Dynamic Process Creation in a Static Model
by

John Leo

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of -

Master of Science
and
Bachelor of Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1990
(© John Leo, 1990

The author hereby grants to MIT permission to reproduce and
to distribu‘e copies of this thesis document in whole or in part.

Signature of Author... ettt
(Department of Electrical Engineering and Computer Science
May 24, 1990
Certified by.......... . e
. Nancy Lynch
Professor-of-Computer Science and Engineering
Thesis Supervisor
Accepted by R, ot e e Tt e S
R Arthur C. Smith

Chairman, Departmental Committee on Graduate Stidents

ARCHIVER o\ serrsmisvte

OF TECHNOLOGY

AUG 10 1990
UBRARIES

e I © =~ G e —————— s meoee S

Dynamic Process Creation in a Static Model
by
John Leo

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 1990, in partial fulfillment of the
requirements for the degrees of
Master of Science
and
Bachelor of Science

Abstract

Distributed algorithms that involve dynamic process creation and changing topologies are mod-
eled using I/0 automata, a static model. Two examples of such algorithms are proven correct.
In addition, the Actor model, for which process creation is a major component, is given a
rigorous basis using I/O automata.

Proof techniques are developed and demonstrated, including a simple variant function tech-
nique for liveness proofs. Rely/guarantee functions are developed for I/Q automata, and it is
shown how modular proofs of correctness can be achieved by using specifications based upon
them.

Thesis Supervisor: Nancy Lynch
Title: Professor of Computer Science and Engineering

Acknowledgements

The idea for this thesis is due to Dennis de Champeaux at HP Labs, and the examples of Set

Partition and Olympic Torch were suggested by him. Our paths have diverged, and his ork

can be found in [dC89]. Reed Letsinger, Mike Lemon, Ivan Tou, Wendy Fong, Michelle Lee,
Bill Stanton, Pierre Huyn, Warren Harris, Allan Shepherd, Allan Kuchinsky and many other
people made HP Labs a fun place to work.

At MIT, Mark Tuttle, Hagit Attiya, Ken Goldman and Steve Ponzio offered helpful com-
ments and discussions. Mark in particular taught me everything about I/O automata I know.
Carl Hewitt helped me understand actors. Particularly I want to thank my thesis supervisor
Nancy Lynch, who carefully read the thesis, offered many good comments, and finally allowed
me to graduate.

Nintendo, Dan Nickolich, David Watson, Tomoko Graham, Akiko Yano, Kinyobi ni wa hana
o katte, Alain Robbe-Grillet, etc., made the years spent working on this thesis worthwhile. But
most of all I want to thank Kyoko Watanabe, for all those things which cannot be put into

words.

This material is based upon work supported under a National Science Foundation Graduate
Fellowship. Any opinions, findings, conclusions or recommendations expressed in this publica-

tion are those of the author and not necessarily the views of the National Science Foundation.

Coritents

1 Introduction

2 Preliminaries

2.1 Some Definitions and Notation

............................

22 I/OAutomatattt i e e e
2.2.1 BasicDefinitions
222 Composition i e e
2.2.3 Action Hidingand Renaming
224 Fairness e
2.2.5 Possibilities Mappings o ol o .

23 Variant Functions. i e

24 Rely/Guarantee Functionst
24.1 Proof Techniques i it .

3 Process Creation

3.1 Definitions. 0 i e e e e e e e e e e e e e e e e
3.2 Abstraction and Rely/Guarantee Functions P
23 COMIMENES . - o . v v v v e i e e e e e e e e e e e e e e e e

4 Set Partition

4.1 Specification.

4.2 Deterministic Sequential Implementation,

4.3 Distributed Solution with Instantaneous Message Passing

10
10
11
13
14
16
17
18
20

25
25
26
27

44 Comments and Comparisons v vvusnnmenn.

5 Olympic Torch

8.1 Description of Olympic Torch
5.2 Pazallel Olympic Torch. i,
53 Correctness e e e e e e e e e e

54 Commentst e e e e e e e e e e e o,

8 Actors

6.1 Example: Recursive Factorial

6.2 Agha’s Operational Semantics for Actors

6.2.1 Basic Definitions,
6.22 ActorBehaviors
6.23 Tramsitions
6.3 I/O Automata Actors L
6.3.1 I/O Automata Actors with Separated Mail System

6.3.2 Simplified I/O Automata Actors

e B r e ¥ . s s s e 6 2 e e ® s a4 8 2 s e =

6.3.3 Correspondence between I/0O Automata Actors and Agha’s Model .

6.4 Correctness Proofs i i i i e e e

7 Conclusions

42
42
43
47
51

53
54
56
56
58
59
61
61
64

. 66

67
68
69

72

Chapter 1

Introduction

Proofs of correctness for distributed systems have generally concentrated on static systems, in
which there ié a predetermined set of processes and a fixed topology. Numerous proof systems
have been developed to prove correctness of algorithms in such a setting; see the introduction
of [LT87] for a survey. However none of these models explicitlj addresses the issue of process
creation. How can one prove correctness of a distributed system in which the set of processes,
as well as the communication topology, may cha.nge over time?

One solution is to create a new model which supports dynamic process crea.tion, and at-
tempts at this were made by the author and Dennis de Champeaux, but none were satisfactory.
This work evolved into [dC89]; problems with this approach will be discussed later. Another
approach is to use an existing system and add tools for process creation to it. This is what is
done in this thesis. The proof system chosen was Lynch and Tuttle’s I/O automaton model
([LT87, LT88]), which although young has already been used to prove correctness for a variety
of algorithms (see the latter paper for a partial list). The I/O automaton model is described
in Chapter 2. Along with being a very general model it has a number of nice features for
correctness proofs. One can specify modules at various levels of abstraction, and also do hi-
erarchical proofs in which the entire algorithm is modeled at successively more detailed levels
of abstraction. One can not only write specifications as I/O automata; one can also write the
algorithms themselves as automata. In fact a programming system called Spectrum is being
developed based upon I/O automata by Goldman ([Gol90]). Versions of the examples in this

thesis were programmed and simulated using Spectrum.

Adding process to creation to I/O automata is rather simple. The model allows there to
be an infinite number of automata; one simply defines a predicate for each automaton which
is true if and only if the automaton is “alive.” Furthermore such an automaton must satisfy
certain properties: in particular if it is not alive it cannot send any messages or éha.nge state.
A similar method could be used for any model in which a1 infinite number of processes is
allowed. Although this method is simple, one might still worry how difficult it is to do proofs
of algorithms involving process creation in such a model. Two examples are presented in this
thesis: Set Partition and Olympic Torch. In Set Partition only two processes are created so
this example isn’t very different from a static algorithm. Olympic Torch, on the other hand, is
almost purely concerned with process creation and a changing topology. As will be seen, the
proofs of these two algorithms are not overly complicated. And what might be surprising is
that the proof of Set Partition was more difficult than that for Olympic Torch. This suggests
that process creation is not the major factor of difficulty; more important is the structure of
the algorithm itself.

There does not appear to be one best technique to prove correctness for algorithms involving
dynamic process creation; rather just as for static algorithms the proof should depend upon
what structure of the algorithm can be exploi'ed. However a proof technique that seems quite
useful is that of rely/quarantee conditions. There are numerous versions of this technique in the
literature ([MC81, Jon83, 5ta84, AL90]) but the basic form is the same. One specifies a process
by what it assumes about the environment and the corresponding guarantees it makes about its
outputs. One can then combine the rely/guarantee conditions for a set § of processes by showing
for each process P € § that the guarantees of the environment of S along with the guarantees
of each process in S — {P} satisfy the assumptions of P. This technique has some intuitive
appeal for process creation since when a process creates children it can be reasoned that the
children assume certain conditions about the parent and in return provide certain guarantees
to the parent. Rely/guarantee conditions are defined in terms of functions in Section 2.4 and
are used to prove correctness for both Set Partition and Olympic Torch.

Dennis de Champeaux’s work ([dC89]) is the closest to this one. He was also primarily
concerned with process creation and uses the same two examples. However there are numerous

problems with his approach. He never defines a rigorous underlying model, so it is never clear

what it means for an algorithm to be “correct,” and it is unclear what the proofs acivally
show. Most surprising, despite the apparent emphasis on process creation, process :creé.ftion
itself is never handled! That is, no distinction is made between a system in whjch,p’;mégsses
are created and die dynamically and a system in which all processes are alive all thetxme
Specific problems with his proofs of Set Partition and Olympic Torch will be discussed in their
respective chapters. This work still seems very preliminary.

Having done two examples, we next look at a programming methodology which makes
extensive use of dynamic process creation and changing topoiogies, namely Carl Hewitt’s Actors
([Agh86, Cli81]). This dynamic nature of Actors led Agha to claim that it is a more powerful
model than static models; however we will show that this is not true. Agha gives a model
for actors in his book, and we will show that a mode] for actors defined in I/O automata is
equivalent to it. In addition by doing this we were able to fix several poorly defined or vague
notions in Agha’s model. Correctness proofs have apparently not been done in an actor model
since Yonezawa’s work ([Yon77]). Having given Agha’s model a rigorous basis, we give a proof
for a simple example. It seems proofs for more complicated examples will be quite difficult to
do due to some peculiarities of the model, however; this is discussed at the end of the chapter
along with some possible solutions.

The organization of the thesis is as follows. In the Preliminaries, definitions and theorems
for I/O automata are presented. Also a simple variant function for I/O automata is presented,
as are rely/guarantee functions. Ckapter 3 describes how process creation can be modeled
" in I/O automata. Then in the chapters for Set Partition and Olympic Torch the ideas in the
previous chapters are used to prove correctness for these examples. Finally, in Chapter 6, actors

are defined in terms of I/O automata, and a simple proof of correctness is presented.

Chapter 2

Preliminaries

The first section of this chapter contains notation that will be used throughout. The second
section contains definitions and theorems concerning I/O automata. These two sections may
be skipped now and returned to when particular information is needed.

Section 2.3 gives the definition of a simple variant function that can be used to prove liveness
properties within the I/O automata model. This variant function is used to prove correctness
for a seqﬁential implementation of Set Partition in Chapter 4. Section 2.4 presents a method
by which an I/O automaton can be specified using assumptions aboui the environment and
the corresponding guarantees the aﬁtoma.ton will make based upon those assumptions. It also

inclndes two theorems about action hiding that are useful when using rely/guarantee functions.

2.1 SomevDeﬁnitions and Notation

If § is a set and a is some element, then S+a=SU {a} and S —a = § - {a}.

A sequence of elements from set S is an ordered list of those elements. The empty sequence
is denoted €. Given a non-empty sequence s = 313293..., head(s) = s; and tail(s) = sgs3....
K s is finite then |s| denotes the length of s and last(s) = s),. If t = ¢; ..., is a sequence of
elements from S and z E Sthent-s=1¢...tp81...and t-z =t;...t,z. For s finite, s C ¢
means 3 is a prefix of ¢ (i.e., there exists scme sequence u such that ¢ = s.u). For a sequence s,
{s} indicates the multiset having the same elements as s. Occasionally we will write s; as s(¢),

OT 318233... as [31, 82, 33, . . .| for clarity.

The notation (a,b) is used for a pair of objects a and b. Then (a,b) = (¢,d) means a = ¢

and b = d. Similarly (a,b) # (c¢,d) means that a # cor b # d.

2.2 I/0 Automata

2.2.1 Basic Definitions

We briefly review the fundamentals of I/O Automata. For the details and proofs, see [LT88,
LT87]). An I/O Automaton A is a tuple consisting of:

¢ an action signature sig(A), a partition of the actions acts(A) into three classes: in(A),

out(A') and int(A); the input, output, and internal (respectively) actions of A,
o states(A), the states of the automaton,
¢ a nonempty set of start states of A, start(A) C sta.tes(A),
e a transition relation steps(A) C states(A) x acts(A) x states(A),

¢ an equiveience relation part(A) partitioning the set local(4) = out(A)Uint(A) (the locally-

controlled actions) into at most a count. ble number of equivalence classes.

An action 7 is enabled from state a if there exists some state a’ such that (e, 7,a’) € steps(A).
Every 1/O Automaton A must satisfy the requirement that all input actions are enabled from
every state of A.

The ezternal actions of automaton A are ext(A4) = in(A) U out(A4). An ezternal action
signature is an action signature having only external actions.

An ezecution fragment of an automaton A is a finite sequence aom18172 . .. Tn@y, or an infinite
sequence agX141 73 ... of alternating states and actions of A such that (a;, Ti+1,@i41) € 5%eps(A)
for all i > 0. An ezecution of A is an execution fragment such that ag € start(A). The set
of executions of A is denoted by execs(A). Say that a state a € states(A) is reachable if a
" is in z for some z € execs(A). The schedule of an execution fragment z is the subsequence
sched(z) = m 7, ... of actions appearing in z. The set of schedules of A is the set of schedules

of each z € ezecs(A) and is denoted scheds(A4). If z is a schedule and II is a set of actions

10

then z|II is the subsequence of 2 consisting only of actions in II. If z is an execution, then
z|Il = sched(z)|H. If X is a set of schedules or executions then X|II = (J,¢x {z|II}.

We sometimes use an ezecution module to represent executions satisfying certain liveness
conditions. An execution module E consists of a set states(E) of states, and action signature
sig(E), and a set execs(E) of executions. An execution module E is said to be an execution
module of an automaton A if states(E) = states(A), sig(E) = sig(A), and execs(E) C execs(A).
The execution module of A whose executions are execs(A) is denoted Execs(A).

An schedule module is sometimes used to represent correctness conditions. A schedule
module S consists of an action signature sig(S) and a set scheds(S) of schedules. An ezternal
schedule module is a schedule module with an external action signature. For an execution
module E, the schedule module with the same action signature and schedules as £ is denoted
Scheds(E), and Scheds(A) is defined to be Scheds(Execs(A)). An object is either an automaton,
an execution module, or a schedule module. The external schedule module of an object O,
denoted External(0), is defined to be the external schedule module with the external action
signature of O and the schedules {z|ext(O) : z € scheds(O)}. For a schedule z and chject O,
we often write 2|0 for z|acts(O).

Typically states of automata are defined as the cross product of several components. If

a = Il¢;, then we denote component ¢; of state a as a.c;.

2.2.2 Composition

We only compose compatible automata. A set of action signatures {S; : ¢ € I} are compatible
if for all i,j € I,i # j, both out(S;) Nout(S;) and int(S;) Nacts(S;) are empty. This is because
communication is modeled by shared actions, and we want only one process to control an action.
This definition of compatibility is not strong enough for certain theorems, so we define a set
a set of action signatures {S; ciel } to be strongly compatible if they are compatible and the
following condition is also satisfied. Let J C I be the set of indices j such that S; contains
an action that is contained in S; for infinitely many ¢ € I. Let K C J be the set of indices
k such that int(S;) # @. Then the additional condition for strong compatibility is that |K]
is finite. This is slightly weaker than the definition of strong compatibility in [LT88]. The

condition there was that J = 0; i.e., that no action is contained in infinitely many signatures.

11

Our condition is that for any action contained in inﬁhitely many signatures only finitely many
of these signatures may contain internal actions. Though not the weakest condition possible
it is satisfactory and all theorems requiring the old definition of strong compatibility also hold
under the new definition.

A set of automata {A;:i€ I} are (strongly) compatible iff their action signatures are
(strongly) compatible. The composition S = I;¢7S; of compatible action signatures {S; : i € I}

is defined to be the action signature with:
¢ in(8) = Uiesin(5:) - Userout(Sy),
o out(S) = Uierout(S;), and
o int(S) = Userint(Si).

