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ABSTRACT
Task allocation is an important problem for robot swarms to solve,
allowing agents to reduce task completion time by performing tasks
in a distributed fashion. Existing task allocation algorithms often
assume prior knowledge of task location and demand or fail to
consider the effects of the geometric distribution of tasks on the
completion time and communication cost of the algorithms. In this
paper, we examine an environment where agents must explore
and discover tasks with positive demand and successfully assign
themselves to complete all such tasks. We first provide a new dis-
crete general model for modeling swarms. Operating within this
theoretical framework, we propose two new task allocation algo-
rithms for initially unknown environments – one based on N-site
selection and the other on virtual pheromones. We analyze each
algorithm separately and also evaluate the effectiveness of the two
algorithms in dense vs. sparse task distributions. Compared to the
Levy walk, which has been theorized to be optimal for foraging,
our virtual pheromone inspired algorithm is much faster in sparse
to medium task densities but is communication and agent intensive.
Our site selection inspired algorithm also outperforms Levy walk
in sparse task densities and is a less resource-intensive option than
our virtual pheromone algorithm for this case. Because the perfor-
mance of both algorithms relative to random walk is dependent on
task density, our results shed light on how task density is impor-
tant in choosing a task allocation algorithm in initially unknown
environments.
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1 INTRODUCTION
Robot swarms are simple, distributed units that are able to work
together to achieve emergent collective behaviours [11]. We con-
tribute a general, theoretical framework to model these swarms,
which can be leveraged, as in this work, to implement various
swarm algorithms. Swarm algorithms often draw inspiration from
swarms in nature such as birds, ants, and bees [20, 27, 30]. Swarm
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algorithms provide a scalable and fault-tolerant solution to prob-
lems such as search-and-rescue [9] and environmental monitoring
[10]. One of the most well-studied swarm problems is task allo-
cation [13], which aims to assign agents to tasks in an optimal
manner. Here, a task refers to an abstract notion: a task is simply
a location of interest in the environment which requires some ac-
tion(s) by agents. This could be a food item in foraging, survivors
in search-and-rescue, mines for robots to defuse, and more.

Many classes of task allocation algorithms assume that task lo-
cations and demand for agents are known, and try to optimize an
assignment of agents to tasks [3, 4, 35]. However, in many applica-
tions, such as finding and defusing mines [32], task information is
not initially known. Algorithms which do consider task allocation
in unknown environments [5, 16] run limited testing on the effects
of task density, an important factor in algorithm performance.

In this paper, we consider the problem of assigning agents to
tasks with positive demand in an initially unknown environment.
We assume each agent can only be assigned to one task. Within
this setup, we contribute two new algorithms and compare them to
the Levy Walk (RW), which is used in nature for foraging [29]. We
also show how task density makes our different algorithms better
suited towards different task environments.

The first algorithm, our house hunting task allocation algorithm
(HHTA), is inspired by swarm house-hunting models [28]. While
the house hunting problem aims for agents to agree on one of many
locations in the environment, the task allocation problem aims for
agents to split themselves proportionally to task demand amongst
all tasks in the environment. In our HHTA algorithm, agents use
their starting location as a home base that they can return to after
discovering tasks in the environment. The home base functions as
a central point of communication and allows for agents to recruit
each other to do tasks, serving the same function as the home nest
in many swarm house hunting algorithms.

The second algorithm is our propagation-based algorithm (PROP),
which uses a regular grid of cheap, simple agents to propagate task
demand information outwards to neighboring propagator agents.
We assign a separate type of agent with more advanced computing
powers to read the information and use it to probabilistically decide
which task to head towards. The propagation of task demand infor-
mation via cheap agents is inspired by virtual pheromones [1, 2], a
commonly used nature-inspired technique in swarm algorithms.

By comparing both algorithms to the Levy flight, we show that it
is harder for PROP to do well with very dense tasks, as a large influx
of propagated information can confuse agents. Our other algorithm,
HHTA, does worse when tasks are mid to high density because
inter-agent communication about tasks is not worth it compared to
a random walk, which is highly likely to encounter tasks quickly.



However, it does better than RW when tasks are sparse as the
cost of communication about task location is justified when tasks
are harder to find. It is also less resource intensive compared to
PROP. We also evaluate the effects of varying individual parameters
within several task densities in order to better understand our new
algorithms.

Our results demonstrate how different task allocation algorithms
do well in environments with different task density and invite
further examination on the performance of other task allocation
algorithms in different types of task environments.

Section 2 provides the inspiration for our two proposed algo-
rithms, explaining house hunting and virtual pheromones in further
depth. Section 3 describes our general formal model and then dives
into our two specific algorithms, presented under this model. Our
simulation results and comparison between the two new algorithms
in sparse and dense task environments can be found in Section 4.
Section 5 discusses our results, and Section 6 concludes the paper
and provides ideas for future work. The full version of this paper
can be found at [6], containing pseudocode and other additional
aids such as example simulations and a reference table of parameter
notation. The full simulation code can be found at [15].

2 BACKGROUND
Task allocation is a well studied problem and has been classified
into many subproblems. Per the taxonomy defined in [13] our task
allocation problem is of the single-task agents, multi-robot tasks
variety, which means that agents can only do one task at a time,
but tasks may require multiple agents.

When task demands and locations are known, this problem be-
comes a coalition formation problem, where we wish to form agents
into groups that are best suited to do each task. This problem can
be thought of as a set partitioning problem [13], and adaptations to
distributed swarms have been proposed [4, 35].

