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Abstract

We describe how hierarchical concepts can be represented in three types of layered neural networks.
The aim is to support recognition of the concepts when partial information about the concepts is pre-
sented, and also when some of the neurons in the network might fail. Our failure model involves initial
random failures. The three types of networks are: feed-forward networks with high connectivity, feed-
forward networks with low connectivity, and layered networks with low connectivity and with both
forward edges and "lateral" edges within layers. In order to achieve fault-tolerance, the representations
all use multiple representative neurons for each concept.

We show how recognition can work in all three of these settings, and quantify how the probability
of correct recognition depends on several parameters, including the number of representatives and the
neuron failure probability. We also discuss how these representations might be learned, in all three types
of networks. For the feed-forward networks, the learning algorithms are similar to ones used in [4],
whereas for networks with lateral edges, the algorithms are generally inspired by work on the assembly
calculus [3, 6, 7].

1 Introduction

We are interested in the general problem of representing hierarchically-structured concepts in layered Spiking
Neural Networks (SNNs), in a way that supports concept recognition when partial information is presented.
This work is motivated by computer vision, and by considering how structured concepts might be represented
in the brain.

Lynch and Mallmann-Trenn began this work in [4] with a study of simple embeddings of tree-structured
concept hierarchies in feed-forward networks. These embeddings had one representative (rep) neuron for
each concept, located at a network layer corresponding to the level of the concept in the concept hierarchy.
We focused in [4] on how such embeddings might be learned, using systematic bottom-up presentation of
the concepts, and simple Hebbian learning rules. We also described how the learned representations can be
used to recognize hierarchical concepts, given partial information about the concepts.

We continued in [5] with single-rep representations in networks that included feedback edges, and consid-
ered a generalization of the tree-structured hierarchies to allow a small amount of overlap between sets of
child concepts. In [5], we focused on recognition.

In this paper, we continue this effort by studying representations that use multiple rep neurons to represent
each concept. We understand that realistic models of the brain should not use only a single rep neuron per
concept. Real brains use groups of neurons, sometimes called assemblies, to represent concepts; see, for
example, [3, 6, 7] for neuroscience background on assemblies as well as theoretical models for assembly
formation. The main advantage of multiple neurons is fault-tolerance: multiple neurons provide redundancy
so that the memory of a concept can survive some neuron failures.

Thus, we consider representations of hierarchically-structured concepts in layered SNNs, using multiple
rep neurons for each concept. We continue to represent a concept hierarchy using an embedding as in [4],
only now each concept has a fixed number m > 1 of reps, at a network layer corresponding to the level
of the concept. Our intention is that using multiple reps should provide some fault-tolerance during the
recognition process. We consider three types of layered SNNs: feed-forward networks with high connectivity,
feed-forward networks with low connectivity, and layered networks with low connectivity and with both feed-
forward edges and edges within layers. Our failure model involves initial random neuron failures. Specifically,
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we assume that each neuron fails initially, with a small probability q. We assume that failures of different
neurons are independent.

In this paper, we focus mainly on concept recognition when partial information is presented. We describe
how recognition can work in all three types of networks, and quantify how the probability of correct recog-
nition depends on several parameters, including the number m of reps, and the neuron failure probability q.
As one might expect, the probability of correct recognition increases with an increase in the number of reps
and decreases with an increase in the failure probability. The proofs use Chernoff and union bounds.

The paper also discusses informally how these representations might be learned, in all three types of
networks. For the feed-forward networks, the learning algorithms are similar to ones used in [4], whereas for
networks with lateral edges, the algorithms are generally inspired by work on assembly calculus [3, 6, 7].

Roadmap: We define the concept hierarchy model in Section 2, along with a notion of "support" that
we use for describing partial information about concepts. We then describe the general SNN modeling
framework in Section 3, and define the recognition problem in Section 4.

Sections 5 begins our work on fault-tolerant recognition. Here we consider recognition in feed-forward
networks with high connectivity. Namely, we use the simple assumption that all m of the reps of every
child of a concept c are connected to all the reps of c, using edges with weight 1. This section contains
results saying that recognition with partial information works correctly in feed-forward networks with high
connectivity, even if some randomly-chosen neurons fail. Our main result of this section describes some
conditions under which recognition will occur, with high probability that depends on the number m of reps
and the probability q of failure of individual neurons. We contrast this result with another result giving
conditions under which recognition is guaranteed not to occur.

Section 6 extends these result to feed-forward networks with lower connectivity, expressed by saying that,
for each rep v of a concept c, and for every child c′ of c, at least a certain fraction am of the reps of c′

are connected to v. Section 7 extends the results further, this time for networks with low connectivity that
include some lateral edges. The presence of lateral edges allows us to weaken the connectivity assumption
to some extent, compared to Section 6, allowing somewhat fewer edges from children’s reps to parents’
reps, but compensating for the missing edges with lateral edges. This approach is inspired by work on the
assembly calculus [3, 6, 7].

Sections 8 and 9 discuss informally how the representations of this paper might be learned, in feed-
forward networks and networks with some lateral edges, respectively. For feed-forward networks, the learning
algorithms are similar to ones used in [4], whereas for networks with lateral edges, the algorithms are
generally inspired by work on assembly calculus [3, 6, 7]. We conclude in Section 10 with some discussion
and suggestions for future work.

2 Concept Model

We define concept hierarchies as in [4]. In general, we think of a concept hierarchy as containing all the
concepts that have been learned by an organism over its lifetime. However, when we consider recognition of
concepts later in the paper, we will focus on a particular concept within the hierarchy, and not worry about
the entire hierarchy.

2.1 Preliminaries

Throughout the paper, in referring to concept hierarchies, we use the following parameters:

• ℓmax, a positive integer, representing the maximum level number for the concepts that we consider.

• n, a positive integer, representing the total number of lowest-level concepts that we consider.

• k, a positive integer, representing the number of top-level concepts in any concept hierarchy, and also
the number of child concepts for each concept whose level is ≥ 1.1

• r1, r2, reals in [0, 1], with r1 ≤ r2; these represent thresholds for noisy recognition.

1Using the same value of k everywhere is a simplification, which we have made in order to simplify the analysis
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We assume a universal set D of concepts, partitioned into disjoint sets Dℓ, 0 ≤ ℓ ≤ ℓmax. We refer to any
particular concept c ∈ Dℓ as a level ℓ concept, and write level(c) = ℓ. Here, D0 represents the most basic
concepts and Dℓmax

the highest-level concepts. We assume that |D0| = n.

2.2 Concept hierarchies

A concept hierarchy C consists of a subset C of D, together with a children function. For each ℓ, 0 ≤ ℓ ≤ ℓmax,
we define Cℓ to be C ∩Dℓ, that is, the set of level ℓ concepts in C. For each concept c ∈ Cℓ, 1 ≤ ℓ ≤ ℓmax,
we designate a nonempty set children(c) ⊆ Cℓ−1. We call each c′ ∈ children(c) a child of c. We assume the
following properties.

1. |Cℓmax
| = k; that is, the number of top-level concepts is exactly k.

2. For any c ∈ Cℓ, where 1 ≤ ℓ ≤ ℓmax, we have that |children(c)| = k; that is, the degree of any internal
node in the concept hierarchy is exactly k.

3. For any two distinct concepts c and c′ in Cℓ, where 1 ≤ ℓ ≤ ℓmax, we have that children(c) ∩
children(c′) = ∅; that is, the sets of children of different concepts at the same level are disjoint.2

Thus, a concept hierarchy C is a forest with k roots and height ℓmax. Of course, this is a drastic simplification
of any real concept hierarchy, but the uniform structure makes the algorithms easier to analyze.

We extend the children notation recursively by defining a concept c′ to be a descendant of a concept c if
either c′ = c, or c′ is a child of a descendant of c. We write descendants(c) for the set of descendants of c.
Let leaves(c) = descendants(c) ∩C0, that is, all the level 0 descendants of c.

2.3 Support

Now we define which sets of level 0 concepts should trigger recognition of higher-level concepts. This is our
way of describing partial information about higher-level concepts.

We fix a particular concept hierarchy C, with its concept set C partitioned into C0, . . . , Cℓmax
. For any

given subset B of the universal set D0 of level 0 concepts, and any real number r ∈ [0, 1], we define the
set suppr(B) of concepts in C. This is intended to represent the set of concepts c ∈ C, at all levels, that
have enough of their leaves present in B to support recognition of c. The notion of "enough" here is defined
recursively, based on having an r-fraction of children supported for every concept at every level.

Definition 2.1 (Supported). Given B ⊆ D0, define the following sets of concepts at all levels, recursively:

1. B(0) = B ∩ C0.

2. For 1 ≤ ℓ ≤ ℓmax, B(ℓ) is the set of all concepts c ∈ Cℓ such that |children(c) ∩B(ℓ− 1)| ≥ rk.

Define suppr(B) to be
⋃

0≤ℓ≤ℓmax
B(ℓ).

3 Layered Network Model

In this paper, we consider two types of layered SNNs: feed-forward networks, in which all edges point from
neurons in one layer to neurons in the next-higher layer, and networks that, in addition to forward edges,
include "lateral" edges between neurons in the same layer, for layers ≥ 1. The lateral edges are inspired by
work on the assembly calculus [3, 6, 7]; our layers correspond to "areas" in those papers.

We will also consider neuron failures during the recognition process. For our failure model, we consider
initial stopping failures: if a neuron fails, it never performs any activity, that is, it never updates its state
and never fires.

2Thus, we allow no overlap between the sets of children of different concepts. We study overlap in [5].
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3.1 Preliminaries

Throughout the paper, in referring to our networks, we use the following parameters:

• ℓmax, a positive integer, representing the maximum number of a layer in the network; this is the same
as ℓmax in the concept model, where it represents the maximum level number for the concepts we
consider.

• n, a positive integer, representing the number of distinct level 0 concepts the network can handle; This
is the same as n in the concept model, where it represents the total number of level 0 concepts to be
handled.

• m, a positive integer, representing the number of reps we will assume for each concept.

• τ , a real number, representing the firing threshold for neurons.

3.2 Network structure

Our networks are directed graphs consisting of neurons arranged in layers, with forward edges directed from
each layer to the next-higher layer. In our feed-forward networks, those are the only edges. In our networks
with lateral edges, we also have edges from neurons in a layer to other neurons in the same layer.

Specifically, a network N consists of a set N of neurons, partitioned into disjoint sets Nℓ, 0 ≤ ℓ ≤ ℓmax,
which we call layers. We refer to any particular neuron u ∈ Nℓ as a layer ℓ neuron, and write layer(u) = ℓ.
We assume that each layer contains exactly n ·m neurons, that is, |Nℓ| = n ·m for every ℓ. We refer to the
n ·m layer 0 neurons as input neurons.

We assume total connectivity between successive layers, that is, each neuron in Nℓ, 0 ≤ ℓ ≤ ℓmax− 1, has
an outgoing edge to each neuron in Nℓ+1. In our feed-forward networks, these are the only edges. In our
networks with lateral edges, we also assume total connectivity within each layer, that is, each neuron in Nℓ,
1 ≤ ℓ ≤ ℓmax, has an outgoing edge to each other neuron in the same set Nℓ.

Corresponding to each concept c ∈ D0, we assume a designated size-m set reps(c) of neurons in N0.
These sets are disjoint for different c. These are the input representations of c. For any B ⊆ D0, we define
reps(B) =

⋃

b∈B reps(b). That is, reps(B) is the set of all reps of concepts in B.
In later sections, we will consider extensions of the reps() function from level 0 concepts to higher-level

concepts. Establishing such higher-level reps will be the responsibility of a learning algorithm.

3.3 Neuron states

We assume that the state of each neuron consists of several state components. In this paper, all neurons
have the following state components:

• failed, with values in {0, 1}; this indicates whether or not the neuron has failed.

• firing, with values in {0, 1}; this indicates whether or not the neuron is currently firing, where 1
indicates that it is firing and 0 indicates that it is not firing.

We denote the firing component of neuron u at integer time t by firingu(t) and the failed component
of neuron u at time t by failedu(t). In this paper, failures occur only at the start, that is, each failedu

component is constant over time. We will maintain the invariant that failed = 1 implies firing = 0, that
is, a failed neuron does not fire.