To compose states, we use a Cartesian product. We represent the composite state as a where
a = Ilierai and thus the ith component of a is a;, sometimes written as a|A; (“a restricted to
A."). The composition A = Il;c7A; of compatible automata {A; : i € I} is defined to be the

automaton with
o sig(A) = Migsig(Ai),

states(A) = II;crstates(A;),

start(A) = IL;¢start(4;),

part(A) = U;es part(A;), and

steps(A) is the set of triples (a,7,a’) where a,a’ € states(A), » € acts(A), and for all
i € I, if x € acts(A;) then (a;, 7,a}) € steps(A;), otherwise if * ¢ acts(A;) then ¢; = a!.

Note that composition is both commutative and associative.

If A = HierAi, and z € execs(A) where z = agma;..., then z|A; is the execution formed
by deleting x;a; whenever x; ¢ acts(A;) and replacing each of the remaining a; with a;|4;.
Note that it follows z|A; € execs(A;), and is essentially z projected onto A; (this is Lemma 1
of [LT87]).

Execution and schedule modules are (strongly) compatible iff their actions signatures are

(strongly) compatible. The composition E = IL;¢;E; of compatible execution modules is is

12

defined so that states(E) = II;states(E;) and sig(E) = II;sig(E;). Given an alternating sequence
T = agm1ay . .. of states and actions of F, define z|E; to be the sequence obtained by removing
wja; if w; is not an action of E; and a;|E; = a;_.|FE;, and replacing the remaining a; by
a;j|E;.! Then execs(E) = {z : z|E; € execs(E;) for all i € I}. The composition § = I;csS; of
compatible schedule modules is similarly defined so that sig(S) = II;sig(S;), and scheds(S§) =
{2 : 2|S; € scheds(S;) for all i € I}.

2.2.3 Action Hiding and Renaming

Communication between I/0 automata is modeled by shared actions. When we compose two
automata we may want the communication between them to not be visible to the environment.
Since composition does not hide communication we must do it explicitly. For an automaton A
and a set of actions ¥ such that £ Nin(A4) = @, define the automaton Hideg(A) to be identical

to A except that the action signature is now:
1. in(Hideg(A)) = in(A)
2. out(Hideg(A)) = out(A) — £, and
3. int(Hideg(A)) = int(A4) U (N out(A4)).

This is slightly different than the definition in [LT87] in that we only allow actions of local(A)
to be hidden, because we want part(Hideg(A)) = part(A). Using the previous definition
part(Hideg(A)) is not well defined if input actions are hidden. Since typically we want to
hide internal communication (which due to composition will be initially an output action) this
is not a serious restriction. There doesn’t seem to be zny use for hiding input actions.

The following is Lemma 12 of [LT87].

Theorem 2.1 For all automata A, ezecution modules E, schedule modules S, and set of actions

x,
1. Execs(Hideg(A)) = Hideg(Execs(A))

2. Scheds(Hideg(E)) = Hideg(Scheds(E))

IThis definition is slightly different from that of [LT87], in that one can only remove an action and the
resulting state if this action does not effect the state with respect to E;.

13

3. External(Hideg(5)) = External(Hides(External(S)))
The following is Lemma 14 of [LT87].

Theorem 2.2 Let {O; : i € I} be a collection of compatible objects, and let {%; : i € I } be a col-
lection of sets of actions. If acts(O;) and T; are disjoint for alli # j, then Hidey, s, (IL;er0;) =
II;erHideg, (0;).

In order to make two automata comi)a.tible we may need to rename some of the actions of
~ one or both of the automata. This is done using an action mapping f, an injective mapping
between sets of actions. A mapping f is applicable to su automaton A if acts(A) is contained
in the domain of f. The resulting automatz f(A) is the same as A except that all actions are
appropriately renamed, and thé transition relation and partition are modified accordingly.
The operations of hiding and renaming zare commutative; that is for any automaton A and

applicable action mapping f, Hides(z)(f(A)) = f(Hideg(A)) ([LT87], Lemma 16).

2.2.4 Fairness

We want to guarantee that every process (where a process can be thought of as corresponding
to the actions in one partition of an I/O Automaton) has a chance to take a step if one of
its actions is enabled. The definition of fairmess we use is sometimes called weak fairness and
has the property that an implementation in which each process is on a separate processer is
guaranteed to be fair as long as each processor has a nonzero finite running speed.

A fair ezecution of an automaton A is an execution z of A such that the following conditions

hold for every C € part(A):
1. If z is finite, then no action of C is enabled in the final state of z.

2. If z is infinite, then either z contains infinitely actions from C, or z contains infinitely

many occurrences of states in which no action of C is enabled.

We say that action a is continucusly enabled from state a if for all execution fragments y = ar ...
beginning with ¢ which do not contain a, o is enabled from every state of y. A special case of
the second condition is that if some action & € C is continuously enabled from e and no other

action of C is enabled more than finitely often in any y, then a must occur at some point after

14

a in any fair execution that contains a. Note however than an input action to an automaton,
despite being continuously enabled, need not occur since it is not a local action.

Define fair(A) to be the set of fair executions of automaton A, and define Fair(4) to be
the execution module of A having fair(A) as its set of executions. The fair behavior of A,
denoted Fbeh(A), is defined to be the schedule module External(Fair(A)). For other objects O
(execution modules and schedule modules), Fbeh(O) = External(O). For any object O the set
of schedules of Fbeh(0) is denoted fbeh(O). |

- The following are Lemma 19 and Lemma 20 of [LT87]. Notice that they require strong
compatibility.

Theorem 2.3 Fair(Il;c1A;) = ;e Fair(A;) for strongly compatible automata {A; : i € I}.
Theorem 2.4 Fbeh(Il;c10;) = I;e1Fbeh(0;) for strongly compatible objects {O; : i € I}.

Objects O and O’ are called fairly equivalent if Fbeh(O) = Fbeh(O’). Object O is said to
solve object O’ if fbeh(Q) C fbeh(O’) and O and O’ have the same external action signature.
Note that O cannot be a trivial solution since input actions are always enabled. Also note that

“solves” is reflexive and transitive.

Theorem 2.5 Let {O; :i € I} and {P; : i € I} each be sets of compatible objects, and let O =
I;c;0; and P = ;¢ ;. If for all i € I, O; solves P;, then O solves P.

Proof: The external action signatures of O and P must be the same from the definition of
composition. We must prove fbeh(O) C fbeh(P). Let z € fbeh(O). Then for all ¢ € I,
z|0; € fbeh(O;) by Theorem 2.4. Since the external action signatures of O; and P; are the
same, z|0; = z|P;. Thus z|P; € fbeh(F;) for all : € I by hypothesis. Using Theorem 2.4 again
it follows z € fbeh(P). ’ O

Theorem 2.8 Let A and B be I/O Automata. Let Il C out(A) be a set of actions. If A solves
B then Hiden(A) solves Hider(B).

Proof: A and B must have the same external action signature and partition both before and
after hiding. Let A’ = Hiderj(A) and B’ = Hide(B). We need to show fbeh(A’) C fbeh(B’).
If z € fbeh(A’), then z € fbeh(A) since part(A’) = part(A4) and ext(A’) C ext(A). Therefore

15

z € fbeh(B) since A solves B, and z € fbeh(B’) since part(B) = part(B’) and the ext(A’) =

ext(B'). O

2.2.5 Possibilities Mappings

An eztended step of an automaton A is defined to be a triple of the form (a,3,a’) where a and
a’ are states of A, and § is a finite sequence of actions of A such that § = sched(z) for some
execution fragment z = am, ... 7,4’ of A. It’s possible that £ = a in which case ¢’ = a and
B = €. Let A and B be two automata with the same external action signature. Let A be a
mapping from states(A) to 2**3%¢2(B) (the power set of states of B). The mapping h is said to
be a possibilities mapping from A to B if the following conditions hold:

1. For every start state ao of A, there is a start state by of B such that by € f(ao).

2. If a is a reachable state of A, b € f(a) is a reachable state of B, and (a,7,a’) is a step of
A, then there is an extended step (b,7,b’) of B such that

(a) vlext(B) = w|ext(A), and
(b) ¥ € f(da').

Possibilities mappings are used in hierarchical correctness proofs; once one has proven there
is a possibilities mapping from A to B much of the work has been done showing that A solves
B. The following are several useful theorems about possibilities mappings.

Let z € execs(A) and y € execs(B). Given a possibilities mapping & from A to B, we
say that y finitely corresponds to z under h if z and y are both finite, sched(y)|eztern(B) =
sched(z)|ext(A), and b; € h(a;) where a; and b; are the final states of z and y respectively. We
say that y corresponds to z under h if for every finite prefix z; = agm;... 7 of z there is a
finite prefix y; of y finitely corresponding to z; under h such that y is the limit of the y;.

The following is Lemma 28 from [LT87].

Theorem 2.7 Let h be a possibilities mapping from A to B. If z is an ezecution of A, then

there is an ezecution y of B corresponding to z under h.

Theorem 2.8 Let A, B and C be I/O Automata. If ¢ is a possibilitics mapping from A to B

and h is a possibilities mapping from B to C then h o g is a possibilities mapping from A to C.

16

Proof: All the automata must have the same external action signature. For any start state s
of A there is a start state ¢ of B such that ¢ € g(s). For ¢ there is a start state u of C such that
u € h(t). Thus u € h(g(s)).

If a is a reachable state of A, b € g(a) is a reachable state of B, and (a,r,a’) is a step of A,
then there is an extended step (5,7, ') of B such that vlext(B) = rl|ext(A) and ¥ € g}(f-al”)’»iby
definition. Let £ = bg718172 .. .0n—17nbn the the execution fragment of B corresp'onzding,tb the
extended step (b, 7, ') where by = b, b, = ¥/, a.ndvea,ch 7i is either an internal action of B or .
If r is an external action of A (and thus also B) then = will appear exactly once in v; otherwise
7 will not appear. For each step (b;,7i41,bi4+1) there is an extended step (c;,8it1,¢i+1) such
that ¢; € h(b), cii € h(biss), and Gi1]ext(C) = Yi1|ext(B). Let § = o - 61---6,. Then
lext(C) = vlext(B) = wlext(A). Also co € h(b) and thus co € h(g(a)). Similarly ¢, € h(b')
and therefore ¢, € h(g(a’)). It follows that h o g is a possibilities mapping from A to C. O

Theorem 2.9 Let A and B be I/O Automata. Let I be a set of actions. If there is a possibil-
ities mapping h from A to B then h is a possibilities mapping from Hideri(A) to Hidep(B).

Proof: A and B must have the same action signature, so the theorem is immediate. Each
action w € II merely becomes an internal action if it wasn’t already. O
The following is Lemma 31 of [LT87]. It says that if there are possibilities mappings between

the automata composing A and B, then there is also a possibilities mapping between A and B.

Theorem 2.10 Suppose for all i € I that h; is a possibilities mapping from A; to B;, and that
acts(B;) C acts(A;). let A =1I1;A; and B = II;B;. If h is the mapping from states(A) to the
power set of states(B) defined by h(a) = {b: b|B; € hi(a|A;)}, then h is a possibilities mapping
from A to B.

2.3 Variant Functions

Let N denote the natural numbers {0,1,2,...}. Let Abean I/0 Automaton, and Q C states(A)
such that all states in @ are reachable. Let I be an arbitrary set, and let C' = |J;¢; Ci, where
each C; € part(A). Let f4 be a function from states(A) to N. We say that f4 is a varient
function for (C,Q) if the following conditions hold:

17

1. For all (a,7,a’) € steps(A) where a € Q:

(a) fx € C, then f4(a) = 0 or fa(a) > fa(a').
(b) If x ¢ C, then fa(a) > fa(a') and for each i € I, if an action of C; is enabled from
a then an action of C; is enabled from a'.

(c) If fa(a') > 0 then o’ € Q.
2. For all a € @, an action of C is enabled from a.

The intuition is that once A enters the set of states Q it may not leave until the value of f4
reaches 0. The actions in C represent those making progress. The following theorem shows

that the value of f4 will eventually reach 0 in any fair execution.

Theorem 2.11 Let A be an I/O Automaton and f4 be a variant function for (C,Q) for some
C and Q defined as shown above. Let z = aomia173. .. be a fair execution of A. Then ifa; €

for some i, there ezists some j > i such that fa(a;) = 0.

Proof: Let f4(a;) = n. If n > 0 then we show that there exists some k > i such that f4(ax) < n
and either ax € @ or fa(ax) = 0. Therefore by induction on n there exists some j > i such
that fa(a;) = 0. If n > 0, then a; € Q, and therefore for some m € I, an action of Cy, is
enabled from a;. Let 2’ = a;m; 4144 ... be the execution fragment of z beginning with state a;.
It cannot be the case that no action of C occurs in z’, since fairness to C,, would be violated.
Then there exists some k > ¢ such that 7 € C. If fy(aw) > 0 for i < k' < k, then all ap € Q.
Therefore f4(ax-1) < n, and it follows fa(ai) < n. (]

Note that when showing a function is a variant function we may be able to ignore certain
steps if we can show these would not occur, for example due to assumptions on the envi-
ronment (see Section 2.4). The theorem will still follow restricting £ to these executions. A
variant function is used in the proof of correctness of a sequential solution to Set Partition (see

Theorem 4.3).

2.4 Rely/Guarantee Functions

One way to specify an automaton is to describe its set of fair behaviors. Since automata are

input enabled and must respond to any sequence of inputs, some sequences of inputs may cause

18

an undesired sequence of outputs. In this case we need to show that such sequencés of inputs
do not occur, and that the automaton will behave correctly for all other input sequences. We
can characterize this using rely/guarantee functions. A rely condition for an automaton A is
simply a sequence of input actions of A. For each rely condition there will be a set of behaviors
of A which are its “guarantee”. The rely/gué.ra.ntee function for A will be a function mapping
each rely condition to the corresponding guarantee.

Let A be an I/O automaton. For an arbitrary set T, let S(T') be the set of all sequences of
elements of T'. Let G4 be the function from S(in(A)) to fbeh(A) such that

Ga(r) = {z: z € fbeh(A) and z|in(A) = 7}

So essentially G4 partitions fbeh(A) into equivalence classes corresponding to each sequence of
input actions r. Each sequence r is a rely condition, whereas the set G4(r) is the corresponding
guarantee. The function G4 is the rely/guarantee function for A.

We can extend G4 to take a set of rely conditions as an argument. For R C S(in(A4)) we
can define G4(R) = U,er Ga(r). It may also be useful to define the following extension for an
arbitrary set of schedules R: G4(R) = G4(R|in(A))

At first glance it may seem as though there is no real difference between specifying an
automaton by its fair behaviors and by specifying it using a rely/guarantee function. However
by using rely/guarantee functions one can organize proofs around the assumﬁtions made about
the environment and the corresponding guarantees made by each automaton. This organization
may make the proof easier to understand. Another advantage is with respect to composition.
Although one can derive the fair behaviors of A- B given those for A and B using Theorem 2.4
(see Theorem 2.12), it may still be difficult to characterize exactly what these behaviors are.
For example it may be difficult to show that G 4.5(r) C § for some set S. In such a case using
successive refinement (Theorem 2.13 below) may simplify the task.

In addition, often one doesn’t need to specify G4(r) precisely. Instead one can specify its
essential properties, where a property is just a subset of S(ext(A4)). Ga(r) is said to satisfy
property P if G4(r) C P.

