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Chapter 1IntroductionA variety of formal methods have been developed to analyze distributed systems, and provethey satisfy basic correctness properties. For real-time systems, it is also often important toestablish timing properties, which guarantee the performance of these systems. Sometimes,even the correctness of the system may depend on these timing properties. Unfortunately,real-time systems often have subtle timing dependencies that are di�cult to analyze, andproofs of these properties have typically been ad hoc. (See [LS93], which contains sev-eral examples of such proofs.) This thesis develops a methodology for analyzing real-timesystems.One family of methods that has been used successfully for analyzing untimed, or asyn-chronous, systems is based on the notion of a simulation, which establishes a correspondencebetween the given system and a more abstract system that speci�es the allowable behavior.Speci�cally, a system is described as a state machine, and its behavior is the externally ob-servable aspects of the sequence of steps it performs in a particular execution. A simulationis a correspondence between the states of a system and the states of its speci�cation suchthat any step of the system appears identical to some sequence of steps of the speci�cationthat preserves the simulation. In this case, every behavior of the system is also a possiblebehavior of its speci�cation, and we say that the system implements its speci�cation.Together with invariance assertions, simulations have been used by many researchersto verify the correctness of a wide variety of asynchronous systems, some quite complexand subtle. They have used many di�erent speci�cation methods, including temporal logic,automata, CCS, and UNITY [LS84, LT87, CM88, WLL88, Lyn89b, Mil89, Nip89, Gaw92,9



AL91, SLL93a, KMP93].Techniques based on simulations yield rigorous, formal proofs, which typically have asystematic decomposition into independent pieces. This structure makes proofs easier toread and to check, both directly and using automated tools. In addition, because the systemand its speci�cation are expressed in the same way, as an abstract program or machine,simulation-based techniques allow layered or hierarchical proofs, where a system is provento have certain properties using a sequence of abstract machines beginning with one thatdescribes the given system and ending with one that describes the desired properties, inwhich every abstract machine implements its successor.More recently, simulation-based techniques have been extended to timed systems, pro-viding a formal and systematic approach to proving timing properties [LA92, AL92].1 Thesetechniques have been demonstrated on small examples, and the style and di�culty of theproofs are comparable to those of typical inductive assertional arguments. The local natureof the checks suggests that this method may scale well to more complex systems. However,it is important to test this hypothesis, by providing concrete evidence with larger examples,and to develop a framework that exploits the strengths of simulation-based techniques, andmitigates its shortcomings.In particular, a methodology that exploits the strengths of simulation-based techniquesand indicates possible simulations would be very helpful. For example, Lynch and Attiyamake explicit their strategy for �nding simulations with their de�nition of progress functioncollections. Guidelines for picking appropriate intermediate speci�cations would also bevery useful. A good methodology will yield modular, hierarchical proofs, with intermediatespeci�cations and simulations that capture the intuition behind the algorithm.Also, the proofs in [LA92] are rather lengthy and involve much tedious checking. Thisseems to be an inevitable consequence of the demand for more formal reasoning. It isimportant to understand how the length and complexity of the proof increases with thesystem being studied. It is desirable, of course, to minimize this as much as possiblewithout sacri�cing rigor. General theorems can capture common arguments, and eliminaterepetitive work, as well as expose additional structure. For common system components,such as channels, standard transformations may produce simpler intermediate speci�cations.If simulations are given in a standard form, this too can be exploited.1The strong possibilities mappings of [LA92] de�ne a simulation.10



Another promising prospect is the development of automated tools. Automated toolscan be used to mechanically verify a proof, which provides added con�dence in the cor-rectness of a proof by eliminating the possibility of human error in the manipulation offormal expressions. Some tools can infer \trivial" steps, and so reduce the need to check byhand the straightforward, uninteresting parts of the proof. These parts are usually omitted,anyway, from the discussion of the proof, since they are not instructive. Nonetheless, tohave a complete proof, it is important to check that they are correct. If the tool is \smart"enough, it may even deduce the desired claim without any guidance. If it cannot, it mayprovide information indicating its di�culty, which may be helpful in constructing the proof.This thesis builds primarily on the work by Lynch and Attiya [LA92]. To describetimed systems, we use a variation of the timed automaton of Merritt, Modugno, and Tuttle[MMT91], which we call the MMT automaton. An MMT automaton consists of an I/Oautomaton [LT89, LT87], together with a boundmap, which speci�es the timing assumptionsfor the system. Following Lynch and Attiya, we incorporate the timing conditions into thestate, to yield an I/O automaton of a particular form, which we call a timed automaton.2We then de�ne a class of simulations, the timed forward simulations, which only considersthe admissible behaviors, those in which time is unbounded, which correspond to the realbehaviors of the system.We use these simulations, together with invariant assertions, to prove correctness andtiming properties of two systems, a simple message-passing protocol due to LeLann, Chang,and Roberts [LeL77, CR79] for leader election on a ring of processes, and Fischer's timing-based mutual exclusion algorithm using a single shared read-write register [Lam87, Fis85].For both algorithms, we use intermediate speci�cations to obtain hierarchical proofs, andwe extract general heuristics for �nding these intermediate speci�cations.We also use the Larch tools [GH93] to verify the proof for Fischer's algorithm, buildingon the work by S�oylemez [S�oy94], formalizing the basic model and techniques in the LarchShared Language (LSL), and verifying the proofs using an enhanced version of the LarchProver (LP) [GG91, Pog95]. This elaborates on work described in [LSGL94]. In this proof,we also try to encapsulate commonly used arguments in lemmas, to make the proof moremodular, and to expose some general principles that may be useful in other proofs.2This is di�erent from the timed automaton of [MMT91]. Our terminology also di�ers from that of[LA92], and re
ects later usage, such as in [Lyn93, LSGL94].11



Related WorkOther models and techniques for handling time and proving timing properties have beendeveloped. Lynch and Vaandrager have developed a very general notion of a timed au-tomaton, and they describe a wide variety of simulation-based techniques for this model[LV91, LVarb]. Abadi and Lamport [AL92] demonstrate how timing properties can beexpressed using Lamport's Temporal Logic of Actions (TLA) [Lam91], and thus, the meth-ods developed for TLA, including simulations, can be immediately applied. Their use ofsimulations, however, is more restricted, and they did not address how timing properties,speci�cally, can be approached systematically. Many others, including Haase [Haa81], Tel[Tel88], Shaw [Sha89], Harel, Lichtenstein, and Pnueli [HLP90], Alur and Dill [AD90], andShankar and Lam [SL87, Sha92], also use models that incorporate timing information intothe state, but none of them use simulations in their proofs. Shankar uses a model almostidentical to ours, except that there are no explicit time passage steps.Other methods for modelling timed distributed systems include temporal logic [AL92],process algebras [DS89, Wan91, NS91], and Petri nets [CR83].Several di�erent approaches to proving timing properties have also been proposed, manyof them based on augmented temporal logics. The earliest work used bounded temporal oper-ators [BH81, KVdR83], but scattered examples of an explicit clock approach, presented sys-tematically by Ostro� [Ost89], also can be found. Henzinger, Manna, and Pnueli [HMP94]compare these two styles. More recently, Alur and Henzinger [AH89] presented an approachcalled temporal quanti�cation, embodied by their new logic, TPTL.Automatic veri�cation motivated much of the design of recent temporal logics, so an im-portant consideration was that they be decidable. Harel, Lichtenstein, and Pnueli [HLP90]presented a decidable restricted explicit clock logic. Alur and Henzinger's TPTL is alsodecidable, and in another paper [AH90], they explore the trade-o� between complexityand expressiveness. All these logics use discrete time (i.e., the natural numbers), sinceextensions to dense time domains are undecidable. Alur, Courcoubetis, and Dill [ACD90],however, present a logic based on \branching time" computation tree logic (CTL), ratherthan on linear time, with a dense time domain. These logics are all intended to be usedwith model-checking veri�cation procedures, introduced by Clarke and Emerson [CE81], inwhich a system is modelled by a �nite state machine, and every reachable state is veri�ed12



to satisfy the desired property.There are many other approaches to automatic veri�cation. For example, Wang, Pet-tersson, and Daniels [WPD94] present a method based on solving a system of constraints onthe clock variables of a process algebraic speci�cation. Our approach is to follow as closelyas possible the formal reasoning we already use to convince ourselves, and use a generalpurpose theorem prover to verify our steps [SGG+93, S�oy94, LSGL94]. Engberg, Gr�nning,and Lamport [EGL92], and Shankar [Sha93] also take this approach, though Shankar usesPVS rather than LP.Outline of the ThesisThe rest of the thesis is organized as follows. Chapter 2 contains some background andmotivation for those unfamiliar with formal reasoning for distributed systems in general,and simulations in particular. The theoretical foundations, the models and techniquesused in this thesis, together with some very simple illustrative examples, are developed inChapter 3. The next two chapters explore in detail some larger, more interesting examples.Particular attention should be paid to how these proofs are organized, as this illustratesthe methodology. In Chapter 4, a timing analysis for LeLann, Chang, and Roberts electionprotocol for asynchronous ring networks is presented. Chapter 5 examines Fischer's timing-based mutual exclusion algorithm, a nontrivial test case which illustrates techniques forreasoning about time. In addition to correctness, an upper bound on the time to reach thecritical region is proved. The timing analyses in these chapters provide the only rigorousproofs we know of for the time bounds of these algorithms. Chapter 6 considers the use ofthe Larch tools to develop and verify simulation proofs, and evaluates their use in verifyingthe proof of the Fischer algorithm. Chapter 7 concludes with some discussion about ourexperiences, and future directions.
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Chapter 2Background and MotivationThis chapter introduces and attempts to motivate the choices made in this thesis, in termsof models, methods, and tools.2.1 Formal Reasoning for Distributed Systems2.1.1 What is a Distributed System?As computers have become more widespread, distributed systems have become the stan-dard computation environment. A distributed system is a collection of sequential processesrunning concurrently, which must coordinate with each other in order to solve a problem.Unlike a sequential computer, a distributed system cannot easily be described by specifyingits output on a particular set of input; the interaction between the processes must also beconsidered. Thus we characterize distributed systems by the behaviors they can exhibit.Coordination necessitates interprocess communication, which is typically expensive com-pared with steps taken locally by individual processes. Distributed systems have di�erentmechanisms for communicating, and there is usually some uncertainty, such as message de-lay, or possible loss or damage of data, that is associated with communication. Since thereare multiple independent processes, the possibility of failure of one or more of the processesmust also be accounted for, and it is important to understand how the system as a wholebehaves in the presence of such failures. 15



2.1.2 The Need for Formal ReasoningDistributed systems, and the problems we wish them to solve, can and often are describedinformally. They may arise in the real world, or be an abstraction of some observed phe-nomenon, and thus have no a priori formal speci�cation. Reasoning informally about thesesystems is often helpful, but to make clear, precise claims about them, it is important tohave a formal model in which to express and reason about them.There are two basic reasons for using formal methods. First, good formal descriptionsmake any assumptions about the system explicit, and any claims about it precise. Formalproofs also make our reasoning very precise, indicating which facts are needed to deduceeach step in the proof. Thus, formal methods distinguish the essential features of a systemfrom the details of a particular implementation. This can be especially useful for extendingor generalizing the models and claims, and is helpful in understanding the system better.Second, formal proofs can be checked more easily. For very simple systems, informalreasoning may be clear enough, but when the reasoning is subtle or very complex, it isdi�cult to argue convincingly without some formal notation that can be checked carefully.A good formal proof can be examined in small chunks, which can be veri�ed individually,and then pieced together to get the desired result. It can also be made progressively moredetailed and explicit as the need arises. This makes it easier to localize and understand anydi�culties.These reasons are especially compelling for distributed systems, for which we lack areliable intuitive understanding. Even apparently simple systems may exhibit a complexvariety of behaviors, some unanticipated.1 Good formal models help develop our intuitionabout how distributed systems work.2.1.3 Operational vs. Assertional ReasoningSince distributed systems are characterized by their behavior, a property of the system isa statement that is true of any behavior exhibited by that system. It is possible to reasondirectly about the behavior of a system operationally, that is, as it unfolds. This oftencorresponds naturally with how we might reason informally. However, since a distributedsystem can exhibit a wide variety of behaviors with little natural structure, it is di�cult to1This is an empirical observation supported by many researchers in the �eld [CM88, LL90, Sch93].16



check that all behaviors have been considered.2 Furthermore, minor modi�cations to thealgorithm often result in some vastly di�erent behaviors, requiring proofs to be substantiallyrewritten. This results in proofs that tend to be ad hoc, and di�cult to follow carefully,and which cannot easily be modi�ed to prove properties about similar systems.Assertional methods attempt to overcome these problems by focusing on how the systemis a�ected by individual steps that it can take. That is, the system is described by astate machine, and properties are expressed as assertions about states rather than aboutbehaviors. The states are often viewed as a collection of state variables modi�ed by theactions of the machine, which captures the intuition that individual steps often only a�ectpart of the system.The most important assertional technique is invariance reasoning. An invariant is anassertion that is true of every state reachable by some execution of the system. This isusually proved inductively on the length, that is, the number of steps, of an execution, byshowing that the initial states satisfy the invariant, and that every action maintains it. Thistypically allows invariance proofs to be decomposed straightforwardly into several simplerpieces which, taken together, establish the invariant. Thus, the di�cult, and interesting,aspect of invariance proofs is discovering the \right" invariant. This requires insight aboutthe system, and usually, once expressed, the invariant is helpful in understanding the system.Safety and LivenessWhen using assertional reasoning, we distinguish properties as expressing either safety orliveness. Intuitively, a safety property is a claim that nothing bad has happened, while aliveness property is a claim that something good eventually happens.3 Safety depends uponthe history of an execution; liveness, on the future.Some properties have both safety and liveness aspects. For example, in the leaderelection problem, where a single leader must be selected from a collection of processes, that\at most one leader is selected" is a safety property, and that \some leader is selected" isa liveness property. At any point in an execution, it is easy to see whether safety has beenviolated or liveness has been satis�ed, but not so easy to determine that safety will notbe violated, nor that liveness will not be satis�ed. Safety properties can be expressed as2Again, this is a subjective empirical claim supported by many researchers [LL90, CM88, Lam93b].3Alpern and Schneider de�ne these precisely in [AS85].17



assertions about the states,4 but liveness properties cannot be. Thus, it is generally mucheasier to prove safety than liveness.2.2 Models for Distributed SystemsIn the study of computation, it is useful to distinguish between the machine, that is, thecomputer or network of computers, and the program executing on the machine. The ab-stract, formal description of the machine is the model, while the abstract program is thealgorithm. A complete formal description of the system consists of the algorithm expressedin the formal model.2.2.1 DesiderataA good model for any class of objects should be expressive, accurate, and tractable. Thatis, it should be easy to describe any object in that class in terms of the model; conclusionsderived from the model should re
ect truths about the object; and it should be possible toderive interesting properties from the model. Thus, a good model should expose importantattributes, and conceal irrelevant details. Di�erent models do not necessarily representdi�erent objects; they may present di�erent views of the same object. So there is not onecorrect model, but rather, the choice of model depends on the questions one asks.In particular, since distributed systems are characterized by their behaviors, this shouldbe re
ected by the model; the externally observable aspects of the model should be dis-tinguishable. Since distributed systems are often constructed from subsystems, the modelshould support some notion of composition, which allows systems to be put together to formlarger systems, in a way that corresponds with our intuition. The model must also re
ectthe communication mechanism, and the cost and uncertainties associated with it, as wellas the behavior of the system in the presence of failures.2.2.2 Modelling Time in Distributed SystemsA fundamental issue in distributed computing is modelling timing uncertainties, whichbecome important when the processes need to coordinate their actions with each other and,4In some cases, it is necessary to augment the state with auxiliary variables which record the history ofthe execution. 18



for real-time systems, with the environment. These uncertainties arise from many factors,such as the current load on the computer, the medium for interprocess communication, thereliability of this medium, and the distance separating the computers, and can a�ect notonly the time to communicate, but also the local step times of individual processes.Synchronous and Asynchronous ModelsThe simplest possibility, the completely synchronous model, ignores these uncertainties, andassumes the processes all take steps together, in distinct rounds, where processes simplywait until all the processes have had a chance to take a step before proceeding to the nextround. This greatly simpli�es the analysis of distributed systems, and many problems havebeen studied in this context [LS93]. In these models, the time complexity of an algorithmis usually measured by the number of rounds of communication it takes.On the other extreme, asynchronous models make no timing assumptions, forbiddingprotocols from using any timing information. This provides a robust model, where algo-rithms do not depend on any timing conditions that a particular system may not satisfy.Also, for most systems we are interested in, where communication is expensive comparedwith taking local steps, the timing uncertainty for message delivery is also likely to belarge, making it di�cult, if not impossible, to synchronize computation using communi-cation. Thus, this model is quite realistic as well, and a lot of research on distributedalgorithms has been done in this context [Dij65, Lam74, LT87, Gaw92, LS93]. In this case,the time complexity an algorithm is measured by the number of steps it takes.However, these models cannot be used for systems which use timing restrictions to ruleout certain behaviors, and thus achieve simpler or chaaper solutions for some problems.Moreover, research in the asynchronous setting has yielded many impossibility results, usu-ally giving lower bounds on the resources required to solve certain problems [Lyn89a, BL93].Many of these results arise in the context of fault-tolerance, where the system is requiredto solve the problem, even though components may fail in some speci�ed fashion.Partially Synchronous ModelsIn recent years, there has been an increased interest in introducing a formal notion of timeinto distributed models (e.g., [BH81, SL87, DS89, Ost89, Wan91]), and a methodologyfor proving timing properties. By taking advantage of timing restrictions, a distributed19



system designer may opt for simpler, more e�cient protocols, which would not be possiblein the asynchronous setting. And many systems do have some timing assumptions, and cantolerate seriously degraded behavior in the absence of these assumptions (e.g., the time-out mechanism in many communication protocols). And even in the asynchronous setting,where performance arguments are largely ad hoc, a good methodology for reasoning abouttime would be useful.Modelling timed distributed systems presents several di�culties. In state transitionsystems, for example, modelling time requires a real valued state variable that varies con-tinuously, or some similar mechanism. This greatly increases the number of states, andrequires states to change continuously rather than in discrete steps, as in conventional sys-tems. It is possible, however, to restrict attention to an interesting subset of systems thatare modelled su�ciently well by discrete state transition systems.We would also like our model to capture certain characteristics of time, such as itsmonotonicity, and exclude from consideration executions that do not correspond to realpossibilities. Thus, our model ought to ignore executions in which time reaches a limit orgoes backward.Furthermore, protocols using time often rely on implicit relationships among their timingassumptions to guarantee not only performance, but also correctness, making them di�cultto decompose into modular pieces. Even small changes to these assumptions can causedrastic changes in the behavior of a system. Because of this, reasoning about even rathersimple systems can be surprisingly di�cult, and usually involves checking a lot of details.However, liveness properties play a smaller role in timed systems than they do in untimedsystems. Claims that certain events eventually occur are often replaced with stronger claimsthat they occur within a given amount of time, that is, timing or performance claims. Butsince time increases without bound, timing properties are merely safety properties. Thissuggests that assertional reasoning may be especially useful in this setting.2.2.3 Models for CommunicationSince interprocess communication represents the dominant cost in distributed algorithms,the mechanism for communication is typically an important aspect of any distributed model.While there are many di�erent models for communication, most can be viewed as eithershared memory or message passing models. 20



As implied by the name, processes in a shared memory model communicate via memoryregisters that can be read and written by multiple processes. This was one of the earliestmodels used [Dij65]. Because the processes are executing concurrently, it is important tode�ne what happens when two or more processes attempt to write into a register simulta-neously. The simplest, and strongest, interpretation is to assume that reading and writingthe shared registers happens atomically, which means that every read and write operationcan conceptually be ordered, even though they may happen at the same time. In someshared memory models, each shared variable can be written only by one process, though itcan be read by others, and there are many other variations of this model.A message passing model more closely matches the intuition of a network of computers,where a process sends a message by placing it in a message channel, and another processreceives it by removing it from the channel. These models vary in the topology of thenetwork they model (i.e., which other processes a process may send messages to), reliabilityof the channel (e.g., whether the channel may lose messages, or deliver them out of order)and message delivery delay (i.e., the time between when a message is sent and when it isreceived).2.2.4 Other Issues: What we do not modelThis thesis is primarily concerned with analyzing the timing behavior of distributed systems,and particularly with developing a methodology to approach proving timing properties usingsimulations. So, while other issues such as composition and fault-tolerance are importantconsiderations in our choice of model, we shall not present them here, but rather merelyremark on them as they arise.2.3 SimulationsSimulations form the basis for a powerful class of assertional techniques in which both thesystem and its speci�cation are modelled by abstract programs or state machines. A systemis shown to satisfy or implement its speci�cation by establishing a correspondence, thesimulation, between the states of the two machines, such that any step of the system appearsidentical to some steps of the speci�cation that preserve the simulation. Simulation-basedmethods have been widely used for verifying safety properties of asynchronous systems,21



and their value is well established. Lamport [Lam93a] and Lampson [Lam93b] have arguedthat simulation-based and related techniques are the most practical methods available forverifying concurrent systems.2.3.1 Advantages of Simulation ProofsLike invariants, simulations are usually established by induction on the length of an exe-cution, and the induction step is proved for every possible action. This gives simulationproofs a modular decomposition similar to invariance proofs.If the state is expressed as a collection of state variables, the simulation is often the con-junction of conditions on these variables, which can be checked almost independently. Thisprovides further structure and modularity to the proofs. It also typically makes them morerobust. Minor changes in the system or its requirements a�ect only a few of the conditions,so little additional work needs to be done to accommodate them. This is especially usefulin the design of distributed systems.A simulation proof typically indicates, for every possible step of the implementation,the corresponding step, or sequence of steps, of the speci�cation. Thus, this captures, in away, some of the intuition used in operational reasoning, expressing more abstractly how asystem executes. So while invariants capture the static aspects of the system, simulationsexpress a more dynamic view.In addition, because there is no syntactical distinction between a system and its speci�-cation, it is possible to introduce an intermediate system speci�cation which can be viewedeither as a speci�cation for the original system, or an implementation of the original speci-�cation. A good intermediate speci�cation highlights the essential features of an execution,and abstracts away the details used to implement these features. A sequence of interme-diate speci�cations can be used to construct a layered or hierarchical proof, in which eachintermediate speci�cation implements its successor, with the original system at the bottomof this \hierarchy" and the original speci�cation at the top.An intermediate speci�cation may also describe many systems, possibly by capturingsome common structure exploited by these systems to solve a problem. This not only isuseful for understanding the problem, but also allows the upper layers of the hierarchy tobe reused in several proofs.One apparent disadvantage of simulation proofs is that they tend to be long compared22



with similar operational arguments. However, this is because they are very complete andexplicit, whereas operational proofs often omit the analysis of \trivial" details. Of course,in any proof, suppression of detail is often necessary to make the structure of the proofclear, especially when checking these details is straightforward and unilluminating. It isstill possible, indeed desirable, to omit these details in the discussion of the proof, thoughthey should still be checked, lest the proof be incomplete or wrong. That it is easy todetect the omission of details that need to be checked is really an advantage, rather than ahandicap.2.3.2 Proving Timing Properties with SimulationsAs noted earlier, assertional techniques are especially promising in the timed setting, be-cause liveness properties, which are di�cult to prove, are replaced by timing properties,which express safety rather than liveness. Several researchers have extended their modelsand methods to handle time and timing conditions, and many argue that the techniques de-veloped for the asynchronous setting carry over into their extended models, so that entirelynew techniques need not be invented.However, most examples in literature have analyzed smaller systems, not using simula-tions, and not proving timing properties|just correctness.This thesis builds chie
y on the work by Lynch and Attiya [LA92], applying theirtechniques to systems with more actions, and which exhibit a greater variety of behaviors.We are interested in any general methods or heuristics to control the complexity of theproofs, particularly for timing properties, taking advantage of the hierarchical structureof simulation proofs. In particular, we discover that it is helpful to look for markers ofde�nite progress (e.g., loop termination), which we call milestones, and de�ne intermediatespeci�cations with internal actions that represent reaching these milestones.2.4 Automated ToolsAutomated tools represent an important factor in determining the extent to which tech-niques to reason formally about distributed systems can be applied. These tools can beused to verify the formal proofs, and detect logical gaps or errors in symbol manipulationthat are likely to arise in lengthy proofs. They can also be developed to �ll in \trivial"23



steps, or carry out \similar reasoning" repeatedly in several cases, and thus greatly reducethe boring, repetitive, and tedious work often required for a truly complete proof. Thisis especially useful for simulation-based proofs, because of their length and the amount oftedious detail that needs to be checked.2.4.1 Choosing a ToolThere is a wide range of possible useful automated tools, ranging from model-checkers[CG87], which exhaustively search all possible states to verify properties without any humanguidance, to programs that simply check the validity of each step in a detailed proof, fromspecialized provers optimized for a particular domain of applications, to general purposetheorem provers, from provers that halt and request guidance at di�cult places in the proof,to those that search silently for solutions.There are clearly trade-o�s in the various choices. Model-checking and decision pro-cedures, for example, work well when the state space is small. However, since theoremproving in general is undecidable, and even when it can be decided, is often computa-tionally intractable, these approaches that attempt to �nd proofs without guidance mayrun inde�nitely; even deciding when to terminate the search is di�cult. Thus, for generaltheorem proving, some human guidance is necessary. On the other hand, reducing theneed for detailed human guidance is one of the major motivations for pursuing automatedassistance. A restricted language may allow for increased automation at the expense ofexpressive power, and thus preclude its use in many contexts. Highly specialized tools maybetter meet the needs of the users for which it was was designed, but are less likely to �ndwide applicability.In addition, automatic provers should be able to reproduce for a human user the rea-soning used to derive theorems, ideally in a form that lends insight about the proof. Thelanguage understood by the prover must also be reasonably comprehensible to people, sothat there is some assurance that what the prover veri�es is in fact what was intended.Moreover, because initial attempts often have mistakes, it is important to provide mean-ingful feedback when a proof cannot be derived, or a claim being veri�ed is in fact not true.When the entire proof is provided, it may be su�cient to simply point out the particularstep that fails, but as the program derives more of the proof for itself, it becomes less clearwhat is useful to a human reader in order to correct the proof.24



In this thesis, we use the Larch tools [GH93] to formalize and verify proofs that corre-spond closely with proofs that we do without automated tools. The system is formalized inthe Larch Shared Language, and checked using LP, the Larch Prover [GG91], both enhancedto handle full �rst-order logic.2.4.2 The Implications of TimeSince time is a continuous quantity, adding time to the formal model presents additionalchallenges for automated tools. Tools designed speci�cally for �nite state machines, forexample, must cope with the uncountable possibilities introduced by time. In any system,the ability to reason about continuous quantities also needs to be added, preferably in away that will easily deduce the elementary properties of real numbers. Time bounds alsoincrease the uncertainty in the system, and inequalities are more di�cult to handle thanequations, especially for tools, such as LP, which rely on rewriting terms into canonicalforms based on equations.2.4.3 Using Automated ToolsUnfortunately, only very modest problems have been analyzed completely using automatedtools, and there is a need to evaluate whether the tools can cope with the increased com-plexity of larger systems, especially when timing information is introduced. One of themajor goals of this thesis is to understand how proofs can be designed, and what sort oftools should be developed, in order to improve automated assistance for proving timingproperties.
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Chapter 3Models and MethodsIn this chapter, we introduce the theoretical models and methods used in this thesis. Tosimplify the discussion, we omit some structure in the model typically introduced to addresssome important issues for distributed systems that are not considered in this thesis.3.1 The I/O Automaton ModelAll the work in this thesis is done in the context of I/O automata, introduced by Lynch andTuttle [LT87] to describe asynchronous systems. This model is a simple state transitionsystem, where actions of the system label the transitions between states. The actions may beeither external or internal. An execution (or run) of the system is a sequence of transitionsfrom one state to another, and a behavior of the system is a sequence of external actionslabelling transitions in an execution.One of the primary motivations for using this model is the notion of composition, whichallows us to build an automaton from smaller automata in a way that corresponds to ourintuition, i.e., the resulting automaton behaves as we expect. This leads to the notion of anaction signature, which describes the interface of an automaton, i.e., how it can be composedwith other automata. The action signature distinguishes input, output, and internal actions,where an automaton must always be able to accept any input action (though it may simplyignore it). Composition allows us to model complex distributed systems by building themup out of smaller systems. This provides modularity in our descriptions and our proofs.In this thesis, however, we are concerned primarily with the issues introduced by timing,rather than by composition, and to simplify the discussion, we do not distinguish between27



input and output actions, considering them both simply as external actions.Formally, an I/O automaton A consists of:1� a set states(A) of states;� a nonempty subset start(A) of start states;� a set acts(A) of actions, partitioned into external and internal actions;� a set steps(A) of steps, which is a subset of states(A)� acts(A)� states(A).We write s���!A s0 or just s���!s0 as shorthand for (s; �; s0) 2 steps(A).There are no restrictions on steps(A). This allows us to easily model nondeterminismand the fact that not all actions may be possible from any state.2 We say that an action �is enabled in a state s if there is a state s0 such that s���!s0.An execution fragment is a �nite or in�nite alternating sequence s0�1s1�2s2 : : : , wheresj is a state, �j is an action, sj�1��j�!sj for each j, and the sequence ends with a state ifit is �nite. An execution is an execution fragment with s0 2 start(A). A state of an I/Oautomaton is reachable if it appears in some execution of the automaton. The trace of anexecution is the sequence of external actions that occur in the execution.Intuitively, an execution represents the entire computation done by the system, upto a certain point, if it is �nite. Assertions about the system only need to be true ofreachable states, since only reachable states can occur in an execution. Traces correspondto the visible behavior of the automaton, and executions that have the same trace (even ondi�erent systems) cannot be distinguished externally. System requirements can only restrictthe traces, not the executions themselves, as these may depend on how we choose to modelthe system.3.2 MMT AutomataIn order to reason about time in concurrent systems, Merritt, Modugno, and Tuttle extendedthe I/O automaton model by de�ning timed executions and allowing an automaton to1Readers familiar with I/O automata will notice that the fairness partition is not included in this de�ni-tion. This is because fairness is not considered in this thesis. This notion is revived as tasks in the sectionon adding timing information, but with a rather di�erent interpretation.2If we distinguished between input and output actions, we would require that the automaton be input-enabled, that is, for every state s and every input action �, there exists a state s0 such that (s; �; s0) 2states(A). 28



specify some restrictions on these timed executions [MMT91]; we use a special case of theirde�nition [LA92, LV91], which we call MMT automata. An MMT automaton partitionsthe actions into tasks,3 and de�nes upper and lower bounds on the time it may take toperform each task. A task is considered to be performed by any action in that task. Timedexecutions are simply executions of I/O automata, with each action paired with the timeat which it occurs, where time is allowed to be any nonnegative number, and executionsare assumed to start at time 0. These times must satisfy the bounds for the tasks, as wellas some other conditions that we consider natural for time, i.e., they should not decreasealong an execution, nor should in�nitely many events happen in a �nite interval.Formally, an MMT automaton M consists of:� an I/O automaton A;� a �nite partition tasks(M) of acts(A);� two functions, lowerM : tasks(M)! [0;1) andupperM : tasks(M)! (0;1]that satisfy lowerM (C) � upperM(C) for all C 2 tasks(M).We often omit the subscripts when the automaton is clear from context. The states, actions,and steps of M are the same as those of A, i.e., states(M) = states(A), etc. We say that atask C is enabled in a state s if any action in C is enabled in s, i.e., if � is enabled in s forsome � 2 C.A timed execution of an MMT automaton is a sequence s0(�1; t1)s1(�2; t2)s2 : : : wheres0�1s1�2s2 : : : is an execution of the underlying I/O automaton, ti � ti+1, and ti satis�esthe given lower and upper bound requirements. Since execution starts at time 0, we de�net0 = 0. Formally, if a task C is enabled in sj , we say that it is newly enabled by sj�1��j�!sjif �j is not enabled in sj�1 (or j = 0), or �j 2 C. In this case, the following conditionsmust hold:Upper bound: If there exists k > j with tk > tj +upper (C), then there exists k0 > j withtk0 � tj + upper (C) such that either �k0 2 C or C is not enabled in sk0 .Lower bound: There does not exist any k > j with tk < tj + lower(C) and �k 2 C.3In the more general theory of I/O automata, these were introduced to address fairness, which does notconcern us here. In this context, it is easier to have tasks only in the timed setting.29