Each non-input neuron u ∈ Nℓ, 1 ≤ ℓ ≤ ℓmax, has two additional state components:

• weight, a real-valued vector in [0, 1]n representing the current weights of all incoming edges; these can
be edges from neurons at the next-lower level or the same level.

• engaged, with values in {0, 1}, indicating whether the neuron is currently able to learn new weights.

We denote these two components of non-input neuron u at time t by weightu(t) and engagedu(t), respectively.
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3.4 Network operation

The network operation is determined by the behavior of the individual neurons. We distinguish between
input neurons and non-input (internal and output) neurons.

Input neurons: If u is an input neuron, then it has only two state components, failed and firing. Since
u is an input neuron, we assume that the values of both failed and firing are controlled by the network’s
environment and not by the network itself; that is, the value of failedu(t) and firingu(t) are set by some
external force, which we do not model explicitly. Since we assume initial stopping failures, the value of
failed is the same at every time t, that is, failedu(t) = failedu(0) for every t ≥ 0. We assume that if an
input neuron fails, it never fires, that is, failedu(0) = 1 implies that firingu(t) = 0 for every t ≥ 0.

Non-input neurons: If u is a non-input neuron, then it has four state components, failed, firing, weight,
and engaged. The value of failedu is set by an external force, as for input neurons. Again, since we assume
initial stopping failures, the value of failed is the same at every time t. A non-input neuron u that fails
never fires, that is, failedu(0) = 1 implies that firingu(t) = 0 for every t ≥ 0.

For a non-input neuron u that does not fail, the value of firingu(0) is determined by the initial network
setting, whereas the value of firingu(t), t ≥ 1, is determined by u’s incoming potential and its activation
function. To define the potential, let xu(t) denote the vector of firing values of u’s incoming neighbor
neurons at time t. These are all the nodes in the layer below u plus (for our model with lateral edges) all
the nodes in the same layer as u. Then the potential for time t, potu(t), is given by the dot product of the
weight vector and incoming firing pattern at neuron u at time t− 1, that is,

potu(t) = weightu(t− 1) · xu(t− 1) =
∑

j

weightuj (t− 1)xu
j (t− 1)j,

where j ranges over the set of incoming neighbors. The activation function, which defines whether or not
neuron u fires at time t, is then defined by:

firingu(t) =

{

1 if potu(t) ≥ τ,

0 otherwise,

where τ is the assumed firing threshold.
For non-input neurons that fail, we assume that engaged(t) = 0 for every t. For a non-failed input neuron

u, we assume that the value of engagedu is controlled by an external force, which may arise from outside
the network or from another part of the network, such as a "Winner-Take-All" sub-network.

For a non-input neuron u, the value of weightu(0) is determined by the initial network setting. For a
non-input neuron u that fails, the weight vector remains unchanged, weightu(t) = weightu(0) for every
t ≥ 0.

A non-input neuron u that does not fail and is engaged at time t ≥ 1 determines weightu(t) according to
a Hebbian-style learning rule, based on the weight vector and incoming firing pattern at time t− 1. In our
previous work [4], we assumed Oja’s learning rule. That is, if engagedu(t) = 1, then (using vector notation
for weightu and xu):

Oja’s rule: weightu(t) = weightu(t− 1) + ρ pot(t) · (xu(t− 1)− pot(t) · weightu(t− 1)), (1)

where ρ is an assumed learning rate. Thus, the weight vector is adjusted by an additive amount that is
proportional to the potential, and depends on the incoming firing pattern, with a negative adjustment that
depends on the potential and the prior weights.3 A non-input neuron u that does not fail but is not engaged
does not change its weights, that is, weightu(t) = weightu(t− 1).

During execution, the network proceeds through a sequence of configurations, where each configuration
specifies a state for every neuron in the network, that is, values for all the state components of every neuron.

3However, in Sections 8 and 9, we will require variations on this rule. In particular, we would like our learning rules to
achieve exactly 1 and exactly 0 as the final edge weights, instead of the approximate, scaled versions achieved by the rule above.
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4 Problem Definitions

In this section, we define the recognition problem formally, and the learning problem less formally. The
definitions for recognition include specifications of how the input is presented, and what outputs should
be produced, with what probabilities. The definitions are slightly different for feed-forward networks and
networks with lateral edges, because of differences in timing requirements.

4.1 Preliminaries

Our recognition problems use the following new parameters:

• q, the failure probability of each neuron; define p = 1− q to be the probability of a neuron not failing,
i.e., the probability of a neuron surviving.

• For each ℓ, 0 ≤ ℓ ≤ ℓmax, δℓ ∈ [0, 1]; these are the recognition probability parameters, representing the
probability of insufficient firing during the recognition process.

• ǫ ∈ [0, 1]; this is the recognition approximation parameter, representing a fraction of rep neurons that
might not fire.

For all versions of the recognition problem, we assume that the failures of all neurons (including the input
neurons) are determined initially, independently with a small probability q. That means that the failed flag
of each failed neuron u is set to 1 at time 0, failedu(0) = 1, and remains 1 thereafter, failedu(t) = 1 for
every t. We do not here consider failures during learning, but leave that for future work.

We consider a particular concept hierarchy C, with concept hierarchy notation as defined in Section 2.
For our networks, we use notation as defined in Section 3.

Our recognition problem definitions rely on the following definition of how a particular set B of level 0
concepts is “presented” to the network. This involves firing exactly the input neurons that represent these
level 0 concepts.

Definition 4.1. [Presented] If B ⊆ D0 and t ≥ 0, then we say that B is presented at time t (in some
particular network execution) exactly if the following holds. For every layer 0 neuron u:

1. If u ∈ reps(B) and failedu = 0, then u fires at time t.

2. If u /∈ reps(B) or failedu = 1, then u does not fire at time t.

4.2 Recognition in feed-forward networks

In this subsection and the next, we define what it means for network N to recognize concept hierarchy C.
This section assumes N is a feed-forward network and the next section allows N to include lateral edges.

In each case, the definition assumes that every concept c ∈ C, at every level > 0, has a size-m set of
representing neurons, reps(c).

In both of our problem statements, we require that, for each level ℓ concept c, 0 ≤ ℓ ≤ ℓmax, that is
r2-supported by B, with probability at least 1− δℓ, at least (1− ǫ)m of the reps(c) neurons should fire. On
the other hand, if c is not r1-supported by B, then none of the reps(c) neurons should fire.4

Definition 4.2 (Recognition problem for feed-forward networks). Network N (r1, r2)-recognizes C
provided that, for each concept c ∈ C with level(c) = ℓ, 0 ≤ ℓ ≤ ℓmax, there is a designated set of m neurons,
reps(c), such that the following holds. Assume that B ⊆ C0 is presented at time 0. Then:

1. When reps(c) neurons should fire: If c ∈ suppr2(B), then with probability at least 1 − δℓ, at least
(1− ǫ)m of the neurons v ∈ reps(c) neurons fire, each such v at time layer(v).

2. When reps(c) neurons should not fire: If c /∈ suppr1(B), then no neuron v ∈ reps(c) fires at time
layer(v).

4This is an asymmetric definition, because the firing result is probabilistic but the non-firing result is not. We could make
the non-firing result probabilistic, but that would mean relying on the occurrence of failures, which is a bad idea.
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Naturally, in Condition 1, we would like to minimize the values of δℓ and ǫ, in terms of the other parameters.
A word about the two choices here. We assume that the set B is chosen first, nondeterministically,

potentially by an adversary. Then the random choices are made, for which neurons fail, at the start of the
recognition process. Thus, the choice of B does not depend on the results of the random choices. After
B and the failed neurons are chosen, there are no further choices, and the recognition process proceeds
deterministically.

4.3 Recognition in networks with lateral edges

The second definition assumes that N is a network with lateral edges. For this, the timing is harder to pin
down, so we formulate the definition a bit differently. We assume here that the input is presented continuously
from some time 0 onward, and we allow some flexibility in when the reps(c) neurons are required to fire.

Definition 4.3 (Recognition problem for networks with lateral edges). Network N (r1, r2)-recognizes
C provided that, for each concept c ∈ C, with level(c) = ℓ, 0 ≤ ℓ ≤ ℓmax, there is a designated set of m
neurons, reps(c), such that the following holds. Assume that B ⊆ C0 is presented at all times ≥ 0. Then:

1. When reps(c) neurons should fire: If c ∈ suppr2(B), then with probability at least 1 − δℓ, at least
(1− ǫ)m of the neurons in reps(c) fire at all times starting from some time ≥ 0.

2. When reps(c) neurons should not fire: If c /∈ suppr1(B), then no neuron in reps(c) fires at any time.

Again, we assume that B is chosen first, nondeterministically, followed by the random choices of failed
neurons.

4.4 Learning

We do not give formal definitions of a "learning problem". Each solution to one of our recognition problems
depends on a particular representation for the concept hierarchy, which we will describe for our three types
of networks in Sections 5.2, 6.2, and 7.2. The job of a learning algorithm is to produce that representation,
starting from a default network configuration. Since we do not know at this point in the paper what the
representations should be, we cannot give a general definition of the learning problem here.

5 Recognition in Feed-Forward Networks with High Connectivity

We begin with the simplest case, feed-forward networks with high connectivity, by which we mean total
connectivity with weight 1 edges from reps of children to reps of their parents.5 Total connectivity from
reps of children to reps of parents is what we assumed in [4]. However, that paper considered only the
special case of m = 1 reps per concept, and did not consider neuron failures. Now we consider larger values
of m and (initial) neuron failures.

This section can be considered a "warm-up" for Sections 6 and 7. In those sections, we introduce the
complication of partial connectivity, i.e., missing edges, in addition to the partial information and failures
considered here.

The main result of this section is Theorem 5.1, which asserts correctness of recognition. It has two parts,
a positive result in Theorem 5.4 and a negative result in Theorem 5.6, corresponding to the two parts
of the recognition definition. The positive result yields particular values of the recognition approximation
parameter ǫ and the recognition probability parameters δℓ, 0 ≤ ℓ ≤ ℓmax, in terms of the given parameters
k, ℓmax, m, and p. In particular, it shows how the values of ǫ and δℓ depend on m and p.

5.1 Parameters

We introduce a new parameter:

• ζ, a concentration parameter for Chernoff bounds, as in Appendix A.

5Technically, we are assuming total connectivity between adjacent layers. To remove some edges from consideration, here
and later in the paper, we simply set their weights to 0. That implies that they cannot contribute to their target neuron’s
incoming potential.
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We also assume the following values for parameters introduced earlier:

• τ , the firing threshold for all neurons at layers ≥ 1, is defined to be r2kmp(1− ζ).

• ǫ, the recognition approximation parameter, is defined to be 1−p(1−ζ), where p = 1−q is the survival
probability for each individual neuron.

• For every ℓ, 0 ≤ ℓ ≤ ℓmax, the recognition probability parameter δℓ is defined to be

kℓ+1 − 1

k − 1
· exp

(

−
mpζ2

2

)

.

In particular, δ0 = exp
(

−mpζ2

2

)

.

5.2 The representation of concept hierarchy C

.
We define a feed-forward network N that is specially tailored to recognize concept hierarchy C. This is

for a representation that has already been learned; we will discuss learning for this case in Section 8. The
learning approach will be a variant of what we used in the noise-free algorithm in [4].

The strategy is simply to embed the digraph induced by C in the network N , using a redundant repre-
sentation. For every level ℓ concept c of C, we assume a set reps(c) of m designated neurons in layer ℓ of the
network; all such sets are disjoint. Let R be the set of all representatives of concepts, that is, R =

⋃

c reps(c).
Let rep−1 denote the corresponding inverse function that gives, for every u ∈ R, the concept c ∈ C with
u ∈ reps(c).

We define the weights of the edges as follows. If v is any layer ℓ neuron, 1 ≤ ℓ ≤ ℓmax, and u is any layer
ℓ− 1 neuron, then we define the edge weight weight(u, v) to be:6

weight(u, v) =

{

1 if u, v ∈ R and rep−1(u) ∈ children(rep−1(v)),

0 otherwise.