As an example consider the FIFO (first-in, first-out) buffer B;; (i # j) in Figure 2-1. The
buffer takes as input a sequence of messages from a source i and forwards the messages in the

same order to a destination j. We can describe a collection of properties F;;(r) of Bi; as

19

TUUE YT T UM M Gmawsewsee

State Variables:
buf; ;: sequence of messages (initially ¢)
Input Actions:
send;(m) [for all messages m)|
effects:
buf,-'j - buf‘-',- +m
Output Actions: (each in a separate class of the partition)
send j(m) :
preconditions:
buf;; # €
m = hea.d(buf,-'j)
effects:)
buf — ta.il(buf,-,j)

~ Figure 2-1: FIFO Buffer B; ;

follows. Let r € S(in(B; ;)). Let r; be the sequence resulting from replacing each send;(m)
action of r with send;j(m). Then for z € S(ext(B;;)), z € P; ;(r) iff

1. zlout(B; ;) = rj;
2. r(n) precedes r;(n) in z for all n.

Then it is easily seen that Gp, ;(r) satisfies I, ;(r); in fact Gp, ;(r) = P; ;(r). Informally, B; ;
guarantees to forward all messages sent to it in order, and to not send any other messages.
One can define a rely/guarantee function Go for any object O. For objects O and P with the
same external action signature, O solves P iff Go(r) C Gp(r) for all r € S(in(0)). Therefore
one can specify a problem P as an external schedule module with rely/guarantee function Gp,

and show that an object solves P using this technique.

2.4.1 Proof Techniques

We now show how rely/guarantee functions can be used in proofs of correctness. Given
rely /guarantee functions for each automaton in a set of automata, we show how to derive
the rely/guarantee function for the composition of these automata. We also show how action

hiding interacts with rely/guarantee functions.

Composition and Successive Refinement

20

Theorem 2.12 Let {A; : i € I} be a set of strongly compatible objects each with rely/quarantee
function Ga,. Let A = I[;A;. Then for r € S(in(A)) and z € S(ext(A)) where z|in(4) = r,
2 € G4(r) iff z|]Ai € G4;(2]in(A)) for allie 1.

Proof: Follows immediately from Theorem 2.4. O

For example, consider the composition of B; ; and Bk, where 3, j, k are all distinct. Call the
composition C; it takes a sequence of messages from source 7 and forwards duplicate copies to
J and k. From Theorem 2.12, it follows G¢(r) = P; j(r) N P; x; in other words for z € S(ext(C))
such that z|in(C) = r, z€ Ge(r) iff:

1. zlout(B; ;) = rj and z|out(B;x) = x;
2. r(n) precédes rj(n) and ri(n) in z for all n.

This is a very simple example since there is no communication between the two automata.
For most interesting compositions there is communication among the automata, and it may not
be simple to determine the rely/guarantee function for the composition using Theorem 2.12.
This is because the rely conditions for each component A; not only have actions of the environ-
ment of A in them, but also actions of the other components of the composition. Furthermore
the guarantees of another component A; may affect the rely conditions of A;. Therefore while
it is simple, for some sequence z, to determine if z € G4(r), it may not be so simple to deter-
mine if G4(r) C Z for some set Z, and this is typically what one is interested in when proving
correctness.

Therefore in practice it may be simpler to use the technique of successive refinement to
describe G 4(r). One defines a sequence of successively smaller sets Zg, Zy,... It is show-n that
the rely condition r from the environment restricts the fair behaviors of A to be in Zy. From
this and the guarantees of the components A; one can further restrict the fair behaviors to be
in set Z;, and this can be continued step by step. We prove that the guarantees of A will be

contained in every Z;; therefore the Z; can be thought of as successively refined descriptions of

Ga(r).

Theorem 2.13 Let {A; : i € I} be a set of strongly compatible objects each with rely/guarantee
function Ga,. Let A = I;A;. Letr € S(in(A)), and let Zg = {z € S(ext(A)) : z|in(A) = r}. Let

21

WD ew TS C - -~ e e e - Lt N e Y ———————————tt et e eeeeee e

21,23, ... be a sequence of sets such that each satisfies the following SR (successive refinement)

condition:

Z;12Z;2{z€ Zj_1: z|Ai € G4,(2|in(A;)) for alli € I}

Let Z = limj.o Z; (that is, Z is the largest set such that Z C Z; for all j). Then G4(r) C Z.

Proof: We show for all z € G4(r) that z € Z. If 2 € G4(r), then z|in(4) = r, s0 z € Z5. Now
we show that if z € Z;_, then z € Z;. Since z € G4(r), it follows z|A; € G4,(z|in(4;)) for all
¢ € I from Theorem 2.12. It then follows that if 2 € Z;_; it must also be in Z; from the SR
condition. Therefore z € Z; for all § > 0 and it follows z € Z; otherwise Z U {z} g Z; for all
Jj, contradicting the fact that Z is the largest such set. O

Note that the theorem is also easily generalized to a set of rely conditions R (replace r
by R in the statement of the theorem). This theorem is similar to to Lemma 3.11 of [Sta84];
however the latter sets up an ordering of the component automata and refines exactly once per
automaton.

As an example of successive refinement, consider composing B} ; and Bj;, where B} is a
slightly modified version of the buffer having a single message a in its buffer in the initial sta.t;e.
Thus in all fair behaviors B; ; will send a before any other messages. Ca.]l the composition C;
notice that C has no input actions and therefore the only rely condition of interest is » = ¢. For
k > 0, define p; = [send;(a), send;(a), send;(a),...] (with exactly k elements); so pp = €. Then
define Z; to be the set of all sequences z € S(ext(C)) such that pi is a prefix of z. Therefore
Zo = S(ext(C)) and the limit Z is the set consisting solely of the infinite alternating sequence
sendj(a), send;(a), send;(a),.... Clearly the SR condition holds for Z; since B ; guarantees
its first output action will be send;(a) and B;; guarantees its first output action must follow
an input action. For z € Z, [send;(a)] is a prefix of z. From the guarantees of B, it follows
(send;(a)] is a prefix of z|out(B;;) and from the guarantees of B ; it follows a second action of
B! ; must follow this send;(a) action. Therefore [send;(a), send;(a)] is a prefix of z, and 2z € Z,.
In a similar manner it can be shown that the SR condition holds for all Z;. It follows that
Gc(r) = Z and in fact fbeh(C) = Z.

22

Abstraction

Let s be a set of compatible automata and let S denote the composition of all automata in s. Let
sets 8; : ¢ € I be a partition of s and S; denote the automaton resulting from the composition
of all automata in s;. Since composition is associative it follows S = II;5;. However things are
more complicated if we are interested in §' = Hideg(S). We cannot simply consider Hideg(S;)
since we may be hiding some actions also in another automaton §;. The following theorem

describes how to hide actions properly in this case.

Theorem 2.14 Given S and S; for alli € I as described above along with X, let S’ = Hideg(S).
Let ¥ be the set of actions contained in the action signatures of two or more automata in {S;}

(¥ = Uiy, acts(5;) Nacts(S;)). For each i€ I, let S| = Hideg_y(S;) for alli € I. Then
I1;5! = Hideg_¢(5)
It follows from this that Hidey(II;S}) = §’.

Proof: From the definition of actioa hiding, S! = Hide(g_w)mut(si)(.gi) for all ¢ € I. Further-
more for each i, [(X — ¥) N out(S;)] N acts(S;) = @ for all j # ¢ from the definition of ¥. It
follows from Theorem 2.2 that II;S! = Hidex_w(S5). : O

Furthermore a simple relationship holds between the rely/guarantee function of an automa-

ton and its counterpart with actions hidden.

Theorem 2.15 Let A be an automaton and X be a set of actions. Let A’ = Hides(A). Then
Jor all r € S(in(A")), Ga(r) = {z : z = yl|ext(A’) for some y € Ga(r)}.

Proof: Follows immediately from Theorem 2.1.. O

These theorems can be used to provide a level of abstraction in correctness proofs. Rather
than having to describe the rely/guarantee function for S (which will involve all those actions &
which are to be hidden and thus could be quite complex) and then derive those for S’ from that,
one can instead prove correctness of each of the subautomata S/, each of which will hide some
of the actions, and then combine these results using Theorem 2.14. This will be demonstrated

in both the Set Partition and Olympic Torch examples.

23

Comments

Early works which specified processes in a rely/guarantee style include those by Misra and
Chandy ([MC81, MCS82)) and Jones ([Jon83]). The former was used for processes communi-
cating via message passing; the latter for shared variables. The approach here seems closest
to that of Stark ([Sta84]) which is not surprising since Stark’s model was a precursor to the
1/0O automaton model. A difference is that Stark allows his rely conditions to be -arbitrary
predicates over the set of executions, whereas here a set of rely conditions is a predicate of
the inputs only. However it seems our rely/ gua.r.;-mtee functions are no less expressive than his
specifications, particularly since they are simply a partition of the fair behaviors. On the-other
hand, because of the simple structure of our rely/guarantee functions, we were able to derive a
straightforward theorem for their composition (Theorem 2.12) for which there is no analog in
Stark’s work. He does include a theorem (Lemma 3.11) similar to Theorem 2.13, although it
is asymmetric in that an ordering must be defined for the processes and each refinement step
corresponds to the rely/guarantee conditions for a single process.
| A complication arising from allowing very general rely conditions is that these conditions
may not be “realizable”; that is, they may restrict the environment in some way. Abadi and
Lamport ([AL90]) give a very general form for specifications using rely /guarantee conditions,
but this necessitates defining fairly complicated conditions under which these specifications are
realizable. They do no correctness proofs so it is not clear if anything is gained from this
gener‘a.lity. On the other hand the restricted form of our rely/guarantee functions assures the

behavior of the environment is not restricted.

24

Chapter 3

Process Creation

A way to handle process creation in a static model is to start with the set of all possible
processes, and define a predicate for each process which indicates whether or not it is alive.
Then one must show the process does not actually do anything when it is not alive. This is

shown below for the I/O automata model.

3.1 Definitions

We can model a system in which processes are created and destroyed as the set of all processes
(where each process is an I/O automaton) that could possibly be alive during any execution
of the system. The number of such processes could be infinite, but will typically be at most
countably infinite. For each I/O automaton A, define a boolean function w4() whose domain
is states(A). We say that A is alive at state a if wa(a) = true; it is dead at a otherwise.
Typically a component of a will be a boolean variable named working, in which case we can set
wa(a) = a.working.

. In addition all automata in such a system are required to satisfy properties that correspond

to the intuitive notion of process creation. For all (a,7,a’) € steps(A) we require the following:
1. If 7 is an output or internal action, then w4(a) = true.

2. If = is an input action, then if ws(e) = wa(e’) = false, it must be the case that a = a’.

If wa(a) = false and wa(a’) = true we call T a creation action.

25

This says only a live automaton may take steps; however, some input actions may be creation
actions. If x is a creation action, we normally would like to have the additional requirement
that for all (b, 7,d") € steps(A), if wa(d) = true then &’ = b. This says that = has no-effect if
the process is already alive. However we would like to compose automata and define a function
w for the composition. Thus if A is the composition of {A; : ¢ € I} where wy; is defined for all
¢ € I, then define wy(a) = true iff there exists some i for which wgu,(a|A;) = true. This says
that A is alive iff one of its components is. Therefore the composition A may be alive and yet
additional creation actions will have effect, as they create other components of A. We define
wa,(a) = wa,(al4;). |

A dynamic system is a collection of automata {A; : ¢ € I} along with, for each automaton
A;, a function wy,; satisfying the conditions above.

In order to make for more exciting reading the following terms will be occasionally be used.
Let A be a dynamic system that is the composition of processes {A; : i € I'} and let = € execs(4)
where z = @o718172az2 Then A; is said to be alive at a; if wy;(a;) = true and dead at a;
otherwise. It dies at a; if it is dead at a; and alive at a;_;; it is created at a; if it is alive
at a¢; and dead at @;_;. Thus in the latter case x; would necessarily be a creation action. If
wa,(ao0) = true then we say A; is created at ag. Note that if we want to consider A itself (even
if it is not a composition of other automata) we can use the above with w4 in place of wy;
provided w4 has been defined.

Process A is said to create B in execution z if there is an output action of A in z that
creates B. Process A is called the parent of B and B a child of A. A descendant of A is either
a child of A or a child of a descendant of A. The process creation tree of A is A along with all

its descendants.

3.2 Abstraction and Rely/Guarantee Functions

Specifications using rely/guarantee functions are particularly useful in dynamic systems. When
a process creates children, we can think of these children as satisfying some of the guarantees
of the parent, given that the parent and the overall environment satisfy certain rely conditions.
Therefore it is useful to define a rely /guarantee function for the entire process creation tree of A.

If the composition of the processes in this tree is C, then the specification of C can be derived

26

from the specifications of A and the process creation trees of its children using Theorem 2.12
or Theorem 2.13. However typically one will wish to hide internal actions of the tree, in ‘this
case one also uses Theorem 2.14 and Theorem 2.15. These techniques will be demonstrated in

both the Set Partition and Olympic Torch examples.

3.3 Comments

Although it may seem at first that reasoning about a dynamic system is very complicated,
it can be seen that it need not be. Although we consider an infinite set of automata, only
those which are alive are of concern. The dynamic topology can be handled well by using
rely /guarantee functions; a process can rely on messages arriving even if it cannot tell who will
send the message.

Because process creation is such a general phenomenon, it is difficult to prove any useful
theorems for it without restricting the class of examples. However properties of process creation
will be used throughout the proofs of correctness for Set Partition and Olympic Torch. An
example of such a property is that if a process is initially dead, it cannot send any message -

until a create action occurs. This is used to prove safety properties.

27

Chapter 4

Set Partition

4.1 Specification

The Set Partition problem is to start with two nonempty disjoint finite sets of integers S and
L, and to return two of integers S’ and L' such that

1. SSuULl’=SuUlL
2. 18" = || and || = |L|
3. max($’) < min(L)

In other words, all the smaller integers will be in S’ and the larger integers in L’ at the end.
This problem is used as an example in [Bar85] to compare several verification methods for
parallel programs; a comparison with this method can be found in Section 4.4. In this chapter
three different solutions to Set Partition are presented in increasing order of complexity: a
nondeterministic algorithm which guesses the solution; a deterministic sequential algorithm
which swaps elements of § and L; and a distributed solution in which the swapping is done
asynchronously.

We can specify Set Partition by an external schedule module Z whose action signature is
in = {start(S,L)} and out = {stop(S,L)} for all possible pairs (5,L) of nonempty disjoint
finite sets of integers. We will specify the behaviors of Z using a rely/guarantee function (see

Section 2.4). We will only be concerned with the case in which the environment sends a single

28

State Variables:
S,L: sets of integers (initially @)
Input Actions:
start(S’,L")
effects:
if $ = 0 and S’ and L’ are nonempty disjoint finite sets of integers then
S~8
L~
Output Actions:
stop(S',L")
preconditions:
S#0
S'uLl'=SuUl
|8l = 18| and |L| = |L|
max($5’) < min(L’)
effects:
S0

Figure 4-1: States and actions of Ps.

start(S, L) action. Therefore if rg,r, = [start(S, L)} where § and L are nonempty disjoint finite
sets of integers, then Gz(rs.) = {[start(S, L), stop(S’, L")]} where (S,L) and (5’, L') satisfy
the three conditions above. For all other r € S(in(Z)), define Gz(r) = S(ext(Z)); in other
words, we do not care what the behavior is in this case.

The following theorem should be obvious.

Theorem 4.1 Given nonempty disjoint finite sets of integers S and L, S' and L' satisfying

the three conditions above ezist and are unique.

