
ARES: Adaptive, Reconfigurable, Erasure coded, Atomic
Storage *

NICOLAS NICOLAOU, Algolysis Ltd, Limassol, Cyprus
VIVECK CADAMBE, Pennsylvania State University, US
N. PRAKASH, Intel Corp.
ANDRIA TRIGEORGI, University of Cyprus, Nicosia, Cyprus
KISHORI M. KONWAR, MURIEL MEDARD, and NANCY LYNCH, Massachusetts Institute
of Technology, USA

Emulating a shared atomic, read/write storage system is a fundamental problem in distributed computing.
Replicating atomic objects among a set of data hosts was the norm for traditional implementations (e.g., [11]) in
order to guarantee the availability and accessibility of the data despite host failures. As replication is highly
storage demanding, recent approaches suggested the use of erasure-codes to offer the same fault-tolerance while
optimizing storage usage at the hosts. Initial works focused on a fix set of data hosts. To guarantee longevity and
scalability, a storage service should be able to dynamically mask hosts failures by allowing new hosts to join,
and failed host to be removed without service interruptions. This work presents the first erasure-code based
atomic algorithm, called ARES, which allows the set of hosts to be modified in the course of an execution. ARES

is composed of three main components: (i) a reconfiguration protocol, (ii) a read/write protocol, and (iii) a set
of data access primitives. The design of ARES is modular and is such to accommodate the usage of various
erasure-code parameters on a per-configuration basis. We provide bounds on the latency of read/write operations,
and analyze the storage and communication costs of the ARES algorithm.

ACM Reference Format:
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard,
and Nancy Lynch. 2022. ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage . 1, 1 (January 2022),
39 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Distributed Storage Systems (DSSes) store large amounts of data in an affordable manner. Cloud
vendors deploy hundreds to thousands of commodity machines, networked together to act as a single
giant storage system. Component failures of commodity devices, and network delays are the norm,
therefore, ensuring consistent data-access and availability at the same time is challenging. Vendors
often solve availability by replicating data across multiple servers. These services use carefully

*A preliminary version of this work appeared in ICDCS’19 [44]

This work was partially funded by the Center for Science of Information NSF Award CCF-0939370, NSF Award CCF-1461559,
AFOSR Contract Number: FA9550-14-1-0403, NSF CCF-1553248 and RPF/POST-DOC/0916/0090.
Authors’ addresses: Nicolas Nicolaou, nicolas@algolysis.comAlgolysis Ltd, Limassol, Cyprus; Viveck Cadambe, vxc12@
engr.psu.eduPennsylvania State University, US; N. Prakash, prakashn@mit.eduIntel Corp.; Andria Trigeorgi, aatrige01@cs.
ucy.ac.cyUniversity of Cyprus, Nicosia, Cyprus; Kishori M. Konwar, kishori@csail.mit.edu; Muriel Medard, medard@mit.edu;
Nancy Lynch, lynch@csail.mit.eduMassachusetts Institute of Technology, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
XXXX-XXXX/2022/1-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 1 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

constructed algorithms that ensure that these copies are consistent, especially when they can be
accessed concurrently by different operations. The problem of keeping copies consistent becomes
even more challenging when failed servers need to be replaced or new servers are added, without
interrupting the service. Any type of service interruption in a heavily used DSS usually translates to
immense revenue loss.

The goal of this work is to provide an algorithm for implementing strongly consistent (i.e.,
atomic/linearizable), fault-tolerant distributed read/write storage, with low storage and communica-
tion footprint, and the ability to reconfigure the set of data hosts without service interruptions.

Replication-based Atomic Storage. A long stream of work used replication of data across multiple
servers to implement atomic (linearizable) read/write objects in message-passing, asynchronous
environments where servers (data hosts) may crash fail [10, 11, 21–23, 25, 26, 40]. A notable
replication-based algorithm appears in the work by Attiya, Bar-Noy and Dolev [11] (we refer to as
the ABD algorithm) which implemented non-blocking atomic read/write data storage via logical
timestamps paired with values to order read/write operations. Replication based strategies, however,
incur high storage and communication costs; for example, to store 1,000,000 objects each of size
1MB (a total size of 1TB) across a 3 server system, the ABD algorithm replicates the objects in all
the 3 servers, which blows up the worst-case storage cost to 3TB. Additionally, every write or read
operation may need to transmit up to 3MB of data (while retrieving an object value of size 1MB),
incurring high communication cost.

Erasure Code-based Atomic Storage. Erasure Coded-based DSSes are extremely beneficial to save
storage and communication costs while maintaining similar fault-tolerance levels as in replication
based DSSes [16]. Mechanisms using an [n,k] erasure code splits a value v of size, say 1 unit, into
k elements, each of size 1

k units, creates n coded elements of the same size, and stores one coded
element per server, for a total storage cost of n

k units. So the [n = 3,k = 2] code in the previous
example will reduce the storage cost to 1.5TB and the communication cost to 1.5MB (improving
also operation latency). Maximum Distance Separable (MDS) codes have the property that value
v can be reconstructed from any k out of these n coded elements; note that replication is a special
case of MDS codes with k = 1. In addition to the potential cost-savings, the suitability of erasure-
codes for DSSes is amplified with the emergence of highly optimized erasure coding libraries, that
reduce encoding/decoding overheads [3, 12, 46]. In fact, an exciting recent body of systems and
optimization works [7, 33, 46, 49, 52–54, 58] have demonstrated that for several data stores, the use
of erasure coding results in lower latencies than replication based approaches. This is achieved by
allowing the system to carefully tune erasure coding parameters, data placement strategies, and other
system parameters that improve workload characteristics – such as load and spatial distribution. A
complementary body of work has proposed novel non-blocking algorithms that use erasure coding to
provide an atomic storage over asynchronous message passing models [13, 15, 16, 20, 34, 35, 56].
Since erasure code-based algorithms, unlike their replication-based counter parts, incur the additional
burden of synchronizing the access of multiple pieces of coded-elements from the same version of
the data object, these algorithms are quite complex.

Reconfigurable Atomic Storage. Configuration refers to the set of storage servers that are collec-
tively used to host the data and implement the DSS. Reconfiguration is the process of adding or
removing servers in a DSS. In practice, reconfigurations are often desirable by system administra-
tors [9], for a wide range of purposes, especially during system maintenance. As the set of storage
servers becomes older and unreliable they are replaced with new ones to ensure data-durability.
Furthermore, to scale the storage service to increased or decreased load, larger (or smaller) con-
figurations may be needed to be deployed. Therefore, in order to carry out such reconfiguration
steps, in addition to the usual read and write operations, an operation called reconfig is invoked by

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 2 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 3

reconfiguration clients. Performing reconfiguration of a system, without service interruption, is a
very challenging task and an active area of research. RAMBO [39] and DynaStore [8] are two of the
handful of algorithms [17, 24, 27, 32, 47, 48] that allows reconfiguration on live systems; all these
algorithms are replication-based.

A related body of work appeared for erasure coded scaling, although there exists important
differences that distinguish the two problems. In particular works like [30, 50, 51, 55, 57] consider
RAID-based systems with synchronous network communication and local computation. Synchrony
allows processes to make assumptions on the time of message delivery, and in turn help them to infer
whether a communicating party has failed or not. On an asynchronous system, similar to the one we
consider in this work, messages may be delivered with arbitrary delays. Therefore, it is impossible to
distinguish whether a message from a source is in transit or the source has crashed before sending
a message. This uncertainty makes it impossible to detect failed from operating nodes, and thus
challenging to design algorithms to guarantee atomicity (strong consistency) and completion of reads
and writes.

Despite the attractive prospects of creating strongly consistent DSSes with low storage and
communication costs, so far, no algorithmic framework for reconfigurable atomic DSS employed
erasure coding for fault-tolerance, or provided any analysis of bandwidth and storage costs. Our paper
fills this vital gap in algorithms literature, through the development of novel reconfigurable approach
for atomic storage that use erasure codes for fault-tolerance. From a practical viewpoint, our work
may be interpreted as a bridge between the systems optimization works [7, 33, 46, 49, 52–54, 58]
and non-blocking erasure coded based consistent storage [13, 15, 16, 20, 34, 35, 56]. Specifically, the
uses of our reconfigurable algorithm would potentially enable a data storage service to dynamically
shift between different erasure coding based parameters and placement strategies, as the demand
characteristics (such as load and spatial distribution) change, without service interruption.
Our Contributions. We develop a reconfigurable, erasure-coded, atomic or strongly consistent [29,
38] read/write storage algorithm, called ARES. Motivated by many practical systems, ARES assumes
clients and servers are separate processes * that communicate via logical point-to-point channels.

In contrast to the replication-based reconfigurable algorithms [8, 17, 24, 27, 32, 39, 47, 48], where
a configuration essentially corresponds to the set of servers that stores the data, the same concept
for erasure coding need to be much more involved. In particular, in erasure coding, even if the
same set of n servers are used, a change in the value of k defines a new configuration. Furthermore,
several erasure coding based algorithms [15, 20] have additional parameters that tune how many
older versions each server store, which in turn influences the concurrency level allowed. Tuning of
such parameters can also fall under the purview of reconfiguration.

To accommodate these various reconfiguration requirements, ARES takes a modular approach. In
particular, ARES uses a set of primitives, called data-access primitives (DAPs). A different implemen-
tation of the DAP primitives may be specified in each configuration. ARES uses DAPs as a “black
box” to: (i) transfer the object state from one configuration to the next during reconfig operations,
and (ii) invoke read/write operations on a single configuration. Given the DAP implementation for
each configuration we show that ARES correctly implements a reconfigurable, atomic read/write
storage.

The DAP primitives provide ARES a much broader view of the notion of a configuration as
compared to replication-based algorithms. Specifically, the DAP primitives may be parameterized,
following the parameters of protocols used for their implementation (e.g., erasure coding parameters,
set of servers, quorum design, concurrency level, etc.). While transitioning from one configuration
to another, our modular construction allows ARES to reconfigure between different sets of servers,

*In practice, these processes can be on the same node or different nodes.