Other strategies for when tasks are fixed at known locations
model tasks as a graph where agents can travel between edges
[3, 14, 19]. These algorithms optimize for a flow rate between edges
in the graph so that agents can satisfy all task demands quickly.
Another strategy in this case, based onOptimalMass Transport [33],
is to treat the tasks with demands as sinks and the tasks with agents
as sources in a min cost flow problem. However, both strategies
require prior knowledge of task locations.

Our problem differs from coalition formation and the graph-
based task allocation problems because we are assuming that agents
have no initial knowledge of task location or demands. In this case,
wewant to discover tasks and communicate information about them
as quick as possible so that agents can satisfy all task demands.

One solution to task allocation in an environment with unknown
tasks is to have agents form local clusters and run Optimal Mass
Transport locally [36]. Other task allocation algorithms, such as
auction-based algorithms, perform a similar type of agent cluster-
ing to assign tasks [17]. Our two algorithms by contrast are fully
distributed and computationally simple, without the need for group-
ing to locally run a complex centralized algorithm. This allows us
to save the time needed to form agent clusters and allows agents to
be cheaper to implement due to low computation cost.

2.1 Levy Flight
The Levy flight is a randomwalk that has been observed in foraging
animals and adapted to swarm algorithms [12, 29] as well. The Levy
Flight has shown to be an optimal forgaing algorithm, which is very
relevant to the situation in which task locations and demands are
unknown. As such, we will be using this random walk as a baseline
to compare against for our two new algorithms.

2.2 House Hunting
Several ant species engage in a house-hunting behaviour when
their home nest is destroyed [26, 27]. First, ants explore nearby for
nest sites. If a site is found, the ant waits a period of time inversely
proportional to the site quality before returning to the home nest to
lead others to the new nest. This process of recruitment is known
as forward tandem running (FTR). Once the encounter rate of other
ants in the candidate nest reaches a critical threshold known as the
quorum threshold, ants switch to carrying members of the colony
to the new nest. This carrying behaviour is 3 times faster than FTR
and accelerates the move to the new site [27].

Ant house hunting has inspired the corresponding swarm prob-
lem of N-site selection [34], where agents must choose the highest
quality site from N initially unknown candidates. One common
N-site selection model has agents transition between four main
states: Uncommitted Interactive, Uncommitted Latent, Favoring
Interactive, and Favoring Latent [28]. Some works also include a
fifth Committed state [7, 8, 21]. In this type of model, Uncommitted
Interactive agents explore the arena for new sites, while Uncom-
mitted Latent agents stay in the home nest. Once an Uncommitted
Interactive agent discovers a site, it can decide to favor the site.
Favoring agents can be interactive, meaning they return to the
home nest to recruit other favoring agents, or latent, meaning they
stay in their favored site to build up quorum. Lastly, if agents de-
tect a sufficient number of others in a new candidate site, they can
transition into the committed state to finalize their decision.

Task allocation can be thought of as an extension to the house
hunting problem, where instead of trying to send all agents to one
location, we want to send agents to multiple locations according
to the demand at each one. This idea has been used in Berman [3]
and Halasz’s [14] work to develop task allocation algorithms for a
known graph of tasks where agents can traverse along the edges.
We extend this idea further by using inspiration from site selection
algorithms to develop our novel HHTA algorithm, in which, unlike
[3, 14], task locations are initially unknown. In HHTA, agents use a
home nest which functions as a location for recruiting other agents
to tasks and communicating with other agents. The four main
states of the HHTA algorithm share parallels to the Uncommitted
Interactive, Uncommitted Latent, Favoring Active, and Committed
states described above which are further explained in Section 3.3.

2.3 Virtual Pheromones and Potential Fields
Ants leave pheromones in their environment when foraging to
guide other ants to any discovered food sources [1]. This strategy
of leaving information in the environment has inspired swarms to
implement virtual pheromones (pheromones represented by com-
putational data instead of chemical signals). For example, [2] used



physically deployable beacons that robots could leave in the envi-
ronment to store information in, [22] simulated pheromone trails
by leveraging depots to store target-rich locations (pheromone way-
points) found by other robots, and [23] set up a virtual pheromone
approach with a pre-deployed network of beacons that acted as a
grid of locations to leave information in. One cheap way to imple-
ment virtual pheromones is using wireless sensor motes to store
and propagate information [31].

Pheromones are frequently used in conjunction with potential
fields or particle swarm optimization techniques. Potential field
algorithms model objects in the environment as either positive
charges or negative charges, with agents experiencing attraction
or repulsion from the objects based on the electric force between
them. Particle swarm optimization [25] follows a similar physics
approach, except the attractive and repulsive forces were based on
springs as opposed to charges. These techniques are employed in
navigation tasks, where potential fields and pheromones can work
together to guide robots around obstacles and towards a target in
space [24]. Pheromones are also employed in foraging tasks to help
robots efficiently find what they are foraging for [18].

We apply the ideas of virtual pheromones in our novel PROP algo-
rithm, which uses simple mote-like agents to leave task information
in the environment. Task-performing robots use this information
when searching for tasks in the task allocation process. The use
of virtual pheromones allows us to easily notify task-performing
robots of nearby tasks. We also use potential fields as inspiration
for how a robot’s motion should be influenced when it learns of
multiple potential tasks through pheromones in the environment.
Robots are more attracted to tasks with higher demand and tasks
that are closer to their current location, so tasks can be thought of
like charges which robots can feel the force of.