A simple nondeterministic solution to Set Partition is given by Py shown in Figure 4-1. This
automaton is completely straightforward: it receives the two sets S and L and returns S " and
L’ satisfying the above conditions. The state is characterized by the variables S and L; notice
that S is being used to determine whether the process is alive or not; thus wp, (a) = (a.5 # 0)
(see Section 3).

We now want to show that P; solves Z, which is straightforward.

Theorem 4.2 P, solves Z.

29

State Variables:
S,L: sets of integers (initially @)
Input Actions:
start(S’,L')
effects: ,
if $ = @ and S’ and L’ are nonempty disjoint finite sets of integers then
S5
Le~L
Output Actions: (all local actions are in one partition)
stop(S,L)
preconditions:
S#0
max(S) < min(L)
effects:
S—90
Internal Actions:
compute
preconditions:
S#0
max(S) > min(L)
effects:
S «— S + min(L) — max(S)
L — L + max(S) — min(L)

Figure 4-2: Statc; and actions of Pa.

Proof: Let rsy, = [start(S, L)] for some pair of nonempty disjoint finite sets of integers S and
L. We need to show that Gp,(rs,L) C Gz(rs,.L). Let z = agma;... be a fair execution of P,
such that z = sched(z) and z|in(P;) = rs. Since no action of out(P;) is enabled from ay, it
must be the case that 7y = start(S, L). By Theorem 4.1 there exists exactly one pair (§’,L’)
such that stop(S’,L’) is enabled in a;. Therefore by fairness we must have x; = stop(S’,L").
Due to the conditions on stop, (S, L) and (S’, L) will satisfy the conditions of Set Partition. In
state az, no output action of P; will be enabled, and since by hypothesis no input action will
occur, z = [start(S, L), stop(S’, L)), and thus z € Gz(rs,L)- ~ O

4.2 Deterministic Sequential Implementation

A simple sequential algorithm to solve Set Partition swaps max($) and min(L) until con-

30

dition 3 is satisfied. We implement this algorithm using I/O Automaton P;. See Figure 4-2.
The process is similar to P; save that we have added an internal action to swap max(5) and
min(L) and have changed the preconditions of the output actions. The allowed states and
external action signature of the two automata are identical, and we define wp,(a) = (@.5 # 0)
as before. There is only one partition containing all local (output and internal) actions. When
wp,(a) = true, exactly one of the compute and stop actions will be enabled, and since it will
be continuously enabled by fairness it will occur. Note that the two clauses in effects of the
compute actions are meant to take place simultaneously, thus swapping max(5) and min(L) in
each set as desired.

We wish fo show that P; solves Z. The proof is similar to Theorem 4.2 save that we now

have to use an invariant and a variant function.

Theorem 4.3 P, solves 2.

Proof: Let rg 1, = [start(S, L)] for some pair of nonempty disjoint finite sets of integers § and
L. We need to show that Gp,(rs,L) € Gz(rs,.L). Let z = agmay ... be a fair execution of P,
such that z = sched(z) and z|in(P;) = rs,. Since no action of out(P;) is enabled from ay, it
must be the case that m; = start(S, L).

Define a boolean function P(e¢) = [(a;1.SU a;.L =a.SUa.L)A (Idl.S| = |a.S)) A (la1.L} =
la.L|)]. In other words, P is the first two conditionys of Set Partition, and is an invariant that
captures the safety properties. Let z; = aom;...a;. We want to show that, for all : > 1, if
no stop action occurs in z; then Pz(a;) = true. This is done by induction; clearly it holds for
i = 1. Now assume it holds for z;_;; prove for ¢ > 1. Consider the possible actions 7;. By
hypothesis we cannot have n; = start(S’,L’). If m; = compute, then from the effects and the
induction hypothesis it can easily be seen that P;(a;) = true; note that this is dependent upon
S and L being disjoint.

We now must show that there exists some i > 1 such that 7; = stop(ai-1.5,a;-1.L) (and for
no ¢ < i is xy a stop action). Since the precondition of =; is that max(a;—;.S) < min(a;-1.L)
and since P;(a;—;) holds, it mﬁst be the case that (a;.5,a;.L) and (ai—1.5,ai—1.L) satisfy all
three Set Partition conditions. Furthermore since the effect of this action is to set ;.S = 9, no
local action of P, will be enabled from a;, and a start action cannot occur by hypothesis. Since

7, and ; are the only external actions in z = sched(z), it must be the case that z € Gz(rs,L)-

31

Let C = local(P) and let Q@ = {a € states(P;) : |a.5| > 0}. Define variant function f(a) =
la.8|, where a.5 = {s€ a.5:5> min(a.L)}. We show that f is a variant function for (C, Q).
When a € @, either a stop or compute action will be enabled from a, so condition 2 holds. For
condition 1, let (a,7,a’) € steps(A) where a € Q. If # = start(S’, L'), then since [a.§| > 0
we must have @’ = a. If 7 = stop(a.S, a.L), then it must be the case that f(a) = 0 from the
preconditions. Finally if ¥ = compute, then by the preconditions we must have f(a) > 0. Let
S1 = a.§ and Sz = @'.5. Since |51 > 0, max(a.S) € §;. Furthermore since min(a’.L) >
min(a.L) it follows that min(a.L) ¢ S and also for all s € a.S§ N a'.S, if s ¢ S then s ¢ S,.
Thus from the effects of compute, |§2| < |S1|. Thus f is a variant function for (C,Q) and it
follows from Theorem 2.11 that for any fair execution z of P,, since a; € Q there must be some
J > 1such that f(a;) =0. If ¢;.5 = 0, then a stop action must have occurred in z;. Otherwise
the only local action enabled from a; is stop(a;.S,a;.L); it is continuously enabled (despite any

occurrences of input actions) and thus must occur due to fairness. O

4.3 Distributed Solution with Instantaneous Message Passing

We implement Set Partition in a distributed system in which message transmission time is
instantaneous. Process creation occurs in this version, but it is very simple. One would not
expect the process creation to be troublesome, and in fact it isn’t.

See Figures 4-3, 4-4 and 4-5 for the states and actions of the three automata used. The
general idea is that P; creates two processes S3 and L3, passing them sets S and L respectively.
The latter two processes then swap elements as in the sequential algorithm and return the
answer to P3. The proof of correctness will be similar to that for the sequential solution,
but complications will arise from having multiple processes. Process creation can be handled
very sirﬁply and will not cause problems. Define wp,(a) = a.working, ws;(a) = (S #) and
wes(a) = (L # 0). It’s easy to see vfrom the code that the set of these three processes is a
dynamic system. We don’t derive the variable working of P3 from S and L because we use
those variables in another way: When P53 suspends itself waiting for answers from S3 and L3,
it sets § and L to each be . When the latter processes return answers the variables will be

instantiated with the new sets.

32

State Variables:
working: boolean (initially true)
S, L: sets of integers (initially @)
Input Actions:
start(S’,L')
effects:
if working = false and $’ and L’ are nonempty disjoint finite sets of integers
then
S8
L~L
working «— true
Sreturn(S')
effects:
if working = true and S =0
S8
Lreturn(L")
effects:
if working = true and L = @
L~L
Output Actions: (all in one class)
stop(S,L)
preconditions:
working = true
S#0and L#9
max(S) < min(L)
effects:
working — false
call S,L)
preconditions:
working = true
S#0and L#0
max(S) > min(L)
effects:
S0
L~9

Figixre 4-3: States and Actions of P3

33

State Variables:
S: set of integers (initially 9)
buf: sequence of integers (initially ¢)
Input Actions:
cali(S',L")
effects: :
if $ = @ and &' is a nonempty sets of integers then
S5
_ buf « [min(Z’)]
Lsend(n)
effects:
ifSs#£0
buf — buf +n
Output Actions: (all in one class)
Sreturn(S)
preconditions:
S#9
buf # € and max(S) < head(buf)
effects:
S0
Ssend(n)
preconditions:
S#0
buf # € and max(S) > head(buf))
n = max(§ — max(S) + head(buf))
effects:
S — § — max(S5) + head(buf)
buf — tail(buf)

Figure 4-4: States and Actions of S3

(Note that the code is identical to S3 save that § is replaced by L, < by 2, > by <, and max
and min are switched throughout.)

State Variables:
L: set of integers (initially 0)
buf: sequence of integers (initially ¢)
Input Actions:
call(S',L')
effects:
if L =0 and L' is a nonempty sets of integers then
LI
buf « [max(S")]
Ssend(n)
effects:
ifL#0Q
buf — buf +n
Output Actions: (all in one class)
Lreturn(L)
preconditions:
L#0
buf # € and min(L) > head(buf)
effects:

L<?

Lsend(n)
preconditions:
L#£0
buf # € and min(L) < head(buf)
n = min(L — min(L) 4+ head(buf))
effects:
L « L — min(L) + head(buf)
buf « tail(buf)

Figure 4-5: States and Actions of L3

35

The processes S5 and L3, in addition to maintaining the set they are responsible for, also
have a buffer to store incoming messages from the other process. When one arrives it is
automatically stored in the buffer. Due to the fact that processes buffer messages instead of an
autonomous mail system, we must create both S3 and L3 at the same time if we wish them to
be symmetric. Otherwise if one s created first it could send a message to the other which would
be lost. This problem could be easily overcome by having the processes send ready messages
to each other both when created and when receiving a ready message from the other process.
Each process could then send messages normally once it receives a ready message from the
other process.

Each process is to send an initjal message, then receive a message and send the next message,
and so forth. The initial message is different from the others in that no message need be received
before it is can be sent. The convention used in [Bar85] is to put 0o or —oo in the input buffer
initially; in the algorithm here we put min(L) in the buffer of Sy and max(S) in the buffer of L3
initially; this cleans up the code and the proof considerably by avoiding special cases. Notice
that the send actions of the I/0 Automata remove a message from the input buffer (which is
essentially a receive) and send a message simultaneously; in other implementations these would
be done as separate actions. However it is not hard to see that even if they were implemented
as separate actions correctness would be maintained.

We compose our three automata (which are strongly compatible) to produce a singlev au-
tomaton V3. First let M} = P5. S3-L3. Let X be the set of all actions of N save the start and
stop actions. Then let A3 = Hideg(A7) Thus A will have the same external action signature
as Z. Note that the partition of A3 has three classes, one for each of the automata in the
composition. Since we have used the same names for the state variables of the components,
we need to distinguish them in the composition. We do this by subscripting the variable name
with the automaton name. For example, bufs is the buf state variable of process S3.

One could use invariants and a variant function as in the proof of Theorem 4.3, but these
are much more complicated in this case. Therefore we will instead use rely/guarantee functions
and successive refinement (see Section 2.4). This method too is somewhat complicated here,
but still much simpler than the traditional proof methods. Furthermore, we can break the

proof into parts. Since the role of Ps is simply to start the parallel computation and collect

36

the results, it makes sense to consider it separately. The computation takes place between S3
and L3, and it simplifies matters to hide this from P3;. Therefore let C' = Sz - L3, and let
C = Hider(C'), where T is the set of all Ssend and béend actions. Let ¥ be the set of all call,
Sreturn and Lreturn actions. It then follows that A3 = Hidey(P) from Theorem 2.14.

We will therefore first specify C, and then show how to combine this specification with a

specification of P3 to produce a specification for A3, and finally show that this solves Z.
Lemma 4.4 Ifr = [call(S, L)] for nonempty disjoint finite sets of integers S and L, then
Ge(r) = {[call(S, L), Sreturn(S"), Lreturn(L")], [call(S, L), Lreturn(L'), Sreturn(S”)}}

where S’ and L' satisfy the conditions of Set Partition. Furthermore if v is a prefiz of ¢ €
S(in(C)) (note that ¢ must be a sequence of call actions), then one of the two sequences in

Gc(r) will be a prefiz of any sequence in Gc(q). If g = € then Go(q) = e.

Proof: As the distributed algorithm is similar in concept to the sequential algorithm, it is
useful to structure the proof in a similar manner as well. Fix S and L to be nonempty disjoint
finite sets of integers, and define So = S and Lo = L. Define §; = Si—1 — si1 + li-1 and
Li=Liy—U_1+8i—1if 8i_1 > li_1; §; = Si;~1 and L; = L,;_; otherwise, where 3; = max(;)
and /; = min(Z;). Notice that S; U L; = SU L, |S¢| = |S| and |L;| = |L| for all i. Furthermore
there exists some j such that s; < I/;. Define S; = {s € Si: s> min(L;)} and then define
f(3) = |5i|. It can easily be seen that f(i) > f(#') if f(i) > 0 and i < #/, and that f(j) = 0 iff
8j < lj. Define t to be the smallest number j such that s; < ;. |

This was the essence of the proof of Theorem 4.3, and will be the essence of this préof as
well. The notation above will be used throughout the proof.

We will first specify S3 and L3, and then combine the specifications using successive refine-
ment to determine the specification of the composition C’. It will theﬁ be shown that after
hiding the actions in I' the above specification of C is met.

First we specify S3; this will be done by specifying properties of Gs,(r) for those 7 of
interest. First note that for any r € S(in(S3)), if there is no call action in r then Gs,(r) = r;
in other words S3 does nothing. The call action is a “create” action for S3 so since the process
is initially dead it cannot do anything until it is created. Furthermore in any r for which there

is a call action there can be no local action of S3 before the first call action in any z € Gs,(r).

37

L ey T ———

Foir all ¢ > 0, define

g = [Ssend(s,),Ssend(s2),...,Ssend(s;)]
g0 = [Lsend(ly),Lsend(ly),..., Lsend(l;)]

It then follows that if [call(S,L)] - g} is a prefix of r and i < ¢, then g}, is a prefix of
rlout(S3) and Ssend(s;) follows Lsend(l;_;) for all j > 1; also Ssend(s;) follows call(S,L).
This is easily checked by examining the code of S3.

On the other hand if [call(S, L)] - g} is a prefix of r and there are ﬁo additional call actions
in r, then

rlout(S3) = g7 - [Sreturn(S;)]

and Sreturn(S;) follows Lsend(l;). If there are additional call messages after call(S,L) then
this sequence is at least a prefix of r|out(S3). Again this is all easily checked by exa.mihing the
code.

The specification of L3 is analogous. If [call(S,L)] - g¢ is a prefix of r and i < ¢, then g}y,
is a prefix of r|out(L3) and Lsend(l;) follows Ssend(s;—,) for all 7 > 1; also Lsend(l;) follows
call(S,L). If [call(S,L)] - g} is ~ nrefix of r and there are no additional call actions in r, then
rlout(L3) = g} - [Lreturn(L;)] and Lreturn(L;) follows Ssend(s;). If there are additional call
messages after call(S, L) then this sequence is at least a prefix of rjout(L3). As with S; this s
easily checked by examining the code.

We combine the specifications of S3 and L3 to derive a specification of C’. This is done

using successive refinement. In order to prove the theorem we have to consider three cases

(where r € S(in(C"))):
l.r=¢
2. r = [call(S, L)};
3. [call(S, L)] is a prefix of r.

In the first case it is trivial to show that G¢/(r) = ¢, since both S3 and L3 guarantee to do
nothing. We will prove the second case here; the proof of the third case is handled in an
analogous manner. Therefore set r = [call(S,L)]. Zg is defined to be the set of z € S(ext(C’)
such that z|in(C’') = r.

38

o o m s w wwe eweameeem N e wesr————— S

The definition of Z; will depend upon whether or not ¢ < 2t. Intuitively Z;.for i < 2¢
includes sequences representing computation that has not yet been completed, while Z; for
t > 2t only includes sequences in which the computation has completed.