Thus, we have total connectivity with weight 1 edges from reps of children to reps of their parents. All
other edges from layer ℓ− 1 to layer ℓ have weight 0.7

As noted in Section 5.1, we define the threshold τ for any non-input neuron u to be r2kmp(1− ζ). The p
and (1− ζ) factors are included in order to accommodate the possible failure of some of the neurons at layer
layer(u)− 1.

Finally, we assume that the initial firing and engaged values for all the non-input neurons are 0. This
completely defines network N and, together with the nondeterministic choice of input set B and random
choice of failed neurons, determines its behavior.

5.3 The main theorem

We consider a particular concept hierarchy C, with concept hierarchy notation as defined in Section 2. We
define the parameters as in Section 5.1 and define the network N as in Section 5.2. In terms of all of these,
our main result is:

Theorem 5.1. Assume that r1 ≤ r2p(1− ζ) and r2 > 0. Then N (r1, r2)-recognizes C.

We prove Theorem 5.1 in two parts, following the definition of (r1, r2)-recognition. Theorem 5.4 expresses
the firing guarantee, and Theorem 5.6 expresses the non-firing guarantee. Theorems 5.4 and 5.6 together
immediately imply Theorem 5.1.

6Note that these simple weights of 1 and 0 do not correspond precisely to what is achieved by the noise-free learning algorithm
in [4]. There, the algorithm approaches the following weights, in the limit:

weight(u, v) =

{

1√
k

if u, v ∈ R and rep−1(u) ∈ children(rep−1(v)),

0 otherwise.

We proved in [4] that, after a certain number of steps of the noise-free learning algorithm, the weights are sufficiently close to
these limits to guarantee that network N (r1, r2)-recognizes C. In [5], we showed formally that results for the simple case of
weights in {0, 1} carry over to the approximate, scaled version that is actually produced by the learning algorithm of [4].

7We can think of these edges as "missing" but as noted earlier, they are present, but with weight 0.

8



5.4 Survival lemmas

The next section, Section 5.5, is devoted to proving a probabilistic guarantee for firing, in Theorem 5.4. In
this section, we give two preliminary lemmas.

According to our definitions, for the simple case of feed-forward networks with high connectivity, the only
probabilistic behavior of the network arises from the independent initial failures of the individual neurons
in the network. In this section, we give two simple lemmas that provide bounds on the number of surviving
(i.e., non-failing) neurons in the reps sets. These serve to encapsulate all of the probabilistic reasoning that
is needed to prove Theorem 5.4.

The first lemma bounds the probability of "sufficient survival" for the reps of a particular concept c.
Recall that we are assuming that each neuron fails, independently, with probability q = 1− p.

Lemma 5.2. For every concept c in the concept hierarchy C, at any level, the probability that the number

of surviving neurons in reps(c) is ≤ mp(1− ζ) is at most δ0 = exp
(

−mpζ2

2

)

.

Proof. We use a Chernoff bound. The probability of failure for each neuron in reps(c) is q. To upper-bound
the probability that no more than mp(1− ζ) of the m reps survive, we use a lower tail bound, in the form
given in Appendix A:

For any ζ ∈ [0, 1],Pr[X ≤ (1 − ζ)µ] ≤ exp

(

−
µζ2

2

)

.

In our case, the mean µ is equal to mp. So this says that Pr[X ≤ mp(1− ζ)] ≤ exp
(

−mpζ2

2

)

.

We extend Lemma 5.2 to give an overall probability of "sufficient survival" for all descendants of c:

Lemma 5.3. Consider a particular concept c with level(c) = ℓ, 0 ≤ ℓ ≤ ℓmax. Let A be the event that, for
some descendant c′ of c (possibly c itself), the number of surviving neurons in reps(c′) is ≤ mp(1− ζ). Then

Pr(A) ≤ δℓ =
kℓ+1−1
k−1 · exp

(

−mpζ2

2

)

.

Proof. The number of descendants of c is exactly 1+ k+ k2 + · · ·+ kℓ = kℓ+1−1
k−1 . A union bound, taken over

all of these descendants, and Lemma 5.2 yield the result.

To give an idea of the size of Pr(A) in Lemma 5.3, we imagine that the parameters k and ℓ of the concept
hierarchy are small, say 4. The number m of reps of a concept should be fairly large, say 320. The survival
probability p for an individual neuron should be close to 1, say 31

32 . The concentration parameter ζ might be

around 1/4. With these values, the probability in this last result is approximately 44·exp
(

− (320)(31/32)(1/4)2

2

)

,

or 256 · exp (−9.7). This last expression evaluates to approximately 256/16000, or .016.

5.5 Proof of guaranteed firing

For the main firing theorem, we assume that a set B of level 0 concepts is presented at time 0.

Theorem 5.4. Let c be a concept with level(c) = ℓ, 0 ≤ ℓ ≤ ℓmax, that is in suppr2(B). Then with
probability at least 1− δℓ, at least mp(1− ζ) of the neurons in reps(c) fire at time ℓ.

Proof. Fix a particular concept c at level ℓ that is supported by B. Consider the event A, where A is the
event defined in the statement of Lemma 5.3. The event A says that every descendant c′ of c (including c
itself) has more than mp(1− ζ) surviving neurons in reps(c′). By Lemma 5.3, we have that Pr(A) ≤ δℓ.

For the rest of the proof, we condition on event A, that is, we assume that every descendant c′ of c has
more than mp(1−ζ) surviving neurons in reps(c′). We prove that, under this assumption, at least mp(1−ζ)
of the neurons in reps(c) fire. This follows from the following Claim:

Claim 5.5. If c′ is a descendant of c with level(c′) = ℓ′, 0 ≤ ℓ′ ≤ ℓ, with c′ ∈ suppr2(B), then at least
mp(1− ζ) of the neurons in reps(c′) fire at time ℓ′.
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Proof of Claim 5.5: We prove this by induction on ℓ′.
Base: ℓ′ = 0: Consider any level 0 descendant c′ of c that is supported by B. Then c′ ∈ B. Then since

we are conditioning on the event A, more than mp(1− ζ) of the neurons in reps(c′) survive, and so they fire
at time 0. This suffices for the base case.

Inductive step: 1 ≤ ℓ′ ≤ ℓ: Suppose that the claim holds for ℓ′ − 1 and consider a level ℓ′ descendant c′

of c that is supported by B. Then by the definition of "supported", at least r2k children of c′ at level ℓ′ − 1
are supported by B. By the inductive hypothesis, each of these children has at least mp(1 − ζ) of its reps
firing at time ℓ′ − 1. So there are at least r2kmp(1 − ζ) level ℓ′ − 1 neurons that are reps of children of c′

and fire at time ℓ′ − 1.
By our connectivity assumption, all of these firing reps are connected to each neuron v in reps(c′) with

weight 1 edges, so the firing threshold of each such v, which is r2kmp(1 − ζ), is met. So if v does not fail,
it will fire at time ℓ′; thus, in the absence of failures, all m of the neurons in reps(c′) would fire at time ℓ′.
However, we do need to take account of failures.

Because we are conditioning on event A, we know that more than mp(1 − ζ) of the neurons in reps(c′)
survive. Since all of their firing thresholds are met, all of these surviving neurons fire at time ℓ′. That means
that more than mp(1− ζ) of the neurons in reps(c′) fire at time ℓ′, which suffices for the inductive step.
End of proof of Claim 5.5.

Instantiating Claim 5.5 with c′ = c yields that, conditioned on A, at least mp(1 − ζ) of the neurons in
reps(c) fire at time ℓ. Since Pr(A) ≥ 1− δℓ, the Theorem follows.

An interesting aspect of our proof is that all of the probabilistic arguments are encapsulated within the
survival lemmas in Section 5.4; these assert certain levels of survival with high probability. The arguments
in this section are entirely non-probabilistic, showing firing guarantees assuming certain minimum levels of
survival.

5.6 Proof of guaranteed non-firing

For the main non-firing theorem, we again assume that a set B of level 0 concepts is presented at time 0.

Theorem 5.6. Assume that r2 > 0 and r1 ≤ r2p(1 − ζ). For every concept c at level ℓ that is not in
suppr1(B), none of the neurons in reps(c) fire at time ℓ.

Notice that, unlike Theorem 5.4, Theorem 5.6 does not mention probabilities or a fraction of the reps;
this is because we are ignoring failures for the lower bound. If we were to take account of failures here, it
would mean that we are counting on a certain number of failures to occur (with high probability), which
seems like a bad idea. This is because failure estimates are generally designed to be conservative, that is, to
be upper bounds on the number of failures, rather than precise estimates.

Proof. (Sketch:) The argument is similar to that of Lemma 5.2 in our previous paper [5]. The main change
arises from the lower threshold, r2kmp(1−ζ). This requires a change in the assumption about the separation
between r1 and r2. Namely, we now require r1 ≤ r2p(1− ζ) instead of just r1 ≤ r2 as in [5].

6 Recognition in Feed-Forward Networks with Low Connectivity

Our connectivity assumptions in Section 5 are probably stronger than what occurs in real brains. In this
section, we weaken the connectivity assumptions, at the cost of somewhat weaker firing guarantees. Formally,
this weakening means that some of the edges from reps of children to reps of parents may have weight 0.

Specifically, we reduce the number of assumed weight 1 edges from reps of children of a concept c to a
rep of c from km to akm, for some constant a between 0 and 1. We imagine that a should be fairly large,
say approximately 3/4.

However, we must be careful about which edges we exclude. The danger is that the choice of the presented
set B might interact badly with the choice of excluded edges; for example, the excluded edges might all
happen to involve reps of concepts supported by B. We must formulate the connectivity assumption in a
way that takes account of such interactions.

Our approach is to refine the connectivity assumptions so that they are expressed in terms of the individual
children of a given concept c, rather than in terms of all the children of c in the aggregate. Specifically, for
every rep v of c, and every child c′ of c, v will have a large fraction of connections from reps of c′. The
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resulting finer-granularity connectivity assumptions allow us to ignore the dependencies between the choices
of B and of the missing edges, and obtain reasonable firing guarantees.

To summarize our assumptions about choices in this section: We assume that the excluded edges are
chosen nondeterministically, potentially by an adversary, subject to a fine-grained connectivity assumption.
Then the presented set B is chosen, again nondeterministically, and may depend on the choice of excluded
edges. Finally, the failing neurons are chosen randomly, at the start of the recognition process.

The rest of this section follows the general outline of Section 5.

6.1 Parameters

We introduce the following new parameter:

• a ∈ [0, 1], a coefficient to describe a lower bound on connectivity.

We also assume the following values for parameters introduced earlier. Compared to Section 5, we are
lowering the firing threshold τ and modifying the δℓ probabilities.

• τ , the firing threshold for all neurons at layers ≥ 1, is defined to be ar2kmp(1− ζ).

• ǫ, the recognition approximation parameter, is defined to be 1− p(1− ζ).

• δ0 = exp
(

−mpζ2

2

)

, and for ℓ ≥ 1,

δℓ =
kℓ+1 − 1

k − 1
· exp

(

−
mpζ2

2

)

+
kℓ − 1

k − 1
· km · exp

(

−
ampζ2

2

)

.

6.2 The representation of concept hierarchy C

As in Section 5, we define a feed-forward network N that is specially tailored to recognize concept hierarchy
C. As before, we embed the digraph induced by C in the network N , using a redundant representation.
Thus, for every level ℓ concept c of C, we assume a set reps(c) of m designated neurons in layer ℓ of the
network; all such sets are disjoint. Let R =

⋃

c reps(c). Let rep−1 denote the corresponding inverse function
that gives, for every u ∈ R, the concept c ∈ C with u ∈ reps(c).

Now we assume that, for any level ℓ concept c in the concept hierarchy, 1 ≤ ℓ ≤ ℓmax, for every neuron v
in reps(c), and for every child c′ of c, neuron v has at least am incoming weight 1 edges from reps of c′. More
precisely, for each child c′ of c and v ∈ reps(c), define inc(v, c′) to be the set of all neurons in reps(c′) that
have weight 1 edges connecting them to v. Then our connectivity assumption says that |inc(v, c′)| ≥ am.
All other edges from layer ℓ− 1 to layer ℓ have weight 0.