3 MODEL
We first describe our new discrete general model for modeling
swarms. Then we discuss the individual restrictions, parameters,
and agent algorithms needed for task allocation.

3.1 General Model
We assume a finite set 𝑅 of agents, with a state set 𝑆𝑅 of potential
states. Agents move on a discrete rectangular grid of size𝑀 × 𝑁 ,
formally modelled as directed graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑀𝑁 .
Edges are bidirectional, and we also include a self-loop at each
vertex. Vertices are indexed as (𝑥,𝑦), where 0 ≤ 𝑥 ≤ 𝑀 − 1, 0 ≤
𝑦 ≤ 𝑁 − 1. Each vertex also has a state set 𝑆𝑉 of potential states.

Local Configurations: A local configuration 𝐶′ (𝑣) captures the
contents of vertex 𝑣 . It is a triple (𝑠𝑣,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠, 𝑠𝑟𝑚𝑎𝑝), where 𝑠𝑣 ∈
𝑆𝑉 is the vertex state of 𝑣 ,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 ⊆ 𝑅 is the set of agents at 𝑣 ,
and 𝑠𝑟𝑚𝑎𝑝 :𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → 𝑆𝑅 assigns an agent state to each agent
at 𝑣 .

Local Transitions: The transition of a vertex 𝑣 may be influenced
by the local configurations of nearby vertices. We define an in-
fluence radius 𝐼 , which is the same for all vertices, to mean
that vertex indexed at (𝑥,𝑦) is influenced by all valid vertices
{(𝑎, 𝑏) |𝑎 ∈ [𝑥−𝐼 , 𝑥 +𝐼 ], 𝑏 ∈ [𝑦−𝐼 , 𝑦+𝐼 ]}, where 𝑎 and 𝑏 are integers.
We can use this influence radius to create a local mapping𝑀𝑣 from
local coordinates to the neighboring local configurations. For a ver-
tex 𝑣 at location (𝑥,𝑦), we produce𝑀𝑣 such that𝑀𝑣 (𝑎, 𝑏) → 𝐶′ (𝑤)

where𝑤 is the vertex located at (𝑥 +𝑎,𝑦+𝑏) and −𝐼 < 𝑎, 𝑏 < 𝐼 . This
influence radius is representative of a sensing and communication
radius. Agents can use all information from vertices within the
influence radius to make decisions.

We have a local transition function 𝛿 , which maps all the infor-
mation associated with a vertex and its influence radius at one time
to new information that can be associated with the vertex and the
agents at that vertex for the following time.

Formally, for a vertex 𝑣 , 𝛿 probabilistically maps𝑀𝑣 to a quadru-
ple of the form (𝑠𝑣1,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠, 𝑠𝑟𝑚𝑎𝑝1, 𝑑𝑖𝑟𝑚𝑎𝑝1), where 𝑠𝑣1 ∈ 𝑆𝑉

is the new state of the vertex, 𝑠𝑟𝑚𝑎𝑝1 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → 𝑆𝑅 is the
new agent state mapping for agents at the vertex, and 𝑑𝑖𝑟𝑚𝑎𝑝1 :
𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → {𝑅, 𝐿,𝑈 , 𝐷, 𝑆} gives directions of motion for agents
currently at the vertex. Note that 𝑅, 𝐿, 𝑈 , and 𝐷 mean right, left,
up, and down respectively, and 𝑆 means to stay at the vertex. The
local transition function 𝛿 is further broken down into two phases
as follows.

Phase One: Each agent in vertex 𝑣 uses the same transition func-
tion 𝛼 , which probabilistically maps the agent’s state 𝑠𝑟 ∈ 𝑆𝑅,
location (𝑥,𝑦), and the mapping𝑀𝑣 to a new suggested vertex state
𝑠𝑣 ′, agent state 𝑠𝑟 ′, and direction of motion 𝑑 ∈ {𝑅, 𝐿,𝑈 , 𝐷, 𝑆}. We
can think of 𝛼 as an agent state machine model.

Phase Two: Since agents may suggest conflicting new vertex
states, a rule 𝑄 is used to select one final vertex state. The rule also
determines for each agent whether they may transition to state 𝑠𝑟 ′
and direction of motion 𝑑 or whether they must stay at the same
location with original state 𝑠𝑟 .

Probabilistic Execution: The system operates by probablisti-
cally transitioning all vertices 𝑣 for an infinite number of rounds.
During each round, for each vertex 𝑣 , we obtain the mapping
𝑀𝑣 which contains the local configurations of all vertices in its
influence radius. We then apply 𝛿 to 𝑀𝑣 to transition vertex
𝑣 and all agents at vertex 𝑣 . For each vertex 𝑣 we now have
(𝑠𝑣𝑣,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠𝑣, 𝑠𝑟𝑚𝑎𝑝𝑣, 𝑑𝑖𝑟𝑚𝑎𝑝𝑣) returned from 𝛿 .

For each 𝑣 , we take 𝑑𝑖𝑟𝑚𝑎𝑝𝑣 , which specifies the direction of
motion for each agent and use it to map all agents to their new
vertices. For each vertex 𝑣 , its new local configuration is just the
new vertex state 𝑠𝑣𝑣 , the new set of agents at the vertex, and the
𝑠𝑟𝑚𝑎𝑝 mapping from agents to their new agent states.