Let y.-,,-, where |i — j| < 1, be the set of all sequences y € S(ext(C")) such that [call(S,L)}g,’
is a prefix of y|in(S3) and [call(S,L)]- g is a prefix of ylin(L3), and also Ssend(s;) follows
Lsend(lx—1) (for all k < i) and Lsend(lx) follows Ssend(sk_1) (for all k < 7) in y. For k < 2t,
define Zj. to be the union of all y;; in which ¢+ j = k and |i — j| < 1. Note that the condition
| — 7} £ 1 will imply, once the proof is completed, that bufs and buf v}ill each need to be of
size at most two.

Define Z; for k > 2t to be the set of all y € y; ¢ such that

ylout(S3) = g¢ - [Sreturn(S:)] and
ylout(L3) = gi- [Lreturn(L:)],

and also Sreturn(S;) follows Lsend(l;) and Lreturn(L;) follows Ssend{s;).

We show for all k£ > 0 that if Z; satisfies the SR condition then so does Zj,,. First consider
the case k < 2t — 1. Let z € Zi, 80 z € y;,; for some (4,j) such that i+ j=kand |i - j| < 1.
Therefore i, < t, s0 8Sm < Iy for all m < max(é,7). Therefore from the properties of the
guarantees of S3 and L3 it follows 2 € ¥i41,; U Yij41 if 1 = J; 2 € giga,; if ¢ < J; and 2 € 9541
otherwise. In all three cases it follows z € Zy4;.

If Kk =2t-1, then if z € Z; it follows z € y; ; where either ¢ = t or j = t. Say that : = t-and
j =t — 1; the other case is analogous. From the properties of the guarantees of S3, it follows
zlout(S3) = g -[Sreturn(S:)] and Sreturn(S;) follows Lsend(l;). Then from the properties of L3
it follows z|out(L3) = g} - [Lreturn(L.)] and Lreturn(L,) follows Ssend(s;). Therefore z € Zx41.

The case of k > 2t is trivial since Z;,; = Z;. Therefore G¢+(r) C Z2;. The theorem follows

upon hiding the Ssend and Lsend actions and applying Theorem 2.15. : O

Theorem 4.5 N3 solves Z.

Proof: Let rsz = [start(S, L)] for some pair of nonempty disjoint finite sets of integers § and
L. We need to show that G, (rsL) C Gz(rs.). Let £ = aoma; ... be a fair execution of A3
such that z = sched(z) and z|in(N3) = rs,. Since no action of out(N3) is enabled from a, it

must be the case that v, = start(S,L).

39

First note that if max($) < min(L), it is trivial to show that Gu,(rsr) G Gz(rs.L).
Therefore in what followé assume max(S) > min(L).

Let P = P3 - C. The rely/guarantee functions of P3 and C are simple enough that we can
determine the rely/guarantee function of P from them using Theorem 2.12. For z € S(ext(P))
such that z|in(P) = 751, we have already noted that [start(S, L)] must be the first action of
2. Since from the guarantees of C it can be deduced that any external action of C' must follow
an call action, and since we are assuming max(S) > min(ZL), it follows that call(S, L) must be
the next action of Z. From the guarantees of P; it can be deduced that there will be no output
action of P; until bofh Sreturn and Lreturn actions occur; from the guarantees of C it follows
then that the next two actions of z are Sreturn(S’) and Lreturn(L’) (in either order), where S’
and L' satisfy the sift conditions. From the guarantees of P; it follows the next action will be
stop(S§’, L’), and from the guarantees of both it follows there will be no other actions.

In summary:

Gp(rsp) = {[start(S,L),call(S,L), Sreturn(S'), Lreturn(L'), stop(S’, L')],
[start(S, L), call(S, L), Lreturn(L’), Sreturn(S"), stop(S’, L]}

Now if ¥ is the set of all call, Sreturn and Lre.urn actions, it follows that N3 = Hideg(P) from
Theorem 2.14. Then from Theorem 2.15 it follows

Gni(rs,L) = {[start(S, L), stop(S', L')]}

and the theorem is proven. O

4.4 Comments and Comparisons

Ba.rringer ([Bar85]) uses the Set Partition example for two demonstrations of proof methods
in his survey: the method of Owicki and Gries for parallel programs that communicate via
- shared variables ([0G76]) and the method of Levin and Gries for correctness of Communicating
Sequential Processes ([LG81]). It is not really fair to compa.re this proof to either of them
directly, as the proof methods are based upon different models. The proof using Owicki and

Gries method is very complicated, but this is partly due to the nature of shared variable

40

algorithms. The proof using Levin and Gries uses synchronized meésa.ge passing and is:much
simpler. |

What can be compared, though, is the overall style. The proofs using both methods-are
essentially proofs of invariants (on.ly safety properties were proved by Barringer) and a,remmlla.r :
in this way to the invariant proof in Theorem 4.3, although more complicated due to the
parallelism of t:e algorithm. The problem with an invariant is that one must consider all
possible states of the system, and there can be many in a system with multiple processes. So
there can be no modularity, and the invariant itself can be quite difficult to understand.

On the other hand the proof using rely/guarantee functions seems to follow the structure
of the algorithm, particularly the sequence of communications, more closely. Also we were
able to break the problem into parts, considering S3 and L3 separately. For these reasons the
proof seems considerably simpler. An additional advantage is that liveness is also handled by
rely /guarantee functions.

The proof of Set Partition in [dC89] uses a sort of rely/guarantee approach, but manages to
be complicated despite this. Furthermore, even disregarding the fact that there is no undéﬂyfi@g.
model, it is not at all clear that correctness has been proved. De Champeaux shows that
rely /guarantee conditions for his processes are “compatible,” meaning that the correct behaviors
of the system are also behaviors of each process. But this is just half the proof. One also needs
to show that the correct behaviors are the only possible behaviors for the system, something

that is not done in his proof.

41

Chapter 5
Olympic Torch

5.1 Description of Olympic Torch

Olympic Torch is the name given by Dennis DeChampeaux to a kind of divide-and-conquer
approach using process creation. It was inspired by an example given by Ehud Shapiro in a
class on concurrent Prolog. If we need to perform several tasks whose outputs must be ordered,
we can do this using a single process, or the process can create a2 number of children each of
which will perform a subset of the tasks. The output ordering is preserved by the children
sending each other messages, indicating when they are done and when the next process may
output. Of course these children can themselves create children, and the complications arising
from asynchronous process creation and message routing are what make the Olympic Torch
interesting. If we consider the process creation tree, no computation or message passing is done
save at the leaves of the tree. The synchronization can then be seen as a flow of messages
through the leaves indicating when the next process can output. This could be viewed as the
Olympic Torch being passed from runner to runner, thus the name.

To be more concrete, say that the input is a finite sequence s = [s1, 32,...,34] and for some
function f we want to print the sequence [f(s1), f(32),..-,f(85)]. (The input could also be a
binary tree whose leaves when ordered form the sequence s.) We could do this using a sequential
process that computes f(s;) and sends the results in order, but if f is a time-consuming function
we may want to compute it in a distributed manner. Thus we create two processes, sending

the first half of s to the left child and the second half of s to the right child. If the sequence a

42

process starts with has length one, the process computes f on that element. However it must
wait for a go message before printing the result, and then send a go message after the result
has been printed. However due to dynamic process creation each process cannot know which
process it will receive go from and which it will send go to. This is handled in essence by
passing communication channels from parent to child.

Although the Olympic Torch is most useful when f is complex, for simplicity of presentation
we will examine the special case in which f is the identity function. A simple sequential solution

would print the elements of s in order. Let us now look at the parallel solution.

5.2 Parallel Olympic Torch

The parallel implementation of Olympic Torch involves number of processes, each of which
either prints a single element of the sequence or creates two other processes, passing each one
half of the problem. See Figure 5-1. There are infinitely many processes: For each [> 0 process
Si,n exists for 0 < n < 2!, For each process ! indicates the level of the process and n its number
in that level; n will also be used as a sort of mail address for the process. In practice we will
need only up to level [lg(]s|)], where s is the sequence to be printed.

All processes are initially “dead”; that is, they must be created via the start input action.
For all processes Sy, set ws, ,(a) = a.working. It is easy to see that {5} is a dynamic system
(see Section 3).

The process creation action is start, which creates a set of processes (in this case at most
two). For each process to be creatéd there is a tuple (I,n,7,s,m), where / and n denote the
level and number of the process to be created, and r,s,m are initialization parameters. The
argument of a start output action is a set of two tuples, one for each process to be created. Each
process Sj, has every start action that can create S;, (all start(.S) where (I,n,7,3,m) € § for
some r,3,7m) a8 an input action.

Precisely describing which start actions are in in(S;,,) is slightly complicated. The actions
are listed as start({(l,n,r,s,m)} Ub;,). By this it is meant that stert(}) is an input action of
Sia iff b = {({,n,7,8,m)} U by, whei'e r is a boolean value, s is a finite nonempty sequence,
and m is an integer and by, € Bi,. If (I,n) # (0,0) then By = Ups g e {{(1, 7', 7', &', m")}},

where 1/, ', m’ are appropriately typed, and n' = n 4+ 2'"1if n < 2'-1; n' = n — 2'-1 otherwise.

43

State Variables:

working: boolean (initially false)
ready: boolean (initially false)

seq: sequence (initially ¢)

nezt: integer (initially 0)
Input Actions:

start({(l,n,r,3,m)} Ub,,) [see text for conditions]

effects:

if working = false then
working — true

ready — r
seq «— 8
nexrt «— m

9oy oo(n) [for all > 1 and 0 < n’ < 2/ — 1 except (I, n’) = (I, n)]

effects:

if working = true then ready — true
Output Actions: (all in one partition)

start({(l + 1,n, ready, lefthalf(seq),n + 2!), (I + 1,n + 2, false, rightha.lf(seq),m)})

preconditions:
working = true
|seq| > 1
effects:
working «— false

9oy (nezt)
preconditions:
working = true
ready = true
seq =€
effects:
working — false

print; ,(s1)
preconditions:
working = true
ready = true
seq = [s1]
effects:
seq «— €

Figure 5-1: States and actions of S, [> 0,0 < n < 2.

State Variables:
queue: sequence (initially €)
Input Actions:
print;,(a) forall 1 >0,0<n < 2!
effects: ‘
queue «— queue - a
Output Actions:
print(a)
preconditions:
|queue| > 1
a = head(queue)
effects:
queue — tail(queue)

Figure 5-2: Printer Front End F

lefthalf(s) = s1... 8
righthalf(s) = sg41...8m
where m = |s| and k = |[m/2]

Figuic 5-3: Supplementary Functions

Q0 10 01 11

000 100 010 110 001 101 011 111

Figure 5-4: Process Creation Tree

45

U

In other words ¥, represents the tuple corresponding to the other process created by that start
action. If (I,n) = (0,0), then let By, = {0}, so no other process will be created when the root
process Sp is created. Therefore the output actions of the environment of Olympic Torch will
be start({(0,0,r,8,m)}) for appropriate r,s,m.

Since the effects of input action start({({,n,r,s,m)}Ub;) do not depend upon b;,, for con-
ciseness this action is sometimes referred to simply as start(l,n,r,s,m). Furthermore start(l,n)
is used to refer to start(l,n,r,s, m) for arbitrary r,s,m.

It’s easy to see that process S, creates exactly the processes Sj41,n and Sjpqpn4at- The
former will be referred to as the left child and the latter the right child. Notice that a left child
always has n < 2/~ and a right child always has n > 2/~1. Also each process (except Soo) has
a unique parent and the parent of S, i8 Sj_) nmod2i-1- See Figure 5-4.

Synchronization is handled using the variables nezt and ready. When a process creates two
children, the “mail address” n of the left child will be the same as the parent. The nezt of the
right child will be the same as the parent, and the nezt of the left child is set to the mail address
of the right child. This can be viewed as passing imaginary communication channels between
processes. Thus the parent passes its incoming channel to the left child, its outgoing channel
to the right child, and creates a new channel between the two. The variable ready, when true,
indicates that the process is able to print. When a go message is sent to the process ready will
be set to be true; the process will then pass this value to its left child if it creates processes
rather than prints.

Note that output actions are parameterized by state variables (which may change value), so
it is somewhat ambiguous exactly what out(S;,) is. For simplicity we assume that an action
exists for every possible parameter of that type. The state variables then serve to indiate which
output actions are enabled from that state.

Notice that there are two supplementary functions used in the deﬁnit.ibn of Si . See Figure 5-
3. To divide a sequence into two parts we use lefthalf and righthalf; these could actually be
used for any k € {1,...,|s| — 1} but not dividing nearly in half means the process creation tree
will have a greater depth, as much as |s|.

Due to the restriction that output actions of [/O0 Automata be disjoint, we cannot simply

have print(a) actions for each process. To get around this we subscript each print(a) action

46

as print; ,(a). One could then add a front end to the printer that converts a print; ,(a

action into a print(a) output action such as that shown in Figure 5-2. However we won’t be
concerned with subscripts here, and will just assume the printer throws them away. Therefore
print(a) will be used to refer print; ,(a) for arbitrary ! and n.

In addition, since more than one process could have go(nezt) as an output action, wewill
subscript the go input and output actions with ! and n as well. Note that since the ya ‘input

action is not allowed to have (/,n) as a subscript, each automaton S;,, is well-defined. We will

use go(nezt) to refer to go; ,(nezt) for arbitrary ! and n.

Let C be the composition of the §;, for ! >0and 0 < n < 2!, It is easy to see, due to the
subscripting of the print and go actions, that all the automata composing C are compatible. In
fact they are strongly compatible, since no automaton has internal actions. Let £ be the set of
all start output actions of C along with all go(m) actions where m > 0. Then let C’' = Hideg(C).
Note that the only input actions of C (and C’) are start({(0,0,r,s,m)}) for some r, s, m.

5.3 Correctness

Before proving correctness, it is useful to characterize the environment of the Olympic Torch.
Save for certain rely conditions, we are not concerned with its behavior, so we will only spec-
ify an action signature for the environment E. The input actions of E will be all print ac-
tions and all go(m) actions with with m < 0. The output actions of E will be all actions
start({(0,0, true,s,m)}) where s is a finite nonempty sequence and m < 0.

We can state the required correctness conditions for Olympic Torch as an external .sehédﬂe

module with a rely/gua.ra.ﬁtee function. The external action signature of this module

be the same as C’. Let s = 3;135.. .34 be the sequence to be printed. Let m be some negative

integer. Then

Tom = |[start(0,0,true,s,m)]

Gp(rsm) = {rsm - print(s)-[go(m)]}

where print(s) = [print(s;), print(sz2),. .., print(s,)]. For all otherr € S(in(P)),deﬁne Gp(r) =
S(acts(P)). In other words, the behavior could be anything and we need not worry about it.

47

We are only concerned with the set R = |J, ,, {s;m}. Therefore to show that C’ is-correct, we
need to show Ge/(r) = Gp(r) for all T € R.

To show correctness, note that each automaton Sj, is essentially the same. Let C;, (for
l1>0and 0<n< 2’) be the composition of the set of processes in C consisting of S;, and all
its descendants (thus Coo = C). We will give a rely/guarantee function for each tree, but we
first want to hide actions that are internal to the tree (see Section 2.4.1).

