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Abstract

In her 2020 thesis, Emily Toomey introduced a superconducting nanowire computing
element for use in neuromorphic computing (3). Toomey demonstrated a circuit level
model for the neuron, which required intricate knowledge of nanowire circuit dynamics
to work with. To create spiking neural networks (SNNs) from this model required tun-
ing individual circuit parameters in SPICE by hand; this method of creating networks
was not generalizable and required knowledge of superconducting physics and circuit
dynamics, which is not strictly necessary for the computer scientist creating spiking neu-
ral networks. To solve this issue, we created a layer of abstraction between the network
and the hardware implementation by developing the Project Neuron Python package.
This package acts as an interface for creating spiking neural networks by providing a
graphical SNN framework which compiles into and evolves as a network composed of
abstract superconducting neurons. This package allows a computer scientist to create
SNNs using a standard graphical model and systematically compiles the network into
superconducting hardware such that the hardware network evolves as expected by the
graphical model. We used the basic compositional model for spiking neural networks
created by Nancy Lynch and Cameron Musco (4) as the graphical model which the
user would interface with. In order to systematically compile this graphical model into
hardware, an abstract model for the nanowire neuron was developed through further
characterizations of the neuron using python and SPICE simulations. The package
was successfully used to create generalizable spiking neural networks which evolved as
Lynch and Musco’s model would predict.
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1 Introduction

The demand for computational power is increasing exponentially due to the ongoing ’data

revolution’, with new applications like IOT and artificial intelligence demanding high through-

put and large amounts of data (1). This problem is compounded by the fact that traditional

computing architectures are flat-lining in performance, and may not be able to meet these
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demands in the future (2). This energy crises will grow in importance in the coming years,

and therefore both alternative computational models and alternative hardware architectures

are being considered to increase energy and computational efficiency. Two major innova-

tions which have been proposed as bases for alternative computation are neuromorphic

computing and superconducting electronics.

1.1 Alternative Architecture: Neuromorphic Computing

Neuromorphic computing is an approach to computation which attempts to mimic the

brain. The brain operates as an enormous network of spiking electrical units named neu-

rons, which interact electro-chemically with one another through synapses. Neuromorphic

computation replicates this paradigm by creating artificial spiking units and synapses, then

connecting each unit together in a type of artificial neural network called a spiking neural

network. This computational architecture is an alternative to the traditional von Neu-

mann model of computation, and has been implemented previously using CMOS in IBM’s

TrueNorth chip and simulated using analog circuits by Stanford’s Neurogrid (5).

1.2 Alternative Hardware: The Superconducting Electronics

Using the effects of kinetic induction in paired electrons within superconducting nanowires,

it was found that physical spiking behavior could be evoked from paired wires. This behav-

ior is essential for the modeling of neurons, given that neurons within the brain function as

electric spiking units.

1.3 Project Neuron: Abstracting the Nanowire Neuron

A new approach to computing was introduced by Emily Toomey in her 2020 thesis which

combines both neuromorphic architectures with superconducting hardware. Toomey merged

these two novel concepts by creating an electronic device which behaves as a new computa-

tional element. This device is called the superconducting nanowire neuron, which behaves

as a spiking unit and replicates important behaviors of real neurons (3).

While Toomey created the computational device in her 2020 thesis and replicated ba-
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sic networks as a proof of concept, a systematic method for creating networks from these

neurons was never specified. Without a systematic method, network creation required

knowledge of superconducting physics and the nanowire neuron circuit dynamics. This is

because each neuron would have to be manually placed and all network parameters, of

which there were tens per neuron, would have to be chosen by hand. This required thor-

ough calculations, an understanding of how the neuron behaves, and generally increased

the time and effort it took to create networks in the nanowire hardware. This lack of

abstraction greatly limited the complexity of networks which could be created with the

nanowire neuron, as well as who could create them. These problems is further amplified

by the fact that the neuron, as an electronic device, is specified in SPICE code (which is a

common description and simulation language for electronics). While SPICE is often known

by electrical engineers, the computer scientists who usually create spiking neural networks

are generally less familiar with the language. This placed another barrier as to who could

be creating and simulating networks with the nanowire neuron.