3.2 Task Allocation Problem Definition
Consider𝑇 tasks [𝑡0 . . . 𝑡𝑇−1] arranged at a subset of vertices in our
general model, with at most one task at each vertex. Specifically, the
task locations can be described as 𝑙 = [(𝑥0, 𝑦0), . . . , (𝑥𝑇−1, 𝑦𝑇−1)],
where 𝑙𝑖 = (𝑥𝑖 , 𝑦𝑖 ) is the vertex location of task 𝑡𝑖 and 𝑖 ≠ 𝑗 → 𝑙𝑖 ≠

𝑙 𝑗 (each task has a distinct location). We wish to distribute agents
among the tasks to achieve a certain distribution 𝑎 = [𝑎0, ..., 𝑎𝑇−1]
where 𝑎𝑖 represents the number of agents doing task 𝑖 and

∑
𝑎𝑖 =

𝑘𝑅 ≤ 𝑅 (meaning 𝑘% of all agents is enough to complete all tasks).
We assume that when an agent senses a task within its influence

radius, it is able to detect the demand of that task. Since agents
can also detect how many agents are at the task, they can use
this information to compute the residual demand, defined as the
difference between the task demand and the number of agents
already at the task. We denote the residual demand at task 𝑖 by 𝑡𝑟𝑑

𝑖
.

We assume that the desired task distribution does not change over



time, and that the task is complex enough that each agent can only
do one task over the course of the algorithm.

In order to represent tasks in both of our algorithms, the vertex
state set 𝑆𝑉 contains the following variables: is_task, whether
the vertex is a task; demand, the task demand if the vertex is a
task; residual_demand, the residual demand if the vertex is a task;
task_location, the 𝑥,𝑦 coordinates of the vertex if it is a task.

We go into more detail on the agent states and transitions for our
two algorithms in Sections 3.3 and 3.4. One other detail to note about
task allocation is that in phase two of 𝛿 , we reconcile conflicting
proposed vertex states. This shows up in task allocation when
multiple agents attempt to claim the same task. When this happens,
if there are 𝑠 agents trying to claim the task but only 𝑟𝑑 < 𝑠 residual
demand, then only 𝑟𝑑 agents are allowed to transition their state
to having claimed the task (these 𝑟𝑑 agents are chosen arbitrarily).
Otherwise, if 𝑟𝑑 > 𝑠 , all agents will be allowed to claim the task.

3.3 House Hunting Task Allocation Algorithm
In our house-hunting inspired algorithm (HHTA), agents start out
at a square home location with lower left corner (𝑥1

ℎ
, 𝑦1

ℎ
) and upper

right corner (𝑥2
ℎ
, 𝑦2

ℎ
). Call the set of home verticesH . We assume

that ∀𝑖, 𝑙𝑖 ∉ H , meaning no tasks are located at the home location.
In HHTA, the vertex state set 𝑆𝑉 needs the additional variable
is_home, indicating whether the vertex is a home vertex or not.

Agents can be in one of four core states: Home (H), Exploring
(E), Recruiting (R), or Committed (C). Home agents wait in home
nest for news of tasks. Exploring agents explore the arena for tasks.
Home agents have a 𝑃𝐸 =

𝐿∗𝑃𝑒
1−𝑃𝑒 chance of converting to exploring

agents, and exploring agents have a 𝑃𝐻 = 𝐿 chance of converting
to home agents, where 𝐿 is defined as 1/(𝑀 + 𝑁 ) and 𝑃𝑒 is the
expected fraction of exploring agents. The transitions between H
and E agents indicate that agents are expected to explore for𝑀 +𝑁
time steps (enough to reach the corners of the grid) before returning
home. It also ensures that the expected fraction of E agents out of
the total number of E and H agents is 𝑃𝑒 . The factor of 𝐿 is inspired
by house hunting algorithms, where 𝐿 is defined as the inverse
of the average site round trip so that exploring agents will have
enough time to reach candidate sites before returning home.

An exploring agent has a 𝑃𝑡𝑖 chance of finding task 𝑖 . Once it finds
task 𝑖 , it has a 𝑐 = max(𝑃𝑐 , 1/𝑡𝑟𝑑𝑖 ) chance of becoming a Committed
agent, and a 1 − 𝑐 chance of becoming a Recruiting agent. Here 𝑃𝑐
is the base probability of committing, and 1/𝑡𝑟𝑑

𝑖
makes it so that at

low residual demands, agents have a higher chance of committing
to the task right away. If a task has residual demand 1, for instance,
any agent which discovers it will commit to the task right away,
completing the task instead of trying to recruit others for it.

Committed agents have fully committed to a task and stay at
that task. The Committed state is similar to the Committed state
in house hunting, where agents have decided on a new nest site
and have moved to it. Recruiting agents head back to the home
nest to tell Home agents about the task they have found. Agents
recruiting for site 𝑖 have a 1/𝑡𝑟𝑑

𝑖
chance to stop recruiting and

become committed to task 𝑖 . Recruiting agents have a 𝑟𝑚 chance of
sending a message to each agent within their influence radius at
each time step, where 𝑟𝑚 is the message rate. Therefore, a Home
agent has an 𝑃𝑟𝑖 = 𝐼1−𝑟𝑚 (𝑅𝑡𝑖 − 1, 2) chance of receiving at least

𝐻 𝐸

𝐶𝑖𝑅𝑖

𝑃𝐸

𝑃𝐻

𝑃
𝑡 𝑖
𝑐

𝑃 𝑡 𝑖
(1
− 𝑐
)

𝑃
𝑟
𝑖

𝑃
𝑟
𝑖 (1−

𝑐)

1/𝑡𝑟𝑑
𝑖

Figure 1: State model of the four core states. The subscript 𝑖
denotes that an agent is recruiting for or committed to task 𝑖.

one recruiting message for task 𝑖 . Here, 𝑅𝑡𝑖 is the number of agents
recruiting for task 𝑖 that are within sensing radius, and 𝐼 is the
regularized incomplete beta function. If a Home agent receives a
message from a recruiting agent, it has a 𝑃𝑐 chance of committing
to the task and heading towards it, and a 1−𝑃𝑐 chance of recruiting
for the task. Note that the residual demand information for C and R
agents may become stale as more agents commit to tasks. A diagram
of the transitions between these core states can be found in Figure
1.

