
High-Level Modeling and Analysis of TCAS∗

Carolos Livadas, John Lygeros, and Nancy A. Lynch

Laboratory for Computer Science
Massachusetts Institute of Technology

545 Technology Square
Cambridge, MA 02139

E-mail:clivadas, lygeros, lynch@theory.lcs.mit.edu

Abstract

In this paper, we demonstrate a high-level approach
to modeling and analyzing complex safety-critical systems
through a case study in the area of air traffic management.
In particular, we focus our attention on the Traffic Alert and
Collision Avoidance System (TCAS) [11, 12]; an on-board
conflict detection and resolution system which alerts pilots
to the presence of nearby aircraft that pose a mid-air col-
lision threat and issues conflict resolution advisories. Due
to the complexity of the TCAS software and the hybrid na-
ture of the closed-loop system, the traditional testing tech-
niques through simulation do not constitute a viable verifi-
cation approach. To aid people in analyzing and designing
such systems, we advocate defining high-level mathemati-
cal system models that capture the behavior not only of the
software, but also of the airplanes, sensors, and pilots—
that is, high-level hybrid system models. In particular,
we show how the core components of this complex system
can be captured by relatively simple Hybrid I/O Automata
(HIOA) [9,10], which are amenable to formal analysis. We
then outline a methodology for establishing conditions un-
der which the conflict resolution advisories issued by TCAS
guarantee sufficient separation in altitude for aircraft in-
volved in mid-air collision threats. Although our results
are intended only as illustrations of high-level modeling
and analysis techniques, the TCAS system models provide
a foundation for study of a wide range of properties of the
system’s behavior.

∗Research supported by ARPA under F19628-95-C-0118, by AFOSR
under F49620-97-1-0337, by UTC under DTRS95G-0001-YR8, and by
the PATH program, Institute of Transportation Studies, University of Cali-
fornia, Berkeley, under MOU-319.

1. Introduction

In practice, once safety-critical systems are designed and
implemented they undergo an extensive phase of testing
through simulation. Unfortunately, this approach has sev-
eral shortcomings. First, as systems get more complex and
their behavior is enriched, the number of simulations re-
quired to provide a particular level of confidence increases
exponentially. Second, regression testing dictates that when
modifications to the system are performed, the complete set
of simulations must be reconducted so as to make sure that
the modifications did not compromise the performance of
the system. Finally, and most importantly, the performance
guarantees obtained through extensive simulations are not
absolute; in fact, it is not even possible to provide condi-
tional performance guarantees.

In this paper, we demonstrate a high-level approach for
modeling and analyzing complex safety-critical systems for
which a “certain level of confidence” in the system’s perfor-
mance is insufficient. We advocate obtaining precise math-
ematical models of all core components of the closed-loop
system at hand and reasoning about the system’s closed-
loop performance at a high-level. The advantages of this
approach are numerous. First, modeling all components of
the system at hand provides a complete characterization of
the behavior of the system — behavior not limited to the
discrete or software aspects of the system. Second, mod-
eling the system at a high-level of abstraction captures the
intuitive understanding of the behavior of the system — of-
ten, this intuition is lost when systems are solely specified
at extreme detail by the system designers. Thirdly, when
analyzing the behavior of the system model, we can take
advantage of formal notions ofcompositionandmodel re-
finement. Finally, this approach has several advantages in
terms of testing the correctness or performance of the sys-
tem at hand. The task of producing the mathematical model
of the system exposes both assumptions made by the system
designers and design errors. Moreover, once a precise sys-

tem model has been defined, corrections resulting from er-
rors can easily be made without the high overhead of regres-
sion testing. Finally, under explicitly stated assumptions,
we are able to obtain absolute system performance guar-
antees. The methodology presented here has already been
successfully applied to various safety-critical transporta-
tion systems, such as automated highways [1, 6], personal
rapid transit systems [4, 14], train gate controllers [2], air-
craft conflict resolution for free flight [13], and the Center-
TRACON Automation System (CTAS) [8]. There has also
been some preliminary work on modeling the Traffic Alert
and Collision Avoidance System (TCAS) [7]. Although our
current work concentrates on the verification of systems that
have already been designed and implemented, we believe
our approach would be more useful during a system’s de-
sign phase.

The Traffic Alert and Collision Avoidance System
(TCAS) [11, 12] is an on-board aircraft conflict detec-
tion and resolution system used by all commercial aircraft.
TCAS’s task is to monitor air traffic in the vicinity of the
aircraft, to alert the pilot to nearby aircraft that may pose a
collision threat, and to propose maneuvers so as to resolve
these conflicts. The TCAS software was developed through
a sequence of progressive refinements: informal high-level
specifications, Statechart descriptions, pseudo-code, and fi-
nally low-level computer code. Part of the verification prob-
lem involves proving that each level in this process imple-
ments the high-level specifications. The need to develop
reliable software for large scale systems such as TCAS, has
led to the development of techniques [3] for systematically
carrying out this refinement. However, such techniques of-
ten begin modeling and specifying the system at relatively
detailed levels. In so doing, the intuitive understanding of
the behavior of the system is overshadowed by the details
and technicalities in low-level specifications. Moreover,
such techniques focus their attention only on the software
aspects of the system at hand and, therefore, do not model
the system as a whole. It is plausible that this approach ne-
glects to model possibly hazardous aspects of the system’s
behavior.

The overall TCAS system ishybrid, involving both con-
tinuous and discrete dynamics; the former arise from the
aircraft, sensors, and pilot reaction and the latter from the
thresholds and discrete message passing among aircraft. In
order to model both the discrete and continuous aspects of
the behavior of TCAS, we use the mathematical formalism
of hybrid I/O automata [9, 10]. The verification techniques
we use involve a combination of techniques from control
theory and distributed algorithms.

We proceed by summarizing the modeling formalism of
hybrid I/O automata. In Section 3, we describe the TCAS
system in more detail and present a HIOA model of each of
the core components of the TCAS system. In Section 4, we

present a conditional safety analysis of an idealized closed-
loop system comprised of a pair of aircraft. The proof in-
volves splitting the aircraft encounters into categories and
defining safety conditions for each such category. Finally,
by combining the per-category safety conditions we obtain
overall safety conditions. In Section 5, we conclude and
suggest future research directions. For detailed treatment
of the work presented in this paper, we refer the reader to
Ref. 5.

2. Hybrid I/O automata

The modeling formalism used in this paper is the hybrid I/O
automaton (HIOA) model [9, 10]. Systems are modeled as
collections of state machines that describe both discrete and
continuous evolution of their state. The continuous evolu-
tion of the system is described in terms oftrajectoriesover
the state variables,i.e., descriptions of how the system’s
state evolves with the passage of time. The discrete evolu-
tion of the system is described in terms ofactionswhereby
the state of the system can instantaneously “jump” from one
value to another. The state machines comprising the model
of the system at hand “communicate” through shared vari-
ables and actions.