Intuitively, the upper bound condition says that, whenever a task C is scheduled to bedone (i.e., it is enabled), if the time passes beyond its upper bound, then in the interim,either the task is done (i.e., some action � 2 C occurs), or it was disabled. The lower boundcondition says that the task cannot be done before the speci�ed lower bound from the timeit was newly enabled. Both of these conditions express safety properties. Like executionsfor I/O automata, timed executions correspond to the computation done by the system, upto a certain point.A timed execution is admissible if it is in�nite and the times associated with the actionsincrease without bound,4 or if it is �nite and every task C enabled in the �nal state has noupper bound, i.e., upper(C) = 1. Each timed execution of an MMT automaton M givesrise to a timed trace, which is just the subsequence of external actions paired with theirassociated times. The admissible timed traces of an MMT automaton are the timed tracesthat arise from the admissible timed executions.An admissible timed execution corresponds to an execution in which time increaseswithout bound; if it is �nite, the only tasks which may be enabled in the �nal state arethose which are not required to occur in a bounded amount of time. Thus, admissibilityexpresses a liveness property. Admissible timed traces describe the visible behavior of thesystem.3.3 Timed AutomataThe MMT automaton models timing constraints by imposing extra conditions on the ex-ecutions of I/O automata. The main motivation for this is to provide a clean notion ofcomposition. However, this makes it di�cult to use some of the methods developed forproving properties of I/O automata; in particular, it is not obvious how to use simulationsto prove timing properties for MMT automata.Lynch and Attiya [LA92] describe how to incorporate the timing information of an MMTautomatonM into the state, yielding an equivalent I/O automaton T of a special form. Wecall automata derived in this way timed automata. This transformation is useful becauseall the techniques developed for I/O automata can be immediately applied to the timed4In�nite timed executions which only allow a �nite amount of time to pass are called Zeno executions,after Zeno's paradox, in which to reach his goal, Achilles must take an in�nite number of steps, each halfthe length of the remaining distance, approaching closer but never reaching it each time.30



automaton corresponding to an MMT automaton.The idea is to augment the state with a variable now to represent current time, as wellas variables �rst(C) and last(C) for each task C to represent the earliest and latest timeswhen the task must be done. All these variables represent time in absolute, not incremental,terms. A special time-passage action is added to allow time to increase, but not beyondany of the deadlines set by the upper bounds. To guarantee the lower bounds, a constraintis added to each action of the MMT automaton.Formally, each state of T consists of the following components:basic 2 states(M), initially a start state of Mnow 2 [0;1), initially 0, representing the current timefor each task C of M :�rst(C) 2 [0;1), initially lowerM (C) if C is enabled in basic, 0 otherwise.last(C) 2 (0;1], initially upperM(C) if C is enabled in basic, 1 otherwise.The actions of T are the actions of M and a special time-passage action �. The time-passage action is internal, and the other actions are classi�ed as internal or external accord-ing to their classi�cation in M .If � 2 acts(M), then s���!T s0 exactly if all the following conditions hold:� s:basic���!M s0:basic.� s0:now = s:now .� For each C 2 tasks(M):{ If � 2 C then s:�rst(C) � s:now .{ s0:�rst(C) = 8>>>>>>>><>>>>>>>>:s:�rst(C) if C is enabled in both s:basic and s0:basicand � =2 Cs:now + lowerM(C) if C is newly enabled by s:basic���!M s0:basic0 if C is not enabled in s0:basic{ s0:last(C) = 8>>>>>>>><>>>>>>>>:s:last(C) if C is enabled in both s:basic and s0:basicand � =2 Cs:now + upperM(C) if C is newly enabled by s:basic���!M s0:basic1 if C is not enabled in s0:basic31



Notice that the three cases for s0:�rst(C) and s0:last(C) above are mutually exclusive, andcover all the possibilities.On the other hand, s���!T s0 exactly if all the following conditions hold:� s0:basic = s:basic.� s:now < s0:now .� For each C 2 tasks(M):{ s0:now � s:last(C).{ s0:�rst(C) = s:�rst(C){ s0:last(C) = s:last(C).For notational convenience, we often refer to the tasks of M as tasks of T ; we say atask is enabled in s 2 states(T ) if it is enabled in s:basic, and that it is newly enabled bys���!T s0 (for � 6= �) if it is newly enabled by s:basic���!M s0:basic. The following lemmagives us necessary and su�cient conditions for an action � to be enabled in a state s of T .Lemma 3.1 If T is a timed automaton and s 2 states(T ) then� � 6= � is enabled in s if and only if � is enabled in s:basic and s:now � s:�rst(C),where C is the task of �.5� � is enabled in s if and only if s:now < s:last(C) for all tasks C.Proof: This follows directly from the de�nition of the transformation from MMT au-tomata to timed automata.A timed execution of a timed automaton is a sequence s0(�1; t1)s1(�2; t2)s2 : : : wheres0�1s1�2s2 : : : is an execution and ti = si:now for all i. The admissible timed executionsare those in which the times associated with the actions increase without bound,6 and theadmissible timed traces are the traces of admissible timed executions. Lynch and Attiyaprove the following theorem:Theorem 3.2 An MMT automaton and its corresponding timed automaton have the sameadmissible timed traces.5If its lower bound has not been reached, a task of a timed automaton may be enabled even though noneof its actions are. This is equivalent, but notationally more convenient, to the presentation in [LA92], whichchecks whether tasks of the underlying MMT automaton are enabled.6This forces there to be an in�nite number of time-passage actions in an admissible timed execution.32



Statereported 2 ftrue; falseg, initially falsecountdown 2 N, initially kActionsExternal reportPre: countdown = 0 ^ :reportedE�: reported  true Internal decrementPre: countdown > 0E�: countdown countdown � 1Tasksfreportg: [c1; c2] fdecrementg: [c1; c2]Figure 3-1: Automaton Counter : A Simple CounterWe refer to the MMT automaton and its corresponding timed automaton interchange-ably. Also, we often omit the basic part of the selector, writing s:�eld as a shorthand fors:basic:�eld, where �eld is a component of the MMT automaton's state.Notice also that lower bounds of 0 and upper bounds of1 impose no restrictions on theautomaton, making the corresponding �rst and last variables super
uous. In these cases,we simply omit these variables from the automaton.73.4 Notational Conventions and an ExampleThe model is described abstractly, rather than in terms of a particular language or semantics,to allow 
exibility and generality. However, we usually describe the state as a collectionof state variables, which are modi�ed by the actions. We typically write the actions inprecondition-e�ect form, making it easy to determine whether an action is enabled, and ifit is, how the new state di�ers from the old. For the timing information, we simply list thetasks, and the time bounds associated with each. When there is only one action in a task,we often abuse notation by using the name of the action to denote the task as well.A simple example, given in Figure 3-1, describes an automaton Counter which countsdown from k, and issues a report when it reaches 0. It has two state variables, reported andcountdown , and two actions, an internal decrement action and an external report action,each in a separate task. It has lower and upper bounds of c1 and c2 on the time it can taketo make a step, either to decrement its counter if it is not yet 0, or to report if it is already0. 7Formally, we need to prove that this does not change the behavior of the automaton, which follows fromLemma 3.3 proved later in this chapter. 33



3.5 InvariantsAn invariant of an automaton is any property that is true in all reachable states. Weusually establish an invariant I by proving that all start states satisfy it, and that allsteps preserve it, i.e., start(s) ) I(s) and I(s) ^ (s���!s0) ) I(s0). Often to establish theinduction step, we use properties already proven to be invariant, i.e., start(s) ) I 0(s) andI(s)^I 0(s)^ (s���!s0)) I 0(s0), allowing us to break the proof into more manageable pieces.Timed automata satisfy the following invariants:Lemma 3.3 In all reachable states of a timed automaton T , and for every task C:1. now � last(C).2. �rst(C) � now + lower(C).3. If C is enabled then last(C) � now + upper (C).4. If C is not enabled then �rst(C) = 0 and last(C) =1.5. If upper (C) =1 then last(C) =1.Proof: We only give the proof of the �rst; the rest are similar. We proceed, as indicatedabove, by induction.Base Case: In the start state, now = 0 and last(C) = upper(C) > 0 if task C isenabled, and last(C) =1 if not. So now � last(C) for any task C.Induction Step: Assuming s:now � s:last(C) and s���!s0, we show that s0:now �s0:last(C). We consider separately when � is the time-passage action, and when it isnot.Case 1 (� = �): By construction, s0:now � s:last(C) = s0:last(C).Case 2 (� 6= �): By construction, s0:now = s:now , and we have the followingcases:Case a (C is enabled in both s:basic and s0:basic and � =2 C):s0:last(C) = s:last(C) � s:now = s0:now .Case b (C is newly enabled by s:basic���!s0:basic):s0:last(C) = s:now + upper (C) = s0:now + upper(C) > s0:now .Case c (C is not enabled in s0:basic): s0:last(C) =1 � s0:now .34



We can also prove a simple invariant about Counter, which says that reported = falseunless countdown = 0.Invariant 3.4 For Counter : If reported = true then countdown = 0.Proof: (By induction)Base Case: In the start state, reported = false, so this holds vacuously.Induction Step: Assume that the invariant holds in s and that s���!s0.Case 1 (� = report): s0:countdown = s:countdown = 0, so the invariant holds in s0.Case 2 (� = decrement): s0:reported = s:reported = false, so the invariant holdsvacuously in s0.Case 3 (� = �): s0:basic = s:basic so this invariant holds inductively.3.6 SimulationsWe often express the requirements of a system with a timed automaton that exhibits theallowed behaviors. In this case, a system meets its speci�cation if every behavior exhibitedby the system can also be exhibited by the speci�cation. Formally, we say that a timedautomaton A implements another timed automaton B if every admissible timed trace of Ais an admissible timed trace of B. Thus we cannot distinguish A from B simply by observingits behavior. Note that this relationship is not symmetric; B may allow behaviors that Awill not exhibit. Two automata are equivalent if each implements the other.Simulations provide a powerful method to prove that one automaton implements an-other. There are many variations of simulations [LVara, LVarb], but in this thesis, we onlyneed one of the simplest, the timed forward simulation.8Formally, if A and B are timed automata then a timed forward simulation from A to Bis a relation f between states(A) and states(B) such that:Time: If f(s; u) then u:now = s:now .Start: If s 2 start(A) then there exists some u 2 start(B) such that f(s; u).8This is called a weak timed forward simulation in [LV91, LVarb, Lyn93].35



Step: If f(s; u) for reachable states s and u of A and B, and s���!A s0, then there existssome u0 such that f(s0; u0) and there is some execution fragment of B from u to u0with the same timed external behavior as (�; s0:now).Notice that the last condition applies only to reachable states of A and B, so we may useany invariants proved for A or B in our proof of the simulation.We denote fu : f(s; u)g by f [s]; we usually write u 2 f [s] for f(s; u), and we say that u issimulated by s. The key fact about timed forward simulations is expressed in the followingtheorem:Theorem 3.5 If there is a timed forward simulation from A to B then A implements B.Proof: Every admissible timed trace is the trace of some admissible timed execution.Suppose that � = s0�1s1�2s2 : : : is an admissible timed execution of A. We show that ifthere is a simulation f from A to B then there is an admissible timed execution �0 of Bthat has the same trace as �.Let �i = s0�1s2�2 : : : �isi for i = 0; 1; : : : . By the start condition, there is a start stateu0 of B such that f(s0; u0). We shall construct executions �0i of B such that �0i has thesame timed trace as �i. De�ne �00 = u0. Since s0��1�!A s1, by the step condition, there issome state u1 such that f(s1; u1) and there is some execution fragment �01 of B from u0 tou1 with the same timed external behavior as (�1; s1:now). Since u0 is a start state, �01 isan execution of B, and it has the same timed trace as �1 = s0�1s1.Given an execution �0i�1 starting with u0 and ending in some state ui�1 2 f [si�1] withthe same timed trace as �i�1, we recursively de�ne ui and �0i as follows: Since si�1 andui�1 are reachable, by the step condition, there is an execution fragment of B starting withui�1 and ending in some state ui 2 f(si; ui) with the same external timed behavior as(�i; si:now). We use this execution fragment to extend �0i�1 to an execution �0i that endsin ui. Thus �0i has the same timed trace as �i = �i�1�isi.If � is �nite, that is � = �n for some n, then we are done since �0n has the same timedtrace as �. Otherwise, �0 = limi!1 �0i is an execution of B with the same timed trace as�. Thus A implements B. 36



Statereported 2 ftrue; falseg, initially falseActionsExternal reportPre: :reportedE�: reported  trueTasksfreportg: [a1; a2]Figure 3-2: Automaton Reportf is a relation between the states of Counter and of Report, where u 2 f [s] if and only if:� u:now = s:now� u:reported = s:reported� u:�rst(report) � �s:�rst(decrement) + s:countdown � c1 if s:countdown > 0s:�rst(report) if :s:reported ^ s:countdown = 0� u:last(report) � �s:last(decrement) + s:countdown � c2 if s:countdown > 0s:last(report) if :s:reported ^ s:countdown = 0Figure 3-3: A Simulation from Counter to Report3.7 A Simulation ProofWe conclude this chapter with a very simple simulation proof that illustrates many of thecommon ideas used with this technique, including some general observations and heuristics,and \natural" interpretations. We prove that the counter automaton from Section 3.4implements a simpler automaton Report, shown in Figure 3-2, that has only a single reportaction, which must occur within a speci�ed time interval. We show that Counter implementsReport if a1 � (k+1)c1 and a2 � (k+1)c2. This proof is a slightly revised version of proofsin [LA92, S�oy94, LSGL94].We begin by de�ning a relation f between states of the implementation automaton, inthis case Counter, and states of the speci�cation automaton, in this case Report. This isshown in Figure 3-3. With appropriate assumptions about the timing bounds, we provethat this relation is a simulation from Counter to Report.Simulations are often de�ned like this one, as a list of conditions, one for each statevariable of the speci�cation, including one that guarantees the timing condition in thesimulation de�nition. The conditions for the untimed state variables are usually functions37



of the untimed state variables of the implementation, while the conditions on the timebounds are usually inequalities that guarantee that the speci�cation allows enough time forthe implementation to take the steps necessary to simulate the task. We assume here thatk > 0, so report is not enabled in the start state of Counter.Proof that f is a simulation from Counter to Report if [(k+1)c1; (k+1)c2] � [a1; a2]:Time: By de�nition of f .Start: In the start states u0 and s0 of Report and Counter,u0:now = 0 = s0:nowu0:reported = false = s0:reportedu0:�rst(report) = a1 � (k + 1) � c1 = s0:�rst(decrement) + s0:countdown � c1u0:last(report) = a2 � (k + 1) � c2 = s0:last(decrement) + s0:countdown � c2so u0 2 f [s0].Step: Suppose s and u 2 f [s] are reachable states and that s���!s0.Case 1 (� = report): This simulates u�report��! u0.Since report is enabled in s, we have s:reported = false and s:countdown = 0.Thus, u:reported = false and u:�rst(report) � s:�rst(report) since u 2 f [s], soreport is enabled in u, and this is a step of Report.Thus u0:now = u:now = s:now = s0:now and u0:reported = s0:reported = true ,so u0 2 f [s0].Case 2 (� = decrement): There is no corresponding step in Report. Since decrementis internal, we show u 2 f [s0].Because decrement is enabled in s, we have s:reported = false and s:countdown >0. Thus u:now = s:now = s0:now , u:reported = s:reported = s0:reported = false,and u:�rst(report) � s:�rst(decrement) + s:countdown � c1 since u 2 f [s],� s:now + s:countdown � c1 since decrement occured,= s0:�rst(decrement) + (s:countdown � 1) � c1 by construction,= s0:�rst(decrement) + s0:countdown � c1 by the e�ect of decrement,u:last(report) � s:last(decrement) + s:countdown � c2 since u 2 f [s],� s:now + s:countdown � c2 by Lemma 3.3,= s0:last(decrement) + (s:countdown� 1) � c2 by construction,= s0:last(decrement) + s0:countdown � c2 by the e�ect of decrement.38



Case 3 (� = �): This simulates u���!u0, where u0:now = s0:now .We know u0 2 f [s0] since u 2 f [s], so we only need to verify that s0:now �u:last(report). If s:reported = u:reported = true then u:last(report) =1. Other-wise,u:last(report) � ( s:last(report) if s:countdown = 0s:last(decrement) + s:countdown � c2 if s:countdown > 0 ) � s0:now
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Chapter 4LeLann-Chang-Roberts ElectionAlgorithmWe now consider a simple asynchronous algorithm by LeLann, Chang and Roberts [LeL77,CR79], which solves the election problem for a ring network in the message passing model.Although the algorithm is asynchronous, we assume bounds on the communication delayand the local step times in order to prove an upper bound on the time to election. Thisdoes not rule out any possible behaviors, and it is commonly done in the timing analysis ofasynchronous distributed systems.4.1 The Election Speci�cationIn the election problem, several essentially similar processes in a network elect a singleprocess from amongst themselves to be the leader. This is important when dissimilar tasksneed to be performed by the processes, and so the tasks must be distributed among theprocesses. Once a process has been elected, it can assign the tasks to the other processes.We index the processes for notational convenience, but the processes do not have accessto these indices. This problem is speci�ed by the automaton Election in Figure 4-1. Noticethat all the leaderi actions constitute a single task, so this is not a distributed description ofthe system. Exactly one leader action occurs within time treport, after which the automatontakes no further (visible) actions. 41



Statereported 2 ftrue; falseg, initially falseActionsExternal leaderiPre: :reportedE�: reported  trueTasksleader = fleaderig: [0; treport]Figure 4-1: Automaton Election: A Simple Speci�cation for Leader Election����������������p0 p1p2p3 - ?�6Figure 4-2: A Four Process Unidirectional Communication Ring4.2 Some Preliminary De�nitionsWe only consider this problem for the simple case of an asynchronous ring network withunidirectional communication. The processes are arranged in a circle, and each processsends messages only to the process immediately clockwise from it, and receives messagesonly from the process immediately counterclockwise. We index the processes in an n-processring by Zn (the integers modulo n) increasing clockwise around the ring (see Figure 4-2).The channels are indexed by the processes they link, delivering messages clockwise aroundthe ring.Although the processes do not know their indices, each process pi has a unique identi�erUIDi 2 I, where I is totally ordered. Thus, if i 6= j (mod n) then either UIDi < UIDj orUIDj < UIDi. We assume each process knows only its own identi�er, and nothing aboutthe identi�ers of other processes, except that they are di�erent from its own. In particular,the identi�ers do not necessarily increase or decrease around the ring. We also assume thatp0 has the maximum identi�er, i.e., UID0 = maxfUIDj : j 2 Zng. This last assumptiondoes not change the problem since the processes do not know their own indices, which are42



StateFor each i 2Znstatusi 2 funknown; chosen; reportedg, initially unknownpendingi 2 Queues(I), initially a queue with only UIDichanneli;i+1 2 Queues(I), initially emptyActionsExternal leaderiPre: statusi = chosenE�: statusi = reported Internal sendi(m) :m 2 IPre: m is at the front of pendingiE�: m is removed from the front of pendingim is added to the back of channeli;i+1Internal receivei(m) :m 2 IPre: m is at the front of channeli�1;iE�: m is removed from the front of channeli�1;iif m > UIDi then m is added to the back of pendingiif m = UIDi then statusi  chosenTasksfleaderig: [0; l] sendi = fsendi(m) :m 2 Ig: [0; l]receivei = freceivei(m) :m 2 Ig: [0; d]Figure 4-3: Automaton LCR: LeLann-Chang-Roberts Algorithmused for notational convenience only.We also assume the channels are reliable and FIFO, that is, on any channel. We modelthese channels by queues, adding messages sent to the back of the queue, and removingmessages received from the front.For any set M , we denote the set of queues containing elements of M by Queues(M).We write queues as sequences from front to back. In the queue m1; m2; m3, for example,m1 is at the front, and will be removed next, while m3 is at the back, and was addedlast. Given two queues q1 and q2, their concatenation q1 � q2 is the queue beginning withthe elements from q1 followed by the elements of q2. Notice that if an element is removedfrom the front of q2 and added to the back of q1, their concatenation q1 � q2 is unchanged,and that if it is merely removed from q2, their new concatenation is a subsequence of theiroriginal concatenation. We will sometimes treat a queue as the set of its elements, usingappropriate notation.4.3 LeLann-Chang-Roberts AlgorithmThe automaton LCR in Figure 4-3 expresses a simple protocol proposed by LeLann [LeL77],and improved by Chang and Roberts [CR79], to elect the process with the maximum iden-43



StateFor each i 2Znstatusi 2 funknown; chosen; reportedg, initially unknownpendingi 2 Queues(I), initially a queue with only UIDiActionsExternal leaderiPre: statusi = chosenE�: statusi = reported Internal deliveri�1;i(m) : m 2 IPre: m is at the front of pendingi�1E�: m is removed from the front of pendingi�1if m > UIDi then m is added to the back of pendingiif m = UIDi then statusi  chosenTasksfleaderig: [0; l] deliveri�1;i = fdeliveri�1;i(m) : m 2 Ig: [0; l + d]Figure 4-4: Automaton NoChannel : LeLann-Chang-Roberts Algorithm Without Channelsti�er. Every process sends out its identi�er, and waits for it to return around the ring.However, an identi�er is discarded by any process with a higher identi�er, and a messagemust be received by every process before returning to its originator. So only the maximumidenti�er will not be discarded; it will return to its originator, which will then declare itselfthe leader.It is easy to see that this algorithm elects a single leader, but it is less clear how longthis protocol could take. If the processes sent messages synchronously, it would take nrounds of communication. However, if some processes and channels are slower than others,the messages may \pile-up" at these bottlenecks. Thus a single process may have up to nmessages pending, and the last message to be received would be delayed until all the earliermessages are sent. This does not, however, slow down the entire system; in particular, weshow that LCR implements Election if treport � n(l + d) + l.We can simplify our analysis of this algorithm by noticing that from an abstract point ofview, there is little distinction between messages about to be sent, i.e., messages in pending,and messages already sent but not yet received, i.e., messages in the outgoing channel. Thissuggests a useful intermediate speci�cation, which we develop in the next section4.4 Eliminating ChannelsWe de�ne a new automaton NoChannel, shown in Figure 4-4, which does not distinguishbetween messages about to be sent, and messages already sent but not yet received. The twoqueues of messages are simply concatenated, and the send and corresponding receive actions44



are replaced by a deliver action, with bounds to allow enough time to do both actions.4.4.1 Observations and InvariantsWe begin with some informal observations about the system. Recall that we are assumingUID0 is the maximum identi�er, i.e., UID0 > UIDj for all j 6= 0. Thus, p0 will discard everyidenti�er it receives, and no other process will discard UID0. Because the queues are FIFO,the identi�ers are not re-ordered in the queues; each will be received by p0 according to theposition of its process in the ring, unless it is discarded by some other process. In particular,when UID0 is received by p0, all other identi�ers must already have been discarded. Also,no process other than p0 will change its status , i.e., all other processes will always havestatus = unknown.To formally state and prove this intuition as invariants of NoChannel, let messages =pendingn�1�pendingn�2�� � ��pending0, the queue of identi�ers that have not been discarded,beginning with the next one to be delivered to p0. We begin by showing that the identi�ersin messages may be discarded, but not re-ordered or duplicated, i.e., messages is always asubsequence of messages in the start state. This is a special case of the following invariant:Invariant 4.1 For NoChannel :For all k, pendingk �pendingk�1�� � ��pending0 is a subsequence of UIDk;UIDk�1; : : : ;UID0.Proof: (By induction)Base Case: In the start state, pendingk = UIDk for all k, so pendingk � � � �� pending0 =UIDk; : : : ;UID0.Induction Step: Assume this holds for s and s���!s0.Case 1 (� = leaderi or � = �): s0:pendingk = s:pendingk for all k so this holdsinductively.Case 2 (� = deliveri;i+1(UIDj)): The pending queues change only in that UIDj isremoved from the front of pendingi and possibly added to the back of pendingi+1,so s0:pendingk � � � �� s0:pending0 is a subsequence of s:pendingk � � � �� s:pending0,which by the inductive hypothesis, is a subsequence of UIDk; : : : ;UID0 for all k.45



We have the following useful corollary:Invariant 4.2 For NoChannel :If UIDk is at the front of pendingk�1 then k = 0 and messages = UID0.Proof: This follows immediately from the previous invariant, since UIDk =2 pendingk�1 �� � � � pending0 � UIDk�1; : : : ;UID0, unless k = 0, and thus k � 1 = n � 1. But thenmessages = pendingn�1 � � � � � pending0 is a subsequence of UIDn�1; : : : ;UID0, with UID0in front, so messages = UID0.The next invariant asserts that only p0 will ever change its status, that is, every otherprocess will always have status = unknown.Invariant 4.3 For NoChannel : statusk = unknown for all k 6= 0.Proof: (By induction)Base Case: In the start state, statusk = unknown for all k.Induction Step: Assume this holds in s, and that s���!s0.Case 1 (� = deliveri�1;i(UIDi)): Since UIDi is at the front of s:pendingi�1, byInvariant 4.2, i = 0. So s0:statusk = s:statusk = unknown for all k 6= i = 0, bythe inductive hypothesis.Case 2 (� = deliveri�1;i(UIDj) for j 6= i or � = leaderi or � = �):s0:statusk = s:statusk for all k, so this holds inductively.Finally, we prove that p0 will know it is the leader only after it has discarded its ownidenti�er, which will be the last one to be discarded.Invariant 4.4 For NoChannel : status0 = unknown , UID0 2 messages , messages 6= ;.Proof: (By induction)Base Case: In the start state, status i = unknown for all i and UID0 2 messages.Induction Step: Assume that this holds in s, and that s���!s0.Case 1 (s:status0 6= unknown): By the inductive hypothesis, s:messages = ;, andso s0:status0 6= unknown and s0:messages = ;.46



f is a relation between states of LCR and of NoChannel, where u 2 f [s] if and only if:� u:now = s:now� u:statusi = s:statusi for all i 2Zn� u:pendingi = s:channeli;i+1 � s:pendingi for all i 2Zn� u:last(deliveri;i+1) � �s:last(receivei+1) if s:channeli;i+1 is not emptys:last(sendi) + d otherwise for all i 2Zn� u:last(leaderi) � s:last(leaderi) for all i 2ZnFigure 4-5: A Simulation from LCR to NoChannelCase 2 (s:status0 = unknown): By Invariant 4.3, s:status i = unknown for all i, so� 6= leaderi.Case a (� = delivern�1;0(UID0)): Since UID0 is at the front of s:pendingn�1, byInvariant 4.2, s:messages = UID0. So s0:status0 = chosen and s0:messages =;.Case b (� = deliveri�1;i(UID0) for i 6= 0): Since the identi�ers are unique andUID0 is the maximum, UID0 > UIDi. So UID0 2 s0:pendingi � s0:messagesand s0:status0 = s:status0 = unknown.Case c (� = delivern�1;0(UIDj) for j 6= 0): By the inductive hypothesis, UID0 2s:messages, so UID0 2 s0:messages and since the identi�ers are unique,UID0 6= UIDj , so s0:status0 = s:status0 = unknown.Case d (� = deliveri�1;i(UIDj) for i; j 6= 0): By the inductive hypothesis,UID0 2 s:messages, both of which are unchanged by this action.Case e (� = �): s0:basic = s:basic so this holds inductively.4.4.2 LCR Implements NoChannelWe now show that LCR implements NoChannel by proving that the relation f de�ned inFigure 4-5 is a simulation from LCR to NoChannel. Notice that the timing condition forthe deliveri;i+1 task only requires the upper bound to allow enough time for the next sendiaction and its corresponding receivei+1, if there are no messages already sent but not yetreceived, i.e., if channeli;i+1 is empty. The following proof is straightforward, and does noteven require the invariants proved above. 47



