types of mathematical tools. It combines continuous and discrete reasoning
cleanly, in a single framework. It gives a completely accurate description of

26

the system’s guarantees, including correct handling of the uncertainty and the
effects of sampling delays.

Note that some complications of continuous mathematics — definability of
derivatives, proper handling of infinities, etc. — arise at the intermediate level
only, not at the top and bottom level. The top level just gives an envelope
demarcated by explicitly-defined continuous functions. The bottom level gives
a discrete algorithm. It is only the intermediate level of abstraction that uses
the derivative representation, and at which the complications of infinities arise.

Of course, this example is very simplified. It remains to generalize it
to cases that include more uncertainty: the sampling times might be known
only approximately, or velocity information might be inexact or out-of-date, or
the control signal might be sent only after some approximately-known delay.
We have considered uncertainty only in the lower bound, but of course there
could also be uncertainty in the upper bound. None of these cases appears
to introduce any ideas that are different in principle, so we expect that the
proofs we have given should extend to these cases. Another extension is that
the implementation might be subject to a limit on the achievable acceleration
(because of physical limitations or passenger comfort). It should be possible
to use our techniques to reason about this situation also.

It should also be possible to continue our example by refining further. A
natural extension would be to implement the discrete Controller using a more
complicated algorithm, for example, a distributed algorithm with its own dif-
ficulties of communication and uncertainty. Techniques of discrete reasoning
(only) could be used to show the correspondence between the more detailed
controller and the more abstract controller of this paper. Then general com-
position theorems about HIOAs could be used to show that the combination
of the new controller implementation and the given Vehicle automaton still
guarantee the proper behavior of the vehicle, as expressed by V4.

Our general strategy can be described as: using levels of abstraction to
represent the relationship between a derivative and explicit form of a system
representation, and also between a discrete and a continuous form, while in-
corporating uncertainties accurately throughout. It remains to use the same
general strategy to model and verify other maneuvers, in particular, more com-
plex ones. These two splits seem likely to be useful in many other examples.

We could use more levels of abstraction to represent more levels of deriva-
tives. For example, if vehicle position at various times were the important
consideration, then vehicle position only might be constrained at the top level,
with velocity at the next level, acceleration at another level below that, and
jerk at a fourth level, below the acceleration level. The correspondence be-
tween each successive pair of levels related by differentiation would use stan-

27

dard methods of reasoning about differential equations (for the continuous
parts of the correspondence).

Finally, the sort of reasoning we are doing in this paper admits assistance
by mechanical reasoning tools. We would like to have a combination of a
theorem-prover, for carrying out the discrete reasoning, with a tool for manip-
ulating continuous function expressions. The two tools must be integrated so
that they can be used together, using a single representation of the system.

Acknowledgments

This work was supported by ARPA contracts N00014-92-J-4033 and F19628-
95-C-0118, AFOSR-ONR contract F49620-94-1-0199, AFOSR contract F49620-
97-1-0337, NSF grant 9225124-CCR and DOT contract DTRS95G-0001.

We thank Carl Livadas for reading the manuscript and suggesting several
improvements.

References

1. Nancy Lynch, Roberto Segala, Frits Vaandrager, and H.B. Weinberg.
Hybrid I/O automata. In DIMACS Workshop on Verification and Con-
trol of Hybrid Systems, October 1995. To appear in R. Alur, T. Hen-
zinger, and E. Sontag, editors, Hybrid Systems III, Lecture Notes in
Computer Science, Springer-Verlag.

28

