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Abstract
Erasure codes offer an efficient way to decrease storage and communication costs while im-

plementing atomic memory service in asynchronous distributed storage systems. In this paper,
we provide erasure-code-based algorithms having the additional ability to perform background
repair of crashed nodes. A repair operation of a node in the crashed state is triggered externally,
and is carried out by the concerned node via message exchanges with other active nodes in the
system. Upon completion of repair, the node re-enters active state, and resumes participation
in ongoing and future read, write, and repair operations. To guarantee liveness and atomicity
simultaneously, existing works assume either the presence of nodes with stable storage, or pres-
ence of nodes that never crash during the execution. We demand neither of these; instead we
consider a natural, yet practical network stability condition N1 that only restricts the number
of nodes in the crashed/repair state during broadcast of any message.

We present an erasure-code based algorithm RADONC that is always live, and guarantees
atomicity as long as condition N1 holds. In situations when the number of concurrent writes is
limited, RADONC has significantly improved storage and communication cost over a replication-
based algorithm RADONR, which also works under N1. We further show how a slightly stronger
network stability condition N2 can be used to construct algorithms that never violate atomicity.
The guarantee of atomicity comes at the expense of having an additional phase during the read
and write operations.
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1 Introduction

We consider the problem of designing algorithms for distributed storage systems (DSSs)
that offer consistent access to stored data. Large scale DSSs are widely used by several
industries, and also widely studied by academia for a variety of applications ranging from
e-commerce to sequencing genomic-data. The most desirable form of consistency is atomicity,
which in simple terms, gives the users of the data service the impression that the various
concurrent read and write operations take place sequentially. Implementations of atomicity
on an asynchronous system under message passing framework, in the presence of failures,
is often challenging. Traditional implementations [4], [14] use replication of data as the
mechanism of fault-tolerance; however they suffer from the problem of having high storage
cost, and communication costs for read and write operations.

Erasure codes provide an efficient way to decrease storage and communication cost in
atomicity implementations. An [n, k] erasure code splits the value v, say of size 1 unit
into k elements, each of size 1

k units, creates n coded elements, and stores one coded
element per server. The size of each coded element is also 1

k units. A class of erasure
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codes known as Maximum Distance Separable (MDS) codes have the property that value
v can be reconstructed from any k out of these n coded elements. While it is known that
usage of erasure codes in asynchronous decentralized storage systems do not offer all the
advantages as in synchronous centralized systems [29], erasure code based algorithms like
in [1], [13], [8], or [19] for implementing consistent memory service offer significant storage and
communication cost savings over replication based algorithms, in many regimes of operation.
For instance CASGC [8] improves the costs under the scenario when the number of writes
concurrent with a read is known to be limited, whereas SODA [19] trades-off write cost in
order to optimize storage cost, which is meaningful in systems with infrequent writes. Both
CASGC and SODA are based on MDS codes.

In this work, we consider the additional important issue of repairing crashed nodes
without disrupting the storage service. Failure of storage nodes is a norm rather than an
exception in large scale DSSs today, primarily because of the usage of commodity hardware
for affordability and scalability reasons. Replication based algorithms in [4], [14] and erasure-
code based algorithms in [1], [8], or [19] do not consider repair of crashed nodes; instead
assume that a crashed node remains so for the rest of the execution. Algorithms in [13], [15]
consider background repair of crashed nodes; however they assume either the presence of
nodes having stable storage, whose content is unaffected by crashes, or presence of a subset
of nodes that never crash during the entire execution. We relax both these assumptions in
this work. In our model, any one of the storage nodes can crash; further, we assume that a
crashed node loses all its data, both volatile as well as stable storage. A repair operation of
a node in the crashed state is triggered externally, and is carried out by the concerned node
via message exchanges with other active nodes in the system. Upon completion of repair,
the node (with the same id) re-enters active state, and resumes participation in ongoing and
future read, write, and repair operations.

It is natural to expect a restriction on the number of crash and repair operations in
relation to the read and write operations; the authors of [15] show an impossibility result
in this direction, for guaranteeing liveness and atomicity, simultaneously. We formulate
network stability conditions N1 and N2, which can be used to limit the number of crash
and repairs operations overlapping with a client operation. These conditions are algorithm
independent, and most likely to be satisfied in any practical storage network. At a high
level, the condition N1 restricts the set of servers that can be in the crashed or repair state
any time a process (client or server) pings all the n servers with corresponding messages.
Condition N2 is slightly stronger than N1, and restricts the set of servers that can be in
the crashed or repair state if the process wants to ping-pong a fraction of the servers. In a
ping-pong, it is expected that the servers which receive a message also respond back to the
sender of the message.

1.1 Summary of Our Contributions
We first present an impossibility result for an asynchronous DSS allowing background repair
of crashed nodes, where there is no restriction on the number of crash and repair operations
that occur during a client operation. We show that it is impossible to simultaneously achieve
liveness and atomicity in such a system, even if all the crash and repair operations occur
sequentially during the execution (i.e., at most one node remains in the crash or repair state
at any point during the execution).

We then consider the problem of erasure-code based algorithm design under the network
stability condition N1. We present the algorithm in two stages. First we present a replication-
based algorithm RADONR, which performs background-repair, and guarantees atomicity
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and liveness of operations under N1, if more than 3/4th of all servers remain active during
any ping operation. The write and read phases are almost identical to those of the ABD
algorithm [4], except that during a write we expect responses from more than 3/4th of all
the servers, while in ABD responses are expected only from a majority of servers. A repair
operation in RADONR is simply a read operation initiated by the concerned server. Thus
the algorithm itself is simple; however, the proof of atomicity gets complicated because of
the fact that a repair operation can potentially restore the contents of a node to a version
that is older than what was present before the crash. We show how the network stability
condition can be used to prove atomicity, and this proof is the key takeaway from RADONR
towards constructing the erasure-code based algorithm.