Proof that f is a simulation from LCR to NoChannel :Time: By de�nition of f .Start: If s0 and u0 are start states of LCR and NoChannel then u0:now = 0 = s0:now andfor all i 2Zn:u0:statusi = unknown = s0:statusis0:channeli;i+1 is emptyu0:pendingi and s0:pendingi both contain only UIDiu0:last(deliveri;i+1) = l+ d = s0:last(sendi) + du0:last(leaderi) =1So u0 2 f [s0].Step: Suppose that s and u 2 f [s] are reachable states and that s���!s0.Case 1 (� = leaderi): This step is simulates u�leaderi���! u0, which has the same externalbehavior.a. To see that leaderi is enabled in u, noticeu:statusi = s:statusi since u 2 f [s]= chosen since leaderi is enabled in sb. We have u0 2 f [s0], since u 2 f [s] and all variables are unchanged exceptu0:statusi = reported = s0:statusi andu0:last(leaderi) =1 = s0:last(leaderi)Case 2 (� = sendi(UIDj)): There is no corresponding action in NoChannel. Thishas the same external behavior since sendi(UIDj) is internal.We have u 2 f [s0] since u 2 f [s] and s0 = s except for s0:pendingi, s0:channeli;i+1,s0:last(sendi), and possibly s0:last(receivei+1), and:a. Since UIDj is removed from the front of pendingi and added to the back ofchanneli;i+1, we have s0:channeli;i+1�s0:pendingi = s:channel i;i+1�s:pendingi.b. If s:channel i;i+1 is empty, i.e., receivei+1 is not enabled in s, thenu:last(deliveri;i+1) � s:last(sendi) + d since u 2 f [s],� s:now + d by Lemma 3.3,= s0:last(receivei+1) since receivei+1 is newly enabled.c. If s:channel i;i+1 is not empty, then s0:last(receivei+1) = s:last(receivei+1).Case 3 (� = receivei(UIDj)): This simulates u�deliveri�1;i(UIDj)����������! u0, which has thesame external behavior because both are internal.a. Since UIDj is at the front of s:channeli�1;i, then UIDj is at the front ofu:pendingi�1 = s:channel i�1;i � s:pendingi�1, so deliveri�1;i(UIDj) is enabledin u. 48



b. We need to check that u0 2 f [s0]. Notice that s0 = s except for channeli�1;i,last(receivei), and possibly either pendingi and last(sendi) or status i andlast(leaderi), and u0 = u except for pendingi�1 and last(deliveri�1;i), andpossibly either pendingi and last(deliveri;i+1) or statusi and last(leaderi).UIDj is removed from the front of both s:channel i�1;i and u:pendingi�1, sou0:pendingi�1 = s0:channeli�1;i � s0:pendingi�1. If this is not empty, thenu0:last(deliveri�1;i) = u:now + l + d, which, by Lemma 3.3, is greater thans0:last(receivei) if s0:channel i�1;i is empty, and greater than s0:last(sendi�1)+d otherwise.If UIDj < UIDi, this is all that needs to be checked. If UIDj = UIDi thenu0:status i = s0:statusi = chosen, and u0:last(leaderi) = s0:last(leaderi) =s0:now + l. If UIDj > UIDi then UIDj is added to the back of pendingi (inboth s and u), so u0:pendingi = s0:channel i;i+1 � s0:pendingi. If u:pendingiis empty, then u0:last(deliveri;i+1) = s0:now + l + d = s0:last(sendi) + d.Otherwise, u0:last(deliveri;i+1) = u:last(deliveri;i+1) which is greater thans0:last(receivei+1) = s:last(receivei+1) if s0:channel i;i+1 = s:channel i;i+1 isnot empty, and greater than s0:last(sendi) + d = s:last(sendi) + d if it is.Case 4 (� = �): This simulates u���!u0 such that u0:now = s0:now , which has thesame external behavior.a. We know u���!u0 because for all i, s0:now � s:last(leaderi) � u:last(leaderi)and s0:now � ( s:last(receivei+1) if channeli;i+1 6= ;s:last(sendi) + d if channel = ; ) � u:last(deliveri;i+1)b. Since u 2 f [s] and all variables except now are unchanged, u0 2 f [s0].4.5 A Template for Synchronous n-round AlgorithmsThe invariants in the previous section prove that NoChannel will never elect any leaderother than p0, but they do not establish that p0 will actually be elected. For the rest ofthis chapter, we establish not only that it will be elected, but also an upper bound on thetime to election. We do this by viewing the automaton as though it were a synchronousn-round algorithm. We capture this by de�ning a simulation between NoChannel and a49



Statereported 2 ftrue; falseg, initially falseround 2 N, initially 0ActionsExternal leaderiPre: round = n ^ :reportedE�: reported  true Internal incrementPre: round < nE�: round  round + 1Tasksleader = fleaderig: [0; l] fincrementg: [0; �]Figure 4-6: Automaton Rounds : A Template for n-Round Algorithmssimple automaton Rounds, shown in Figure 4-6, which keeps track of the rounds alreadycompleted.The increment action signi�es the end of an abstract round. At the end of the nthround, the leader task becomes enabled. Notice that, as in Election, all the leader actionsare in a single task. Rounds and Election are essentially the same as Counter and Reportin Chapter 3, except that the automaton now counts up to n, rather than down to 0.Also, the single report action is replaced by a set of leader actions, and the bounds on thetwo tasks of Rounds are di�erent. However, the proof that Rounds implements Electionwhen treport � n� + l is identical in form to the proof that Counter implements Report inSection 3.7, so we do not reproduce it here.4.6 NoChannel Implements RoundsIn this section, we show how to simulate the rounds of a synchronous execution. Intutively,one round of communication, which may take up to l + d time to complete, correspondsto a deliver action for every pair of connected processes with a message pending. Becauseof the asynchrony, one \round" may start before the previous one, even several previousones, ends. We are only interested in the number of rounds that have completed, which wedetermine by the \distance" the \slowest" messages have travelled.4.6.1 Preliminary De�nitions and LemmasTo capture this intuition formally, we introduce the notion of the reach of a process, whichcorresponds to the distance its identi�er has travelled. This can be determined by the50



pending queue it appears in, unless it has already been discarded, in which case the reachis de�ned to be n. The \slowest" identi�ers are then those of processes with the minimumreach, and the processes which contain these identi�ers in their pending queues are thebottlenecks. Formally, for any reachable state of NoChannel, we de�ne:� reach(j)1 = 8>><>>:i� j 2 f0; 1; : : : ; n� 1g if UIDj 2 pendingin if UIDj =2 messagesThis is well-de�ned because, by Invariant 4.1, UIDj 2 pendingi for at most one i 2Zn.� minreach = minfreach(j) : j 2Zng is the minimum reach of any process.� Slowest = fj 2 Zn : reach(j) = minreachg is the set of indices of processes with the\slowest" identi�ers.� Bottlenecks = fi 2 Zn : UIDj 2 pendingi for some j 2 Slowestg is the set of indicesof processes holding the \slowest" identi�ers.Lemma 4.5 The following are true:� In any state of NoChannel, reach(j) = n if and only if UIDj =2 messages andminreach = n if and only if messages = ; if and only if Bottlenecks = ;.� If s�deliveri;i+1(UIDj)����������! s0 then s0:reach(j) > s:reach(j) and s0:minreach � s:minreach.Proof: This follows directly from the de�nitions of reach and Bottlenecks.4.6.2 The SimulationWe now show that NoChannel implements Rounds by proving that the relation g de�nedin Figure 4-7 is a simulation from NoChannel to Rounds. Recall that p0 has the maximumidenti�er, so that it will eventually report that it is the leader. Following the intuitionabove, the round is determined by the minimum reach of any process. The upper bound onthe increment action must allow enough time for all of the slowest identi�ers to be delivered.By de�nition, these identi�ers are in the pending queues of the bottleneck processes.1Note reach :Zn!Zfor each state of NoChannel.51



g is a relation between states of NoChannel and of Rounds, where u 2 g[s] if and only if:� u:now = s:now� u:reported () s:status0 = reported� u:round = s:minreach� u:last(leader) � s:last(leader0) if s:status0 = chosen.� u:last(increment) � s:last(deliveri;i+1) if i 2 s:BottlenecksFigure 4-7: A Simulation from NoChannel to RoundsProof that g is a simulation from NoChannel to Rounds if � � l + d:Time: By de�nition of g.Start: In the start states u0 and s0 of Rounds and NoChannel,u0:now = 0 = s0:nowu0:reported = false and s0:status0 = unknown 6= reportedu0:round = 0 = s0:minreach since reach(j) = 0 for all ju0:last(increment) = � � l + d = s0:last(deliveri;i+1) for all iso u0 2 g[s0].Step: Assume s and u 2 g[s] are reachable states and that s���!s0.Case 1 (� = leaderi): Since s:statusi = chosen, by Invariant 4.3, i = 0. This stepsimulates u�leader0���! u0 for some u0, which has the same external behavior.a. To see that leader0 is enabled in u, notes:messages = ; by Invariant 4.4s:minreach = n by Lemma 4.5u:round = n since u 2 g[s]:u:reported since u 2 g[s] and s:status0 = chosenb. We have u0 2 g[s0] since u 2 g[s] and all variables are unchanged excepts0:status = reported and u0:reported = true , and u0:last(leader) = 1 =s0:last(leaderi).Case 2 (� = deliveri;i+1(UIDj)): Since this is internal, it must simulate internalactions, i.e., increment.Case a (j = i+ 1): This step simulates u�increment�����! u0 for some u0.By Invariant 4.2, j = 0 and s:messages = UID0, since UIDj is at the front ofs:pendingj�1. Thus, s:minreach = n � 1 and s0:messages = ;, s0:status0 =52



chosen, s0:minreach = n, and s0:last(leader0) = s:now + l. So increment isenabled in u.To see that u0 2 g[s0], we check u0:round = n and u0:reported = false sinceu 2 g[s], and u0:last(leader) = u:now + l = s:now + l since leader is newlyenabled.Case b (s:Slowest = fjg and i+ 1 6= j): This simulates the execution fragmentu�increment�����! � � ��increment�����! u0, where u0:round = s0:minreach.Such an execution fragment exists because u:reported = false, and this is notchanged by increment actions, and u:round = s:minreach � s0:minreach � nby Lemma 4.5. Moreover, s0:reach(j) > s:reach(j) by Lemma 4.5, and forall j0 6= j, s0:reach(j 0) = s:reach(j0) > s:reach(j), so we have s0:minreach >s:minreach, and there is at least one increment in the execution fragment.Since s:messages 6= ;, by Invariant 4.4, UID0 2 s:messages. But UID0 is notdiscarded by any action except delivern�1;0(UID0), so UID0 2 s0:messages,and s0:minreach < n.We have u0 2 g[s0] because u0 = u except u0:round = s0:minreach andu0:last(increment) = u:now + � � s0:now + (l + d) � s0:last(deliveri0;i0+1)for any i0 such that s0:pendingi0 6= ;.Case c (j 2 s:Slowest but s:Slowest 6= fjg): There is no corresponding actionin Rounds. We have s0:reach(j 0) = s:reach(j0) = s:minreach for some j0 6=j, so s0:minreach = s:minreach. Thus, s0:Slowest = s:Slowest � fjg, ands0:Bottlenecks = s:Bottlenecks � fig, so u 2 g[s0].Case d (j =2 s:Slowest): Again, there is no corresponding action in Rounds.Since s0:reach(j0) = s:reach(j0) for all j 0 6= j, we have s0:Slowest = s:Slowest.So s0:Bottlenecks = s:Bottlenecks and u 2 g[s0].Case 3 (� = �): This simulates u���!u0 where u0:now = s0:now , which has the sameexternal behavior.If leader is enabled in u then s:status0 6= reported and s:minreach = n since u 2g[s]. By Lemma 4.5, s:messages = ;, so by Invariant 4.4, s:status0 6= unknown,so s:status0 = chosen. Thus u:last(leader) � s:last(leader0) � s0:now .If increment is enabled in u then s:minreach < n, so i 2 s:Bottlenecks for some iby Lemma 4.5, and u:last(increment) � s:last(deliveri;i+1) � s0:now .53



And u0 2 g[s0] since u 2 g[s] and all variables except now are unchanged.4.7 DiscussionWe conclude this chapter with a few remarks about the approach used in this proof. First,we note that the formal details of the proof were much easier to handle because of the hier-archical structure. For example, by introducing NoChannel, the di�culty in the proof wasisolated mostly to the consideration of the deliver actions in the simulation from NoChannelto Rounds. Without this intermediate abstraction, much of that proof would need to berepeated for both the send and the receive actions of LCR. In addition, because there is noconceptual distinction between messages about to be sent, and messages sent but not yetreceived, this also simpli�ed the statements of the invariants.Second, each of the intermediate automata introduced in this example illustrate animportant idea that may be useful in many other simulation proofs. The reduction of thebu�ered FIFO channels to a single queue representing both the pending bu�er and thechannel should be applicable to any automaton that has this mechanism. As mentioned,this allows us to reason about a simpler automaton, and makes the proofs clearer.The Rounds automaton illustrated the idea of milestones, which we will see again in thenext example. In this case, we view an asynchronous algorithm as running synchronouslyby specifying the \round" corresponding to each state. To do this, it is useful to trackthe progress of every message. The current round then corresponds to the \distance" the\slowest" message has travelled. Although the rounds here all have the same time bounds,this is not necessary. The important point is that it must be possible to partition the statesso that the automaton never returns to one class of states once it has left it, before reachingthe desired goal.
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Chapter 5Fischer's Mutual ExclusionAlgorithmWe now consider the mutual exclusion problem, in which several processes compete for acritical resource. The mutual exclusion requirement demands that at most one process hasthe resource at any time. Burns and Lynch [BL93] proved that in the asynchronous sharedmemory model, the mutual exclusion problem for n processes requires at least n atomicread/write shared variables. In this chapter, we examine Fischer's timing-based mutualexclusion algorithm [Fis85, Lam87], using only a single shared variable. In addition tomutual exclusion, we prove an upper bound on the time any process must wait to acquirethe resource while it remains unused. Our primary interest in this algorithm is as a testcase for the methods we have developed for proving timing properties.5.1 The Mutual Exclusion Problem Speci�cationIn the mutual exclusion problem, several processes, called users, are competing for a criticalresource, which cannot be used simultaneously by two processes. When a process is usingthe resource, we say that it is critical, or that it is in its critical region. When it does notneed the resource, it is in its remainder region. To manage the resource, the users mayhave to take additional steps to acquire or release the resource, during which we say a useris in its trying or exit regions respectively. We assume that once a user has the resource, itwill not be interrupted, i.e., it may continue to use the resource until it releases it.The timed automaton Mutex in Figure 5-1 is the speci�cation for a system that not55



Stateregioni 2 fremainder; trying; critical; exitg for i 2 I, initially remainderActionsExternal tryiPre: regioni = remainderE�: regioni  tryingExternal critiPre: regioni = tryingfor all j, regionj 6= criticalE�: regioni  critical External exitiPre: regioni = criticalE�: regioni  exitExternal remiPre: regioni = exitE�: regioni  remainderTasksftryig: [0;1]crit = fcriti : i 2 Ig: [0; tcrit] fexitig: [0;1]fremig: [0; trem]Figure 5-1: Automaton Mutex : A Simple Speci�cation for Mutual Exclusiononly guarantees mutual exclusion, but also upper bounds on the time that any user mustspend in its trying region before some user is in its critical region, and the time any usermust spend in its exit region. This automaton keeps track of the regions of each of theusers (with indices in I), and ensures that at most one user is in its critical region at anytime. Notice that all crit actions belong to the same task. Intuitively, this means that ifsome users are trying to acquire the resource when it is free, then one will succeed withinthe speci�ed upper bound. This speci�cation is not truly distributed, that is, it does notdescribe a truly distributed system, because the users can access each other's state.5.2 Fischer's Mutual Exclusion AlgorithmFischer proposed a simple timing-based algorithm using only a single n + 1-valued atomicvariable x that can be read and written by all the users. This register can contain any ofthe users' names, or a special free value. For simplicity, we will use a user's index as itsname, and 0 as the free value. Intuitively, if a user is critical, the register contains its name,and if every user is in its remainder region, the register is free, i.e., it contains 0. Figure 5-2contains A familiar pseudocode-style listing of the program executed by each user is givenin Figure 5-2, and the corresponding timed automaton Fischer is shown in Figure 5-3. Useri is in its trying region if pci 2 ftesting; set; checking; leave-tryingg, and in its exit region ifpci 2 freset; leave-exitg.Each user trying to obtain the resource �rst tests the register until it is free, and when56



Shared variable: x 2 I [ f0g, initially 0.(pci)remainder *** Remainder Region ***tryitesting wait until x = 0set x ipausechecking if x 6= i then goto testleave-trying criticritical *** Critical Region ***exitireset x 0leave-exit remi (goto remainder)Figure 5-2: Pseudocode for User iStatepci 2 fremainder; testing; set; checking; leave-trying; critical; reset; leave-exitg for i 2 I, initially remainderx 2 I [ f0g, initially 0ActionsExternal tryiPre: pci = remainderE�: pci  testingInternal testiPre: pci = testingE�: if x = 0 then pci  setInternal setiPre: pci = setE�: x ipci  checkingInternal checkiPre: pci = checkingE�: if x = ithen pci  leave-tryingelse pci  testing
External critiPre: pci = leave-tryingE�: pci  criticalExternal exitiPre: pci = criticalE�: pci  resetInternal resetiPre: pci = resetE�: x 0pci  leave-exitExternal remiPre: pci = leave-exitE�: pci  remainderTasksAssume a < b � cftryig: [0;1]ftestig: [0; a]fsetig: [0; a]fcheckig: [b; c] fcritig: [0; a]fexitig: [0;1]fresetig: [0; a]fremig: [0; a]Figure 5-3: Automaton Fischer : Fischer's Algorithm57



it is, sets it to its own name. Since several users may be competing for the resource, theuser pauses long enough to give every user a chance to set the register. Then, when theregister value has stabilized, it checks if the register still contains its name. If it does, theuser takes the resource. Otherwise, it returns to testing until the register is free again. Thelast user to set the register gets the resource, and upon exiting, resets the register to 0.To maintain mutual exclusion, every user must allow enough time for the register tostabilize before checking it. Otherwise, two users could both test the register and �nd itfree. The faster one could then set and check the register, and enter its critical regionbefore the slower one even manages to set the register. The slow user would then overwritethe register, and �nd its name still there when it checks. Thus, it would also enter itscritical region, violating mutual exclusion. This is avoided by a simple timing restrictionthat requires each user to allow enough time before checking the register for any other userto set it. Formally, upper(seti) < lower (checkj) for all i; j 2 I .Notice that every action is a task by itself, and no user can access the state of any otheruser, corresponding to the intuition that each user acts independently of the other users.Also, each action reads or writes the shared register at most once, and external actions donot access it at all. This corresponds to the intuition that in one step an atomic read/writeregister can only be either read or written by a single process. We de�ne time bounds for allthe tasks other than tryi and exiti in order to prove the time bounds for the speci�cation.1We wish to prove that Fischer implements Mutex if tcrit � 5a+ 2c and trem � 2a.5.3 Fischer's Algorithm Satis�es Mutual ExclusionIn this section, we demonstrate that Fischer's algorithm satis�es mutual exclusion. Thisis done entirely by proving some invariants about Fischer. But �rst we note the followinguseful fact:Lemma 5.1 For Fischer : If s���!s0 and s0:x 6= 0 then � = sets0:x or s:x = s0:x.Proof: (By inspection)Only the set and reset actions modify x, but the reset actions set x to 0, and s0:x 6= 0.Next we establish the following easy invariant:1We can show tight, slightly better bounds; see Section 5.8.58



Invariant 5.2 For Fischer : If x 6= 0 then pcx 2 fchecking; leave-trying; critical; resetg.Proof: (By induction)Base Case: In the initial state, x = 0, so this holds vacuously.Induction Step: Assume that s satis�es the invariant, and that s���!s0.Assume: s0:x = i 6= 0.Prove: s0:pci 2 fchecking; leave-trying; critical; resetgCase 1 (� = seti): s0:pci = checkingCase 2 (� 6= seti): By Lemma 5.1, s:x = i.By the inductive hypothesis, s:pci 2 fchecking; leave-trying; critical ; resetg.But � 6= reseti, so s0:pci 2 fchecking; leave-trying; critical ; resetg also.Recall that for this algorithm to work, every user must delay checking the register untilall other users have a chance to set it. We only need to show this for the user whose indexis currently in the register, since only it can successfully complete the check action andproceed to its critical region. The following invariant captures this crucial intuition.Invariant 5.3 (Su�cient Con�rmation Delay) For Fischer :If x 6= 0 and pcx = checking then �rst(checkx) > last(setj) for all j such that pcj = set .Proof: (By induction)Base Case: This holds vacuously in the initial state.Induction Step: Assume that it holds in some reachable state s, and that s���!s0.Assume: s0:x = i 6= 0 and s0:pci = checking.Prove: s0:�rst(checki) > s0:last(setj) for all j such that s0:pcj = set .Case 1 (� = seti): By the timing restriction and Lemma 3.3, if s0:pcj = set (i.e.,setj is enabled in s0:basic) then s0:�rst(checki) = s0:now + lower(checki) >s0:now + upper(setj) � s0:last(setj).Case 2 (� 6= seti): By Lemma 5.1, s:x = i, so � 6= testj for any j.If s0:pcj = set then s:pcj = set also, so setj is not newly enabled by s���!s0.Also, s:pci = checking, so by the inductive hypothesis, s0:�rst(checki) =s:�rst(checki) > s:last(setj) = s0:last(setj).59



We can now prove the invariant that demonstrates mutual exclusion. It says that if any useris in the critical region, or immediately before or after it, then its index is in the variable xand no other user is about to overwrite it. Notice that there is no timing information in thestatement of this invariant, though timing information is used in its proof. This invariantis slightly stronger than mutual exclusion, and clearly implies it:Invariant 5.4 (Strong Mutual Exclusion) For Fischer :If pci 2 fleave-trying; critical ; resetg, then x = i and pcj =2 fset ; leave-trying; critical; resetgfor all j 6= i.Proof: (By induction)Base Case: This holds vacuously in the initial state.Induction Step: Assume that this holds in some reachable state s, and that s���!s0. If� = �, then s0:basic = s:basic, and this holds inductively. So assume that � 6= �.Case 1 (s:pci 2 fleave-trying ; critical; resetg for some i): s:x = i and for all j 6= i,we have s:pcj =2 fset ; leave-trying; critical; resetg.Case a (� 2 fcriti; exitig): s0:pcj = s:pcj =2 fset; leave-trying; critical; resetg forall j 6= i and s0:x = s:x = i, so the invariant holds.Case b (� = reseti): s0:pcj =2 fset ; leave-trying; critical ; resetg for all j (includ-ing i), so the invariant holds vacuously.Case c (� 2 ftryj ; testj ; checkj ; remjg for some j 6= i): s0:x = s:x = i, andfor all j0 =2 fi; jg, s0:pcj0 = s:pcj0 =2 fset; leave-trying; critical; resetg, ands0:pcj =2 fset ; leave-trying; critical ; resetg since s:x =2 fi; jg, so the invariantholds in s0.From the possible values of the pc variables in s, no other actions are enabled.Case 2 (s:pcj =2 fleave-trying; critical; resetg for all j):Case a (� = checks:x): Since s:�rst(checks:x) � s:now � s:last(setj) for all j,by Invariant 5.3, s:pcj 6= set for all j. So this holds because s0:x = s:x, ands0:pcj =2 fset ; leave-trying; critical; resetg for all j 6= s:x.Case b (� 6= checks:x): s0:pcj =2 fleave-trying; critical ; resetg for all j, so thisholds vacuously. 60



Stateregioni 2 fremainder; trying; critical; exitg for i 2 I, initially remainderstatus, an element of fstart; seized; stableg, initially startActionsExternal tryiPre: regioni = remainderE�: regioni  tryingInternal seizePre: for some i, regioni = tryingstatus = startfor all j, regionj 6= criticalE�: status  seizedInternal stabilizePre: status = seizedE�: status  stable
External critiPre: regioni = tryingstatus = stableE�: regioni  criticalstatus  startExternal exitiPre: regioni = criticalE�: regioni  exitExternal remiPre: regioni = exitE�: regioni  remainderTasksftryig: [0;1]fseizeg: [0; 3a + c]fstabilizeg: [0; a] crit = fcriti : i 2 Ig: [0; a + c]fexitig: [0;1]fremig: [0; 2a]Figure 5-4: Automaton Milestone: An Intermediate Milestone Automaton5.4 Milestones: An Intermediate AbstractionAlthough Invariant 5.4 guarantees mutual exclusion, it does not bound the time a user maybe in its trying region before some user (not necessarily the same one) enters its criticalregion. Intuitively, it can not be too long, since once any user sets the register, only usersthat have already tested the register and found it free will overwrite it. Each such user willset the register only once until the register becomes free again, and the last user that setsit will enter its critical region after waiting an appropriate amount of time, and its namewill remain in the register until it resets it as it exits.While we could construct a simulation directly from Fischer to Mutex, we �nd it usefulto introduce an intermediate level of abstraction which captures this intuition. We de�nean automaton Milestone, shown in Figure 5-4, with actions that correspond to milestonestoward the goal of some user entering its critical region. We then construct two intuitivesimulations, one from Fischer to Milestone, and one from Milestone to Mutex, which to-gether establish that every admissible timed trace of Fischer is an admissible timed traceof Mutex.We say that the register is seized when a user sets it from 0 to its name. This is the �rst61



milestone; the register will not be free again until after some user enters its critical region,and resets the register as it exits. Thus, all the users that will set the register must havealready tested it. The second milestone occurs when the last user sets the register. At thispoint we say the register is stable; no user will set it again until it has been reset by thisuser when it exits its critical region. If only one user wants the resource, then when it setsthe register, it is both seized and stabilized. Notice that seize and stabilize are not actionsof individual users, but of the entire system.Informally, we might reason that a user entering its trying region will seize the register,if it is free, within time 2a, i.e., enough time to do both test and set the register. Thenevery user that has already tested the register must set it within time a, after which theregister will be stable. Finally, the last user to set the register will check it, and then enterits critical region within time a+c. However, this does not take into account the possibilitythat a user could already be in its trying region when the critical user exits. In this case,the register may not be free for additional time a, after which any user waiting to test theregister will do so within time 2a as above, for total of time 3a. But if the only users tryingare still waiting to check the register, then it may take an additional time c before anydiscover their names have been overwritten, and are ready to test the register again. Thus,the upper bound for the seize action is 3a+ c.2We �rst prove the following easy invariant, which simply states formally that the registeris only seized or stable if some process is making progress towards its critical region, thatis, that it is in its trying region, and no other process is critical.Invariant 5.5 For Milestone:If status 6= start then regioni = trying for some i and regionj 6= critical for all j.Proof: (By induction)Base Case: This holds vacuously in the initial state.Induction Step: Assume that this holds in some reachable state s, and that s���!s0.Case 1 (s:status = start): � 6= stabilize or criti for any i.Case a (� = seize): s0:regioni = s:regioni = trying for some i, and s0:regionj =s:regionj 6= critical for all j.2This is not tight, and will be improved in Section 5.8.62



g is a relation between the states of Milestone and of Mutex, where u 2 g[s] if and only if:� u:now = s:now� u:regioni = s:regioni� u:last(crit) �8>>>>><>>>>>:s:last(seize) + 2a + c if s:regioni = trying for some i, ands:status = start, ands:regionj 6= critical for all j,s:last(stabilize) + a + c if s:status = seized,s:last(crit) if s:regioni = trying for some i, ands:status = stable.� u:last(remi) � s:last(remi) if s:regioni = exitFigure 5-5: A Simulation from Milestone to MutexCase b (� 2 ftryj ; exitj ; remjg for some j): s0:status = s:status = start , so thisholds vacuously.Case 2 (s:status 6= start): s:regioni = trying for some i and s:regionj 6= critical forall j, so � =2 fseize; tryi; exiti; remig.Case a (� 2 ftryj ; exitj ; remjg for some j 6= i): s0:regioni = s:regioni = trying,s0:regionj 6= critical , and for all j0 6= j, s0:regionj0 = s:regionj0 6= critical . (�cannot be exitj , but we deal with it here rather than make a separate case.)Case b (� = critj for some j): s0:status = start , so this holds vacuously.Case c (� = stabilize): s0:regionj = s:regionj for all j so this holds inductively.5.5 Milestone Implements MutexIntuitively, the seize and stabilize actions are steps the systemmust take before any user canenter its critical region. We capture this with a relation g in Figure 5-5. The now , region,and rem conditions are all straightforward. Notice that quali�cation on the conditionsinvolving seize, stabilize, and crit are their respective enabling conditions. Thus, for example,u:last(crit) � s:last(seize) + 2a+ c requires the crit deadline in Mutex to allow enough timefor the seize action in Milestone plus an additional 2a+ c time to take the remaining stepsnecessary to enter the critical region.Proof that g is a simulation fromMilestone toMutex if tcrit � 5a+2c and trem � 2a:Time: By the de�nition of g. 63



