High-Level Modeling and Analysis of TCAS

Carl Livadas

Theory of Distributed Systems Group
Laboratory for Computer Science
MIT

Joint work with: John Lygeros and Nancy A. Lynch
Outline of Talk

I. Introduction

II. Hybrid Input/Output Automata (HIOA)

III. TCAS Model

IV. Results So Far

V. Further Research

VI. Conclusions
I. Introduction

Goal: Model, analyze, and design hybrid systems.

- Develop abstract system models.
- Prove high-level theorems about system safety.
- Refine models.
- Use refinement to infer lower-level theorems.

Framework: Input/Output Automaton models

- Precise notion of behavior at component interfaces.
- Invariant assertion proofs.
- Compositional reasoning.
- Levels of abstraction (simulation proofs).

- Asynchronous [Lynch, Tuttle]
 - Timed [Lynch, Vaandrager]
 - Hybrid [Lynch, Segala, Vaandrager, Weinberg]
Hybrid System Case Studies

Hybrid System Benchmark Problems:
- Railroad Crossing Problem [Heitmeyer, Lynch 94]
- Steam Boiler Controller [Leeb, Lynch 95]

Personal Rapid Transit Systems:
- Raytheon’s PRT 2000™
 [Weinberg, Lynch 95], [Weinberg, Lynch, Delisle 96], [Weinberg 96]
 [Livadas 97], [Livadas, Lynch 98]

Automated Highway Systems:
- California PATH Project
 [Branicky, Dolginova, Lynch 96], [Dolginova, Lynch 97], [Dolginova 98]

Air Traffic Management Systems:
- Traffic Alert and Collision Avoidance System (TCAS)
 [Lygeros, Lynch 97], [Livadas, Lynch, Lygeros 99]
Traffic Alert and Collision Avoidance System (TCAS)

- On board conflict detection/resolution system
- Safety critical but very complex
- Humans in the loop
- Developed through a series of revisions:
 - TCAS I: Traffic Advisories (TAs) (implemented, 1983)
 - TCAS II-6: TAs and vertical Resolution Advisories (RAs) (implemented, 1990)
 - TCAS II-7: TAs and vertical RAs with reversals (developed, 1997)
 - TCAS III: TAs and horizontal/vertical RAs (abandoned)
 - TCAS IV: TAs and horizontal/vertical RAs using GPS (conceptual)
More about TCAS II-7

TCAS II-7 uses:

- Range and range rate data (radar).
- Own and intruder altitude data (Mode_S transponder).
- Simple aircraft dynamics ($\ddot{x} = u$).
- Simple intruder intent assumptions ($u = 0$).

To:

- Alert pilot to potential collision threats.
- Determine maneuver to resolve conflict.
 - Sufficient vertical separation at closest approach.
 - “Climb” or “Descend” only.
- Issue resolution advisories to pilot.
 - Consistent for TCAS-equipped aircraft.
 - Can reverse resolution advisories (once).
Validation for TCAS

Extensive simulation:
- MIT Lincoln Labs [Drumm 97–98]
 - Provides no absolute guarantees.
 - Number of test cases very large (approx. 2 million).
 - Changes involve extensive regression testing.
 - Hard to provide conditional guarantees.

Software specification methods:
- StateCharts [Harel 97]
- RSML [Leveson, Heimdahl, Hildreth, Reese 94, 96]
- SpecTRM-RL [Leveson, Heimdahl, Reese, Brown 98, 99]
- Intent Specifications [Leveson 98]

Probabilistic modeling:
- [Kuchar 95]

Drawbacks of these approaches:
- Primarily software (not hybrid).
- Complete, detailed, low-level.
- Validation: Static checking, e.g., all cases covered.
What Else is Needed?

Better models for TCAS systems:
- Include continuous and discrete system components.
- Model and analyze systems at higher level of abstraction.
 - Capture intuitions of software designers, application users.
 - Suitable for informal communication/documentation.
 - Suitable for formal reasoning.
- Allow nondeterminism, incorporate uncertainty.
- Use formal notions of composition and refinement.
 - Support successive model refinement down to code level.
 - Connect with lower-level verification approaches.

Short-Term Goals for TCAS:
- Safety guarantees (Conditional but absolute).
- Qualitative evaluation of system limitations.
- Propose suggestions for the design of TCAS IV.