As noted in Section 6.1, we define the threshold τ for any non-input neuron to be ar2kmp(1 − ζ). We
assume that the initial firing and engaged values for all the non-input neurons are 0.

6.3 The main theorem

We consider a particular concept hierarchy C, with concept hierarchy notation as defined in Section 2. We
define the parameters as in Section 6.1 and define the network N as in Section 6.2. Our main result is:

Theorem 6.1. Assume that r1 ≤ ar2p(1− ζ) and r2 > 0. Then N (r1, r2)-recognizes C.

We prove Theorem 6.1 in two parts. Theorem 6.7 expresses the firing guarantee, and Theorem 6.11
expresses the non-firing guarantee. Theorems 6.7 and 6.11 together immediately imply Theorem 6.1.

6.4 Survival lemmas

We begin with two lemmas analogous to Lemmas 5.2 and 5.3. Proofs are as before.

Lemma 6.2. For every concept c in the concept hierarchy C, at any level, the probability that the number

of surviving neurons in reps(c) is ≤ mp(1− ζ) is at most δ0 = exp
(

−mpζ2

2

)

.
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Lemma 6.3. Consider a particular concept c with level(c) = ℓ, 0 ≤ ℓ ≤ ℓmax. Let A be the event that, for
some descendant c′ of c (possibly c itself), the number of surviving neurons in reps(c′) is ≤ mp(1− ζ). Then

Pr(A) ≤ kℓ+1−1
k−1 · exp

(

−mpζ2

2

)

.

Now we have some new lemmas, which consider separately the number of survivals among the reps of
each child of a concept. Namely, we consider a single neuron v in reps(c) and a single child c′ of c, and give
a lower bound for the number of surviving neurons in inc(v, c′), which is the set of neurons in reps(c′) that
are connected to v by weight 1 edges. Proofs again use Chernoff bounds and union bounds.

Lemma 6.4. Consider a particular concept c with level(c) = ℓ ≥ 1. Let v ∈ reps(c). Then for each
child c′ of c, the probability that the number of surviving neurons in inc(v, c′) is ≤ amp(1 − ζ) is at most

exp
(

−ampζ2

2

)

.

Proof. By Chernoff, using a mean of amp and concentration parameter of ζ. Since the size of inc(v, c′)
may be larger than am, we can consider any subset of inc(v, c′) of size exactly am and use a monotonicity
argument.

Lemma 6.5. Consider a particular concept c with level(c) = ℓ ≥ 1. Let A′ be the event that, for some
descendant c′ of c (possibly c itself) with level(c′) ≥ 1, for some v ∈ reps(c′), and for some child c′′ of c′,

the number of surviving neurons in inc(v, c′′) is ≤ amp(1− ζ). Then Pr(A′) ≤ kℓ−1
k−1 · km · exp

(

−ampζ2

2

)

.

Proof. The number of descendants c′ of c with level ≥ 1 is kℓ−1
k−1 . The number of reps for each such c′ is m.

The number of children of each such c′ is k. A union bound, taken over all of these descendants, reps, and
children, and Lemma 6.4, yield the result.

We finish with a lemma that combines the results of Lemmas 6.3 and 6.5, for concepts c with level(c) ≥ 1.
The proof uses another union bound

Lemma 6.6. Consider a particular concept c with level(c) = ℓ ≥ 1. Define A as in the statement of
Lemma 6.3 and A′ as in the statement of Lemma 6.5. Then

Pr(A ∪ A′) ≤ δℓ =
kℓ+1 − 1

k − 1
· exp

(

−
mpζ2

2

)

+
kℓ − 1

k − 1
· km · exp

(

−
ampζ2

2

)

.

To give an idea of the size of Pr(A ∪ A′) in Lemma 6.6, we assume, as before, that the values of k and
ℓ are both 4, the survival probability p for an individual neuron is 31

32 , and the concentration parameter ζ
is 1/4. Now we assume that the number m of reps of a concept is larger than before, say 640. We assume
that the value of a is 3/4. With these values, the probability in this last result is bounded by the sum of

two terms. The first is approximately 44 · exp
(

− (640)(31/32)(1/4)2

2

)

, or 256 · exp (−19.375). The second is

approximately 43 · 4 · 640 · exp
(

− (480)(31/32)(1/4)2

2

)

, or 256 · 640 · exp (−14.5). The first of these two terms is

negligible; the second is approximately .083.

6.5 Proof of guaranteed firing

Our main firing theorem, Theorem 6.7, is analogous to Theorem 5.4. Notice that Theorem 6.7 still talks
about firing of at least mp(1 − ζ) of the m neurons in the set reps(c), which is the same fraction as in
Theorem 5.4. However, the probability in the statement of the theorem changes, since it uses the new
definition of δℓ.

As before, we assume that a set B of level 0 concepts is presented at time 0.

Theorem 6.7. Let c be a concept with level(c) = ℓ, 0 ≤ ℓ ≤ ℓmax, that is in suppr2(B). Then with
probability at least 1− δℓ, at least mp(1− ζ) of the neurons in reps(c) fire at time ℓ.

For the proof, we find it convenient to separate the cases of ℓ = 0 and ℓ ≥ 1, in the following two lemmas.

Lemma 6.8. Let c be a concept with level(c) = 0 that is in suppr2(B). Then with probability at least 1− δ0,
at least mp(1− ζ) of the neurons in reps(c) fire at time 0.
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Proof. Since c ∈ suppr2(B) and level(c) = 0, we have that c ∈ B. By the definition of presenting B at time
0, all of the surviving neurons in reps(c) fire at time 0. By Lemma 6.2, with probability at least 1− δ0, the
number of surviving neurons in reps(c) is at least mp(1− ζ). Therefore, with probability at least 1− δ0, at
least mp(1− ζ) of the neurons in reps(c) fire at time 0, as needed.

Lemma 6.9. Let c be a concept with level(c) = ℓ, 1 ≤ ℓ ≤ ℓmax, that is in suppr2(B). Then with probability
at least 1− δℓ, at least mp(1− ζ) of the neurons in reps(c) fire at time ℓ.

Proof. Fix a particular concept c with level(c) = ℓ ≥ 1 that is supported by B. Define event A as in
Lemma 6.3 and event A′ as in Lemma 6.5. Then by Lemma 6.6, Pr(A ∪ A′) ≤ δℓ.

For the rest of the proof, we condition on the event A ∪A′. That is, we assume that every descendant c′

of c has more than mp(1− ζ) surviving neurons in reps(c′), and also that for every descendant c′ of c with
level(c′) ≥ 1, every v ∈ reps(c′), and every child c′′ of c′, the number of surviving neurons in inc(v, c′′) is
greater than amp(1− ζ).

We use the following Claim, which talks both about neurons having their firing thresholds met and about
neurons actually firing.

Claim 6.10. If c′ is a descendant of c with level(c′) = ℓ′, 0 ≤ ℓ′ ≤ ℓ, with c′ ∈ suppr2(B), then:

1. If ℓ′ ≥ 1 then every neuron in reps(c′) has its threshold met for time ℓ′.8

2. At least mp(1− ζ) of the neurons in reps(c′) fire at time ℓ′.

Proof of Claim 6.10: By induction on ℓ′, using two base cases.

Base, ℓ′ = 0: Part 1 is vacuous. For Part 2, since c′ ∈ suppr2(B) and level(c′) = 0, we have that
c′ ∈ B. By the definition of presenting B, all of the surviving neurons in reps(c′) fire at time 0. Since we are
conditioning on A ∪ A′ ⊆ A, the number of surviving neurons in reps(c′) is at least mp(1− ζ). Therefore at
least mp(1− ζ) of the neurons in reps(c′) fire at time 0.

Base, ℓ′ = 1: To show Part 1, we fix any v ∈ reps(c′) and show that v’s threshold is met for time
1. Because c′ is supported by B, c′ has at least r2k children in B. Consider each supported child c′′ of
c′ individually. Since we are conditioning on A ∪ A′ ⊆ A′, we have that at least amp(1 − ζ) neurons in
inc(v, c′′) survive. Since level(c′′) = 0, the definition of presenting B at time 0 implies that all of these
surviving neurons fire at time 0. Taking into account all of the supported children c′′ of c′, we have at least
ar2kmp(1− ζ) weight 1 connections to v from reps of children of c′ that fire at time 0. This meets v’s firing
threshold for time 1, showing Part 1.

For Part 2, because we are conditioning on A ∪ A′ ⊆ A, we know that more than mp(1−ζ) of the neurons
in reps(c′) survive. Since, by Part 1, all of their firing thresholds are met for time 1, we have that more than
mp(1− ζ) of the neurons in reps(c′) fire at time 1.

Inductive step, 2 ≤ ℓ′ ≤ ℓ: We show Part 1; then, as in the previous case, Part 2 follows since we are
conditioning on A ∪ A′ ⊆ A.

To show Part 1, we fix any v ∈ reps(c′) and show that v’s threshold is met for time ℓ′. Because c′ is
supported by B, c′ has at least r2k children that are supported by B. Consider each supported child c′′

of c′ individually. Since we are conditioning on A ∪ A′ ⊆ A′, we have that at least amp(1 − ζ) neurons in
inc(v, c′′) survive. Since level(c′′) ≥ 1, by the inductive hypothesis, Part 1, these all have their thresholds
met for time ℓ′ − 1, and therefore they fire at time ℓ′ − 1. Taking into account all of the supported children
c′′ of c′, we have at least ar2kmp(1 − ζ) weight 1 connections to v from reps of children of c′ that fire at
time ℓ′ − 1. This meets v’s firing threshold for time ℓ′, showing Part 1.
End of proof of Claim 6.10.

Instantiating Part 2 of Claim 6.10 with c′ = c yields that, conditioned on A ∪ A′, at least mp(1 − ζ) of
the neurons in reps(c) fire at time ℓ. Since Pr(A ∪ A′) ≤ δℓ, the Lemma follows.

Proof. (Of Theorem 6.7): Follows from Lemmas 6.8 and 6.9.

Note: Our use of a fine-granularity connectivity assumption in this section has impact on the size of the
δℓ probabilities for a given number m of reps. It should be possible to reduce these probabilities by making
additional randomness assumptions, for example, by assuming that the presented set B is chosen randomly
from some distribution. We avoid considering this, for now.

8Recall that the incoming potential for time ℓ′ is computed from the firing pattern of incoming neighbors at time ℓ′ − 1.
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6.6 Proof of guaranteed non-firing

We again assume that a set B of level 0 concepts is presented at time 0. Now we obtain:

Theorem 6.11. Assume that r2 > 0 and r1 ≤ ar2p(1 − ζ). For every concept c at level ℓ that is not in
suppr1(B), none of the neurons in reps(c) fire at time ℓ.

Proof. (Sketch:) As in Section 5.6, the argument considers the most favorable case for an algorithm. Here
that means no failures and all-to-all connectivity with weight 1 edges from reps of children to reps of parents.

The only change from Section 5.6 is a greater separation between r1 and r2, which is needed because
of the lower threshold of ar2kmp(1 − ζ) used in this section. The proof again follows arguments like those
in [5].

7 Recognition in Networks with Lateral Edges, with Low Connec-

tivity

In this section, we consider recognition in networks that contain some weight 1 lateral edges between reps
of the same concept, in addition to weight 1 forward edges from reps of children to reps of their parents.

In Section 6, we assumed partial connectivity from reps of children to reps of their parents, expressed in
terms of a coefficient a. Namely, for each rep v of a concept c, and for each child c′ of c, we assumed weight
1 edges from at least am reps of c′ to v. In this section we weaken this assumption, by dividing the reps
of concept c into two Classes, which we (unimaginatively) call Class 1 and Class 2. Each rep v in Class 1
satisfies the same assumption as the reps in Section 6: for each child c′ of c, we assume weight 1 edges from
at least am reps of c′ to v. For each rep v in Class 2, we weaken this requirement using a smaller threshold
a1, namely, for each child c′ of c, we assume weight 1 edges from at least a1m reps of c′ to v. We compensate
for the missing weight 1 forward edges with some weight 1 lateral edges from other reps of v, i.e., from peer
reps.