Our erasure-code based algorithm RADONC uses [n, k] MDS codes, and is a natural
adaptation of RADONR for the usage of codes. A key challenge while using erasure codes is
ensuring liveness of read operations, in the presence of concurrent write operations. Various
techniques are known in literature to handle this challenge; for instance, [13] assumes
synchronous write phases, [8] limits the number of writes concurrent with a read, while [19]
uses an O(n2) write protocol to guarantee liveness of reads. In this work, like in [8], we make
the assumption that the number of write operations concurrent with any read operation is
limited by a parameter δ, which is known a priori. However, the usage of the concurrency
bound differs from that of the CASGC algorithm in [8]; for instance, CASGC has three
rounds for write operations, while RADONC uses only two rounds. In RADONC , each
server maintains a list of up to δ + 1 coded elements, corresponding to the latest δ + 1
versions received as a result of the various write operations. In comparison with RADONR
where a writer expects responses from more than 3/4th of all servers, a write operation
in RADONC expects responses from more than 3n+k

4 servers. During a read operation,
the client reads the lists from more than n+k

2 nodes before decoding the value v. Like in
RADONR, a repair operation in RADONC is essentially a read operation by the concerned
node; however this time the concerned node creates a list (instead of just one version) by
decoding as many possibles versions that it can from the

⌈
n+k

2
⌉
responses. Liveness and

atomicity of operations are proved under network stability condition N1, if more than 3n+k
4

servers remain active during any ping operation. RADONC has substantially improved
storage and communication costs than RADONR, when the concurrency bound δ is limited;
see Table 1 for a comparison.

In both RADONR and RADONC , violation of the network stability condition N1 can
result in executions that are not atomic, which might not be preferable in certain applications.
The choice of consistency over liveness, or vice versa, is the subject matter of a wide range of
discussions and perspectives among system designers and software engineers. For example,
BigTable, a DSS by Google, prefers safety over liveness [9], whereas, Amazon’s Dynamo
does not compromise liveness but settles for eventual consistency [10]. Our third algorithm
RADON

(S)
R , which is replication-based, is designed to guarantee atomicity during every

execution. Liveness is guaranteed under the slightly more stringent condition ofN2, with more
than 3/4th of all servers remaining active during any ping-pong operation. The guarantee of
atomicity of every execution also needs extra phases for read and write operations, when
compared to RADONR. The design of an erasure-coded version of RADON (S)

R that never
violates atomicity, is an interesting direction that we leave out for future work.

1.2 Other Related Work
Dynamic Reconfiguration: Our setting is closely related to the problem of implementing a
consistent memory object in a dynamic setting, where nodes are allowed to voluntarily leave
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Algorithm Write Cost Read Cost Storage Cost Safe under Live under
RADONR n 2n n N1 N1
RADONC

n
k

(δ + 2)n
k

(δ + 1)n
k

N1 N1
RADON

(S)
R n 2n n always N2

Table 1 Performance comparison of RADONR, RADONC and RADON
(S)
R , where n is the

number of servers, and δ is the maximum number of writes concurrent with a read or a repair
operation. See Section 7 for a justification of the costs.
and join the network. The problem involves dynamic reconfiguration of the set of nodes that
take part in client operations, which is often implemented via a reconfig operation that is
initiated by any of the participating processes, including the clients. Any node that wants to
leave/join the network makes an announcement, via a leave/join operation, before doing so.
The problem is extensively studied in the field of distributed algorithms [22], [3], [30], [6], [5];
review and tutorial articles appear in [2], [31], [24].

In our context, the problem of node repair could in fact be thought of as one of dynamic
reconfiguration, wherein an involuntary crash is simulated by a voluntary leave operation
without an explicit announcement. In this case, a new node joins as a replacement node via
the join operation, which can be considered as the analogue of a repair operation. In the
setting of dynamic reconfiguration, every node has a distinct identity; thus the replacement
node joins the network with a new identity that is different from the identity of the crashed
node [2]. This demands a reconfiguration of the set of participating nodes after every repair.
Such reconfigurations get in the way of client operations, and add to the latency of read and
write operations [24], in practical implementations. Clearly, a repair operation as considered
in this work does not demand any reconfiguration, since a repaired node has the same
identity as the crashed node. Also, the current work shows that modeling repair via a static
system, permits design of algorithms where clients remain oblivious to the presence of repair
operations. Furthermore, addressing storage and communication costs is not the focus of
the works in dynamic reconfigurations; specifically, it is not known as to how erasure codes
can be advantageously used in dynamic settings. Our RADONC algorithm shows that when
repair is carried out under a static model, it is indeed possible to advantageously use erasure
to reduce costs, when the number of concurrent writes are limited.