In order to execute the core state transitions, the agent state
set 𝑆𝑅 comprises of the following variables: core_state, which
can be H, E, R or C; id, the agent id, taking on values from
0 . . . |𝑅 | − 1; L, defined as 𝐿 = 1/(𝑀 +𝑁 ); P_commit, the probability
𝑃𝑐 ; P_explore, the probability 𝑃𝑒 ; message_rate, the message rate
𝑟𝑚 ; angle, the agent’s current angle of travel; starting_point, a
random walk parameter tracking where the agent started from;
travel_distance, the length of the current leg of the random
walk; destination_task, the agent’s destination if they have
just found a task or are headed towards their committed task;
home_destination, the agent’s destination if they are headed to
a home vertex; recruitment_task, the task an agent is recruiting
for; and committed_task, the task an agent has committed to.

The agent transition function 𝛼 uses these state variables to
implement the transitions between the four core states.

3.4 Task Propagation Algorithm
In our task propagation algorithm (PROP), we distinguish between
two types of agents –𝑀𝑁 propagators and 𝐹 followers. Propaga-
tors are simple, mote-like agents. One of them is assigned to each
vertex to allow vertices to propagate task information to each other.
Followers are more advanced agents which are able to perform the
tasks in the task allocation problem. Followers follow the signals
left by propogators in order to find tasks.

Similarly to HHTA, all agents are initially deployed at a rect-
angular home location with lower left corner (𝑥1

ℎ
, 𝑦1

ℎ
) and upper

right corner (𝑥2
ℎ
, 𝑦2

ℎ
). However, agents in PROP do not utilize this

home location after starting the algorithm. First, all𝑀𝑁 propaga-
tors travel to the vertex which they are assigned to, taking 𝑀+𝑁

2
time for all agents to reach their assigned vertex.

Each propagator has an influence radius of 1 and also stores in
their state a mappingM𝑇 from task locations 𝑙𝑖 to residual demands
𝑡𝑟𝑑

′
𝑖

, representing that they have heard that task 𝑖 at location 𝑙𝑖 has



residual demand 𝑡𝑟𝑑
′

𝑖
. After all propagators are in place, propagators

that are at a task 𝑡𝑖 spread the tuple (𝑡𝑟𝑑 ′
𝑖

, 𝑙𝑖 ) to all other propaga-
tors in their influence radius. Every 𝑟𝑝 time steps, a propagator
takes all new task information (if it has new information it did not
already propagate) it has received and spreads that information
to all other propagators in its influence radius with the following
conditions: information about task 𝑖 can only be spread to agents
whose assigned vertex 𝑣 is located within the bounds [𝑥𝑖 − 𝐼 , 𝑥𝑖 + 𝐼 ]
for the x coordinate and [𝑦𝑖 − 𝐼 , 𝑦𝑖 + 𝐼 ] for the y coordinate, and the
Euclidian distance between 𝑡𝑖 and 𝑣 must be less than or equal to 𝑑𝑝 .
Here, 𝑟𝑝 is the integer propagation timeout and 𝑑𝑝 is the maximum
propagation radius.

Because the residual demand of a task changes over time, the
propagator at task 𝑖 will have to send new information whenever
the residual demand decreases. When a propagator which already
has task information MT (𝑙𝑖 ) → 𝑡𝑟𝑑

′
𝑖

receives new information
about a task (𝑡𝑟𝑑 ′′

𝑖
, 𝑙𝑖 ), it updates the task information for task 𝑖

to be MT (𝑙𝑖 ) → 𝑚𝑖𝑛(𝑡𝑟𝑑 ′
𝑖

, 𝑡𝑟𝑑
′′

𝑖
) in order to have the most up-to-

date information. Since the residual demand of a task is always
decreasing as more and more agents join the task, we know the
smaller residual demand is the more accurate one.

After all propagators have reached their assigned vertex, fol-
lowers try to use the information of propagators in order to find
tasks to head towards. At every time step, a follower first checks
the vertices within its influence radius for a task with non-zero
residual demand, and starts moving towards that task if it exists. If
no task is found in its influence radius, a follower located at (𝑥,𝑦)
looks at the propagator assigned to location (𝑥,𝑦) in order to get
information about potential task locations it could head towards. It
compiles all non-zero residual demands into the resulting mapping
𝑀𝐹 , which maps from task locations 𝑙𝑖 to residual demands 𝑡𝑟𝑑

′
𝑖

. If
𝑀𝐹 is non-empty (there is at least one task location with non-zero
residual demand) then the probability that a follower located at
(𝑥,𝑦) heads towards task location 𝑙𝑖 ∈ 𝑀𝐹 is:

𝑀𝐹 (𝑙𝑖 )
𝐿2 (𝑙𝑖 ,(𝑥,𝑦) )2∑

𝑙 𝑗 ∈𝐷 (𝑀𝐹 )

𝑀𝐹 (𝑙 𝑗 )
𝐿2 (𝑙 𝑗 ,(𝑥,𝑦) )2

(1)

This means that the probability of a follower heading towards a
task has an inverse square relationship with 𝐿2 distance between
the task location and the agent’s location, and is also weighted by
the residual demand of the task itself. This equation is determined
so that agents are less likely to travel to tasks that are further
away from them, but more likely to travel to a task if it has higher
residual demand. If the mapping𝑀𝐹 is empty (the agent has no task
information), it takes a random step in one direction {𝐿, 𝐷, 𝑅,𝑈 }
(following a Levy flight random walk) in order to explore.