More formally, a hybrid I/O automatonA is a (possi-
bly) infinite state model of a system involving both dis-
crete and continuous behavior. The automatonA =
(U,X, Y,Σin,Σint,Σout,Θ,D,W) consists of three dis-
joint setsU , X, andY of variables (input, internal, and
outputvariables, respectively), three disjoint setsΣin, Σint,
and Σout of actions (input, internal, and output actions,
respectively), a non-empty setΘ of initial states, a setD
of discrete transitions, and a setW of trajectories overV ,
whereΣ = Σin ∪ Σint ∪ Σout andV = U ∪ X ∪ Y .
The set of all valuations ofV , or equivalently the set of all
states ofA, is denoted byV , or equivalentlystates(A). The
limit time of a trajectoryw ∈ W, denoted byw.ltime, is
defined to be the supremum of the domain ofw, dom(w).
We define thefirst stateof w, denoted byw.fstate, to be the
statew(0). Moreover, if the domain ofw is right-closed,
then we define thelast stateof w, denoted byw.lstate, to be
the statew(w.ltime). A hybrid execution fragmentα of A
is a finite or infinite alternating sequencew0a1w1a2w2 · · · ,
wherewi ∈ W, ai ∈ Σ, and if wi is not the last trajec-
tory of α thenwi is right-closed and the discrete transi-
tion (wi.lstate, ai+1, wi+1.fstate) is in D, or equivalently

wi.lstate
ai+1−→A wi+1.fstate. If w0.fstate∈ Θ thenα is a

hybrid executionofA. A hybrid executionα ofA is finite if
it is a finite sequence and the domain of its final trajectory
is a right-closed interval andadmissibleif α.ltime = ∞.
The hybrid traceof a hybrid execution fragmentα of A,
denoted byh-trace(α), is the sequence obtained by project-
ing α onto the external variables ofA and subsequently re-

moving all inert internal and environment actions. The set
of hybrid tracesof A, denoted byh-traces(A), is the set
of hybrid traces that arise from all the finite and admissible
hybrid executions ofA.

A superdense timein an execution fragmentα of A is a
pair (i, t), wheret ≤ wi.ltime. We totally order superdense
times inα lexicographically. Anoccurrence ofa states
in α is a triple(i, t, s) such that(i, t) is a superdense time
in α and s = wi(t). State occurrences inα are ordered
according to their superdense times.

Two HIOA A1 andA2 are compatibleif Xi ∩ Vj =
Yi ∩ Yj = Σinti ∩ Σj = Σouti ∩ Σoutj = ∅, for i, j ∈
{1, 2}, i 6= j. If A1 andA2 are compatible then their
compositionA1 × A2 is defined to be the tupleA =
(U,X, Y,Σin,Σint,Σout,Θ,D,W) given byU = (U1 ∪
U2) − (Y1 ∪ Y2), X = X1 ∪ X2, Y = Y1 ∪ Y2, Σin =
(Σin1 ∪Σin2)− (Σout1 ∪Σout2), Σint = Σint1 ∪Σint2 , Σout =
Σout1 ∪ Σout2 , Θ = {s ∈ V | sdV1 ∈ Θ1 ∧ sdV2 ∈ Θ2},
and sets of discrete transitionsD and trajectoriesW each of
whose elements projects to discrete transitions and trajec-
tories, respectively, ofA1 andA2. Two HIOA A1 andA2

arecomparableif they have the same external interface,i.e.,
U1 = U2, Y1 = Y2, Σin1 = Σin2 , andΣout1 = Σout2 . If A1

andA2 are comparable, thenA1 ≤ A2 is defined to denote
that the hybrid traces ofA1 are included in those ofA2; that
is,A1 ≤ A2

∆= h-traces(A1) ⊆ h-traces(A2). If A1 ≤ A2,
then we say thatA1 implementsA2.

The initial states, the discrete transitions, and the trajec-
tories of a HIOA must satisfy several technical conditions
which are omitted here. For a detailed presentation of the
HIOA model, the reader is referred to Refs. 10 and 9.

3. The TCAS system

The TCAS system has evolved through a series of versions.
TCAS I and TCAS II-6.04A have already been deployed
and are currently standard in the US for all general avia-
tion and commercial aircraft, respectively. A more power-
ful version (TCAS II-7) has been fully developed and has
recently been tested through simulation. A number of fu-
ture versions are still in a preliminary, conceptual stage. In
this section we give a brief outline of the functionality of
the TCAS II-7 system and show how its core components
can be modeled as HIOA [7].

3.1. Overview of the TCAS system

In cases of potential mid-air collisions, the TCAS system
enters one of two levels of alertness. In the lower level the
system issues aTraffic Advisory(TA), to inform the pilot
of a potential threat, without providing any suggestions on
how to resolve the situation. If the danger of collision in-
creases aResolution Advisory(RA) is issued, providing the

Conflict
Resolutioni

Detectioni
Conflict

Advisories Advisories

Aircrafti

Piloti

Channelji

Channelij

Pilotj

Aircraftj

Conflict
Resolutionj

Conflict
Detectionj

SensorjSensori

TCAS TCAS

Figure 1. TCAS system block diagram

pilot with a maneuver that is likely to resolve the conflict.
In our analysis of the TCAS system, we model and address
the performance of the TCAS system in view only of RAs.

The RAs issued by TCAS II-7 are restricted to the ver-
tical plane. Maneuvers involve either climbing or descend-
ing at one of a finite number of fixed rates. If both air-
craft are TCAS equipped, the TCAS system [11, 12] uses
a symmetry-breaking communication protocol to uniquely
determine the maneuver that each aircraft should follow to
resolve the conflict. TCAS II-7 extends prior TCAS ver-
sions by allowing RAreversals— that is, TCAS may re-
verse RAs during a conflict.

It should be stressed that TCAS is a commercial product,
intended for use on passenger aircraft. Therefore human
factors issues, such as the comfort of the pilot, the passen-
gers, and the air traffic controllers, also need to be consid-
ered. A substantial fraction of the TCAS code is devoted
to such objectives; in our work we will mostly ignore these
issues and concentrate only on the objective of safety.

3.2. Modeling TCAS using HIOA

As shown in Figure 1, we model the closed-loop TCAS sys-
tem as a composition of smaller and simpler components.
For each of the components we extract a model from the
TCAS II-7 documentation. Even though the model allows
the interaction of multiple aircraft, in our analysis we re-
strict our attention to conflicts involving only two aircraft.

3.2.1. Aircraft model. The system we consider con-
sists ofN aircraft, labeled1, . . . , N . Each aircraft,i ∈
{1, . . . , N}, is modeled by the HIOAAi = (UAi , XAi ,
YAi , ΣinAi , ΣintAi , ΣoutAi

, ΘAi , DAi , WAi). We assume
there are no output or internal actions and no input action
(other than the environment action), that isΣinAi = {e},

ΣintAi = ΣoutAi
= ∅.

Each aircraft is identified by a unique integer, stored in
an output variableModeSi ∈ N, i.e., ModeSi 6= ModeSj ,
for all i, j ∈ {1, . . . , N}, j 6= i. Each aircraft may or may
not be equipped with an altitude reporting transponder. If it
is, it may also be equipped with TCAS. This hardware infor-
mation is stored in an output variableEquipmenti ∈ {None,
Report, TCAS}. All the aircraft considered in our analysis
are either altitude-reporting or TCAS-equipped. The vari-
ablesModeSi andEquipmenti are constant. The physical
movement of the airplanes is summarized by the trajecto-
ries of their positions,pi = (xi, yi, zi) ∈ R

3, their ve-
locities, vi = (vxi, vyi, vzi) ∈ R3, and their accelerations
ai = (axi, ayi, azi) ∈ R3. We assume that all trajecto-
ries inWAi satisfy the differential equationṡpi(t) = vi(t)
and v̇i(t) = ai(t). We assume that the aircraft accelera-
tion is under the direct control of the pilot and setYAi =
{ModeSi, Equipmenti, pi, vi}, UAi = {ai}, andXAi = ∅.
As the maneuvers required by TCAS are rather mild and are
unlikely to excite high order dynamics, induce input satura-
tion, etc., these simple aircraft dynamics are deemed suffi-
cient for our analysis.