We make additional comparisons between our model and results to those found in works
on dynamic reconfiguration. Several impossibility results exist in the context of implementing
a dynamic atomic register and simultaneously guaranteeing liveness; the authors in [30] argue
impossibility if there are infinitely many reconfigurations during an execution, while the
authors in [6] argue an impossibility when there is no upper bound on message delay. We see,
not surprisingly, that even in the problem of repair, we need to suitably limit the number
of crash and repair operations that occur in an execution, even if all crash and repairs are
sequentially ordered. In [5], the authors implement a dynamic atomic register under a model
that has an (unknown) upper bound D on any point-to-point message delay, and where the
number of reconfigurations in any D units of time is limited. Our network condition N1
is similar, except that 1) we limit the number of crash and repairs during any broadcast
messaging, instead of point-to-point messaging, and 2) we do not assume any bound on the
message delay. In practice, limiting number of repairs during broadcast instead of every
point-to-point messaging offers resiliency against straggler nodes, which refer to the nodes
having the worst delays among all nodes. We would also like to note that the algorithm in [5]
does not guarantee atomicity, if the number of reconfigurations in D units of time is higher
than a set number. This appears similar to RADONR, where atomicity is not guaranteed if
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we do not satisfy stability condition N1. While we show how the slightly tighter model N2
can be used to always guarantee atomicity, it is an interesting question as to whether the
model N2 can be adopted in the work of [5] so as to always guarantee atomicity.

Repair-Efficient Erasure Codes for Distributed Storage: Recently, a large class of new
erasure/network codes for storage have been proposed (see [11] for a survey), and also tested
in networks [17], [27], [25], where the focus is efficient storage of immutable data, such as,
archival data. These new codes are specifically designed to optimize performance metrics like
repair-bandwidth and repair-time (of failed servers), and offer significant performance gains
when compared to the traditional Reed-Solomon MDS codes [26]. It needs to be explored if
these codes can be used in conjunction with the RADONC algorithm, to further improve
the performance costs.

Other Works on using Erasure Codes: Applications of erasure codes to Byzantine fault
tolerant DSSs are discussed in [7], [12], [16]. In [29], the authors consider algorithms that
use erasure codes for emulating regular registers. Regularity [21], [28] is a weaker consistency
notion than atomicity.

The rest of the document is organized as follows. Our system model appears in Section 2.
The impossibility result, and the network stability conditions appear in Section 3. The three
algorithms appear in Sections 4, 5 and 6, respectively. In Section 7, we discuss the storage
and communication costs of the algorithms. Section 8 concludes the paper. Due to lack of
space, detailed proofs are omitted here; these can be found in the extended version [20].

2 Models and definitions

Processes and Asynchrony: We consider a distributed system consisting of asynchronous
processes, each with a unique identifier (ID), of three types: a set of readers, R; a set of
writers, W; and a set of n servers, S. The readers and writers are together referred to as
clients. The set R∪W ∪S forms a totally ordered set under some defined relation (>). The
reader and writer processes initiate read and write operations respectively, and communicate
with the servers using messages. A reader or writer can invoke a new operation only after
all previous operations invoked by it has completed. The property is referred to as the
well-formedness property of an execution. We assume that every client/server is connected to
every other server via a reliable communication link; thus as long as the destination process
is non-faulty, any message sent on the link eventually reaches the destination process.

Crash and Recovery: A client may fail at any point during the execution. At any point
during the execution, a server can be in one (and only one) of the following three states:
active, crashed or repair. A crash event triggers a server to enter the crashed state from
an active state. The server remains in the crashed state for an arbitrary amount of time,
but eventually is triggered by a repair event to enter the repair state. Crash and repair
events are assumed to be externally triggered. A server in the repair state can experience
another crash event, and go back to the crashed state. A server in the crashed state does
not perform any local computation. The server also does not send or receive messages in
the crashed state, i.e., any message reaching the server in a crashed state is lost. A server
which enters the repair state has all its local state variables set to default values, i.e., a crash
event causes the server to lose all its state variables. A server in the repair state can perform
computations like in the active state.

Atomicity and Liveness: We aim to implement only one atomic read/write memory object,
say x, under the MWMR setting on a set of servers, because any shared atomic memory can
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be emulated by composing individual atomic objects. The object value v comes from some
set V ; initially v is set to a distinguished value v0 (∈ V ). Reader r requests a read operation
on object x. Similarly, a write operation is requested by a writer w. Each operation at a
non-faulty client begins with an invocation step and terminates with a response step. An
operation is incomplete when its invocation step does not have the associated response step;
otherwise it is complete.

By liveness of a read or a write operation, we mean that during any well-formed execution,
any read or write operation respectively initiated by a non-faulty reader or writer completes,
despite the crash failure of any other client. By liveness of repair associated with a crashed
server, we mean that the server which enters a crashed state eventually re-enters the active
state, unless it experiences a crash event during every repair operation that the server
attempts. The liveness of repair holds despite the crash failure of any other client.

Background on Erasure coding: In RADONC , we use an [n, k] linear MDS code [18]
over a finite field Fq to encode and store the value v among the n servers. An [n, k] MDS code
has the property that any k out of the n coded elements can be used to recover (decode) the
value v. For encoding, v is divided1 into k elements v1, v2, . . . vk with each element having
size 1

k (assuming size of v is 1). The encoder takes the k elements as input and produces n
coded elements c1, c2, . . . , cn as output, i.e., [c1, . . . , cn] = Φ([v1, . . . , vk]), where Φ denotes
the encoder. For ease of notation, we simply write Φ(v) to mean [c1, . . . , cn]. The vector
[c1, . . . , cn] is referred to as the codeword corresponding to the value v. Each coded element
ci also has size 1

k . In our scheme we store one coded element per server. We use Φi to
denote the projection of Φ on to the ith output component, i.e., ci = Φi(v). Without loss of
generality, we associate the coded element ci with server i, 1 ≤ i ≤ n.