As in Section 6, we must be careful about dependencies between the choice of missing edges and the choice
of presented set B. We again deal with these complications by breaking down the connectivity requirements
in terms of smaller groups of neurons. This time, in addition to groups consisting of reps of individual child
neurons, we use groups consisting of peer reps.

This section is generally inspired by the assembly calculus work in [3, 6]. Our layers are intended to
correspond to the areas in [3, 6]. As in our work, those papers deal with representation of concepts with
multiple neurons, where neurons that are reps of a concept c are triggered to fire based on a combination of
potential from representatives of children of c and from other representatives of the same concept c. However,
the papers [3, 6] emphasize how representations of structured concepts are learned, whereas we emphasize
the form of representations and how they are used for recognition in the presence of partial information and
failures. We discuss learning informally in Sections 8 and 9.

To separate the treatment of recognition from that of learning, we define a new connectivity property that
might be guaranteed by a learning algorithm with high probability, and that suffices for reliable recognition.
We call the new connectivity property the Class Assumption, and define it in Section 7.2. It captures the
division of reps into Class 1 and Class 2, with appropriate connectivity properties for each Class.

We use the Class Assumption in Section 7.5 to prove that recognition works correctly. In particular, we
show that, with the Class Assumption, we have high probability of correctly recognizing a concept that is
r2-supported by a presented set B. As before, all the probability here arises from the randomly-chosen initial
neuron failures. As before, we prove this high-probability claim using "survival lemmas", which we present
in Section 7.4.

7.1 Parameters

We introduce:

• a1 ∈ [0, a], describing a lower bound that is smaller than a, on connectivity between layers.

• a2 ∈ [0, 1], describing a lower bound on connectivity within layers; we require that a2 ≥ (a− a1)k.
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• m1 ∈ [0,m], describing the number of Class 1 reps of any concept; write m2 for m−m1, which is the
number of Class 2 reps of any concept.9

We assume the following values for parameters introduced earlier.

• The threshold τ for all neurons at layers ≥ 1 is defined to be ar2kmp(1− ζ).

• ǫ = 1− p(1− ζ).

• δ0 = exp
(

−mpζ2

2

)

, and for ℓ ≥ 1,

δℓ =
kℓ+1 − 1

k − 1
exp

(

−
mpζ2

2

)

+
kℓ − 1

k − 1

(

km1 · exp

(

−
ampζ2

2

)

+ km2 · exp

(

−
a1mpζ2

2

)

+m2 · exp

(

−
a2mpζ2

2

))

.

7.2 The representation of concept hierarchy C

As before, we embed the concept hierarchy C in the network N using a redundant representation. Thus, for
every level ℓ concept c of C, we assume a set reps(c) of m designated neurons in layer ℓ of the network; all
such sets are disjoint.

We have forward edges from all neurons in each layer to all neurons in the next higher layer, and lateral
edges between all neurons in the same layer. The weights of all edges are in {0, 1}. The only weight 1 edges
are from reps of child concepts to reps of their parents, and between reps of the same concept (peer reps).
However, only a subset of these edges have weight 1, as specified by the constraints in the Class Assumption
below.

The Class Assumption aims to achieve incoming potential for all rep neurons of at least am. We break
this down in terms of reps of individual children and peer reps, in order to avoid some dependencies between
the choice of missing edges and the choice of presented set B. Specifically, the Class Assumption for concept
c says that, for any level ℓ concept c in the concept hierarchy, we have a partition of the neurons in reps(c)
into two Classes, called Class 1 and Class 2, defined as follows:

• Neuron v is in Class 1 exactly if, for every child c′ of c, neuron v has at least am incoming weight 1
edges from reps of c′.

• Neuron v is in Class 2 exactly if it is not in Class 1, and has the following incoming edges: (a) for
every child c′ of c, at least a1m incoming weight 1 edges from reps of c′ and (b) at least a2m incoming
weight 1 edges from reps of c that are in Class 1.

We assume that this division into Classes is a true partition, that is, it includes all of the neurons in reps(c).
We introduce some notation for the incoming edges for a neuron v in reps(c): For each child c′ of c, define

inc(v, c′) to be the set of all of the neurons that are reps of c′ and have weight 1 edges to v. Also, if v is
in Class 2, let inc(v, c) denote the set of all of the neurons that are reps of c in Class 1 and have weight
1 edges to v. Then the Class Assumption for c implies that, for every v in Class 1 and every child c′ of c,
|inc(v, c′)| ≥ am. Also, for every v in Class 2 and every child c′ of c, |inc(v, c′)| ≥ a1m, and for every v in
Class 2, |inc(v, c)| ≥ a2m. Thus, the Class Assumption for c implies that:

• For every v in Class 1, Σc′ |inc(v, c′)| ≥ akm, and

• For every v in Class 2, Σc′ |inc(v, c′)|+ |inc(v, c)| ≥ a1km+ a2m ≥ a1km+ (a− a1)km = akm.

In Section 7.5, we show that each rep in Class 1 has enough firing just from relevant reps at level ℓ − 1
in the network to meet its firing threshold. And each rep in Class 2 has enough firing from a combination
of relevant reps at level ℓ− 1 and reps in Class 1 to meet its firing threshold.

In Section 9, we try to argue that algorithms similar to those used in the assembly calculus [3, 6] ensure
the Class Assumption with high probability. However, the present section is about recognition. Our job here
is simply to show that the Class Assumption suffices to guarantee (r1, r2)-recognition.

9This uniformity is certainly an oversimplification, but then again, we are oversimplifying in many places in this paper, in
order to make analysis tractable.
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7.3 The main theorem

We consider a particular concept hierarchy C, with concept hierarchy notation as defined in Section 2. We
define the parameters as in Section 7.1 and define the network as in Section 7.2. Our main result is:

Theorem 7.1. Assume that r1 ≤ ar2p(1− ζ) and r2 > 0. Then N (r1, r2)-recognizes C.

Again, we prove Theorem 7.1 in two parts, following the definition of (r1, r2)-recognition. Theorem 7.8
expresses the firing guarantee, and Theorem 7.12 expresses the non-firing guarantee. Theorems 7.8 and 7.12
together immediately imply Theorem 7.1.

7.4 Survival lemmas

As before, we have:

Lemma 7.2. For every concept c in the hierarchy C, at any level, the probability that the number of surviving

neurons in reps(c) is ≤ mp(1− ζ) is at most exp
(

−mpζ2

2

)

.

Lemma 7.3. Consider a particular concept c with level(c) = ℓ, 0 ≤ ℓ ≤ ℓmax. Let A be the event that, for
some descendant c′ of c (possibly c itself), the number of surviving neurons in reps(c′) is ≤ mp(1− ζ). Then

Pr(A) ≤ kℓ+1−1
k−1 · exp

(

−mpζ2

2

)

.

Now we have some new lemmas, involving the survival of incoming neighbors of a rep neuron v. Proofs
again use Chernoff and union bounds.

Lemma 7.4. Let c be a concept with level(c) = ℓ ≥ 1. Let v ∈ reps(c) and suppose that v is in Class 1.
Then for each child c′ of c, the probability that the number of surviving neurons in inc(v, c′) is ≤ amp(1− ζ)

is at most exp
(

−ampζ2

2

)

.

Proof. By Chernoff, using a mean of amp and concentration parameter of ζ. Since the size of inc(v, c′) may
be larger than am, we can consider any subset of inc(v, c′) and use a monotonicity argument.

Lemma 7.5. Let c be a concept with level(c) = ℓ ≥ 1. Let v ∈ reps(c) and suppose that v is in Class 2.
Then:

1. For each child c′ of c, the probability that the number of surviving neurons in inc(v, c′) is ≤ a1mp(1−ζ)

is at most exp
(

−a1mpζ2

2

)

.

2. The probability that the number of surviving neurons in inc(v, c) is ≤ a2mp(1−ζ) is at most exp
(

−a2mpζ2

2

)

.

Proof. Both parts use Chernoff with a concentration parameter of ζ. Part 1 uses a mean of a1mp and Part
2 uses a mean of a2mp.

Lemma 7.6. Consider a particular concept c with level(c) = ℓ ≥ 1. Then:

1. Let A1 be the event that, for some descendant c′ of c (possibly c itself) with level(c′) ≥ 1, some
v ∈ reps(c′) with v in Class 1, and some child c′′ of c′, the number of surviving neurons in inc(v, c′′)

is ≤ amp(1− ζ). Then Pr(A1) ≤
kℓ−1
k−1 · km1 · exp

(

−ampζ2

2

)

.

2. Let A2 be the event that, for some descendant c′ of c (possibly c itself) with level(c′) ≥ 1, some
v ∈ reps(c′) with v in Class 2, and some child c′′ of c′, the number of surviving neurons in inc(v, c′′)

is ≤ a1mp(1− ζ). Then Pr(A2) ≤
kℓ−1
k−1 · km2 · exp

(

−a1mpζ2

2

)

.

3. Let A3 be the event that, for some descendant c′ of c (possibly c itself) with level(c′) ≥ 1, and some
v ∈ reps(c′) with v in Class 2, the number of surviving neurons in inc(v, c) is ≤ a2mp(1 − ζ). Then

Pr(A3) ≤
kℓ−1
k−1 ·m2 · exp

(

−a2mpζ2

2

)

.
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4. Let A′ = A1 ∪ A2 ∪ A3. Then

Pr(A′) ≤
kℓ − 1

k − 1

(

km1 · exp

(

−
ampζ2

2

)

+ km2 · exp

(

−
a1mpζ2

2

)

+m2 · exp

(

−
a2mpζ2

2

))

.

Proof. The number of descendants of c with level ≥ 1 is exactly kℓ−1
k−1 . For each descendant c′ of c with

level(c′) ≥ 1, the number of Class 1 reps is m1, the number of Class 2 reps is m2, and the number of
children of c′ is k. A union bound, taken over all of these descendants c′, reps, and children, and Lemma 7.4,
yields Part 1. Two other union bounds and Lemma 7.5 yield Parts 2 and 3. Finally, Part 4 is obtained using
yet another union bound, for the events A1, A2, and A3.

The final lemma combines the results of Lemmas 7.3 and 7.6, for concepts c with level(c) ≥ 1.

Lemma 7.7. Consider a particular concept c with level(c) = ℓ ≥ 1. Define A as in the statement of
Lemma 7.3 and A′ as in the statement of Lemma 7.6. Then Pr(A ∪ A′) ≤ δℓ =

kℓ+1 − 1

k − 1
·exp

(

−
mpζ2

2

)

+
kℓ − 1

k − 1

(

km1 · exp

(

−
ampζ2

2

)

+ km2 · exp

(

−
a1mpζ2

2

)

+m2 · exp

(

−
a2mpζ2

2

))

.

To give an idea of the size of Pr(A ∪ A′) in Lemma 7.7, we assume, as before, that the values of k and ℓ
are both 4, the survival probability p for an individual neuron is 31

32 , and the concentration parameter ζ is
1/4. Now we assume that the number m of reps is 640, and m1 = m2 = 320. Also, we assume that a = 3/4,
a1 = 11/16, and a2 = 3/4.

With these values the probability in this last result is bounded by the sum of four terms (distributing the
kℓ−1
k−1 factor over the three terms in parentheses). These terms all include the expression pζ2

2 , which here eval-

uates to (31/32)(1/4)2

2 ), which is approximately .03. Then the first term is approximately 44 ·exp(−(640)(.03),
or 256 · exp(−19.2), which is negligible. The second term is approximately 43 · 4 · 320 · exp(−(480)(.03)), or
256 · 320 · exp(−14.4), or approximately .05. The third term is approximately 43 · 4 · 320 · exp(−(440)(.03)),
or 256 · 320 · exp(−13.2), or approximately .15. The fourth term is approximately 43 · 320 · exp(−(480)(.03),
or 64 · 320 exp(−14.4), or approximately .01. The sum of the four terms is approximately .21.10

7.5 Proof of guaranteed firing

Our main firing theorem, Theorem 7.8, still talks about firing of at least mp(1− ζ) of the m neurons in the
set reps(c). However, the probability uses the new definition of δℓ. Now we assume that a set B of level 0
concepts is presented at all times ≥ 0.