Start: If u0 and s0 are start states of Mutex and Milestone, then u0:now = s0:now = 0and for all i, u0:regioni = s0:regioni = trying and u0:last(crit) = u0:last(remi) = 1,so u0 2 g[s0].Step: Suppose s and u 2 g[s] are reachable states, and s���!s0:Case 1 (� = tryi): This step simulates u�tryi�! u0.tryi is enabled in u, since u:regioni = s:regioni = remainder .Case a (u:regionj = s:regionj = trying for some j):Since s0 = s and u0 = u except that u0:regioni = trying = s0:regioni, we haveu0 2 g[s0].Case b (u:regionj = s:regionj 6= trying for all j):By Invariant 5.5, s:status = start .Case i (u0:regionj = u:regionj = s:regionj = critical for some j):u0:last(crit) =1 and all other conditions continue to hold.Case ii (u:regionj = s:regionj 6= critical for all j):crit is newly enabled in u0 and seize is newly enabled in s0, so u0:last(crit) =u:now + tcrit � (s:now + 3a+ c) + 2a+ c = s0:last(seize) + 2a+ c.Case 2 (� = seize): There is no corresponding step for Mutex.s0 = s except that s0:status = seized, s0:last(seize) = 1, and s0:last(stabilize) =s:now + a. Since u:last(crit) � s:last(seize) + 2a + c � s:now + 2a + c =s0:last(stabilize) + a+ c, we have u 2 g[s0].Case 3 (� = stabilize): Again, there is no corresponding step for Mutex.By Invariant 5.5, s:regioni = trying for some i. Thus, s0 = s except thats0:status = stable, s0:last(stabilize) = 1, and s0:last(crit) = s:now + a+ c. Sinceu:last(crit) � s:last(stabilize) + a + c � s:now + a + c = s0:last(crit), we haveu 2 g[s0].Case 4 (� = criti): This simulates u�criti�! u0.a. criti is enabled in u since u:regioni = s:regioni = trying, and u:regionj =s:regionj 6= critical for all j by Invariant 5.5.b. We have u0 = u except u0:regioni = critical = s0:regioni and u0:last(crit) =1, so u0 2 g[s0].Case 5 (� = exiti): This simulates u�exiti��! u0.64



a. exiti is enabled in u since u:regioni = s:regioni = critical .b. u0:regioni = exit = s0:regioni and since remi is newly enabled in s0 and u0,u0:last(remi) = u:now + trem � s:now + 2a = s0:last(remi).s0:status = s:status = start by Invariant 5.5, so if crit is (newly) enabled in u0,then seize is enabled in s0 and u0:last(crit) = u:now+tcrit � (s:now+3a+c)+2a+ c � s0:last(seize) + 2a+ c by Lemma 3.3. Otherwise, u0:last(crit) =1.So u0 2 g[s0].Case 6 (� = remi): This simulates u�remi��! u0.remi is enabled in u since u:regioni = s:regioni = exit . Since u0 = u exceptu0:regioni = remainder = s0:regioni, and u0:last(remi) =1, we have u0 2 g[s0].Case 7 (� = �): This simulates u���!u0, where u0:now = s0:now .We know s0:now � s:last(C) for any task C of Milestone, and we show thats0:now � u:last(C) for any task C of Mutex. If C is not enabled in u:basic,or C 2 ftryi; exitig for some i, then u:last(C) = 1. Otherwise, we have thefollowing cases:Case a (C = crit): s:regioni = u:regioni = trying for some i, and s:regionj =u:regionj 6= critical for all j.Case i (s:status = start): u:last(crit) � s:last(seize) + 2a+ c > s0:now .Case ii (s:status = seized): u:last(crit) � s:last(stabilize) + a+ c > s0:now .Case iii (s:status = stable): u:last(crit) � s:last(crit) � s0:now .Case b (C = remi for some i): s:regioni = u:regioni = exit , so u:last(remi) �s:last(remi) � s0:now .Thus, if u0 = u except that u0:now = s0:now , then u���!u0 and u0 2 g[s0].5.6 Fischer implements MilestoneRecall the intuition we used to de�ne the milestone automaton: The �rst time the registeris set before some user gets the resource corresponds to a seize action, and the last timecorresponds to a stabilize action. We denote by w(i), an upper bound on the time beforeuser i will set the register if it remains free. So if some users are trying to get the resource,65



f is a relation between states of Fischer and of Milestone, where u 2 f [s] if and only if:� u:now = s:now� u:regioni = s:regioni =8>><>>:trying if s:pci 2 ftesting; set; checking; leave-tryingg,critical if s:pci = critical,exit if s:pci 2 freset; leave-exitg,remainder if s:pci = remainder.� u:status =8>>>>>>><>>>>>>>:start if s:x = 0 orfor some i, s:pci 2 fcritical; resetg,seized if s:x 6= 0, andfor all i, s:pci =2 fcritical; resetg, andfor some i, s:pci = set,stable if s:x 6= 0 andfor all i, s:pci =2 fset; critical; resetg.� u:last(seize) � s:last(reseti) + 2a + c if s:pci = reset.� u:last(seize) � s:w(i) for some i if s:x = 0,where s:w(i) =8>><>>:s:last(testi) + a if s:pci = testing,s:last(seti) if s:pci = set,s:last(checki) + 2a if s:pci = checking,1 otherwise.� u:last(stabilize) � s:last(seti) if s:pci = set.� u:last(crit) � �s:last(checkx) + a if s:pcx = checking,s:last(criti) if s:pci = leave-trying.� u:last(remi) � �s:last(reseti) + a if s:pci = reset,s:last(remi) if s:pci = leave-exit.Figure 5-6: A Simulation from Fischer to Milestoneand the register is free, the upper bound for seize in a simulated state must allow enoughtime for some user to set the register. If some user is exiting, but has not yet reset theregister, then the simulated state must allow enough time for the user to reset the register,and then for some other user to seize it. Once the register has been seized, we only needto allow enough time for each user that is still going to set the register to do so, and oncethe register is stable, we only need to wait for the user that wrote last to check the registerand then enter its critical region. When a user is exiting, we need to allow enough time forit to reset the register and then leave its exit region. For convenience, we often refer to theregion of a user in a state of Fischer. We capture this intuition with the simulation f inFigure 5-6.Proof that f is a simulation from Fischer to Milestone:66



Time: By de�nition of f .Start: In the start states u0 and s0 of of Milestone and Fischer, u0:now = s0:now = 0,u0:regioni = s0:pci = remainder for all i, u0:status = start and s0:x = 0, andu0:last(C) =1 for tasks C of Milestone, so u0 2 f [s0].Step: Suppose that s and u 2 f [s] are reachable states of Fischer and Milestone respec-tively, and that s���!s0:Case 1 (� = tryi): This step simulates u�tryi�! u0.tryi is enabled in u since u:regioni = s:regioni = remainder , and s0 = s exceptthat s0:pci = testing (and so s0:regioni = trying), and s0:last(testi) = s:now + a.We show that u0 2 f [s0]:Case a (seize is newly enabled): u0 = u except u0:regioni = trying andu0:last(seize) = u0:now + 3a + c= s0:now + a + 2a + c�8<:s0:last(resetj) + 2a + c if s0:pcj = reset.s0:last(testi) + aCase b (seize is not newly enabled): u0 = u except that u0:regioni = s:regioni =trying, and since s:w(i) =1 > s0:last(testi) + a = s0:w(i),u0:last(seize) = u:last(seize)�8<:s0:last(resetj) + 2a + c if s0:pcj = reset.s0:w(j) for some j if s0:x = 0.Case 2 (� = testi): There is no corresponding step in Milestone.We show that u 2 f [s0]:Case a (s:x 6= 0): s0 = s except that s0:last(testi) = s:now + a. So f [s0] = f [s]since s0:x = s:x 6= 0.Case b (s:x = 0): s0 = s except that s0:pci = set , s0:w(i) = s0:last(seti) =s:now + a � s:last(testi) + a = s:w(i), and s0:last(testi) = 1. Sinceu:status = start , stabilize is not enabled in u:basic, and the condition forlast(seize) is satis�ed since for some j, u:last(seize) � s:w(j) � s0:w(j).67



Case 3 (� = seti): s:pci = set , s0:pci = checking, and s0:x = i 6= 0, so by strong mu-tual exclusion, s0:pcj =2 fcritical ; resetg for all j. We have the following cases:Case a (s:x = 0): seize is enabled in u since u:status = start , u:regioni =s:regioni = trying, and u:regionj = s:regionj 6= critical for all j; supposeu�seize��! u0, so u0:status = seized.Case i (s:pcj 6= set for all j 6= i): This step simulates u�seize��! u0�stabilize����! u00.u00 = u except that u00:status = stable, u00:last(crit) = s:now + a+ c, andu00:last(seize) = 1. Since s:now + a + c is greater than any of the timebounds in the condition for last(crit), and s0:pcj 6= set for all j, we haveu00 2 f [s0].Case ii (s:pcj = set for some j 6= i): This step simulates u�seize��! u0.u0 2 f [s0] since s0:pcj = set and u0 = u except that u0:status = seized,u0:last(seize) = 1, and u0:last(stabilize) = s:now + a � s0:last(setj0) forall j 0 such that s0:pcj0 = set .Case b (s:x 6= 0 and for all j 6= i, s:pcj 6= set): This step simulates u�stabilize����! u0.stabilize is enabled in u since u:status = seized . u0 = u except that u0:status =stable, u0:last(stabilize) = 1, and u0:last(crit) = s:now + a + c. Sinces:now + a + c is greater than any of the time bounds in the condition forlast(crit), and s0:pcj 6= set for all j, we have u0 2 f [s0].Case c (s:x 6= 0 and s:pcj = set for some j 6= i): There is no correspondingstep in Milestone.u 2 f [s0] since u:status = seized , and s0:pcj = set.Case 4 (� = checki): There is no corresponding step in Milestone.We show that u 2 f [s0] in three easy cases:Case a (s:x = i): s0 = s except that s0:pci = leave-trying, s0:last(checki) = 1,and s0:last(criti) = s:now + a � s:last(checki) + a � u:last(crit).Case b (s:x = 0): s0 = s except that s0:pci = testing, s0:last(checki) = 1, ands0:last(testi) = s:now + a, so s0:w(i) = s:now + 2a � s:last(checki) + 2a =s:w(i). Thus, for some j, u:last(seize) � s:w(j) � s0:w(j).Case c (s:x =2 f0; ig): There is nothing even to check. (In this case, f [s] � f [s0].)Case 5 (� = criti): This simulates u�criti�! u0.68



s:pci = leave-trying, so by strong mutual exclusion, s:x = i and for all j, s:pcj =2fset; critical ; resetg. Thus, u:status = stable and u:regioni = trying , so criti isenabled in u.We have s0 = s except that s0:pci = critical and s0:last(crit) = 1, and u0 = uexcept that u0:regioni = critical , u0:status = start , and u0:last(crit) = 1, sou0 2 f [s0] since seize, stabilize, and crit are all disabled in u0:basic.Case 6 (� = exiti): This simulates u�exiti��! u0.u:regioni = s:regioni = critical , so exiti is enabled in u, u:status = start , andseize is not enabled in u:basic. We have s0 = s except that s0:pci = reset ands0:last(reseti) = s:now + a.u0 2 f [s0] since u0 = u except that u0:regioni = exit , u0:last(remi) = u:now +2a = s:now + a + a = s0:last(reseti) + a, and if seize is enabled in u0:basic,u0:last(seize) = u:now + 3a+ c = s:now + a+ 2a+ c = s0:last(reseti) + 2a+ c.Case 7 (� = reseti): There is no corresponding step in Milestone.s:pci = reset, so u:status = start , and s0 = s except that s0:pci = leave-exit,s0:x = 0, s0:last(reseti) =1, and s0:last(remi) = s:now + a � s:last(reseti) + a �u:last(remi). If seize is enabled in u:basic then s:regionj = trying for somej 6= i and by strong mutual exclusion, s:pcj 6= leave-trying , so s0:pcj = s:pcj 2ftesting; set ; checkingg, and u:last(seize) � s:last(reseti)+2a+ c � s:now +2a+c � s0:w(j). Otherwise, u:last(seize) =1. So u 2 f [s0].Case 8 (� = remi): This simulates u�remi��! u0.remi is enabled in u since u:regioni = s:regioni = exit . If u�remi��! u0 then u0 2f [s0] since u0 = u and s0 = s except that u0:regioni = remainder = s0:pci andu0:last(remi) =1 = s0:last(remi).Case 9 (� = �): This simulates u���!u0 where u0:now = s0:now .We know s0:now � s:last(C) for any task C of Fischer. We show that s0:now �u:last(C) for any task C of Milestone,If C is not enabled in u:basic, or C 2 ftryi; exitig for some i, then u:last(C) =1.Otherwise, we have the following cases:Case a (C = seize): u:status = start and u:regionj 6= critical for all j, sos:x = 0 or s:pci = reset for some i.69



Case i (s:pci = reset): u:last(seize) � s:last(reseti) + 2a+ c > s0:now .Case ii (s:x = 0): For some i,u:last(seize) � s:w(i) =8>>>>><>>>>>: s:last(testi) + a if s:pci = testings:last(seti) if s:pci = sets:last(checki) + 2a if s:pci = checking1 otherwise 9>>>>>=>>>>>; � s0:nowCase b (C = stabilize): u:status = seized , so s:pci = set for some i, andu:last(stabilize) � s:last(seti) � s0:now .Case c (C = crit): u:status = stable, so s:x 6= 0 and by Invariant 5.2, s:pcs:x 2fchecking; leave-trying; critical; resetg. But s:pci =2 fcritical ; resetg for all iand u:last(crit) � ( s:last(checks:x) + a if s:pcs:x = checkings:last(crits:x) if s:pcs:x = leave-trying ) � s0:nowCase d (C = remi for some i): u:regioni = exit , so s:pci 2 freset ; leave-tryinggand u:last(remi) � ( s:last(reseti) + a if s:pci = resets:last(remi) if s:pci = leave-exit ) � s0:now5.7 DiscussionThe intermediate automaton in this example can also be viewed as introducing three\rounds" to entering the critical region. These rounds, corresponding to seizing the register,stabilizing the register, and entering the critical region, have di�erent time bounds, but thekey point is that once seized, the register will remain seized until it has been stabilized, andthen it will remain stable until some process enters the critical region. These milestonesallow us to track the progress of the system, and by bounding the time for each milestone,we can bound the total time to enter the critical region.More generally, there need not be only one set of milestones, all of which need to bepassed. Rather, there could be several alternative paths, each with its own set of milestones.This is similar to the decrementing function method of Floyd [Flo67], with milestones corre-sponding to decrementing the function. Using the milestones as actions of an intermediateautomaton allows us to construct hierarchical proofs that are rigorous, modular, and intiu-tive. 70



5.8 Achieving Optimal Time BoundsThe upper bound proved for the seize action of Milestone is not tight, and thus neither isthe bound on tcrit. In this section, we give a simulation that establishes an upper bound ofmax(2a+c�b; 3a) for the seize action. This yields an upper bound of max(4a+2c�b; 5a+c)for the time for some user to enter its critical region. This bound is tight because it is possibleto construct executions of Fischer that reach each of these upper limits. To our knowledge,this bound was not known before.To establish this tight bound on the seize task, only a few conditions of the simulationneed to be modi�ed. The proof that this is still a simulation follows the structure of theoriginal proof, and only a few cases are a�ected, because our methodology produces a verymodular proof.3 Thus proving the improved bound was very simple, and did not involveany intricate reasoning, but was straightforward to derive from the original proof.5.8.1 The Slack in the Time BoundsWe can see how the slack in the time bound arises by examining the informal reasoninggiven in Section 5.4, or the proof of the simulation from Fischer to Milestone. Recall thatthe bound for seize was not 2a because a user might already be in the trying region. Afterthe critical user exits, the trying user may still not be able to successfully test the register,either because it is very slow and has not yet even checked the register after setting itearlier, or because the register has not yet been reset. The upper bound for seize of 3a+ callowed enough additional time both for a trying user to �nish checking, and for the exitinguser to reset the register.In the formal proof, the simulation requires that enough time be left after an exitinguser resets the register to allow a user still waiting to check the register enough time to doso, as though it had just set the register.This is not tight for two reasons. First, these e�ects are not additive, since the users makeprogress concurrently. Thus, the bound should allow enough time for either possibility, butnot for both, i.e., max(2a+c; 2a+a). Second, a user waiting to check the register must haveset the register before the exiting user, which was the last to set the register. Meanwhile,3The simulation from the intermediate automaton with the improved bounds to the mutual exclusionspeci�cation automaton also needs to refect the new bounds, but this change is trivial.71



the exiting user checked the register, waiting at least time b before doing so, and enteredand exited the critical region. Thus, the user waiting to check has already been waiting forat least time b, and thus will wait an additional time of at most c � b. Combining theseyields the upper bound of max(2a+ c� b; 3a), instead of 3a+ c, for the seize action.This bound is tight, because there are executions that achieve it. For example, supposetwo processes trying to acquire the critical resource set the register at the same time (i.e.,there is no time-passage action between the two set actions), and the process which sets theregister last waits exactly b time before checking it and proceeding to its critical section.If this process then immediately exits and resets the register, the other process may stilltake up to c � b time before it checks the register and �nds its name overwritten, and anadditional a time to test whether the register is free.4 Then it may take a time to set theregister, for a total of 2a + c � b to seize the register after the critical resource becameavailable. The 3a bound is easily achieved by an exiting process taking a time to reset theregister after exiting, and then a trying process taking the full 2a time to test and then setthe register after it has been reset.5.8.2 A Proof Sketch of the Improved BoundTo establish the tight upper bound, we need to decouple of the two sources of delay in thesimulation, and also prove an invariant that limits the time a user may take to check theregister after some other user exits the critical region.The new simulation, in Figure 5-7, is identical to the one in Figure 5-6, except in theconditions involving the seize actions. When some user is about to reset the register, theupper bound for seize is only required to allow enough time to test and set the register afterit is reset. For the other condition, only the quali�er is di�erent, extended to include anycase that seize might be enabled in u.With this change alone, we can prove an upper bound of 2a + c for the seize action.However, we can prove the tight upper bound of max(2a + c � b; 3a) with the followinginvariant, which says that a user still waiting to check the register while some other user isin its critical region, must have already waited at least time b. Note that if pcj = checkingthen last(checkj) � c represents the time that user j set the register before reaching its4This suggests that if the register is free when a process checks it, it might immediately try to set it, ratherthan testing it again. This will in fact reduce the upper bound to seize the register to max(a+ c� b; 3a).72



f 0 is a relation between states of Fischer and of Milestone0, where u 2 f 0[s] if and only if:� u:now = s:now� u:regioni = s:regioni =8>><>>:trying if s:pci 2 ftesting; set; checking; leave-tryingg,critical if s:pci = critical,exit if s:pci 2 freset; leave-exitg,remainder if s:pci = remainder.� u:status =8>>>>>>><>>>>>>>:start if s:x = 0 orfor some i, s:pci 2 fcritical; resetg,seized if s:x 6= 0, andfor all i, s:pci =2 fcritical; resetg, andfor some i, s:pci = set,stable if s:x 6= 0 andfor all i, s:pci =2 fset; critical; resetg.� u:last(seize) � s:last(reseti) + 2a if s:pci = reset.� u:last(seize) � s:w(i) for some i if s:x = 0 or for some j, s:pcj = reset.� u:last(stabilize) � s:last(seti) if s:pci = set.� u:last(crit) � �s:last(checkx) + a if s:pcx = checking,s:last(criti) if s:pci = leave-trying.� u:last(remi) � �s:last(reseti) + a if s:pci = reset,s:last(remi) if s:pci = leave-exit.Figure 5-7: A Simulation for Proving a Tight Bound for the seize Actioncurrent state.Invariant 5.6 For Fischer :If pci = critical and pcj = checking then now � last(checkj)� c+ b.Proof sketch: Rather than prove this formally here,5 we sketch a proof following theintuition described at the beginning of this section. If pci = critical then by strong mutualexclusion, x = i, so user i was the last to set the register. This must have been at least timeb earlier, since checki has a lower bound of b, and if pcj = checking, user j must have setthe register before then. That is, if t is the time user j set the register then t � now � b,and last(checkj) = t+ c, yielding last(checkj) � now � b+ c as required.We can now prove that Fischer implements Milestone0, where Milestone0 is exactly thesame as Milestone, except for an upper bound of 2a+max(c� b; a) for the seize task. The5We cannot prove this directly by induction. We �rst need to prove that if pcx = checking = pcjfor some j 6= x, then last(checkj) � c � �rst(checkx) � b. Then we strengthen the original invariant: Ifpci 2 fleave-trying; criticalg then now � last(checkj) � c+ b.73



only substantial di�erences from the previous proof are in the consideration of the exit andreset actions, but the case when x 6= 0 and pcj = reset for some j also need to be handledfor the test and check actions. Other very minor changes are also needed, but these followin an obvious way from the changes to these conditions and to the upper bound of seize.Proof sketch that f 0 is a simulation from Fischer to Milestone0: We only considerthe four cases mentioned above, where this proof di�ers signi�cantly from the proof inSection 5.6. The changes for the test, check, and exit actions arise from the requirementthat u:last(seize) � s:w(i) when s:pcj = reset for some j, even if s:x 6= 0. This simpli�esthe analysis for the reset action. The case for the exit action is identical to the original proofexcept for the last line, where Invariant 5.6 is used to establish s0:w(j) = s0:last(checkj) +2a � s0:now + 2a+ c� b when s0:pcj = checking.1. If � = testi and s:x 6= 0 and s:pcj = reset for some j thenu:last(seize) � s:last(resetj) + 2a � s:now + 2a = s0w(i).2. If � = checki and s:x =2 f0; ig and s:pcj = reset for some j then f 0[s] � f 0[s0] as before,since for all j 0, s0:w(j 0) � s:w(j 0).3. If � = exiti then u:regioni = s:regioni = critical , so exiti is enabled in u, u:status =start , and seize is not enabled in u:basic. We have s0 = s except that s0:pci = resetand s0:last(reseti) = s:now + a. If u�exiti��! u0, then u0 2 f 0[s0] since u0 = u except thatu0:regioni = exit , u0:last(remi) = u:now +2a = s:now +a+a = s0:last(reseti)+a, andif seize is enabled in u0:basic,u0:last(seize) = u:now + 2a +max(c� b; a)�8<:s0:last(reseti) + 2as0:w(j) for any j such that s0:pcj 2 ftesting; set; checkingg4. If � = reseti then s:pci = reset, so u:status = start , and s0 = s except that s0:pci =leave-exit, s0:x = 0, s0:last(reseti) =1, and s0:last(remi) = s:now+a � s:last(reseti)+a � u:last(remi). For some j, u:last(seize) � s:w(j) = s0:w(j), So u 2 f 0[s0].74



Chapter 6Automated Proof AssistanceIn this chapter, we explore how automated tools can be used to assist in simulation proofs inthe style of the previous chapters. This builds mainly on work done by S�oylemez [S�oy94] andS�gaard-Andersen, Garland, Guttag, Lynch, and Pogosyants [SGG+93]. In particular, weformally verify the proof in Chapter 5 using LP. As the proof is very lengthy and repetitive,we consider only the salient features of the proof and the automation process; the full proofcan be found in the appendix.6.1 The Larch ToolsLarch is a family of tools intended to support formal speci�cation and veri�cation in pro-gramming. Since we are verifying abstract systems, rather than particular programs, weuse only two tools from this family, the Larch Shared Language (LSL) and the Larch Prover(LP). In LSL, we write machine-readable de�nitions of our model and the abstract systemswe are modelling, including the requirements they are expected to satisfy. We then use LPto reason about these systems and to prove that the required properties are guaranteed bythe system.6.1.1 The Larch Shared LanguageThe basic unit of speci�cation in LSL is a trait, which introduces types, called sorts, andfunctions, called operators, that act on the sorts. Properties of these sorts and operatorsare expressed by assertions in the trait, using �rst-order logic. Typically, a trait de�nes asingle concept or data type. Complex traits are often built using simpler traits, introducing75



a hierarchy of traits, which matches our mathematical understanding of the concepts. TheLarch tools include a library of LSL traits formalizing many common concepts in discretemathematics.Two important characteristics of LSL are that sorts are disjoint, and that operatorsalways represent total functions, though the value of the function may not be constrainedover the whole domain. Also, the domain and range of operators are always sorts, speci�edwhen the operators are introduced. Thus, any trait can be checked for syntactic correctnessin much the same way type-checking is done in many programming languages. This catchesmany of the simple mistakes made when writing these traits. We use an LSL checker to dothis, as well as to generate input for LP, which will be discussed further in the next section.Assertions are typically either logical expressions that are always true, or equationsexpressing the equivalence of two expressions of the same sort. It is also possible to maketwo other types of assertions about sorts. A sort is generated by a set of operators if everyelement of that sort can be derived by a �nite application of the operators. This justi�esstructural induction, which cannot be expressed otherwise by a �nite set of assertions in�rst-order logic. We may further specify that the sort is generated freely if every elementgenerated by the operators is distinct. A sort is partitioned by a set of operators if distinctelements can always be distinguished by at least one of the operators.A trait may de�ne a data structure by declaring a new sort and asserting appropriateaxioms. The sorts and traits may be parameterized, supporting a form of polymorphism.The LSL checker also understands shorthands for a few common data structures in computerscience, such as records (called tuples) and enumerations, and it automatically generatesthe appropriate axioms.A trait may also list useful consequences of its axioms in a special section called theimplies clause. The intent is that these can be derived from the axioms. However, it isuseful to list them explicitly since they often express desired properties of a trait. The LSLchecker generates proof obligations for these implications.6.1.2 The Larch ProverThe LSL checker generates input �les for LP from the LSL traits, including a �le of proofobligations. This translation is straightforward because LP understands equations, as wellas \generated by" and \partitioned by" assertions. Logical assertions are interpreted as76



equations where the expression equals true .Unlike the LSL checker, LP is an interactive tool; it processes each command beforereading the next one. In addition to assertions, which declare new facts to LP, there arecommands to introduce proof obligations, to provide guidance to LP when doing a proof,to query LP about its state, and to control the way in which LP works automatically.LP is a general purpose proof assistant, which attempts to rewrite terms into canonicalforms, so that logically equivalent expressions become syntactically identical. This is callednormalization. LP converts the equations given into rewrite rules. To prevent these rulesfrom being applied endlessly, LP de�nes a partial order, called the registry, on the operators,and rewrites higher operators to lower ones. Finding an appropriate partial order for theoperators and rewriting the assertions comprise the bulk of the automatic work that LPdoes.In contrast to LSL, LP views all facts equally|there is no hierarchy of traits. Instead,each assertion is given the name of the trait it was derived from, appended with a numberto distinguish it from the other assertions of that trait. The statements to be proven aretypically given a di�erent name, to distinguish them from the other assertions. WheneverLP derives a new fact from an old one, it appends another number to its name.Proof obligations in LP are called conjectures. LP considers a conjecture proved if itcan normalize it to true . Rather than searching for a proof, LP normalizes the conjectureand all the facts it knows, and then relies on guidance from the user. It may be enough topoint out particular facts or instances of general facts that can be used to further rewritethe conjecture. Often, however, it is necessary to direct LP to consider several cases, orto proceed by induction, or when trying to prove an implication, to assume the hypothesisand attempt to prove the conclusion. These are called proof methods.It is also possible to direct LP to automatically try these proof methods before promptingthe user for guidance. The trade-o� here is that if the wrong methods are chosen, theproof may evolve in some totally inappropriate fashion before LP discovers that it cannotcontinue; the proof must then be backed out to some earlier stage, where the appropriateproof methods can be applied. It may also be much more di�cult, at that point, to evenunderstand what has gone wrong. This is much like compiling programs in languages thatlack su�cient redundancy for the compiler to discover the error before it is signi�cantlypast the point the error occured. 77



Some proof methods, such as case analysis, introduce additional assumptions for parts ofthe proof, which need not even be consistent with the other assertions. These assumptionsare often particularly relevant to the proof, and LP names each with a su�x of XxxxHyp,where the Xxxx indicates the proof method that introduced it.LP can be run in \batch mode" by recording all the commands in a script �le, whichis then executed. Each command is processed in turn, exactly as if it had been enteredinteractively by a user. (An error, however, stops the execution of a script.) The currentstate of LP can also be saved in freeze �les, which can later be thawed, so that some commonwork can be reused in several proofs. When executing a script, LP can also do box checking,in which every time a proof method is invoked to prove the current conjecture, LP checksthat the �le has certain marks that indicate that this was in fact intended, and every timethe current conjecture is established, LP checks the �le for other marks that indicate thatthis too was expected.6.2 Machine-Readable De�nitions6.2.1 General Traits for Timed AutomataWe begin by developing a library of traits that de�ne the general notions used in timedsimulation proofs. This is analogous to the the development of the model in Chapter 3.These traits can be reused in proofs similar to the ones in this thesis.We begin with the de�nition of an I/O automaton A in Figure 6-1. The enabled andeffect predicates are intended to support the use of precondition-e�ect form for specifyingthe transition relation of the automaton. Because sorts are determined by syntax alone,execution fragments are de�ned as those \step sequences" that satisfy the execFrag pred-icate. The start states and execution fragments are de�ned using predicates (start andexecFrag) rather than sets, since predicates are easier to handle in LP. States, actions,and step sequences are parameterized by the automaton. However, traces represent exter-nal behavior, and thus must be comparable between automata. Since sorts are disjoint, thecommon operator is necessary to map the external actions to a common sort CommonActions.We also de�ne invariants in Figure 6-2. Notice that the operator inv is introducedin the Automaton trait, but it is not used in that trait. This is because invariants varyamong automata. However, each automaton can de�ne its own invariant, and then use the78



Automaton (A): traitintroducesstart : States[A] ! Boolenabled : States[A], Actions[A] ! Booleffect : States[A], Actions[A], States[A] ! BoolisStep : States[A], Actions[A], States[A] ! BoolisExternal : Actions[A] ! BoolisInternal : Actions[A] ! Bool{__} : States[A] ! StepSeq[A]__{__,__} : StepSeq[A], Actions[A], States[A] ! StepSeq[A]first, last : StepSeq[A] ! States[A]execFrag : StepSeq[A] ! Booltask : Actions[A] ! Tasks[A]enabled : States[A], Tasks[A] ! Boolinv : States[A] ! Boolcommon : Actions[A] ! CommonActionsempty : ! Traces__ ^ __ : Traces, CommonActions ! Tracestrace : Actions[A] ! Tracestrace : StepSeq[A] ! Tracesassertssort Traces generated by empty, ^8 a: Actions[A], s, s': States[A], ss: StepSeq[A], c: Tasks[A]isInternal(a) , : isExternal(a);isStep(s, a, s') , enabled(s, a) ^ effect(s, a, s');enabled(s, c) , 9 a (enabled(s, a) ^ task(a) = c);first({s}) = s; first(ss{a,s}) = first(ss);last({s}) = s; last(ss{a,s}) = s;execFrag({s}); execFrag(ss{a,s'}) , execFrag(ss) ^ isStep(last(ss), a, s');trace({s}) = empty;trace(ss{a,s}) = (if isExternal(a) then trace(ss) ^ common(a) else trace(ss));trace(a) = (if isExternal(a) then empty ^ common(a) else empty);Figure 6-1: Larch Trait De�ning Untimed I/O AutomataInvariants (A, inv): traitassumes Automaton(A)asserts8 s, s': States[A], a: Actions[A]start(s) ) inv(s);inv(s) ^ isStep(s, a, s') ) inv(s');Figure 6-2: Larch Trait De�ning Invariants79