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 3 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

4
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

Algorithm #rounds
/write

#rounds
/read

Reconfig. Repl. or
EC

Storage cost read bandwidth write bandwidth

CASGC [14] 3 2 No EC (δ + 1) nk
n
k

n
k

SODA [34] 2 2 No EC n
k (δ + 1) nk

n2
k

ORCAS-A [20] 3 ≥ 2 No EC n n n
ORCAS-B [20] 3 3 No EC ∞ ∞ ∞

ABD [11] 2 2 No Repl. n 2n n
RAMBO [39] 2 2 Yes Repl. ≥ n ≥ n ≥ n
DYNASTORE [8] ≥ 4 ≥ 4 Yes Repl. ≥ n ≥ n ≥ n
SMARTMERGE [32] 2 2 Yes Repl. ≥ n ≥ n ≥ n
ARES (this paper) 2 2 Yes EC (δ + 1) nk (δ + 1) nk

n
k

Table 1. Comparison of ARES with previous algorithms emulating atomic Read/Write Memory for
replication (Repl.) and erasure-code based (EC) algorithms. δ is the maximum number of concurrent
writes with any read during the course of an execution of the algorithm. In practice, δ < 4 [16].

quorum configurations, and erasure coding parameters. In principle, ARES even allows to reconfigure
between completely different protocols as long as they can be interpreted/expressed in terms of the
primitives; though in this paper, we only present one implementation of the DAP primitives to keep
the scope of the paper reasonable. From a technical point of view, our modular structure makes the
atomicity proof of a complex algorithm (like ARES) easier.

An important consideration in the design choice of ARES is to ensure that we gain/retain the
advantages that come with erasure codes – cost of data storage and communication is low – while
having the flexibility to reconfigure the system. Towards this end, we present an erasure-coded
implementation of DAPs which satisfy the necessary properties, and are used by ARES to yield the
first reconfigurable, erasure-coded, read/write atomic storage implementation, where read and write
operations complete in two-rounds. We provide the atomicity property and latency analysis for any
operation in ARES, along with the storage and communication costs resulting from the erasure-coded
DAP implementation. In particular, we specify lower and upper bounds on the communication
latency between the service participants, and we provide the necessary conditions to guarantee the
termination of each read/write operation while concurrent with reconfig operations.

Table 1 compares ARES with a few well-known erasure-coded and replication-based (static
and reconfigurable) atomic memory algorithms. From the table we observe that ARES is the only
algorithm to combine a dynamic behavior with the use of erasure codes, while reducing the storage
and communication costs associated with the read or write operations. Moreover, in ARES the number
of rounds per write and read is at least as good as in any of the remaining algorithms.

We developed a proof-of-concept (PoC) implementation of ARES, and deployed it over a set of
distributed devices in the experimental testbed Emulab [2]. The most important take home message
from our experimental results is to show that it is possible to implement our algorithm according
to the specifications and produces a correct execution and remains available during reconfiguration.
Although, the correctness of the algorithm is shown analytically, the experimental validation cor-
roborates the correctness. For this purpose, we have chosen simple parametarization (e.g., uniform
selection of read/write invocation intervals), and picked ABD [11] as a benchmark algorithm which,
despite being proposed more than 25 years ago, is the fundamental algorithm for emulating repli-
cated quorum-based atomic shared memory. For instance, it is adopted in commercial/open-source
implementations like Cassandra [36]†, and is being used as a standard benchmark algorithm (as can
be seen in other recent works [19]). However, to demonstrate a real-world application we would need
to compare with more algoritrhms and utilize a wide range of read/write distributions, and this is
planned as a separate work.

†Cassandra [36] offers tuneable consistency, it uses protocol that is essentially ABD [11] for what they refer to as level 3
consistency (i.e., atomicity).

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 4 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 5

Document Structure. Section 2 presents the model assumptions and Section 3, the DAP primitives.
In Section 4, we present the implementation of the reconfiguration and read/write protocols in ARES
using the DAPs. In Section 5, we present an erasure-coded implementation of a set of DAPs, which
can be used in every configuration of the ARES algorithm. Section 7 provides operation latency and
cost analysis, and Section 8 the DAP flexibility. Section 9 presents an experimental evaluation of the
proposed algorithms. We conclude our work in Section 10. Due to lack of space omitted proofs can
be found in [43].

2 MODEL AND DEFINITIONS
A shared atomic storage, consisting of any number of individual objects, can be emulated by
composing individual atomic memory objects. Therefore, herein we aim in implementing a single
atomic read/write memory object. A read/write object takes a value from a set V . We assume a
system consisting of four distinct sets of processes: a setW of writers, a set R of readers, a set G of
reconfiguration clients, and a set S of servers. Let I =W∪R ∪G be the set of clients. Servers host
data elements (replicas or encoded data fragments). Each writer is allowed to modify the value of a
shared object, and each reader is allowed to obtain the value of that object. Reconfiguration clients
attempt to introduce new configuration of servers to the system in order to mask transient errors and
to ensure the longevity of the service. Processes communicate via messages through asynchronous,
and reliable channels.

Configurations. A configuration, with a unique identifier from a set C, is a data type that describes
the finite set of servers that are used to implement the atomic storage service. In our setting, each
configuration is also used to describe the way the servers are grouped into sets, called quorums, s.t.
each pair of quorums intersect, the consensus instance that is used as an external service to determine
the next configuration, and a set of data access primitives that specify the interaction of the clients
and servers in the configuration (see Section 3).

More formally, a configuration, c ∈ C, consists of: (i) c .Servers ⊆ S: a set of server identifiers;
(ii) c .Quorums: the set of quorums on c .Servers, s.t. ∀Q1,Q2 ∈ c .Quorums,Q1,Q2 ⊆ c .Servers and
Q1 ∩Q2 , ∅; (iii) DAP (c): the set of primitives (operations at level lower than reads or writes) that
clients in I may invoke on c .Servers; and (iv) c .Con: a consensus instance with the values from C,
implemented and running on top of the servers in c .Servers. We refer to a server s ∈ c .Servers as a
member of configuration c. The consensus instance c .Con in each configuration c is used as a service
that returns the identifier of the configuration that follows c.

Executions. An algorithm A is a collection of processes, where process Ap is assigned to process
p ∈ I ∪ S. The state, of a process Ap is determined over a set of state variables, and the state σ of
A is a vector that contains the state of each process. Each process Ap implements a set of actions.
When an action α occurs it causes the state of Ap to change, say from some state σp to some different
state σ ′p . We call the triple ⟨σp ,α ,σ ′p⟩ a step of Ap . Algorithm A performs a step, when some process
Ap performs a step. An action α is enabled in a state σ if ∃ a step ⟨σ ,α ,σ ′⟩ to some state σ ′. An
execution is an alternating sequence of states and actions of A starting with the initial state and ending
in a state. An execution ξ is fair if enabled actions perform a step infinitely often. In the rest of the
paper we consider executions that are fair and well-formed. A process p crashes in an execution if it
stops taking steps; otherwise p is correct or non-faulty. We assume a function c .F to describe the
failure model of a configuration c.

Reconfigurable Atomic Read/Write Objects. A reconfigurable atomic object supports three oper-
ations: read(), write(v) and reconfig(c). A read() operation returns the value of the atomic object,
write(v) attempts to modify the value of the object to v ∈ V , and the reconfig(c) that attempts to

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 5 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

6
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

install a new configuration c ∈ C. We assume well-formed executions where each client may invoke
one operation (read(), write(v) or reconfig(c)) at a time.

An implementation of a read/write or a reconfig operation contains an invocation action (such as
a call to a procedure) and a response action (such as a return from the procedure). An operation π is
complete in an execution, if it contains both the invocation and the matching response actions for
π ; otherwise π is incomplete. We say that an operation π precedes an operation π ′ in an execution
ξ , denoted by π → π ′, if the response step of π appears before the invocation step of π ′ in ξ . Two
operations are concurrent if neither precedes the other. An implementation A of a read/write object
satisfies the atomicity (linearizability [29]) property if the following holds [38]. Let the set Π contain
all complete read/write operations in any well-formed execution of A. Then there exists an irreflexive
partial ordering ≺ satisfying the following:

A1. For any operations π1 and π2 in Π, if π1 → π2, then it cannot be the case that π2 ≺ π1.
A2. If π ∈ Π is a write operation and π ′ ∈ Π is any read/write operation, then either π ≺ π ′ or

π ′ ≺ π .
A3. The value returned by a read operation is the value written by the last preceding write operation

according to ≺ (or the initial value if there is no such write).

Storage and Communication Costs. We are interested in the complexity of each read and write
operation. The complexity of each operation π invoked by a process p, is measured with respect
to three metrics, during the interval between the invocation and the response of π : (i) number
of communication round, accounting the number of messages exchanged during π , (ii) storage
efficiency (storage cost), accounting the maximum storage requirements for any single object at the
servers during π , and (iii) message bit complexity (communication cost) which measures the size of
the messages used during π .

We define the total storage cost as the size of the data stored across all servers, at any point during
the execution of the algorithm. The communication cost associated with a read or write operation
is the size of the total data that gets transmitted in the messages sent as part of the operation. We
assume that metadata, such as version number, process ID, etc. used by various operations is of
negligible size, and is hence ignored in the calculation of storage and communication cost. Further,
we normalize both costs with respect to the size of the value v; in other words, we compute the costs
under the assumption that v has size 1 unit.

Erasure Codes. We use an [n,k] linear MDS code [31] over a finite field Fq to encode and store
the value v among the n servers. An [n,k] MDS code has the property that any k out of the n
coded elements can be used to recover (decode) the value v. For encoding, v is divided into k
elements v1,v2, . . .vk with each element having size 1

k (assuming size of v is 1). The encoder takes
the k elements as input and produces n coded elements e1, e2, . . . , en as output, i.e., [e1, . . . , en] =
Φ([v1, . . . ,vk]), where Φ denotes the encoder. For ease of notation, we simply write Φ(v) to mean
[e1, . . . , en]. The vector [e1, . . . , en] is referred to as the codeword corresponding to the value v. Each
coded element ci also has size 1

k . In our scheme we store one coded element per server. We use Φi to
denote the projection of Φ on to the i th output component, i.e., ei = Φi (v). Without loss of generality,
we associate the coded element ei with server i, 1 ≤ i ≤ n.

Tags. We use logical tags to order operations. A tag τ is defined as a pair (z,w), where z ∈ N and
w ∈ W , an ID of a writer. Let T be the set of all tags. Notice that tags could be defined in any totally
ordered domain and given that this domain is countably infinite, then there can be a direct mapping
to the domain we assume. For any τ1,τ2 ∈ T we define τ2 > τ1 if (i) τ2.z > τ1.z or (ii) τ2.z = τ1.z
and τ2.w > τ1.w .