Let Z'g,,, be the composition of all processes not in Cj 5, so that C;, -31,,. = C. Define ¥, =
acts(Cy o) N acts(C;,). The input actions of Cy, that are in ¥, a.ré the start(l,n mod 2/~!)
actions and some go(m) actions where m > 0 and m mod 2' = n; the output actions are some
go(m) actions for m > 0. Let £;, = £ - ¥;,,, where T was the set of actions hidden to produce
C'. Let Cj,, = Hidey, ,(Ci,n) and define E;,n similarly. It then follows Hideg, ,(C{, Z’;n) =
(from Theorem 2.14) and also Cy = C’.

It is important for what follows to compose a parent with the process creation trees of its

two children. The following lemma shows how this can be done.

Lemma 5.1 Let A be the set of all start output actions of Sin. Let B be the set of all go(m)
actions that are an output of ~= of the three processes Sin,Ci,, »,C} +1n4gt OGN an input of

one of the other two. LetT = AUB. Then (], = Hider(Sin - Cyy - C i +2,).

Proof: The set T' describes exactly those actions which are in the action signatures of two of
the three automata in question. Furthermore Hideg, ,_r,,,(Si,n) = Si,n and similatly for Cj,
and C| ln2t The lemma then follows from Theorem 2.14. O

We will specify the rely/guarantee function for Cj, as the following function for a schedule

module P, whose external action signature is the same as that of C,',n. Its rely/guarantee

function is as follows, where s = 3131 ...3; and either m < Q or m # n mod 2.
ria(lin) = [start(l,n, true,s,m)]
rf,m(l,n) = [go(n), start(l,n,true,s,m)]
r2m(l,n) = [start(l,n, false, s, m), go(n)]
G (rim(hm)) = {rm(tn)- print(s) - [go(m)]}
Rely condition), is simply the analog of the previous r, ;. The other two rely conditions

involve the go action, which should cause the sequence to be printed correctly whether it arrives

48

before the start action or not. Note that go(m) is an output action of P, only if m < 0 or
m # n mod 2'; thus the restriction.

In addition we to specify some additional safety properties of the guarantees. Define R;, to
be the set of all r € S(in(P;»)) such that there is exactly one start(l,n) action in r. Say that
this action is start(l,n,b,s,m) for some b,s,m. Then z € Gp, () only if no output action of
Py, occurs before this start action. Also there may be at most one go output action of P in z,
and it must be go(m) if it occurs. This will be used to prove that the process creation trees of
the children of S, will not make any transitions until they are created, and that they will not
send any superfluous go messages.

For all other 7 € S(in(P;)), define Gp, ,(r) = S(acts(P;,)) as before. Note that P solves
P; therefore if we can show that C’ solves Py it follows it also solves P. This will be done by

more generally showing that C; , solves P, for all l and n.
Lemma 5.2 Automaton C|, solves P, foralll>0and0<n< 2,

Proof: The only interesting cases are for the sequences ri'm(l, n) for 1 < i < 3, as well as the
safety properties for R;,,. The proof is by induction on ¢ = |s|. This means it is essentially
induction on the size of the process creation tree rooted at S; ,,.

The base case is ¢ = 1. In this case, for each of the 7%, all local actions of], will be
disabled until the actions of r* have occurred. At this point only print, . (s;) will be enabled;
it is continuously enabled and by fairness it must occur. Next go;,(m) will be continuously
enabled and thus must occur. After it occurs no action will be enabled. It is clear that the
safety properties for R;, are satisfied as well.

In the induction step g > 1; let 8! = lefthalf(s) and s?> = righthalf(s), so s! - s2 = s and
|| < gforie {1,2}. Let B(y) = {(I +1,n,y,8t,n+20),(I+1,n+ Z‘,false,sz,m)}.

We can handle the safety properties for R;, separately, and use them later when needed.
For r € Ry, there is exactly one start(I,n) input action in r; say that it is staﬂ(l, n,b,s,m). No
local action of Sj, is enabled until this action occurs. At this point only start(B(y)) is enabled
for some y; once it occurs no local action of S, is enabled and none will since by R;, there
is only one start;, action. Therefore R4y, and Ry, ., are satisfied for the process creation

trees of the two children; by induction no action of either will occur before the start(B(y))

49

action, and the only go output actions will be go(n + 2') and go(m). The former is hidden in
C{ » 50 the only go output action of Ci . will be go(m). Thus the safety properties are satisfied.

We now consider the case of r} ,,(I,n), and first describe Gsn (r*). In the case of each #*, no
local action of Cj,, will be enabled until the start input action occurs; following this (in cases r!
and r?) the start(B(true)) output action will be the only action enabled; it will be continuously
enabled and thus must occur. The case 73 is slightly more complicated. Once the start input
action occurs start(B(false)) will be the only action enabled. It may occur before the go(n)
action; otherwise after go(n) occurs the only action enabled will be start(B(true)), which will

be continuously enabled and thus must occur. In summary:

Gs, . (F) = {r‘ . [start(B(true))]} (for i € {1,2})
Gs, . (r*) = {r3 . [start(B(true))], [start(l,n mod 2'~, false, s,m), start(B(false)),go(n)]}

Furthermore it can be seen that if 7' is a subsequence of the inputs and there are no other
start(l,n) actions, then the sole output action of S;, will be the corresponding start(B(y))
action and it will follow start(l,n); this is a safety property for Sj .

We can apply the induction hypothesis to Cj, ,, and c

141,042 YO determine the rely /guaran-

tee functions for them. Let C' = 81n-Cly1 0 Clyg s
function for C using Theorem 2.12. Let Q = print(s!)-[go(n +2")]- print(s?) -[go(m)]. We will

show that

a1+ Then we can determine the rely/guarantee

Go(r) = {r'-[start(B(true))] - Q} (for i € {1,2})
Ge(r®) = {r3 - [start(B(true))] - Q, [start(l, n, false, s,m), start(B(false)), go(n)] Q}

Since the start(B(y)) and go(n+2') actions are hidden in Cj,, it will then follow from Lemma 5.1
and Theorem 2.15 that Cj , solves Py . A_

We will prove the rely/guarantee function for C is as given above using Theorem 2.12.
Given z € S(ext(C)) such that z[in(C) = r', we show that z € G¢(r') (given above) iff
z|in(A) € Ga(Zlin(A)) for all A € {SL",C,'_H‘“, ,’+1’n+2,}. The “only if” direction is trivial to
show; we now prove that the “if” direction holds. .

The safety properties simplify matters considerably. Since there is exactly one start(l,n)

action in z, from the safety property for S;, it follows that the sole output action of §;, will be

50

the start(B(y)) action. From the safety properties for C| +1. and Cj +1n42 it follows any local
action of either must follow this action, and that the only go output actions of either may be
go(n + 2') for the former and go(m) for the latter. Note that go(n + 2') is an input action of
f +1n420 and that go(m) by hypothesis is not an input action of any of the three automata.
Therefore z|in(Si,) = 1, (I, n), and Gs, (75) is as described above. From this it follows

z|in(Ciy,) = rf, npat(l +1,m), where j = iif i € {1,2}; j € {2,3} otherwise. The guarantees
for this are given by the induction hypothesis. From this it follows z|in(C] lng2t) = rfz’m(l +
1,n+2'), where k € {2,3}; the guarantees are again given by the induction hypothesis. Taking
the conjunction of each possible triplet of guarantees, it is easily seen that z € G’c,-(r.‘;'m(l, n)).

This concludes the proof. O

Theorem 5.3 Automaton C’ solves the Olympic Torch problem.

Proof: Since C' = Cyq and Poo solves P, this follows directly from Lemma 5.2. a

5.4 Comments

A previous versien of this proof used a style similar.to specification using a rely/guarantee
function, but was somewhat less formally done with a separate proof of safety conditions. It
can be seen here, just as in the Set Partition Example, that the rely/guarantee conditions
capture both safety and liveness conditions, thus allowing a unified proof. The result is that
this proof is considerably shorter than the previous version.

De Champeaux ([dC89]) gets into real trouble in his proof of Olympic Torch, due to his
lack of an underlying operational model. He does not send results to the printer, but instead
simply wants to show that the function f is evaluated on each element of the sequence (actually
a binary tree in his paper) in order. But there is no way for him to define this, so he has to add
a global variable that is accessed by each process when it evaluates f (thus acting as a piece
of paper being printed on). The complications arising from adding this global variable are not
addressed. Also the same problem with the Set Partition proof is present here: it is only shown
that the correct behaviors are a subset of the behaviors of the algorithm. It is worth noting that

his proof of Olympic Torch is much shorter and simpler than his proof of Set Partition, as was

51

true to some extent here. This is an indication that, in determining how difficult an algorithm

is to prove correct, its structure is more important than whether it uses process creation.

52

R —— ——— " - 8 - W -F—g- . F T —

Chapter 6

Actors

The examples Set Partition and Olympic Torch give a good feeling for how process creation and
dynamic topologies can be modeled in a straightforward way using I/O automata. However
they are only specific algorithms. We now look at an entire programming methodology, that
of Carl Hewitt’s Actor model ([Agh86, Cli81]). Programming in Actors depends heavily on
process creation and a dynamic topology, which led Agha to claim that Actors are somehow
ﬁlore powerful than a static model such as CSP ([Agh86], p. 9). We show here that this claim
is false by defining actors in terms of I/O Automata, an apparently static model. Of course a
- programming language based on the Actor model may be more convenient for writing prbgrams
that take advantage of creation and dynamic topologies, but by defining Actors in terms of I/0O
Automata we gain a rigorous framework in which correctness proofs can be done.

First an example (recursive factorial) will be used to give an informal description of Actors.
Then Agha’s operational semantics will be given. Following this, two I/O automata definitions
of Actors will be given, one using asynchronous message passing, and the other using instanta-
neous message passing. The fair behaviors of these automata will the shown to be the same,
and the latter automaton will be shown to be equivalent to Agha’s definition.

With this established, we prove correctness for recursive factorial in the Actor model. The
proof style is similar to one that could be used in I/O automata. For more complicated examples
it might be advantageous work in the I/O automaton model, since this is a well-established
model for which many proof techniques have been developed. However there are currently

difficulties in doing this which are discussed at the end of the chapter.

53

def Rec-Factorial () [n,c] def Rec-Customer (n,c) [k]
become Rec-Factorial send [n x k] to ¢
if n =0 then
then send [1] to ¢
else let ¢/ = new Rec-Customer(n,c)
{send [n - 1,¢] to self}

Figure 6-1: Recursive Factorial Behaviors

6.1 Example: Recursive Factorial

An actor can be thought of informally as a process that receives messages, and in response
sends other messages, creates other actors, and changes its behavior. Before diving into a formal
model of actors, we will look at an example to get a more concrete idea of what actors are
intended to be. A popular example of an Actor program is the recursive factorial. An informal
implementation of recursive factorial is given on pages 35-36 of [Agh86]; an implementation
in SAL (a Simple Actor Language presented in Agha’s book) is given in Figure 6-1. Actually
Agha’s definition of SAL is extremely vague and it is not always clear what the syntax is
intended to mean; however for this example at least we will attempt to be more precise.

An actor can be regarded as an entity whose state is completely characterized by a mail
address (also known as a handle) and a behavior. A behavior is a function that takes as input
a task (informally the incoming message) and produces as output a triple consisting of a finite
set of tasks (messages sent to other actors), a finite set of actors (newly created actors), and
a replacement behavior. A task is a triple consisting of a tag which uniquely identifies it, a
target which is the mail address the task is to be delivered to, and a communication which is
the message to be delivered. A mail system is assumed to exist which delivers tasks to their
targets. This mail system must deliver all and only those tasks sent, and the tasks are delivered
in an arbitrary order and after an arbitrary delay. Note that since the behavior of an actor is
just a function, actors are “event-driven”; that is, when a task is delivered it is immediately
processed, so “delivery” and “processing” are really synonymous.

In SAL, behaviors are defined using def statements, and two such behaviors are given

in Figure 6-1, for Rec-Factorial and Rec-Customer. The name of a behavior is followed by

54

an acquaintance list (in parenthesis), which is essentially a set of state constants.(defined at
creaiion time), and may include mail addresses of other actors that an actor with this behavior
can communicate with. For example the acquaintance list of Rec-Customer consists of an integer
n and a mail address c. (Note that typing is not part of the SAL language, although Agha
suggests it could be easily added.) The acquaintance list of Rec-Factorial is empty.

Following the acquaintance list is a communication list describing the communications (in-
puts) the behavior can handle. These communications are of course the third component of
some received task, and are represented as a tuple enclosed in square brackets. The acceptable
communication for Rec-Factorial is a pair consisting of an integer n and a mail address c; the
communication for Rec-Customer is an integer k.

Following the communication list is a sequence of commands, which are intended to be
executed concurrently. There are three major kinds of commands corresponding to the output
triple of a behavior. A send command is used to create new tasks. A new command is used to
create new actors. Finally a become command is used to specify the replacement behavior. So
an actor with the Rec-Factorial behavior, upon processing a task with communication [n,¢],
becomes an actor with the same behavior. At the same time, it either creates a task with c as
the target and [1] as the communication (in the case n = 0); or else it creates a new actor ¢’
whose behavior is Rec-Customer with acquaintances n and ¢, and also creates a new task with
self (the mail address of the actor itself) as the target and [n — 1, ¢] as the communication. An
actor with the Rec-Customer behavior and acquaintances n and ¢, upon processing a task with
communication k, simply creates a new task with c as the target and n*k as the communication.
It creates no new actors, and note that a replacement behavior is not specified. Agha states (p.
33) that the replacement behavior, if there is no become statement, is the same as the current
behavior. Therefore the replacement behavior for any processed task for both Rec-Factorial
and Rec-Customer is the same as the current behavior.

To see how such an actor program would execute, let’s compute the factorial of three. We
must first specify an initial configuration, which is a pair consisting of a finite set of actors and

a finite set of tasks. To specify a top-level actor in SAL, one uses a command such as
let r = new Rec-Factorial)
Here r is the mail address of our recursive factorial actor, which will be referred to as R.

55

We'll also assume the existence of some customer (to receive the result of the computation)
whose mail address is u. There seems to be no way in SAL to specify an initial set of tasks
(therefore making it impossible to start any computation!) but we will assume an initia! task
T = (r,[3,u]). For simplicity we will omit the tag of a task here, so r is the target of T and
[3, u] is the communication.

When R processes task 7, it checks to see if 3 = 0; since this is false, it creates a new
actor C; with mail address ¢;, behavior Rec-Customer, and acquaintances 3 and u. It also
sends itself the task (r,[2,¢;]). When R receives this task, it creates a new actor C; with mail
address ¢z, behavior Rec-Customer, and acquaintances 2 and c¢;. It also sends itself the task
(r,[1,¢2]). When R receives this task, it creates a new actor C3 with mail address c3, behavior
Rec-Customer, and acquaintances 1 and c;. It also sends itself the task (r,[0,c3]). When it
receives this task, it sends the task (c3,[1]). Now when C3 processes the task sent to it, it
sends task (c2,[1]). Next C2 upon processing this task will send task (1, [2]). Finally C upon
processing this task will send task (u,[6]), completing the computation of 3!. Note that in
general the mail system may deliver tasks out of order, but as each actor here receives and

sends at most one message the computation ends up being sequential.

6.2 Agha’s Operational Semantics for Actors

In this section we present the operational semantics for Actors given in Chapter 5 of [Agh86]. In
the next section we will show how this semantics can be specified using I/O Automata. Many of
the terms in this section were defined informally in the previous section. We now present them
again formally. Often the definitions Agha gives are vague or contradictory; the definitions here

have been corrected accordingly.

6.2.1 Basic Definitions

Surprisingly, Agha gives no formal definition of an actor; and what’s more surprising, such a
definition is not needed to formally define an overall actor system. This is because the elements
that make up an actor: its mail address, its behavior, and its transitions, are all present in the

definition of an actor system given below; however they are not presented as a conceptual whole.