Time (T): traitincludes TotalOrder(T), Natural(- for 	), AC(+, T)introduces0, infinity : ! T__ + __ : T, T ! T__ * __ : N, T ! Tasserts8 t, t1, t2: T, n: N0 � t; t � infinity;0 + t = t;t1 + t2 6= infinity , t1 6= infinity ^ t2 6= infinity;0 * t = 0;succ(n) * t = (n * t) + t;t � (t + t1);t 6= infinity ) ((t + t1) < (t + t2) , t1 < t2);t 6= infinity ) (t + t1 = t + t2 , t1 = t2);implies8 t, t1, t2: T, b: Boolinfinity + t = infinity;t < infinity , t 6= infinity;t 6= infinity ) ((t + t1) � (t + t2) , t1 � t2);(if b then t1 else t2) = t , (if b then t1 = t else t2 = t);(if b then t1 else t2) < t , (if b then t1 < t else t2 < t);(if b then t1 else t2) > t , (if b then t1 > t else t2 > t);(if b then t1 else t2) � t , (if b then t1 � t else t2 � t);(if b then t1 else t2) � t , (if b then t1 � t else t2 � t);Figure 6-3: Larch Trait for TimeInvariants trait to express that it is in fact an invariant.We then axiomatize time and boundmaps using three traits. We model time as non-negative reals extended with in�nity. The Time trait in Figure 6-3 captures the propertiesdesired.1 The Bounds trait in Figure 6-4 is a tuple of lower and upper bounds, with someconvenient operators. The BoundMap trait in Figure 6-5 speci�es the mapping that assignstime bounds to each task of an automaton. Recall that an MMT automaton is merely anI/O automaton together with an appropriate boundmap.The TimedAutomaton trait in Figure 6-6 de�nes the timed automaton TA correspondingto a I/O automaton A and a boundmap b. This straightforwardly expresses the transfor-mation from MMT automata to timed automata described in Chapter 3.Finally, the TimedForward trait in Figure 6-7 captures the de�nition of a timed forwardsimulation from one automaton to another. For this to be meaningful, the automata arerequired to have a now component in their state. This trait is also parameterized by in-1We are doing concurrent research to use decision procedures to handle time more easily [Pog95]; thiswas presented in [LSGL94]. 80



Bounds: traitincludes Time(Time)Bounds tuple of first: Time, last: Timeintroduces__ + __ : Bounds, Time ! Boundsunbounded : ! Boundsasserts8 b: Bounds, t: Timeb + t = [b.first + t, b.last + t];unbounded = [0, infinity];Figure 6-4: Larch Trait for Expressing Lower and Upper BoundsBoundMap(A,b): traitincludes Boundsintroducesb : Tasks[A] ! Boundsasserts8 c: Tasks[A]b(c).first < infinity;b(c).first � b(c).last;Figure 6-5: Larch Trait De�ning a Boundmap for an Automatonvariants for each automaton, since the step condition only needs to be proved for reachablestates.6.2.2 The Automata and SimulationsWe can now specialize these general traits to de�ne the particular automata and simulationswe used to verify Fischer's algorithm. Each automaton is de�ned by two traits, the �rstspecifying the untimed components, and the second, adding the timed aspects. We beginby listing in Figure 6-8 the common actions that appear in the traces. An action is indexedby the process that performs it.The AutomatonMutex trait in Figure 6-9 speci�es the untimed behavior required for anymutual exclusion algorithm. An action is speci�ed by its type and the index of its process,and the transition relation is speci�ed by enabled and effect predicates for each action.The unchanged predicate is used to specify that any action changes only the state of itsprocess. Notice that the crit actions are in a single task, and all the other actions are inclasses by themselves. The TimedMutex trait in Figure 6-10 gives the time bounds on eachof the tasks. 81



TimedAutomaton (A, b, TA): traitassumes Automaton(A), BoundMap(A,b)includes Automaton(TA), Bounds, FiniteMap(Bounds[A], Tasks[A], Bounds, __[__] for apply)States[TA] tuple of basic: States[A], now: Time, bounds: Bounds[A]introducesnu : Time ! Actions[TA]addTime : Actions[A] ! Actions[TA]assertssort Actions[TA] generated freely by nu, addTime8 s, s': States[TA], c: Tasks[A], a: Actions[A], t: Timedefined(s.bounds, c);isInternal(nu(t));isInternal(addTime(a)) , isInternal(a);common(addTime(a)) = common(a);start(s) , start(s.basic) ^ s.now = 0^ 8 c ( (: enabled(s.basic, c) ) s.bounds[c] = unbounded)^ (enabled(s.basic, c) ) s.bounds[c] = b(c)));enabled(s, nu(t)) , s.now � t ^ t < infinity ^ 8 c (t � (s.bounds[c]).last);effect(s, nu(t), s') , s'.now = t ^ s'.basic = s.basic ^ s'.bounds = s.bounds;enabled(s, addTime(a)) , enabled(s.basic, a) ^ (s.bounds[task(a)]).first � s.now;effect(s, addTime(a), s') ,s'.now = s.now^ effect(s.basic, a, s'.basic)^ 8 c (s'.bounds[c] =(if : enabled(s'.basic, c) then unboundedelse if enabled(s.basic, c) ^ task(a) 6= c then s.bounds[c]else b(c) + s.now));inv(s) ,8 c ( s.now � (s.bounds[c]).last^ (: enabled(s.basic, c) ) s.bounds[c] = unbounded)^ (enabled(s.basic, c) ) (s.bounds[c]).last � (s.now + b(c).last))^ (s.bounds[c]).first � (s.now + b(c).first)^ (b(c).last = infinity ) (s.bounds[c]).last = infinity))^ s.now < infinity^ inv(s.basic);impliesInvariants(TA, inv)8 s, s': States[TA], a:Actions[TA], c:Tasks[A]isStep(s, a, s') ^ inv(s)) (enabled(s.basic, c) ) (s.bounds[c]).last � (s'.bounds[c]).last);Figure 6-6: Larch Trait for Generating Timed Automata from MMT Automata82



TimedForward (A1, A2, f, I1, I2): traitassumes Automaton(A1), Automaton(A2), NowExists(A1), NowExists(A2),Invariants(A1, I1), Invariants(A2, I2)introducesf : States[A1], States[A2] ! BoolI1 : States[A1] ! BoolI2 : States[A2] ! Boolasserts8 s, s': States[A1], u: States[A2], a: Actions[A1], alpha: StepSeq[A2]f(s, u) ) u.now = s.now;start(s) ) 9 u (start(u) ^ f(s, u));f(s, u) ^ inv(s) ^ inv(u) ^ I1(s) ^ I2(u) ^ isStep(s, a, s')) 9 alpha (execFrag(alpha) ^ first(alpha) = u ^ f(s', last(alpha))^ trace(alpha) = trace(a))Figure 6-7: Larch Trait De�ning Timed Forward SimulationsCommonActions: traitCommonActionTypes enumeration of try, crit, exit, remintroduces__[__] : CommonActionTypes, UID ! CommonActionsasserts sort CommonActions generated freely by __[__]Figure 6-8: Larch Trait Listing the Common ActionsLikewise, the AutomatonFischer and TimedFischer traits in Figures 6-11 and 6-12specify the untimed and timed aspects of Fischer's mutual exclusion algorithm. That eachof the actions is in a class by itself can be derived from the assertion that Tasks[F] isgenerated freely by task. The TimedFischer trait also de�nes the su�cient con�rmationdelay and strong mutual exclusion invariants used in the proof of the simulation.The automaton expressing the milestones in the algorithm is de�ned in Figures 6-13and 6-14. Notice that seize and stabilize generate actions without any process index,since they are actions of the whole system. The implies clause lists some trivial but usefullemmas that LP does not automatically recognize as true.Finally, the timed forward simulation from the milestone automaton to the mutualexclusion speci�cation is de�ned in Figure 6-15 and the one from Fischer's algorithm tothe milestone automaton in Figure 6-16. Except for the STEP operator in each, both arestraightforward translations of the simulations in Chapter 5. The STEP operator allows LPto exploit the fact that the effect relation de�nes a total function.83



AutomatonMutex (M): traitincludes Automaton(M), Array1(Region, UID, Regions), CommonActionsRegion enumeration of rem, try, crit, exitStates[M] tuple of region: RegionsActionTypes[M] enumeration of try, crit, exit, remintroduces__[__] : ActionTypes[M], UID ! Actions[M]unchanged : States[M], States[M], UID ! Boolassertssort Actions[M] generated freely by __[__]sort Tasks[M] generated by task8 i: UIDcommon(try[i]) = try[i]; common(exit[i]) = exit[i];common(crit[i]) = crit[i]; common(rem[i]) = rem[i];isExternal(try[i]); isExternal(exit[i]);isExternal(crit[i]); isExternal(rem[i]);8 a, a': Actions[M], i, i':UIDtask(a) = task(a') , a = a' _ (9 i (a = crit[i]) ^ 9 i' (a' = crit[i']));8 s, s': States[M], i, j: UIDstart(s) , 8 i (s.region[i] = rem);unchanged(s, s', i) , 8 j (j 6= i ) s'.region[j] = s.region[j]);enabled(s, try[i]) , s.region[i] = rem;effect(s, try[i], s') , s'.region[i] = try ^ unchanged(s, s', i);enabled(s, crit[i]) , s.region[i] = try ^ 8 j (s.region[j] 6= crit);effect(s, crit[i], s') , s'.region[i] = crit ^ unchanged(s, s', i);enabled(s, exit[i]) , s.region[i] = crit;effect(s, exit[i], s') , s'.region[i] = exit ^ unchanged(s, s', i);enabled(s, rem[i]) , s.region[i] = exit;effect(s, rem[i], s') , s'.region[i] = rem ^ unchanged(s, s', i);inv(s) , 8 j (i 6= j ) s.region[i] 6= crit _ s.region[j] 6= crit);impliesInvariants(M, inv)8 s, s': States[M], at: ActionTypes[M], i: UIDisStep(s, at[i], s') ) unchanged(s, s', i);Figure 6-9: Larch Trait Specifying the Untimed Mutual Exclusion Problem6.3 Machine-Checkable ProofsIn this section, we examine parts of the proof that were checked mechanically. The entireproof, presented in the appendix, is too long to examine in detail, and much of it involveshandling rather low-level details. However, as we shall see, most of the reasoning followsthe same structure as the hand proof.We will look at two proof scripts. The �rst is the proof of the su�cient con�rmation84



TimedMutex(TM): traitincludes AutomatonMutex(M), TimedAutomaton(M, bdmap, TM)introducesa, b, c : ! Timeasserts8 i: UIDbdmap(task(try[i])) = unbounded; bdmap(task(exit[i])) = unbounded;bdmap(task(crit[i])) = [0, (4*a)+(2*c)]; bdmap(task(rem[i])) = [0, 2*a];implies8 s, s', s'': States[TM], a: Actions[TM]effect(s, a, s') ^ effect(s, a, s'') ) s' = s'';Figure 6-10: Larch Trait Specifying Time Bounds for Mutual Exclusiondelay invariant; the second is a fragment of the proof of the simulation from Fischer'salgorithm to the milestone automaton. Finally, we discuss how the proof was modi�ed toestablish the improved bounds in Section 5.8.6.3.1 The Su�cient Con�rmation Delay ProofWe shall examine in detail the entire script, shown in Figure 6-17, for the proof of In-variant 5.3, which established that processes \waited long enough" after setting the registerbefore checking it. Recall that a script is just a �le with commands that are executed byLP in order. This script, as well as the one in the next section, is presented without the boxchecking marks that are found in the full proof scripts in the appendix. The indentationindicates the structure of the proof, and where this is inadequate, comments have beenadded.The �rst command tells LP to restore the work saved in a freeze �le, which resulted fromprocessing the axioms produced by the LSL checker from the TimedFischer trait.2 The setimmunity command sets a parameter which prevents instantiations from being normalizedaway by their parents. The set name command indicates the name for the axioms to bederived.The next command speci�es which proof methods LP will attempt automatically. Ifthe conjecture is an implication, the �rst method directs LP to assume the hypothesis andattempt to prove the conclusion. Otherwise, LP will normalize the conjecture.32A few transitivity rules were also added to help LP in reasoning about inequalities.3Unless directed otherwise, LP will always normalize the facts it has assumed; however, it will onlynormalize the conjecture if this is among its automatic proof methods, or it is explicitly instructed to do so.85



AutomatonFischer (F): traitincludes Automaton(F), Array1(PC, UID, PCs), CommonActions, SetShorthand(PC)PC enumeration of rem, test, set, check, lvtry, crit, reset, lvexitReg tuple of free: Bool, owner: UID % owner only relevant if : freeStates[F] tuple of pc: PCs, x: RegActionTypes[F] enumeration of try, test, set, check, crit, exit, reset, remintroduces__[__] : ActionTypes[F], UID ! Actions[F]unchanged : States[F], States[F], UID ! Boolassertssort Actions[F] generated freely by __[__]sort Tasks[F] generated freely by task8 i: UIDcommon(try[i]) = try[i]; common(exit[i]) = exit[i];common(crit[i]) = crit[i]; common(rem[i]) = rem[i];isExternal(try[i]); isExternal(crit[i]);isInternal(test[i]); isExternal(exit[i]);isInternal(set[i]); isInternal(reset[i]);isInternal(check[i]); isExternal(rem[i]);8 s, s': States[F], i, j : UIDstart(s) , 8 i (s.pc[i] = rem) ^ s.x.free;unchanged(s, s', i) , 8 j (i 6= j ) s'.pc[j] = s.pc[j]);enabled(s, try[i]) , s.pc[i] = rem;effect(s, try[i], s') , s'.pc[i] = test ^ s'.x = s.x ^ unchanged(s, s', i);enabled(s, test[i]) , s.pc[i] = test;effect(s, test[i], s') , s'.pc[i] = (if s.x.free then set else s.pc[i])^ s'.x = s.x ^ unchanged(s, s', i);enabled(s, set[i]) , s.pc[i] = set;effect(s, set[i], s') , s'.pc[i] = check ^ unchanged(s, s', i)^ : s'.x.free ^ s'.x.owner = i;enabled(s, check[i]) , s.pc[i] = check;effect(s, check[i], s') , s'.pc[i] = (if : s.x.free ^ s.x.owner = i then lvtryelse test)^ s'.x = s.x ^ unchanged(s, s', i);enabled(s, crit[i]) , s.pc[i] = lvtry;effect(s, crit[i], s') , s'.pc[i] = crit ^ s'.x = s.x ^ unchanged(s, s', i);enabled(s, exit[i]) , s.pc[i] = crit;effect(s, exit[i], s') , s'.pc[i] = reset ^ s'.x = s.x ^ unchanged(s, s', i);enabled(s, reset[i]) , s.pc[i] = reset;effect(s, reset[i], s') , s'.pc[i] = lvexit ^ s'.x.free ^ unchanged(s, s', i);enabled(s, rem[i]) , s.pc[i] = lvexit;effect(s, rem[i], s') , s'.pc[i] = rem ^ s'.x = s.x ^ unchanged(s, s', i);inv(s) , : s.x.free ) (s.pc[s.x.owner] 2 { check, lvtry, crit, reset });impliesInvariants(F, inv)8 s, s':States[F], at: ActionTypes[F], i, j: UID, b: Bool, p, p1, p2: PCeffect(s, at[i], s') ) unchanged(s, s', i);s'.pc[j] = s.pc[j] ) (enabled(s', at[j]) , enabled(s, at[j]));(if b then p1 else p2) = p , (if b then p1 = p else p2 = p);isStep(s, at[i], s') ^ : s'.x.free ) at[i] = set[s'.x.owner] _ s.x = s'.x;isStep(s, at[i], s') ^ : s'.x.free ^ s'.pc[j] = set ) s.pc[j] = set;isStep(s, at[i], s') ^ s'.pc[j] = check ) s.pc[j] = check _ at[i] = set[j];Figure 6-11: Larch Trait Specifying Untimed Aspects of Fischer's Algorithm86



TimedFischer(TF): traitincludes AutomatonFischer(F), TimedAutomaton(F, bdmap, TF), SetShorthand(PC)introducesa, b, c : ! TimeSCD, StrongMutex, Mutex, Inv : States[TF] ! Boolasserts8 i: UIDa < b;bdmap(task(try[i])) = unbounded; bdmap(task(crit[i])) = [0, a];bdmap(task(test[i])) = [0, a]; bdmap(task(exit[i])) = unbounded;bdmap(task(set[i])) = [0, a]; bdmap(task(reset[i])) = [0, a];bdmap(task(check[i])) = [b, c]; bdmap(task(rem[i])) = [0, a];8 s: States[TF], i, j: UIDSCD(s) , : s.basic.x.free ^ s.basic.pc[s.basic.x.owner] = check) 8 j (s.basic.pc[j] = set) (s.bounds[task(check[s.basic.x.owner])]).first> (s.bounds[task(set[j])]).last);StrongMutex(s) , 8 i (s.basic.pc[i] 2 { lvtry, crit, reset }) : s.basic.x.free ^ s.basic.x.owner = i^ 8 j (s.basic.pc[j] 6= set));Inv(s) , SCD(s) ^ StrongMutex(s);Mutex(s) , 8 i (s.basic.pc[i] 2 { lvtry, crit, reset }) 8 j (j 6= i ) s.basic.pc[j] =2 { lvtry, crit, reset }));impliesInvariants(TF, Inv)8 s, s', s'': States[TF], a: Actions[TF], at, at': ActionTypes[F], i, j: UID, t: Timeinv(s) ^ isStep(s, addTime(at[i]), s')) 8 j (j 6= i ) s'.bounds[task(at'[j])] = s.bounds[task(at'[j])]);a < c; a 6= infinity;Figure 6-12: Larch Trait Specifying Timed Aspects of Fischer's AlgorithmThe invariant is proven with three conjectures. The �rst establishes the base case for theinvariant, and the second proves that the invariant is preserved by the time passage action.They are proved automatically by LP. The qed asks LP to verify that the conjecture hasbeen proven.The last conjecture proves the invariant is preserved by all the other actions. Becausethis is an implication, LP �rst assumes its hypothesis, and attempts to prove SCD(s'). Thisis also an implication with hypothesis s0:x 6= 0 ^ s0:pcs0x = checking (expressed in Larchby :s'.basic.x.free ^ s'.basic.pc[s'.basic.x.owner] = check). LP also assumesthis hypothesis, as in the proof in Chapter 5.LP then strips the universal quanti�er o� the conclusion of the implication de�ning87



AutomatonIntermediate (I): traitincludes Automaton(I), Array1(Region, UID, Regions), CommonActionsStates[I] tuple of region: Regions, status: StatusStatus enumeration of start, seized, stableRegion enumeration of rem, try, crit, exitActionTypes[I] enumeration of try, crit, exit, remintroduces__[__] : ActionTypes[I], UID ! Actions[I]seize, stabilize : ! Actions[I]unchanged : States[I], States[I], UID ! Boolassertssort Actions[I] generated freely by __[__], seize, stabilizesort Tasks[I] generated by task8 i: UIDcommon(try[i]) = try[i]; common(exit[i]) = exit[i];common(crit[i]) = crit[i]; common(rem[i]) = rem[i];isExternal(try[i]); isExternal(crit[i]);isInternal(seize); isExternal(exit[i]);isInternal(stabilize); isExternal(rem[i]);8 a, a': Actions[I], i, i':UIDtask(a) = task(a') , a = a' _ (9 i (a = crit[i]) ^ 9 i' (a' = crit[i']));8 s, s': States[I], i, j: UIDstart(s) , 8 i (s.region[i] = rem) ^ s.status = start;unchanged(s, s', i) , 8 j (j 6= i ) s'.region[j] = s.region[j]);enabled(s, try[i]) , s.region[i] = rem;effect(s, try[i], s') , s'.region[i] = try^ s'.status = s.status ^ unchanged(s, s', i);enabled(s, seize) , 9 i (s.region[i] = try) ^ 8 j (s.region[j] 6= crit)^ s.status = start;effect(s, seize, s') , 8 j (s'.region[j] = s.region[j]) ^ s'.status = seized;enabled(s, stabilize) , s.status = seized;effect(s, stabilize, s') , 8 j (s'.region[j] = s.region[j]) ^ s'.status = stable;enabled(s, crit[i]) , s.region[i] = try ^ s.status = stable;effect(s, crit[i], s') , s'.region[i] = crit^ s'.status = start ^ unchanged(s, s', i);enabled(s, exit[i]) , s.region[i] = crit;effect(s, exit[i], s') , s'.region[i] = exit^ s'.status = s.status ^ unchanged(s, s', i);enabled(s, rem[i]) , s.region[i] = exit;effect(s, rem[i], s') , s'.region[i] = rem^ s'.status = s.status ^ unchanged(s, s', i);inv(s) , s.status 6= start ) (9 i (s.region[i] = try) ^ 8 j (s.region[j] 6= crit));impliesInvariants(I, inv)8 s, s': States[I], at: ActionTypes[I], i: UIDenabled(s, task(crit[i])) , 9 i enabled(s, crit[i]);isStep(s, at[i], s') ) unchanged(s, s', i);8 stat:Statusstat = start _ stat = seized _ stat = stable;Figure 6-13: Larch Trait Expressing Milestones for Fischer's Algorithm88



TimedIntermediate(TI): traitincludes AutomatonIntermediate(I), TimedAutomaton(I, bdmap, TI)introducesa, b, c : ! Timeasserts8 i: UIDbdmap(task(try[i])) = unbounded; bdmap(task(crit[i])) = [0, a+c];bdmap(task(seize)) = [0, (2*a)+c]; bdmap(task(exit[i])) = unbounded;bdmap(task(stabilize)) = [0, a]; bdmap(task(rem[i])) = [0, 2*a];implies8 s, s': States[TI], a: Actions[I], at: ActionTypes[I], t: Time, i, j: UIDinv(s) ^ isStep(s, addTime(a), s')) s'.bounds[task(rem[j])] = s.bounds[task(rem[j])]_ a = exit[j] _ a = rem[j];inv(s) ^ isStep(s, addTime(at[i]), s') ^ at 6= crit) s'.bounds[task(stabilize)] = s.bounds[task(stabilize)]^ s'.bounds[task(crit[j])] = s.bounds[task(crit[j])];8 s, s', s'': States[TI], a: Actions[TI]effect(s, a, s') ^ effect(s, a, s'') ) s' = s'';Figure 6-14: Larch Trait Expressing Time Bounds for the MilestonesI2M: traitincludesTimedIntermediate(TI), TimedMutex(TM)introducesg : States[TI], States[TM] ! BoolSTEP : States[TM], Actions[TM] ! States[TM]asserts8 u, u': States[TM], a: Actions[TM]STEP(u, a) = u' , effect(u, a, u');% The simulation relation.8 s:States[TI], u:States[TM], i:UIDg(s, u) ,u.now = s.now^ 8 i ( u.basic.region[i] = s.basic.region[i]^ (enabled(s.basic, task(seize))) (u.bounds[task(crit[i])]).last� ((s.bounds[task(seize)]).last + (2*a) + c) )^ (enabled(s.basic, task(stabilize))) (u.bounds[task(crit[i])]).last� ((s.bounds[task(stabilize)]).last + a + c) )^ (enabled(s.basic, task(crit[i]))) (u.bounds[task(crit[i])]).last � (s.bounds[task(crit[i])]).last )^ (enabled(s.basic, task(rem[i]))) (u.bounds[task(rem[i])]).last � (s.bounds[task(rem[i])]).last ));implies TimedForward(TI, TM, g, inv, inv)Figure 6-15: Larch Trait for the Simulation from the Milestones to the Speci�cation89



F2I: traitincludes TimedIntermediate(TI), TimedFischer(TF)introducesf : States[TF], States[TI] ! BoolSTEP : States[TI], Actions[TI] ! States[TI]w : States[TF], UID ! Timeasserts8 u, u': States[TI], a: Actions[TI]STEP(u, a) = u' , effect(u, a, u');8 s:States[TF], i:UIDs.basic.pc[i] = test ) w(s,i) = (s.bounds[task(test[i])]).last + a;s.basic.pc[i] = set ) w(s,i) = (s.bounds[task(set[i])]).last;s.basic.pc[i] = check ) w(s,i) = (s.bounds[task(check[i])]).last + a + a;: (s.basic.pc[i] 2 { test, set, check }) ) w(s,i) = infinity;% The simulation relation.8 s: States[TF], u: States[TI], i: UIDf(s, u) ,u.now = s.now^ 8 i ( (u.basic.region[i] = rem , s.basic.pc[i] = rem)^ (u.basic.region[i] = try ,s.basic.pc[i] 2 { test, set, check, lvtry })^ (u.basic.region[i] = crit , s.basic.pc[i] = crit)^ (u.basic.region[i] = exit ,s.basic.pc[i] 2 { reset, lvexit } )^ (u.basic.status = start ,s.basic.x.free _ 9 i (s.basic.pc[i] 2 { crit, reset }))^ (u.basic.status = seized ,: s.basic.x.free^ 8 i (s.basic.pc[i] =2 { crit, reset })^ 9 i (s.basic.pc[i] = set))^ (u.basic.status = stable ,(: s.basic.x.free ^ 8 i (s.basic.pc[i] =2 { crit, reset, set })))^ (enabled(s.basic, task(reset[i]))) (u.bounds[task(seize)]).last� ((s.bounds[task(reset[i])]).last + a + a))^ 9 i: UID ((u.bounds[task(seize)]).last � w(s, i))^ (enabled(s.basic, task(set[i]))) (u.bounds[task(stabilize)]).last � (s.bounds[task(set[i])]).last)^ (enabled(s.basic, task(check[i]))^ : s.basic.x.free ^ s.basic.x.owner = i) (u.bounds[task(crit[i])]).last � ((s.bounds[task(check[i])]).last + a))^ (enabled(s.basic, task(crit[i]))) (u.bounds[task(crit[i])]).last � (s.bounds[task(crit[i])]).last)^ (enabled(s.basic, task(reset[i]))) (u.bounds[task(rem[i])]).last � ((s.bounds[task(reset[i])]).last + a))^ (enabled(s.basic, task(rem[i]))) (u.bounds[task(rem[i])]).last � (s.bounds[task(rem[i])]).last));implies TimedForward(TF, TI, f, StrongMutex, inv)Figure 6-16: Larch Trait for the Simulation from Fischer's Algorithm to the Milestones90



thaw TimedFischerset immunity ancestorset name SCDset proof-methods ), normalizationprove start(s:States[TF]) ) SCD(s)qedprove SCD(s) ^ isStep(s, nu(t), s') ) SCD(s')qedprove SCD(s) ^ inv(s':States[TF]) ^ isStep(s, addTime(at[i]), s') ) SCD(s')resume by case atc[ic] = set[s'c.basic.x.owner]% CASE 1: atc[ic] = set[s'c.basic.x.owner]prove (s'c.now + a) < (s'c.now + b)instantiate t by s'c.now, t1 by a, t2 by b in Timeinstantiate c by task(set[jc]) in *impliesHyp% CASE 2: : (atc[ic] = set[s'c.basic.x.owner])instantiate s by sc.basic, s' by s'c.basic, at by atc, i by ic in AutomatonFischerinstantiate j by jc in AutomatonFischerinstantiate j by sc.basic.x. owner in AutomatonFischerprove atc[ic] 6= check[sc.basic.x.owner] by contradictionprove atc[ic] 6= set[jc] by contradictioninstantiate j:UID by jc in *hypqed Figure 6-17: Larch Proof of Invariant 5.3: Su�cient Con�rmation DelaySCD,4 and assumes the s0:pcj = set hypothesis of the resulting implication. This is alsodone, though not explicitly, in each of the cases of the hand proof.LP generates fresh constants and substitutes them for the variables in the hypothesesit assumes.5 These are the sc, s'c, atc, ic, and jc that appear in the proof.When the conjecture is no longer an implication, LP normalizes it, and awaits furtherguidance, supplied by the remainder of this script. First, we instruct LP to consider twocases as in the hand proof. Note that ic represents the index of the process that took astep, which need not be s'c.basic.x.owner (i.e., s0:x).If the action is sets0:x, then we prove s0:now + a < s0:now + b. Unfortunately, LP isnot very good at even simple arithmetic, and a bit of further guidance is necessary for itto recognize this.6 The instantiate command calls LP's attention to instances of generalfacts that are useful for establishing the current conjecture. The second instantiation, for4All unbound variables are implicitly universally quanti�ed in LP.5This is justi�ed by the universal generalization rule of logic.6LP is being enhanced with decision procedures that will greatly improve its ability to deal witharithmetic. 91



% CASE 3: set[u1]resume by )instantiate j:UID by s'c.basic.x.owner in *impliesHyp % StrongMutexprove s'c.basic.pc[i] =2 { crit, reset }resume by case i = s'c.basic.x.ownerinstantiate j:UID by ic in *impliesHypresume by case sc.basic.x.freeFigure 6-18: Larch Proof that seti Preserves the Simulation: Part 1example, causes LP to recognize that the conjecture follows from Lemma 3.3. This is enoughfor LP to derive the rest of the proof for that case.If the action is not sets0 :x, then Lemma 5.1, along with the other two lemmas, is in-stantiated with the relevant constants that LP generated. Then, though this was not doneexplicitly in the hand proof, it is proven (by contradiction) that checks0 :x and setj are notnewly enabled. The �nal instantiation uses the inductive assumption to �nish the proof.6.3.2 Preserving the Simulation under the seti ActionWe now present the script for the proof that the simulation is preserved by the seti action.This script, shown in Figures 6-18, 6-19, and 6-20, does not stand alone, but rather isextracted from the larger proof that the simulation is preserved by any action of Fischer.However, as in the hand proof, this is the most complex and interesting part of the proof.Again, the script follows the structure of the hand proof closely.Because this is only a fragment of a script, we begin by setting the context in which itoccurs. The conjecture being proved isf(s,u) ^ isStep(s, a, s') ^ inv(s) ^ inv(u) ^ StrongMutex(s)) 9 alpha (execFrag(alpha) ^ first(alpha) = u ^ f(s', last(alpha))^ trace(alpha) = trace(a))and this script veri�es the case when a = addTime(set[u1]). Unlike in the previous script,the only proof method that LP applies by default is normalization. Thus, the conjecture isstill an implication.The resume by => command causes LP to assume the hypothesis of the conjecture, andattempt to prove the conclusion, as was done automatically in the previous proof script.Following the proof in Chapter 5, we prove 8j, s:pcj =2 fcritical ; resetg, and then consider92