General models which describe spiking neural networks already do exist, and are more

commonly known by computer scientists within the field of neuromorphic computing. These

models specify how spiking neural networks should behave and provide a systematic method

for the creation of complex networks. In order to solve the aforementioned problems limiting

the complexity and use of our nanowire networks, we set out to create an abstraction at

the level between network specification and hardware implementation. We leveraged the

existing spiking neural network models by creating a software suite which allows users to

specify a network using a common model, then have their network automatically compiled

into a hardware implementation using nanowire neurons. This hardware description could

then go on to be easily fabricated, or simulated using LTSpice (an open source SPICE

simulation tool).

1.3.1 Project Neuron Python package

The software suite we created is a python package called Project Neuron. The use cases

for project neuron can be split into three main areas:
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1. Provides a graphical spiking neural network model which a user can use to specify a

graphical neural network, as well as input sequences to the network.

2. Contains functionality to simulate the time evolution of the network defined by the

user. The evolution will be calculated using a phenomenological model of the nanowire

neuron which will be further discussed in methods.

3. Contains functionality which compiles and stores the SNN model as a hardware im-

plementation, specifically using the nanowire neuron.

This package structure and use of the package will be further discussed in the methods

section.

2 Related Works

To understand the purpose of Project Neuron, it is necessary to understand the Supercon-

ducting Nanowire Neuron. Namely, it is necessary to understand the fundamentals of the

electrical device model and how the model is used as a computational unit in spiking neural

networks.

Figure 1: Simplified model of the superconducting nanowire neuron, consisting of two

nanowire oscillators, an input current, a bias current, and an output current. Figure taken

from Ref. (3).
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2.1 Brief Overview of the Superconducting Nanowire Neuron

The superconducting nanowire neuron replicates the spiking behaviors of a biological neu-

ron. It does this by coupling two nanowire oscillators together, and biasing both of them

with a current. For the purposes of project neuron it is necessary to understand that,

depending on the device parameters, a certain amount of input current will cause the unit

to output a spike in current and voltage - the spike is shown in figure 2. It is also apparent

in figure 1 that, in this simplified model, there are already 10 parameters to set per neuron;

a more detailed model would reveal that the two nanowires also necessitate the tracking

of several more. Toomey fully describes the electrical dynamics of this device in the 2020

thesis (3).

Figure 2: A graph plotting peak output voltage as a function of input current, with appro-

priately set circuit parameters and a bias current Ibias = 58.6µA. Figure taken from Ref.

(3).

2.2 Brief Overview of the Neuron Synapses

Nanowire neurons are connected to each other through a synapse, which introduce several

more parameters to track per connection. The synapses mimic the slow release of neuro-

transmitters in biological neurons, which cause their ion-channels to open and thus begin
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to acquire charge and eventually fire. The synapses will become activated by an upstream

neuron firing, will charge up, and then slowly release charge, which eventually causes the

downstream target neuron to which they are connected to fire. To example synapses which

mimic this behavior were demonstrated by Toomey, and are shown as examples in figure 3.

Project Neuron uses a different type of synapse in its hardware implementations in order

to achieve a higher fan-out than these synapses.

Figure 3: A simplified model of the capacitive and inductive synapses depicted in Toomey’s

thesis. In a network, Ztarget would usually represent the input of a downstream neuron.

Figure taken from Ref. (3).

2.3 Compositional Graphical Model of Spiking Neural Networks

Nancy Lynch and Cameron Musco introduced a compositional graphical model for spiking

neural networks in their 2021 paper (4). This model can fully describe networks as a set of

neurons (nodes) which are connected to each other through synapses (edges). Each neuron

in the graph has an internal bias, temperature, and potential, which essentially determine

the amount of input ’current’ which is required to make them spike at any given timestep.

Similarly, each edge has an edge strength which determines how much ’current’ is delivered

to a downstream node when the connected upstream node fires.