Storage and Communication Cost: We define the total storage cost as the size of the
data stored across all servers, at any point during the execution of the algorithm. The
communication cost associated with a read or write operation is the size of the total data that
gets transmitted in the messages sent as part of the operation. We assume that metadata,
such as version number, process ID, etc. used by various operations is of negligible size, and
is hence ignored in the calculation of storage and communication cost. Further, we normalize
both the costs with respect to the size of the value v; in other words, we compute the costs
under the assumption that v has size 1 unit.

3 Network Stability Conditions

3.1 An Impossibility Result
The crash and recovery model described in Section 2 does not impose any restriction on
the rate of crash events, and repair operations that happen in the system. In other words,
the model described above does not limit in any manner the number of crash events/repair
operations, which can overlap with any a client operation. In [15], the authors showed that
without such restrictions, it is impossible to implement a shared atomic memory service,
which guarantees liveness of operations. Below, we state an impossibility result which holds
even if there is at most one server in the crashed/repair state at any point during the

1 In practice v is a file, which is divided into many stripes based on the choice of the code, various stripes
are individually encoded and stacked against each other. We omit details of representability of v by a
sequence of symbols of Fq, and the mechanism of data striping, since these are fairly standard in the
coding theory literature.
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execution. We then introduce network stability conditions that enable us impose restrictions
on the number of crash/repair events that overlap with any operation.

I Theorem 1. It is impossible to implement an atomic memory service that guarantees
liveness of reads and writes, under the system model described in Section 2, even if 1) there
is at most one server in the crashed/repair state at any point during the execution, and 2)
every repair operation completes, and takes the repaired server back to the active state.

3.2 Network Stability Conditions N1 and N2
We begin with the notions of a group-send operation, and effective consumption of a message.

group-send operation: The group-send operation is used to abstract the operation of a
process sending a list of n messages {m1, · · · ,mn} to the set of all n servers {s1, . . . , sn} = S,
where message mi is send to server si, 1 ≤ i ≤ n. Note that this is a mere abstraction of the
process sending out n point-to-point messages sequentially to n servers, without interleaving
the “send" operations with any significant local computations or waiting for any external
inputs. The operation is no more powerful then sending n consecutive messages. The
operation is written as group-send([m1,m2, · · · ,mn]). In the event mi = m,∀i, we simply
write group-send(m). Our model allows the sender to fail while executing the group-send
operation, in which case only a subset of the n servers receive their corresponding messages.

Effective Consumption: We say a process effectively consumes a message m, if it receives
m, and executes all steps of the algorithm that depend only on the local state of the process,
and the message m; in other words, the process executes all the steps that do not require
any further external messages.

I Definition 2 (Network Stability Conditions). Consider a process p executing a group-send
([m1,m2, · · · ,mn]) operation, and consider the following statements:

(a) (i) There exists a subset Sα ⊆ S of |Sα| = dαne servers, 0 < α < 1, all of which
effectively consume their respective messages from the group-send operation, and (ii) all the
servers in Sα remain in the active state during the interval [T1 T2], where T1 denotes the
point of time of invocation of the group-send operation, and T2 denotes the earliest point of
time in the execution at which all of the servers in Sα complete the effective consumption of
their respective messages.

(b) Further, if effective consumption of the message mi by server si involves sending a
response back to the process p, for all si ∈ Sα, then all servers in Sα remain in the active
state during the interval [T1 T3], where T3 denotes the earliest point of time in the execution
at which the process p completes effective consumption of the responses from the all the
servers in Sα.

If the network satisfies Statement (a) for every execution of a group-send operation by
any process, we say that it satisfies network stability condition N1 with parameter α. If the
network satisfies Statements (a) and (b) for every execution of a group-send operation by
any process, we say that it satisfies network stability condition N2 with parameter α.

Clearly, N2 implies N1. Note that the set Sα which needs to satisfy the conditions
need not be the same for various invocations of group-send operations by either the same
or distinct processes. Also, note that in condition N2, the process p might crash before
completing the effective consumption of the responses from the servers in Sα. In this case
we only expect Statement (a) to be satisfied, and not Statement (b). Furthermore, in both
N1 and N2, we do not expect any of these statements to be true, if process p crashes after
partial execution of the group-send operation.

CVIT 2016



23:8 RADON: Repairable Atomic Data Object in Networks

4 The RADONR Algorithm

In this section, we present the RADONR algorithm, and prove its liveness and atomicity
properties for networks that satisfy the network condition N1 with α > 3

4 . We begin with
some useful notation. Tags are used for version control of the object values. A tag t is defined
as a pair (z, w), where z ∈ N and w ∈ W denotes the ID of a writer. We use T to denote
the set of all the possible tags. For any two tags t1, t2 ∈ T , we say t2 > t1 if (i) t2.z > t1.z

or (ii) t2.z = t1.z and t2.w > t1.w. Note that (T , >) is a totally ordered set.
The protocols for writer, reader, and servers are shown in Fig. 1. Each server stores two

state variables (i) (tloc, vloc) - a tag and value pair, initially set to (t0, v0), (ii) status - a
variable that can be in either active or repair state.