% CASE (a): sc.basic.x.freeprove 9 i:UID (uc.basic.region[i] = try)resume by specializing i:UID to s'c.basic.x.ownerresume by case 8 j:UID (s'c.basic.pc[j] 6= set)% CASE i. 8 j:UID (s'c.basic.pc[j] 6= set)assert (ac = seize); u'c = STEP(uc, addTime(ac))assert a'c = stabilize; u''c = STEP(u'c, addTime(a'c))resume by specializingalpha to (({uc}) { addTime(ac), u'c }) { addTime(a'c), u''c }..instantiate c:Tasks[I] by task(ac) in *impliesHyp / c-op(.first)resume by case i = s'c.basic.x.owner% CASE: : (i = s'c.basic.x.owner); First case was automatic.instantiate j:UID by ic in *Hypresume by )instantiate i:UID by ic in *impliesHyp% CASE ii. :8 j:UID (s'c.basic.pc[j] 6= set)assert (ac = seize); u'c = STEP(uc, addTime(ac))resume by specializing alpha to ({uc}) { addTime(ac), u'c }instantiate c:Tasks[I] by task(ac) in *impliesHyp / c-op(.first)prove 9 i:UID (s'c.basic.pc[i] = set)declare op ic:!UIDfix j:UID as ic in *caseHypresume by specializing i:UID to icresume by case i = s'c.basic.x.owner% CASE: : (i = s'c.basic.x.owner); First case was automatic.instantiate j:UID by ic in *impliesHypresume by ^resume by )instantiate i:UID by ic in *impliesHypresume by )instantiate c:Tasks[F] by task(set[ic]) in *impliesHypFigure 6-19: Larch Proof that seti Preserves the Simulation: Part 2three cases. These cases correspond exactly to the cases in the hand proof, and they arenumbered accordingly. Figure 6-19 contains the �rst case, proven in two subcases, andFigure 6-20 contains the later two cases.Each case introduces constants to name the simulated actions and the resulting states.These form the simulated execution fragment, which LP attempts to verify meets thestep condition. After specializing the conjecture, we �rst direct LP to consider that thelower bounds for the actions are met, with the instantiate ... in *impliesHyp /c-op(.first) command. This step was not in the hand proof because of our conven-tion of omitting �rst components for trivial lower bounds. However, the LP traits derive93



resume by case 8 j:UID (s'c.basic.pc[j] 6= set)% CASE (b): : sc.basic.x.free ^ 8 j:UID (s'c.basic.pc[j] 6= set)assert (ac = stabilize); u'c = STEP(uc, addTime(ac))resume by specializing alpha to ({uc}) { addTime(ac), u'c }instantiate c:Tasks[I] by task(ac) in *impliesHyp / c-op(.first)prove 9 i:UID (sc.basic.pc[i] = set)resume by specializing i:UID to s'c.basic.x.ownerresume by case i = s'c.basic.x.owner% CASE: ic = s'c.basic.x.ownerprove :8 i:UID : (sc.basic.pc[i] = set) by contradiction% CASE: : (ic = s'c.basic.x.owner)instantiate j:UID by ic in *Hypresume by )instantiate i:UID by ic in *impliesHyp% CASE (c): : sc.basic.x.free ^ :8 j:UID (s'c.basic.pc[j] 6= set)resume by specializing alpha to {uc}prove uc.bounds[task(seize)].last = infinityinstantiate c:Tasks[I] by task(seize) in *hypprove :8 i:UID : (sc.basic.pc[i] = set) by contradictionprove 9 i:UID (sc.basic.pc[i] = set)resume by specializing i:UID to s'c.basic.x.ownerprove 9 i:UID (s'c.basic.pc[i] = set)declare op ic:!UIDfix j:UID as ic in *caseHypresume by specializing i:UID to icresume by case i = s'c.basic.x.owner% CASE: ic = s'c.basic.x.ownerinstantiate c:Tasks[I] by task(crit[ic]) in *impliesHyp% CASE: : (ic = s'c.basic.x.owner)instantiate j:UID by ic in *impliesHypinstantiate i:UID by ic in *impliesHypresume by ^resume by )resume by )Figure 6-20: Larch Proof that seti Preserves the Simulation: Part 3the timed automaton systematically, so these conditions still need to be checked.Within each case, we also prove some simple lemmas, usually with existential quanti-�ers. These are all straightforward, but the quanti�er prevents LP from recognizing themautomatically, and so they must be proved explicitly.Finally, each case contains an additional case split not found in the hand proof. Actually,this split is necessary, but the case when i = s0:x is so straightforward that we don't mentionit explicitly. Notice that LP needs little or no guidance for that case; however, it does need tobe directed to make the case split. The guidance provided to LP in the other case (i 6= s0:x)94



merely directs LP to prove each condition of the simulation separately by assuming thehypothesis and establishing the conclusion.6.3.3 The Improved BoundsThe proof presented in Section 5.8 was not carefully and systematically checked. Instead,it is informal, and appeals strongly to the similarity to the proof with the weaker bounds,claiming that any changes, other than those explicitly noted, are straightforward. Withoutautomated veri�cation, we must either be content with such informality, or else check everytedious step of the proof again.One of the important advantages of using automated tools is that the computer canre-do these checks for us. If the changes really are straightforward, then the scripts shouldrequire little modi�cation. This is also part of the motivation for choosing a tool that followsour conventional reasoning: if the structure of the hand proof does not change, neither willthe structure of the automated proof.The proof presented in the appendix is, in fact, not the original proof, but one whichestablishes a time bound of 2a + c for the seize task.7 Other than the obvious changes inthe traits re
ecting the improved time bounds, the only changes required corresponded tothose described in Section 5.8.6.4 DiscussionThe simplest but most signi�cant observation to make is that we succeeded in verifying thisproof using the Larch tools. This indicates that automating such proofs is not intractable,but in fact realistic. The proof follows the hand proof closely, which makes it easy tounderstand. It is also quite general, because it uses parameters, rather than speci�c values,for the time bounds, and is valid for any number of processes.Though it is di�cult to accurately quantify the development time, the main simulationproof, from Fischer toMilestone, took about a week to formalize and verify using LP. Sincethis proof was intended largely as a test case on which to tune LP better to accomodatesimulation proofs, especially those involving time, many changes were made for readability7The tight time bound was also veri�ed using LP, but this required subtraction to be axiomatized, aswell as the additional invariant to be proved. 95



and to reduce the running time. These changes, made over a period of about a year, re
ecta better understanding of how LP veri�ed the proof, as well as improvements made to LPsuggested by the di�culties encountered in doing this proof.Minor changes made in the hand proof seem to be easy to transfer to the automatedproof. To establish the improved time bound for the seize task, for example, required onlychanges in the LSL traits re
ecting the new bound, and a few minor changes to the proofscripts, which corresponded to the changes in the hand proof.Another important consideration is the amount of computation LP needs to verify theproof. The current version of the proof takes about an hour of CPU time running on a DEC3000 AXP Model 500 at 150MHz to process all the traits, and run all the proof scripts, alittle under half of which is spent on the proof of the simulation from Fischer to Milestone.This is signi�cantly reduced from our earlier proofs, mostly by assisting LP in orderingoperators in the registry, and by choosing formalizations that LP handles more e�ectively.We believe there is still leeway to improve this further. For example, in a smaller testcase, we achieved a 30% speed-up by using decision procedures for arithmetic and booleanalgebra.The main danger for Larch proofs is that the traits may de�ne an inconsistent theory.We encountered this problem with our initial Bounds trait, which introduced a subtle in-consistency. Because we never directed LP to use this inconsistency, we only discovered itwhen we tried to tune the traits so that LP would do more of the proof without guidance.This problem was easily �xed, requiring only simple modi�cations to the traits.Because determining consistency is undecidable, some theorem provers impose greaterrestrictions on axiomatizations which guarantee consistency.8 However, such restrictionsmake it more di�cult and awkward to express some concepts, and thus make proofs morecomplicated and less intuitive. This is especially problematic for proof development, sincethe high level structure may be obscured. A possible compromise approach is to allowgreater 
exibility at �rst, and then use a checker that accepts a restricted language oncethe structure of the proof has emerged. Our experience indicates that adapting a proof touse a new formalism is not di�cult, if the fundamental concepts remain the same. Thisseems to stem, again, from the similarity of the automated proofs to our standard handproofs.8Assuming number theory is consistent. 96



We have found that adhering to the reasoning we employ in our hand proofs generallyresults in proof scripts that are clearer, more succinct, and easier to modify if necessary.This is especially true at the high level; once the structure of the proof is de�ned, it isconvenient to set LP to do more work automatically, so that it can �ll in the details withlittle guidance.One di�culty with this approach, however, is that some \obvious" facts used are proved\by inspection," usually involving a simple check over many cases. In fact, in hand proofs,we often simply use such facts without explicitly mentioning them. LP, however, needssome guidance to derive the appropriate statement. This is often best handled by statingthe required facts as lemmas, which can be veri�ed by LP with little di�culty.Also, as mentioned earlier, simple arithmetic and boolean algebra require more guidancein LP than corresponds to the hand proof, and this problem is exacerbated by �rst-orderquanti�ers. A new version of LP which uses specialized decision procedures to do arith-metic and boolean algebra is being tested, and we expect that this will improve both thereadability and the speed of the proofs. Although �rst-order logic is undecidable, we arealso considering ways to handle quanti�ers better.One of the most signi�cant trade-o�s in Larch is between usability and e�ciency. SinceLP is intended for developing proofs, not merely verifying them, it is designed to interactwith the user. Thus, for example, LP attempts to retain the form of assertions as much aspossible, so that the user can recognize where the various facts arose from. This means,however, that two semantically identical facts may retain syntactically di�erent forms, andthus not be recognized as equivalent by LP.Also, Larch does restrict its language to �rst-order logic, and forbids subtyping byrequiring all sorts to be disjoint. This limits the expressive power of Larch, but simpli�esits semantics, and allows greater syntactic checks on the input.We are still trying to learn how to approach these proofs better, so that it will usually beeasy to automate proofs of this sort. Some of this work, such as enhancing LP with decisionprocedures, is already done and simply needs to be exploited in the Fischer proof. Otherwork still needs to be done. We are also thinking about ways to improve the interactionbetween LP and the user, to assist in proof development, as well as ways to isolate the userfrom details conceptually unrelated to the proof, such as the ordering of the operators inthe registry. That this proof has been entirely veri�ed using Larch is very encouraging, but97



we can still see many ways in which we can improve.
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Chapter 7Conclusions and Future WorkWe have presented a methodology based on simulations and invariants for analyzing real-time distributed systems and establishing bounds on the time to accomplish certain tasks.We have demonstrated it on some small but nontrivial examples, which previously had norigorous timing analysis. In particular, the tight upper bound on the time to reach thecritical region in Fischer's mutual exclusion algorithm was not, to our knowledge, knownbefore. We have also veri�ed the proof of Fischer's algorithm using the Larch tools.This methodology involves specifying both the system and its requirements as automata,and establishing a relationship between them that proves that the system satis�es its re-quirements. Because both are speci�ed as automata, it is possible to introduce intermediatespeci�cations, which express some intuition about how the system unfolds. We have alsoproposed an approach to de�ning these intermediate automata, using milestones, to assistin proving timing properties.This methodology leads to well-structured hierarchical proofs that are rigorous, sys-tematic, and amenable to automatic veri�cation. Also, invariants and simulations serveas \documentation", expressing key insights about a system's behavior, including its tim-ing. Invariants capture the unchanging aspect of the system, while simulations characterizechanges in the system, as re
ected in the requirements. In this sense, simulations replaceoperational arguments with an assertional framework.It also appears that this methodology will scale reasonably to realistic systems. Thisis because, although the length of the proofs increases as the systems grow, they do notbecome too complicated. Rather than large, intricate proofs, they typically consist of many99



small checks that can usually be done independently. Furthermore, many of the checks aretrivial, and can be done automatically.For an estimate of the complexity of simulation proofs, we can characterize the size andcomplexity of a system by the number of state variables and actions1 of an automaton forthat system. Proving an invariant typically requires separate consideration of each action.Thus, the proof for an invariant is roughly proportional to the size of the system.A simulation, on the other hand, involves two automata, one for the implementation, andone for the speci�cation. Again, separate consideration is usually required for each action ofthe implementation, to verify that the simulation can be preserved by that action. However,the simulation also grows more complex with the systems. In the examples we have done,the number of conditions de�ning the simulation is proportional to the number of statevariables in the speci�cation automaton, including the timing variables, or alternatively,the number of variables in the untimed state plus the number of actions. Each of theseconditions must be preserved by every action in the implementation, so the proof of asimulation grows as the product of the sizes of the two systems.Moreover, most of the cases in these proofs are trivial, and thus these proofs are amenableto automatic veri�cation. We have de�ned a library of abstractions for the Larch tools,which we have used to verify Fischer's algorithm in a way that corresponds closely with thehuman reasoning we employ to convince ourselves. This provides added con�dence that theproof is indeed correct, and that every case has been properly checked.Using automated veri�cation tools also promises to be helpful when modifying systems.When we modify a system or its speci�cation only slightly, we expect that LP will be ableto check most of the original proof automatically, allowing us to concentrate our attentionon what has truly changed, without worrying that some important detail has been over-looked. This was, in fact, our experience when we proved the improved bounds for Fischer'salgorithm.More work is still necessary in applying these techniques to larger systems, to testboth the methodology and the automated tools. A natural starting point is to verify othermutual exclusion algorithms. In particular, a detailed proof of the simulation given by Lynch1Parameterized actions and variables technically correspond to many actions and variables, but canusually be treated uniformly, and thus can be considered a single action or variable for this analysis. Forexample, the mutual exclusion automata in Chapter 5 have a set of state variables and actions for eachprocess, but the proof does not depend on the number of processes.100



[Lyn93] for Dijkstra's mutual exclusion algorithm [Dij65] should be an informative test of theenhancements made to the Larch tools. The hybrid algorithm of Lynch and Shavit [LS92]is another possibly instructive example to examine, as are Lamport's \bakery" algorithm[Lam74], and algorithms proposed by Peterson and Fischer [PF77].A much more ambitious study would be to attempt to analyze a more complex and subtlepractical algorithm such as the distributed minimum spanning tree algorithm of Gallager,Humblet, and Spira [GHS83]. Welch, Lamport, and Lynch gave a rigorous and detailed,and very lengthy, analysis of this algorithm [WLL88], but it did not include a performanceanalysis. A timing analysis of this algorithm, accompanied by a simple, concise proof, wouldbe relevant for practical systems, and also serve as an interesting case study of the methodsdeveloped here.Operating systems, especially distributed operating systems, provide another rich do-main for problems and protocols, such as synchronization [KR93] and scheduling [Jef92,Zho92] with hard real-time constraints, that might be analyzed using this methodology.For these, and other problems, it is important to characterize not only correctness but alsotimeliness.Perhaps the most useful application of these techniques lies in the analysis of communi-cation protocols [CAZ92, MSST93], which generally have only informal claims of e�ciencyand even correctness. For many of these, especially the distributed group communicationprotocols, the correctness guarantees are not always clear, and only recently have therebeen attempts at stating these more formally [HT93, FKL95, FvR95, MBRS94]. Unfortu-nately, these usually lack performance guarantees, which are essential for communicationsystems. S�gaard-Andersen, Lynch, and Lampson have recently done a lengthy case studyapplying simulation methods to communication protocols [SLL93a, SLL93b], but this doesnot include an analysis of the timing. Instead, the performance is typically determinedempirically (e.g., [vRHB94]).Performance guarantees, however, are often di�cult to characterize, especially \soft"time bounds, that is, bounds that hold in \typical" cases. The MMT automaton model usedin this thesis is adequate only for expressing \hard" time bounds which usually characterizereal implementations. Lynch and Vaandrager have de�ned a more general timed automatonmodel [LVarb] to specify systems which have a more complex relationship between timingand state. However, little work has been done to develop a methodology for these more101



general automata, and in particular, this has not yet been used to model any systems withsoft time bounds. Furthermore, it is unclear how much additional complexity in the proofswill result with this increased dependency between timing and state.Another important class of systems that cannot be handled within the framework ofthis thesis are randomized algorithms. Segala [Seg95] has developed a general probabilisticautomaton model, which Pogosyants and Segala [PS95] have specialized to a probabilisticvariant of MMT automata, and have proved some results using this model. Pogosyants isalso working on automating these proofs using the Larch tools. However, more work is stillnecessary to understand the general structure behind such proofs, and to develop guidelinesto approach and automate such proofs.We believe that this is a fruitful area of research, and that many interesting real-timesystems are now within the reach of formal methods. Furthermore, as automated toolsbecome more sophisticated, we expect practical machine veri�cation of proofs of real-timesystems to be a reasonable goal.
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Appendix ALP Proof Script FilesThis appendix contains the proof scripts used to verify the Fischer algorithm described inChapter 5. The proof is divided into six scripts, corresponding to the implies clauses of theautomaton and simulation traits speci�c to the proof of Fischer's algorithm.1At the beginning of several �les are some commands that indicate how certain opera-tors are to be ordered in the registry. This signi�cantly reduces the time that LP spendsattempting �nd an order for the operators that does not cause it to loop in�nitely duringnormalization.These proofs use LP's box-checking option, with marks generated by to indicate pointsat which new proof obligations are introduced (the <> marks) and satis�ed (matching []marks).2 These marks are often enough to indicate the structure of the proof, and serve asdocumentation, as well as checks that LP is proceeding as expected. Comments, precededby %, provide further documentation where necessary. Long commands may be split intoseveral lines, terminated by two periods (..). These do not indicate any elision of the script,which is provided here in full, exactly as it is processed by LP.A.1 The Untimed Aspects of Fischer's Algorithmset script untimedfischerexecute AutomatonFischer_Axioms1There is some rearrangement of where the implications are proved. For example, there are actually twoscripts for establishing the implies clause of the TimedFischer trait, one for the su�cient con�rmation delayinvariant, and the other establishing strong mutual exclusion.2Proof obligations introduced explicitly with a prove command do not have redundant <> marks. Theyare matched by [] conjecture. 103



set box-checking onset name UntimedFischerset proof-methods ),normalizationset immunity ancestordeclare vars p, p1, p2: PCprove p = (if b then p1 else p2) , (if b then p:PC = p1 else p = p2) by case b<> case bc[] case bc<> case : bc[] case : bc[] conjectureqeddeclare var at:ActionTypes[F]prove effect(s, at[i], s') ) unchanged(s, s', i) by induction on at:ActionTypes[F]<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal[] conjectureqedprove s'.pc[j] = s.pc[j] ) (enabled(s', at[j]) , enabled(s, at[j]))<> ) subgoalresume by induction on at<> basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoal 104



[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal[] ) subgoal[] conjectureqedproveisStep(s, at[i], s') ^ : s'.x.free ) at[i] = set[s'.x.owner] _ s.x = s'.xby induction on at:ActionTypes[F]..<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal[] conjectureqedset proof-methods normalizationprove isStep(s, at[i], s') ^ : s'.x.free ^ s'.pc[j] = set ) s.pc[j] = setresume by case i:UID = j<> case ic = jc 105



set proof-methods normalization, )resume by induction on at:ActionTypes[F]<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal[] case ic = jc<> case : (ic = jc)resume by )<> ) subgoalinstantiate s by sc, s' by s'c, at by atc, i by ic, j by jc in UntimedFischer[] ) subgoal[] case : (ic = jc)[] conjectureqedprove isStep(s, at[i], s') ^ s'.pc[j] = check ) (s.pc[j] = check _ at[i] = set[j])resume by case i:UID = j<> case ic = jcset proof-methods normalization, )resume by induction on at:ActionTypes[F]<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoal<> ) subgoal 106



[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal[] case ic = jc<> case : (ic = jc)resume by )<> ) subgoalinstantiate s by sc, s' by s'c, at by atc, i by ic, j by jc in UntimedFischer[] ) subgoal[] case : (ic = jc)[] conjectureqed% The invariantprove start(s) ) inv(s) by )<> ) subgoal[] ) subgoal[] conjectureqedprove inv(s) ^ isStep(s, a, s') ) inv(s') by induction on a:Actions[F]<> basis subgoalresume by case s'.x = s.x<> case s'c.x = sc.xresume by case u = sc.x.owner<> case uc = sc.x.ownerset proof-methods ), normalizationresume by induction on a1<> basis subgoal<> ) subgoal<> ) subgoal[] ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal<> ) subgoal[] ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal<> ) subgoal 107



[] ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal<> ) subgoal[] ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal<> ) subgoal[] ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal<> ) subgoal[] ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal<> ) subgoal[] ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal<> ) subgoal[] ) subgoal[] ) subgoal[] basis subgoal[] case uc = sc.x.owner<> case : (uc = sc.x.owner)set proof-methods ), normalizationresume<> ) subgoal<> ) subgoalinstantiate s by sc, s' by s'c, at by a1c, i by uc in untimedfischerinstantiate j by sc.x.owner in untimedfischer[] ) subgoal[] ) subgoal[] case : (uc = sc.x.owner)[] case s'c.x = sc.x<> case : (s'c.x = sc.x)set proof-methods ), normalizationresume<> ) subgoal<> ) subgoalinstantiate s by sc, s' by s'c, at by a1c, i by uc in untimedfischer[] ) subgoal[] ) subgoal[] case : (s'c.x = sc.x)[] basis subgoal[] conjectureqedset log untimedfischer 108



statisticsquitA.2 The Milestone Automatonset script intermediateexecute AutomatonIntermediate_Axiomsset name Intermediateset immunity ancestorset box-checking ondeclare variable stat:Statusprove stat = start _ stat = seized _ stat = stable by induction on stat<> basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal[] conjectureqedprove enabled(s, task(crit[i])) , 9 i enabled(s, crit[i])resume by case 9 i enabled(s, crit[i])<> case 9 i:UID enabled(sc, crit[i])declare operator ic: ! UIDfix i as ic in *caseHypresume by specializing a:Actions[I] to crit[ic]<> specialization subgoal[] specialization subgoal[] case 9 i:UID enabled(sc, crit[i])<> case :9 i:UID enabled(sc, crit[i])resume by case a = crit[i]<> case ac = crit[ic][] case ac = crit[ic]<> case : (ac = crit[ic])resume by contradiction<> contradiction subgoaldeclare operator i'c: ! UIDfix i as i'c in *contraHyp[] contradiction subgoal[] case : (ac = crit[ic])[] case :9 i:UID enabled(sc, crit[i])[] conjectureqedprove start(s) ) inv(s) by )<> ) subgoal[] ) subgoal[] conjectureqedprove inv(s) ^ isStep(s, a, s') ) inv(s') by case s.status = start<> case sc.status = startresume by induction on a:Actions[I]<> basis subgoalset proof-methods normalization, )resume by induction on a1 109



<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal[] basis subgoal<> basis subgoalresume by )<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal[] basis subgoal[] case sc.status = start<> case : (sc.status = start)resume by case 9 i(sc.region[i] = try)<> case 9 i (sc.region[i] = try)declare operator ic: ! UIDfix i:UID as ic in *hypresume by induction on a:Actions[I]<> basis subgoalset proof-methods normalization, )resume by induction on a1<> basis subgoal<> ) subgoalresume by specializing i:UID to ic<> specialization subgoalprove ic 6= uc by contradiction<> contradiction subgoal[] contradiction subgoal[] conjectureinstantiate j:UID by ic in *hypresume by case j = uc<> case jc = uc[] case jc = uc<> case : (jc = uc)instantiate j:UID by jc in *hyp[] case : (jc = uc)[] specialization subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal<> ) subgoal[] ) subgoal[] basis subgoal<> basis subgoal 110



<> ) subgoalprove uc 6= ic by contradiction<> contradiction subgoal[] contradiction subgoal[] conjectureresume by specializing i:UID to ic<> specialization subgoalinstantiate j:UID by ic in *hypresume by case j = uc<> case jc = uc[] case jc = uc<> case : (jc = uc)instantiate j:UID by jc in *hyp[] case : (jc = uc)[] specialization subgoal[] ) subgoal[] basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoalresume by )<> ) subgoal[] ) subgoal[] basis subgoal[] case 9 i (sc.region[i] = try)<> case :9 i (sc.region[i] = try)[] case :9 i (sc.region[i] = try)[] case : (sc.status = start)[] conjectureqedset log intermediatestatisticsquitA.3 Su�cient Con�rmation Delayset script SCDthaw TimedFischerset box-checking onset immunity ancestorset name theoremset proof-methods ), normalization%%%%%% Preliminaries% Put information in registry to speed up orderingregister height__[__]:Bounds[F],Tasks[F]!Bounds> (.first, .last, bdmap, 9:Actions[F],Bool!Bool, .basic, +:Time,Time!Time)..register height .bounds > (.basic, enabled:States[F],Actions[F]!Bool)%%%%%%% The proofprove start(s:States[TF]) ) SCD(s) 111



<> ) subgoal[] ) subgoal[] conjectureqedprove SCD(s) ^ inv(s':States[TF]) ^ isStep(s, addTime(at[i]), s') ) SCD(s')<> ) subgoal<> ) subgoal<> ) subgoalresume by case atc[ic] = set[s'c.basic.x.owner]<> case atc[ic] = set[s'c.basic.x.owner]prove (s'c.now + a) < (s'c.now + b)instantiate t by s'c.now, t1 by a, t2 by b in Time[] conjectureinstantiate c by task(set[jc]) in *impliesHyp[] case atc[ic] = set[s'c.basic.x.owner]<> case : (atc[ic] = set[s'c.basic.x.owner])instantiate s by sc.basic, s' by s'c.basic, at by atc, i by ic in AutomatonFischer% Uses Lemma 5.1instantiate j by jc in AutomatonFischerinstantiate j by sc.basic.x. owner in AutomatonFischer% We now know set[jc] and check[sc.basic.x.owner] are enabled in sc and s'c.prove atc[ic] 6= check[sc.basic.x.owner] by contradiction<> contradiction subgoal[] contradiction subgoal[] conjectureprove atc[ic] 6= set[jc] by contradiction<> contradiction subgoal[] contradiction subgoal[] conjectureinstantiate j by jc in *hyp[] case : (atc[ic] = set[s'c.basic.x.owner])[] ) subgoal[] ) subgoal[] ) subgoal[] conjectureqedprove SCD(s) ^ isStep(s, nu(t), s') ) SCD(s')<> ) subgoal[] ) subgoal[] conjectureqedset log SCDstatisticsquitA.4 Strong Mutual Exclusionset script mutexthaw TimedFischerset proof-methods ), normalizationset immunity ancestorset box-checking onset name theorem%%%%%% Preliminaries 112



% Put information in registry to speed up orderingregister height__[__]:Bounds[F],Tasks[F]!Bounds> (.first, .last, bdmap, 9:Actions[F],Bool!Bool, .basic, +:Time,Time!Time)..register height .bounds > (.basic, enabled:States[F],Actions[F]!Bool)%%%%%%% The proofprove start(s:States[TF]) ) StrongMutex(s)<> ) subgoal[] ) subgoal[] conjectureqedproveStrongMutex(s) ^ SCD(s) ^ inv(s:States[TF]) ^ isStep(s, addTime(at[i]), s')) StrongMutex(s')by induction on at:ActionTypes[F]..% CASE 1: at = try<> basis subgoal<> ) subgoal<> ) subgoalresume by case ic1 = ic<> case ic1 = ic[] case ic1 = ic<> case : (ic1 = ic)critical-pairs *caseHyp with *impliesHypinstantiate i by ic1 in *hypresume by case j = ic<> case jc = ic[] case jc = ic<> case : (jc = ic)critical-pairs *caseHyp with *impliesHyp[] case : (jc = ic)[] case : (ic1 = ic)[] ) subgoal[] ) subgoal[] basis subgoal% CASE 2: at = test<> basis subgoal<> ) subgoal<> ) subgoalresume by case ic = ic1<> case ic = ic1resume by case sc.basic.x.free<> case sc.basic.x.free[] case sc.basic.x.free<> case : sc.basic.x.free[] case : sc.basic.x.free[] case ic = ic1<> case : (ic = ic1)instantiate j by ic1 in *impliesHypinstantiate i by ic1 in *impliesHypresume by case j = ic 113



<> case jc = ic[] case jc = ic<> case : (jc = ic)instantiate j by jc in *impliesHyp[] case : (jc = ic)[] case : (ic = ic1)[] ) subgoal[] ) subgoal[] basis subgoal% CASE 3: a = set<> basis subgoal<> ) subgoal<> ) subgoalprove ic1 6= ic by contradiction<> contradiction subgoal[] contradiction subgoal[] conjectureinstantiate j by ic1 in *hypinstantiate i by ic1 in *hyp[] ) subgoal[] ) subgoal[] basis subgoal% CASE 4: a = check<> basis subgoal<> ) subgoal<> ) subgoalinstantiate j by ic in *hypresume by case sc.basic.x.owner = ic ^ : sc.basic.x.free<> case sc.basic.x.owner = ic ^ : sc.basic.x.freeprove ic = ic1 by contradiction<> contradiction subgoalinstantiate j by ic1 in *hypinstantiate i by ic1 in *hyp[] contradiction subgoal[] conjectureprove 8 j (s'c.basic.pc[j] 6= set)resume by case j = ic<> case jc = ic[] case jc = ic<> case : (jc = ic)instantiate j by jc in *impliesHypinstantiate c by task(set[jc]) in *hypresume by contradiction<> contradiction subgoal[] contradiction subgoal[] case : (jc = ic)[] conjecture[] case sc.basic.x.owner = ic ^ : sc.basic.x.free<> case : (sc.basic.x.owner = ic ^ : sc.basic.x.free)prove ic1 6= ic by contradiction<> contradiction subgoal[] contradiction subgoal[] conjectureinstantiate j by ic1 in *hypinstantiate i by ic1 in *hypresume by case j = ic 114