Long-Term Goals for TDS:
- Develop practical verification approach for hybrid systems:
 - Improve the hybrid system model and proof methods.
 - Develop practical tools for designing hybrid systems.
II. Hybrid Input/Output Automata
[Lynch, Segala, Vaandrager, Weinberg 96, 99]

\[A = (U, X, Y, \Sigma^{in}, \Sigma^{int}, \Sigma^{out}, \Theta, D, W) : \]

- **Variables** \(V \)
 (Input \(U \)/Internal \(X \)/Output \(Y \); External \(E = U \cup Y \))
- **Discrete Actions** \(\Sigma \)
 (Input \(\Sigma^{in} \)/Internal \(\Sigma^{int} \)/Output \(\Sigma^{out} \))
- **Initial States** \(\Theta \)
- **Discrete Transitions** \(D \) (discrete behavior)
- **Trajectories** \(W \) (continuous behavior)

Axioms: input-enabling, closure of trajectories, *etc.*

Execution
- \(\alpha = w_0a_1w_1a_2w_2 \cdots \), where \(\alpha.fstate \in \Theta, w_i \in W, \) and \(a_i \in \Sigma \)
- **Admissible:** \(\alpha.ltime = \infty \)

Traces (external behavior)
- \(\gamma = (w_0 \downarrow E)vis(a_1)(w_1 \downarrow E)vis(a_2)(w_2 \downarrow E) \cdots \)

HIOA model admits:
- Parallel composition
- Successive refinement (levels of abstraction)
Composition of HIOAs

Let A_1 and A_2 be two compatible HIOA. The composition of A_1 and A_2 is defined as $A_1 \times A_2 = (U, X, Y, \Sigma^{in}, \Sigma^{int}, \Sigma^{out}, \Theta, \mathcal{D}, \mathcal{W})$, where:

- $X = X_1 \cup X_2$
 $Y = Y_1 \cup Y_2$
 $U = (U_1 \cup U_2) - (Y_1 \cup Y_2)$

- $\Sigma^{int} = \Sigma_1^{int} \cup \Sigma_2^{int}$
 $\Sigma^{out} = \Sigma_1^{out} \cup \Sigma_2^{out}$
 $\Sigma^{in} = (\Sigma_1^{in} \cup \Sigma_2^{in}) - (\Sigma_1^{out} \cup \Sigma_2^{out})$

- $s \in \Theta$ iff $s[V_1 \in \Theta_1 \land s[V_2 \in \Theta_2$

- $(s, a, s') \in \mathcal{D}$ iff $s[V_1 \xrightarrow{\pi_{A_1}(a)} V_1] \land s[V_2 \xrightarrow{\pi_{A_2}(a)} V_2]$

- $w \in \mathcal{W}$ iff $w \downarrow V_1 \in W_1 \land w \downarrow V_2 \in W_2$
Levels of Abstraction/Simulation Relations

Simulation relation from A to B (same external signature):

1. If $r \in \Theta_A$, then B has start state s with $r R s$.

2. If $r R s$ and $r \xrightarrow{a} r'$ then B has a finite execution fragment α from s to s', with the same trace, and with $r' R s'$.

3. If $r R s$ and w is a trajectory of A from r to r' then B has finite execution fragment α from s to s', with the same trace, and with $r' R s'$.

Theorem.

If there is a simulation from A to B, then $\text{traces}(A) \subseteq \text{traces}(B)$.
III. TCAS Model

The diagram illustrates the TCAS Model, which involves aircraft, pilots, sensors, conflict detection, conflict resolution, channels, and advisories. The model shows the interaction between aircraft i and j, pilots i and j, sensors i and j, conflict detection and resolution processes, and communication channels i,j and j,i. The advisories are exchanged between the aircraft to mitigate potential conflicts.
TCAS Components

Aircraft Automaton A_i
- Variables representing transponder number and equipment.
- Simple aircraft dynamics.

Sensor Automaton S_i
- Senses available signals and schedules conflict resolutions.

Conflict Detection Automaton D_i
- Senses available information and declares/undeclares threats.

Conflict Resolution Automaton R_i
- Resolves threats.

Communication Channel Automaton C_{ij}
- Sends messages between aircraft.