3.2.2. Sensors. Each aircraft is equipped with sensors
that return information about its state and the state of neigh-
boring aircraft. In particular, a number of hardware and
software components contribute information to the TCAS
algorithms,e.g., the radio and pressure altimeters (which
measure the aircraft altitudes), the radar (which measures
the range to neighboring aircraft), the ModeC or ModeS
transponders (which measure the altitude of neighboring
aircraft), and the filtering algorithms (which “smooth” the
received data and produce estimates of the range and alti-
tude rates). The information that the sensors receive and
provide about the aircraft state is quantized spatially and
sampled temporally.

All such sensor hardware and software components of
aircraft i are modeled by the HIOASi = (USi , XSi , YSi ,
ΣinSi , ΣintSi , ΣoutSi

, ΘSi , DSi , WSi). The input variables of
Si are the positions and velocities of all aircraft,USi =
{pj , vj}Nj=1. The output variables ofSi are estimates of the

altitude,hij ∈ R, and vertical rate,̇hij ∈ R, for all aircraft
and the distance (range),Rij ∈ R+, and its rate,Ṙij ∈ R,
between aircrafti and each neighboring aircraftj. In other
words,YSi = {hij , ḣij}Nj=1 ∪ {Rij , Ṙij}j 6=i.

We assume that the output variables of the sensor au-
tomaton fall within an interval centered at the “correct” val-
ues corresponding to the actual state of the system. Let
nAi, nARi, nRi, andnRRi denote the size of the intervals
for hij , ḣij , Rij , and Ṙij respectively, and assumenAi,
nARi, nRi, andnRRi are constant. Moreover, let[a ± b],
for b ≥ 0, denote the interval[a − b, a + b]. The output
variables ofSi are updated everyTSi seconds (we assume

thatTSi = 1, throughout), upon the occurrence of an output
actionSamplei. We setΣoutSi

= {Samplei}. Upon the oc-
currence ofSamplei the value ofhij is reset to a new value
hij ∈ [zj ± nAi] (and similarly for the remaining output
variables ofSi). The sensor automaton is assumed to have
no input or internal actions (ΣinSi = ΣintSi = ∅).

3.2.3. Conflict detection. The role of the conflict detec-
tion module is to determine whether or not neighboring air-
craft pose a threat. Aircraft are examined one at a time.
The conflict detection module is modeled by the HIOA
Di = (UDi ,XDi , YDi , ΣinDi , ΣintDi , ΣoutDi

, ΘDi ,DDi ,WDi).
The input variables ofDi are the output variables ofSi, as
well as boolean variablesThreatij which indicate whether
the conflict resolution module is already aware of the threat.
Overall,UDi = YSi∪{Threatij}j 6=i. Di is assumed to have
no input or internal actions (ΣinDi = ΣintDi = ∅) and no in-
ternal or output variables (XDi = YDi = ∅). aircraftj is
declared a threat by aircrafti upon the occurrence of an out-
put actionDeclareij and ceases to be regarded as a threat
upon the occurrence of an output actionUndeclareij , i.e.,
ΣoutDi

= {Declareij ,Undeclareij}j 6=i.
Two derived boolean variables,RangeTestij and

Altitude Testij , are used to determine the preconditions
of the Declareij and Undeclareij output actions. The
RangeTestij encodes the conditions that the range and
range rate need to satisfy for aircraftj to be declared a threat
by aircrafti. TheAltitude Testij estimates the vertical sep-
aration at the estimated time to closest approach,τij , where
τij = −Rij/min{Ṙij ,−10}. An intruding aircraft is de-
clared a threat by TCAS as soon as it “passes” both range
and altitude tests. Once the aircraftj is declared a threat by
the aircrafti, the aircraftj remains a threat until it fails the
range test; at which point, theUndeclareij output action is
scheduled.

3.2.4. Conflict resolution. For the conflict resolution
module we restrict our attention to conflicts involving only
two aircraft. The conflict resolution module is modeled
by the HIOA Ri = (URi , XRi , YRi , ΣinRi , ΣintRi , ΣoutRi

,
ΘRi , DRi , WRi). The input variables ofRi are the out-
put variables of the sensor automaton and theModeS
and equipment information from the aircraft automata,i.e.,
URi = YSi ∪ {ModeSj ,Equipmentj}Nj=1. The output
variables ofRi are the booleanThreatij variables, indicat-
ing that aircrafti considers aircraftj a threat, and a res-
olution advisory for the pilot, consisting of aSensei ∈
{Climb,Descend,⊥} and aStrengthi ∈ Strengths≡ { -
2000, -1000, -500, 0, 1500, 2500} (units offt/min). The
Sensei indicates whether aircrafti should try to pass above
(Sensei = Climb) or below (Sensei = Descend) the in-
truding aircraft.Sensei = ⊥ (undefined) indicates that no
action is needed. In summary, the output variables ofRi are

YRi = {Sensei,Strengthi} ∪ {Threatij}Nj=1. Ri maintains
three internal variables, the booleanReversedi that keeps
track of whether the sense selection has already been re-
versed during the current encounter, the booleanCrossingi
which keeps track of whether the current RA implies that
the aircraft would cross in altitude if they were to follow
the RA, andIntent Sentij ∈ {Climb,Descend,⊥}, which
keeps track of the last intent message sent by aircrafti
to aircraft j. The intent messages can be thought of as
“commands” to aircraftj as to which RA it should is-
sue. In summary, the internal variables ofRi areXRi =
{Reversedi,Crossingi} ∪ {Intent Sentij}j 6=i.
Ri has no internal actions. Sense selection can hap-

pen when aircraftj is first declared a threat (upon
the occurrence of the input actionDeclareij), when-
ever an intent message is received from another TCAS-
equipped aircraft (upon the occurrence of an input ac-
tion Receiveij(dir), with dir ∈ {Climb,Descend} being
the intent of aircraftj), and whenever the system state
is sampled by the sensors (upon the occurrence of input
action Samplei). The advisory is retracted whenever the
intruding aircraft ceases to be considered a threat (upon
the occurrence of the input actionUndeclareij). In sum-
mary, the input actions ofRi are ΣinRi = {Samplei} ∪
{Declareij ,Receiveij(dir),Undeclareij}j 6=i. aircraft i
sends its intentions to aircraftj through an output action,
Sendij(dir), where dir∈ {Climb,Descend} is the intent of
aircrafti.

To predict the vertical separation at the estimated time
to closest approach,τij , TCAS assumes that the intrud-
ing aircraft,j, will maintain its current course,i.e., aj ≡
[0 0 0]T . It also assumes that the pilot of aircrafti will
respond to the advisory after a delay of exactlyd (a pa-
rameter which depends on whether the advisory is new or
a modification to an existing advisory), by applying a con-
stant accelerationa, in the vertical direction until the desired
vertical rate (given byStrengthi) is reached. If the current
vertical speed meets theStrengthi requirement or ifτij is
less than the pilot delay, TCAS assumes that aircrafti will
also maintain its current course.

