
Gradient Clock Synchronization Using Reference
Broadcasts

Fabian Kuhn1 and Rotem Oshman2

1 Faculty of Informatics, University of Lugano, Switzerland
2 Computer Science and Artificial Intelligence Laboratory, MIT, USA

Abstract. Reference-Broadcast Synchronization (RBS) is a technique
that allows a set of receivers in a broadcast network to accurately esti-
mate each others’ clock values. RBS provides a relative time-frame for
conversion between the local clocks of different nodes, and can be used
to synchronize nodes to an external time-source such as GPS. However,
RBS by itself does not output a logical clock at every node, and so it
does not solve internal clock synchronization.

In this work we study the theoretical properties of RBS in the worst-
case model, in which the performance of a clock synchronization algo-
rithm is measured by the worst-case skew it can incur. We suggest a
method by which RBS can be incorporated in standard internal clock
synchronization algorithms. This is achieved by separating the task of
estimating the clock values of other nodes in the network from the task
of using these estimates to output a logical clock value.

The separation is modelled using a virtual estimate graph, overlaid on
top of the real network graph, which represents the information various
nodes can obtain about each other. RBS estimates are represented in
the estimate graph as edges between nodes at distance 2 from each other
in the original network graph. A clock synchronization algorithm then
operates on the estimate graph as though it were the original network.

To illustrate the merits of this approach, we modify a recent optimal
gradient clock synchronization algorithm to work in this setting. The mod-
ified algorithm transparently takes advantage of RBS estimates. Its quality
of synchronization depends on the diameter of the estimate graph, which
is typically much smaller than the diameter of the original network graph.

Keywords: Gradient Clock Synchronization, Wireless Networks.

1 Introduction

The evolving field of wireless networks poses new and interesting challenges to
time synchronization, leading to renewed attention to this venerable problem in
recent years. Sensor networks in particular are subject to constraints on com-
putation power and energy consumption, and often require a greater degree of
synchronization than traditional distributed applications.

In a multi-hop sensor network it is frequently the case that neighboring nodes
must be closely synchronized, while far-apart nodes can tolerate greater clock

T. Abdelzaher, M. Raynal, and N. Santoro (Eds.): OPODIS 2009, LNCS 5923, pp. 204–218, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Gradient Clock Synchronization Using Reference Broadcasts 205

skew: neighboring nodes interfere with each other when they try to transmit,
and are also more likely to cooperate for the purpose of some local computation.
This gives rise to the problem of gradient clock synchronization, in which the syn-
chronization between two nodes improves the closer they are to each other. The
problem was first formulated in [6], where it is shown that in a network of diame-
ter D, no algorithm can guarantee a skew that is better than Ω(log D/ log log D)
even between adjacent nodes. Subsequent work has improved the lower bound
to Ω(log D), and come up with algorithms that match it [9,10].

The wireless broadcast medium also offers opportunities for better synchro-
nization. Although contention may cause unpredictable delays before a message
is broadcast, once a message is transmitted, it is received by all nodes in the
sender’s neighborhood almost instantaneously. Reference broadcast synchroniza-
tion (RBS) [4] takes advantage of this to let the neighbors of the sender estimate
each other’s clock values with great accuracy. RBS can be extended to multi-hop
networks, to allow any node in the network to estimate the clock value of any
other node. However, by itself, RBS does not output a logical clock at every
node, and so it is not a clock synchronization algorithm in the traditional sense.

In this paper we suggest an approach by which RBS, or any other estimation
method (including external time sources), can be seamlessly incorporated in
many clock synchronization algorithms, in order to reduce the effective diameter
of the network and achieve better synchronization. We suggest a separation
between the estimate layer, which is responsible for estimating other nodes’
clock values, and the algorithm that uses these estimates to compute a local
logical clock. The estimate layer runs underneath the algorithm and provides
it with an estimate graph Gest. Each edge {u, v} of Gest represents an estimate
that node u can get for node v’s clock value (and vice-versa), along with an
associated uncertainty. RBS estimates are represented in Gest as edges between
nodes at distance 2 from each other in the original network graph.

Almost any clock synchronization algorithm can be used on top of the estimate
layer, as long as the algorithm can handle networks with non-uniform uncertainty
on the links. The resulting synchronization between nodes u, v depends on their
effective distance dist(u, v), and on the effective diameter of the network graph.
These are defined by the corresponding distances in the estimate graph Gest.
Using RBS it is possible to reduce the effective diameter to O((ρ·T +urcv)·D+T ),
where D is the diameter of the original network, T is a bound on the message
delay, ρ is a bound on clock drift (typically very small), and urcv is a bound on
the receiver uncertainty (also very small [4]), which bounds the time it takes a
node to process a message it receives.

Our main contributions are as follows. In Section 4 we define the estimate
layer, and show how to incorporate point-to-point messages and RBS. In Sec-
tion 5, we illustrate the applicability of our approach by modifying the algorithm
of [10] to work on top of the estimate layer. Significantly, this involves extending
it to a heterogeneous network; in [10] it is assumed that all links are subject
to the same bounds on message delay. Finally, in Section 6 we prove that the
algorithm achieves gradient clock synchronization, with the skew between nodes



206 F. Kuhn and R. Oshman

u and v bounded by O(dist(u, v) · log1/ρ D) in networks with effective diameter
D and drift bounded by ρ. This is asymptotically optimal. The proof is based
on the proof in [10], but in our view it is cleaner and somewhat simpler.