Once a follower agent reaches a task with non-zero residual
demand, it stays there indefinitely, "completing the task" and decre-
menting the task’s residual demand by one.

In order to execute the algorithm, the agent state set contains
the following variables: type, the type of agent, which can be ‘prop-
agator’ or ‘follower’ and id, the agent id, which takes on values
from 0 . . . |𝑀𝑁 + 𝐹 | − 1. The following additional variables are in
SR and are only used by propagator agents: task_info, the map-
ping MT ; propagation_rate, the propagation timeout 𝑟𝑝 ; and

Figure 2: The effect of number of tasks on completion time
for HHTA and RW

propagation_ctr, the number of rounds since an agent last prop-
agated task information. Lastly, the variables in SR used only by
follower agents are: destination_task, the agent’s destination if
they have just found a task or are headed towards their committed
task; committed_task, the task an agent has committed to; angle, a
random walk parameter denoting angle of travel; starting_point,
a random walk parameter tracking where the agent started from;
and travel_distance, the length of the current leg of the random
walk.

The agent transition functions 𝛼 for propagator and follower
agents, respectively, use these state variables to implement the
desired transitions at each time step.

4 RESULTS
Our algorithms were tested in simulation [15] using Pygame on
a grid of size 𝑀 = 𝑁 = 50, with a 3 × 3 home area in the center
of the grid. All simulations were run using 100 task-performing
agents and the total task demand summed to 80. In the trials for
the HHTA algorithm, agents had an influence radius of 2. In the
trials for the PROP algorithm, propagators had an influence radius
of 1 and followers had an influence radius of 2.

For each set of trials, we evaluated task completion time, defined
as the time necessary for the total residual demand to become 0.
In subsections 4.1 and 4.2, we also measure the average number of
messages sent per run per agent. For the HHTA algorithm, when-
ever a Home agent is notified of a task by a Recruiting agent, the
Recruiting agent’s message count is incremented. For the PROP
algorithm, the message count is incremented when a propagator
shares new task information with one of its neighbors. We do not
track the message count for follower agents since it is a negligible
portion of total messages.

4.1 Effects of Task Density on HHTA
Performance

To examine the effects of task density on the HHTA algorithm’s
performance, we measured task completion time and average num-
ber of messages sent per agent for 𝑇 ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30}.
For each value of 𝑇 (the number of tasks), we ran 100 trials with
𝑟𝑚 = 1

6 , 𝑃𝑒 = 2
3 , 𝑃𝑐 = 3

10 . Figure 2 shows the resulting average



Figure 3: The effect of number of tasks on average messages
sent per agent for HHTA

task completion time for varying task densities. The HHTA algo-
rithm outperforms the random walk by about 100 rounds in very
sparse task setups when 𝑇 ≤ 6 and performs comparably when
7 ≤ 𝑇 ≤ 10, but for denser task setups, the cost of returning to the
home nest to recruit others is too high compared to the random
walk (Welch’s T-test, p=0.05). We can approximate the area cov-
ered by detectable tasks as 𝑇 (2𝐼+1)2

𝑁𝑀
, where (2𝐼 + 1)2 is the size of

the influence radius (in reality, the ratio would be a bit smaller as
the detectable range for tasks can intersect). This means that for
our choice of parameters, the HHTA algorithm outperforms the
random walk when about 6% or less of the total task area has an
immediately detectable task.

Figure 3 shows the average number of messages sent per agent
for the HHTA algorithm. (Note that the random walk algorithm
uses no communication). Note that on average, each agent sends
less than 1.2messages per round using HHTA. Note also that agents
send less messages on average as density increases. Since the total
task demand is fixed at 80, a larger number of tasks indicates less
demand per task on average, making agents in the HHTA algorithm
less likely to enter the task state (where messages are sent) and
remain in it.

4.2 Effects of Task Density on PROP
Performance

To examine the effects of task density on the PROP algorithm’s
performance, we once again measured task completion time and
average number of messages sent per propagator agent for 𝑇 ∈
{1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80}. For each
value of 𝑇 (the number of tasks), we ran 20 trials with 𝑟𝑝 = 3 and
𝑑𝑝 = 25. Figure 4 shows the resulting average task completion time
for varying task densities. The PROP algorithm outperforms the
random walk significantly (Welch’s T-test, p=0.05) in sparser task
setups (𝑇 ∈ [1, 25]), with fewer tasks exaggerating this performance
gap nonlinearly. In moderately dense task setups (𝑇 ∈ [30, 60]), the
two algorithms’ runtimes are comparable, and in our most dense
task setups (𝑇 ∈ [70, 80]), the random walk begins to increasingly
outperform the PROP algorithm to a significant extent (Welch’s
T-test, p=0.05). Intuitively, as the density of tasks in the environ-
ment increases, follower agents are more likely to find tasks in their
influence radius (benefiting RW). Conversely, more tasks means

Figure 4: The effect of number of tasks on completion time
for PROP and RW

more task information within each propagator agent, overloading
and misguiding the follower agents during their decision process
(harming PROP). After a certain point, too much propagated infor-
mation results in that information declining in its specificity and
thus usefulness.