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 6 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 7

For ease of reference, Table 2 presents the key notation used in this paper. Notice that some of the
symbols shown are defined and used in following sections.

S the set of server identifiers

I the set of client identifiers

R the set of reader identifiers in I

W the set of writer identifiers in I

G the set of reconfigurer identifiers in I

V the set of values allowed to be written on the shared object

v a value inV

T the set of pairs in N ×W

τ a pair (z,w) ∈ T

C the set of configuration identifiers

c a configuration with identifier in C

c .Servers the set of servers s.t. c .Servers ⊆ S in configuration c

c .Quorums the set of subsets of servers s.t. ∀Q ∈ c .Quorums, Q ⊆ c .Servers and
∀Q1,Q2 ∈ c .Quorums,Q1 ∩Q2 , ∅

σ the state of an algorithm A

σp the state of process p ∈ I ∪ S in state σ determined over a set of state
variables

p.var |σ the value of the state variable var at process p in state σ

ξ an execution of algorithm A which is a finite or infinite sequence of
alternative states and actions beginning with the initial state of A

Φ([v1, . . . ,vk]) or Φ([v]) the [n,k] encoder function given k fragments of value v, [v1, . . . ,vk]

ei the ith encoded word, for 1 ≤ i ≤ n, produced by Φ([v])

GL configuration sequence composed of pairs in {C ∪ {⊥}} × {F , P }, where
F finalized and P pending, and initially contains ⟨c0, F ⟩

Table 2. List of Symbols used to describe our model of computation.

3 DATA ACCESS PRIMITIVES
In this section we introduce a set of primitives, we refer to as data access primitives (DAP), which are
invoked by the clients during read/write/reconfig operations and are defined for any configuration c
in ARES. The DAPs allow us: (i) to describe ARES in a modular manner, and (ii) a cleaner reasoning
about the correctness of ARES.

We define three data access primitives for each c ∈ C: (i) c .put-data(⟨τ,v⟩), via which a client
can ingest the tag value pair ⟨τ,v⟩ in to the configuration c; (ii) c .get-data(), used to retrieve the
most up to date tag and vlaue pair stored in the configuration c; and (iii) c .get-tag(), used to retrieve
the most up to date tag for an object stored in a configuration c. More formally, assuming a tag τ

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 7 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

8
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

from a set of totally ordered tags T , a value v from a domainV , and a configuration c from a set of
identifiers C, the three primitives are defined as follows:

DEFINITION 1 (DATA ACCESS PRIMITIVES). Given a configuration identifier c ∈ C, any non-
faulty client process p may invoke the following data access primitives during an execution ξ , where
c is added to specify the configuration specific implementation of the primitives:

D1: c .get-tag() that returns a tag τ ∈ T ;
D2: c .get-data() that returns a tag-value pair (τ,v) ∈ T ×V ,
D3: c .put-data(⟨τ,v⟩) which accepts the tag-value pair (τ,v) ∈ T ×V as argument.

In order for the DAPs to be useful in designing the ARES algorithm we further require the following
consistency properties. As we see later in Section 6, the safety property of ARES holds, given that
these properties hold for the DAPs in each configuration.

PROPERTY 1 (DAP CONSISTENCY PROPERTIES). In an execution ξ we say that a DAP operation
in an execution ξ is complete if both the invocation and the matching response step appear in ξ . If Π
is the set of complete DAP operations in execution ξ then for any ϕ,π ∈ Π:

C1 If ϕ is c .put-data(⟨τϕ ,vϕ⟩), for c ∈ C, ⟨τϕ ,vϕ⟩ ∈ T ×V , and π is c .get-tag() (or c .get-data())
that returns τπ ∈ T (or ⟨τπ ,vπ ⟩ ∈ T × V) and ϕ completes before π is invoked in ξ , then
τπ ≥ τϕ .

C2 If ϕ is a c .get-data() that returns ⟨τπ ,vπ ⟩ ∈ T × V , then there exists π such that π is a
c .put-data(⟨τπ ,vπ ⟩) and ϕ did not complete before the invocation of π . If no such π exists in
ξ , then (τπ ,vπ) is equal to (t0,v0).

In Section 5 we show how to implement a set of DAPs, where erasure-codes are used to reduce
storage and communication costs. Our DAP implementation satisfies Property 1.

As noted earlier, expressing ARES in terms of the DAPs allows one to achieve a modular design.
Modularity enables the usage of different DAP implementation per configuration, during any ex-
ecution of ARES, as long as the DAPs implemented in each configuration satisfy Property 1. For
example, the DAPs in a configuration c may be implemented using replication, while the DAPs in
the next configuration say c ′, may be implemented using erasure-codes. Thus, a system may use
a scheme that offers higher fault tolerance (e.g. replication) when storage is not an issue, while
switching to a more storage efficient (less fault-tolerant) scheme when storage gets limited.

In Section 8, we show that the presented DAPs are not only suitable for algorithm ARES, but
can also be used to implement a large family of atomic read/write storage implementations. By
describing an algorithm A according to a simple algorithmic template (see Algorithm 7), we show
that A preserves safety (atomicity) if the used DAPs satisfy Property 1, and A preserves liveness
(termination), if every invocation of the used DAPs terminates, under the failure model assumed.

4 THE ARES PROTOCOL
In this section, we describe ARES. In the presentation of ARES algorithm we decouple the reconfigu-
ration service from the shared memory emulation, by utilizing the DAPs presented in Section 3. This
allows ARES, to handle both the reorganization of the servers that host the data, as well as utilize a
different atomic memory implementation per configuration. It is also important to note that ARES
adopts a client-server architecture and separates the reader, writer and reconfiguration processes from
the server processes that host the object data. More precisely, ARES algorithm comprises of three
major components: (i) The reconfiguration protocol which consists of invoking, and subsequently
installing new configuration via the reconfig operation by recon clients. (ii) The read/write protocol
for executing the read and write operations invoked by readers and writers. (iii) The implementation

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 8 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 9

of the DAPs for each installed configuration that respect Property 1 and which are used by the
reconfig, read and write operations.

4.1 Implementation of the Reconfiguration Service.
In this section, we describe the reconfiguration service in ARES. The service relies on an underlying
sequence of configurations (already proposed or installed by reconfig operations), in the form of a
“distributed list”, which we refer to as the global configuration sequence (or list) GL . Conceptually,
GL represents an ordered list of pairs ⟨c f д, status⟩, where c f д is a configuration identifier (c f д ∈ C),
and a binary state variable status ∈ {F , P } that denotes whether c is finalized (F) or is still pending
(P). Initially, GL contains a single element, say ⟨c0, F ⟩, which is known to every participant in the
service.

To facilitate the creation of GL , each server in c .Servers maintains a local variable nextC ∈
{C ∪ {⊥}} × {P , F }, which is used to point to the configuration that follows c in GL . Initially, at any
server nextC = ⟨⊥, F ⟩. Once nextC is set to a value it is never altered. As we show below, at any
point in the execution of ARES and in any configuration c, the nextC variables of the non-faulty
servers in c that are not equal to ⊥ agree, i.e., {s .nextC : s ∈ c .Servers ∧ s .nextC , ⊥} is either
empty of has only one element.

Clients discover the configuration that follows a ⟨c, ∗⟩ in the sequence by contacting a subset of
servers in c .Servers and collecting their nextC variables. Every client in I maintains a local variable
cseq that is expected to be some subsequence of GL . Initially, at every client the value of cseq is
⟨c0, F ⟩.

Reconfiguration clients may introduce new configurations, each associated with a unique configura-
tion identifier from C. Multiple clients may concurrently attempt to introduce different configurations
for same next link in GL . ARES uses consensus to resolve such conflicts: a subset of servers in
c .Servers, in each configuration c, implements a distributed consensus service (such as Paxos [37],
RAFT [45]) , denoted by c .Con.

The reconfiguration service consists of two major components: (i) sequence traversal, responsible
of discovering a recent configuration in GL , and (ii) reconfiguration operation that installs new
configurations in GL .

Algorithm 1 Sequence traversal at each process p ∈ I of algorithm ARES.

procedure read-config(seq)
2: µ = max({j : seq[j].status = F })

cs ← seq[µ]
4: while cs , ⊥ do

cs ←get-next-config(cs .c f д)
6: if cs , ⊥ then

µ ← µ + 1
8: seq[µ]← cs

put-config(seq[µ − 1].c f д, seq[µ])
10: end while

return seq
12: end procedure

procedure get-next-config(c)
14: send (READ-CONFIG) to each s ∈ c .Servers

until ∃Q ,Q ∈ c .Quorums s.t. reci receives
nextCs from ∀s ∈ Q

16: if ∃s ∈ Q s.t. nextCs .status = F then
return nextCs

18: else if ∃s ∈ Q s.t. nextCs .status = P then
return nextCs

20: else
return ⊥

22: end procedure

procedure put-config(c,nextC)
24: send (WRITE-CONFIG,nextC) to each s ∈

c .Servers
until ∃Q ,Q ∈ c .Quorums s.t. reci receives ACK

from ∀s ∈ Q
26: end procedure

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 9 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

10
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

Sequence Traversal. Any read/write/reconfig operation π utilizes the sequence traversal mecha-
nism to discover the latest state of the global configuration sequence, as well as to ensure that such a
state is discoverable by any subsequent operation π ′. See Fig. 1 for an example execution in the case
of a reconfig operation. In a high level, a client starts by collecting the nextC variables from a quorum
of servers in a configuration c, such that ⟨c, F ⟩ is the last finalized configuration in that client’s local
cseq variable (or c0 if no other finalized configuration exists). If any server s returns a nextC variable
such that nextC .c f д , ⊥, then the client (i) adds nextC in its local cseq, (ii) propagates nextC in a
quorum of servers in c .Servers, and (iii) repeats this process in the configuration nextC .c f д. The
client terminates when all servers reply with nextC .c f д = ⊥. More precisely, the sequence parsing
consists of three actions (see Alg. 1):

get-next-config(c): The action get-next-config returns the configuration that follows c in GL .
During get-next-config(c), a client sends READ-CONFIG messages to all the servers in c .Servers,
and waits for replies containing nextC from a quorum in c .Quorums. If there exists a reply with
nextC .c f д , ⊥ the action returns nextC; otherwise it returns ⊥.

put-config(c, c ′): The put-config(c, c ′) action propagates c ′ to a quorum of servers in c .Servers.
During the action, the client sends (WRITE-CONFIG, c ′) messages, to the servers in c .Servers and
waits for each server s in some quorum Q ∈ c .Quorums to respond.

read-config(seq): A read-config(seq) sequentially traverses the installed configurations in order
to discover the latest state of the sequence GL . At invocation, the client starts with the last finalized
configuration ⟨c, F ⟩ in the given seq (Line A1:2), and enters a loop to traverse GL by invoking
get-next-config(), which returns the next configuration, assigned to ĉ. While ĉ , ⊥, then: (a) ĉ is
appended at the end of the sequence seq; (b) a put-config action is invoked to inform a quorum of
servers in c .Servers to update the value of their nextC variable to ĉ. If ĉ = ⊥ the loop terminates and
the action read-config returns seq.