2 Related Work

The problem of establishing a common notion of time is at the core of many dis-
tributed systems and applications and has been widely studied, from both theoret-
ical and a practical points of view. In most of the existing work on clock synchro-
nization, the nodes of a network compute estimates about each others’ clock values
by exchanging messages. Based on the information obtained, each node computes
a local logical clock. Typically, the accuracy of clock estimates is determined by
the uncertainty about the propagation delay of messages. In [12], it is shown that
even if hardware clocks experience no drift, no clock synchronization algorithm
can prevent a clock skew of Ω(D) in a network of diameter D. This lower bound
on the maximum clock skew between any two nodes is matched by an algorithmde-
scribed in [20] and by many subsequent algorithms (e.g. [2,14,5,10,9,15,16]). Clock
synchronization algorithms and lower bounds that accommodate non-uniform un-
certainties are described, for example, in [1,3,7].

In [6], Fan and Lynch introduced the gradient clock synchronization problem.
It is shown that even on a path of length D, no algorithm can guarantee a clock
skew smaller than Ω(log D/ log log D) between adjacent nodes. This bound has
been improved to Ω(log D) in [10] and it is shown in [9,10] that the new bound
in indeed tight.

The special properties, constraints, and requirements of wireless ad hoc and
sensor networks make clock synchronization especially challenging. There is a
considerable amount of work on the problem (e.g. [5,18,19,21,13,17]). Particu-
larly interesting is the work on reference broadcast synchronization [4,8], which
exploits the property of sharing a single communication channel to obtain high
accuracy clock estimates of nearby nodes.

3 Preliminaries

In the sequel we use IR≥0 to denote the set of non-negative reals and IN>0 to
denote the positive integers.

We model a wireless network as an undirected graph G = (V, E), where V is
the set of nodes, and {u, v} ∈ E iff u is in reception range of v and vice-versa.
We abstract away low-level details of contention management, message loss and
so on, by assuming reliable message delivery with message delays bounded by a
parameter T .

Each node v in the network has access to a local hardware clock Hv, which is
subject to drift bounded by ρ < 1. We assume that for all t1 ≤ t2,

(1 − ρ)(t2 − t1) ≤ Hv(t2) − Hv(t1) ≤ (1 + ρ)(t2 − t1).

The hardware clock increases continuously, and for the analysis we assume it is
differentiable.



Gradient Clock Synchronization Using Reference Broadcasts 207

The goal of gradient clock synchronization is to output a local logical clock Lv

at every node v, which is closely-synchronized with all the other logical clocks.
Formally, an algorithm is said to achieve f -gradient clock synchronization, for a
function f : IR≥0 → IR≥0, if it satisfies the following requirement.

Requirement 31. For all u, v ∈ V and times t we have

Lv(t) − Lu(t) ≤ f (dist(u, v)) .

Here dist(u, v) stands for the distance between u and v, which informally cor-
responds to the accuracy of information u and v can acquire about each other.
Traditionally, dist(u, v) is defined as the minimal sum of the uncertainties re-
garding message delay on any path between u and v (see, e.g., [2]). In the next
section we redefine dist(u, v) to incorporate reference broadcast synchronization.

In addition to f -gradient synchronization, we require the logical clocks to be-
have like “real” clocks. Specifically, the logical clocks should be strictly increasing,
and they should always be within a linear envelope of real time. In particular, the
logical clocks are continuous. This is captured by the following requirement.

Requirement 32. There exist α ∈ (0, 1) and β ≥ 0 such that for all t1 ≤ t2,

(1 − α)(t2 − t1) ≤ Lu(t2) − Lu(t1) ≤ (1 + β)(t2 − t1).

4 The Estimate Layer

The estimate layer encapsulates point-to-point messages, reference broadcast
synchronization, and any other means the nodes in the network have of obtaining
information about the logical clock values of other nodes. The estimate layer
provides an undirected estimate graph Gest = (V, Eest), where each edge u, v ∈
Eest represents some method by which nodes u and v can estimate each others’
logical clock values. Note that Gest can be different from the underlying network
graph G; for example, RBS is represented in Gest as edges connecting nodes at
distance 2 from each other in G. We use N(u) := {v ∈ V | u, v ∈ Eest} to denote
u’s neighborhood in Gest.

The estimate layer provides each node u ∈ V with a set of local variables{
L̃v

u : v ∈ N(u)
}
, which represent u’s current estimates for the logical clock val-

ues of its neighbors in Gest. Since the estimates are typically inaccurate, we
associate with every edge e ∈ Eest an uncertainty εe. The estimate layer guar-
antees the following property.
Property 1 (Estimate quality). For any edge (u, v) ∈ Eest and time t, we have

Lv(t) − ε{u,v} ≤ L̃v
u(t) ≤ Lv(t) + ε{u,v}.

Two methods of obtaining logical clock estimates are described below. We de-
scribe each method and bound the error associated with it, and then show how
to combine multiple methods.