More precisely, consider the derived variable,σi, which
denotes the sense of the aircrafti, i.e., σi = 1 if Sensei =
Climb, σi = 0 if Sensei = ⊥, andσi = −1 if Sensei =
Descend. For the senseσi ∈ {−1, 1} and the resolution
advisory strengthStrength∈ Strengths, the vertical separa-
tion at the time of closest approach, denoted by the derived
variableSEPij(σi,Strength), is equal toσi[(hii − hij) +
(ḣii − ḣij)τij], if (τij ≤ d) ∨ (σiḣii ≥ Strength), and
σi[(hii−hij)+(ḣii− ḣij)d+(σiStrength− ḣij)(τij−d)],
otherwise. The TCAS conflict resolution algorithm assumes
that a Climb advisory will produce adequate separation at
closest approach ifSEPij(1, 1500) ≥ ALIM, whereALIM
is a system parameter that depends on the current altitude.

Similarly, a Descend advisory is assumed to produce ade-
quate separation ifSEPij(−1, 1500) ≥ ALIM. Note that
in both cases the nominal strength is used. Throughout the
following sections, we letNStr= 1500 and∆NStr= 3000.

aircrafti issues an advisory against aircraftj for the first
time either when the conflict detection module declaresj
a threat or when aircrafti receives an intent message from
aircraftj, indicating that aircraftj has already issued a RA
against aircrafti. In the former case, aircrafti (the first of
the two to detect the conflict) chooses an advisory sense in-
dependently of aircraftj. If neither a Climb nor a Descend
resolution provides adequate separation, the one that pro-
duces the largest separation is chosen1. If one of the two
produces adequate separation but the other one does not, the
one that does is chosen. If both produce adequate separation
preference is given to the non-crossing advisory (Climb if
aircrafti is already higher or Descend if it is lower). If air-
craft j has already issued an advisory, the complementary
sense is typically chosen. The only exception is if aircrafti
has a lower ModeS number, the received intent is crossing
(aircraft j is higher and has requested aircrafti to Climb
or it is lower and has requested aircrafti to Descend) and
aircrafti believes a non-crossing resolution is plausible.

The sense may be reversed later on if, for example, one
(or both) of the pilots thwarts the advisory. If aircraftj is not
TCAS equipped, or if it is but has a higher ModeS number
and the current advisory is crossing, aircrafti reverses its
advisory whenever it is predicted that the current advisory
will not lead to adequate separation, while the reversed ad-
visory will. However, aircrafti can only reverse once; the
internal variableReversedi is used to enforce this require-
ment. The new intent is communicated to aircraftj which,
due to it’s higher ModeS number, is forced to change its
advisory accordingly.

The advisory strength is updated every time the state is
sampled bySensori, i.e., upon occurrence of theSamplei
action. The choice ofStrengthi again depends on the pre-
dicted vertical separation at timeτij . In particular, the con-
flict resolution automaton selects the weakest strength that
guarantees sufficient vertical separation of the aircraft at the
estimated time of closest approach.

3.2.5. Pilot. The pilot is modeled by the HIOAPi =
(UPi , XPi , YPi , ΣinPi , ΣintPi , ΣoutPi

, ΘPi , DPi , WPi). The
inputs variables are the selected advisory and the vertical
rate of aircrafti, i.e., UPi = {Sensei, Strengthi, ḣii}.
The output variable is the acceleration of the aircraft,i.e.,
YPi = {ai}. New advisories issued by TCAS are stored in
an internal queue,Adv Qi. Each element of the queue con-
tains the sense and strength of the corresponding advisory,

1We conjecture that conflict detection will take place early enough so
that this case will never have to be exercised. We include it here mainly for
completeness.

as well as upper and lower bounds on the time that may
elapse before the pilot implements the respective advisory.
The internal variablesLast Sensei andLast Strengthi store
the last advisory issued by TCAS. The internal variables
Current Sensei and Current Strengthi store the last advi-
sory implemented by the pilot; all “in-between” advisories
are stored inAdv Qi.

The pilot automaton has no input or output actions. An
internal actionNewAdvisoryi takes place whenever a new
advisory is issued by TCAS. The effect of the action is to
add the advisory to the tail ofAdv Qi. The internal ac-
tion ImplementAdvisoryi takes place whenever an advisory
from Adv Qi (not necessarily the one at the head) is im-
plemented by the pilot. All earlier advisories are flushed
from the queue and the pilot chooses non-deterministically
whether to follow the advisory according to the value of the
internal variableFollowi. The implementation time for each
advisory is guaranteed to be within interval[di, di] from the
time it gets issued by TCAS, unless it is “superseded” by
the implementation of a later advisory.

We assume that the pilot can exert a range of acceler-
ations in each of the three directions:axi(t) ∈ [axi, axi],
ayi(t) ∈ [ayi, ayi], andazi(t) ∈ [azi, azi]. We denote this
compactly byai ∈ [ai, ai]. We also assume that the pilot
tries to maintain the vertical velocity within a certain range,
[vzi, vzi]. If the pilot chooses to follow an advisory, he/she
is assumed to respond by applying a constant vertical accel-
eration|azi| = a until the desired vertical rate is reached.
A pilot is assumed to do nothing (setazi = 0) if he/she
decides to follow the advisory and the current vertical rate
meets the advisory strength. We assume that when no ad-
visory is present or when the pilot chooses not to follow it,
he/she arbitrarily sets the vertical acceleration in the inter-
val [ai, ai], in a way that will not cause the desired limits
on vertical speed to be violated. More precisely, we assume
thatazi ≤ −a < 0 < a ≤ azi, [−2500, 2500] ⊆ [vzi, vzi],
andvzi ∈ [vzi, vzi].

3.2.6. Communication channel. Communication of in-
tents is achieved through the communication channel HIOA
Cij . The automaton has an input actionSendij(dir), for
dir ∈ Dir , whose effect is to store the intent dir together
with time stamps providing lower and upper bounds on the
delivery time in an internal queue. The message is deliv-
ered (and removed from the queue) upon occurrence of the
output actionReceiveji(dir), for dir ∈ Dir . The delivery
time for each message is guaranteed to be within interval
[dij , dij] from the time the message was sent.

3.2.7. The closed-loop TCAS system. All the hardware
and software related to the TCAS system are captured by
the HIOA TCASi which is the composition ofSi, Di, and
Ri with all variables inYSi∪{Threatji}j 6=i and all actions in

ΣoutSi
∪ΣoutDi

hidden. The interface ofTCASi with the outside
world, i.e., the pilots, the aircraft, and the communication
channels, is through the input variablesUTCASi = USi ∪
{ModeSj ,Equipmentj}j 6=i, output variablesYTCASi =
{Sensei,Strengthi}, input actionsReceiveij(dir), for dir ∈
Dir , and output actionsSendij(dir). A physical system of
N aircraft, denoted byPS, is modeled as the composition of
Ai, TCASi, Pi, andCij , for i, j ∈ {1, . . . , N}, i 6= j, i.e.,
PS=

∏
i,j∈{1,... ,N},i 6=j Ai × TCASi × Pi × Cij .

4. Safety of a pair of well-behaved and TCAS-
equipped aircraft

In this section, we present various safety conditions for a
simplified version of a closed-loop system involving two
aircraft. We begin by defining a pair of well-behaved and
TCAS-equipped aircraft. Then, we proceed by categorizing
the executions of this system and by providing safety con-
ditions for each of the execution categories. We conclude
by combining the per-category safety conditions into safety
conditions for any execution of our system. In order to keep
our analysis simple and tractable, we make several assump-
tions that seem restrictive. One should realize, however, that
in this paper we are primarily interested in demonstrating
our modeling and analysis approach. We defer the analysis
of more complicated TCAS behavior to future research.