Pilot Automaton P_i
- Maintains velocity and acceleration within acceptable bounds.
- Follows/ignores advisories within allotted time.
Aircraft Automaton A_i

Variables:
- **Input:** $a_i \in \mathbb{R}^3$, aircraft acceleration
- **Output:** $Mode_S_i \in \mathbb{N}$, unique transponder number
 - $Equipment_i \in \{\text{None, Report, TCAS}\}$
 - $p_i \in \mathbb{R}^3$, position
 - $v_i \in \mathbb{R}^3$, velocity

Discrete Actions:
- None.

Trajectories:
- Input variables arbitrary.
- $Mode_S_i$, $Equipment_i$ constant.

\[
\begin{bmatrix}
\dot{p}_i(t) \\
\dot{v}_i(t)
\end{bmatrix} = \begin{bmatrix}
v_i(t) \\
a_i(t)
\end{bmatrix}
\]
Sensor Automaton S_i

Variables:
- **Input:** p_j, v_j, for all j
- **Output:** $R_{ij} \in \mathbb{R}^+, \dot{R}_{ij} \in \mathbb{R}$, for all other j, range and range rate
 $h_{ij} \in \mathbb{R}^+, \dot{h}_{ij} \in \mathbb{R}$, for all j, relative altitude and vertical velocity
- **Internal:** A timer.

Actions:
- **Output:** $Sample_i$

Trajectories:
- Input variables arbitrary.
- Output variables constant, calculated from inputs.
- Trajectories stop when $Sample_i$ action enabled (after time T).

Discrete Transitions:
- $Sample_i$ occurs every T seconds.
Conflict Detection Automaton D_i

Variables:

- **Input:** R_{ij}, \dot{R}_{ij}, for all other j
 h_{ij}, \dot{h}_{ij}, for all j

- **Derived:** $\text{Range_Test}_{ij} \in \text{Bool}$, for all other j
 $\text{Altitude_Test}_{ij} \in \text{Bool}$, for all other j

Actions:

- **Output:** Declare_{ij}, for all other j
 Undeclare_{ij}, for all other j

Trajectories:

- Input variables arbitrary.
- Trajectories stop when any output action enabled.

Discrete Transitions:

- Declare_{ij} occurs when aircraft j poses a threat (satisfies range, altitude tests).
- Undeclare_{ij} occurs when aircraft j moves out of range (fails range test).

Details of range, altitude tests extracted from TCAS specifications.
Conflict Resolution Automaton R_i

Variables:
- **Input:** $h_{ij}, \dot{h}_{ij}, R_{ij}, \dot{R}_{ij}, \text{Mode}_S_j, \text{Equipment}_j$
- **Output:** $\text{Sense}_i \in \{\text{Climb, } \perp, \text{Descend}\}$, initially \perp
 - $\text{Strength}_i \in \{2500, 1500, 0, -500, -1000, -2000\}$ (units of ft/min)

Actions:
- **Input:** Sample_i
 - $\text{Declare}_{ij}, \text{Undeclare}_{ij}$
 - $\text{Receive}_{ji}(\text{dir})$
- **Output:** $\text{Send}_{ij}(\text{dir})$

Discrete Transitions:
- Sense selected initially (upon Declare_{ij} or $\text{Receive}_{ij}(\text{dir})$), may be reversed later (upon $\text{Receive}_{ij}(\text{dir})$ or Sample_i).
- Sense changes communicated to intruder ($\text{Send}_{ij}(\text{dir})$).
- After Declare_{ij}, strength selected upon every Sample_i.
- $\text{Sense}_i, \text{Strength}_i$ told to the pilot.
- Conflict ends for j upon Undeclare_{ij}.
Sense Selection \([N = 2]\)

- Initial selection upon \(Declare_{ij}\):
 - If only one sense OK, choose it.
 - If both senses OK, choose non-crossing.
 - If neither sense OK, choose the one that leads to greater separation.

- Initial selection upon \(Receive_{ij}(\text{dir})\):
 - If \(Mode_{S_i} > Mode_{S_j}\) comply.
 - If \(Mode_{S_i} < Mode_{S_j}\) \(\land\) dir non-crossing, comply.
 - If \(Mode_{S_i} < Mode_{S_j}\) \(\land\) dir crossing, choose as above.

- Subsequent sense selection upon \(Receive_{ij}(\text{dir})\):
 - If \(Mode_{S_i} > Mode_{S_j}\) comply.
 - If \(Mode_{S_i} < Mode_{S_j}\) ignore.