Fig. 1 The protocols for writer, reader, and any server s ∈ S in RADONR.
write(v):
get-tag:
group-send(query-tag)
Await responses from majority
Select the max tag t∗

put-data:
tw = (t∗.z + 1, w)
group-send((put-data, (tw, v)))
Terminate after

⌈
3n+1

4

⌉
acks.

read:
get-data:
group-send(query-tag-data)
Await responses from majority
Select (tr, vr), with max tag.

put-data :
group-send((put-data, (tr, vr)))
Wait for

⌈
3n+1

4

⌉
acks

Return vr

Server s ∈ S:
State V ariables:
(tloc, vloc) ∈ T × V, initially (t0, v0)

status ∈ {active, repair}, initially active
get-tag-resp, recv query-tag from writer w:

if status = active then
Send tloc to w

get-data-resp, recv query-tag-data from reader r:
if status = active then
Send (tloc, vloc) to r

put-data-resp, recv put-data, (t, v) from client c :
if status = active then

if t > tloc then
(tloc, vloc)← (t, v)

Send ack to c.

init-repair :
status← repair
(tloc, vloc)← (t0, v0)
group-send(repair-tag-data)
Await responses from majority
Select (trep, vrep), for max tag
(tloc, vloc)← (trep, vrep)
status← active
init-repair-resp, recv repair-tag-data from s′:
if status = active then
Send (tloc, vloc) to s′

The write and read operations are very similar to those in the ABD algorithm [4], and
each consists of two phases. In the first phase, get-tag, of a write operation π, the writer
queries all servers for local tags, awaits responses from a majority of servers, and selects the
maximum tag t∗ from among the responses. Next, the writer executes the put-data phase,
during which a new tag tw = tag(π) is created by incrementing the integer part of t∗, and
by incorporating the writer’s own ID. The writer then sends pair (tw, v) to all servers, and
awaits acknowledgments (acks) from

⌈ 3n+1
4

⌉
servers before completing the operation. The

two phases are identical to those of the ABD algorithm [4], except for the fact that during
the second phase, ABD expects acks from only a majority of servers, whereas here we need
from

⌈ 3n+1
4

⌉
servers. During a read operation ρ, the reader in the get-data phase queries

all the servers in S for the respective local tag and value pairs. Onces it receives responses
from a majority of servers in S, it picks the pair with the highest tag, which we designate
as tr = tag(π). In the subsequent put-data phase, the reader writes back the tag tr and
the corresponding value vr to all servers, and terminates after receiving acknowledgments
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from
⌈ 3n+1

4
⌉
servers. Once again, we remark that both phases in the read are identical to

those of the ABD algorithm, except for the difference in the number of the servers from
which acks are expected in the second write-back phase. Note that, during both the write
and operations, a server responds to an incoming message only if it is in the active state.

A repair operation is initiated via the action init-repair, by an external trigger, at a
server which is in the crashed state. Note that we do not explicitly define a crashed state
since a crash is not a part of the algorithm. We assume that as soon as the repair operation
starts, the variable status is set to the repair state, and also the local (tag, value) pair is
set to the default sate (t0, v0). The repair operation is essentially the first phase of the
read operation, during which the server queries all the servers for the respective local tag
and value pairs, and stores the tag and value pair corresponding to the highest tag after
receiving responses from a majority of servers. Finally, the repair operation is terminated
setting variable status to active state. A server in S responds to a request generated from
init-repair phase only if it is in the active state.

4.1 Analysis of RADONR

Liveness of read, write and repair operations in RADONR follows immediately if we assume
condition N1 with α > 3

4 . This is because liveness of any operation depends on sufficient
number of responses from the servers during the various phases of the operation. From Fig.
1, we know that the maximum number of responses that is expected in any phase is

⌈ 3n+1
4

⌉
,

which is guaranteed under N1 with α > 3
4 .

The tricky part is to prove atomicity of reads and writes. The proof is based on Lemma
13.16 of [23], a restatement of which can be found in [20]. Consider two completed write
operations π1 and π2, such that, π2 starts after the completion of π1. For any completed
write operation π, we define tag(π) = tw, where tw is the tag which the writer uses in the
put-data phase. In this case, one of the requirements the algorithm needs to satisfy to ensure
atomicity is tag(π2) > tag(π1). While this fact is straightforward to prove for an algorithm
like ABD, which does not have background repair, in RADONR, we need to consider the
effect of those repair operations that overlap with π1, and also those that occur in between π1
and π2. The point to note is that such repair operations can potentially restore the contents
of the repaired node such that the restored tag is less than tag(π1). We then need to show
the absence of propagation of older tags (older than tag(π1)) into a majority of nodes, due
to a sequence of repairs which happen before π2 decides its tag. We do this via the following
two observations: 1) In Lemma 3, we show that any successful repair operation, which begins
after a point of time T , always restores value to one, which corresponds to a tag which is at
least as high as the minimum of the tags stored in any majority of active servers at time T .
This fact is in turn used to prove a similar property for reads and writes, as well. 2) We
next show (as part of proof of Theorem 5), under the assumption of N1 with α > 3/4, the
existence of a point of time T before the completion of π1 such that a majority of nodes are
active at T , and all of whose tags are at least as high as tag(π1). The two steps are together
used to prove that tag(π2) > tag(π1). A similar sequence of steps are used to show atomicity
properties of read operations, as well.

For a completed read operation π, tag(π) = tr, where tr is the tag corresponding to the
value vr returned by the reader. For a completed repair π, tag(π) = trep, where trep is the
tag corresponding to the value restored during the repair operation.

I Lemma 3. Let β denote a well-formed execution of RADONR. Suppose T denotes a point
of time in β such that there exists a majority of servers Sm, Sm ⊂ S all of which are in the
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active state at time T . Also, let ts denote the value of the local tag at server s ∈ Sm, at time
T . Then, if π denotes any completed repair or read operation that is initiated after time
T , we have tag(π) ≥ mins∈Sm

ts. Also, if π denotes any completed write operation that is
initiated after time T , we have tag(π) > mins∈Sm ts.

I Theorem 4 (Liveness). Let γ denote a well-formed execution of RADONR, under the
condition N1 with α > 3

4 . Then every operation initiated by a non-faulty client completes.