4.1. A pair of well-behaved and TCAS-equipped
aircraft

In this section, we define a simple and idealized closed-loop
system,WBS, that is comprised of only two aircraft. The
aircraft are assumed to be TCAS-equipped, their sensors are
assumed to be exact, pilots are assumed to always abide by
the RAs issued by the TCAS system, and the aircraft are
assumed to follow flight paths that have constant horizontal
velocities. Moreover, in an effort to simplify the analysis
of the TCAS system, we assume that the pilot can apply
infinite acceleration in the vertical direction,i.e., a = ∞,
so as to be capable of attaining the resolution strength sug-
gested by the TCAS system instantaneously. Although this
assumption is not representative of reality, in effect it corre-
sponds to analyzing a system where the pilot requires some
additional delay in responding to a resolution advisory.

Thus, a pair of well-behaved and TCAS-equipped
aircraft, WBS, is a system of 2 aircraft that satisfies
Equipmenti = TCAS, nAi = 0, nARi = 0, nRi = 0,
nRRi = 0, Followi = True , axi = ayi = 0, for
i ∈ {1, 2}, anda =∞. Let s denote the system state,dp =
max{d1, d2}, dp = min{d1, d2}, dc = max{d12, d21},
dc = min{d12, d21}, ∆x = x1 − x2, ∆y = y1 − y2,
∆z = z1 − z2, ∆vx = vx1 − vx2, ∆vy = vy1 − vy2,

and ∆vz = vz1 − vz2. Clearly, the sensors ofWBSsat-
isfy, for i, j ∈ {1, 2}, hij = zj , ḣij = vzj , Rij =√

∆x2 + ∆y2 + ∆z2, and Ṙij = dRij/dt at the times
when the actionSamplei is scheduled (similarly forj). As
the “views” of the world available to the aircraft are ac-
curate, we usezi instead ofhii andhji, R (Ṙ) instead of
Rij andRji (Ṙij andṘji) throughout the remaining sec-
tions, for i, j ∈ {1, 2}. To simplify the notation, we also
assume thatvz1 = vz2 and vz1 = vz2. Thus, we de-
fine the upper bound on the magnitude of relative verti-
cal speed as∆vz = −∆vz = vz1 − vz2 = vz2 − vz1.
Lastly, let S denote the set of states ofWBS, i.e., S =
states(WBS) and letAdmissibleExecsdenote the set of ad-
missible executions ofWBS, i.e., AdmissibleExecs= {α ∈
execs(WBS) | α.fstate∈ ΘWBSandα.ltime =∞}.

We assume that the various parameters used by TCAS,
such asALIM, etc., remain constant throughout any exe-
cution ofWBS. Without loss of generality, we assume that
aircraft 1 is the high priority aircraft,i.e., ModeS1 <
ModeS2. In view of only considering TCAS resolutions
that utilize nominal resolutions, we assume that the ac-
tions Declareij , Samplei, and Receiveij(dir), for i, j ∈
{1, 2}, i 6= j and dir ∈ Dir , only set theStrength1
andStrength2 variables to1500ft/min, i.e., Strength1 =
Strength2 = NStr = 1500, throughout any execution of
WBS. Also, we assume that once pilots get alerted to a
threat, they do not oppose the RA suggested by TCAS,i.e.,
for any states ∈ S, s.σis.ai ≥ 0, for i ∈ {1, 2}. Finally,
we assume that once either anUndeclare12 or Undeclare21

action in scheduled byWBS, the aircraft no longer pose a
threat to each other — that is, we assume that the TCAS
system is conservative in undeclaring a potential threat and
that it deems it appropriate to undeclare a threat when in-
deed it is safe to do so.

For any states ∈ S, let thetime to closest horizontal ap-
proachbe defined ass.T = −(∆x∆vx+∆y∆vy)/(∆v2

x+
∆v2

y). For any executionα ∈ execs(WBS) and a state
s ∈ S, lets ∈ α denote thats is visited alongα. By abusing
the notation on state occurrences, when we refer to a states
occurring within an executionα of WBSwe infer a particu-
lar state occurrence of the states within α. Thus, the states
visited along an execution are ordered,i.e., for s1, s2 ∈ α,
we write s1 ≤ s2 to denote thats1 is visited by the finite
prefix ofα ending ins2.

4.2. Agreement protocol

In Table 1, we define sets of states ofWBSthat represent
incremental progress milestones of the agreement protocol
used by TCAS to obtain consistent RAs when two aircraft
are involved in a conflict.

Lemma 1

Table 1. Milestone sets of protocol progress

Local-Awareness= {s ∈ S |
(s.Threat12 ∧ s.Sense1 6= ⊥)
∨(s.Threat21 ∧ s.Sense2 6= ⊥)}

Local-Awareness-Sent= {s ∈ S |
(s.Threat12 ∧ s.Sense1 6= ⊥)
∨(s.Threat21 ∧ s.Sense2 6= ⊥
∧s.Intent Sent21 6= ⊥)}

Local-Resolution= {s ∈ S |
s.Threat12 ∧ s.Sense1 6= ⊥}

Local-Resolution-Sent= {s ∈ S | s.Threat12

∧s.Sense1 6= ⊥ ∧ s.Intent Sent12 = s.Sense1}
Global-Resolution= {s ∈ S |
s.Threat12 ∧ s.Threat21 ∧ s.Sense2 6= s.Sense1

∧s.Sense1 6= ⊥ ∧ s.Intent Sent12 = s.Sense1
∧s.Sense2 6= ⊥ ∧ s.mset12 = ∅}

Global-Resolution-Sent= {s ∈ S |
s.Threat12 ∧ s.Threat21 ∧ s.Sense1 6= s.Sense2

∧s.Sense1 6= ⊥ ∧ s.Intent Sent12 = s.Sense1

∧s.Sense2 6= ⊥ ∧ s.Intent Sent21 = s.Sense2
∧s.mset12 = ∅}

Global-Agreement= {s ∈ S |
s.Threat12 ∧ s.Threat21 ∧ s.Sense1 6= s.Sense2

∧s.Sense1 6= ⊥ ∧ s.Intent Sent12 = s.Sense1

∧s.Sense2 6= ⊥ ∧ s.Intent Sent21 = s.Sense2
∧s.mset12 = ∅ ∧ s.mset21 = ∅}

1. Global-Agreement⊆ Global-Resolution-Sent,

2. Global-Resolution-Sent⊆ Global-Resolution,

3. Global-Resolution⊆ Local-Resolution-Sent,

4. Local-Resolution-Sent⊆ Local-Resolution,

5. Local-Resolution⊆ Local-Awareness-Sent,

6. Local-Awareness-Sent⊆ Local-Awareness.

The following lemma specifies the time that is needed
to progress through the milestones of the TCAS agreement
protocol, provided that neither RAs get undeclared, nor re-
versals occur. Once any aircraft gets alerted to the threat,
the high priority aircraft gets alerted withindc time units, a
consistent RA is reached within2dc, and the protocol ter-
minates within3dc. It is important to note that once a con-
sistent RA is reached, both pilots may implement the RA
within dp time units provided they decide to follow the RA.

Thus, provided that the pilots follow RAs,dc + dp time
units after the high priority aircraft gets alerted to the advi-
sory, both aircraft have already implemented the RAs. Let
StableResolutionFrags be the set of execution fragments
consisting of all the execution fragments ofWBSin which
threats are not undeclared and reversals do not occur.