This model is highly useful for the purposes of Project Neuron for two reasons: the afore-

mentioned behaviors of the model are analogous to the behaviors of the superconducting

hardware neurons, and these graphical models for spiking neural networks are commonly

familiar among computer scientists working on neuromorphic algorithms. These reasons

make the model an invaluable tool in creating an abstraction between SNN specifications

and SNN hardware implementations. Project Neurons will allow the user designing an

algorithm to work directly with this abstract model, while converting their network into
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superconducting hardware automatically, with no user input required.

3 Methods

As mentioned in the introduction, Project Neuron has three primary functionalities:

1. Provides a graphical SNN for users to specify networks.

2. Provides simulation capabilities to solve the time evolution of the network according

to the abstract nanowire neuron behavior.

3. Compiles and stores the SNN as a hardware implementation.

This section will discuss how Project Neuron achieves these functionalities.

3.1 Specifying the Spiking Neural Network

Project Neuron allows users to specify a network in python by providing a neuron, synapse,

and spiking neural network class. The spiking neural network class represents the network

by maintaining a set of all nodes and edges, with nodes being neuron objects and edges

being synapse objects.

The network specification in Project Neuron follows Lynch and Musco’s model closely.

Neuron objects have temperature and bias parameters, and synapses have synapse strength

parameters. These neurons and synapses are then appropriately converted to their abstract

hardware counterparts for simulation and hardware descriptions, which will be described

in sections 3.2 and 3.3.

3.1.1 General Graphical Model

Our graphical model closely follows Nancy and Musco’s (4); a brief overview of there model

will be provided here. The graphical model provided by project neuron consists of a network

with a set of nodes and a set of edges between the neurons. The nodes are neurons and

the edges are synapses, with a synapse between any two connected neurons. This model

is inherently probabilistic - this is because biological neurons also behave probabilistically.
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Figure 4: An example of a basic network created by through Project Neuron. Each neuron

has a bias and temperature parameter and each synapse has a strength parameter. This

network consists of one upstream neuron connected to two downstream neurons.

Furthermore, the model evolves in discretized timesteps.

Each neuron maintains an internal potential at a given timestep which changes in the

next timestep depending on the state of the upstream neurons which it is connected to. If

enough upstream neurons are firing, and the synapse strengths are large enough, then this

neuron will fire in the next timestep and affect the neurons downstream to itself.

Specifically, a neuron evolves according to the model specified below. At each timestep,

a neuron u has a potential:

potential(u) = [
∑

(v,u)∈E C
′(v)strength(v, u)] − bias(u)

Where (u, v) is an edge between some node v and the node in question u with synapse

strength strength(v, u). C ′(v) is an indicator variable which is equal to one if v fired in

the previous timestep, and zero otherwise. This potential is then transformed into a firing

probability for that timestep using the following relationship:

pu = 1

1+e
−potential(u)

λ
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Where λ is the internal temperature parameter for the neuron u. For more detailed

information about the model, refer to Nancy and Musco’s 2021 paper (4).

3.2 Compiling the Network into Hardware

While the graphical model provided to users for network specification follows Nancy and

Musco’s model, the abstract hardware model does not follow it as closely. The main differ-

ence between the two is that the graphical model is designed to be probabilistic, while the

superconducting nanowire neuron simulations are not. There is a caveat to this, however,

because real superconducting nanowires have been shown to exhibit probabilistic behav-

ior (3). That behavior, however, has not yet been implemented into the superconducting

nanowire electrical model. For now, the hardware representation will remain deterministic,

however this is open for change in the future.

In order to bridge this gap, Project Neuron translates any firing probability over 50%

to deterministically fire in the hardware model, while any probability under 50% results in

the neuron not firing.

3.2.1 Abstract Neuron and Synapse Models

In order to systematically translate neurons and synapses from the graphical model to the

hardware model, a baseline hardware neuron and synapse were be chosen for further char-

acterization. The behavior of these model hardware units were used to create the abstract

hardware model.

The baseline abstract neuron is specified as the hardware nanowire neuron depicted in

figure 5 with the variable parameter being Ibias, which is set to a baseline value of 58µA.