Figure 5 shows the average number of messages sent per prop-
agator agent per round . Note that on average, each propagator
agent sends less than 1.3 messages to other agents per round; how-
ever, given the grid space’s size, a large communication cost is still
incurred as there are 2, 500 propagator agents. Regarding the effect
of task density on these communication costs, agents generally
send more messages as the number of tasks increases. When there
are more tasks and thus more vertices close to tasks, it takes less
time for most of the propagator agents to receive some information
initially that they can begin propagating. Additionally, having more
tasks means that some task’s demand gets updated more often, re-
sulting in there being new information (as messages) that needs
to be propagated more often. This increasing trend becomes less
dramatic at higher task densities, likely due to the fact that with
enough tasks, the overlapping propagation radii all cover roughly
the same area. As shown in Figure 4, recall that higher task den-
sities result in higher completion times for the PROP algorithm.
Therefore, higher task densities do not only result in agents sending
more messages per round, but the total number of messages sent
over an entire run increases even more dramatically along with the
number of tasks.

4.3 Effects of 𝑃𝑐 on HHTA Completion Time for
Varying Task Density

We explored the effects of varying 𝑃𝑐 on completion time for vary-
ing𝑇 . We ran 100 trials for each value of 𝑃𝑐 ∈ { 𝑖

10 , 0 ≤ 𝑖 ≤ 9} using
𝑟𝑚 = 1

6 and 𝑃𝑒 = 2
3 . The results can be seen in Figure 6.

For 𝑃𝑐 ≤ 0.7, there was no significant difference between the
completion times at different task densities (Welch’s T-test, p=0.05).
However, for 𝑃𝑐 ∈ {0.8, 0.9}, the completion time for𝑇 = 4 is higher
than the completion time for 𝑇 = 16 (Welch’s T-test, p=0.05). Our
results show that only for large 𝑃𝑐 do we see a significant difference
in performance at different task densities. This makes sense, as a
larger proportion of committing agents means agents mostly find
tasks by discovering them independently, which is harder in the



Figure 5: The effect of number of tasks on average messages
sent per propagator agent per round (for PROP)

Figure 6: The effect of 𝑃𝑐 on HHTA completion time

sparse case. We also note that from 𝑃𝑐 = 0.4 to 𝑃𝑐 = 0.8, task
completion time follows an increasing trend, indicating that higher
recruitment (lower 𝑃𝑐 ) allows agents to complete tasks faster.

4.4 Effects of 𝑃𝑒 on HHTA Completion Time for
Varying Task Density

We also explored varying 𝑃𝑒 , running 100 trials each for 𝑃𝑒 ∈
{ 𝑖
10 , 1 ≤ 𝑖 ≤ 10}, with 𝑇 ∈ {4, 10, 16} and using 𝑟𝑚 = 1

6 and
𝑃𝑐 = 3

10 . The results can be seen in Figure 7.
For 𝑃𝑒 ≤ 0.8, there was no significant difference between the

HHTA completion time at different task densities (Welch’s T-test,
p=0.05) with the exception of 𝑇 = 10 vs. 𝑇 = 4 at 𝑃𝑒 = 0.2, with
𝑝 = 0.03. However, there was a significant difference in completion
time between 𝑇 = 4 and 𝑇 = 16 when 𝑃𝑒 = 1.0 and 𝑃𝑒 = 0.9. Our
results show that HHTAhas a consistent completion time regardless
of task density other than for large 𝑃𝑒 ∈ {0.9, 1.0}, meaning a large
majority of agents are exploring (making the algorithmmore similar
to randomwalk).When 𝑃𝑒 is high, it is harder to complete the sparse
problem because exploring is harder in a sparse environment.

Our results also show that a more even balance of 𝑃𝑒 (the pro-
portion of Exploring agents) vs. 1 − 𝑃𝑒 (the proportion of Home
agents) leads to a faster completion time. When 𝑃𝑒 is too low, not
enough agents are exploring, making it harder to find tasks. When
𝑃𝑒 is too high, not enough agents are available in the home nest to
be recruited when tasks are found.

Figure 7: The effect of 𝑃𝑒 on HHTA completion time

4.5 Effects of 𝑑𝑝 on PROP Completion Time for
Varying Task Density

We explored the effects of varying 𝑑𝑝 , the maximum propagation
radius, on completion time for varying 𝑇 . We ran 20 trials for each
unique pair of𝑑𝑝 ∈ {0, 5, 10, 15, 20, 25, 30, 40, 50, 60, 50

√
2} (note that

𝑑𝑝 = 50
√
2means all tasks’ information can be propagated over the

entire grid space) and 𝑇 ∈ {4, 10, 16, 50}, using 𝑟𝑝 = 3. The results
can be seen in Figure 8.