208 F. Kuhn and R. Oshman

Direct estimates. Following the style of algorithms suggested in [11,9,10], we
assume that every node broadcasts its logical clock value to all its neighbors once
every subjective ∆H time units (that is, after its hardware clock has increased
by ∆H), where ∆H is a parameter. These messages provide a direct estimate of
the node’s logical clock value. When node u receives a message from v at time
t, it sets L̃v,direct

u ← L. Between messages from v, node u increases L̃v,direct
u at

the rate of its own hardware clock.
The error of a direct estimate can be shown to be bounded by

−(α+ ρ)
(

∆H

1 − ρ
+ T

)
≤ Lv(t)− L̃v,direct

u (t) ≤ (β + ρ)
(

∆H

1 − ρ
+ T

)
+(1− ρ)T .

Note that at this point, our error bound is asymmetric. It is straightforward to
obtain a symmetric guarantee in the style of Prop. 1. Specifically, if β = O(1),
we have

∣∣Lv(t) − L̃v,direct
u (t)

∣∣ = O(∆H + T ).

RBS estimates. An RBS estimate is obtained by comparing the logical clock
values that various nodes record when some common event occurs; in our case,
a broadcast by a shared neighbor. We give a simple way to obtain RBS esti-
mates, which is optimal as regards worst-case analysis, but differs from the more
practical treatment in [4].

We use Hu to denote node u’s history, a set of triplets (x, L, H) where x is a
unique event identifier and L, H record node u’s logical and hardware clock values
when it observed the event. After recording event x, node u sends a report(u, x, L)
message, which is propagated until it reaches all other nodes that observed the
same event. In our case, report(·) messages need to be re-broadcast only once, so
that they reach the 2-neighborhood of the node that originated the report.

The accuracy of RBS depends on two factors.

1. Receiver uncertainty is the time required for nodes to process the com-
mon event and record their logical clock value. The receiver uncertainty is
bounded by urcv if whenever an event x occurs at real time t, there is some
tx ∈ [t, t+urcv] such that for all t′ ≥ tx we have (x, Lu(tx), Hu(tx)) ∈ Hu(t′).

2. Propagation delay is the time it takes for nodes that observe an event to receive
report(·) messages from other nodes that observed it. This delay contributes
to the inaccuracy of the estimate, because while the report is propagated the
clocks continue to drift apart. We say that the propagation delay is bounded
by P if whenever a node u experiences an event x at real time t, every node
v ∈ N2(u) receives a report(u, x, L) message no later than time t + P .
In our case, because report(·) messages need to be re-broadcast only once, the
propagation delay is bounded by P ≤ urcv +2

(
∆H
1−ρ + T

)
: after observing the

event, node u waits at most ∆H
1−ρ time units and then broadcasts the message,

which takes at most T time units to arrive; its neighbors do the same.

When node u receives a report(v, x, L) message at time t, it looks up the cor-
responding triplet (x, H ′, L′) recorded in its own history. It uses Hu − H ′ to
estimate the time that has passed since x occurred, and sets



Gradient Clock Synchronization Using Reference Broadcasts 209

L̃v,rbs
u ← L + Hu − H ′.

Every broadcast by a node is an event that its neighbors use to get estimates of
each others’ logical clock values. RBS estimates are accurate up to the following
bound.

−(α + ρ)
(

∆H

1 − ρ
+ P

)
− (1 − α)urcv ≤ Lv(t) − L̃v,rbs

u (t) ≤

≤ (β + ρ)
(

∆H

1 − ρ
+ P

)
+ (1 − ρ)urcv.

Assuming urcv ' ∆H+T , the RBS estimates are a significant improvement over
direct estimates between nodes at distance 2 as long as the clock synchronization
algorithm guarantees that α,β ' 1. In particular, if α,β = O(ρ), we obtain∣∣Lv(t) − L̃v,rbs

u (t)
∣∣ = O(urcv + ρ(∆H + T )).

Combining multiple estimates. As we have seen, each node may have multiple
ways of estimating the clock values of its neighbors in Gest. Let L̃v,1

u , . . . , L̃v,m
u be

the various estimates that u has for v’s logical clock value, and let ε1low, . . . , εm
low

and ε1high, . . . , ε
m
high be error bounds such that for all i ∈ {1, . . . , m} and time t

we have −εi
low ≤ Lv(t) − L̃v,i

u (t) ≤ εi
high. Node u computes a combined estimate

with symmetric error, given by

L̃v
u(t) :=

min
i

(
L̃v,i

u (t) + εi
high

)
− max

i

(
L̃v,i

u (t) − εi
low

)

2
. (1)

The uncertainty of the combined estimate is bounded by

ε{u,v} := min
i

{
εi
low + εi

high

2

}
.