With these parameters set, the neuron model has a firing threshold of 3.72µA. The nanowire

used in this model is simulated using the spice model developed in reference (6), and any

parameters not specified are left as default.

The baseline abstract synapse is specified as shown in figure 6. The synapse used differs

from Toomey’s model, as it uses an Htron in its design. This design choice came from
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Figure 5: SPICE model for the baseline nanowire hardware neuron. Units for inductances

are are H, resistances Ω, and currents A. Unit prefix u means micro and n means nano.

simulations we ran which demonstrated that an Htron synapse results in higher fanout.

The Htron synapse is connected to the upstream neuron through the Htron itself, which is

switched through heat which is produced in its resistor via Joule heating. Enough output

voltage from the upstream neuron can produce enough heat to switch the synapse, and

thus produce a spike for the downstream neuron.

Figure 6: The baseline Htron synapse. In the abstract model, the variable parameter is the

synapse strength, which is defaulted to 27µA.

Both of these baseline models were fully characterized in spice, and relationships between

their firing threshold, output strengths, and internal bias currents are explained in results.

These linear characterization are what Project Neuron uses to translate from the graphical
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model into the hardware implementation. The current translation schema is as follows:

Graphical Model Nanowire Hardware Model

0 neuron bias is mapped to Bias current of 60µA

each additional unit of bias .1µA decrease in neuron bias

current

0 synapse strength is mapped to Bias current of 27µA

Each additional unit of strength 1.16µA increase in synapse bias

current

This schema is derived from the the linear equations for the neuron and synapse found

in the results section. It is designed such that, at any timestep, a neuron in the graphical

model with over 50% probability to fire will fire in the hardware implementation.

3.2.2 Translating Abstract Models into Hardware

To translate these abstract models into hardware is a simple procedure. SPICE subcircuits

were made for both the baseline modes with the relevant variable parameters being exposed.

Project Neuron takes the user defined graphical model and writes the network into a SPICE

netlist according to the schema provided in the previous section. This netlist fully specifies

the user-created network in nanowire hardware and is capable of being simulated as-is in

LTSpice.

3.2.3 Storing Hardware Implementations

The hardware implementation for the network is encoded in SPICE and stored in the

netlist data format. The nanowire neurons and synapses are formatted as subcircuits in

the network which we created ourselves, and nested within these subcircuits are nanowire

subcircuits created by reference (6). Further additions to project neuron will add function-

ality to translate the neurons into verilog.

3.3 Simulating the Spiking Neural Network

There are two ways to simulate networks created with Project Neuron. The purpose of

the package is to create nanowire hardware implementations of neurons, and therefore the
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hardware simulation is most pertinent. However, an evolution of the network according to

the basic compositional model in (4) is also provided in order to benchmark the results of

the hardware implementation.

3.3.1 Graphical Model Simulation

In order to simulate the graphical model using Nancy and Musco’s model, a simulation

object is created which is set to use the phenomenological model described in section 3.1.1.

This simulation will then evolve the graphical model itself and return the firing history for

each neuron in the graph.

3.3.2 Hardware Model Simulation

In order to simulate the hardware implementation, currently the compiled netlist must

be ran in LTspice. LTspice then returns the firing history for not only each neuron, but

each electrical node in the network. This kind of detail is entirely unnecessary, and is

prohibitively slow. The next step in Project Neuron is to create a behavioral model for the

neuron in python which will allow for a great simplification in computation the ability to

simulate nanowire hardware networks much faster.

4 Results

The methods discussed above successfully generalized to the point where two example

spiking neural networks were generated systematically from the superconducting nanowire

hardware. This was possible due to the fact that we successfully found a linear regime in

which the neurons and synapses act compostionally. The networks we implemented are the

identity network and the n-neuron AND network which are described in the Lynch and

Musco model (4); the hardware implementation for both networks matched the expected

behavior according to their model.

4.1 Finding a Compositional Regime in the Neuron

Once the standard neuron and synapse parameters were set, experiments were ran on

both the neuron and synapse to determine the voltage regimes in which they would act
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compositionally.