Theorem 7.8. Let c be a concept with level(c) = ℓ, 0 ≤ ℓ ≤ ℓmax, that is in suppr2(B). Then, with
probability at least 1− δℓ, there are at least mp(1− ζ) neurons in reps(c) that fire at all times starting from
some time ≥ 0.

We consider the cases of ℓ = 0 and ℓ ≥ 1 separately.

Lemma 7.9. Let c be a concept with level(c) = 0 that is in suppr2(B). Then with probability at least 1− δ0,
there are at least mp(1− ζ) neurons in reps(c) that fire at all times ≥ 0.

Proof. Since c ∈ suppr2(B) and level(c) = 0, we have that c ∈ B. Since B is presented at all times, all of
the surviving neurons in reps(c) fire at all times. By Lemma 7.2, with probability at least δ0, the number of
surviving neurons in reps(c) is at least mp(1− δ). Therefore, with probability at least δ0, there are at least
mp(1− δ) neurons in reps(c) that fire at all times ≥ 0.

Lemma 7.10. Let c be a concept with level(c) = ℓ, 1 ≤ ℓ ≤ ℓmax, that is in suppr2(B). Then with probability
at least 1− δℓ, there are at least mp(1− ζ) neurons in reps(c) that fire at all times ≥ 2ℓ.

Proof. Fix c with level(c) = ℓ ≥ 1. Define event A as in Lemma 7.3 and event A′ as in Lemma 7.6. Then
by Lemma 7.7, Pr(A ∪ A′) ≤ δℓ.

For the rest of the proof, we condition on the event A ∪A′. The proof uses the following Claim:

10This value seems a bit high. Of course, we could always increase m to reduce the bound.
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Claim 7.11. If c′ is a descendant of c with level(c′) = ℓ′, 0 ≤ ℓ′ ≤ ℓ, with c′ ∈ suppr2(B), then:

1. If ℓ′ ≥ 1 then every Class 1 neuron v in reps(c′) has its threshold met for all times ≥ 2ℓ′ − 1.

2. If ℓ′ ≥ 1 then every Class 2 neuron v in reps(c′) has its threshold met for all times ≥ 2ℓ′.

3. At least mp(1− ζ) of the neurons in reps(c′) fire at all times ≥ 2ℓ′.

Proof of Claim 7.11:
By induction on ℓ′, using two base cases.

Base, ℓ′ = 0: Parts 1 and 2 are vacuous. For Part 3, since c′ ∈ suppr2(B) and level(c′) = 0, we have that
c′ ∈ B. Since B is presented at all times, all of the surviving neurons in reps(c′) fire at all times. Since we
are conditioning on A ∪ A′ ⊆ A, the number of surviving neurons in reps(c′) is at least mp(1− ζ). Therefore
at least mp(1− ζ) of the neurons in reps(c′) fire at all times ≥ 0 = 2 · 0, as needed.

Base, ℓ′ = 1: We show Parts 1 and 2 individually. Together they imply that every neuron v in reps(c′) has
its threshold met at all times ≥ 2 = 2ℓ′. Then Part 3 will follow since we are conditioning on A ∪ A′ ⊆ A.

To show Part 1, we fix any Class 1 neuron v and show that its threshold is met for all times ≥ 1 = 2ℓ′− 1.
Because c′ is supported by B, c′ has at least r2k children that are supported by B, and therefore are in
B. Consider each supported child c′′ of c′ individually. Since we are conditioning on A ∪ A′ ⊆ A′, we know
that at least amp(1 − ζ) neurons in inc(v, c′′) survive. Since level(c′′) = 0 and B is presented at all times,
all of these neurons fire at all times. Taking into account all of the supported children c′′ of c′, we have at
least ar2kmp(1 − ζ) weight 1 connections to v from reps of children of c′ that fire at all times, yielding an
incoming potential to v of at least ar2kmp(1− ζ). This meets v’s firing threshold for all times ≥ 1.

To show Part 2, we fix any Class 2 neuron v and show that its threshold is met for all times ≥ 2 = 2ℓ′.
Because c′ is supported by B, c′ has at least r2k children that are supported by B, and therefore are in B.
Consider each supported child c′′ of c′ individually. Since we are conditioning on A ∪ A′ ⊆ A′, we know that
at least a1mp(1− ζ) neurons in inc(v, c′′) survive. Since level(c′′) = 0 and B is presented at all times, all of
these neurons fire at all times. Taking into account all of the supported children c′′ of c′, we have at least
a1r2kmp(1 − ζ) weight 1 connections to v from firing reps of children of c′, yielding an incoming potential
to v of at least a1r2kmp(1− ζ).

But this may not be enough to meet the meet the firing threshold for v; for this, we must also consider
connections from the reps of c′ that are in Class 1. Since we are conditioning on A ∪A′ ⊆ A′, we have
that at least a2mp(1 − ζ) neurons in inc(v, c′) survive. Since these are all in Class 1, Part 1 implies that
all of their firing thresholds are met, and so they fire at all times ≥ 1. Since the weights for the edges
from these neurons to v are all 1, this gives a total of a2mp(1 − ζ) potential contributed to v from these
peers of v in Class 1, for all times ≥ 2. Then the total potential incoming to v for all times ≥ 2 is at least
a1r2kmp(1 − ζ) + a2mp(1 − ζ) ≥ a1r2kmp(1 − ζ) + (a − a1)kmp(1 − ζ) ≥ ar2kmp(1 − ζ). This meets v’s
firing threshold for all times ≥ 2.

Inductive step, 2 ≤ ℓ′ ≤ ℓ: This is similar to the second base step. We show Parts 1 and 2 individually.
Together they imply that every neuron v in reps(c′) has its threshold met at all times ≥ 2ℓ′. Then Part 3
follows since we are conditioning on A ∪A′ ⊆ A.

To show Part 1, we fix any Class 1 neuron v and show that its threshold is met for all times ≥ 2ℓ′ − 1.
Because c′ is supported by B, it has at least r2k children that are supported by B. Consider each supported
child c′′ of c′ individually. Since we are conditioning on A ∪ A′ ⊆ A′, we have that at least amp(1 − ζ)
neurons in inc(v, c′′) survive. Since ℓ′ − 1 ≥ 1, by the inductive hypothesis, Parts 1 and 2, these all have
their thresholds met for all times ≥ 2(ℓ′ − 1), and therefore they fire at all times ≥ 2(ℓ′ − 1) Taking into
account all of the supported children c′′ of c′, we have at least ar2kmp(1− ζ) weight 1 connections to v from
reps of children of c′ that fire at all times ≥ 2(ℓ′ − 1). This meets v’s firing threshold for all times ≥ 2ℓ′ − 1.

To show Part 2, we fix any Class 2 neuron v and show that its threshold is met for all times ≥ 2ℓ′. Because
c′ is supported by B, it has at least r2k children that are supported by B. Consider each supported child
c′′ individually. Since we are conditioning on A ∪ A′ ⊆ A′, we have that at least a1mp(1 − ζ) neurons in
inv(v, c′′) survive. Since ℓ′ ≥ 1, by the inductive hypothesis, Parts 1 and 2, these all have their thresholds
met for all times ≥ 2(ℓ′ − 1), and therefore they fire at all times ≥ 2(ℓ′ − 1). Taking into account all of the
supported children c′′ of c′, we have at least a1r2kmp(1− ζ) weight 1 connections to v from reps of children
of c′ that fire at all times ≥ 2(ℓ′ − 1), yielding an incoming potential to v for all times ≥ 2ℓ′ − 1 of at least
a1r2kmp(1− ζ).
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To meet the firing threshold for v, we also consider the reps of c′ that are in Class 1. Arguing as in
the base case for ℓ′ = 1, we get a total of a2mp(1 − ζ) potential contributed to v from these peers of
v in Class 1, for all times ≥ 2ℓ′. Then the total potential incoming to v for all times ≥ 2ℓ′ is at least
a1r2kmp(1 − ζ) + a2mp(1 − ζ) ≥ a1r2kmp(1 − ζ) + (a − a1)kmp(1 − ζ) ≥ ar2kmp(1 − ζ). This meets v’s
firing threshold for all times ≥ 2ℓ′.
End of proof of Claim 7.11.

Instantiating Part 3 of Claim 7.11 with c′ = c yields the lemma, taking into account that Pr(A ∪ A′) ≤
δℓ.

Proof. (Of Theorem 7.8): Follows from Lemmas 7.9 and 7.10.

7.6 Proof of guaranteed non-firing

We assume that a set B of level 0 concepts is presented at all times. Now we obtain:

Theorem 7.12. Assume that r1 ≤ ar2p(1 − ζ) and r2 > 0. For every concept c at level ℓ that is not in
suppr1(B), none of the neurons in reps(c) fire at any time.

Proof. (Sketch:) As before, we ignore the failures for the non-firing part. Now, because we want to consider
the most favorable situation for the recognition algorithm, we assume all-to-all connectivity from reps of
children to reps of parents, and also among reps of the same concept. Under these conditions, all reps of
all concepts at levels ≥ 1 are in Class 1. Then the proof again follows arguments like those in [5].

8 Learning in Feed-Forward Networks

In this section and the next, we describe how the representations discussed in the previous three sections
might be learned. We do not present our learning algorithms in detail, but just discuss them at a high level,
relying freely on results from [4] and [3] for some of the descriptions and arguments.

We focus here on the problem of learning a particular concept c and its descendants, rather than learning
the entire concept hierarchy C. The learning strategies we consider all proceed bottom-up, identifying the
set reps(c′) for a descendant c′ of c, and fixing their incoming edge weights, only after the reps and weights
for the children of c′ has already been learned.

We assume that the network contains forward edges from all layer ℓ− 1 neurons to all layer ℓ neurons. In
addition, for networks with lateral edges, we have edges between all pairs of neurons in the same layer. The
initial weights of the edges will be specified as part of each algorithm description. After a learning algorithm
completes, the weights of all edges will be either 0 or 1. The only edges that may have weight 1 after learning
is completed are forward edges from reps of children to reps of their parents, and lateral edges between reps
of the same concept. We assume here that the chosen reps(c) neurons record this status in their state, by
setting a special rep variable, whose value starts as ⊥, to c.

To keep things simple, we avoid considering failures during learning.11

In the remainder of this section, we consider feed-forward networks, in both the high-connectivity and
low-connectivity cases. In Section 9 we consider networks that also contain lateral edges.

In feed-forward networks, in both the high-connectivity and low-connectivity cases, the reps for a concept
c can be selected and their incoming weights can be learned using variants of the noise-free learning algorithm
in [4].

8.1 Feed-forward networks with high connectivity

In this case, as we described earlier, we assume that the network N has total connectivity from each layer to
the next-higher layer, and no lateral edges. Prior to learning, we assume that all the edge weights of forward
edges have the same small value, for example, 1

kℓmax+1 as in [4]. As in [4], we assume that the thresholds

11It is not entirely clear what types of failures should be considered. Initial failures of layer 0 rep neurons do not seem
reasonable, because then we would entirely miss learning some parts of the concept hierarchy. We might consider initial failures
of higher-layer neurons, or failures of different layer 0 neurons at the start of each new training instance; this latter type of
failure is similar to what we assumed in the "noisy learning" algorithm in [4]. But at any rate, we avoid this for now and leave
it for future work.
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are known ahead of time and are fixed at the same value for all neurons in layers ≥ 1. Since we are not now
considering partial information or failures, we assume that the threshold is simply km.12

For learning a concept c, we generally follow the bottom-up noise-free learning algorithm of [4], learning
the descendants of c level-by-level starting with level 1. Consider a particular descendant c′ of c with
level(c′) = ℓ′, and suppose that the children of c′ have already been learned. Then leaves(c′) get presented,
and cause all the reps of children of c′ to fire. These provide incoming potential to the neurons at layer ℓ′.
In [4], at this point in the algorithm, a Winner-Take-All mechanism is used to select a single rep neuron in
layer ℓ′, namely, one with the highest incoming potential (breaking ties according to some default). Here,
instead of using a simple Winner-Take-All, the learning algorithm uses an m-Winner-Take-All, which selects
the m available neurons in layer ℓ′ that have the highest incoming potential. Note that these neurons need
not have fired—they just need to have high incoming potential.