Effective distance and diameter. Let P denote the set of all paths in the graph
Gest (including non-simple paths), and let P(v) ⊆ P denote the set of paths
that start at node v. Given a path P = v0, . . . , vk ∈ P , we denote εP :=∑k−1

i=0 ε{vi,vi+1}. Given two nodes u, v ∈ V , the distance between u and v is
defined by

dist(u, v) := min
P=u,...,v

εP , (2)

and the diameter of the graph Gest is defined by

D := max
u,v

dist(u, v). (3)

In the following assume that we have a clock synchronization algorithm that
guarantees α,β = O(ρ). Let de(u, v) be the length of the shortest even-length
path and let d(u, v) be the length of the shortest path between two nodes u and v
in G. When using RBS estimates, we have dist(u, v) = O

(
de(u, v) ·(ρ(∆H +T )+



210 F. Kuhn and R. Oshman

urcv)
)
. Further, when using both direct and RBS estimates, we have dist(u, v) =

O
(
d(u, v) · (ρ(∆H + T ) + urcv) + ∆H + T

)
. Consequently, we obtain

D = O
(
(1 + ρD)(∆H + T ) + urcvD

)
,

where D is the diameter of the underlying network G. As the receiver uncertainty
urcv is typically small, this is a significant improvement over the “true” diameter
of G.

5 An Optimal Gradient Clock-Synchronization Algorithm

In this section we modify the algorithm of [10] to work on top of the estimation
layer presented in the previous section.

To satisfy Requirement 32, the algorithm increases the logical clock in a con-
tinuous manner, with no discrete jumps. At each point during the execution a
node is either in fast mode or in slow mode. In slow mode, u increases its logical
clock at a rate of d

dtHu(t); in fast mode, the logical clock rate is (1 + µ) d
dtHu(t),

where µ is a parameter.
Each node continually examines its estimates for the logical clock values of

its neighbors in Gest. To compensate for the uncertainty on edge e we use a
parameter κe, which is defined as

κe :=
2
λ
· εe (4)

for some constant 0 < λ < 1/4 1. For a path P ∈ P , we define κP := 2
λ · εP .

If a node u finds that it is too far behind, it goes into fast mode and uses
the fast rate of (1 + µ) d

dtHu(t). The following rule is used to determine when to
go into fast mode; informally, it states that some neighbor is far ahead, and no
neighbor is too far behind.

Definition 1 (Fast condition FC). At time t, a node u ∈ V satisfies the
fast condition, denoted FC, if there is some integer s ∈ IN for which following
conditions are satisfied:

(FC1) ∃v ∈ N(u) : L̃v
u(t) − Lu(t) ≥ (s − 1 − λ) κ{u,v}, and

(FC2) ∀v ∈ N(u) : Lu(t) − L̃v
u(t) ≥ (s − 1 + λ) κ{u,v}.

Conversely, if a node is far behind some neighbor, and no other neighbor is too
far ahead of it, it enters slow mode and uses the slow rate. The rule for entering
slow mode is as follows.

Definition 2 (Slow condition SC). At time t, a node u ∈ V satisfies the slow
condition, denoted SC, if there is an integer s ∈ IN>0 for which the following
conditions are satisfied:

(SC1) ∃v ∈ N(u) : Lu(t) − L̃v
u(t) ≥

(
s − 1

2 − λ
)
· κ{u,v}, and

(SC2) ∀v ∈ N(u) : L̃v
u(t) − Lu(t) ≤

(
s − 1

2 + λ
)
· κ{u,v}.

1The choice of 2 in the definition of κe is arbitrary; it is sufficient to have κe > 1
λ ·εe.



Gradient Clock Synchronization Using Reference Broadcasts 211

slow mode

d
dt

Lu =
d
dt

Hu

fast mode

d
dt

Lu = (1 + µ)
d
dt

Hu

FC

SC

Fig. 1. A possible concrete implementation of the algorithm

The specification of the algorithm is nondeterministic. Whenever SC or FC are
satisfied for some node, that node must be in slow or fast mode, respectively;
this part of the specification is deterministic. However, when neither SC nor FC
are satisfied, the node’s behavior is nondeterministic, and the node can be in
either slow or fast mode.

To show that the algorithm is realizable, we show that the two conditions are
disjoint, which ensures that no node is required to be in both fast mode and
slow mode at the same time. The proof is technical and we omit it here.

Lemma 1. No node can satisfy SC and FC at the same time. +,

One possible implementation of the algorithm is shown in Fig. 1. In this imple-
mentation, the nondeterminism in the specification is resolved by having a node
stay in its current state until SC or FC are satisfied, and then transition to the
appropriate state. When neither SC nor FC are satisfied the node simply stays
in its current state. We stress that this is only one possible choice; the algorithm
performs correctly regardless of what nodes do when SC and FC are not satisfied.

6 Analysis

In this section we show that the algorithm achieves O (dist(u, v) · logD)-gradient
synchronization. The proofs of some lemmas are omitted; they appear in the full
version of this paper.

We define a parameter σ ≥ 2, which serves as the base for the logarithm in
the gradient skew bound. The correctness of the algorithm relies on the following
assumption, which (informally) states that µ is large enough to allow nodes that
are behind to catch up.

Property 2 (Requirement on µ). We require

µ > 4σ
ρ

1 − ρ
. (5)



212 F. Kuhn and R. Oshman

We show that the following invariant, which we denote L, is maintained through-
out any execution of the algorithm.

Definition 3 (Legal State). We say that the network is in a legal state at
time t if and only if for all s ∈ IN>0 and all paths P = v0, . . . , vk, if

κP (t) ≥ Cs :=
4
λ
· D
σs

,

then
Lvk(t) − Lv0(t) ≤ s · κP .