4.1.1 Firing Threshold

A compositional region was found for the firing threshold of the neuron around 58µA of

bias current, which fires at around 3.72µA of input current. Furthermore, it was found that

the linear relationship between bias current and firing threshold is as follows:

φfiring = φ0 − 1.85(Ibias − I0)

φfiring is the firing threshold for the neuron, measured as the input current required to

spike the neuron (in µA).

Ibias is the current biasing the neuron.

φ0 is the firing threshold around which this approximation holds, and is equal to 3.72µA.

I0 is the bias current around which this approximation holds, and is equal to 58µA.

This approximation is meant to be used around φ0 and I0, however it has been exper-

imentally shown to hold with biases which are tens of µA away from I0. The relationship

provides a simple, systematic, way to bias a neuron in a linear fashion similar to Lynch and

Musco’s model. If a neuron must be biased in such a way that to demand a higher input,

the bias must accordingly made smaller.

4.1.2 HTron Synapse

A compositional region was also found for the HTron synapse which is used for connections

between individual neurons. The parameters of relevance here are the bias to the synapse,

also referred to as the ’synapse strength’, and the output current of the synapse.

We chose to center the linear region around a synapse strength of 27µA because that

strength resulted in an output current of 3.75µA on a discharge, which is just enough to

spike a downstream neuron biased with 58µA. Of course, as previously mentioned, the

firing threshold for the downstream neuron can be altered to require more than 3.72µA of

input current, however for the purposes of this approximation we assumed that the average

use case would see currents around these levels. The linear relationship between synapse
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strength and output current on discharge is as follows:

Iout = I0out + .16(Ibias − I0bias)

Iout is the current output current if the synapse discharges.

I0out is the discharge output current around which this approximation holds, and is equal

to 3.75µA.

Ibias is the current synapse strength.

I0bias is the synapse strength around which this approximation holds, and is equal to 27µA.

It was also found that synapse outputs behave compositionally around these current

ranges. What this means is that the output currents of multiple synapses going to the

same neuron input will add without any significant complications from the rest of the

circuit. This is integral to the general creation of networks from our hardware, and is a

principle reason why the general AND network shown below can function.

4.2 Identity Network

The output neuron simply replicates the behavior of the input neuron: if the input is spiking

then the output will spike, if it does not spike then the output will not spike. This example

serves as a sanity check for project neuron, the neuron and synapse models, and the linear

regimes.

4.3 And Network

This is an AND network which behaves identically to the AND network depicted in Lynch

and Musco’s model (4). If, at any time, all 3 inputs are firing then the output will fire.

If less than 3 inputs are firing, then the output will not fire. Three inputs was chosen

arbitrarily, and this generalizes to an N-input AND gate by increasing the firing threshold

of the output neuron. This can be easily accomplished by using the firing threshold linear

approximation.
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Figure 7: The LTSpice structure of the identity network. The neuron on top is the input,

the synapse runs along the bottom, and the neuron on the right is the output. The behavior

from the top neuron is ran through the synapse with a behavioral voltage source to increase

computational efficiency in LTSpice (instead of directly connecting the two components).

Both neurons have a firing threshold of 3.72µA, and the synapse is biased with 27µA.

4.4 Project Neuron

The python package, while still in development, was of great use in reaching the insights

demonstrated in this paper. The project neuron package was used to run and analyze

LTSpice simulations sequentially to find the compositional regimes in the neuron and was

also used to create and simulate the identity network as well as the AND network. This

package will be placed online and made freely available for any who want to simulate

spiking neural networks, either with or without any hardware implementations. It will be

maintained and updated to provide more functionality for both LTSpice compilation and

analysis, as well as the simulation of spiking neural networks.
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Figure 8: The LTSpice structure of the AND gate. The left neuron is the input, the three

synapses are in the middle and are all connected to the right neuron, which is the output.

All 3 synapses are biased with 27µA (which results in a current discharge of 3.75µA), the

input neuron has a firing threshold of 3.72µA, and the output neuron has a firing threshold

of 9.9µA. Note that while there is only one input neuron, its voltage is replicated and scaled

in each synapse input with a behavioral source to replicate 3 input neurons (this increases

LTSpice computation speed).
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