
Livadas, C. and Lynch, N. A. A Reliable Broadcast Scheme
for Sensor Networks. Technical Report MIT/CSAIL/TR-
915, Computer Science and Artificial Intelligence Lab., MIT,
Cambridge, MA, Aug. 2003.

A Reliable Broadcast Scheme for Sensor Networks

Carolos Livadas Nancy A. Lynch

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

August 11, 2003

Revised April 10, 2006
Revised February 5, 2007

Abstract

In this short technical report, we present a simple yet effective reliable broadcast protocol for
sensor networks. This protocol disseminates packets throughout the sensor network by flooding
and recovers from losses resulting from collisions by having hosts retransmit packets whenever
they notice that their neighbors have fallen behind. Such retransmissions serve to flood the
appropriate packets throughout the regions of the sensor network that did not receive the given
packets as a result of prior flooding attempts.

1 Overview

In this short technical report, we present a simple reliable broadcast scheme for sensor networks [1–
5]. We presume that the sensor network consists of a set of hosts that are scattered in space and
are stationary. Moreover, we presume that the hosts are capable of communicating wirelessly with
their neighbors (within a certain radius) and that the hosts and their wireless connections form a
connected graph. For simplicity, we presume that there is only one transmission source s and that
our broadcasting scheme is used to broadcast a sequence of packets from s to all other hosts.

Our reliable broadcasting scheme consists of two mechanisms: packets are disseminated throughout
the sensor network by flooding and losses are recovered by having hosts retransmit packets whenever
they notice that their neighbors have fallen behind. The first mechanism floods a packet p to all
the hosts reachable from s by having each host retransmit p whenever it first receives it. Since the
wireless connectivity of all hosts forms a connected graph, when no losses occur p is flooded to all
hosts in the sensor network.

The second mechanism is responsible for recovering from losses resulting from the collision (overlap)
of the wireless transmissions of neighboring hosts. Each host h periodically transmits its frontier
sequence number; that is, the sequence number of the most recent packet p sent by s such that
h has received all packets up to and including p. Upon receiving this information, if a neighbor
h′ of h has a larger frontier sequence number than the frontier sequence number advertised by h,
then h′ transmits all the packets that it has received and whose sequence numbers are greater than
the frontier sequence number advertised by h. Thus, the given packets are forwarded to h and,
subsequently, flooded to the region of the graph of hosts that have, potentially, not received the
given packets.

1



Figure 1 Definition of Packet Operations
P = Set of packets such that for all p ∈ P :

type(p) ∈ {DATA, UPDT}
if type(p) = DATA then

source(p) ∈ H

seqno(p) ∈ N

data(p) ∈ {0, 1}∗

if type(p) = UPDT then

source(p) ∈ H

frontier(p) ∈ N

Figure 2 The hosth Automaton — Signature

Parameters:

h ∈ H, SOURCE ∈ H, UPDT-PERIOD ∈ R
+

Actions:

input

brecvh(p), for p ∈ P

output

bsendh(p), for p ∈ P

internal

bcasth

updt
h

time-passage

ν(t), for t ∈ R
≥0

2 Formal Model

We abstractly model the physical system involving a set of hosts that communicate wirelessly
with their neighbors as the interaction of a set of host automata (one for each host) and a single
environment automaton that encapsulates the behavior of the hosts’ environment. We let H denote
the set of all hosts in the sensor network and P denote the set of all packets that could ever be
broadcast by any of the hosts. Figure 1 presents the operations supported by the packets in P .

We model each host h ∈ H by the automaton hosth, the environment by the automaton env, and
the complete sensor network as the composition env ×

∏
h∈H hosth.

2.1 The hosth Automaton

Figures 2 and 3 specify the signature, the variables, and the discrete transitions of the hosth

automaton. The parameter h ∈ H identifies the host whose behavior the automaton hosth

models. In order to provide the appropriate context, the description of the parameters SOURCE and
UPDT-PERIOD is deferred to appropriate places within the description of its variables and actions.

The variable now ∈ R
≥0 denotes the time that has elapsed since the beginning of an execution of

hosth. The variable received is the set of packets that the host h has received. The variable bqueue
is the set of packets whose transmission is pending at the host h. The variable updt-time is the
time at which the next update packet of host h is scheduled for transmission. The variable seqno
is the sequence number of the next packet to be broadcast by the host h. The derived variable
frontier is the frontier sequence number of the host h.

The input action brecvh(p) models the reception of a packet p by the host h. If p is a DATA packet
that the host h has not yet received, then the brecvh(p) action archives p and adds it to the
broadcast queue bqueue so that it may subsequently be forwarded to the neighbors of h. Notice
that p is forwarded by h only if h has not previously received it. If p is an UPDT packet and the
frontier sequence number of h is greater than the frontier sequence number advertised by p, then
brecvh(p) adds to the broadcast queue bqueue all the packets that it has received whose sequence
number is greater than the frontier sequence number advertised by p.