In particular, if the network is legal at time t, then for every two nodes u, v and
integer s ≥ 1 such that dist(u, v) ≥ Cs, we have Lu(t)−Lv(t) ≤ s · 2

λ · dist(u, v).
The gradient synchronization property follows (see Corollaries 1, 2).

To show that the network is always in the safety region defined by the legal
state condition, we show that whenever some path comes close to having illegal
skew, the algorithm acts to decrease the skew, pulling the system back into the
safety region.

Unfortunately, the proof is not straightforward. We cannot guarantee that a
node will always “realize” when it is on a path that has too much skew: each node
only has knowledge of its local neighborhood, and this local image may not reflect
a large skew further down the path. We can, however, show that when the skew is
close to being illegal, the nodes that are “the most behind” or “the most ahead”,
in a sense defined formally below, will realize that they must act to correct the
skew. We will show that such nodes enter fast or slow mode as appropriate.

Since we can only argue about the clock rate of nodes that roughly speaking
maximize some notion of weighted skew (defined below), we will use the following
technical lemma.

Lemma 2. Let g1, . . . , gn : IR≥0 → IR≥0 be differentiable functions, and let [a, b]
be an interval such that for all i ∈ {1, . . . , n} and x ∈ (a, b), if gi(x) = maxj gj(x)
then d

dxgi(x) ≤ r. Then for all x ∈ [a, b], maxi gi(x) ≤ maxi gi(a) + r · (x − a).

Next we define two different notions of “weighted skew”: one captures how much
a node v0 is ahead of any other node, and the other captures how far behind it
is. The weights in both cases are proportional to the uncertainty on the path,
but use different constants. These notions correspond exactly to the the fast and
slow conditions, respectively.

Definition 4. Given an integer s ∈ N, a time t, and a path P = v0, . . . , vk ∈ P,
we define

Ξs
P (t) := Lv0(t) − Lvk(t) − (s − 1) · κP , and Ξs

v0
(t) := max

P∈P(v0)
Ξs

P (t).

Definition 5. Given an integer s ∈ N, a time t, and a path P = v0, . . . , vk ∈ P,
we define

Ψs
P (t) := Lvk(t) − Lv0(t) −

(
s − 1

2

)
· κP , and Ψs

v0
(t) := max

P∈P(v0)
Ψs

P (t).



Gradient Clock Synchronization Using Reference Broadcasts 213

L
Ψ s

Ξs

Outside Ψs: trailing
nodes are in fast mode,
leading nodes are in slow
mode

Outside Ξs: trailing
nodes are in fast mode

Fig. 2. Regions Ξs, Ψ s and L. Arrows illustrate the possible dynamics acting on the
weighted skew in each region.

These definitions induce “inner safety regions” Ξs := [maxv Ξs
v ≤ 0] and Ψ s :=

[maxv Ψs
v ≤ 0] for any s ∈ IN>0, with Ξs ⊆ Ψ s ⊆ L (see Fig. 2).

The next lemma can be thought of as bounding how far the system can stray
outside the boundary of Ξs and Ψ s while still being in a legal state.

Lemma 3. If the network is in a legal state at time t, then for all nodes u ∈ V
and integers s ≥ 1 we have Ξs

u(t) < Cs−1 and Ψs
u(t) < Cs−1. +,

Next we show that when the system is outside the region Ξs, nodes that are
“the most behind” (maximize Ξ with respect to some other node) will be acting
to catch up, and when the system is outside the region Ψ s, nodes that are “the
most ahead” will be held back from moving too quickly.

Lemma 4. Let P = v0, . . . , vk ∈ P(v0) be a path starting at v0 for which
Ξs

P (t) = Ξs
v0

(t) at some time t. If Ξs
v0

(t) > 0, then vk is in fast mode at time t.

Lemma 5. Let P = v0, . . . , vk ∈ P(v0)(t) be a path starting at v0 for which
Ψs

P (t) = Ψs
v0

(t) at some time t. If Ψs
v0

(t) > 0, then vk is in slow mode at time t.

The proofs of the two lemmas are similar. We give the proof of Lemma 4 here.

Proof (Lemma 4). We set out to show that vk satisfies FC.
Consider any path P ′ = v0, . . . , v ∈ P(v0) that ends at a neighbor v of vk.

Since Ξs
P (t) = Ξs

v0
(t) = maxQ∈P(v0) Ξ

s
Q(t), we have Ξs

P ′(t) ≤ Ξs
P (t); that is,

Lv0(t) − Lv(t) − (s − 1) · κP ′ ≤ Lv0(t) − Lvk(t) − (s − 1) · κP .