<> case jc = ic[] case jc = ic<> case : (jc = ic)instantiate j by jc in *hyp[] case : (jc = ic)[] case : (sc.basic.x.owner = ic ^ : sc.basic.x.free)[] ) subgoal[] ) subgoal[] basis subgoal% CASE 5: a = crit<> basis subgoal<> ) subgoal<> ) subgoalresume by case ic1 = ic<> case ic1 = icinstantiate i by ic in *hypresume by case j = ic<> case jc = ic[] case jc = ic<> case : (jc = ic)instantiate j by jc in *hyp[] case : (jc = ic)[] case ic1 = ic<> case : (ic1 = ic)instantiate j by ic1 in *hypinstantiate i by ic1 in *hypresume by case j = ic<> case jc = ic[] case jc = ic<> case : (jc = ic)instantiate j by jc in *hyp[] case : (jc = ic)[] case : (ic1 = ic)[] ) subgoal[] ) subgoal[] basis subgoal% CASE 6: a = exit<> basis subgoal<> ) subgoal<> ) subgoalresume by case ic1 = ic<> case ic1 = icinstantiate i by ic in *hypresume by case j = ic<> case jc = ic[] case jc = ic<> case : (jc = ic)instantiate j by jc in *hyp[] case : (jc = ic)[] case ic1 = ic<> case : (ic1 = ic)instantiate j by ic1 in *hypinstantiate i by ic1 in *hypresume by case j = ic<> case jc = ic[] case jc = ic<> case : (jc = ic) 115



instantiate j by jc in *hyp[] case : (jc = ic)[] case : (ic1 = ic)[] ) subgoal[] ) subgoal[] basis subgoal% CASE 7: a = reset<> basis subgoal<> ) subgoalresume by case i = ic<> case ic1 = ic[] case ic1 = ic<> case : (ic1 = ic)instantiate i by ic in *hypinstantiate j by ic1 in *hypinstantiate i by ic1 in *hyp[] case : (ic1 = ic)[] ) subgoal[] basis subgoal% CASE 8: a = rem<> basis subgoal<> ) subgoal<> ) subgoalresume by case ic1 = ic<> case ic1 = ic[] case ic1 = ic<> case : (ic1 = ic)instantiate j by ic1 in *hypinstantiate i by ic1 in *hypresume by case j = ic<> case jc = ic[] case jc = ic<> case : (jc = ic)instantiate j by jc in *hyp[] case : (jc = ic)[] case : (ic1 = ic)[] ) subgoal[] ) subgoal[] basis subgoal[] conjectureqedprove StrongMutex(s) ^ isStep(s, nu(t), s') ) StrongMutex(s')<> ) subgoal[] ) subgoal[] conjectureqedprove StrongMutex(s) ) Mutex(s)<> ) subgoal<> ) subgoal<> ) subgoalinstantiate i by ic in *hypresume by contradiction<> contradiction subgoalinstantiate i by jc in *hyp[] contradiction subgoal 116



[] ) subgoal[] ) subgoal[] ) subgoal[] conjectureqedset log mutexstatisticsquitA.5 The Simulation from the Milestones to the Speci�cationset script i2mthaw I2Mset name theoremset immunity ancestorset box-checking on%%%%%% Preliminaries% Put information in registry to speed up orderingregister height__[__]:Bounds[I],Tasks[I]!Bounds> (.first, .last, bdmap:Tasks[I]!Bounds, 9:Actions[I],Bool!Bool,.basic:States[TI]!States[I], +:Time,Time!Time)..register height__[__]:Bounds[M],Tasks[M]!Bounds> (.first, .last, bdmap:Tasks[M]!Bounds, 9:Actions[M],Bool!Bool,.basic:States[TM]!States[M], +:Time,Time!Time)..register height.bounds:States[TI]!Bounds[I]> (.basic:States[TI]!States[I], enabled:States[I],Actions[I]!Bool)..register height.bounds:States[TM]!Bounds[M]> (.basic:States[TM]!States[M], enabled:States[M],Actions[M]!Bool)..register height __[__]:Regions,UID!Region > _% Introduce constants that will be used to replace variablesdeclare operatorsuc: ! States[TM] % Used by LP for u in hypothesessc, s'c: ! States[TI] % Ditto for s and s'u'c: ! States[TM] % To abbreviate STEP(uc, ...)ac, a'c: ! Actions[M] % To abbreviate actions..% Put information in registry to ensure intended orientation of equationsregister top uc, u'cregister height u'c > ucregister height s'c > sc% Some preliminary lemmas. 117



prove effect(s, a, STEP(s, a))rewrite conjecture with reversed I2M[] conjectureqedprove enabled(s:States[M], task(crit[i])) , 9 i:UID enabled(s:States[M], crit[i])resume by case 9 i:UID enabled(s:States[M], crit[i])<> case 9 i:UID enabled(sc, crit[i])declare operator ic: ! UIDfix i:UID as ic in *caseHypresume by specializing a:Actions[M] to crit[ic]<> specialization subgoal[] specialization subgoal[] case 9 i:UID enabled(sc, crit[i])<> case :9 i:UID enabled(sc, crit[i])resume by case a:Actions[M] = crit[i]<> case ac = crit[ic][] case ac = crit[ic]<> case : (ac = crit[ic])resume by contradiction<> contradiction subgoaldeclare operator i'c: ! UIDfix i:UID as i'c in *contraHyp[] contradiction subgoal[] case : (ac = crit[ic])[] case :9 i:UID enabled(sc, crit[i])[] conjectureqed%%%% The proof of the simulationprove start(s:States[TI]) ) 9 u:States[TM] (g(s,u) ^ start(u:States[TM])) by )<> ) subgoaldeclare operators nullbounds: ! Bounds[M], startregs: ! Regionsassert 8 i:UID (startregs[i] = rem)assert 8 c:Tasks[M] (nullbounds[c] = unbounded)resume by specializing u to [[startregs], 0, nullbounds]<> specialization subgoalresume by induction on c:Tasks[M]<> basis subgoalresume by induction on a7<> basis subgoalresume by induction on a5<> basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal[] basis subgoal[] basis subgoal[] specialization subgoal[] ) subgoal[] conjectureqedprove g(s,u) ) s:States[TI].now = u.now by )118



<> ) subgoal[] ) subgoal[] conjectureqeddeclare variable alpha:StepSeq[TM]proveg(s,u) ^ isStep(s:States[TI], a, s') ^ inv(s:States[TI]) ^ inv(u)) 9 alpha (execFrag(alpha) ^ first(alpha) = u ^ g(s',last(alpha))^ trace(alpha) = trace(a:Actions[TI]) )by induction a:Actions[TI]..<> basis subgoal% CASE: a = nu(s'c.now)resume by )<> ) subgoalassert u'c = STEP(uc, nu(s'c.now))resume by specializing alpha to ({uc}) { nu(s'c.now), u'c }<> specialization subgoalresume by induction on c:Tasks[M]<> basis subgoalresume by induction on a7<> basis subgoalresume by induction on a5<> basis subgoal% CASE 1: c = task(try[u1])instantiate c:Tasks[M] by task(try[u1]) in *impliesHyp[] basis subgoal<> basis subgoal% CASE 2: c = task(crit[u1])resume by casesenabled(sc.basic, seize),enabled(sc.basic, stabilize),enabled(sc.basic, task(crit[u1])),: enabled(uc.basic, task(crit[u1]))..<> case justificationresume by contradiction<> contradiction subgoalinstantiate stat by sc.basic.status in AutomatonIntermediatedeclare operator ic: ! UIDfix i:UID as ic in *contraHyp[] contradiction subgoal[] case justification<> case enabled(sc.basic, seize)prove s'c.now � (sc.bounds[task(seize)].last + a + a + c)instantiate z by sc.bounds[c].last+a+a+c in Transitivity[] conjecture[] case enabled(sc.basic, seize)<> case enabled(sc.basic, stabilize)prove s'c.now � (sc.bounds[task(stabilize)].last + a + c)instantiate z by sc.bounds[c].last+a+c in Transitivity[] conjecture[] case enabled(sc.basic, stabilize)<> case enabled(sc.basic, task(crit[u1c]))[] case enabled(sc.basic, task(crit[u1c]))<> case : enabled(uc.basic, task(crit[u1c]))instantiate c:Tasks[M] by task(crit[u1c]) in *impliesHyp119



[] case : enabled(uc.basic, task(crit[u1c]))[] basis subgoal<> basis subgoal% CASE 3: c = task(exit[u1])instantiate c:Tasks[M] by task(exit[u1]) in *impliesHyp[] basis subgoal<> basis subgoal% CASE 4: c = task(rem[u1])resume by case enabled(uc.basic, task(rem[u1]))<> case enabled(uc.basic, task(rem[u1c]))instantiate a:Actions[I] by rem[u1c], i by u1c in *impliesHyp[] case enabled(uc.basic, task(rem[u1c]))<> case : enabled(uc.basic, task(rem[u1c]))instantiate c:Tasks[M] by task(rem[u1c]) in *impliesHyp[] case : enabled(uc.basic, task(rem[u1c]))[] basis subgoal[] basis subgoal[] basis subgoal[] specialization subgoal[] ) subgoal[] basis subgoal<> basis subgoalresume by induction on a3<> basis subgoalresume by induction on a1<> basis subgoal% CASE 1: a = addTime(try[u1])resume by )<> ) subgoalassert (ac = try[u1c]); u'c = STEP(uc, addTime(ac))resume by specializing alpha to ({uc}) { addTime(ac), u'c }<> specialization subgoalinstantiate c by task(ac) in *impliesHyp / c-op(.first)prove u'c.basic.region[i] = s'c.basic.region[i]resume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in *impliesHyp, theorem[] case : (ic = u1c)[] conjecture% The rest are checking the bounds in the post-states.% We do this in two parts, starting with the bound for the rem actionprove(s'c.basic.region[i] = exit) s'c.bounds[task(rem[i])].last � u'c.bounds[task(rem[i])].last)..resume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)resume by )<> ) subgoalinstantiate c:Tasks[I] by task(rem[ic]) in *impliesHypinstantiate c:Tasks[M] by task(rem[ic]) in theoreminstantiate j by ic in *impliesHyp120



instantiate i by ic in *impliesHyp / c-op(rem:!ActionTypes[M])[] ) subgoal[] case : (ic = u1c)[] conjectureresume by case : enabled(u'c.basic, task(crit[i]))<> case : enabled(u'c.basic, task(crit[ic]))instantiate c:Tasks[M] by task(crit[ic]) in theoremresume by case 8 j:UID : (s'c.basic.region[j] = crit)<> case 8 j:UID : (s'c.basic.region[j] = crit)[] case 8 j:UID : (s'c.basic.region[j] = crit)<> case :8 j:UID : (s'c.basic.region[j] = crit)[] case :8 j:UID : (s'c.basic.region[j] = crit)[] case : enabled(u'c.basic, task(crit[ic]))<> case : (: enabled(u'c.basic, task(crit[ic])))resume by case enabled(uc.basic, task(crit[ic]))<> case enabled(uc.basic, task(crit[ic]))resume by ^<> ^ subgoalresume by )<> ) subgoalresume by case enabled(sc.basic, seize)<> case enabled(sc.basic, seize)[] case enabled(sc.basic, seize)<> case : enabled(sc.basic, seize)instantiate c by task(seize) in *impliesHypinstantiate c:Tasks[M] by task(crit[i]) in theoremdeclare operator i'c: ! UIDfix i:UID as i'c in *caseHyp[] case : enabled(sc.basic, seize)[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoal[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalprove enabled(sc.basic, task(crit[ic]))resume by case 9 i (sc.basic.region[i] = try)<> case 9 i:UID (sc.basic.region[i] = try)declare operator i'c: ! UIDfix i:UID as i'c in *impliesHyp[] case 9 i:UID (sc.basic.region[i] = try)<> case :9 i:UID (sc.basic.region[i] = try)[] case :9 i:UID (sc.basic.region[i] = try)[] conjecture[] ) subgoal[] ^ subgoal[] case enabled(uc.basic, task(crit[ic]))<> case : enabled(uc.basic, task(crit[ic]))% seize, stabilize, crit[i] are not enabled in sc% (because crit[i] is not enabled in uc, and g(sc,uc) )resume by case :9 i:UID (sc.basic.region[i] = try)<> case :9 i:UID (sc.basic.region[i] = try)resume by )<> ) subgoal 121



[] ) subgoal[] case :9 i:UID (sc.basic.region[i] = try)<> case : (:9 i:UID (sc.basic.region[i] = try))resume by ^<> ^ subgoalresume by )<> ) subgoalprove : enabled(sc.basic, seize) by contradiction<> contradiction subgoal[] contradiction subgoal[] conjecture[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoal[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoaldeclare operator i'c: ! UIDfix i:UID as i'c in *caseHyp / c-op(sc)instantiate i by i'c in *caseHyp[] ) subgoal[] ^ subgoal[] case : (:9 i:UID (sc.basic.region[i] = try))[] case : enabled(uc.basic, task(crit[ic]))[] case : (: enabled(u'c.basic, task(crit[ic])))[] specialization subgoal[] ) subgoal[] basis subgoal<> basis subgoal% CASE 2: a = addTime(crit[u1])resume by )<> ) subgoalassert (ac = crit[u1c]); u'c = STEP(uc, addTime(ac))resume by specializing alpha to ({uc}) { addTime(ac), u'c }<> specialization subgoalinstantiate c:Tasks[M] by task(crit[u1c]) in *impliesHyp / c-op(.first)prove u'c.basic.region[i] = s'c.basic.region[i]resume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in *impliesHyp, theorem[] case : (ic = u1c)[] conjectureprove(s'c.basic.region[i] = exit) s'c.bounds[task(rem[i])].last � u'c.bounds[task(rem[i])].last)..resume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)resume by )<> ) subgoalinstantiate c:Tasks[I] by task(rem[ic]) in *impliesHyp122



instantiate c:Tasks[M] by task(rem[ic]) in theoreminstantiate j by ic in *impliesHypinstantiate i by ic in *impliesHyp / c-op(rem:!ActionTypes[M])[] ) subgoal[] case : (ic = u1c)[] conjectureresume by )<> ) subgoal[] ) subgoal[] specialization subgoal[] ) subgoal[] basis subgoal<> basis subgoal% CASE 3: a = addTime(exit[u1])resume by )<> ) subgoalassert (ac = exit[u1c]); u'c = STEP(uc, addTime(ac))resume by specializing alpha to ({uc}) { addTime(ac), u'c }<> specialization subgoalinstantiate c by task(ac) in *impliesHyp / c-op(.first)prove u'c.basic.region[i] = s'c.basic.region[i]resume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in *impliesHyp, theorem[] case : (ic = u1c)[] conjectureprove(s'c.basic.region[i] = exit) s'c.bounds[task(rem[i])].last � u'c.bounds[task(rem[i])].last)..resume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)resume by )<> ) subgoalinstantiate c:Tasks[I] by task(rem[ic]) in *impliesHypinstantiate c:Tasks[M] by task(rem[ic]) in theoreminstantiate j by ic in *impliesHypinstantiate i by ic in *impliesHyp / c-op(rem:!ActionTypes[M])[] ) subgoal[] case : (ic = u1c)[] conjectureresume by case : enabled(u'c.basic, task(crit[i]))<> case : enabled(u'c.basic, task(crit[ic]))instantiate c:Tasks[M] by task(crit[ic]) in theoremresume by case 8 j:UID : (s'c.basic.region[j] = crit)<> case 8 j:UID : (s'c.basic.region[j] = crit)[] case 8 j:UID : (s'c.basic.region[j] = crit)<> case :8 j:UID : (s'c.basic.region[j] = crit)[] case :8 j:UID : (s'c.basic.region[j] = crit)[] case : enabled(u'c.basic, task(crit[ic]))<> case : (: enabled(u'c.basic, task(crit[ic])))prove : enabled(uc.basic, task(crit[i])) by contradiction<> contradiction subgoalinstantiate j by u1c in *contraHyp[] contradiction subgoal 123



[] conjectureinstantiate c:Tasks[M] by task(crit[ic]) in theorem% We now know u'c.bounds[task(crit[ic])] = [s'c.now, (4*a) + (2*c) + s'c.now]prove inv(s'c)instantiates by sc, s' by s'c, a:Actions[TI] by addTime(exit[u1c]) in Invariants..[] conjectureresume by ^<> ^ subgoalprove :8 j:UID : (sc.basic.region[j] = crit) by contradiction<> contradiction subgoal[] contradiction subgoal[] conjectureresume by )<> ) subgoal[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoal[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate c:Tasks[I] by task(crit[ic]) in *impliesHypinstantiate c:Tasks[I] by task(crit[ic]) in theorem / c-op(.last)instantiate z by a+a+a+a+c+c+s'c.now in Transitivity[] ) subgoal[] ^ subgoal[] case : (: enabled(u'c.basic, task(crit[ic])))[] specialization subgoal[] ) subgoal[] basis subgoal% CASE 4: a = addTime(rem[u1])<> basis subgoalresume by )<> ) subgoalassert (ac = rem[u1c]); u'c = STEP(uc, addTime(ac))resume by specializing alpha to ({uc}) { addTime(ac), u'c }<> specialization subgoalinstantiate c by task(ac) in *impliesHyp / c-op(.first)prove u'c.basic.region[i] = s'c.basic.region[i]resume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in *impliesHyp, theorem[] case : (ic = u1c)[] conjectureprove(s'c.basic.region[i] = exit) s'c.bounds[task(rem[i])].last � u'c.bounds[task(rem[i])].last)..resume by case i = u1c<> case ic = u1c[] case ic = u1c 124



<> case : (ic = u1c)resume by )<> ) subgoalinstantiate c:Tasks[I] by task(rem[ic]) in *impliesHypinstantiate c:Tasks[M] by task(rem[ic]) in theoreminstantiate j by ic in *impliesHypinstantiate i by ic in *impliesHyp / c-op(rem:!ActionTypes[M])[] ) subgoal[] case : (ic = u1c)[] conjectureresume by case : enabled(u'c.basic, task(crit[i]))<> case : enabled(u'c.basic, task(crit[ic]))instantiate c:Tasks[M] by task(crit[ic]) in theoremresume by case 8 j:UID : (s'c.basic.region[j] = crit)<> case 8 j:UID : (s'c.basic.region[j] = crit)[] case 8 j:UID : (s'c.basic.region[j] = crit)<> case :8 j:UID : (s'c.basic.region[j] = crit)[] case :8 j:UID : (s'c.basic.region[j] = crit)[] case : enabled(u'c.basic, task(crit[ic]))<> case : (: enabled(u'c.basic, task(crit[ic])))prove enabled(uc.basic, task(crit[ic]))declare operator i'c: ! UIDfix i:UID as i'c in *caseHypresume by specializing i:UID to i'c<> specialization subgoalprove i'c 6= u1c by contradiction<> contradiction subgoal[] contradiction subgoal[] conjectureinstantiate j by i'c in *impliesHypresume by contradiction<> contradiction subgoalprove jc 6= u1c by contradiction<> contradiction subgoal[] contradiction subgoal[] conjectureinstantiate j by jc in *impliesHyp[] contradiction subgoal[] specialization subgoal[] conjectureinstantiate c:Tasks[M] by task(crit[ic]) in theoremresume by ^<> ^ subgoalresume by )<> ) subgoalinstantiate c by task(seize) in *impliesHypprove enabled(sc.basic, seize)declare operator i'c: ! UIDfix i:UID as i'c in (*impliesHyp / c-op(s'c)) : c-op(sc)resume by specializing i:UID to i'c<> specialization subgoalprove i'c 6= u1c by contradiction<> contradiction subgoal[] contradiction subgoal[] conjectureinstantiate j by i'c in *impliesHypresume by contradiction<> contradiction subgoalprove jc 6= u1c by contradiction125



<> contradiction subgoal[] contradiction subgoal[] conjectureinstantiate j by jc in*impliesHyp[] contradiction subgoal[] specialization subgoal[] conjecture[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoal[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoaldeclare operator i'c: ! UIDfix i:UID as i'c in *impliesHyp / c-op(stable:!Status)[] ) subgoal[] ^ subgoal[] case : (: enabled(u'c.basic, task(crit[ic])))[] specialization subgoal[] ) subgoal[] basis subgoal[] basis subgoal<> basis subgoal% CASE 5: a = addTime(seize)resume by )<> ) subgoalresume by specializing alpha to {uc}<> specialization subgoalprove(sc.basic.region[i] = exit) s'c.bounds[task(rem[i])].last � uc.bounds[task(rem[i])].last)..resume by )<> ) subgoalinstantiate c:Tasks[I] by task(rem[ic]) in *impliesHypinstantiate c:Tasks[M] by task(rem[ic]) in theoreminstantiate i by ic in *impliesHyp / c-op(rem:!ActionTypes[M])[] ) subgoal[] conjectureinstantiate c by task(stabilize) in *impliesHypprove (a + a + c + s'c.now) � (sc.bounds[task(seize)].last + a + a + c)resume by case a+a+c = infinity<> case a + a + c = infinity[] case a + a + c = infinity<> case : (a + a + c = infinity)instantiate t by a+a+c in Time[] case : (a + a + c = infinity)[] conjecture[] specialization subgoal[] ) subgoal[] basis subgoal<> basis subgoal% CASE 6: a = addTime(stabilize)resume by )<> ) subgoal 126



resume by specializing alpha to {uc}<> specialization subgoalprove(sc.basic.region[i] = exit) s'c.bounds[task(rem[i])].last � uc.bounds[task(rem[i])].last)..resume by )<> ) subgoalinstantiate c:Tasks[I] by task(rem[ic]) in *impliesHypinstantiate c:Tasks[M] by task(rem[ic]) in theoreminstantiate i by ic in *impliesHyp / c-op(rem:!ActionTypes[M])[] ) subgoal[] conjectureinstantiate c:Tasks[I] by task(crit[i]) in *impliesHypprove (a+c+s'c.now) � (sc.bounds[task(stabilize)].last + a + c)resume by case a+c = infinity<> case a + c = infinity[] case a + c = infinity<> case : (a + c = infinity)instantiate t by a+c in Time[] case : (a + c = infinity)[] conjecture[] specialization subgoal[] ) subgoal[] basis subgoal[] basis subgoal[] conjectureqedset log i2mstatisticsquitA.6 The Simulation from Fischer's Algorithm to the Mile-stonesset script f2ithaw F2Iset name theoremset immunity ancestorset box-checking on%%%%%% Preliminaries% Put information in registry to speed up orderingregister height__[__]:Bounds[F],Tasks[F]!Bounds> (.first, .last, bdmap:Tasks[F]!Bounds, 9:Actions[F],Bool!Bool,.basic:States[TF]!States[F], +:Time,Time!Time)..register height__[__]:Bounds[I],Tasks[I]!Bounds> (.first, .last, bdmap:Tasks[I]!Bounds, 9:Actions[I],Bool!Bool,.basic:States[TI]!States[I], +:Time,Time!Time)..register height 127



.bounds:States[TF]!Bounds[F]> (.basic:States[TF]!States[F], enabled:States[F],Actions[F]!Bool)..register height.bounds:States[TI]!Bounds[I]> (.basic:States[TI]!States[I], enabled:States[I],Actions[I]!Bool)..register height __[__]:Regions,UID!Region > _% Introduce constants that will be used to replace variablesdeclare operatorsuc: ! States[TI] % Used by LP for u in hypothesessc, s'c: ! States[TF] % Ditto for s and s'u'c, u''c: ! States[TI] % To abbreviate STEP(uc, ...), STEP(u'c, ...)ac, a'c: ! Actions[I] % To abbreviate actions..% Put information in registry to ensure intended orientation of equationsregister top uc, u'c, u''cregister height u''c > u'c > ucregister height s'c > sc% Define some abbreviations for useful sets of factsdefine-class $firstHyp *impliesHyp / contains-operator(.first)define-class $wdef (F2I / contains-operator(w)) : contains-operator(f)% Some preliminary lemmasprove effect(s, a, STEP(s, a))rewrite conjecture with reversed F2I[] conjectureqedproveinv(s:States[TF]) ^ isStep(s:States[TF], addTime(at[i]), s')) 8 j (j:UID 6= i ) w(s',j) = w(s,j))..resume by )<> ) subgoalresume by )<> ) subgoalinstantiates by sc, s' by s'c, at by atc, i by ic, j by jcin TimedFischer / c-v(at':ActionTypes[F])..instantiates by sc.basic, s' by s'c.basic, at by atc, i by ic, j by jcin AutomatonFischer / c-v(j:UID)..instantiate s by sc, i by jc in $wdefinstantiate s by s'c, i by jc in $wdefresume by casessc.basic.pc[jc] = test,sc.basic.pc[jc] = set,sc.basic.pc[jc] = check,: (sc.basic.pc[jc] 2 { test, set, check })128



..<> case justification[] case justification<> case sc.basic.pc[jc] = test[] case sc.basic.pc[jc] = test<> case sc.basic.pc[jc] = set[] case sc.basic.pc[jc] = set<> case sc.basic.pc[jc] = check[] case sc.basic.pc[jc] = check<> case : (sc.basic.pc[jc] 2 {test, set, check})[] case : (sc.basic.pc[jc] 2 {test, set, check})[] ) subgoal[] ) subgoal[] conjectureqed% Now the proof obligations to check the forward simulationprove start(s:States[TF]) ) 9 u (f(s,u) ^ start(u)) by )<> ) subgoaldeclare operators nullbounds: ! Bounds[I], startregs: ! Regionsassert 8 i:UID (startregs[i] = rem)assert 8 c:Tasks[I] (nullbounds[c] = unbounded)resume by specializing u to [[startregs, start], 0, nullbounds]<> specialization subgoalresume by induction on c:Tasks[I]<> basis subgoalresume by induction on a3<> basis subgoalresume by induction on a1<> basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal<> basis subgoal[] basis subgoal[] basis subgoal[] specialization subgoal[] ) subgoal[] conjectureqedprove f(s,u) ) s:States[TF].now = u.now by )<> ) subgoal[] ) subgoal[] conjectureqedset proof-method explicit-commandsdeclare variable alpha:StepSeq[TI]provef(s,u) ^ isStep(s:States[TF], a, s') ^ inv(s:States[TF]) ^ inv(u) ^ StrongMutex(s)129



) 9 alpha (execFrag(alpha)^ first(alpha) = u ^ f(s',last(alpha))^ trace(alpha) = trace(a:Actions[TF]) )by induction on a:Actions[TF]..<> basis subgoal% CASE: nu(s'c.now)resume by )<> ) subgoalset proof-methods normalizationassert u'c = STEP(uc, nu(s'c.now))resume by specializing alpha to ({uc}) { nu(s'c.now), u'c }<> specialization subgoalresume by ^<> ^ subgoal% Trying to prove 8 c:Tasks[I] (s'c.now � uc.bounds[c].last)resume by induction on c:Tasks[I]<> basis subgoalprove s'c.now � (sc.bounds[c].last + t)instantiate t by sc.bounds[c].last, t1:Time by t in Time[] conjectureresume by induction on a3<> basis subgoalresume by induction on a1<> basis subgoal% CASE 1: c = task(try[u1])instantiate c:Tasks[I] by task(try[u1]) in *impliesHyp[] basis subgoal<> basis subgoal% CASE 2: c = task(crit[u1])resume by case : enabled(uc.basic, task(crit[u1]))<> case : enabled(uc.basic, task(crit[u1c]))instantiate c:Tasks[I] by task(crit[u1c]) in *impliesHyp[] case : enabled(uc.basic, task(crit[u1c]))<> case : (: enabled(uc.basic, task(crit[u1c])))declare operator dummyi:!UIDfix i as dummyi in *caseHypdeclare operator critTask:!Tasks[I]assert task(crit[u1c]) = critTaskprove critTask = task(crit[sc.basic.x.owner])instantiatea:Actions[I] by crit[u1c], a':Actions[I] by crit[sc.basic.x.owner]in AutomatonIntermediate..[] conjectureresume by case sc.basic.pc[sc.basic.x.owner] = lvtry<> case sc.basic.pc[sc.basic.x.owner] = lvtryinstantiate i by sc.basic.x.owner in *impliesHyp / c-op(lvtry)[] case sc.basic.pc[sc.basic.x.owner] = lvtry<> case : (sc.basic.pc[sc.basic.x.owner] = lvtry)[] case : (sc.basic.pc[sc.basic.x.owner] = lvtry)[] case : (: enabled(uc.basic, task(crit[u1c])))130