56

The mail address and behavior will be collected together as an object called an actor state, and
| the transitions of an actor are a part of the transitions of the actor system. Although actor
won’t be given a formal definition, it will often be used informally in the following, and can be
thought of as an automaton whose state is an actor state, and whose transitions correspond to
tasks that have the mail address of the actor as a target (these terms are defined below).

An actor system can be thought of as a state machine with an infinite number of states and
an infinite number of transitions. The transitiors will be described later. A state of an actor
system is called a configuration, and it consists of a finite set of actor states and a finite set
of tasks, which are the messages sent but not yet processed by their targets. To distinguish
otherﬁse identical tasks, each one has a unique tag. Similarly every actor has a unique mail
address. Agha specifies a form for both of these which will also be used here: a tag or mail
address is a finite sequence of natural numbers. Agha writes such a sequence as #,.i;.i3 rather
than [#1, 42, i3]; his notation will be followed in this chapter.

The set of all possible tasks, 7', is then defined to be T x M x K, where T is the set of
all possible tags, M is the set of all possible mail addresses, and K is the set of all possible
communications, where a communication is an arbitrary tuple of values. If 7 = (t,m,k) is a
task then ¢ is the tag of 7, m is the target, an.' k is the communication. The finite set of tasks
in configuration ¢ is denoted tasks(c).

Let A be the set of actor states (incorrectly called the set of actors by Agha). Each actor
state A € A has associated with it a mail address mail(A) € M and a behavior beh(A) € B,
where B is to be defined. We will generally represent an actor state A as a pair (m,3), where
m = mail(A) and § = beh(A). The finite set of actor states in a configuration is denoted
actors(c).!

For a set §, let F,(S) be the set of all finite subsets of §. Then set of all possible config-
urations of an actor system is defined to be the set of all pairs (C,T), where C € F,(A) and
T € F,(T), satisfying the following two restrictions:

1. No task in T has a tag which is the prefix of either another tag of a task in T or of a mail

address of an actor state in C.

!Agha’s term for actors(c) is states(c); however we will be using states to refer to the set of configurations.

57

2. No mail address of an actor state in C is the prefix of either the mail address of another

actor state in C or of a tag of a task in T'.

These conditions are really stronger than are needed (the minimal requirement is that each tag
or mail address is unique, which is implied by the two conditions) but are used by Agha to
show that the next configuration (after a tramsition) will also be well-defined with respect to

these conditions.

6.2.2 Actor Behaviors

Agha gives two contradictory definitions of B, the set of Beha.viors, on the same page ([Agh86],
p- 74) so the definitions here will be fixed a bit. He first describes B as “the set of all possible
behaviors” and then defines it as the set of all behaviors for a certain mail address m. There
are two ways to fix this: One is to let the latter be B, and define B = J,,co¢ Bm; the other
is to define a behavior so that it takes a mail address as an argument (rather than fixing the
mail address as a constant). The second approach will be adopted here as it seems closer to
Agha’s intentions. One might worry about inconsistency if an actor were to process a task that
has a different mail address (taiy i) than the actor, but the mail system will ensure this never
occurs.

We first define a superset of the set of behaviors.
B = (T = F,(T) x Fy(A) x A)

Informally, if A is an actor whose behavior is 8 € B, then A, upon processing an input task
using 3, creates (sends) a finite number of tasks, creates a finite number of actors, and replaces
the behavior of A with some new behavior #’. The reason B is not iEself the set of behaviors,
is that in a real actor system there must be additional restrictions to ensure configurations
are well-defined, in particular that the tags of newly-created task and mail addresses of newly-
created actors are distinct from each other and all previous tags and mail addresses. Also
the replacement actor state must have the same mail address as the current actor state. In
addition, we will at this point impose the restriction that the set of behaviors be countable.

This is satisfied by any real actor system, since such a system will be determined by some

98

language such as SAL. Furthermore we need such a restriction for the I/Q automata semantics
in the next section.

Therefore the set of behaviors B is a countable subset of B, such that for any 8 € B and all
T € T, where 3(7) = (T, C, 7), the following conditions hold:

1. The tag of 7 is a prefix of the tag of every task in T and a prefix of the mail address of

every actor state in C.

2. Let I’ be the set of tags of the tasks in T and M’ be the set of mail addresses of the actor

states in C. Then no element of I’U M’ is the prefix of any other element of the same set.
3. mail(y) equals the target of .

Note that because the set of behaviors is countable, the set of actor states A will also be
countable. We can now define an actor system A® with respect to the set of behaviors B. For
the remainder of this chapter assume B is a fixed chosen set, so we will write A to represent
the actor system with B being implicit. A is defined by its states and transitions; this will be
done explicitly in the next section.

6.2.3 ’I‘ransitions

Let ¢; and ¢z be two configurations. Then ¢; is said to have a possible transition to ¢z by process-
ing a task 7 = (¢, m, k), written ¢; — c3, if 7 € tasks(c,), and furthermore, if actors(c;)(m) = 3,
where

ﬂ(t7m9 k) = (T’ A??)

then the following hold:

tasks(cz) = (tasks(e:) - {r})uT
actors(cz) = (actors(c1) — {(m,B)}) UAU {7}
He then proves that ¢; is in fact a configuration, in particular that the requirements for tags
and mail addresses are met.
We can in fact use terminology closer to that used in I/O automata, which should make the

similarity between an actor system and the I/Q automaton representation to be defined in the

59

next section more obvious. With respect to our actor system A, let states(A) be the set of all

possible configurations of A as defined previously. Let
steps(A) = {(c, r,¢') 1 ¢, € states(A),7 € T, and ¢ > c’}

A task 7 is said to be enabled from a cenfiguration c if there exists some ¢’ for which (e, ') €
steps(A).

Define an ezecution of A to be a (finite or infinite) alternating sequence of configurations
and tasks comycyTzc; . . . such that (¢, 7i41,641) € steps(A) for all § > 0. Note that due to the
fact that tags are required to be distinct, ¢; # ¢; and 7; # 7; for all i and j. Configuration cg
is called the initial configuration of the execution fragment. There is no restriction as to which
configurations be initial configurations of A. Therefore we can define the set of start states
start(A) = states(A). Denote the set of all executions of A as execs(A) . For an execution z,
define sched(z) to be the subsequence of tasks in z. These definitions correspond to those for
I/0 automata. '

Agha also specifies the needed condition to guarantee mail delivery, the only liveness con-
dition he requires. By “mail delivery” he means that every task created in an actor system is
evenfually delivered. Given configurations ¢ a: d ¢’ and a task 7 € tasks(c), c is said to have a
subsequent transition to ¢’ with respect to 7, written ¢ « ¢, if there exist finite T,y € execs(A)
such that c is the initial configuration of z and y = z - r¢’. (Agha phrases this in a different
but equivalent manner.) Thus ¢’ represents the first configuration after 7 is processed. Now
let X7 = {c’ e ¢ } Then Agha says “the guarantee of mail delivery implies that the con-
figuration ¢ must pass through a configuration in X7 (p. 87). This is vaguely worded, but
we can make it precise by defining the set of fair ezecutions fair(A) of an actor system A.
Define fair(A) to be the set of all z € execs(A), z = cg7icy ..., such that for all i > 0 and
all 7 € tasks(c;), 7 occurs in z. (Note that T must occur after ¢; due to uniqueness of tasks.)
In other words, z € fair(A) iff every unprocessed task in any configuration of z is eventually
processed. This is exactly what was meant by “guarantee of mail delvery.” Define the fair

behaviors fbeh(A) to be {2z : z = sched(z) for some z € fair(A)}.

60

6.3 I/O Automata Actors

Wé now show how an actor system can be defined using I/O automata. One possibility would
be to define a single automaton to represent A. However for modularity it is perhaps cleaner
to define an I/O automaton to correspond to each actor. It then would be desirable to define
an additional automaton to correspond to the mail system. However this is not quite possible.
Recall that actors are event-driven, meaning that when a task is delivered to an actor, it
immediately creates new actors and tasks. However when a message is received by an I/0
automaton (which must correspond to an input action), the automaton need not process the
message .(which corresponds to an output action). Therefore when we model an actor in I/0
automata, we must say that the delivery (which is the same as the processing of the task)
corresponds to an output action. In this case the automaton must receive and buffer the
message separately. In other words, the automaton will also be used to represent part of the
mail system, as well as a single actor.

We specify the mail system in two different manners, and define an I/O automata actor
system based upon each one. We then show that the fair behaviors of these two systems are
the same. Finally we show that the second, simpler, system is equivalent to Agha’s system. It

in this system in which correctness proofs will be done.

6.3.1 I/0 Automata Actors with Separated Mail System

In the first mail system, there will be a separate automaton for the mail system; however we
need to include queues at each automaton representing an actor which will also be a part of
the mail system. Note that “delivery” of a task will correspond to the event that a task is
removed from such a queue, not the event that it is added to the queue. Each I/O automaton
corresponding to an actor and its mail queue will be simply referred to as an “actor” automaton,
even though this is not technically true.

Define 7, = {r € 7 : m is the target of 7}. For every mail address m € M, define an
I/O automaton actor A, as shown in Figure 6-2. Note that the definition depends upon the
chosen set of behaviors B, and that A,, has a countable number of states and actions. Each

actor A,, has two state variables. The symbol L is used to indicate that there is no defined

61

State Variables:
Bm: an element of BU {1}
queue,,: sequence of tasks, each in 7;, (initially ¢)
Input Actions:
processy(T,C) [forallt € T — T, all T € F,(T), and all C € F,(A) such that
3b € B s.t. (m,b) € C]
effects:
Bm < b

receive(t) [for all 7 € T,,]
effects: ‘
if Bm # L then queue,, — queue,, -7
Output Actions: (all actions with same ¢ are in one class of the partition)
process,(T,C) [for all t € T,,]
preconditions:
Bm # L
head(queue,,) =t
Bm(t) =T x C x (m,b)
effects: ,
queue,, — tail(queue,,)
Brm — b

Figure 6-2: Actor A,

State Variables:
buf: set of tasks
Input Actions:
process,(T,C) [for all t € T, all T € F,(7), and all C € F,(A)]
effects:
buf — bufuT
Output Actions: (all actions are in separate classes of the partition)
receive(T)
preconditions:
T € buf
effects:
buf — buf —r

Figure 6-3: Actor Mail System M

62

behavior at mail address m. With process creation in mind we can define the “working” function
wa,.(a) = (a.m # L) for all states a. Since there is always a replacement behavior for any
current behavior, it follows that once a actor is alive it will remain alive forever. The variable
queue,, is the mail queue for A,, mentioned before.

Each process action has two arguments, as well as an index identifying the task it processes.
This index serves two purposes. The first is to ensure the automata are well-defined. Because
we restrict queue,, to contain only elements of 7r,, no two automata will have the same output
action, and one automaton will not have the same action as both an input and output action.
The second purpose is to ensure fairness with respect to tasks; there is a separate class of
the partition of A,, for each index ¢. This is not strictly needed here because an action when
enabled will be continuously enabled (sq the partition could be defined as having every action
in a separate class), but it will be needed for the simplified actors to follow so it will be used
here as well.

The first argument of a process action is T, a set of tasks sent to the mail system, which
will eventually deliver them to their targets. The second argument is C, a set of actors to be
created; They are created instantaneously as specified by the actor model, rather than through
the message system as was done with Set Partition and Olympic Torch. When a process,,
action occurs the replacement behavior is also instantiated at mail address m.

Note that start(A,,) = {a € states(Anm) : a.queve,, = ¢}. When we specify an initial con-
figuration for an actor system we will specify the initial values of 3,, for every m with the
restriction that 8,, = L for all but finitely many m. The initial tasks will be in the queue of
the mail system.

We now define the mail system M, shown in Figure 6-3. Essentially it extracts tasks from
its input actions and stores them in a buffer. Its fair behavior will be to forward every task
received after some finite delay. Also note that start(M) = states(M). This is because an
initial configuration may contain an arbitrary set of tasks.

Let Aps be the composition of all automata in {A,, : m € M} as well as the mail system
M followed by hiding all recesve actions. Note the correspondence between states(Aas) and
states(A). If, for a € states(Apr), we define actors(a) = {(m,a.5m) : a.0m # L} and tasks(a) =

Unm {a.queue,, } Ua.buf, then it can be seen there is a surjection from states(Aps) to states(A).

63

State Variables:
Bm: an element of BU {1}

queue,,: set of tasks, each in T, (B = L = queue,, =€)
Input Actions:
process,(T,C) [forall t € T — T, all T € F,(T), and all C € F,(A) such that
FbeBst. (mb)eCorTNT, # 0]
effects:
if 36 € B s.t. (m,b) € C then
ﬂm «b
queve, — T NT,
else if B # L then
queue,, — queue, U(T N7T,)
Output Actions: (all actions are in separate classes of the partition)
process, (T, C)
preconditions:
Bm # L
t € quetue,,
Bm(t) =T x C x (m,b)
effects: ~
queue,, — (queue, —t)U(TNT,)
ﬁm ~b

Figure 6-4: Simplified Actor A,

This is not a bijection because an undelivered task with target m could be either in the buffer
of M or the queue of A,,. However there is a bijection between start(Aps) and start(A). The
correspondence between steps(A) and steps(Aps) is less obvious, and will be shown instead
between steps(A) and steps(A), where A is a simplified automaton equivalent to Aps that will
be defined in the next section. '

6.3.2 Simplified I/O Automata Actors

Automaton Ajs seems to be a reasonable operational specification of an actor system. We
now present a simpler specification using instantaneous message passing. While this may at
first not seem reasonable, we will show that this simpler system A is fairly equivalent to Aay;
then that it corresponds exactly to the specification of an actor system given by Agha.

Figure 6-4 shows the simplified automaton A,, for any m € M. One significant change is

that queue,, is now a set rather than a sequence, and it can have any value in a start state

64

unless B, = L1 (this last condition so that a “dead” actor automaton will have a unjque state).
Another change is that each process input action adds incoming tasks to queue,, as well as
handles process creation. The process output action also adds tasks to the queue corresponding
to those tasks the actor sends to itself. This is done because an automaton cannot ha,vev‘:the
same action as an input and ouiput action. The partition is unéha.nged; notice that it is
necessary here to ensure fairness to each task, as the automaton may change behaviors which
in turn changes the set of actions corresponding to the task. This will be clearer when we show
equivalence to Agha’s semantics in Theorem 6.2.

Let A be the composition of these simplified automata A,,. For any state a € states(A),
we can define actors(a) = {(m,a.0m):a.0m # L} (the same as for Ap) and tasks(a) =

U {a.queue,.}. It seems plausible that fbeh(Aps) = fbeh(A), and we will prove this.
Theorem 6.1 fbeh(Aps) = fbeh(A).

Proof:

Define h, a function from states(Aas) to states(A), so that b = h(a) iff actors(b) = actors(a)
and tasks(b) = tasks(a). Thus » preserves the configuration implicit in each state. Note that h
is well-defined because a task = € tasks(b) is in queue,, iff the target of 7 is m. However for any
state b € states(A) for which tasks(d) # @, h~1(b) will be a set of states, representing various
states of M and orderings of the input queue of each actor. Therefore we will define A=1(b) to
be that state a such that h(a) = b and a.queue,, = € for all m € M; in other words that state
in which no unprocessed tasks have been sent by M.