For reasonably sparse task setups (𝑇 ∈ {4, 10, 16}), larger max-
imum propagation radii correlate with faster runtimes (Welch’s
T-test, p=0.05) but after a certain point, completion time is mostly
unchanged. In contrast, for very dense task setups (𝑇 = 50), be-
sides a slight improvement in completion time moving from around
𝑑𝑝 = 0 to 𝑑𝑝 = 10, larger maximum propagation radii result in
slower completion times (Welch’s T-test, p=0.05). Increasing 𝑑𝑝
results in more propagator agents having more task information,
which allows (1) for follower agents to find tasks even if they are far
way and (2) for follower agents to leverage this extra task informa-
tion to prioritize tasks with higher demand. This causes the initial
decline in completion time for increasing 𝑑𝑝 values. However, if 𝑑𝑝
is too large, there is too much information being propagated, dilut-
ing the agents’ strategy. This adverse effect is likely not seen with
sparser environments because even with every single propagator
having information about every single task, this info is bounded in
size. We also infer that the turning point in each plot’s trend (when
runtime either starts to flatten or increase) is related to the 𝑑𝑝 value
at which every propagator agent receives some task information.

4.6 Effects of 𝑟𝑝 on PROP Completion Time for
Varying Task Density

We explored the effects of varying 𝑟𝑝 , the number of rounds a
propagator must wait before sharing new task information with
its neighbors, on completion time for varying T. We ran 20 trials
for each unique pair of 𝑟𝑝 ∈ {1, 2, 3, 5, 10, 15, 20} and𝑇 ∈ {4, 10, 16},
using 𝑑𝑝 = 25. The results can be seen in Figure 9.

There is a clear, mostly linear trend, where increasing 𝑟𝑝 re-
sults in increasing completion times. The trend is consistent across
all distinct task densities tested. This relationship between 𝑟𝑝 and
completion time is to be expected, as smaller 𝑟𝑝 means that task
information is moved about the environment more quickly, causing



Figure 8: The effect of maximum propagation radius (𝑑𝑝 ) on
PROP completion time

Figure 9: The effect of integer propagation timeout (𝑟𝑝 ) on
PROP completion time

the information that is used by follower agents to decide which
task to move towards to be more up-to-date. Besides at the very
beginning, 𝑟𝑝 has no effect on the locations of task information,
so the phenomenon we saw in which there is “too much” propa-
gated information does not occur when varying 𝑟𝑝 . It is the same
task information, simply better when when the timeout is smaller.
However, smaller values of 𝑟𝑝 involve more message passing.

5 DISCUSSION
Our results demonstrate for both HHTA and PROP that when the
total demand for agents is held fixed, task density significantly
affects algorithm performance. HHTA performs better than RW
when tasks are very sparse, and worse when the number of tasks is
high because communicating about individual tasks matters less
when there are many of them. RW performs very poorly with sparse
tasks because it becomes harder over time for the remaining agents
to find tasks. PROP also performs better than RW until the number
of tasks is very high, as agents struggle to arrive at tasks when too
much task information is being propagated. Though it outperforms
RW for sparse tasks, PROP’s completion time increases for very
sparse tasks (𝑇 ≤ 6). PROP also has a faster completion time and
is more distributed than HHTA, but is much more resource and
communication intensive, as it requires a propagator agent at every
grid cell in order to spread information.

In relevant task allocation problems such as search-and-rescue or
mine detection, the number of tasks in the environment is expected
to be sparse, so both algorithms provide a speed-up in completion
time compared to the Levy walk. HHTA provides a less agent in-
tensive and less communication intensive approach but requires
a central communication location. Contrarily, PROP provides a
quicker and more distributed approach for sparse and mid-density
environments but is more resource-intensive. Since the Levy flight
has been shown to optimize search efficiency and can be observed in
many species in nature, it makes sense that for very dense task envi-
ronments with a low demand per task, the Levy flight outperforms
both algorithms. Such environments are a very similar problem to
foraging itself. On the other hand, environments with fewer tasks
that require more agents benefit more from the coordination and
communication of more advanced algorithms.

We also analyzed both algorithms’ mechanics individually, show-
ing the importance of recruitment in HHTA as well as the impor-
tance of an even balance of Exploring vs. Home agents. For PROP,
we showed as expected that generally, higher 𝑑𝑝 leads to better
performance, though it is more communication-intensive. We also
showed that as propagation timeout increases, time to completion
increases, since task demands are stale for longer periods of time.

We also note that in extreme parameter settings, HHTA comple-
tion time was similar regardless of task density while varying algo-
rithm parameters like 𝑃𝑐 and 𝑃𝑒 . However, this is untrue for PROP,
which had a higher completion time for sparser environments at
low 𝑑𝑝 , and a higher completion time for denser environments
at high 𝑑𝑝 . This behavior makes sense because as 𝑑𝑝 approaches
0, PROP reduces to RW, which is similarly affected with a higher
completion time for sparse tasks.

6 FUTUREWORK
Future work could explore experiments in a dynamic setting, where
new tasks can appear over time and agents can search for a new
task after their existing task is finished. It could also evaluate other
parameters, such as the ratio of total task demand to total number of
agents. A larger such ratio would make the task allocation problem
harder to solve, as there are less and less extra agents available
to communicate. Another parameter left to be analyzed is swarm
density; that is, the ratio of total number of agents to grid size .

Future work could also combine the strengths of the PROP and
HHTA algorithms, where one agent for each task is assigned to
propagate by leaving information in the vertex state of nearby
vertices or communicating directly to any nearby agents like HHTA
does. This algorithmwould have a much smaller agent cost than the
PROP algorithmwhile still being able to propagate task information.
It would also not require a central home nest like HHTA does,
instead opting to induce agent communication all around the arena.

Future work could also aim for analytical bounds on the expected
completion time of our two algorithms. Because of the algorithms’
relative simplicity, high probability bounds may be possible to
obtain. Lastly, future work could extend to the continuous 2D as
well as 3D (discrete and continuous) settings, adaptations which
our presented theoretical framework is amenable to.
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