Lemma 2 For any finite execution fragment α
of WBS in StableResolutionFrags such that
α.fstate∈ Local-Awareness it is the case that:

1. α.ltime> dc =⇒ α.lstate∈ Local-Resolution,

2. α.ltime> 2dc =⇒ α.lstate∈ Global-Resolution,

3. α.ltime> 3dc =⇒ α.lstate∈ Global-Agreement,

4. α.ltime > 3dc + dp =⇒ (¬s.Follow1 ∨ (σs.vz1 ≥
NStr)) ∧ (¬s.Follow2 ∨ (−σs.vz2 ≥ NStr)), where
s = α.lstate andσ = 1, if s.Sense1 = Climb, and
σ = −1, otherwise.

4.3. Execution categorization

We partition the hybrid executions ofWBS into the fol-
lowing four categories: 1)Conflict Free Execs, execu-
tions for which the TCAS protocol is not invoked; 2)
Non CrossingExecs, executions where the TCAS protocol
is initiated, a non-crossing RA is issued initially by air-
craft 1 and is maintained until the conflict is over (once
the high priority aircraft decides upon a non-crossing RA,
its decision can not be reversed); 3)CrossingExecs, ex-
ecutions where the TCAS protocol is initiated, a cross-
ing RA is issued initially by aircraft 1 and is maintained
until the conflict is over (once the aircraft cross in al-
titude and a sample action is scheduled, the advisory
switches from being a crossing RA to a non-crossing RA);
4) ReversingExecs, executions where the TCAS proto-
col is initiated, a crossing RA is issued initially by air-
craft 1 and is reversed to a non-crossing RA before the
aircraft cross in altitude and is maintained until the con-
flict is over (only possible to reverse out of a crossing
RA). The setsConflict Free Execs, Non CrossingExecs,
CrossingExecs, andReversingExecsare pairwise disjoint,
and jointly comprise the setAdmissibleExecs. We also de-
fine the set of safe executions ofWBSas the set of execu-
tions in which the aircraft are sufficiently separated in alti-
tude at closest horizontal approach,i.e., SafeExecs= {α ∈
AdmissibleExecs| ∀ s ∈ α, (s.T = 0) =⇒ (|s.∆z| ≥
ALIM)}.

We assume that the TCAS system declares a con-
flict whenever there is a potential mid-air collision,i.e.,
Conflict Free Execs⊆ SafeExecs. We realize that this as-
sumption is restricting, but we are interested in analyzing
the performance of the TCAS system whenever it is en-
gaged. Again, we defer the analysis of whether the TCAS

system actually gets engaged in all potential mid-air colli-
sions to future research.

4.4. Safety conditions

For an executionα ∈ Conflict Execs, we defineα.s0 ∈ α
to be the state prior to which the high priority aircraft gets
initially alerted to a potential mid-air collision threat. Also,
by abusing notation, letα.T0 denote the time to closest hor-
izontal approach from the stateα.s0. Let D be an upper
bound on the delay from the time in which the high priority
aircraft gets alerted to a threat up to the time in which both
aircraft implement consistent RAs,i.e.,D = dc + dp.

We assume that the boundD is larger than the bound
d used by the TCAS algorithm to determine what type of
RA to issue,i.e., D > d. Moreover, we assume that the
TCAS algorithm detects a conflict far enough in advance
so as to have enough time to react,i.e., the time of closest
horizontal approach occurs more thanD time units after
the declaration of a mid-air collision threat by aircraft 1. In
view of analyzing the correctness of the TCAS algorithm,
this seems to be a reasonable assumption because we should
not expect TCAS to be able to prevent collisions in cases
where the system as a whole does not have sufficient time
to decide upon and implement the RAs issued by TCAS.

4.4.1. Safety of non-crossing executions. In the case
of non-crossing executions, we define a derived variable,
PNC , that denotes the minimum possible vertical separa-
tion of the aircraft at closest horizontal approach under the
assumption that both aircraft implement a non-crossing ad-
visory following an initial implementation delay ofD time
units. Fors ∈ S, let s.PNC = |s.∆z| + s.∆vNCD +
2NStr(s.T − D), wheres.∆vNC = min(2NStr, σs.vz1 +
max(vz,−σs.vz2 − azdc)) with σ = sign(s.vz1 − s.vz2).
Intuitively, the worst-case vertical separation at the time
of closest horizontal approach is the initial altitude separa-
tion, minus potential losses during the implementation de-
lay, i.e., the time it takes both aircraft to agree to and to
implement the non-crossing advisory, plus the separation
that is gained by following the RA at nominal strength once
it is implemented. Moreover, letNon CrossSafe= {s ∈
S | s.PNC ≥ ALIM} be the set of states ofWBSfrom
which the choice and implementation of a non-crossing RA
is guaranteed to result in adequate separation in altitude at
closest horizontal approach.

Lemma 3 If α ∈ Non CrossingExecs andα.s0 ∈
Non CrossSafe, thenα ∈ SafeExecs.

4.4.2. Safety of crossing executions. In the case of cross-
ing executions, we define a derived variable,PC , that de-
notes the minimum possible vertical separation of the air-
craft at closest horizontal approach under the assumption

that both aircraft implement a crossing advisory following
an initial implementation delay ofD time units. Fors ∈ S,
let s.PC = −|s.∆z|+ s.∆vCD + 2NStr(s.T −D), where
s.∆vC = min(2NStr,−σs.vz1 + max(vz, σs.vz2−azdc))
with σ = sign(s.vz1 − s.vz2). Intuitively, the worst-case
vertical separation at the time of closest horizontal approach
is the initial altitude separation, minus potential losses dur-
ing the implementation delay,i.e., the time it takes both air-
craft to agree to and to implement the crossing advisory,
plus the separation that is gained by following the RA at
nominal strength once it is implemented. Moreover, let
CrossSafe = {s ∈ S | s.PC ≥ ALIM} be the set of
states ofWBSfrom which the choice and implementation
of a crossing RA that is carried out to completion is guar-
anteed to result in adequate separation in altitude at closest
horizontal approach.

Lemma 4 If α ∈ CrossingExecs andα.s0 ∈ CrossSafe,
thenα ∈ SafeExecs.

4.4.3. Safety of reversing executions. In the case of re-
versing executions, a reversal can occur in two distinct parts
of the execution, namely, prior to and on or after the time
in which the crossing execution gets implemented. We ana-
lyze each of these cases separately.

First, we analyze the case in which the reversal occurs
prior to the implementation of the crossing resolution. In
this case, the reversal occurs prior toD time units after
the first declaration of the threat and gets implemented by
both aircraft withinD of the time of the sense reversal of
aircraft 1. Thus, the time elapsing from the stateα.s0 to
the latest possible time in which the non-crossing RA gets
implemented is2D. We define a derived variable,P<R ,
that denotes the minimum possible vertical separation of
the aircraft at closest horizontal approach. For alls ∈ S,
let s.P<R = |s.∆z| + s.∆v<R(2D) + 2NStr(s.T − 2D),
where s.∆v<R = min(2NStr,max(vz, σs.vz1 − azD) +
max(vz,−σs.vz2 − az(D + dc))) with σ = sign(s.vz1 −
s.vz2), i.e., σ is the non-crossing RA sense of aircraft 1 is
states. The intuitive understanding of the derived variable
P<R involves realizing that the worst-case would be to de-
cide to reverse at the latest possible point in time,i.e., D
time units after the initial threat declaration, which would
in turn allow the least amount of time for the new advisory
to attain the necessary vertical separation at closest horizon-
tal approach. It follows that the states is safe in this type of
an execution ifs.P<R ≥ ALIM.