Re-arranging yields

Lv(t) − Lvk(t) ≥ (s − 1) · (κP − κP ′) ,

and applying Property 1 we obtain

L̃v
vk

(t) − Lvk(t) ≥ Lv(t) − ε{v,vk} − Lvk(t) ≥
≥ (s − 1) · (κP − κP ′) − ε{v,vk}. (6)



214 F. Kuhn and R. Oshman

To show (FC1) is satisfied, let P ′ be the subpath v0, . . . , vk−1 of P , where vk−1 ∈
N(v). Note that since ΞP (t) > 0 it must be that k > 0, and thus vk−1 is
well-defined. For this choice of P ′, (6) yields

L̃vk−1
vk

(t) − Lvk(t) ≥ (s − 1) · (κP − κP ′) − ε{vk−1,vk} =

= (s − 1) · κ{vk−1,vk} − ε{vk−1,vk}
(4)
> (s − 1 − λ)κ{vk−1,vk}.

This shows that (FC1) is satisfied. To show that (FC2) holds, let v ∈ N(vk) be
any neighbor of vk, and let P ′ = v0, . . . , vk, v be the path obtained by appending
v to the path P . In this case (6) yields

Lvk(t) − L̃v
vk

(t) ≤ (s − 1) · (κP ′ − κP ) + ε{v,vk} =

= (s − 1) · κ{v,vk} + ε{v,vk}
(4)
< (s − 1 + λ) · κ{v,vk}.

Hence, the second condition is satisfied as well, and node vk is in fast mode. +,

Suppose that at time t, node v has Ξs
v(t) > 0. From Lemma 4, all the nodes that

maximize Ξs
v are in fast mode, trying to catch up to v, and their logical clock

rate is at least (1 − ρ)(1 + µ). Thus, whenever it is positive, Ξs
v decreases at an

average rate of at least (1 − ρ)(1 + µ), minus the rate by which v increases its
own logical clock. To formalize this observation, define

Iv(t1, t2) := Lv(t2) − Lv(t1) (7)

to be the amount by which v increases its logical clock over the time interval
[t1, t2]. Since d

dtLv(t) ≥ d
dtHv(t) ≥ 1 − ρ we have the following property.

Property 3. For all nodes v and times t1, t2 we have Iv(t1, t2) ≥ (1− ρ)(t2 − t1).

Now we can state the following lemma.

Lemma 6 (Catch-Up Lemma). Let v0 be a node and let [t0, t1] be a time
interval such that for all t ∈ (t0, t1) we have Ξs

v0
(t) > 0. Then for all t ∈ [t0, t1],

Ξs
v0

(t) ≤ Ξs
v0

(t0) + Iv0(t0, t) − (1 − ρ)(1 + µ)(t − t0).

Similarly, whenever Ψs
v (t) > 0, the nodes that maximize Ψs

v are in slow mode,
and their logical clocks increase at a rate of at most 1 + ρ. Thus, whenever it
is positive, Ψs

v (t) increases at an average rate of at most 1 + ρ, again minus v’s
increase to its own logical clock. This is captured by the following lemma.

Lemma 7 (Waiting Lemma). Let v0 be a node and let [t0, t1] be a time in-
terval such that for all t ∈ (t0, t1) we have Ψs

v0
(t) > 0. Then for all t ∈ [t0, t1],

Ψs
v0

(t) ≤ Ψs
v0

(t0) − Iv0(t0, t) + (1 + ρ)(t − t0).

The proofs of Lemmas 6 and 7 involve a straightforward application of Lemma 2.



Gradient Clock Synchronization Using Reference Broadcasts 215

We have so far argued that if v0 is too far ahead of other nodes then those
nodes will be in fast mode, and if v0 is too far behind other nodes then those
nodes will be in slow mode. What does v0 itself do when it is too far behind?
Observe that if there is some path P = v0, . . . , vk such that Ψs

P (t) > 0, then for
the inverted path P ′ = vk, . . . , v0 we have Ξs

P ′(t) > Ψs
P (t) > 0. Thus, informally

speaking, whenever v0 is too far behind some other node it will be “pulled
forward” at the fast rate. The next lemma quantifies how much ground v0 makes
up during an interval in which it is far behind: it states that given sufficient time,
the node makes up all the initial weighted skew Ψs

v , in addition to its minimal
rate of progress (1 − ρ).

Lemma 8. For any node v0, integer s ∈ IN>0 and time interval [t0, t1] where
t1 ≥ t0 + Cs−1

(1−ρ)µ , if the network is in a legal state at time t0, then

Iv0 (t0, t1) ≥ Ψs
v0

(t0) + (1 − ρ)(t1 − t0).

Proof (Lemma 8). If Ψs
v0

(t0) ≤ 0, the claim follows immediately from Property 3.
Thus, assume that Ψs

v0
(t0) > 0, and let P = v0, . . . , vk be a path such that

Ψs
P (t0) = Ψs

v0
(t0). From the definitions of Ψ and Ξ, for the inverted path P ′ =

vk, . . . , v0 we have Ξs
P ′(t0) > Ψs

P (t0), and therefore, Ξs
vk

(t0) > Ψs
v0

(t) > 0. If
there is a time t ∈ [t0, t1] such that Ξs

vk
(t) ≤ 0, let t̄ be the infimum of such

times. Otherwise, let t̄ = t1. Observe that

Iv0(t0, t̄) = Lv0(t̄) − Lv0(t0) = Ξs
P ′(t0) −Ξs

P ′(t̄) + Ivk(t0, t̄)
> Ψs

P (t0) −Ξs
vk

(t̄) + Ivk(t0, t̄) = Ψs
v0

(t0) −Ξs
vk

(t̄) + Ivk(t0, t̄).