I Theorem 5 (Atomcity). Every execution of the RADONR algorithm operating under the
N1 network stability condition with α > 3

4 , is atomic.

We note that, though Lemma 3 gives a result about completed operations, condition
N1 is not a prerequisite for the result in Lemma 3. In other words, the result in Lemma 3
holds for any completed operation, even if condition N1 is violated. As we will see, this is
an important fact that we will use to establish atomicity of RADON (S)

R for any execution.

5 Algorithm RADONC

In this section, we present the erasure-code based RADONC algorithm for implementing
atomic memory service, and performing repair of crashed nodes. The algorithm uses
[n, k] MDS codes for storage. Liveness and atomicity are guaranteed under the following
assumptions: 1) the N1 network stability condition with α ≥ 3n+k

4n , 2) the number of write
operations concurrent with a read or repair operation is at most δ. The precise definition
of concurrency depends on the algorithm itself, and appears later in this section. The
RADONC algorithm has significantly reduced storage and communication cost requirements
than RADONR, when δ is limited.

The algorithm (see Fig. 2) is a natural generalization of the RADONR algorithm ac-
counting for the fact that we use MDS codes. The write operation has two phases, where
the first phase finds the maximum tag in the system based on majority responses. During
the second phase, the writer computes the coded elements for each of the n servers and uses
the group-send operation to disperse them. The group-send operation here uses a vector of
length n, where the ith element denotes the message for the ith server, 1 ≤ i ≤ n. Each server
keeps a List of up to (δ + 1) (tag, coded-element) pairs. Every time a (tag, coded-element)
message arrives from a writer, the pair gets added to the List, which is then pruned to at
most (δ + 1) pairs, corresponding to the highest tags. The writer terminates after getting
acks from

⌈ 3n+k
4

⌉
servers.

During a read operation, the reader queries all servers for their entire local Lists, and
awaits responses from

⌈
n+k

2
⌉
servers. Once the reader receives Lists from

⌈
n+k

2
⌉
servers, it

selects the highest tag tr whose corresponding value vr can be decoded using the using the
coded elements in the lists. The read operation completes following a write-back of (tr, vr)
using the put-data phase.

The repair operation is very similar to the first phase of the read operation, during which
a server collects lists from

⌈
n+k

2
⌉
servers. But this time, the server figures out the set of all

the possible tags that can be decoded from among the Lists, and prunes the set to the highest
(δ + 1) tags. The repaired List then consists of (tag, coded-element) pairs corresponding
these (at most) (δ + 1) tags. Assuming repair of server i, the creation of a coded-element
corresponding to a value v involves first decoding the value v, and then computing Φi(v)
(referred to as re-encoding in Fig. 2).
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Fig. 2 The protocols for write, reader, and any server si ∈ S in RADONC .
write(v):
get-tag:
group-send(query-tag)
Await responses from majority
Select the max tag t∗

put-data:
tw = (t∗.z + 1, w).
code-elems = [(tw, c1), . . . , (tw, cn)], ci = Φi(v)
group-send(code-elements, code-elems)
Terminate after

⌈
3n+k

4

⌉
acks

read:
get-data:
group-send(query-list)
Wait for

⌈
n+k

2

⌉
Lists

Select the max tag, tr, whose corresponding
value, vr, is decodable using the Lists.

put-data:
code-elems = [(tr, c1), . . . , (tr, cn)], ci = Φi(vr)
group-send(code-elements, code-elems)
Wait for

⌈
3n+k

4

⌉
acks

Return vr

Server si ∈ S:
State V ariables:
status ∈ {active, repair}, initially active

List ⊆ T × Cs, initially {(t0,Φi(v0))}

get-tag-resp,recv query-tag from writer w:
if status = active then
t∗ = max(t,c)∈List t
Send t∗ to w

get-data-resp, recv query-list from reader r:
if status = active then
Send List to r

put-data-resp, recv code-elements, (t, ci) from p :
if status = active then
List← List ∪ {(t, ci)}
if |List| > δ + 1 then
Retain the (tag, coded-element) pairs for

the δ + 1 highest tags in List, and delete the rest.
Send ack to p.

init-repair :
status← repair
group-send(repair-list)
Wait for

⌈
n+k

2

⌉
Lists

Find (tag, value) pairs decodable from Lists.
Restore local List via re-encoding and retaining

the (tag, coded-element) pairs corresponding to at
most δ + 1 highest tags, from the above pairs
status← active
init-repair-resp, recv repair-list from server s′:
if status = active then
Send List to s′

5.1 Analysis of RADONC

Throughout this section, we assume network stability condition N1 with α ≥ 3n+k
4n . Tags for

completed read and write operations are defined in the same manner as we did for RADONR;
we avoid repeating them here. We first discuss liveness properties of RADONC . Let us
first consider liveness of repair operations. Towards this, note from the algorithm in Fig. 2
that a repair operation never gets stuck even if it does not find any set of k Lists among
the responses, all of which have a common tag. In such a case, the algorithm allows the
possibility that the repaired List is simply empty, at the point of execution when the server
re-enters the active state. In other words, liveness of a repair operation is trivially proved,
i.e., a server in a repair state always eventually reenters the active state, as long as it does not
experience a crash during the repair operation. The triviality of liveness of repair operations,
observed above, does not extend to read operations. For a read operation to complete the
get-data phase, it must be able to find a set of k Lists among the responses all of which
contain coded-elements corresponding to a common tag; otherwise a read operation gets
stuck. The discussion above motivates the following definitions of valid read and valid repair
operations.