Second, we analyze the case in which a reversal occurs
subsequent to the implementation of the crossing advisory
by both aircraft,i.e., the reversal occurs in a state in which
both aircraft are following the crossing resolution advisory.
Let s be the state in which the first alert declaration is sched-
uled by aircraft 1,s′ be the first state in which both aircraft

are implementing the crossing advisory, ands′′ be the state
in which the sample action resulting in the reversal is sched-
uled. Note that the maximum time between the occurrence
of states ands′ isD. Throughout this section we will refer
to the time to closest horizontal approach from states asT ,
instead ofs.T .

A reversal is warranted only if the crossing advisory
is unsafe and the non-crossing advisory is safe. Letting
the crossing and non-crossing senses of aircraft 1 in state
s be denoted by−σ and σ, respectively, the conditions
that would dictate the reversal in states′′ according to the
TCAS specifications areSEP12(−σ,NStr) < ALIM and
SEP12(σ,NStr) ≥ ALIM. Moreover, since we are assuming
that the crossing advisory has already been implemented,
it follows that−σvz1 ≥ NStr andσvz2 ≥ NStr. More-
over, since reversals can only be considered while the dif-
ference in altitude opposes the current RA sense, it follows
that−σ∆z < 0. Combining the above conditions, it can
be shown that in order for an aircraft to reverse out of an
implemented crossing RA,−σ, in states′′ it the case that
σ∆z ≥ ALIM, i.e., the aircraft altitude separation in state
s′′ must be greater than or equal toALIM. From this condi-
tion, we obtain conditions on the latest possible time,TR,
at which a reversal can occur. For any states in which the
first alert declaration is scheduled, the latest point in time
at which the reversal could occur corresponds to the lat-
est point in time that the inequalityσ∆z ≥ ALIM could
be violated,i.e., TR is bounded by the inequality−|∆z| +
s.∆vCD+ 2NStr(TR−D) ≤ −ALIM. Solving forTR we
getTR ≤ (−ALIM+ |∆z|−s.∆vCD+2NStrD)/(2NStr).
If the value ofTR turns out to be negative, then it follows
that the reversal could never have been scheduled in the first
place. In such cases, we assume that the execution is safe.

In order for such a state to be safe, the worst case tra-
jectory must be safe; that is, given an altitude separation
of ALIM, the worst case would be to follow a trajectory of
minimum vertical velocity until the non-crossing RA gets
implemented and then carry on with a nominal strength non-
crossing RA. We define a derived variable,P≥R , that denotes
the minimum possible vertical separation of the aircraft at
closest horizontal approach given that aircraft 1 reverses its
senseTR time units after its initial declaration of a threat.
For all s ∈ S, let s.P≥R = ALIM + s.∆v≥RD + 2NStr(T −
TR − D), wheres.∆v≥R = min(2NStr,max(vz, σs.vz1 −
azTR) + max(vz,−σs.vz2 − az(TR + dc))) with σ =
sign(s.vz1 − s.vz2), i.e., σ is the non-crossing RA sense
of aircraft 1. Plugging in the value forTR and simplifying,
we gets.P≥R = 2ALIM − |∆z| + (s.∆vC + s.∆v≥R)D +
2NStr(T−2D). It follows that the states is safe in this type
of an execution ifs.P≥R ≥ ALIM.

Thus, letReverseSafe= {s ∈ S | (s.P<R ≥ ALIM) ∧
((s.P≥R ≥ ALIM) ∨ (TR < D))} be the set of states from
which any type of reversing execution results in sufficient

altitude separation at closest horizontal approach. Our ap-
proach is to take the conjunction of the safety properties for
the two types of reversing executions. When doing so how-
ever, we must be cautious because the second condition is
only valid if the reversal occurs after the crossing advisory
gets implemented.

Lemma 5 If α ∈ ReversingExecs and α.s0 ∈
ReverseSafe, thenα ∈ SafeExecs.

4.5. Safety of executions in summary

In the previous section, we derived safety conditions for
each of the categories of executions ofWBS. In particu-
lar, we defined sets of states from which the choice and
execution of a non-crossing, crossing, and reversing exe-
cution, respectively, would result is sufficient altitude sep-
aration at closest horizontal approach. In this section, we
provide three ways in which these safety conditions can be
combined in order to provide overall safety conditions.

4.5.1. Conjunction of per-category safety properties.
In this section, we define our overall safety property to be
the conjunction of the per-category safety properties. Al-
beit simple, this approach is conservative since in order for
an execution ofWBSto be deemed safe, it must satisfy the
safety conditions of all types of executions.

Theorem 6 If α ∈ Conflict Execs and α.s0 ∈
Non CrossingSafe∩ CrossingSafe∩ ReverseSafe, then
α ∈ SafeExecs.

4.5.2. Isolating non-crossing executions. In this section,
we remove some of the conservatism of Theorem 6 by iso-
lating the non-crossing execution advisories. The inherent
bias in the TCAS system toward non-crossing RAs dic-
tates that the majority of RAs issued by TCAS will be non-
crossing RAs. Thus, by isolating the set of non-crossing
executions and distinguishing them from the crossing and
reversing executions, we obtain less conservative results.

We begin by defining a necessary condition for initially
choosing a crossing advisory. In order for a crossing advi-
sory to be chosen, at the point in time of the advisory dec-
laration by the high priority aircraft, the TCAS algorithm
should deem it appropriate. According to the conflict reso-
lution automatonRi, the declaration occurs through either
a Declare12 or aReceive12(dir) action, where dir∈ Dir. In
the case of aDeclare12 action, the crossing advisory is se-
lected only when the estimated altitude separation at clos-
est approach resulting from a crossing and a non-crossing
advisory is sufficient and insufficient, respectively. In the
case of aReceive12(dir) action, where dir∈ Dir, a cross-
ing advisory is chosen only in the case when the RA sug-
gested by the low priority aircraft is a crossing RA and

the high priority aircraft agrees with it. For any execu-
tion α of WBS, we let the state from which the high pri-
ority aircraft gets alerted to the threat by aDeclare12 or a
Receive12(dir) action, where dir∈ Dir, be denoted byα.s0

and the state following the scheduling of the action asα.s′0.
Moreover, lets.C = ∃ σ ∈ {1,−1} such that(σs.∆z <
0)∧ (Sep12(σ,NStr) ≥ ALIM∧Sep12(−σ,NStr) < ALIM)
be the derived variable that denotes whether the choice of a
crossing RA is possible from the perspective of aircraft 1.
Sinces.C is a necessary condition for the aircraft to en-
gage in a crossing RA, the negation of this condition is a
sufficient condition for choosing a non-crossing RA. Let
CrossImpossible= {s ∈ S | s.C = False } be the set of
states ofWBSfrom which it is impossible for aircraft 1 to
choose a crossing RA.

Lemma 7 If α ∈ Conflict Execs and α.s0 ∈
CrossImpossible, thenα ∈ Non CrossingExecs.

Theorem 8 If α ∈ Conflict Execs and α.s0 ∈
(CrossImpossible∩Non CrossSafe)∪ (Non CrossSafe∩
CrossSafe∩ ReverseSafe), thenα ∈ SafeExecs.