- Subsequent sense selection upon \(Sample_i\):
 - If \(Mode_{S_i} > Mode_{S_j}\) do nothing.
 - If \(Mode_{S_i} < Mode_{S_j}\) reverse if current sense not OK and reversed sense OK and non-crossing.
 - Reverse at most once.
Communication Channel and Pilot Automata

Communication Channel Automaton C_{ij}: Messages from i to j
- Input Action: $Send_{ij}$
- Output Action: $Receive_{ji}$
- All messages delivered, in order, within time d_c.

Pilot Automaton P_i:
- Generates $a_i \in [a_x, \bar{a}_x] \times [a_y, \bar{a}_y] \times [a_z, \bar{a}_z]$.
- Maintains vertical velocity in $[\bar{v}_z, \bar{v}_z]$.
- May follow or ignore an advisory ($Follow_i$).
- If $Follow_i = \text{False}$, may apply any allowable a_i.
- If $Follow_i = \text{True}$, responds within time d_p by applying $a_{zi} = \sigma a$ until $\sigma \dot{h}_{ii} \geq \text{Strength}_i$, where $\sigma = 1$, if $Sense_i = \text{Climb}$, and $\sigma = -1$, otherwise. Before then, apply any allowable a_i.
IV. Results So Far

Verification Approach:

- Start with simple/idealized cases.
 - Only two aircraft, both TCAS equipped, limited uncertainty,...
- Consider various execution assumptions.
 - Both pilots follow advisories, within certain time.
 - One follows, one keeps going as before,...
- Obtain conditional claims, conditioned on execution assumptions.
- Gradually add complexity.

Verification Goal:

Theorem. *TCAS ensures that aircraft maintain sufficient separation.*
Proof Outline

Proof Approach:

1. Define “well-behaved aircraft system”, WBS.
2. Classify WBS executions into three categories.
 - Non-crossing
 - Crossing
 - Reversing
3. Prove safety for each execution category.
4. Combine per-category safety results to obtain overall safety results.

Proof Goal:

Theorem. If safety condition P holds when a conflict is declared then TCAS ensures that “well-behaved” aircraft maintain sufficient separation.
Well-Behaved Aircraft System (WBS)

- Only two aircraft.
- Aircraft 1 has higher priority.
- Communication channels C_{12} and C_{21} are FIFO.
- Both aircraft TCAS equipped.
- Both pilots follow RAs.
- No sensor uncertainty.
- Use nominal strength only.
- Constant horizontal velocity.
- Pilots do not oppose RAs.
- Sufficient time to implement RAs.
- When threat is first detected, at least one sense appears to be ok.
Well-Behaved Aircraft System (WBS)

- Only two aircraft.
- Aircraft 1 has higher priority: $\text{Mode}_1 < \text{Mode}_2$.
- Communication channels C_{12} and C_{21} are FIFO.
- Both aircraft TCAS equipped: $\text{Equipment}_1 = \text{Equipment}_2 = \text{TCAS}$.
- Both pilots follow RAs: $\text{Follow}_1 = \text{Follow}_2 = \text{True}$.
- No sensor uncertainty.
- Use nominal strength only: $\text{Strength}_1 = \text{Strength}_2 = 1500$.
- Constant horizontal velocity: $a_x = \bar{a}_x = a_y = \bar{a}_y = 0$.
- Pilots do not oppose RAs: $\text{Sense}_i \neq \bot \implies \sigma_i a_{zi} \geq 0$, where $\sigma_i = 1$, if $\text{Sense}_i = \text{Climb}$, and $\sigma_i = -1$, otherwise.
Well-Behaved Aircraft System (WBS), cont’d

- Sufficient time to implement RA: Initially, \(T > 2d_c + d_p \).
- When threat is first detected, at least one sense appears OK: Initially \(SEP_{ij}(\sigma) \geq ALIM \), for some \(\sigma \in \{-1, 1\} \).

\[T, \text{ Time to closest horizontal approach:} \quad T = -\frac{\Delta x \Delta v_x + \Delta y \Delta v_y}{\Delta v_x^2 + \Delta v_y^2} \]

\[\tau, \text{ Estimated time to closest approach:} \quad \tau = -\frac{R_{ij}}{\min\{\dot{R}_{ij}, -10\}} \]