[] basis subgoal<> basis subgoal% CASE 3: c = task(exit[u1])instantiate c:Tasks[I] by task(exit[u1]) in *impliesHyp[] basis subgoal<> basis subgoal% CASE 4: c = task(rem[u1])resume by case : enabled(uc.basic, task(rem[u1]))<> case : enabled(uc.basic, task(rem[u1c]))instantiate c:Tasks[I] by task(rem[u1c]) in *impliesHyp[] case : enabled(uc.basic, task(rem[u1c]))<> case : (: enabled(uc.basic, task(rem[u1c])))instantiate i by u1c in *impliesHypresume by case sc.basic.pc[u1c] = reset<> case sc.basic.pc[u1c] = reset[] case sc.basic.pc[u1c] = reset<> case : (sc.basic.pc[u1c] = reset)[] case : (sc.basic.pc[u1c] = reset)[] case : (: enabled(uc.basic, task(rem[u1c])))[] basis subgoal[] basis subgoal<> basis subgoal% CASE 5: c = task(seize)resume by case : enabled(uc.basic, task(seize))<> case : enabled(uc.basic, task(seize))instantiate c by task(seize) in *impliesHyp[] case : enabled(uc.basic, task(seize))<> case : (: enabled(uc.basic, task(seize)))resume by case sc.basic.x.free<> case sc.basic.x.freedeclare operator ic:!UIDfix i as ic in *hyp / c-op(seize)prove w(sc, ic) � s'c.nowinstantiate i by ic, s by sc in $wdefresume by casessc.basic.pc[ic] = test,sc.basic.pc[ic] = set,sc.basic.pc[ic] = check,: (sc.basic.pc[ic] 2 { test, set, check })..<> case justification[] case justification<> case sc.basic.pc[ic] = test[] case sc.basic.pc[ic] = test<> case sc.basic.pc[ic] = set[] case sc.basic.pc[ic] = set<> case sc.basic.pc[ic] = check[] case sc.basic.pc[ic] = check<> case : (sc.basic.pc[ic] 2 {test, set, check})[] case : (sc.basic.pc[ic] 2 {test, set, check})[] conjecture[] case sc.basic.x.free<> case : sc.basic.x.free% Now we know 9 i:UID (sc.basic.pc[i] = reset)declare operator ic:!UID 131



fix i as ic in *caseHyp / c-op(reset:!PC)instantiate c by task(reset[ic]) in *impliesHyp / c-op(.last)instantiate i by ic in *impliesHyp / c-op(reset:!PC)[] case : sc.basic.x.free[] case : (: enabled(uc.basic, task(seize)))[] basis subgoal<> basis subgoal% CASE 6: c = task(stabilize)instantiate c by task(stabilize) in *impliesHypresume by case : enabled(uc.basic, task(stabilize))<> case : enabled(uc.basic, task(stabilize))[] case : enabled(uc.basic, task(stabilize))<> case : (: enabled(uc.basic, task(stabilize)))declare operator ic:!UIDfix i as ic in *caseHypinstantiate i by ic in *impliesHyp / c-op(set:!PC)[] case : (: enabled(uc.basic, task(stabilize)))[] basis subgoal[] basis subgoal[] ^ subgoal<> ^ subgoalresume by ^<> ^ subgoal[] ^ subgoal<> ^ subgoalprove w(s'c, i) = w(sc, i)declare operator ic:!UIDresume by generalizing i:UID from ic<> generalization subgoalinstantiate s by sc, i by ic in $wdefinstantiate s by s'c, i by ic in $wdefresume by casessc.basic.pc[ic] = test,sc.basic.pc[ic] = set,sc.basic.pc[ic] = check,: (sc.basic.pc[ic] 2 { test, set, check })..<> case justification[] case justification<> case sc.basic.pc[ic] = test[] case sc.basic.pc[ic] = test<> case sc.basic.pc[ic] = set[] case sc.basic.pc[ic] = set<> case sc.basic.pc[ic] = check[] case sc.basic.pc[ic] = check<> case : (sc.basic.pc[ic] 2 {test, set, check})[] case : (sc.basic.pc[ic] 2 {test, set, check})[] generalization subgoal[] conjecture[] ^ subgoal[] ^ subgoal[] specialization subgoal[] ) subgoal[] basis subgoal<> basis subgoalresume by induction on a7<> basis subgoalresume by induction on a5 132



<> basis subgoal% CASE 1: try[u1c]resume by )<> ) subgoalset proof-methods normalizationassert (ac = try[u1c]); u'c = STEP(uc, addTime(ac))resume by specializing alpha to ({uc}) { addTime(ac), u'c }<> specialization subgoalinstantiate c by task(ac) in $firstHypprove(s'c.basic.pc[i] = crit , sc.basic.pc[i] = crit)^ (s'c.basic.pc[i] = reset , sc.basic.pc[i] = reset)^ (s'c.basic.pc[i] = set , sc.basic.pc[i] = set)..resume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in *impliesHyp / c-op(u1c)[] case : (ic = u1c)[] conjectureprove 9 i:UID (w(s'c, i) � u'c.bounds[task(seize)].last)instantiate c by task(seize) in theoremresume by case : enabled(u'c.basic, seize)<> case : enabled(u'c.basic, seize)[] case : enabled(u'c.basic, seize)<> case : (: enabled(u'c.basic, seize))resume by case enabled(uc.basic, seize)<> case enabled(uc.basic, seize)declare operator ic:!UIDfix i as ic in *hyp / c-op(w)resume by specializing i:UID to ic<> specialization subgoalinstantiates by sc, s' by s'c, at: ActionTypes[F] by try, i by u1c, j by icin theorem / c-op(w)..resume by case ic = u1c<> case ic = u1cinstantiate s by sc, i by u1c in $wdef[] case ic = u1c<> case : (ic = u1c)[] case : (ic = u1c)[] specialization subgoal[] case enabled(uc.basic, seize)<> case : enabled(uc.basic, seize)resume by specializing i:UID to u1c<> specialization subgoalinstantiate s by s'c, i by u1c in $wdef[] specialization subgoal[] case : enabled(uc.basic, seize)[] case : (: enabled(u'c.basic, seize))[] conjectureresume by case i = u1c<> case ic = u1c 133



[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in (*impliesHyp, theorem) / c-op(u1c)resume by ^<> ^ subgoalinstantiate c:Tasks[I] by task(crit[ic]) in theorem / c-op(u'c)resume by case : enabled(u'c.basic, task(crit[ic]))<> case : enabled(u'c.basic, task(crit[ic]))[] case : enabled(u'c.basic, task(crit[ic]))<> case : (: enabled(u'c.basic, task(crit[ic])))resume by )<> ) subgoaldeclare operator dummyi:!UIDfix i as dummyi in *caseHyp[] ) subgoal[] case : (: enabled(u'c.basic, task(crit[ic])))[] ^ subgoal<> ^ subgoalinstantiate c:Tasks[I] by task(rem[ic]) in theorem / c-op(u'c)resume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalresume by case : enabled(u'c.basic, task(crit[ic]))<> case : enabled(u'c.basic, task(crit[ic]))[] case : enabled(u'c.basic, task(crit[ic]))<> case : (: enabled(u'c.basic, task(crit[ic])))resume by )<> ) subgoaldeclare operator dummyi: ! UIDfix i as dummyi in *caseHypinstantiate i by ic in *impliesHyp[] ) subgoal[] case : (: enabled(u'c.basic, task(crit[ic])))[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalinstantiate c by task(seize) in theorem / c-op(u'c)resume by case : enabled(u'c.basic, task(seize))<> case : enabled(u'c.basic, task(seize))[] case : enabled(u'c.basic, task(seize))<> case : (: enabled(u'c.basic, task(seize)))resume by )<> ) subgoalinstantiate c by task(reset[ic]) in *impliesHypinstantiate i by ic in *impliesHypresume by case enabled(uc.basic, task(seize))<> case enabled(uc.basic, task(seize))[] case enabled(uc.basic, task(seize))<> case : enabled(uc.basic, task(seize))instantiate t by a+a+c in Timeresume by case a+a+c = infinity134



<> case a + a + c = infinity[] case a + a + c = infinity<> case : (a + a + c = infinity)prove sc.bounds[task(reset[ic])].last � (sc.now + c)instantiate c by task(reset[ic]) in *hypprove (sc.now +a) � (sc.now + c)instantiate t by sc.now in Time[] conjecture[] conjectureinstantiate t by a in Time[] case : (a + a + c = infinity)[] case : enabled(uc.basic, task(seize))[] ) subgoal[] case : (: enabled(u'c.basic, task(seize)))[] ^ subgoal<> ^ subgoalinstantiate c by task(stabilize) in theorem / c-op(u'c)resume by cases : enabled(u'c.basic, task(stabilize))<> case : enabled(u'c.basic, task(stabilize))[] case : enabled(u'c.basic, task(stabilize))<> case : (: enabled(u'c.basic, task(stabilize)))resume by )<> ) subgoalinstantiate c by task(set[ic]) in *impliesHyp / c-op(s'c)instantiate i by ic in *impliesHyp[] ) subgoal[] case : (: enabled(u'c.basic, task(stabilize)))[] ^ subgoal[] case : (ic = u1c)[] specialization subgoal[] ) subgoal[] basis subgoal<> basis subgoal% CASE 2: test[u1c]resume by )<> ) subgoalset proof-methods normalizationresume by specializing alpha to {uc}<> specialization subgoalresume by case sc.basic.x.free<> case sc.basic.x.freeprove 9 i:UID (w(s'c, i) � uc.bounds[task(seize)].last)declare operator ic:!UIDfix i as ic in *hyp / c-op(w)resume by specializing i:UID to ic<> specialization subgoalresume by case ic = u1c<> case ic = u1cinstantiate s by s'c, i by u1c in $wdefinstantiate s by sc, i by u1c in $wdefinstantiatet by a, t1 by sc.now, t2 by sc.bounds[task(test[u1c])].last in Time..[] case ic = u1c<> case : (ic = u1c)instantiates by sc, s' by s'c, at by test, i by u1c, j by ic in theorem / c-op(w).. 135



[] case : (ic = u1c)[] specialization subgoal[] conjectureresume by case i = u1c<> case ic = u1cinstantiate c by task(stabilize) in *impliesHyp[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in *impliesHyp / c-op(u1c)resume by ^<> ^ subgoalresume by )<> ) subgoalinstantiate c:Tasks[F] by task(rem[ic]) in *impliesHyp / c-op(s'c)instantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate c by task(set[ic]) in *impliesHyp / c-op(s'c)instantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal[] case : (ic = u1c)[] case sc.basic.x.free<> case : sc.basic.x.freeprove s'c.basic.pc[i] = sc.basic.pc[i]resume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in *impliesHyp / c-op(u1c)[] case : (ic = u1c)[] conjectureresume by ^<> ^ subgoalresume by )<> ) subgoal[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal 136



<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalresume by case enabled(uc.basic, seize)<> case enabled(uc.basic, seize)declare operator ic:! UIDfix i as ic in *caseHyp / c-op(reset:!PC)resume by specializing i:UID to u1c<> specialization subgoalinstantiate i by ic in *impliesHyp / c-op(seize)instantiate s by s'c, i by u1c in $wdefinstantiate c by task(reset[ic]) in *impliesHypprove (sc.now + a+a) � (sc.bounds[task(reset[ic])].last +a+a)instantiate t by a in Time[] conjecture[] specialization subgoal[] case enabled(uc.basic, seize)<> case : enabled(uc.basic, seize)instantiate c by task(seize) in *hyp[] case : enabled(uc.basic, seize)[] ^ subgoal[] case : sc.basic.x.free[] specialization subgoal[] ) subgoal[] basis subgoal<> basis subgoal% CASE 3: set[u1]resume by )<> ) subgoalinstantiate j by s'c.basic.x.owner in *impliesHyp% StrongMutex ) sc.basic.pc[i] 6= crit, lvtry, resetset proof-methods normalizationprove s'c.basic.pc[i] =2 { crit, reset }resume by case i = s'c.basic.x.owner<> case ic = s'c.basic.x.owner[] case ic = s'c.basic.x.owner<> case : (ic = s'c.basic.x.owner)instantiate j by ic in *impliesHyp[] case : (ic = s'c.basic.x.owner)[] conjectureresume by case sc.basic.x.free<> case sc.basic.x.freeprove 9 i:UID (uc.basic.region[i] = try)resume by specializing i:UID to s'c.basic.x.owner<> specialization subgoal[] specialization subgoal 137



[] conjectureresume by case 8 j:UID (s'c.basic.pc[j] 6= set)<> case 8 j:UID (s'c.basic.pc[j] 6= set)assert (ac = seize); u'c = STEP(uc, addTime(ac))assert a'c = stabilize; u''c = STEP(u'c, addTime(a'c))resume by specializingalpha to (({uc}) { addTime(ac), u'c }) { addTime(a'c), u''c }..<> specialization subgoalinstantiate c by task(ac) in $firstHypresume by case i = s'c.basic.x.owner<> case ic = s'c.basic.x.owner[] case ic = s'c.basic.x.owner<> case : (ic = s'c.basic.x.owner)instantiate j by ic in *Hypresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] case : (ic = s'c.basic.x.owner)[] specialization subgoal[] case 8 j:UID (s'c.basic.pc[j] 6= set)<> case :8 j:UID (s'c.basic.pc[j] 6= set)assert (ac = seize); u'c = STEP(uc, addTime(ac))resume by specializing alpha to ({uc}) { addTime(ac), u'c }<> specialization subgoalinstantiate c by task(ac) in $firstHypprove 9 i:UID (s'c.basic.pc[i] = set)declare operator ic:!UIDfix j as ic in *caseHypresume by specializing i:UID to ic<> specialization subgoal[] specialization subgoal[] conjectureresume by case i = s'c.basic.x.owner<> case ic = s'c.basic.x.owner[] case ic = s'c.basic.x.owner<> case : (ic = s'c.basic.x.owner)instantiate j by ic in *impliesHypresume by ^<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate c by task(set[ic]) in *impliesHyp[] ) subgoal[] ^ subgoal[] case : (ic = s'c.basic.x.owner)[] specialization subgoal 138



[] case :8 j:UID (s'c.basic.pc[j] 6= set)[] case sc.basic.x.free<> case : sc.basic.x.freeresume by case 8 j:UID (s'c.basic.pc[j] 6= set)<> case 8 j:UID (s'c.basic.pc[j] 6= set)assert (ac = stabilize); u'c = STEP(uc, addTime(ac))resume by specializing alpha to ({uc}) { addTime(ac), u'c }<> specialization subgoalinstantiate c by task(ac) in $firstHypprove 9 i:UID (sc.basic.pc[i] = set)resume by specializing i:UID to s'c.basic.x.owner<> specialization subgoal[] specialization subgoal[] conjectureresume by case i = s'c.basic.x.owner<> case ic = s'c.basic.x.ownerprove :8 i:UID : (sc.basic.pc[i] = set) by contradiction<> contradiction subgoal[] contradiction subgoal[] conjecture[] case ic = s'c.basic.x.owner<> case : (ic = s'c.basic.x.owner)instantiate j by ic in *Hypresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] case : (ic = s'c.basic.x.owner)[] specialization subgoal[] case 8 j:UID (s'c.basic.pc[j] 6= set)<> case :8 j:UID (s'c.basic.pc[j] 6= set)resume by specializing alpha to {uc}<> specialization subgoalprove uc.bounds[task(seize)].last = infinityinstantiate c by task(seize) in *hyp[] conjectureprove 9 i:UID (sc.basic.pc[i] = set)resume by specializing i:UID to s'c.basic.x.owner<> specialization subgoal[] specialization subgoal[] conjectureprove 9 i:UID (s'c.basic.pc[i] = set)declare operator ic:!UIDfix j as ic in *caseHypresume by specializing i:UID to ic<> specialization subgoal[] specialization subgoal[] conjectureprove :8 i:UID : (sc.basic.pc[i] = set) by contradiction<> contradiction subgoal[] contradiction subgoal[] conjectureresume by case i = s'c.basic.x.owner139



<> case ic = s'c.basic.x.ownerinstantiate c:Tasks[I] by task(crit[ic]) in *impliesHyp[] case ic = s'c.basic.x.owner<> case : (ic = s'c.basic.x.owner)instantiate j by ic in *impliesHypinstantiate i by ic in *impliesHypresume by ^<> ^ subgoalresume by )<> ) subgoal[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoal[] ) subgoal[] ^ subgoal[] case : (ic = s'c.basic.x.owner)[] specialization subgoal[] case :8 j:UID (s'c.basic.pc[j] 6= set)[] case : sc.basic.x.free[] ) subgoal[] basis subgoal<> basis subgoal% CASE 4: check[u1c]resume by )<> ) subgoalset proof-methods normalizationresume by specializing alpha to {uc}<> specialization subgoalprove 9 i:UID (w(s'c, i) � uc.bounds[task(seize)].last)declare operator ic:!UIDfix i as ic in *hyp / c-op(w)resume by specializing i:UID to ic<> specialization subgoalresume by case ic = u1c<> case ic = u1cresume by case : sc.basic.x.free ^ sc.basic.x.owner = u1c<> case : sc.basic.x.free ^ sc.basic.x.owner = u1cprove : enabled(uc.basic, seize) by contradiction<> contradiction subgoaldeclare operator ic1:!UIDfix i as ic1 in *contraHyp / c-op(reset:!PC)instantiate i by ic1 in *impliesHyp[] contradiction subgoal[] conjectureinstantiate c by task(seize) in *hyp[] case : sc.basic.x.free ^ sc.basic.x.owner = u1c<> case : (: sc.basic.x.free ^ sc.basic.x.owner = u1c)instantiate s by s'c, i by u1c in $wdefinstantiate s by sc, i by u1c in $wdefprove (sc.now + a+a) � (sc.bounds[task(check[u1c])].last + a+a)instantiate t by a in Time[] conjecture[] case : (: sc.basic.x.free ^ sc.basic.x.owner = u1c)[] case ic = u1c<> case : (ic = u1c) 140



instantiates by sc, s' by s'c, at by check, i by u1c, j by ic in theorem / c-op(w)..[] case : (ic = u1c)[] specialization subgoal[] conjectureresume by case sc.basic.x.free<> case sc.basic.x.freeresume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in *impliesHyp / c-op(u1c)resume by ^<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal[] case : (ic = u1c)[] case sc.basic.x.free<> case : sc.basic.x.freeprove(s'c.basic.pc[i] = crit , sc.basic.pc[i] = crit)^ (s'c.basic.pc[i] = reset , sc.basic.pc[i] = reset)^ (s'c.basic.pc[i] = set , sc.basic.pc[i] = set)..resume by case i = u1c<> case ic = u1cresume by case sc.basic.x.owner = u1c<> case sc.basic.x.owner = u1c[] case sc.basic.x.owner = u1c<> case : (sc.basic.x.owner = u1c)[] case : (sc.basic.x.owner = u1c)[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in *impliesHyp[] case : (ic = u1c)[] conjectureresume by case i = u1c<> case ic = u1cresume by case sc.basic.x.owner = u1c<> case sc.basic.x.owner = u1cprove (a + sc.now) � (sc.bounds[task(check[u1c])].last + a)instantiate t by a in Time[] conjecture[] case sc.basic.x.owner = u1c<> case : (sc.basic.x.owner = u1c)[] case : (sc.basic.x.owner = u1c)141



[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in *impliesHyp / c-op(u1c)resume by ^<> ^ subgoalresume by )<> ) subgoal[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal[] case : (ic = u1c)[] case : sc.basic.x.free[] specialization subgoal[] ) subgoal[] basis subgoal<> basis subgoal% CASE 5: crit[u1c]resume by )<> ) subgoalinstantiate i by u1c in *impliesHyp % StrongMutex!set proof-methods normalizationassert (ac = crit[u1c]); u'c = STEP(uc, addTime(ac))resume by specializing alpha to ({uc}) { addTime(ac), u'c }<> specialization subgoalinstantiate c by task(ac) in $firstHypresume by ^<> ^ subgoalprove 142



: ( 9 i:UID (s'c.basic.pc[i] = set)^ 8 i:UID (s'c.basic.pc[i] =2 { crit, reset }))^ :8 i:UID (s'c.basic.pc[i] =2 { crit, reset, set })^ 9 i:UID (s'c.basic.pc[i] 2 { crit, reset })..resume by ^<> ^ subgoalresume by contradiction<> contradiction subgoal[] contradiction subgoal[] ^ subgoal<> ^ subgoalresume by specializing i:UID to u1c<> specialization subgoal[] specialization subgoal[] ^ subgoal<> ^ subgoalresume by specializing i:UID to u1c<> specialization subgoal[] specialization subgoal[] ^ subgoal[] conjectureprove u'c.bounds[task(seize)].last = infinityprove : enabled(u'c.basic, seize) by contradiction<> contradiction subgoal[] contradiction subgoal[] conjecture[] conjectureresume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in (theorem, *impliesHyp) / c-op(u1c)resume by ^<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal[] case : (ic = u1c)[] ^ subgoal<> ^ subgoalresume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)instantiate i by ic in *impliesHyp[] case : (ic = u1c)[] ^ subgoal[] specialization subgoal 143



[] ) subgoal[] basis subgoal<> basis subgoal% CASE 6: exit[u1c]resume by )<> ) subgoalinstantiate i by u1c in *impliesHypset proof-methods normalizationassert (ac = exit[u1c]); u'c = STEP(uc, addTime(ac))resume by specializing alpha to ({uc}) { addTime(ac), u'c }<> specialization subgoalinstantiate c by task(ac) in $firstHypprove (s'c.basic.pc[i] =2 { crit, reset } , sc.basic.pc[i] =2 { crit, reset })^ (s'c.basic.pc[i] 2 { crit, reset } , sc.basic.pc[i] 2 { crit, reset })^ (s'c.basic.pc[i] = set , sc.basic.pc[i] = set)..resume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in *impliesHyp[] case : (ic = u1c)[] conjectureprove 9 i:UID (w(s'c, i) � u'c.bounds[task(seize)].last)resume by case : enabled(u'c.basic, task(seize))<> case : enabled(u'c.basic, task(seize))[] case : enabled(u'c.basic, task(seize))<> case : (: enabled(u'c.basic, task(seize)))prove : enabled(uc.basic, seize) by contradiction<> contradiction subgoal[] contradiction subgoal[] conjecturedeclare operator ic:!UIDfix i as ic in *caseHyp / c-op(try:!Region)instantiate i by u1c in *hypprove ic 6= u1c by contradiction<> contradiction subgoal[] contradiction subgoal[] conjectureresume by specializing i:UID to ic<> specialization subgoalprove inv(s'c)instantiates by sc, s' by s'c, a: Actions[TF] by addTime(exit[u1c]) in Invariants..[] conjectureresume by case s'c.basic.pc[ic] = check, s'c.basic.pc[ic] = test<> case justificationinstantiate j by ic in *impliesHyp, theoreminstantiate i by ic in *impliesHyp % StrongMutex[] case justification<> case s'c.basic.pc[ic] = checkinstantiate s by s'c, i:UID by ic in $wdefinstantiate c by task(check[ic]) in theorem144



instantiate t:Time by a in Time[] case s'c.basic.pc[ic] = check<> case s'c.basic.pc[ic] = testinstantiate s by s'c, i by ic in $wdefinstantiate c by task(test[ic]) in theoremprove (s'c.bounds[task(test[ic])].last + a) � (sc.now +a+a)instantiate t by a in Time[] conjectureprove (s'c.bounds[task(test[ic])].last + a) � (sc.now +a+a+c)instantiate t by sc.now + a + a, t1 by c in Time[] conjecture[] case s'c.basic.pc[ic] = test[] specialization subgoal[] case : (: enabled(u'c.basic, task(seize)))[] conjectureresume by case i = u1c<> case ic = u1cresume by case : enabled(u'c.basic, task(seize))<> case : enabled(u'c.basic, task(seize))[] case : enabled(u'c.basic, task(seize))<> case : (: enabled(u'c.basic, task(seize)))instantiate c by task(reset[u1c]) in *impliesHypprove : enabled(uc.basic, seize) by contradiction<> contradiction subgoal[] contradiction subgoal[] conjectureinstantiate t by sc.now + a+a in Time[] case : (: enabled(u'c.basic, task(seize)))[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in (*impliesHyp, theorem) / c-op(u1c)instantiate i by ic in *impliesHypresume by case : enabled(u'c.basic, task(rem[ic]))<> case : enabled(u'c.basic, task(rem[ic]))[] case : enabled(u'c.basic, task(rem[ic]))<> case : (: enabled(u'c.basic, task(rem[ic])))[] case : (: enabled(u'c.basic, task(rem[ic])))[] case : (ic = u1c)[] specialization subgoal[] ) subgoal[] basis subgoal<> basis subgoal% CASE 7: reset[u1]resume by )<> ) subgoalset proof-methods normalizationresume by specializing alpha to {uc}<> specialization subgoalinstantiate i by u1c in *impliesHyp / c-op(reset:!PC) / c-op(.owner)prove w(s'c, i) = w(sc,i)resume by case i = u1c<> case ic = u1cinstantiate s by s'c, i by u1c in $wdefinstantiate s by sc, i by u1c in $wdef[] case ic = u1c<> case : (ic = u1c)instantiate 145



s by sc, s' by s'c, at by reset, i by u1c, j by ic in theorem / c-op(w)..[] case : (ic = u1c)[] conjectureresume by case i = u1c<> case ic = u1cresume by ^<> ^ subgoalinstantiate i by u1c in *impliesHypinstantiatet by a, t1 by s'c.now, t2 by sc.bounds[task(reset[u1c])].last in Time..[] ^ subgoal<> ^ subgoalresume by specializing i:UID to u1c<> specialization subgoal[] specialization subgoal[] ^ subgoal<> ^ subgoalresume by specializing i:UID to u1c<> specialization subgoal[] specialization subgoal[] ^ subgoal[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in *impliesHyp / c-op(u1c)resume by ^<> ^ subgoalresume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] ^ subgoal<> ^ subgoalinstantiate i by ic in *impliesHyp[] ^ subgoal<> ^ subgoalinstantiate i by ic in *impliesHyp[] ^ subgoal<> ^ subgoalinstantiate i by ic in *impliesHyp[] ^ subgoal<> ^ subgoalresume by specializing i:UID to u1c<> specialization subgoal[] specialization subgoal[] ^ subgoal<> ^ subgoalresume by specializing i:UID to u1c<> specialization subgoal[] specialization subgoal[] ^ subgoal[] case : (ic = u1c)[] specialization subgoal[] ) subgoal[] basis subgoal<> basis subgoal 146



% CASE 8: rem[u1]resume by )<> ) subgoalset proof-methods normalizationassert (ac = rem[u1c]); u'c = STEP(uc, addTime(ac))resume by specializing alpha to ({uc}) { addTime(ac), u'c }<> specialization subgoalinstantiate c by task(ac) in $firstHypprove(s'c.basic.pc[i] = crit , sc.basic.pc[i] = crit)^ (s'c.basic.pc[i] = reset , sc.basic.pc[i] = reset)^ (s'c.basic.pc[i] = set , sc.basic.pc[i] = set)..resume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in *impliesHyp / c-op(u1c)[] case : (ic = u1c)[] conjectureprove 9 i:UID (w(s'c, i) � u'c.bounds[task(seize)].last)declare operator ic:!UIDfix i as ic in *hyp / c-op(w)resume by specializing i:UID to ic<> specialization subgoalresume by case : enabled(u'c.basic, seize)<> case : enabled(u'c.basic, seize)[] case : enabled(u'c.basic, seize)<> case : (: enabled(u'c.basic, seize))prove enabled(uc.basic, seize)declare operator ic1:!UIDfix i as ic1 in *caseHyp / c-op(try:!Region)prove ic1 6= u1c by contradiction<> contradiction subgoal[] contradiction subgoal[] conjectureresume by specializing i:UID to ic1<> specialization subgoalinstantiate j by ic1 in theoremresume by case j = u1c<> case jc = u1c[] case jc = u1c<> case : (jc = u1c)instantiate j by jc in theorem, *hyp[] case : (jc = u1c)[] specialization subgoal[] conjectureresume by case ic = u1c<> case ic = u1cinstantiate s by sc, i:UID by u1c in $wdef[] case ic = u1c<> case : (ic = u1c)instantiates by sc, s' by s'c, at: ActionTypes[F] by rem, i by u1c, j by icin theorem / c-op(w)..[] case : (ic = u1c) 147



[] case : (: enabled(u'c.basic, seize))[] specialization subgoal[] conjectureresume by case i = u1c<> case ic = u1c[] case ic = u1c<> case : (ic = u1c)instantiate j by ic in (theorem, *impliesHyp) / c-op(u1c)resume by ^<> ^ subgoalresume by case : enabled(u'c.basic, task(crit[ic]))<> case : enabled(u'c.basic, task(crit[ic]))[] case : enabled(u'c.basic, task(crit[ic]))<> case : (: enabled(u'c.basic, task(crit[ic])))resume by )<> ) subgoaldeclare operator dummyi: ! UIDfix i as dummyi in *caseHyp[] ) subgoal[] case : (: enabled(u'c.basic, task(crit[ic])))[] ^ subgoal<> ^ subgoalresume by case : enabled(u'c.basic, task(rem[ic]))<> case : enabled(u'c.basic, task(rem[ic]))[] case : enabled(u'c.basic, task(rem[ic]))<> case : (: enabled(u'c.basic, task(rem[ic])))resume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] case : (: enabled(u'c.basic, task(rem[ic])))[] ^ subgoal<> ^ subgoalresume by case : enabled(u'c.basic, task(crit[ic]))<> case : enabled(u'c.basic, task(crit[ic]))[] case : enabled(u'c.basic, task(crit[ic]))<> case : (: enabled(u'c.basic, task(crit[ic])))resume by )<> ) subgoaldeclare operator dummyi: ! UIDfix i as dummyi in *caseHypinstantiate i by ic in *impliesHyp[] ) subgoal[] case : (: enabled(u'c.basic, task(crit[ic])))[] ^ subgoal<> ^ subgoalresume by case : enabled(u'c.basic, task(rem[ic]))<> case : enabled(u'c.basic, task(rem[ic]))[] case : enabled(u'c.basic, task(rem[ic]))<> case : (: enabled(u'c.basic, task(rem[ic])))resume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] case : (: enabled(u'c.basic, task(rem[ic])))[] ^ subgoal<> ^ subgoalresume by case : enabled(u'c.basic, task(seize))148



<> case : enabled(u'c.basic, task(seize))[] case : enabled(u'c.basic, task(seize))<> case : (: enabled(u'c.basic, task(seize)))resume by )<> ) subgoalinstantiate c by task(reset[ic]) in *impliesHypinstantiate i by ic in *impliesHypresume by case enabled(uc.basic, task(seize))<> case enabled(uc.basic, task(seize))[] case enabled(uc.basic, task(seize))<> case : enabled(uc.basic, task(seize))prove (sc.now + a + a + a) � (sc.now + a + a + c)instantiate t by sc.now + a+a in Time[] conjectureinstantiate t by a+a in Time[] case : enabled(uc.basic, task(seize))[] ) subgoal[] case : (: enabled(u'c.basic, task(seize)))[] ^ subgoal<> ^ subgoalresume by case : enabled(u'c.basic, task(stabilize))<> case : enabled(u'c.basic, task(stabilize))[] case : enabled(u'c.basic, task(stabilize))<> case : (: enabled(u'c.basic, task(stabilize)))resume by )<> ) subgoalinstantiate i by ic in *impliesHyp[] ) subgoal[] case : (: enabled(u'c.basic, task(stabilize)))[] ^ subgoal[] case : (ic = u1c)[] specialization subgoal[] ) subgoal[] basis subgoal[] basis subgoal[] basis subgoal[] conjectureqedset log f2istatisticsquit
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