4.5.3. Aircraft close in altitude. In this section, we spec-
ify safety conditions for a set of executions that are defined
parametrically with respect to the altitude separation of the
aircraft at the point in time when the conflict is initially de-
clared by aircraft 1. This approach was suggested to us by
engineers actively involved in the design and analysis of the
TCAS system. The intuition behind this approach is that
crossing advisories will most likely be chosen when the air-
craft are close in altitude, so it is very useful to consider and
reason about the performance of TCAS is such executions.

If the aircraft are close in altitude when the threat gets
declared, then the type of execution to be carried out is fi-
nalized by the time the aircraft would cross in altitude had
a crossing advisory been chosen initially and carried out
to completion. On one hand, if a non-crossing RA is de-
clared initially by aircraft 1, the execution type is known
immediately. On the other hand, if a crossing RA is de-
clared initially by aircraft 1, the RA is either carried out
to completion, or reversed before the aircraft cross in al-
titude. Thus, by the time the aircraft cross in altitude, it
is known whether the execution is crossing or reversing.
Let Close-in-AltExecs = {α ∈ Conflict Execs | s =
α.s0, |s.∆vz| ≤ K} be the set of executions ofWBS in
which the aircraft are separated in altitude by at mostKft
when aircraft 1 is alerted to a threat.

The safety condition for executions in the set
Close-in-AltExecsis obtained in a very similar fashion to
the way the safety condition is obtained for the second
type of reversing executions. In particular, the separation
obtained by any type of execution is bounded from be-
low by the separation obtained by a reversing execution in

which aircraft 1 reverses its sense just as the aircraft cross
in altitude. We denote the latest possible crossing time
by TC . For any states ∈ S in which the threat decla-
ration is scheduled by aircraft 1, the latest point in time
at which the aircraft could cross in altitude corresponds
to the latest point in time that the inequalityσ∆z ≥ 0
could be violated,i.e., TC is bounded by the inequality
−K + s.∆vCD + 2NStr(TC − D) ≤ 0. Solving forTC
we getTC ≤ (K − s.∆vCD + 2NStrD)/(2NStr). If
−K + s.∆vCD > 0, then the above calculation forTC
will result in a negative value, which implies that the rever-
sal would have occurred prior toD time units following the
initial declaration of a threat by aircraft 1. Thus, in such
cases as an upper bound on the delay in reversing we can
use the value ofD time units.

In order for a states to be safe, the worst case al-
titude separation would be obtained by an execution in
which the aircraft follow a trajectory of minimum verti-
cal velocity until the reversal gets implemented and then
carry on with nominal strength. We define a derived vari-
able,P , that denotes the minimum possible vertical sepa-
ration of the aircraft at closest horizontal approach given
that aircraft 1 starts to implement a non-crossing advisory
max(D,TC) time units after the initial threat declaration by
aircraft 1. For alls ∈ S, let s.P = s.∆vRD + 2NStr(T −
max(D,TC) − D), wheres.∆vR = max(vz, σs.vz1 −
az max(D,TC))+max(vz,−σs.vz2−az(max(D,TC)+
dc)) with σ = sign(s.vz1−s.vz2), i.e., σ is the non-crossing
RA sense of aircraft 1. It follows that the states is safe
in this type of an execution ifs.P ≥ ALIM. Thus, let
Close-in-AltSafe= {s ∈ S | s.P ≥ ALIM}.

Theorem 9 If α ∈ Close-in-AltExecs andα.s0 ∈
Close-in-AltSafe, thenα ∈ SafeExecs.

5. Conclusions

We demonstrate how high-level modeling techniques in-
volving HIOA can be used to model and analyze com-
plex safety-critical systems such as TCAS. In our presen-
tation, we define HIOA models of all the core components
of closed-loop system — components that involve both dis-
crete and continuous behavior, define an idealized system
involving two TCAS-equipped and “well-behaved” aircraft,
and provide conditional yet absolute safety conditions for
the closed loop system. We realize that many of the simpli-
fying assumptions we make are restricting, but are intention
is to illustrate how high-level modeling and analysis tech-
niques which are amenable to formal analysis can be used
to model such systems. We defer the analysis of more com-
plicated TCAS behavior to future research.

References

[1] E. Dolginova and N. A. Lynch. Safety Verification for Auto-
mated Platoon Maneuvers: A Case Study. In O. Maler, edi-
tor, Proc. International Workshop on Hybrid and Real-Time
Systems (HART’97), volume 1201 ofLNCS, pages 154–170.
Springer-Verlag, 1997.

[2] C. Heitmeyer and N. A. Lynch. The Generalized Railroad
Crossing: A Case Study in Formal Verification of Real-Time
Systems. InProc. 15th IEEE Real-Time Systems Sympo-
sium, pages 120–131, Dec. 1994.

[3] N. Leveson. SafeWare: System Safety and Computers.
Addison-Wesley, 1995.

[4] C. Livadas. Formal Verification of Safety-Critical Hybrid
Systems. Master of Engineering Thesis, Dept. of Electrical
Engineering and Computer Science, MIT, Sept. 1997.

[5] C. Livadas, J. Lygeros, and N. A. Lynch. High-Level Mod-
eling and Analysis of TCAS. Technical Report, Laboratory
for Computer Science, MIT, Dec. 1999.

[6] J. Lygeros, D. N. Godbole, and S. Sastry. A Verified Hybrid
Controller for Automated Vehicles. In35th IEEE Confer-
ence on Decision and Control (CDC’96), pages 2289–2294,
Dec. 1996.

[7] J. Lygeros and N. A. Lynch. On the Formal Verifica-
tion of the TCAS Conflict Resolution Algorithm. In36th
IEEE Conference on Decision and Control (CDC’97), pages
1829–1834, Dec. 1997.

[8] J. Lygeros, G. J. Pappas, and S. Sastry. An Approach to
the Verification of the Center-TRACON Automation Sys-
tem. In T. A. Henzinger and S. Sastry, editors,Hybrid Sys-
tems: Computation and Control (HSCC’98), volume 1386
of LNCS, pages 289–304. Springer-Verlag, 1998.

[9] N. A. Lynch, R. Segala, and F. Vaandrager. Hybrid Au-
tomata. Preprint/Work in Progress, July 1999.

[10] N. A. Lynch, R. Segala, F. Vaandrager, and H. B. Weinberg.
Hybrid I/O Automata. In R. Alur, T. Henzinger, and E. Son-
tag, editors,Proc. DIMACS/SYCON Workshop on Verifica-
tion and Control of Hybrid Systems, Hybrid Systems III: Ver-
ification and Control, volume 1066 ofLNCS, pages 496–
510. Springer-Verlag, 1996.

[11] Radio Technical Commission for Aeronautics. Minimum
operational performance standards for traffic alert and colli-
sion avoidance system (TCAS) airborn equipment. Techni-
cal Report RTCA/DO-185, RTCA, September 1990. Con-
solidated Edition.

[12] The MITRE Corporation. TCAS II collision avoidance sub-
system requirements specification, September 1996.

[13] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict Resolution
for Air Traffic Management: A Study in Multi-Agent Hybrid
Systems.IEEE Transactions on Automatic Control, 43(4),
Apr. 1998.

[14] H. B. Weinberg, N. A. Lynch, and N. Delisle. Verification of
Automated Vehicle Protection Systems. In R. Alur, T. Hen-
zinger, and E. Sontag, editors,Hybrid Systems III: Verifi-
cation and Control, volume 1066 ofLNCS, pages 101–113.
Springer-Verlag, 1996.