Algorithm 2 Reconfiguration protocol of algorithm ARES.

at each reconfigurer reci
2: State Variables:

cseq[]s .t .cseq[j] ∈ C × {F , P }
4: Initialization:

cseq[0] = ⟨c0, F ⟩

6: operation reconfig(c)
if c , ⊥ then

8: cseq ←read-config(cseq)
cseq ← add-config(cseq, c)

10: update-config(cseq)
cseq ← finalize-config(cseq)

12: end operation

procedure add-config(seq, c)
14: ν ← |seq |

c ′ ← seq[ν].c f д
16: d ← c ′.Con.propose (c)

seq[ν + 1]← ⟨d, P⟩
18: put-config(c ′, ⟨d, P⟩)

return seq
20: end procedure

procedure update-config(seq)
22: µ ← max({j : seq[j].status = F })

ν ← |seq |
24: M ← ∅

for i = µ : ν do
26: ⟨t ,v⟩ ← seq[i].c f д.get-data()

M ← M ∪ {⟨τ,v⟩}

28: ⟨τ,v⟩ ← maxt {⟨t ,v⟩ : ⟨t ,v⟩ ∈ M }
seq[ν].c f д.put-data(⟨τ,v⟩)

30: end procedure

procedure finalize-config(seq)
32: ν = |seq |

seq[ν].status ← F
34: put-config(seq[ν − 1].c f д, seq[ν])

return seq
36: end procedure

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 10 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 11

Algorithm 3 Server protocol of algorithm ARES.

at each server si in configuration ck
2: State Variables:

τ ∈ N ×W , initially, ⟨0,⊥⟩
4: v ∈ V , initially, ⊥

nextC ∈ C × {P , F }, initially ⟨⊥, P⟩

6: Upon receive (READ-CONFIG) si , ck from q
send nextC to q

8: end receive

Upon receive (WRITE-CONFIG, c f дTin) si , ck from
q

10: if nextC .c f д = ⊥ ∨ nextC .status = P then
nextC ← c f дTin

12: send ACK to q
end receive

Reconfiguration operation. A reconfiguration operation reconfig(c), c ∈ C, invoked by any recon-
figuration client reci , attempts to append c to GL . The set of server processes in c are not a part
of any other configuration different from c. In a high level, reci first executes a sequence traversal
to discover the latest state of GL . Then it attempts to add the new configuration c, at the end of
the discovered sequence by proposing c in the consensus instance of the last configuration in the
sequence. The client accepts and appends the decision of the consensus instance (that might be
different than c). Then it attempts to transfer the latest value of the read/write object to the latest
installed configuration. Once the information is transferred, reci finalizes the last configuration in its
local sequence and propagates the finalized tuple to a quorum of servers in that configuration. The
operation consists of four phases, executed consecutively by reci (see Alg. 2):

read-config(seq): The phase read-config(seq) at reci , reads the recent global configuration se-
quence as described in the sequence traversal.

add-config(seq, c): The add-config(seq, c) attempts to append a new configuration c to the end of
seq (client’s view of GL). Suppose the last configuration in seq is c ′ (with status either F or P), then
in order to decide the most recent configuration, reci invokes c ′.Con.propose (c), on the consensus
object associated with configuration c ′. Let d ∈ C be the configuration identifier decided by the
consensus service. If d , c, this implies that another (possibly concurrent) reconfiguration operation,
invoked by a reconfigurer rec j , reci , proposed and succeeded d as the configuration to follow
c ′. In this case, reci adopts d as it own propose configuration, by adding ⟨d, P⟩ to the end of its
local cseq (entirely ignoring c), using the operation put-config(c ′, ⟨d, P⟩), and returns the extended
configuration seq.
update-config(seq): Let us denote by µ the index of the last configuration in the local sequence

cseq, at reci , such that its corresponding status is F ; and ν denote the last index of cseq. Next reci
invokes update-config(cseq), which gathers the tag-value pair corresponding to the maximum tag in
each of the configurations in cseq[i] for µ ≤ i ≤ ν , and transfers that pair to the configuration that
was added by the add-config action. The get-data and put-data DAPs are used to transfer the value
of the object to the new configuration, and they are implemented with respect to the configuration
that is accessed. Suppose ⟨tmax ,vmax ⟩ is the tag value pair corresponding to the highest tag among
the responses from all the ν − µ + 1 configurations. Then, ⟨tmax ,vmax ⟩ is written to the configuration
d via the invocation of cseq[ν].c f д.put-data(⟨τmax ,vmax ⟩).

finalize-config(cseq): Once the tag-value pair is transferred, in the last phase of the reconfiguration
operation, reci executes finalize-config(cseq), to update the status of the last configuration in cseq,
say d = cseq[ν].c f д, to F . The reconfigurer reci informs a quorum of servers in the previous
configuration c = cseq[ν − 1].c f д, i.e. in some Q ∈ c .Quorums, about the change of status, by
executing the put-config(c, ⟨d, F ⟩) action.

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 11 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

12
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

Fig. 1. Illustration of an execution of the reconfiguration steps.

Server Protocol. Each server responds to requests from clients (Alg. 3). A server waits for two types
of messages: READ-CONFIG and WRITE-CONFIG. When a READ-CONFIG message is received for a
particular configuration ck , then the server returns nextC variables of the servers in ck .Servers. A
WRITE-CONFIG message attempts to update the nextC variable of the server with a particular tuple
c f дTin . A server changes the value of its local nextC .c f д in two cases: (i) nextC .c f д = ⊥, or (ii)
nextC .status = P .

Fig. 1 illustrates an example execution of a reconfiguration operation recon(c5). In this example,
the reconfigurer reci goes through a number of configuration queries (get-next-config) before it
reaches configuration c4 in which a quorum of servers replies with nextC .c f д = ⊥. There it proposes
c5 to the consensus object of c4 (c4.Con.propose (c5) on arrow 10), and once c5 is decided, recon(c5)
completes after executing finalize-config(c5).

4.2 Implementation of Read and Write operations.
The read and write operations in ARES are expressed in terms of the DAP primitives (see Section 3).
This provides the flexibility to ARES to use different implementation of DAP primitives in different
configurations, without changing the basic structure of ARES. At a high-level, a write (or read)
operation is executed where the client: (i) obtains the latest configuration sequence by using the
read-config action of the reconfiguration service, (ii) queries the configurations, in cseq, starting
from the last finalized configuration to the end of the discovered configuration sequence, for the latest
⟨taд,value⟩ pair with a help of get-tag (or get-data) operation as specified for each configuration,
and (iii) repeatedly propagates a new ⟨taд′,value ′⟩ pair (the largest ⟨taд,value⟩ pair) with put-data
in the last configuration of its local sequence, until no additional configuration is observed. In more
detail, the algorithm of a read or write operation π is as follows (see Alg. 4):

A write (or read) operation is invoked at a client p when line Alg. 4:8 (resp. line Alg. 4:31) is
executed. At first, p issues a read-config action to obtain the latest introduced configuration in GL , in
both operations.

If π is a write p detects the last finalized entry in cseq, say µ, and performs a cseq[j].conf .get-tag()
action, for µ ≤ j ≤ |cseq | (line Alg. 4:9). Then p discovers the maximum tag among all the returned
tags (τmax), and it increments the maximum tag discovered (by incrementing the integer part of
τmax), generating a new tag, say τnew . It assigns ⟨τ,v⟩ to ⟨τnew ,val⟩, where val is the value he wants
to write (Line Alg. 4:13).

if π is a read, p detects the last finalized entry in cseq, say µ, and performs a
cseq[j].conf .get-data() action, for µ ≤ j ≤ |cseq | (line Alg. 4:32). Then p discovers the maxi-
mum tag-value pair (⟨τmax ,vmax ⟩) among the replies, and assigns ⟨τ,v⟩ to ⟨τmax ,vmax ⟩.

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 12 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 13

Algorithm 4 Write and Read protocols at the clients for ARES.

Write Operation:
2: at each writer wi

State Variables:
4: cseq[]s .t .cseq[j] ∈ C × {F , P }

Initialization:
6: cseq[0] = ⟨c0, F ⟩

operation write(val), val ∈ V
8: cseq ←read-config(cseq)

µ ← max({i : cseq[i].status = F })
10: ν ← |cseq |

for i = µ : ν do
12: τmax ← max(cseq[i].c f д.get-tag(),τmax)

⟨τ,v⟩ ← ⟨⟨τmax .ts + 1,ωi ⟩,val⟩
14: done ← f alse

while not done do
16: cseq[ν].c f д.put-data(⟨τ,v⟩)

cseq ←read-config(cseq)
18: if |cseq | = ν then

done ← true
20: else

ν ← |cseq |

22: end while
end operation

24: Read Operation:
at each reader ri

26: State Variables:
cseq[]s .t .cseq[j] ∈ C × {F , P }

28: Initialization:
cseq[0] = ⟨c0, F ⟩

30: operation read()
cseq ←read-config(cseq)

32: µ ← max({j : cseq[j].status = F })
ν ← |cseq |

34: for i = µ : ν do
⟨τ,v⟩ ← max(cseq[i].c f д.get-data(), ⟨τ,v⟩)

36: done ← false
while not done do

38: cseq[ν].c f д.put-data(⟨τ,v⟩)
cseq ←read-config(cseq)

40: if |cseq | = ν then
done ← true

42: else
ν ← |cseq |

44: end while
return v

46: end operation

Once specifying the ⟨τ,v⟩ to be propagated, both reads and writes execute the
cseq[ν].c f д.put-data(⟨τ,v⟩) action, where ν = |cseq |, followed by executing read-config action, to
examine whether new configurations were introduced in GL . This is an essential step that ensures
that any new value of the object is propagated in any recently introduced configuration. Omission to
do so may lead an operation that reads from a newly established configuration to obtain an outdated
value for the shared object, violating this way atomic consistency. Each operation repeats these steps
until no new configuration is discovered (lines Alg. 4:15–21, or lines Alg. 4:37–43). Let cseq′ be
the sequence returned by the read-config action. If |cseq′ | = |cseq | then no new configuration is
introduced, and the read/write operation terminates; otherwise, p sets cseq to cseq′ and repeats the
two actions. Note, in an execution of ARES, two consecutive read-config operations that return cseq′

and cseq′′ respectively must hold that cseq′ is a prefix of cseq′′, and hence |cseq′ | = |cseq′′ | only if
cseq′ = cseq′′. Finally, if π is a read operation the value with the highest tag discovered is returned
to the client.