The algorithm then engages all of the selected neurons in learning, and adjusts their incoming weights
in several steps, strengthening the weights of edges from reps of children of c′ to reps of c′, and weakening
other incoming edges of reps of c′. Note that the final weights in [4] are scaled and approximate, approaching
values 0 or 1√

k
in the limit.13 Here we assume a modified Hebbian-style learning rule that actually reaches

final values of 0 or 1.14 We do this because this matches up better with our recognition results in Section 5.
We state our correctness theorem somewhat informally. We say that a network (one that results from

learning) correctly represents a concept c with level(c) ≥ 1 if it contains reps and weights that satisfy the
requirements in Section 5.2 for c and its descendants.15

Theorem 8.1. Let c be any particular concept in C, with level(c) = ℓ, 1 ≤ ℓ ≤ ℓmax. Then our learning
algorithm results in a network that correctly represents c.

Proof. Analogous to the proof for the noise-free learning algorithm in [4].

Theorem 8.1 says that the learning algorithm yields a correct representation for c and its descendants.
We can also consider correctness of a combination of successful learning of c and successful recognition of c
after learning:

Corollary 8.2. Let c be any particular concept in C, with level(c) = ℓ, 1 ≤ ℓ ≤ ℓmax. The learning algorithm
for c yields a network that satisfies the following property. Let B be a set of level 0 concepts such that c is in
suppr2(B). Then with probability at least 1− δℓ, at least mp(1− ζ) of the neurons in reps(c) fire at time ℓ.

Proof. By Theorem 8.1 and Theorem 5.4. The first of these is guaranteed to yield a correct representation,
and the second of these relies on the representation to get recognition with probability at least 1− δℓ.

8.2 Feed-forward networks with low connectivity

For the case of feed-forward networks with low connectivity, we use a different assumption about the initial
network from what we used in Section 8.1. Instead of assuming total connectivity between successive layers
with nonzero weight edges, we assume that the connections are chosen randomly. Thus, we assume the
following new parameter:

• p′ ∈ [0, 1], representing the probability of including each edge. Specifically, for each edge from a layer ℓ
to the next-higher layer ℓ+ 1, with probability p′, we assign a small weight to the edge, and otherwise
we assign weight 0.

For learning a concept c, the learning algorithm proceeds by learning the descendants of c bottom-up,
as in Section 8.1. We modify the thresholds to accommodate the missing edges. Thus, instead of using

12This threshold value is higher than the threshold of r2kmp(1− ζ) that is used in the main recognition result, Theorem 5.1.
For now, we will just assume that the firing threshold can be different for learning and recognition, which is not implausible.
If we modify the learning algorithm so that it allows some partial information or failures, then its threshold would have to be
reduced. We leave this for future work.

13To approach 1 instead of 1√
k
, we can use simple scaling ideas as in [5].

14Such a modified rule might involve slight adjustment to weights that are "very close" to their targets so that they actually
reach these values.

15This is not only informal, but also not quite right because the definition in Section 5.2 is for the network representing the
entire concept hierarchy C, whereas we are concerned here only for c and its descendants. But it is straightforward to modify
the earlier definitions so that they apply to this smaller hierarchical structure.

20



a threshold of km, we use akm, where a is the coefficient that is assumed in Section 6. Again, for each
descendant c′ of c with level(c′) = ℓ′, we use an m-Winner-Take-All mechanism to select the m available
neurons in layer ℓ′ with the highest incoming potential from all km reps of all children of c′. We increase
the nonzero weights of incoming edges from reps of children of c′ to reps of c′, to 1.16

For this to work correctly, we must reconcile a fundamental difference between the operation of the learning
algorithm and the conditions required for the representation, in Section 6.2. For any particular descendant
c′ of c, our goal is that, for every chosen v ∈ reps(c′), with high probability, each of the k children of c′

individually should provide at least am weight 1 edges from reps(c′′) to v. However, the algorithm chooses
the m reps of c′ based on having the highest total incoming potential from all km reps of all children of c′.
That means that they have the highest total number of nonzero weight incoming edges, from all of these km
reps combined.

To reconcile this difference, we assume the following new parameters:

• b ∈ (a, 1]; for each v, the learning algorithm should yield at least bkm total weight 1 incoming edges
to v from reps of all children of c′.

• θlearn ∈ [0, 1], a small bound on the probability that the learning algorithm does not yield this total.

• θbridge ∈ [0, 1], a small probability to bridge the gap between the bound of bkm total weight 1 incoming
edges achieved by the learning algorithm and the needed individual bounds of am weight 1 incoming
edges for the separate children of c′.

Let θ = θlearn + θbridge, and θℓ =
kℓ−1
k−1 θ,

These parameters are required to satisfy the following two constraints. We state them in terms of simpli-
fied experiments.

Constraint 1: Consider two layers, ℓ − 1 and ℓ. Consider any particular set S of exactly km neurons in
layer ℓ− 1. Suppose that each edge from layer ℓ− 1 to layer ℓ is selected independently, with probability p′.
Then with probability at least 1− θlearn, there are at least m neurons in layer ℓ, each of which has at least
bkm incoming edges from neurons in S.

Constraint 2: Consider the experiment of choosing edges independently with probability p′, from a pool
of k groups of m edges apiece. Let B be the event that at least bkm edges are chosen, in total. Let A be the
event that, in each of the k separate groups of m edges, at least am are chosen. Then Pr(A|B) ≥ 1−θbridge.

To match these experiments up with the actual learning algorithm, we simplify by assuming that the
concept c (and all of its descendants) are chosen first, and then the edges are chosen randomly. This is
because we want to avoid having the choice of concept c depend on the choice of missing edges, which would
complicate analysis.

We consider learning the reps of one descendant c′ of c, after learning the reps of all the children of c′.
For Constraint 1, we let S be the set of all km reps of children of c′. Then Constraint 1 says that, with

high probability, each of the m layer ℓ neurons with the highest potential has at least bkm nonzero-weight
incoming edges from reps of children of c′. This implies that, after learning, each of the m chosen reps of c′

has at least bkm weight 1 incoming edges.17

For Constraint 2, we fix any particular v ∈ reps(c′). We consider the k groups of m edges each, from the
reps of the k children of c′ to v. Then B is the event that v has at least bkm incoming nonzero weight edges
from all the reps of children of c′, in total. And A is the event that v has at least am incoming nonzero
weight edges from each group of m edges. Constraint 2 says that, with high probability, given that v has
at least bkm incoming nonzero weight edges from all the reps of children of c, in total, then v has at least
am incoming nonzero weight edges from the reps of each child. Using Constraint 1, this is enough to show
that, after learning, v has at least am weight 1 incoming edges from the reps of each child. This is what is

16When we increase the weights of edges from reps of children of c′ to reps of c′, we avoid increasing the weights of edges
whose weights are 0. Thus, we are treating those edges whose weights were initially set to 0 as if they did not exist.

17Constraint 1 certainly holds for sufficiently large values of p′, b, and the number n of potential level 0 concepts. We leave
it for future work to characterize the satisfying values precisely.
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needed for the representation in Section 6.2.18

Once again, we state our correctness theorem somewhat informally. We say that a network (one that
results from learning) correctly represents a concept c with level(c) ≥ 1 if it contains reps and weights that
satisfy the requirements in Section 6.2 for c and its descendants. Now we obtain:

Theorem 8.3. Assume that the parameters (n, k, m, p′, a, b, θlearn, θbridge) satisfy Constraints 1 and 2.
Let c be any particular concept in C, with level(c) = ℓ, 1 ≤ ℓ ≤ ℓmax. Then with probability at least 1 − θℓ,
our learning algorithm results in a network that correctly represents c.

Theorem 8.3 says that with high probability, the learning algorithm yields a correct representation for
c and its descendants. We can also consider correctness of a combination of successful learning of c and
successive recognition of c after learning:

Corollary 8.4. Let c be any particular concept in C, with level(c) = ℓ, 1 ≤ ℓ ≤ ℓmax. The learning algorithm
for c, with probability at least 1− θℓ, yields a network that satisfies the following property. Let B be a set of
level 0 concepts such that c is in suppr2(B). Then with probability at least 1 − δℓ, at least mp(1 − ζ) of the
neurons in reps(c) fire at time ℓ.

Proof. By Theorem 8.3 and Theorem 6.7. The first of these yields a correct representation with probability
at least 1− θℓ and the second of these relies on the representation to achieve recognition with probability at
least 1− δℓ.

We can also consider a combined algorithm, one that first learns concept c, then attempts to recognize c
based on a presented set B such that c is in suppr2(B). The probability that recognition succeeds in this
combined algorithm is at least (1− θℓ)(1− δℓ).

9 Learning in networks with lateral edges

Now we consider learning for networks that include lateral edges. This work is generally inspired by the
earlier work on the assembly calculus in [3, 6]. Specifically, our learning problem is similar to learning a new
concept formed from previously-learned concepts using the Merge/Join operation. Here we are equating our
layers with the "areas" used in [3, 6].

We start in Section 9.1 with an algorithm that is fairly directly based on the earlier work. Since that is
somewhat complicated, we give a simplified version in Section 9.2. We formulate the main correctness result
for this version as a conjecture and give preliminary ideas for a proof.

The goal of these algorithms is to identify the reps and fix their incoming weights, in such a way as to
satisfy the requirements for a representation in Section 7.2. This includes our Class Assumption.

9.1 Algorithm based on the assembly calculus

Our algorithm is based on the Project algorithm in [3]. This algorithm learns representations of concepts
from sensory input. Here we are using a k-way Merge, not a simple Project, but the ideas are similar.

Recall from Section 8 that our method of selecting new reps for a concept c in a feed-forward network
involves a single-step procedure, in which an m-WTA chooses the m available neurons in the layer cor-
responding to level(c) having the highest incoming potential from the reps of children of c. In contrast,
for networks with lateral edges, the algorithm in [3] uses a more elaborate multi-step procedure involving
repeated uses of an m-WTA.

In the algorithm in [3], the "sensory neurons" fire at every step, contributing potential to neurons in the
appropriate target area. In step 1, the algorithm uses an m-WTA to choose the m available neurons in
the target area with the highest incoming potential from sensory neurons. We can regard these as initial
candidates to become reps of c. Then the algorithm executes additional steps 2, . . ., in each of which:

18We again leave it for future work to characterize the parameter values for which Constraint 2 holds. Here we simply note
some relevant facts. In Constraint 2, Pr(B) is given by by the upper tail of the binomial distribution b(km, p′), based on the
value being ≥ bkm. And Pr(A) = Pr(A1)k , where A1 is the event that, out of one group, say the first group, at least am are
chosen. Here Pr(A1) is given by the upper tail of the binomial distribution b(m, p′), based on the value being ≥ am. Note that

A ⊆ B, since a ≤ b. So we have Pr(A|B) =
Pr(A∩B)
Pr(B)

=
Pr(A)
Pr(B)

.
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(a) The m current candidates fire and contribute potential to other neurons in the area. The neurons in the
area also continue to receive potential from the always-firing sensory neurons.

(b) A new set of m available neurons is chosen. These are the neurons with the highest incoming potential
based on a combination of potential from sensory neurons and from other reps of c that are firing.

(c) The edges that contributed to the selection of the new set of candidate neurons have their weights
increased by a simple Hebbian-style rule. Other edges incoming to the new candidate neurons have their
weights decreased, in order to normalize the total incoming weights to each of these neurons.

The presentation in [3] analyzes the convergence behavior of this algorithm.
To express this in terms of our model, we assume initial random connections. Formally, for each edge

from a layer to the next-higher layer, and each edge within the same layer, with a high probability p′, we
assign a small weight to the edge, and otherwise we assign weight 0. For our threshold, we use akm. Our
algorithm essentially follows the procedure described just above, but stopping after some fixed finite number
of steps, say t steps. Here the sensory neurons of [3] correspond to the reps of the children of c. The final
result is a set of m neurons, which have been put into the set at various steps, some based just on firing of
reps of children of c, and some based also on firing of peer reps that were previously put into the set.