The internal action updth models the scheduling of the transmission of an update packet that
announces h’s current frontier sequence number to its neighbors. The updth action is enabled

2



Figure 3 The hosth Automaton — Variables and Discrete Transitions

Variables:

now ∈ R
≥0, initially now = 0

received ⊆ P , initially received = ∅
bqueue ⊆ P , initially bqueue = ∅
updt-time ∈ R

≥0, initially updt-time ∈ [0, UPDT-PERIOD]
seqno ∈ N, initially seqno = 0

Derived Variables:

frontier = max({i ∈ N | ∃p ∈ received , seqno(p) = i ∧ ∀i′N, i′ < i, ∃p′ ∈ received , seqno(p′) = i′})

Discrete Transitions:

output bsendh(p)

pre p ∈ bqueue

eff bqueue \= {p}

internal updt
h

pre now = updt-time

eff bqueue ∪= {comp-updt-pkt()}
updt-time := now + UPDT-PERIOD

internal bcasth

pre h = SOURCE

eff bqueue ∪= {comp-data-pkt()}
seqno := seqno + 1

input brecvh(p)

where type(p) = DATA

eff if p 6∈ received then

bqueue ∪= {p}
received ∪= {p}

input brecvh(p)

where type(p) = UPDT

eff if frontier(p) < frontier then

foreach p′ ∈ received : frontier(p) < seqno(p′) do:

bqueue ∪= {p′}

time-passage ν(t)

pre now + t ≤ updt-time ∧ bqueue = ∅
eff now := now + t

when the current time now is equal to the update packet transmission deadline updt-time. The
updth action composes the update packet from the current state of the automaton hosth, adds it
to the broadcast queue bqueue, and resets the update packet transmission deadline updt-time to
UPDT-PERIOD time units in the future. The operation comp-updt-pkt() returns an update packet
that is consistent with the current state of hosth.

The internal action bcasth models the generation of a new packet to be transmitted by the source of
the transmission. The bcasth action is enabled when the host h is the transmission source SOURCE.
Its effects are to compose a data packet, to add it to the broadcast queue bqueue, and to increment
the sequence number seqno of the next packet to be transmitted. The operation comp-data-pkt()
returns the next data packet in the sequence of data packets to be transmitted by h; that is, a data
packet whose sequence number is equal to seqno.

The output action bsendh(p) models the transmission of the packet p by the host h. This action is
enabled when the packet p is in the broadcast queue bqueue. Its effects are to remove p from the
broadcast queue bqueue.

The time-passage action ν(t) models the passage of t time units. The ν(t) action is enabled when
h’s deadline for transmitting an update packet does not precede the point in time now + t. Its
effects are to increment the variable now by t time units.

2.2 The env Automaton

Figures 4 and 5 specify the signature, the variables, and the discrete transitions of the env

automaton. This automaton models the environment of the sensor network. The env automaton
also maintains the sensor network topology. This topology is presumed to be fixed.

The variable now ∈ R
≥0 denotes the time that has elapsed since the beginning of an execution of

env. The variables dqueue(h), for h ∈ H, are the delivery queues for each host h; that is, for any
packet p ∈ dqueue(h), it is the case that the delivery of p to h is pending. Each set neighbors(h),
for h ∈ H, indicates the neighboring hosts of h in the sensor network; that is, the set of hosts that
are reachable through h’s wireless transmissions. The sets neighbors(h), for h ∈ H, dictate the

3



Figure 4 The env Automaton — Signature

Actions:

input

bsendh(p), for h ∈ H, p ∈ P

output

brecvh(p), for h ∈ H, p ∈ P

bdrop
h
(p), for h ∈ H, p ∈ P

time-passage

ν(t), for t ∈ R
≥0

Figure 5 The env Automaton — Variables and Discrete Transitions

Variables:

now ∈ R
≥0, initially now = 0

dqueue(h) ⊆ P , for h ∈ H, initially dqueue(h) = ∅, for all h ∈ H

neighbors(h) ⊆ H, for h ∈ H, initially neighbors(h) ⊆ H, for all h ∈ H,
such that H and neighbors(h), for h ∈ H, form a connected graph

Discrete Transitions:

input bsendh(p)

eff foreach h′ ∈ neighbors(h) do:

dqueue(h′)∪= {p}

output brecvh(p)

pre p ∈ dqueue(h)
eff dqueue(h) \= {p}

output bdrop
h
(p)

pre p ∈ dqueue(h)
eff dqueue(h) \= {p}

time-passage ν(t)

pre None.
eff now := now + t

topology of the sensor network.

The input action bsendh(p), which models the wireless transmission of the packet p by h, adds
the packet p to the delivery queues of all the neighbors of h. Thus, we model the omni-directional
wireless transmission of p by h as a parallel point-to-point transmission from h to all of its neighbors.

The output action brecvh(p) models the delivery of the packet p to h. The brecvh(p) is enabled
when p is in the delivery queue dqueue(h) of h. Its effects are to remove p from the delivery queue
dqueue(h) of h.

The output action bdroph(p) models the loss of the packet p while being delivered to h. By modeling
the omni-directional wireless transmission of packets as multiple point-to-point transmissions, we
consider the transmission failure to any single neighbor as a distinct loss. We presume that
losses are due solely to collisions, i.e., when neighboring hosts attempt to transmit concurrently.
More complicated models of the system and its behavior may model power failures, crashes, and,
potentially, sensor/host mobility.