Discussion ARES shares similarities with previous algorithms like RAMBO [28] and the framework
in [48]. The reconfiguration technique used in ARES ensures the prefix property on the configuration
sequence (resembling a blockchain data structure [42]) while the array structure in RAMBO allowed
nodes to maintain an incomplete reconfiguration history. On the other hand, the DAP usage, exploits a
different viewpoint compared to [48], allowing implementations of atomic read/write registers without
relying on strong objects, like ranked registers [18]. Note that ARES is designed to capture a wide

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 13 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

14
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

class of algorithms with different redundancy strategies. So while not directly implementing an EC-
based atomic memory, it provides the “vehicle” without which dynamic EC-based implementations
would not have been possible. Lastly, even though ARES is designed to support crash failures, as
noted by [41], reconfiguration is more general and allows an algorithm to handle benign recoveries.
That is, a recovered node that loses its state can be introduced as a new member of a new configuration.
Stateful recoveries on the other hand are indistinguishable from long delays, thus can be handled
effectively by an algorithm designed for the asynchronous model like ARES.

5 IMPLEMENTATION OF THE DAPS
In this section, we present an implementation of the DAPs, that satisfies the properties in Property 1,
for a configuration c, with n servers using a [n,k] MDS coding scheme for storage. Notice that
the total number of servers in the system can be larger than n, however we can pick a subset of n
servers to use for this particular key and instance of the algorithm. We store each coded element ci ,
corresponding to an object at server si , where i = 1, · · · ,n. The implementations of DAP primitives
used in ARES are shown in Alg. 5, and the servers’ responses in Alg. 6.

Algorithm 5 DAP implementation for ARES.

at each process pi ∈ I

2: procedure c.get-tag()
send (QUERY-TAG) to each s ∈ c .Servers

4: until pi receives ⟨ts ⟩ from
⌈
n+k
2

⌉
servers in

c .Servers
tmax ← max({ts : received ts from s})

6: return tmax
end procedure

8: procedure c.get-data()
send (QUERY-LIST) to each s ∈ c .Servers

10: until pi receives Lists from each server s ∈ Sд
s.t. |Sд | =

⌈
n+k
2

⌉
and Sд ⊂ c .Servers

Taдs≥k∗ = set of tags that appears in k lists

12: Taдs≥kdec = set of tags that appears in k lists with
values
t∗max ← maxTaдs≥k∗

14: tdecmax ← maxTaдs≥kdec
if tdecmax = t∗max then

16: v ← decode value for tdecmax
return ⟨tdecmax ,v⟩

18: end procedure

procedure c.put-data(⟨τ,v⟩))
20: code-elems = [(τ, e1), . . . , (τ, en)], ei = Φi (v)

send (PUT-DATA, ⟨τ, ei ⟩) to each si ∈

c .Servers
22: until pi receives ACK from

⌈
n+k
2

⌉
servers in

c .Servers
end procedure

Each server si stores one state variable, List , which is a set of up to (δ + 1) (tag, coded-element)
pairs. Initially the set at si contains a single element, List = {(t0,Φi (v0)}. Below we describe the
implementation of the DAPs.
c .get-tag(): A client, during the execution of a c .get-tag() primitive, queries all the servers in

c .Servers for the highest tags in their Lists, and awaits responses from
⌈
n+k
2

⌉
servers. A server upon

receiving the GET-TAG request, responds to the client with the highest tag, as τmax ≡ max(t,c)∈List t .
Once the client receives the tags from

⌈
n+k
2

⌉
servers, it selects the highest tag t and returns it .

c .put-data(⟨tw ,v⟩): During the execution of the primitive c .put-data(⟨tw ,v⟩), a client sends the
pair (tw ,Φi (v)) to each server si ∈ c .Servers. When a server si receives a message (PUT-DATA, tw , ci)
, it adds the pair in its local List , trims the pairs with the smallest tags exceeding the length (δ + 1) of
the List , and replies with an ack to the client. In particular, si replaces the coded-elements of the
older tags with ⊥, and maintains only the coded-elements associated with the (δ + 1) highest tags in

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 14 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 15

Algorithm 6 The response protocols at any server si ∈ S in ARES for client requests.

at each server si ∈ S in configuration ck

2: State Variables:
List ⊆ T × Cs , initially {(t0,Φi (v0))}

Upon receive (QUERY-TAG) si , ck from q
4: τmax = max(t,c)∈List t

Send τmax to q
6: end receive

Upon receive (QUERY-LIST) si , ck from q
8: Send List to q

end receive
10:

Upon receive (PUT-DATA, ⟨τ, ei ⟩) si , ck from q
12: List ← List ∪ {⟨τ, ei ⟩}

if |List | > δ + 1 then
14: τmin ← min{t : ⟨t , ∗⟩ ∈ List }

/* remove the coded value and retain the tag */
List ← List\ {⟨τ, e⟩ : τ = τmin ∧ ⟨τ, e⟩ ∈ List }

16: List ← List ∪ {(τmin ,⊥)}

Send ACK to q
18: end receive

the List (see Line Alg. 6:16). The client completes the primitive operation after getting acks from⌈
n+k
2

⌉
servers.

c .get-data(): A client, during the execution of a c .get-data() primitive, queries all the servers
in c .Servers for their local variable List , and awaits responses from

⌈
n+k
2

⌉
servers. Once the client

receives Lists from
⌈
n+k
2

⌉
servers, it selects the highest tag t , such that: (i) its corresponding value v

is decodable from the coded elements in the lists; and (ii) t is the highest tag seen from the responses
of at least k Lists (see lines Alg. 5:11-14) and returns the pair (t ,v). Note that in the case where
anyone of the above conditions is not satisfied the corresponding read operation does not complete.

5.1 Correctness of the DAPs
To proof the correctness of the proposed DAPs, we need to show that they are both safe, i.e. ensure the
necessary Property 1, and live, i.e. they allow each operation to terminate. We first proceed to prove
that for any given execution ξ containing operations of the proposed implementation, then examining
any pair of operations in ξ satisfy the DAP consistency properties (i.e. Property 1). That is, the tag
returned by a get-tag() operation is larger than the value written by any preceding put-data() opera-
tion, and the value returned by a get-data() operation is either written by a put-data() operation or is
the initial value of the object. Next, assuming that there cannot be more that δ put-data() operations
concurrent with a single get-data() operation, we show that each operation in our implementation
terminates. Otherwise a get-data() operation is at risk of not being able to discover a decodable
value and thus fail to terminate and return a value.

Safety (Property 1). In this section we are concerned with only one configuration c, consisting
of a set of servers c .Servers. We assume that at most f ≤ n−k

2 servers from c .Servers may crash.
Lemma 2 states that the DAP implementation satisfies the consistency properties Property 1 which
will be used to imply the atomicity of the ARES algorithm.

THEOREM 2 (SAFETY). Let Π a set of complete DAP operations of Algorithm 5 in a configuration
c ∈ C, c.get-tag, c.get-data and c.put-data, of an execution ξ . Then, every pair of operations
ϕ,π ∈ Π satisfy Property 1.

PROOF. As mentioned above we are concerned with only configuration c, and therefore, in our
proofs it suffices to examine only one configuration. Let ξ be some execution of ARES, then we
consider two cases for π for proving property C1: π is a get-tag, or π is a get-data primitive.

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 15 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

16
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

Case (a): ϕ is c .put-data(⟨τϕ ,vϕ⟩) and π is a c .get-tag() returns τπ ∈ T . Let cϕ and cπ denote
the clients that invokes ϕ and π in ξ . Let Sϕ ⊂ S denote the set of

⌈
n+k
2

⌉
servers that responds to cϕ ,

during ϕ. Denote by Sπ the set of
⌈
n+k
2

⌉
servers that responds to cπ , during π . Let T1 be a point in

execution ξ after the completion of ϕ and before the invocation of π . Because π is invoked after T1,
therefore, atT1 each of the servers in Sϕ contains tϕ in its List variable. Note that, once a tag is added
to List , it is never removed. Therefore, during π , any server in Sϕ ∩ Sπ responds with List containing
tϕ to cπ . Note that since |Sϕ | = |Sπ | =

⌈
n+k
2

⌉
implies |Sϕ ∩ Sπ | ≥ k, and hence tdecmax at cπ , during π

is at least as large as tϕ , i.e., tπ ≥ tϕ . Therefore, it suffices to prove our claim with respect to the tags
and the decodability of its corresponding value.

Case (b): ϕ is c .put-data(⟨τϕ ,vϕ⟩) and π is a c .get-data() returns ⟨τπ ,vπ ⟩ ∈ T ×V . As above, let
cϕ and cπ be the clients that invokes ϕ and π . Let Sϕ and Sπ be the set of servers that responds to cϕ
and cπ , respectively. Arguing as above, |Sϕ ∩Sπ | ≥ k and every server in Sϕ ∩Sπ sends tϕ in response
to cϕ , during π , in their List’s and hence tϕ ∈ Taдs

≥k
∗ . Now, because π completes in ξ , hence we

have t∗max = tdecmax . Note that maxTaдs≥k∗ ≥ maxTaдs≥kdec so tπ ≥ maxTaдs≥kdec = maxTaдs≥k∗ ≥ tϕ .
Note that each tag is always associated with its corresponding value vπ , or the corresponding coded
elements Φs (vπ) for s ∈ S.