I Definition 6 (Valid Read and Repair Operations). A read operation will be called as a valid
read if the associated reader remains alive at least until the reception of the

⌈
n+k

2
⌉
responses

during the get-data phase. Similarly, a repair operation will be called a valid repair if the
associated server does not experience a further crash event during the repair operation.

I Definition 7 (Writes Concurrent with a Valid Read (Repair)). Consider a valid read (repair)
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operation π. Let T1 denote the point of initiation of π. For a valid read, let T2 denote the
earliest point of time during the execution when the associated reader receives all the

⌈
n+k

2
⌉

responses. For a valid repair, let T2 denote the point of time during the execution when
the repair completes, and takes the associated server back to the active state. Consider
the set Σ = {σ : σ is any write operation that completes before π is initiated}, and let
σ∗ = arg maxσ∈Σ tag(σ). Next, consider the set Λ = {λ : λ is any write operation that starts
before T2 such that tag(λ) > tag(σ∗)}. We define the number of writes concurrent with the
valid read (repair) operation π to be the cardinality of the set Λ.

The above definition captures all the write operations that overlap with the read, until
the time the reader has all data needed to attempt decoding a value. However, we ignore
those write operations that might have started in the past, and never completed yet, if their
tags are less than that of any write that completed before the read started. This allows us
to ignore write operations due to failed writers, while counting concurrency, as long as the
failed writes are followed by a successful write that completed before the read started.

The following lemma could be considered as the analogue of Lemma 3 for RADONC .
The first part of the lemma shows that under N1 with α ≥ 3n+k

4n , the repaired List is never
empty; there is always at least one (tag, coded-element) pair in the repaired List. Parts 2
and 3 are used to prove liveness and atomicity of client operations.

I Lemma 8. Consider any well-formed execution β of RADONC operating under the
network stability condition N1 with α ≥ 3n+k

4n . Further assume that the number of writes
concurrent with any valid read or repair operation is at most δ. For any operation π, consider
the set Σ = {σ : σ is a read or a write in β that completes before π begins}, and also let
σ∗ = arg max

σ∈Σ
tag(σ). Then, the following statements hold:

If π denotes a completed repair operation on a server s ∈ S, then the repaired List of
server s due to π contains the pair (tag(σ∗), c∗s).
If π denotes a read operation associated with a non-faulty reader r, and further, if S1
denotes the set of

⌈
n+k

2
⌉
servers whose responses, say {Lπ(s), s ∈ S1}, are used by r to

attempt decoding of a value in the get-data phase, then there exists S2 ⊆ S1, |S2| = k,
such that ∀s ∈ S2, (tag(σ∗), c∗s) ∈ Lπ(s).
If π denotes a write operation associated with a non-faulty writer w, and further if S1
denotes the set of majority servers whose responses are used by w to compute max-tag in
the get-tag phase, then there exists a server s ∈ S1, whose response tag ts ≥ tag(σ∗).

Here, c∗s denotes the coded-element of server s for value v∗, associated with tag(σ∗).

I Theorem 9 (Liveness). Let β denote a well-formed execution of RADONC , operating
under the N1 network stability condition with α ≥ 3n+k

4n and δ be the maximum number of
write operations concurrent with any valid read or repair operation. Then every operation
initiated by a non-faulty client completes.

I Theorem 10 (Atomicity). Any execution of RADONC , operating under condition N1 with
α ≥ 3n+k

4n , is atomic, if the maximum number of write operations concurrent with a valid
read or repair operation is δ.

6 The RADON
(S)
R Algorithm

In this section, we present the RADON (S)
R algorithm having the property that every execution

is atomic. Liveness is guaranteed under the slightly stronger network stability condition N2
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Fig. 3 The protocols for writer, reader, and any server s ∈ S in RADON (S)
R .

write(v):
get-tag:
group-send(query-tag)
Await responses from majority
Select the max tag t∗

put-data:
tw = (t∗.z + 1, w).
group-send((put-data, (tw, v)))
Wait for

⌈
3n+1

4

⌉
acks (say from Sα)

confirm-data:
group-send((confirm-data, tw))
Terminate after acks from majority from among

servers in Sα

read:
get-data:
group-send(query-tag-data)
Await responses from majority
Select (tr, vr), with max tag.

put-data :
group-send((put-data, (tr, vr)))
Wait for

⌈
3n+1

4

⌉
acks (say from Sα)

confirm-data:
group-send((confirm-data, tr))
Await acks from a majority of servers in Sα
Return vr

Server s ∈ S:
State V ariables:
(tloc, vloc) ∈ T × V, initially (t0, v0)
status ∈ {active, repair}, initially active

Seen ⊆ T × {W ∪R}, initially empty
get-tag-resp, recv query-tag from writer w:

if status = active then
Send tloc to w

get-data-resp, recv query-tag-data from reader r:
if status = active then
Send (tloc, vloc) to r

put-data-resp, recv (put-data, (t, v)) from c :
if status = active then

if t > tloc then
(tloc, vloc)← (t, v)

Seen← Seen ∪ {(t, c)}
Send ack to c.

confirm-data-resp, recv (confirm-data, t) from c:
if status = active then

if (t, c) ∈ Seen then
Remove (t, c) from Seen
Send ack to client c.