\(SEP_{ij}, \text{ Estimated vertical separation at closest approach:} \)

\[SEP_{ij}(\sigma) = \begin{cases}
\sigma [\Delta z_{ij} + \Delta v_{zij}\tau], & \text{if } (\tau \leq d) \lor (\sigma v_{zi} \geq 1500), \\
\sigma [\Delta z_{ij} + \Delta v_{zij}d + (1500\sigma - v_{zj})(\tau - d)], & \text{else.}
\end{cases} \]

where \(\sigma \in \{-1, 1\} \), sense of aircraft \(i \) and \(\dot{R}_{ij} \in \mathbb{R}^+ \), RA implementation delay assumed by TCAS.
WBS Execution Categories

Non_Crossing_Execs
- TCAS protocol invoked
- Non-crossing RA issued initially
- Non-crossing RA maintained throughout conflict

Crossing_Execs
- TCAS protocol invoked
- Crossing RA issued initially
- Crossing RA maintained throughout conflict

Reversing_Execs
- TCAS protocol invoked
- Crossing RA issued initially
- Non-crossing RA issued subsequently
- Non-crossing RA maintained thereafter throughout conflict
Per-Category Results

Definition. *SafeExecs* is the set of executions of WBS in which the aircraft are sufficiently separated in altitude (ALIM) at closest horizontal approach.

Lemma 1.
If $\alpha \in \text{Non_Crossing_Execs}$ and P_{NC} holds initially, then $\alpha \in \text{Safe_Execs}$.

Lemma 2.
If $\alpha \in \text{Crossing_Execs}$ and P_{C} holds initially, then $\alpha \in \text{Safe_Execs}$.

Lemma 3.
If $\alpha \in \text{Reversing_Execs}$ and P_{R} holds initially, then $\alpha \in \text{Safe_Execs}$.
Lemma 1: Safety of Non-Crossing Executions

\(P_{NC} \):
\(S \geq ALIM \), where \(S \) = projected smallest altitude separation at time \(T \) (time of closest horizontal approach), based on non-crossing RA, nominal strength.

Calculating \(S \):
- Initial altitude separation, minus
- Potential loss in altitude separation due to RA implementation delay \(D_{NC} \), plus
- Altitude separation gained by following nominal strength non-crossing RA from when it is implemented until \(T \).

\[
S = |\Delta z| + V_{NC}D_{NC} + 3000(T - D_{NC}),
\]
where
\[
\sigma = \text{sign}(z_1 - z_2),
\]
\[
D_{NC} = 2d_c + d_p, \quad \text{and}
\]
\[
V_{NC} = \max(v_z, \sigma v_{z1} - \bar{a}_zd_c) + \max(v_z, -\sigma v_{z2} - 2\bar{a}_zd_c).
\]
Lemma 2: Safety of Crossing Executions

P_C:
$S \geq \text{ALIM}$, where $S = \text{projected smallest altitude separation at time } T$, based on crossing RA, nominal strength.

Calculating S:
- Initial altitude separation, minus
- Potential loss in altitude separation due to RA implementation delay D_C, plus
- Altitude separation gained by following nominal strength crossing RA from when it is implemented until T.

$S = -|\Delta z| + V_C D_C + 3000(T - D_C)$, where
$\sigma = \text{sign}(z_1 - z_2)$,
$D_C = 2d_c + d_p$, and
$V_C = \max(v_z, -\sigma v_{z1} - \bar{a}_z d_c) + \max(v_z, \sigma v_{z2} - 2\bar{a}_z d_c)$.
Lemma 3: Safety of Reversing Executions, $T_R \leq D_C$

P_R:
$S \geq ALIM$, where $S =$ projected smallest altitude separation at T, based on reversing just prior to implementing a crossing advisory, then following non-crossing RA, nominal strength.

Calculating S:
- Initial altitude separation, minus
- Potential loss in altitude separation due to reversed RA implementation delay $D_C + D_R$, plus
- Altitude separation gained by following nominal strength non-crossing RA from the time of implementing the reversal until T.

$S = |\Delta z| + V_R(D_C + D_R) + 3000(T - D_C - D_R)$, where
$\sigma = \text{sign}(z_1 - z_2)$,
$D_R = d_c + d_p$, and
$V_R = \max(v_z, \sigma v_{z1} - \bar{a}_z D_C) + \max(v_z, -\sigma v_{z2} - \bar{a}_z(D_C + d_c))$.
Lemma 3: Safety of Reversing Executions, $T_R > D_C$

- At time of reversal, both aircraft have implemented the crossing RA, i.e., $-\sigma v_{z1} \geq 1500$ and $\sigma v_{z2} \geq 1500$.