Let hq be the function from states(Aps) to 25'31€5(4) guch that hy(a) = {h(a)}. Let hy bethe
function from states(A) to 25'3t€8(4x) gych that hy(a) = {h~!(a)}. Then h, is a possibilities
mapping from Ay to A, since for any step (a,7,a’) of Aps there is-a step (h(a),r,h(a’)) of
A if 7 is a process action, and h(a) = h(a') if 7 is a receive action. Also h; is a possibilities
mapping from A to Apy, since for any step (a, 7,a’) of A, there is a step (h~1(a),v,7,h~1(a")),
where 7 is the recetve action for the task that = processes.

Therefore from Theorem 2.7, it follows that for every z € execs(Aps) there is some y €
execs(A) such that y corresponds to z, and also for every y € execs(A) there is some = €

execs(Apsr) such that z corresponds to y. Furthermore in both cases z is fair iff y is fair. This

65

can be seen most easily be noting that the classes of the partition for both a,utomé,ta.'correspond
to the tasks being processed (Ap has additional classes for the receive actions). Thus fairness
for both automata is equivalent to saying that for any ¢t € tasks(a) for some state a of a fair
execution, an action process, will occur in that execution. Since h preserves the set of tasks, it

follows z is fair iff y is fair. O

6.3.3 Correspondence between I/O Automata Actors and Agha’s Model

We will henceforth consider only the simpler system A. It should be clear that, for A defined
with respect to A (in other words having the same set of behaviors B), there is a correspondence

between A and A. We now prove this. '

Theorem 6.2 There is a bijection hy between states(A) and states(A). There is a bijection
k. between steps(A) and steps(A) preserving hy. There is a bijection hs between fair(A) end
fair(A) preserving hj. |

Proof: This is proven in a series of steps.
1. There is a bijection k; between states(A) and states(A). Just define
hi(a) = (actors(a), tasks(a))

. It is a bijection because any task in tasks(e) must be in a unique queue corresponding
to its target, and all queues corresponding to mail addresses that do not belong to actors

in actors(a) must be empty.

2. Let E(a) be the set of actions enabled from state a of A and E(h1(a)) be the set of tasks
enabled from h;(a). Then there is a bijection h§ between E(a) and E(h3(a)). This follows
directly since each process, action corresponds to the task t it processes, and exactly one

process; action is enabled from a for each ¢ enabled from h,(a).

3. There is a bijection h3 between steps(A) and steps(A) preserving h;. Just define

h3((a’”’a')) = (hi(a), g(")’hl(a'))

66

4. There is a bijection h4 between execs(A) and execs(A) preserving hs. Follows directly

from the previous step.

5. There is a bijection hs between fair(A) and fair(A) preserving h3. Simply restrict the
domain of hy to fair(A). Let C(t) be the class of part(A) containing all process, actions.
In a fair execution of A, if any action in C(?) is enabled then some action of C(t) will

occur. In a fair execution of A, every task is processed. The equivalence follows from h$.

O

From Theorem 6.2 it follows that A exactly specifies A.

6.4 Correctness Proofs

Now that A has been formally defined, both in terms of Agha’s operation model and in terms of
the I/O automaton A, one can prove correctness of actor programs either within Agha’s model
or the I/O automaton model. Both models assume that the behavior of each actor is given.
Therefore if one wishes to prove correctness of an actor program written in some language such
as SAL, one must first determine the behavior norresponding to this program. This is discussed
in Section 5.2 of Agha’s book, and will not be elaborated upon here.

Agha’s model and I/O automata each have their own advantages. The advantage of Agha’s
model is that it is a very clean model of actors and only the essential details are included.
However until now no proofs have been done in this model, and so no proof techniques have
been developed. I/O automata, on the other hand, have been used for correctness proofs for
some time, and many techniques have been developed. So it might be worthwhile for more
complicated examples to translate them into I/O automata and use these techniques. However
at the present time there are several complications due to Agha’s model with severely inhibit
doing this. These complications and possible solutions will be discussed at the end of the
section.

We will prove correctness of the recursive factorial in Agha’s model. The corresponding

proof in I/O automata is essentially identical.

67

6.4.1 Recursive Factorial Revisited
Formal Behaviors

Agha formally defines the Rec- Factorial behavior as ¢, where

({(t.1,kz, (1)} »8,(m, ®)) ifk; =0
{1, m, ks ~1,62D}, {(22,§)} ,(ms) otherwise

and the Rec-Customer behavior is formally defined to be

‘P(tv m, [kls kZ]) =

YR, m, [n]) = ({(¢.1, k2, [n * k1)), 0, (', L))

Here 3, is the “bottom behavior,” equivalent to an infinite sink (in other words a behvior that,
upon processing a task, does nothing). Note that Agha contradicts an earlier statement (p. 33)
that if a replacement behavior is not specified in the code (as it isn’t in Figure 6-1) then the
replacement behavior is the same the current behavior. He then says (p. 75) “It can be shown
that in any actor system this newly created actor will receive at most one communication;
thus the behavior of its replacement is actually irrelevant.” However this is not necessarily
true unless one assumes an actor with behavior Rec-Customer can only be created by an actor
with behavior Rec-Factorial. In any case, we will adopt the convention that the replacement
behavior is the same as the cu-rent behavior if no replacement behavior is explicitly indicated.

Therefore the Rec-Customer behavior will be defined as

YR, [n]) = ({(#.1, k2, [+ k1])}, 0, (m', gf2)

Note also that the tags and mail addresses of newly-created tasks and actors are overspec-
ified, but this is not really a problem. Tags and mail addresses are only used to maintain
uniqueness and to create other tags and mail addresses. So it does not matter if one specifies

them concretely as was done for these examples.

Correctness Proof

Note that in Agha’s model there is simply a single automaton A and that any state can be a
start state; the same is true of the I/O automaton A. Therefore “proving correctness” simply

means proving A (or A) has some desired property.

68

Let z = aomia; ... be a fair execution of A. Let n,i,i’ be nonnegative integers such that
i < #/; let m and u be mail addresses and let ¢ be a tag. A correctness property for recursive
factorial is: If (m,) € actors(e;) and (¢, m,[n,u]) € tasks(ays), then there exists some j > i
and some tag t’ such that (¢/,u,[n!]) € tasks(a;). Informally what is being said is that if a task
is sent to a recursive factorial actor with mail address m requesting that it compute n! and
send the result to mail address u, then this actor will fulfill the request.

First it should be clear that a property of the rec-customer behavior is as follows. For
nonnegative integers k,n,t,4 such that i < i/, mail addresses m,u,p and tag t, if (m, :p,-’;) €
actors(a;) and (t,u,[n]) € tasks(a;), then there exists some j > ¢ and some tag t’ such that
(¢, u,[n = k]) € tasks(a;). This follows from the fact that (m,d;:,‘) never changes behavior and
from fairness.

Let (m,) € actors(a;) and (¢, m, [n,u]) € tasks(a;:) where i < i’. Note that (m, p) € a, for
all ¢ > i. The proof is by induction on n. If n = 0 then there must exist some j > ¢’ such that
7; = (t,m,[0,u]) due to fairness. It follows from ¢ that (¢.1,%,[1]) € tasks(a;).

If n > 0 then there must exist some J > i’ such that 7; = (t,m,[n,u]) due to fairness. It
follows from ¢ that (¢.1,m,[n — 1,1.2]) € tasks(a;) and (2.2, 97) € actors(a;). By the induction
hypothesis there exists some j' > j such that (¢',2.2,[(n—1)!]) € tasks(a;) for some tag t’. From
the correctness property of ¥7 it follows there is some 7" > j’ such that (t”, u,[n!]) € tasks(a;~)

for some tag t”. This completes the proof.

6.4.2 Comments

The proof of correctness for recursive factorial given above was not very complicated, although
this is primarily because the algorithm, although it involves dynamic process creation, is inher-
ently sequential. However for more complicated examples it may be very cumbersome to prove
correctness. We examine some reasons for this.

The proof of recursive factorial was done at a low level, examining a particular execution.
It would be nice to abstract away some of the details. In particular it can be seen that the
proof has a sort of rely/guarantee flavor to it, and it seems proofs of actor programs using
rely /guarantee functions would be a good idea. This is because actors, like I/O automata,

must respond to any sequence of inputs. Therefore an actor will generally rely upon the

69

environment to not send it any bad inputs. Herein lies one problem: the lack of restriction on
communications. Recall that in the language SAL there was a communication list describing
the types of communications a behavior could handle. However this is not part of Agha’s model.
Of course one can prove that every communication sent is of the proper form, but this is an
extra burden on the prover. Similarly acquaintance lists, indicating which mail addresses an
actor may send a communication to, are absent in Agha’s model. The acqu.ia:ance list in
particular should be added to the model, as it can be used to define the topology of an actor
system. The proof of recursive factorial would be much more complicated if the actors had
been able to change behavior, because we would have to have shown 'tha.t they did not change
behavior before receiving the task of interest, and that in turn would have meant showing that
no other actor could have sent them a task. Use of acquaintances would make such a proof
much more tractable. _

Another problem that hinders using rely/guarantee functions is the lack of modularity and
abstraction. Several features of Agha’s model contribute to this. One is that there is no real
notion of composition and action hiding. One cannot compose two aciors to be a single actor,
since every actor must have a unique mail address. Agha does attempt to define a notion of
composition for sets of actors in section 7.2.< of his book. In some sense this is similar to
simply composing two or more I/0 automata that represent actors. However he also attempts
to define notions of input, output and external actions similar to those in I/O automata. Given
a set of actors, he defines some subset to be receptionists for the set; they are the only ones
which may receive communications from the environment. Other actors may be ezternal actors;
these represent actors outside the set and can be thought of as outputs for the set. However
there are some problems with this approach. One is that the sets of receptionists and external
actors of a set § of actors depend upon which other set S is composed with. This could be
corrected by making the sets of receptionists and external actors fixed, and defining a notion of
“compatibility” such as that for I/O automata to determine when two sets can be composed.
Of course mail addresses can be renamed to make two sets compatible. Another problem
is that, given a step (a,7,a’) of A along with the receptionists and external actors of some
set of actors S in a, it is not determined what the receptionists and external actors of S are

/

in a@’. This could be fixed by defining a function on communications that returns the mail

70

addresses “communicated” in that message; a notion of acquaintances would be helpful here
too. So although Agha shows that you can compose two sets of actors, without some changes
or additions to his model it seems that this notion is not useful.

When doing a proof of a dynamic system it is helpful to use as much static information
as possible. All useful algorithms have some sort of structure which can be exploited. In
dynamic systems this structure is typically a process creation tree; this was used particularly
in the proof of Olympic Torch. There are process creation trees in recursive factorial as well,
but these cannot be determined statically, for example by examining the mail addresses of the
actors. This in turn is because of the naming scheme for mail addresses and tags, in which
mail addresses of newly created actors are based upon the tag of the task that is processed to
create them rather the mail address of the actor creating them. It would be useful to have a
different naming system in which mail addresses of actors are prefixes of the mail addresses of
their children, so that this information could be determined statically. This would allow ene to
compose these processes and consider them as a unit. As it is now, one can only determine the
process creation tree of an actor by examining each individual execution.

There’s no reason why correctness proofs of actor prbgra.ms should be more difficuit than
those for dynamic systems written in I/Q auiomata. Adding features to Agha’s model of actors
to allow composition, abstraction, and static evaluation of some properties would make such

proofs considerably more tractable.

71

Chapter 7

Conclusions

It has been shown how process creation can be handled in the I/O automata model, and proofs
of correctness have been given for two algorithms which use process creation. It can be seen from
these examples that process creation is itself not a complication in correctness proofs; rather
it is the structure of the algorithm which determines how complicated the proof is. Olympic
Torch uses a considerable amount of process creation and a changing topology, yet the basic
structure of the algorithm is fairly simple and therefore the proof can be as well.
Rely/guarantee functions have been defined and used to give modular, intuitive correctness
proofs for both Set Partition and Olympic Torch. Note that the former uses the technique of
successive refinement, whereas for the latter one simply composes the functions, using safety
properties to simplify this composition. Originally the proof of Olympic Torch had been done
using successive refinement as well, but this wasn’t as clear as doing the composition directly.
The moral seems to be that no proof technique is the best for all examples; the proof should
be based upon the algorithm. However rely/guarantee functions do seem to be a good way to
organize proofs in general, and more work should be done to see how they can be applied.
Finally Actors, a model for dynamic systems, has been defined usingI/O automata. In doing
so a number of errors in Agha’s model of Actors have been fixed. These points probably would
have been discovered if a correctness proof had been attempted in the model, though. Actors,
with its emphasis on flexibility, does not seem to be a good model in which to do correctness
proofs of general distributed algorithms. However, with some work, it should be a good model in

which to do correctness proofs of algorithms written in an Actor language. A good direction for

72

future research is to enhance the Actor model, adding features for composition and abstraction,

so that one can specify and prove correctness more easily in it.

73

Bibliography

[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT

[AL90]

[Bar85]

[CLi81]

[dC89]

- [Gol90]

[Jon83]

[LG81]

Press, Cambridge, MA, 1986.

Martin Abadi and Leslie Lamport. Composing specifications. 1990. Digital Equipment

Corporation.

Howard Barringer. A Survey of Verification Techniques for Parallel Programs. Lecture
Notes in Computer Science 191, Springer-Verlag, Berlin, 1985.

William Douglas Clinger. Foundations of Actor Semantics. Technical Report AI-TR-
633, MIT Artificial Intelligence Laboratory, May 1981.

Dennis de Champeaux. Verification of some parallel algorithms. In Proceedings 1989
Pacific Northwest Software Quality Conference, pages 149-169, 1989. Also available
as Hewlett-Packard Laboratories Technical Report STL-89-12. ’

Kenneth J. Goldman. Distributed Algorithm Simulation using Input/Output Au-
tomata. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of

Technology, 1990. (in progress).

C.B. Jones. Specification and design of (parallel) programs. In Proc. IFIP 88,
pages 321-332, North Holland Publishing Company, 1983.

Gary Marc Levin and David Gries. A proof technique for communicating sequential
processes. Acta Informatica, 15(3):281-302, June 1981.

74

[LT87]

(LT88]

[MC81]

Nancy A. Lynch and Mark R. Tuttle. Hierarchical Correctness Proofs for -Distributed
Algorithms. Technical Report MIT/LCS/TR-387, MIT Laboratory for Computer
Science, Massachusetts Institute of Technology, April 1987.

Nancy A. Lynch and Mark R. Tuttle. An Introduction to Input/Output Arutjamata;
Technical Memo MIT/LCS/TM-373, MIT Laboratory for Computer Science, Massa-
chusetts Institute of Technology, November 1988.

Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE Trans-
actions on Software Engineering, SE-7(4):417-426, July 1981.

[MCS82] Jayadev Misra, K. Mani Chandy, and Todd Smith. Proving safety and liveness of

[0GT76)

[Sta84]

[Yon77]

communicating processes with examples. In Proceedings of the ACM Symposium on

Principles of Distributed Computing, pages 201-208, ACM, August 1982.

Susan Owicki and David Gries. An axiomatic proof technique for parallel programs

1. Acta Informatica, 6(4):319-340, August 1976.

Eugene W. Stark. F ~ndations of a Theory of Specification for Distributed Systems.
Technical Report MIT/LCS/TR-342, MIT Laboratory for Computer Science, Mass-
achusetts Institute of Technology, August 1984,

Akinori Yonezawa. Specification and Verification Techniques for Parallel Programs
Based on Message Passing Semantics. Technical Report MIT/LCS/TR-191, MIT
Laboratory for Computer Science, Massachusetts Institute of Technology, December
1977.