init-repair :
status← repair
(tloc, vloc)← (t0, v0)
Seen← ∅
group-send(repair-tag-data)
Await responses from majority.
Select (trep, vrep), with max tag
(tloc, vloc)← (trep, vrep)
status← active

init-repair-resp, recv repair-tag-data from s′:
if status = active then
Send (tloc, vloc) to s′

with α > 3
4 . In comparison wtih RADONR, the algorithm has extra phases for both read

and write operations, in order to guarantee safety of every execution.
The write operation has three phases (see Fig. 3). The first two phases are identical

to those of RADONR during which the writer queries for the local tags, and then sends
out the new (tag, value) pair, respectively. In the third phase, called confirm-data, the
writer ensures the presence of at least a majority of servers, which the writer knows for
sure that received its data during the second phase, put-data. In order to facilitate the
confirm-data phase, the servers maintain a Seen variable. Any time the server receives a
value from a writer, the server adds the corresponding (tag, writer ID) pair to the Seen
list. Next, during the confirm-data-resp phase, the server responds to the writer only if this
(tag, writer ID) pair is part of the Seen variable. The idea is that if the server experiences a
crash and a successful repair operation in between the put-data and confirm-data phases,
the server no longer has the (tag, writer ID) pair in its Seen variable, and hence does not
respond to the confirm-data phase. This is because, a crash removes all state variables,
including Seen, and the repair algorithm (see Fig. 3) simply restores the Seen variable to its
default value, the empty set. Further, by ensuring that the writer expects acks from among a
majority of servers in confirm-data, from among the 3n+1

4 servers whose acks were obtained
during put-data, we can guarantee that any execution is atomic.

The read operation also has three phases, first two of which are identical to those of
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RADONR, except for the use of the Seen variable in the server during the put-data phase.
The third phase is the confirm-data phase as in the write operation. The repair operation
has one phase, and is nearly exactly identical to that of RADONR. Note that the Seen
variable gets reset to its initial value during repair.

6.1 Analysis of RADON
(S)
R

We overview the proofs of liveness and atomicity before formal claims. For liveness of writes,
we assume N2 with α > 3

4 , and argue the existence of a majority Sm of servers all of which
remain active from the point of time at which the group-send operation gets initiated in the
put-data phase, till the point of time all the servers in Sm effectively consume requests for
confirm-data from the writer. In this case, write operation completes after receiving acks
from servers in Sm during the confirm-data phase. The set Sm exists because, under N2
with α > 3

4 , a set Sα of
⌈ 3n+1

4
⌉
servers remain alive from the start of the group-send, till the

effective consumption of the acks by the writer in put-data phase. Also, a second set S ′α of⌈ 3n+1
4

⌉
servers remain active from the start of the group-send in the confirm-data phase, till

all servers in S ′α complete the respective effective consumption from this group-send. We
note that S ′α ∩ Sα is at least a majority. We next use the observation that the group-send
operation in the confirm-data phase forms part of the effective consumption of the last of the
acks in the put-data phase. Using this, we argue that the servers in S ′α ∩ Sα remain active
till they effectively consume message from group-send operation of the confirm-data phase,
and thus S ′α ∩Sα is a candidate for Sm. The liveness of read is similar to that of write, while
liveness of repair is straightforward under N2 with α > 3

4 .
Towards proving atomicity of reads and writes, we first define tags for completed reads,

writes and repair operations exactly in the same manner as we did in RADONR. Consider
two completed write operations π1 and π2 such that π2 starts after the completion of π1, and
we need to show that tag(π2) > tag(π1). As in RADONR, we do this in two parts: Lemma
3 holds as it is for RADON (S)

R as well. Recall that Lemma 3 essentially shows that if a
majority of active nodes is locked-on to any particular tag, say t′, at a specific point of time
T during the execution of the algorithm, then any repair operation which begins after the
time T always restores the tag to one which is at least as high as t′. The challenge now is to
show the existence of these favorable points of time instants T as needed in the assumption
of the lemma. While in RADONR, we used the N1 to argue this, in RADON (S)

R , we do not
use N2; instead we rely on the third confirm-data phase of the first write operation π1.

I Theorem 11 (Liveness). Let β denote a well-formed execution of RADON (S)
R under

condition N2 with α > 3
4 . Then every operation initiated by a non-faulty client completes.

I Theorem 12 (Atomcity). Every execution of the RADON (S)
R algorithm is atomic.

7 Storage and Communication Costs of Algorithms

We give a justification of storage and communication cost numbers of the three algorithms,
appearing in Table 1. Recall that the size of value v is assumed to be 1 and also that we
ignore the costs due to metadata. It is clear that both RADONR and RADON

(S)
R have

storage cost n, write cost n, and read cost 2n (due to write back). For RADONC , each
server stores at most δ + 1 coded-elements, where each element has size 1

k . Thus storage cost
of RADONC is (δ + 1)nk . The write cost of RADONC is simply n

k , and the contribution
comes from the writer sending one coded-element to each of the n servers. For a read, getting
the entire Lists during the get − data phase incurs a cost of (δ + 1)nk . The write-back phase
incurs an additional cost of nk . Thus, the total read cost in RADONC is (δ + 2)nk .
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8 Conclusions

In this paper, we provided an erasure-code-based algorithm for implementing atomic memory,
having the ability to perform repair of crashed nodes in the background, without affecting
client operations. We assumed a static model with a fixed, finite set of nodes, and also a
practical network condition N1 to facilitate repair. We showed how the usage of MDS codes
significantly improve storage and communication costs over a replication based solution,
when the number of writes concurrent with a read or repair is limited. Liveness and atomicity
are guaranteed as long as N1 is satisfied; however violation of N1 can lead to non-atomic
executions. We further showed how a slightly stringent network condition N2 can be used to
construct a replication based algorithm that always guarantees atomicity. Ongoing efforts
include exploring possibility of using repair-efficient erasure codes [11] in RADONC , and
testbed evaluations on cloud based infrastructure.
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