Next, we prove the C2 property of DAP for the ARES algorithm. Note that the initial values of the
List variable in each servers s in S is {(t0,Φs (vπ))}. Moreover, from an inspection of the steps of
the algorithm, new tags in the List variable of any servers of any servers is introduced via put-data
operation. Since tπ is returned by a get-tag or get-data operation then it must be that either tπ = t0
or tπ > t0. In the case where tπ = t0 then we have nothing to prove. If tπ > t0 then there must be a
put-data(tπ ,vπ) operation ϕ. To show that for every π it cannot be that ϕ completes before π , we
adopt by a contradiction. Suppose for every π , ϕ completes before π begins, then clearly tπ cannot
be returned ϕ, a contradiction. □

Liveness. To reason about the liveness of the proposed DAPs, we define a concurrency parameter δ
which captures all the put-data operations that overlap with the get-data, until the time the client
has all data needed to attempt decoding a value. However, we ignore those put-data operations that
might have started in the past, and never completed yet, if their tags are less than that of any put-data
that completed before the get-data started. This allows us to ignore put-data operations due to failed
clients, while counting concurrency, as long as the failed put-data operations are followed by a
successful put-data that completed before the get-data started. In order to define the amount of
concurrency in our specific implementation of the DAPs presented in this section the following
definition captures the put-data operations that overlap with the get-data, until the client has all data
required to decode the value.

DEFINITION 3 (VALID get-data OPERATIONS). A get-data operation π from a process p is valid
if p does not crash until the reception of

⌈
n+k
2

⌉
responses during the get-data phase.

DEFINITION 4 (put-data CONCURRENT WITH A VALID get-data). Consider a valid get-data
operation π from a process p. Let T1 denote the point of initiation of π . For π , let T2 denote the
earliest point of time during the execution when p receives all the

⌈
n+k
2

⌉
responses. Consider

the set Σ = {ϕ : ϕ is any put-data operation that completes before π is initiated}, and let ϕ∗ =
argmaxϕ∈Σ taд(ϕ). Next, consider the set Λ = {λ : λ is any put-data operation that starts before
T2 such that taд(λ) > taд(ϕ∗)}. We define the number of put-data concurrent with the valid get-data
π to be the cardinality of the set Λ.

Termination (and hence liveness) of the DAPs is guaranteed in an execution ξ , provided that a
process no more than f servers in c .Servers crash, and no more that δ put-data may be concurrent

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 16 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 17

at any point in ξ . If the failure model is satisfied, then any operation invoked by a non-faulty client
will collect the necessary replies independently of the progress of any other client process in the
system. Preserving δ on the other hand, ensures that any operation will be able to decode a written
value. These are captured in the following theorem:

THEOREM 5 (LIVENESS). Let ξ be well-formed and fair execution of DAPs, with an [n,k] MDS
code, where n is the number of servers out of which no more than n−k

2 may crash, and δ be the
maximum number of put-data operations concurrent with any valid get-data operation. Then any
get-data and put-data operation π invoked by a process p terminates in ξ if p does not crash between
the invocation and response steps of π .

PROOF. Note that in the read and write operation the get-tag and put-data operations initiated by
any non-faulty client always complete. Therefore, the liveness property with respect to any write
operation is clear because it uses only get-tag and put-data operations of the DAP. So, we focus on
proving the liveness property of any read operation π , specifically, the get-data operation completes.
Let ξ be and execution of ARES and let cω and cπ be the clients that invokes the write operation ω
and read operation π , respectively.

Let Sω be the set of
⌈
n+k
2

⌉
servers that responds to cω , in the put-data operations, in ω. Let Sπ be

the set of
⌈
n+k
2

⌉
servers that responds to cπ during the get-data step of π . Note that in ξ at the point

execution T1, just before the execution of π , none of the write operations in Λ is complete. Observe
that, by algorithm design, the coded-elements corresponding to tω are garbage-collected from the
List variable of a server only if more than δ higher tags are introduced by subsequent writes into the
server. Since the number of concurrent writes |Λ|, s.t. δ > |Λ| the corresponding value of tag tω is
not garbage collected in ξ , at least until execution point T2 in any of the servers in Sω .

Therefore, during the execution fragment between the execution pointsT1 andT2 of the execution ξ ,
the tag and coded-element pair is present in the List variable of every in Sω that is active. As a result,
the tag and coded-element pairs, (tω ,Φs (vω)) exists in the List received from any s ∈ Sω ∩ Sπ during
operation π . Note that since |Sω | = |Sπ | =

⌈
n+k
2

⌉
hence |Sω ∩Sπ | ≥ k and hence tω ∈ Taдs≥kdec , the set

of decode-able tag, i.e., the valuevω can be decoded by cπ in π , which demonstrates thatTaдs≥kdec , ∅.
Next we want to argue that t∗max = tdecmax via a contradiction: we assume maxTaдs≥k∗ > maxTaдs≥kdec .
Now, consider any tag t , which exists due to our assumption, such that, t ∈ Taдs≥k∗ , t < Taдs≥kdec and
t > tdecmax . Let Skπ ⊂ S be any subset of k servers that responds with t∗max in their List variables to
cπ . Note that since k > n/3 hence |Sω ∩ Skπ | ≥

⌈
n+k
2

⌉
+
⌈
n+1
3

⌉
≥ 1, i.e., Sω ∩ Skπ , ∅. Then t must

be in some servers in Sω at T2 and since t > tdecmax ≥ tω . Now since |Λ| < δ hence (t ,⊥) cannot be
in any server at T2 because there are not enough concurrent write operations (i.e., writes in Λ) to
garbage-collect the coded-elements corresponding to tag t , which also holds for tag t∗max . In that
case, t must be in Taд≥kdec , a contradiction. □

6 CORRECTNESS OF ARES
In this section, we prove that ARES correctly implements an atomic, read/write, shared storage service.
The correctness of ARES highly depends on the way the configuration sequence is constructed at
each client process. Also, atomicity is ensured if the DAP implementation in each configuration ci
satisfies Property 1.

As a roadmap, we begin by showing that some critical properties are preserved by the reconfig-
uration service proposed in subsection 6.1. In particular, we show that the configuration sequence
maintained in two processes is either the same or one is the prefix of the other. This in turn helps us
to proof the correctness of ARES in subsection 6.2 by showing that all the properties of atomicity

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 17 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

18
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

(see Section 2) are satisfied, given the properties on the configuration sequence hold, and that the
DAPs used in each configuration satisfy Property 1.

We proceed by first introducing some definitions and notation, that we use in the proofs that follow.
Notations and definitions. For a server s, we use the notation s .var |σ to refer to the value of the
state variable var , in s, at a state σ of an execution ξ . If server s crashes at a state σf in an execution
ξ then s .var |σ ≜ s .var |σf for any state variable var and for any state σ that appears after σf in ξ (i.e.
the value of the variable remains unchanged).

We define as the tag of a configuration c the smallest tag among the maximum tags found in each
quorum of c. This is essentially the smallest tag that an operation may witness when receiving replies
from a single quorum in c. More formally:

DEFINITION 6 (TAG OF A CONFIGURATION). Let c ∈ C be a configuration, σ be a state in some
execution ξ then we define the tag of c at state σ as taд(c) |σ ≜ minQ ∈c .Quorums maxs ∈Q (s .taд |σ).
We drop the suffix |σ , and simply denote as taд(c), when the state is clear from the context.

Next we provide the notation to express the configuration sequence witnessed by a process p in a
state σ (as p.cseq |σ), the last finalized configuration in that sequence (as µ (cpσ)), and the length of
that sequence (as ν (cpσ)). More formally:

DEFINITION 7. Let σ be any point in an execution of ARES and suppose we use the notation cpσ
for p.cseq |σ , i.e., the cseq variable at process p at the state σ . Then we define as µ (cpσ) ≜ max{i :
cpσ [i].status = F } and ν (cpσ) ≜ |c

p
σ |, where |cpσ | is the length of the configuration vector cpσ .

Last, we define the prefix operation on two configuration sequences.

DEFINITION 8 (PREFIX ORDER). Let x and y be any two configuration sequences. We say that x
is a prefix of y, denoted by x ⪯p y, if x[j].c f д = y[j].c f д, for all j such that x[j] , ⊥.

Table 3 summarizes the new notation for ease of reference.

cpσ the value of the configuration sequence variable cseq at process p in state
σ , i.e. a shorthand of p.cseq |σ

cpσ [i] the ith element in the configuration sequence cpσ

µ (cpσ) last finalized configuration in cpσ

ν (cpσ) the length of cpσ , i.e. |cpσ |

Table 3. Additional notation used in this section.

6.1 Reconfiguration Protocol Properties
In this section we analyze the properties that we can achieve through our reconfiguration algorithm.
In high-level, we do show that the following properties are preserved:

i configuration uniqueness: the configuration sequences in any two processes have identical
configuration at any place i,

ii sequence prefix: the configuration sequence witnessed by an operation is a prefix of the
sequence witnessed by any succeeding operation, and

iii sequence progress: if the configuration with index i is finalized during an operation, then a
configuration j, for j ≥ i, will be finalized for a succeeding operation.

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 18 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 19

The first lemma shows that any two configuration sequences have the same configuration identifiers
in the same indexes.

LEMMA 9. For any reconfigurer r that invokes an reconfig(c) action in an execution ξ of the
algorithm, If r chooses to install c in index k of its local r .cseq vector, then r invokes the Cons[k −
1].propose (c) instance over configuration r .cseq[k − 1].c f д.

PROOF. It follows directly from the algorithm. □

LEMMA 10. If a server s sets s .nextC to ⟨c, F ⟩ at some state σ in an execution ξ of the algorithm,
then s .nextC = ⟨c, F ⟩ for any state σ ′ that appears after σ in ξ .

PROOF. Notice that a server s updates its s .nextC variable for some specific configuration ck in a
state σ only when it receives a WRITE-CONF message. This is either the first WRITE-CONF message
received at s for ck (and thus nextC = ⊥), or s .nextC = ⟨∗, P⟩ and the message received contains a
tuple ⟨c, F ⟩. Once the tuple becomes equal to ⟨c, F ⟩ then s does not satisfy the update condition for
ck , and hence in any state σ ′ after σ it does not change ⟨c, F ⟩. □

LEMMA 11 (CONFIGURATION UNIQUENESS). For any processes p,q ∈ I and any states σ1,σ2
in an execution ξ , it must hold that cpσ1[i].c f д = cqσ2[i].c f д, ∀i s.t. cpσ1[i].c f д, c

q
σ2[i].c f д , ⊥.