- In order to reverse, crossing RA must not be OK and non-crossing RA must be OK, i.e., $\text{Sep}_{12}(\sigma) < \text{ALIM}$ and $\text{Sep}_{12}(\sigma) \geq \text{ALIM}$.

\[\implies \sigma \Delta z \geq \text{ALIM} \]
Lemma 3: Safety of Reversing Executions, \(T_R > D_C \)

\(P_R: \)

\(S \geq ALIM, \) where \(S = \) projected smallest altitude separation at \(T, \) based on reversing just prior to the \(\sigma \Delta z = ALIM \) mark, then following non-crossing RA, nominal strength.

Calculating \(S: \)

- Initial altitude separation (\(\sigma \Delta z = ALIM \)), minus
- Potential loss in altitude separation due to RA implementation delay \(D_R, \) plus
- Altitude separation gained by following nominal strength non-crossing RA from the time of implementing the reversal until \(T. \)

\[
S = ALIM + V_R D_R + 3000(T - \overline{T}_R - D_R),
\]

where

\[
\sigma = \text{sign}(z_1 - z_2),
\]

\[
D_R = d_c + d_p,
\]

\[
V_R = \max(v_z, \sigma v_{z1} - \overline{a}_z \overline{T}_R) + \max(v_z, -\sigma v_{z2} - \overline{a}_z (\overline{T}_R + d_c)), \quad \text{and}
\]

\[
\overline{T}_R, \text{ upper bound on reversing time, given by:}
\]

\[
-|\Delta z| + V_C D_C + 3000(\overline{T}_R - D_C) = -ALIM.
\]
Overall Safety Results

Goal: Find condition P such that:
For any execution α of WBS, if P holds initially, then $\alpha \in Safe_Execs$.

Sample Results:

1. **Conjunction of Safety Conditions**
2. **Ruling out Crossing RAs**
3. **Aircraft Close in Altitude**
Overall Safety Results, cont’d

Conjunction of Safety Conditions:

- \(P = P_{NC} \land P_C \land P_R \)
- Simple but conservative.

Ruling out Crossing RAs:

- \(P = P_{NC} \land Crossing_Impossible \), where
 \[\sigma = \text{sign}(z_1 - z_2) \], and
 \[Crossing_Impossible = (Sep_{12}(\sigma) \geq ALIM \lor Sep_{12}(-\sigma) < ALIM) \]
 \[\land (Sep_{21}(-\sigma) \geq ALIM \lor Sep_{21}(\sigma) < ALIM) \].
Overall Safety Results, cont’d

Aircraft Close in Altitude:

\[P = P(K) = (S \geq ALIM) \land |\Delta z| \leq K, \]

where \(S \) = projected smallest altitude separation at \(T \), based on reversing at the latest possible time \(T_R \), then following non-crossing RA, nominal strength.

Calculating \(T_R \): Latest possible time of reversal, dictated by \(|\Delta z| \leq K \) initially (possibly time of crossing in altitude).

Calculating \(S \): Similar to reversing execution case.
V. Future Research

- **Remove Restrictions:**
 1. Uncertainty in sensor values, in aircraft flight dynamics.
 2. Unrestricted horizontal aircraft dynamics.
 3. Variable resolution strengths, not just nominal.
 4. Different assumptions on pilots’ behavior, e.g.:
 - Follow RAs, but with larger delay.
 - One pilot doesn’t follow RAs.
 5. One of the planes not TCAS-equipped.
 6. Multiple aircraft, $N > 2$.

- **Challenge Problem 1:** *(For hybrid systems formal methods community)*
 Thoroughly analyze this problem, and others like it, using formal techniques.

- **Challenge Problem 2:** *(For ATM design/validation community)*
 Incorporate high-level formal modeling/analysis into design process.
VI. Conclusions

Contributions:

• With respect to TCAS:
 – Extracted simplified high-level TCAS model.
 – Obtained safety conditions for TCAS’s execution categories.
 – Combined per-category guarantees into overall safety conditions.

• With respect to formal analysis and verification:
 – Demonstrated use and practicality of high-level modeling and analysis techniques.