Since t̄ ≤ t1 and Iv0(t0, ·) is increasing and interval-additive, to prove the claim
it is sufficient to show that Ivk(t0, t̄) ≥ Ξs

vk
(t̄) + (1 − ρ)(t̄ − t0).

Consider first the case where t̄ < t1. In this case t̄ is the infimum of times
t where Ξs

vk
(t) ≤ 0. Since Ξs

vk
(·) is continuous, it follows that Ξs

vk
(t̄) = 0, and

using Property 3 we obtain Ivk(t0, t̄) ≥ Ξs
vk

(t̄) + (1 − ρ)(t̄ − t0).
Otherwise, if t̄ = t1, then for all t ∈ [t0, t1) we have Ξs

vk
(t) > 0. Applying

Lemma 6 to the interval [t0, t1] we obtain

Ξs
vk

(t1) ≤ Ξs
vk

(t0) + Ivk(t0, t1) − (1 − ρ)(1 + µ)(t1 − t0) ≤
Lemma 3

≤ Cs−1 + Ivk(t0, t1) − (1 − ρ)µ · Cs−1

(1 − ρ)µ
− (1 − ρ)(t1 − t0) =

= Ivk(t0, t1) − (1 − ρ)(t1 − t0),

which yields the desired result. +,

Now we are ready to put all the pieces together and prove the main theorem:

Theorem 1. The network is always in a legal state.

Proof. Suppose for the sake of contradiction that this is not the case, and let t̄
be the infimum of times when the legal state condition is violated. Then there
is some path P = v0, . . . , vk and some s ≥ 1 such that κP ≥ Cs but

Lv0(t̄) − Lvk(t̄) ≥ s · κP . (8)



216 F. Kuhn and R. Oshman

For the legal state condition to be violated, the system must be far outside the
boundary of Ψ s:

Ψs
vk

(t̄) ≥ Lv0(t̄) − Lvk(t̄) −
(

s − 1
2

)
· κP

(8)
≥ 1

2
κP ≥ 1

2
Cs =

1
2σ

Cs−1. (9)

However, Lemma 7 tells us that whenever Ψs
vk

is large it cannot increase quickly,
which gives vk time to catch up. Specifically, if t0 is the supremum of times t ≤ t̄
such that Ψs

vk
(t) ≤ 0, then Lemma 7 shows that

Ψs
vk

(t̄) ≤ Ψs
vk

(t0) − Ivk(t0, t̄) + (1 + ρ)(t̄ − t0)
(Prop. 3)

≤ 2ρ(t̄ − t0). (10)

Let t1 := t̄ − Cs−1
(1−ρ)µ . Combining (9) and (10), we see that t0 ≤ t̄ − Cs−1

4σρ

(5)
≤

t̄ − Cs−1
(1−ρ)µ = t1. Thus, by Lemma 8, the interval [t1, t̄] is sufficient for vk to

increase its clock by

Ivk(t1, t̄) ≥ Ψs
vk

(t1) + (1 − ρ)(t̄ − t1). (11)

Applying Lemma 7 again, we obtain

Ψs
vk

(t̄)
(Lemma 7)

≤ Ψs
vk

(t1) − Ivk(t1, t̄) + (1 + ρ)(t̄ − t1)
(11)
≤ 2ρ

Cs−1

(1 − ρ)µ
(5)
<

1
2σ

Cs−1,

in contradiction to (9).

As an easy corollary we obtain the following.

Theorem 2. The global skew of the algorithm is bounded by 4
λ · D. +,

There is some flexibility in setting the parameter µ, which governs the maximal
speed of the logical clocks. We illustrate two possible choices.

By (5), the choice of µ limits the choice of σ, the parameter introduced in
Definition 3. The value of σ serves as the base of the logarithm in the gradient
function. If we set µ ≈ 1, we can set σ = Θ(1/ρ), achieving optimal gradient
clock-synchronization and matching the lower bound of [10]. However, for this
choice of µ we get β ≈ 1, meaning that in fast mode logical clocks progress at
almost twice the rate of real time. An alternative is to choose µ as Θ(ρ/(1− ρ)),
which yields β = O(ρ). The cost is choosing σ as a constant, which is no longer
optimal. This is formalized below.

Corollary 1. If µ = Θ(1/(1−ρ)), the algorithm achieves O
(
dist(u, v) · log1/ρ D

)
-

gradient synchronization, with a global skew of O(D). +,

Corollary 2. If µ = Θ(ρ/(1− ρ)), the algorithm achieves O (dist(u, v) · logD)-
gradient synchronization, with a global skew of O(D). When using direct and
RBS estimates, we get D = O

(
(1 + ρD)(∆H + T ) +urcv ·D

)
in this case, where

D is the diameter of G. +,



Gradient Clock Synchronization Using Reference Broadcasts 217

7 Conclusion

In this work we introduced a method of seamlessly incorporating reference broad-
cast synchronization (RBS) into the theoretical study of internal clock synchro-
nization. We argue that by separating the task of estimating other nodes’ clock
values from the task of combining these estimates to come up with a logical
clock, one obtains a cleaner and more general framework.