PROOF. The lemma holds trivially for cpσ1[0].c f д = cqσ2[0].c f д = c0. So in the rest of the proof
we focus in the case where i > 0. Let us assume w.l.o.g. that σ1 appears before σ2 in ξ .

According to our algorithm a process p sets p.cseq[i].c f д to a configuration identifier c in two
cases: (i) either it received c as the result of the consensus instance in configuration p.cseq[i − 1].c f д,
or (ii) p receives s .nextC .c f д = c from a server s ∈ p.cseq[i − 1].c f д.Servers. Note here that (i) is
possible only when p is a reconfigurer and attempts to install a new configuration. On the other hand
(ii) may be executed by any process in any operation that invokes the read-config action. We are
going to proof this lemma by induction on the configuration index.

Base case: The base case of the lemma is when i = 1. Let us first assume that p and q receive cp
and cq , as the result of the consensus instance at p.cseq[0].c f д and q.cseq[0].c f д respectively. By
Lemma 9, since both processes want to install a configuration in i = 1, then they have to run Cons[0]
instance over the configuration stored in their local cseq[0].c f д variable. Since p.cseq[0].c f д =
q.cseq[0].c f д = c0 then both Cons[0] instances run over the same configuration c0 and thus by the
agreement property the have to decide the same value, say c1. Hence cp = cq = c1 and p.cseq[1].c f д =
q.cseq[1].c f д = c1.

Let us examine the case now where p or q assign a configuration c they received from some
server s ∈ c0.Servers. According to the algorithm only the configuration that has been decided
by the consensus instance on c0 is propagated to the servers in c0.Servers. If c1 is the decided
configuration, then ∀s ∈ c0.Servers such that s .nextC (c0) , ⊥, it holds that s .nextC (C0) = ⟨c1, ∗⟩.
So if p or q set p.cseq[1].c f д or q.cseq[1].c f д to some received configuration, then p.cseq[1].c f д =
q.cseq[1].c f д = c1 in this case as well.

Hypothesis: We assume that cpσ1[k] = cqσ2[k] for some k, k ≥ 1.
Induction Step: We need to show that the lemma holds for i = k + 1. If both processes retrieve

p.cseq[k + 1].c f д and q.cseq[k + 1].c f д through consensus, then both p and q run consensus over
the previous configuration. Since according to our hypothesis cpσ1[k] = cqσ2[k] then both process will
receive the same decided value, say ck+1, and hence p.cseq[k + 1].c f д = q.cseq[k + 1].c f д = ck+1.
Similar to the base case, a server in ck .Servers only receives the configuration ck+1 decided by the
consensus instance run over ck . So processes p and q can only receive ck+1 from some server in
ck .Servers so they can only assign p.cseq[k + 1].c f д = q.cseq[k + 1].c f д = ck+1 at Line A2:8. That
completes the proof. □

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 19 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

20
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

Lemma 11 showed that any two operations store the same configuration in any cell k of their cseq
variable. It is not known however if the two processes discover the same number of configuration ids.
In the following lemmas we will show that if a process learns about a configuration in a cell k then it
also learns about all configuration ids for every index i, such that 0 ≤ i ≤ k − 1.

LEMMA 12. In any execution ξ of the algorithm , If for any process p ∈ I, cpσ [i] , ⊥ in some
state σ in ξ , then cpσ ′[i] , ⊥ in any state σ ′ that appears after σ in ξ .

PROOF. A value is assigned to cp∗ [i] either after the invocation of a consensus instance, or while
executing the read-config action. Since any configuration proposed for installation cannot be ⊥
(A2:7), and since there is at least one configuration proposed in the consensus instance (the one from
p), then by the validity of the consensus service the decision will be a configuration c , ⊥. Thus, in
this case cp∗ [i] cannot be ⊥. Also in the read-config procedure, cp∗ [i] is assigned to a value different
than ⊥ according to Line A2:8. Hence, if cpσ [i] , ⊥ at state σ then it cannot become ⊥ in any state
σ ′ after σ in execution ξ . □

LEMMA 13. Let σ1 be some state in an execution ξ of the algorithm. Then for any process p, if
k =max {i : cpσ1[i] , ⊥}, then cpσ1[j] , ⊥, for 0 ≤ j < k.

PROOF. Let us assume to derive contradiction that there exists j < k such that cpσ1[j] = ⊥ and
cpσ1[j+1] , ⊥. Consider first that j = k −1 and that σ1 is the state immediately after the assignment of
a value to cpσ1[k], say ck . Since cpσ1[k] , ⊥, then p assigned ck to cpσ1[k] in one of the following cases:
(i) ck was the result of the consensus instance, or (ii) p received ck from a server during a read-config
action. The first case is trivially impossible as according to Lemma 9 p decides for k when it runs
consensus over configuration cpσ1[k − 1].c f д. Since this is equal to ⊥, then we cannot run consensus
over a non-existent set of processes. In the second case, p assigns cpσ1[k] = ck in Line A1:8. The value
ck was however obtained when p invoked get-next-config on configuration cpσ1[k − 1].c f д. In that
action, p sends READ-CONFIG messages to the servers in cpσ1[k − 1].c f д.Servers and waits until a
quorum of servers replies. Since we assigned cpσ1[k] = ck it means that get-next-config terminated at
some state σ ′ before σ1 in ξ , and thus: (a) a quorum of servers in cpσ ′[k − 1].c f д.Servers replied, and
(b) there exists a server s among those that replied with ck . According to our assumption however,
cpσ1[k − 1] = ⊥ at σ1. So if state σ ′ is before σ1 in ξ , then by Lemma 12, it follows that cpσ ′[k − 1] = ⊥.
This however implies that p communicated with an empty configuration, and thus no server replied
to p. This however contradicts the assumption that a server replied with ck to p.

Since any process traverses the configuration sequence starting from the initial configuration c0,
then with a simple induction and similar reasoning we can show that cpσ1[j] , ⊥, for 0 ≤ j ≤ k−1. □

We can now move to an important lemma that shows that any read-config action returns an
extension of the configuration sequence returned by any previous read-config action. First, we show
that the last finalized configuration observed by any read-config action is at least as recent as the
finalized configuration observed by any subsequent read-config action.

LEMMA 14. If at a state σ of an execution ξ of the algorithm µ (cpσ) = k for some processp, then for
any element 0 ≤ j < k, ∃Q ∈ cpσ [j].c f д.Quorums such that ∀s ∈ Q, s .nextC (cpσ [j].c f д) = cpσ [j + 1].

PROOF. This lemma follows directly from the algorithm. Notice that whenever a process assigns
a value to an element of its local configuration (Lines A1:8 and A2:17), it then propagates this value
to a quorum of the previous configuration (Lines A1:9 and A2:18). So if a process p assigned c j to
an element cpσ ′[j] in some state σ ′ in ξ , then p may assign a value to the j + 1 element of cpσ ′′[j + 1]
only after put-config(cpσ ′[j − 1].c f д, cpσ ′[j]) occurs. During put-config action, p propagates cpσ ′[j]

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 20 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 21

in a quorum Q ∈ cpσ ′[j − 1].c f д.Quorums. Hence, if cpσ [k] , ⊥, then p propagated each cpσ ′[j], for
0 < j ≤ k to a quorum of servers Q ∈ cpσ ′[j − 1].c f д.Quorums. And this completes the proof. □

LEMMA 15 (SEQUENCE PREFIX). Let π1 and π2 two completed read-config actions invoked by
processes p1,p2 ∈ I respectively, such that π1 → π2 in an execution ξ . Let σ1 be the state after the
response step of π1 and σ2 the state after the response step of π2. Then cp1σ1 ⪯p cp2σ2 .

PROOF. Let ν1 = ν (c
p1
σ1) and ν2 = ν (c

p2
σ2). By Lemma 11 for any i such that cp1σ1[i] , ⊥ and cp2σ2[i] ,

⊥, then cp1σ1[i].c f д = cp2σ2[i].c f д. Also from Lemma 13 we know that for 0 ≤ j ≤ ν1, c
p1
σ1[j] , ⊥, and

0 ≤ j ≤ ν2, c
p2
σ2[j] , ⊥. So if we can show that ν1 ≤ ν2 then the lemma follows.

Let µ = µ (cp2σ ′) be the last finalized element whichp2 established in the beginning of the read-config
action π2 (Line A2:2) at some state σ ′ before σ2. It is easy to see that µ ≤ ν2. If ν1 ≤ µ then ν1 ≤ ν2 and
the lemma follows. Thus, it remains to examine the case where µ < ν1. Notice that since π1 → π2 then
σ1 appears before σ ′ in execution ξ . By Lemma 14, we know that by σ1, ∃Q ∈ c

p1
σ1[j].c f д.Quorums,

for 0 ≤ j < ν1, such that ∀s ∈ Q, s .nextC = cp1σ1[j + 1]. Since µ < ν1, then it must be the case that
∃Q ∈ cp1σ1[µ].c f д.Quorums such that ∀s ∈ Q, s .nextC = cp1σ1[µ + 1]. But by Lemma 11, we know that
cp1σ1[µ].c f д = cp2σ ′[µ].c f д. Let Q ′ be the quorum that replies to the read-next-config occurred in p2,
on configuration cp2σ ′[µ].c f д. By definition Q ∩Q ′ , ∅, thus there is a server s ∈ Q ∩Q ′ that sends
s .nextC = cp1σ1[µ + 1] to p2 during π2. Since cp1σ1[µ + 1] , ⊥ then p2 assigns cp2∗ [µ + 1] = cp1σ1[µ + 1],
and repeats the process in the configuration cp2∗ [µ + 1].c f д. Since every configuration cp1σ1[j].c f д, for
µ ≤ j < ν1, has a quorum of servers with s .nextC, then by a simple induction it can be shown that
the process will be repeated for at least ν1 − µ iterations, and every configuration cp2σ ′′[j] = cp1σ1[j], at
some state σ ′′ before σ2. Thus, cp2σ2[j] = cp1σ1[j], for 0 ≤ j ≤ ν1. Hence ν1 ≤ ν2 and the lemma follows
in this case as well. □

Thus far we focused on the configuration member of each element in cseq. As operations do get in
account the status of a configuration, i.e. P or F , in the next lemma we will examine the relationship
of the last finalized configuration as detected by two operations. First we present a lemma that shows
the monotonicity of the finalized configurations.