The time-passage action ν(t) models the passage of t time units. The ν(t) action is enabled at any
point in time and its effects are to increment the variable now by t time units.

3 Informal Performance Analysis

In this section, we informally analyze the performance of our reliable broadcast scheme for sensor
networks. Let D denote the diameter of the sensor network in terms of hop-counts; that is, any
sensor is at most D hops away from any other sensor in the network. Moreover, let d be an upper
bound on the amount of time it takes for a host to wirelessly transmit a packet. Finally, let f ∈ N

be a bound on the total number of losses suffered during any particular execution of the system.

Now, consider the effect that a packet drop has on the dissemination of a packet throughout the
sensor network. Let h and h′ be any two neighbors in the sensor network and suppose that h′ is
reachable from the transmission source s only through h′. Now, consider the scenario in which a
data packet p is dropped while being transmitted from h to h′. Since h may only transmit a packet
a second time as a response to an update packet, h′ may only recover the packet after successfully

4



transmitting an update packet that instigates the retransmission of p by h.

First, consider the case where this update packet indeed instigates the retransmission of p by
h. In such a case, the additional delay in forwarding p that is incurred by the loss of the original
transmission of p from h to h′ is equal to UPDT-PERIOD+d; this corresponds to the latest point in time
that h may receive the next update packet of h′. Once this update packet is received, h retransmits
p and, presuming no additional packets are dropped, p is subsequently flooded throughout the
region of the sensor network reachable through h′. The dissemination of p from h to h′ may further
be delayed either if the update packet from h′ to h or the retransmission of p from h to h′ is dropped.
Each such drop would delay the dissemination of p from h to h′ by UPDT-PERIOD additional time
units. It follows that each packet drop may delay a packet’s recovery by at most UPDT-PERIOD+ d
time units.

In our example of the packet p being dropped while being transmitted from h to h′, it is possible
for an update packet from h′ not to instigate the retransmission of p by h. This may occur when
both h and h′ share the loss of a packet p′ that was transmitted by s earlier than p. In such a case,
the recovery of p may rely on the recovery of p′, which may itself be delayed due to packet losses.
Once p′ is recovered however, the recovery of p proceeds as described above. In fact, a cascade of
packet recoveries may need to be carried out before p may be recovered. Once again, however, each
such recovery is delayed by at most UPDT-PERIOD + d per loss.

Presuming that the sensor network suffers at most f ∈ N packet losses, the worst-case delay incurred
during the recovery of p would be f(UPDT-PERIOD+ d). Thus, the worst-case delay in broadcasting
p would be Dd+f(UPDT-PERIOD+d), where Dd is the worst-case propagation delay of p throughout
the sensor network and f(UPDT-PERIOD + d) is the delay incurred due to the f possible losses.

4 Discussion and Conclusions

The reliable broadcast scheme presented in this report is a very simple yet effective scheme that
guarantees the delivery of packets from a single source to the other hosts in a sensor network. Our
scheme is particularly effective for low bandwidth sensor network transmissions, which is the type
of application for which it was designed.

Although simple and effective, our reliable broadcast scheme has some limitations. The hosts are
required to archive all the packets they receive. This may not be feasible in an actual sensor
network. Moreover, the straightforward extension to the case where there are multiple sources the
size of the update packets is proportional to the number of sources. This may make the transmission
of update packets prohibitively expensive and fault-prone. Finally, the protocol may not be well
suited to high bandwidth transmissions. The combination of high bandwidth transmissions and
the fact that wireless communication is highly lossy may induce frequent frontier sequence number
discrepancies and result in frequent retransmission bursts. These are limitations that are worth
thinking about and resolving.

Acknowledgments

We would like to thank Deborah Estrin and David Cuttler for suggesting the problem of reliable
broadcast for sensor networks.

5



References

[1] Bar-Yehuda, R., Goldreich, O., and Itai, A. On the time-complexity of broadcast
in multi-hop radio networks: An exponential gap between determinism and randomization.
Journal of Computer and System Sciences (JCSS) 45, 1 (1992), 104–126.

[2] Kowalski, D. R., and Pelc, A. Time of deterministic broadcasting in radio networks with
local knowledge. SIAM Journal on Computing 33, 4 (2004), 870–891.

[3] Kushilevitz, E., and Mansour, Y. An Ω(D log(N/D)) lower bound for broadcast in radio
networks. In PODC’93: Proceedings of the twelfth annual ACM symposium on Principles of
distributed computing (New York, NY, USA, 1993), ACM Press, pp. 65–74.

[4] Levis, P., Patel, N., Culler, D. E., and Shenker, S. Trickle: A self-regulating algorithm
for code propagation and maintenance in wireless sensor networks (awarded best paper). In
NSDI (2004), USENIX, pp. 15–28.

[5] Liu, T., and Martonosi, M. Impala: a middleware system for managing autonomic, parallel
sensor systems. In PPOPP (2003), ACM, pp. 107–118.

6