The approach taken here is reminiscent of, e.g., [2], [14] and [15]; in these
works, various assumptions on message delay are represented as bounds on the
difference between times at which a pair of events occur (e.g., the sending and
receipt of a message). Using this abstract representation, general algorithms are
presented which can handle many forms of delay assumptions. We take one step
further by decoupling the physical network graph from the estimate graph, which
is used to represent all information that nodes can acquire about each other.
The approach extends to handle not only RBS but any means of acquiring clock
estimates. For example, if certain nodes in the network have access to an external
time source such as GPS, the estimate graph would contain edges between such
nodes, since they can use the external time source to estimate each others’ clock
values (similar to RBS).

The estimate graph serves as a base layer on which classical clock synchro-
nization algorithms can run, including, with minor modifications, those of [2]
and [15] (which provide only global clock synchronization). In this work we fur-
ther modified a recent gradient clock synchronization algorithm [10], to obtain
an algorithm that provides gradient synchronization in broadcast networks.

References

1. Attiya, H., Hay, D.C., Welch, J.L.: Optimal clock synchronization under en-
ergy constraints in wireless ad-hoc networks. In: Anderson, J.H., Prencipe, G.,
Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 221–234. Springer,
Heidelberg (2006)

2. Attiya, H., Herzberg, A., Rajsbaum, S.: Optimal clock synchronization under dif-
ferent delay assumptions. SIAM Journal on Computing 25(2), 369–389 (1996)

3. Cristian, F.: Probabilistic clock synchronization. Distributed Computing 3, 146–
158 (1989)

4. Elson, J., Girod, L., Estrin, D.: Fine-grained network time synchronization using
reference broadcasts. ACM SIGOPS Operating Systems Review 36(SI), 147–163
(2002)

5. Fan, R., Chakraborty, I., Lynch, N.: Clock synchronization for wireless networks.
In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 400–414. Springer,
Heidelberg (2005)

6. Fan, R., Lynch, N.: Gradient clock synchronization. Distributed Computing 18(4),
255–266 (2006)

7. Halpern, J., Megiddo, N., Munshi, A.: Optimal precision in the presence of un-
certainty. In: Proc. of 17th Symp. on Theory of Computing (STOC), pp. 346–355
(1985)



218 F. Kuhn and R. Oshman

8. Karp, R., Elson, J., Papadimitriou, C., Shenker, S.: Global synchronization in
sensornets. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 609–
624. Springer, Heidelberg (2004)

9. Lenzen, C., Locher, T., Wattenhofer, R.: Clock synchronization with bounded
global and local skew. In: Prof. of 49th IEEE Symp. on Foundations of Computer
Science (FOCS), pp. 500–510 (2008)

10. Lenzen, C., Locher, T., Wattenhofer, R.: Tight bounds for clock synchronization.
In: Proc. of the 28th ACM Symp. on Principles of Distributed Computing (PODC)
(to appear, 2009)

11. Locher, T., Wattenhofer, R.: Oblivious gradient clock synchronization. In:
Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 520–533. Springer, Heidelberg
(2006)

12. Lundelius, J., Lynch, N.: An upper and lower bound for clock synchronization.
Information and Control 62(2/3), 190–204 (1984)

13. Meier, L., Thiele, L.: Brief announcement: gradient clock synchronization in sensor
networks. In: Proc. of 24th ACM Symp. on Principles of Distributed Computing
(PODC), p. 238 (2005)

14. Moses, Y., Bloom, B.: Knowledge, timed precedence and clocks (preliminary re-
port). In: Proc. of the 13th ACM Symp. on Principles of Distributed Computing
(PODC), pp. 294–303 (1994)

15. Ostrovsky, R., Patt-Shamir, B.: Optimal and efficient clock synchronization under
drifting clocks. In: Proc. of 18th ACM Symp. on Principles of Distributed Com-
puting (PODC), pp. 400–414 (1999)

16. Patt-Shamir, B., Rajsbaum, S.: A theory of clock synchronization. In: Proc. of 26th
ACM Symp. on Theory of Computing (STOC), pp. 810–819 (1994)

17. Pussente, R.M., Barbosa, V.C.: An algorithm for clock synchronization with the
gradient property in sensor networks. J. Parallel Distrib. Comput. 69(3), 261–265
(2009)

18. Römer, K.: Time synchronization in ad hoc networks. In: Proc. of 2nd Symp. on
Mobile Ad Hoc Networking and Computing (MOBIHOC), pp. 173–182 (2001)

19. Sivrikaya, F., Yener, B.: Time synchronization in sensor networks: A survey. IEEE
Network 18(4), 45–50 (2004)

20. Srikanth, T.K., Toueg, S.: Optimal clock synchronization. Journal of the
ACM 34(3), 626–645 (1987)

21. Sundararaman, B., Buy, U., Kshemkalyani, A.: Clock synchronization for wireless
sensor networks: A survey. Ad Hoc Networks 3(3), 281–323 (2005)


	Gradient Clock Synchronization Using Reference Broadcasts
	Introduction
	Related Work
	Preliminaries
	The Estimate Layer
	An Optimal Gradient Clock-Synchronization Algorithm
	Analysis
	Conclusion