We repeat the algorithm description using our terminology. In one stage of our algorithm, for learning
a descendant c′ of c, the reps of children of c′ fire at every step, contributing potential to neurons in layer
ℓ′ = level(c′). In step 1, the algorithm uses an m-WTA to choose the m available neurons in layer ℓ′ with
the highest incoming potential from reps of children of c′. Then the algorithm executes additional steps
2, . . ., in each of which:

(a) The m current candidates fire and contribute potential to other neurons in layer ℓ′. The neurons in layer
ℓ′ also continue to receive potential from the always-firing reps of children of c′.

(b) A new set of m available neurons is chosen. These are the neurons with the highest incoming potential
based on a combination of potential from reps of children of c′ and from other reps of c′ that are firing.

(c) The edges that contributed to the selection of the new set of candidate neurons have their weights
increased by a simple Hebbian-style rule. Other edges incoming to the new candidate neurons have their
weights decreased, in order to normalize the total incoming weights to each of these neurons.

We state our correctness claim somewhat informally. At this point, it is only a conjecture, since we have
not produced a proof.

We say that a network (one that results from learning) correctly represents a concept c with level(c) = ℓ,
1 ≤ ℓ ≤ ℓmax if it contains reps and weights that satisfy the requirements in Section 7.2 for c and its
descendants. This includes the Class Assumption.

Define the failure probability θℓ to be kℓ−1
k−1 θ, where θ is a small value to be determined.

Conjecture 9.1. Let c be any particular concept in C, with level(c) = ℓ, 1 ≤ ℓ ≤ ℓmax. Then with probability
at least 1 − θℓ, our rewrite of the assembly calculus learning algorithm results in a network that correctly
represents c.

9.2 A simplified algorithm

The algorithm of the previous section seems to satisfy Conjecture 9.1, with appropriate values of the parame-
ters, but seems difficult to analyze. The main complication for analysis is that the candidate set may change
at each step. So in this section, we suggest a simplified version of that algorithm, in which the candidate
set does not change. We have not yet compared the behavior of this algorithm to that of the algorithm of
Section 9.1.

Here we describe learning of a single concept c with level(c) = ℓ, ℓ ≥ 1, assuming that its children have
already been learned. The full algorithm operates bottom-up, as usual, learning the concepts at each level
only after the concepts at the previous levels have already been learned.

We use the following parameters:

• p′ ∈ [0, 1], the probability of including each edge. Specifically, for each forward edge or lateral edge,
with probability p′, we assign a small weight to the edge, and otherwise we assign weight 0.
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• b ∈ [a, 1], where a is the coefficient that is assumed in Section 7.2; b is a coefficient to be achieved in
the learning algorithm. As before, the purpose of b is to bridge the gap between a threshold for overall
potential and a threshold for potential from reps of individual children.

• b1 ∈ [a1, 1], a new coefficient corresponding to a1 in Section 7.1.

• m1, m2, where m1 +m2 = m; these are the sizes of the two Classes.

• θ, a small probability for failing to learn; define θℓ =
kℓ−1
k−1 θ.

The new algorithm operates in two phases, identifying the Class 1 neurons in Phase 1 and the Class 2
neurons in Phase 2. We use a threshold of bkm.

• Phase 1: Trigger all of the reps of children of c to fire (this can be done by triggering all the reps
of leaves of c to fire). The algorithm identifies the neurons in Class 1, based on the total incoming
potential from the km reps of children of c. Specifically, an m1-WTA chooses the m1 available neurons
with the highest incoming potential as the Class 1 reps. Then the algorithm engages all of the selected
reps in learning, and adjusts their incoming weights, either in several steps or all at once.19 The
algorithm increases the weights to 1 for all the edges incoming to the chosen reps that contributed to
the incoming potential, and decreases the weights to 0 for all other edges incoming to these reps.

• Phase 2: Trigger all of the reps of children of c to fire, as in Phase 1. Now also trigger all of the reps
of neurons in Class 1 to fire (again, this can be done by triggering all the reps of leaves of c to fire).
The algorithm identifies the neurons in Class 2, based on the total incoming potential from the km
reps of children of c plus the m− 1 other reps of c. Specifically, an m2-WTA chooses the m2 available
neurons with the highest incoming potential as the Class 2 reps. Then the algorithm engages all of the
selected reps in learning, and adjusts their incoming weights, either in several steps or all at once. The
algorithm increases the weights to 1 for all the edges incoming to the chosen reps that contributed to
the incoming potential, and decreases the weights to 0 for all other edges incoming to these reps.

Thus, in this section, we are basing our choices on total incoming potential, whereas our requirements
in Section 7.2 involve potential from each individual child. As before, we need to introduce new, higher
coefficients, b and b1, bridge the gaps.

Conjecture 9.2. Assume that the parameters satisfy appropriate constraints. Let c be any particular concept
in C, with level(c) = ℓ, 1 ≤ ℓ ≤ ℓmax. Then with probability at least 1−θℓ, our new learning algorithm results
in a network that correctly represents c.

We suspect that this analysis should be tractable, using ideas like those in Section 8.2. But this remains
to be done.

Proof. (Preliminary ideas:) We consider learning one concept c, assuming that its children have already
been learned. The full result follows by applying this result to every descendant of c.

Proceeding as in Section 8.2, we assume that values of the parameters satisfy constraints sufficient to
achieve high numbers of incoming edges: bkm edges from reps of children of c for each of the m1 Class 1
reps(c) neurons, b1km edges from reps of children of c for each of the m2 Class 2 reps(c) neurons, and a2m
edges from reps of c for each of the m2 Class 2 reps(c) neurons. The discrepancies between the coefficients
a and b, and between a1 and b1, serve to bridge the gaps between the requirements on overall number of
incoming edges and the requirements on number of incoming edges from reps of individual children.

It remains to define the needed constraints precisely, and characterize the values of the many parameters
that satisfy the constraints.

Conjecture 9.2 says that with high probability, the learning algorithm yields a correct representation for
c and its descendants. We can also consider correctness of a combination of successful learning of c and
successive recognition of c after learning:

19In the case without failure/noise during learning, it should be possible to increase the weights in one, or a few steps instead
of working in small increments. The same holds for our algorithms in Section 8.
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Corollary 9.3. Let c be any particular concept in C, with level(c) = ℓ, 1 ≤ ℓ ≤ ℓmax. The learning algorithm
for c, with probability at least 1− θℓ, yields a network that satisfies the following property. Let B be a set of
level 0 concepts such that c is in suppr2(B). Then with probability at least 1 − δℓ, at least mp(1 − ζ) of the
neurons in reps(c) fire at all times starting from some time ≥ 0.

Proof. By Conjecture 9.2 and Theorem 7.8. The first of these yields a correct representation with probability
at least 1 − θℓ and the second relies on the representation to achieve recognition with probability at least
1− δℓ.

As in Section 8.2, we can also consider a combined algorithm, one that first learns concept c, then
attempts to recognize c based on a presented set B such that c is in suppr2(B). The probability that
recognition succeeds in this combined algorithm is at least (1 − θℓ)(1 − δℓ).

10 Conclusions

Summary: We have described how hierarchical concepts can be represented in three types of layered
neural networks, in such a way as to support recognition of the concepts when partial information about
the concepts is presented, and also when some of the neurons might fail. Our failure model involves only
initial random failures. The first two types of network are feed-forward, with high connectivity and low
connectivity respectively. The third type of network also includes lateral edges, and has low connectivity;
this case is inspired by prior work on the assembly calculus.

In order to achieve fault-tolerance, our representations all provide redundancy by including multiple rep
neurons for each concept. Our representations are required to contain sufficiently many weight 1 edges from
reps of child concepts to reps of their parents. Also, in networks with lateral edges, the representations are
required to contain sufficiently many weight 1 edges between reps of the same concept. The requirements
for representations in this last case are embodied in a new assumption that we call the Class Assumption.

We have described how recognition works in all three of these settings, and have quantified how the
probability of correct recognition depends on several parameters, including the number m of reps and the
neuron failure probability q. As one might expect, this probability increases with an increase in the number
of reps and decreases with an increase in the failure probability. The proofs use elementary probabilistic
analysis, mainly Chernoff bounds and union bounds.

We have also discussed briefly how these representations might be learned, in all three types of networks.
For the feed-forward networks, the learning procedures are analogous to one used in [4], whereas for networks
with lateral edges, the procedure is generally inspired by one introduced in [3, 6].

Discussion: The setting of this paper is fairly complicated, in that it includes three types of limitations on
information available for recognition. First, we are trying to recognize concepts with only partial information,
as in [4]. Second, we are dealing with random neuron failures. Third, we are coping with partial connectivity
between and within layers. The combination of three types of partial information makes the setting quite
tricky to understand and analyze. To cope with these difficulties, we have made many simplifications, in
particular, by making strong uniformity assumptions, such as assuming that all concepts have the same
number of child concepts and that all neurons have the same (independent) probability of failure. Even so,
the analysis is a bit tricky, and we expect that our bounds might not be the tightest possible.

We think that the ideas here for representing structured concepts are generally consistent with what is
known about brain representations for such concepts, although of course drastically simplified. One omission
here is that, in representing a hierarchical structure, we consider only forward and lateral edges. It would be
reasonable to also include feedback edges. This might help, for example, in recognizing a child concept based
on first recognizing its parent. We leave that complication for future work. In [5], we studied recognition in
networks with feedback edges, but in a non-fault-tolerant setting with single reps for concepts.

As we noted, our work in Sections 7 and 9 on networks with lateral edges was generally inspired by ideas
from the assembly calculus [3, 6]. However, we found the behavior of the learning algorithm in those papers
difficult to understand, because of complications such as repeated changes in the selected rep neurons. We
have proposed a simplified variant of the algorithm of [3, 6] in which the sets of chosen reps do not change;
we expect that will be easier to analyze, although we have not completed such an analysis.
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Future work: Much remains to be done. First, in general, it is worth simulating the algorithms in this
paper, those for recognition as well as those for learning. It is possible that the probabilities claimed in our
results are not tight; simulations might yield better success probabilities, and might suggest how to improve
the analysis. This paper contains many parameters; simulation should help determine which combinations
of parameter values yield high probability of correct recognition or correct learning.

For recognition, one might consider more complicated failures models than just random initial failures,
such as randomly-occurring on-line failures. It is probably not a good idea to consider worst-case, adversarial
failures, which might depend on previous random and nondeterministic choices, since those would create
dependencies that would be difficult to for an algorithm to cope with. It is also worth trying to extend the
recognition work to more elaborate network models that include some feedback edges from a layer to the
next-lower layer.

As a technical idea, one way of understanding the behavior of a failure-prone network with multiple reps
per concepts might be to try to "map" it to a failure-free network with a single rep per concept. This might
be done with a formal abstraction mapping of the types studied in [2] and [8].

It remains to complete the studies of learning algorithms in Section 8. The algorithms in that section
are based on earlier algorithms in [4, 5], but use multiple reps instead of a single rep for each concept, and
include considerations of failures. It remains to rework the earlier presentations for the new settings. While
we expect that these extensions should be fairly routine, we could be surprised. It remains to work them
out carefully.

Section 9 will probably require more serious work. It would be interesting to compare the algorithm in
Section 9.2 to the algorithm in Section 9.1, first via simulation and then via analysis. The first step would be
to devise complete, formal descriptions of both algorithms. In doing this, one might find that these learning
algorithms do not quite satisfy the Class Assumption of Section 7.2 as currently stated. In this case, one
would need to modify the assumption, show that the learning algorithms guarantee it, and show that the
new assumption suffices for recognition.

Once these learning results are fully worked out, one can consider extensions, such as including feedback
edges in the network. One can also consider failures during the learning process. As noted earlier, initial
failures of layer 0 neurons do not seem reasonable, because then we would entirely miss learning some parts
of the concept hierarchy. We might consider initial failures of higher-layer neurons, or failures of different
layer 0 neurons at the start of each new training instance; this latter type of failure is similar to what we
called "noisy learning" in [4]. This all remains to be worked out.
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A Chernoff bound

For Chernoff, we use a lower tail bound, in the following form:

For any ζ ∈ [0, 1],Pr[X ≤ (1− ζ)µ] ≤ exp(−
µζ2

2
).

This is taken from the 2015 lecture notes for MIT course 18.310, by Michel Goemans [1].
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