LEMMA 16. Let σ and σ ′ two states in an execution ξ such that σ appears before σ ′ in ξ . Then
for any process p must hold that µ (cpσ) ≤ µ (c

p
σ ′).

PROOF. This lemma follows from the fact that if a configuration k is such that cpσ [k].status = F
at a state σ , then p will start any future read-config action from a configuration cpσ ′[j].c f д such that
j ≥ k. But cpσ ′[j].c f д is the last finalized configuration at σ ′ and hence µ (cpσ ′) ≥ µ (c

p
σ). □

LEMMA 17 (SEQUENCE PROGRESS). Let π1 and π2 two completed read-config actions invoked
by processes p1,p2 ∈ I respectively, such that π1 → π2 in an execution ξ . Let σ1 be the state after
the response step of π1 and σ2 the state after the response step of π2. Then µ (cp1σ1) ≤ µ (c

p2
σ2).

PROOF. By Lemma 15 it follows that cp1σ1 is a prefix of cp2σ2 . Thus, if ν1 = ν (c
p1
σ1) and ν2 = ν (c

p2
σ2),

ν1 ≤ ν2. Let µ1 = µ (cp1σ1), such that µ1 ≤ ν1, be the last element in cp1σ1 , where cp1σ1[µ1].status = F .
Let now µ2 = µ (cp2σ ′), be the last element which p2 obtained in Line A1:2 during π2 such that
cp2σ ′[µ2].status = F in some state σ ′ before σ2. If µ2 ≥ µ1, and since σ2 is after σ ′, then by Lemma 16
µ2 ≤ µ (c

p2
σ2) and hence µ1 ≤ µ (c

p2
σ2) as well.

It remains to examine the case where µ2 < µ1. Process p1 sets the status of cp1σ1[µ1] to F in two cases:
(i) either when finalizing a reconfiguration, or (ii) when receiving an s .nextC = ⟨cp1σ1[µ1].c f д, F ⟩
from some server s during a read-config action. In both cases p1 propagates the ⟨cp1σ1[µ1].c f д, F ⟩

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 21 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

22
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

to a quorum of servers in cp1σ1[µ1 − 1].c f д before completing. We know by Lemma 15 that since
π1 → π2 then cp1σ1 is a prefix in terms of configurations of the cp2σ2 . So it must be the case that
µ2 < µ1 ≤ ν (c

p2
σ2). Thus, during π2, p2 starts from the configuration at index µ2 and in some iteration

performs get-next-config in configuration cp2σ2[µ1 − 1]. According to Lemma 11, cp1σ1[µ1 − 1].c f д =
cp2σ2[µ1 − 1].c f д. Since π1 completed before π2, then it must be the case that σ1 appears before σ ′

in ξ . However, p2 invokes the get-next-config operation in a state σ ′′ which is either equal to σ ′

or appears after σ ′ in ξ . Thus, σ ′′ must appear after σ1 in ξ . From that it follows that when the
get-next-config is executed by p2 there is already a quorum of servers in cp2σ2[µ1 − 1].c f д, say Q1,
that received ⟨cp1σ1[µ1].c f д, F ⟩from p1. Since, p2 waits from replies from a quorum of servers from
the same configuration, say Q2, and since the nextC variable at each server is monotonic (Lemma
10), then there is a server s ∈ Q1 ∩ Q2, such that s replies to p2 with s .nextC = ⟨cp1σ1[µ1].c f д, F ⟩.
So, cp2σ2[µ1] gets ⟨cp1σ1[µ1].c f д, F ⟩, and hence µ (cp2σ2) ≥ µ1 in this case as well. This completes our
proof. □

Using the previous Lemmas we can conclude to the main result of this section.

THEOREM 18. Let π1 and π2 two completed read-config actions invoked by processes p1,p2 ∈ I
respectively, such that π1 → π2 in an execution ξ . Let σ1 be the state after the response step of π1
and σ2 the state after the response step of π2. Then the following properties hold:
(a) Configuration Consistency: cp2σ2[i].c f д = cp1σ1[i].c f д, for 1 ≤ i ≤ ν (cp1σ1),
(b) Sequence Prefix: cp1σ1 ⪯p cp2σ2 , and
(c) Sequence Progress: µ (cp1σ1) ≤ µ (c

p2
σ2)

PROOF. Statements (a), (b) and (c) follow from Lemmas 11, 15, and 16. □

6.2 Atomicity Property of ARES

Given the properties satisfied by the reconfiguration algorithm of ARES in any execution, we can
now proceed to examine whether our algorithm satisfies the safety (atomicity) conditions. The
propagation of the information of the distributed object is achieved using the get-tag, get-data, and
put-data actions. We assume that the DAP used satisfy Property 1 as presented in Section 3, and we
will show that, given such assumption, ARES satisfies atomicity.

We begin with a lemma stating that if a reconfiguration operation retrieves a configuration sequence
of length k during its read-config action, then it installs/finalizes the k + 1 configuration in the global
configuration sequence.

LEMMA 19. Let π be a complete reconfiguration operation by a reconfigurer rc in an execution ξ
of ARES. if σ1 is the state in ξ following the termination of the read-config action during π , then π
invokes a finalize-config(crcσ2) at a state σ2 in ξ , with ν (crcσ2) = ν (c

rc
σ1) + 1.

PROOF. This lemma follows directly from the implementation of the reconfig operation. Let
π be a reconfiguration operation reconfig(c). At first, π invokes a read-config to retrieve a latest
value of the global configuration sequence, crcσ1 , in the state σ1 in ξ . During the add-config action, π
proposes the addition of c, and appends at the end of crcσ1 the decision d of the consensus protocol.
Therefore, if crcσ1 is extended by ⟨d, P⟩ (Line A 2:17), and hence the add-config action returns a
configuration sequence crcσ ′1

with length ν (crcσ ′1
) = ν (crcσ1) + 1. As ν (crcσ ′1

does not change during the
update-config action, then crcσ ′1

is passed to the finalize-config action at state σ2, and hence crcσ2 = crcσ ′1
.

Thus, ν (crcσ2) = ν (c
rc
σ ′1
) = ν (crcσ1) + 1 and the lemma follows. □

The next lemma states that only some reconfiguration operation π may finalize a configuration c at
index j in a configuration sequence p.cseq at any process p. To finalize c, the lemma shows that π must

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 22 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 23

witness a configuration sequence such that its last finalized configuration appears at an index i < j in
the configuration sequence p.cseq. In other words, reconfigurations always finalize configurations
that are ahead from their latest observed final configuration, and it seems like “jumping” from one
final configuration to the next.

LEMMA 20. Suppose ξ is an execution of ARES. For any state σ in ξ , if cpσ [j].status = F for
some process p ∈ I, then there exists a reconfig operation π by a reconfigurer rc ∈ G, such that (i)
rc invokes finalize-config(crcσ ′) during π at some state σ ′ in ξ , (ii) ν (crcσ ′) = j, and (iii) µ (crcσ ′) < j.

PROOF. A process sets the status of a configuration c to F in two cases: (i) either during a
finalize-config(seq) action such that ν (seq) = ⟨c, P⟩ (Line A2:33), or (ii) when it receives ⟨c, F ⟩ from
a server s during a read-next-config action. Server s sets the status of a configuration c to F only if it
receives a message that contains ⟨c, F ⟩ (Line A3:10). So, (ii) is possible only if c is finalized during a
reconfig operation.

Let, w.l.o.g., π be the first reconfiguration operation that finalizes cpσ [j].c f д. To do so, process
rc invokes finalize-config(crcσ ′1

) during π , at some state σ ′ that appears before σ in ξ . By Lemma

11, cpσ [j].c f д = crcσ ′[j].c f д. Since, rc finalizes crcσ ′[j], then this is the last entry of crcσ ′ and hence
ν (crcσ ′) = j. Also, by Lemma 20 it follows that the read-config action of π returned a configuration
crcσ ′′ in some state σ ′′ that appeared before σ ′ in ξ , such that ν (crcσ ′′) < ν (c

rc
σ ′). Since by definition,

µ (crcσ ′′) ≤ ν (c
rc
σ ′′), then µ (crcσ ′′) < j. However, since only ⟨c, P⟩ is added to crcσ ′′ to result in crcσ ′ , then

µ (crcσ ′′) = µ (c
rc
σ ′). Therefore, µ (crcσ ′) < j as well and the lemma follows. □

We now reach an important lemma of this section. By ARES, before a read/write/reconfig operation
completes it propagates the maximum tag it discovered by executing the put-data action in the last
configuration of its local configuration sequence (Lines A2:18, A4:16, A4:38). When a subsequent
operation is invoked, it reads the latest configuration sequence by beginning from the last finalized
configuration in its local sequence and invoking read-data to all the configurations until the end of
that sequence. The lemma shows that the latter operation will retrieve a tag which is higher than the
tag used in the put-data action of any preceding operation.

LEMMA 21. Let π1 and π2 be two completed read/write/reconfig operations invoked by processes
p1 and p2 in I, in an execution ξ of ARES, such that, π1 → π2. If c1.put-data(⟨τπ1 ,vπ1⟩) is the
last put-data action of π1 and σ2 is the state in ξ after the completion of the first read-config
action of π2, then there exists a c2.put-data(⟨τ,v⟩) action in some configuration c2 = cp2σ2[k].c f д, for
µ (cp2σ2) ≤ k ≤ ν (cp2σ2), such that (i) it completes in a state σ ′ before σ2 in ξ , and (ii) τ ≥ τπ1 .

PROOF. Note that from the definitions of ν (·) and µ (·), we have µ (cp2σ2) ≤ ν (c
p2
σ2). Let σ1 be the state

in ξ after the completion of c1.put-data(⟨τπ1 ,vπ1⟩) and σ ′1 be the state in ξ following the response step
of π1. Since any operation executes put-data on the last discovered configuration then c1 is the last
configuration found in cp1σ1 , and hence c1 = cp1σ1[ν (c

p1
σ1)].c f д. By Lemma 16 we have µ (cp1σ1) ≤ µ (c

p1
σ ′1
)

and by Lemma 17 we have µ (cp1σ ′1
) ≤ µ (cp2σ2), since π2 (and thus its first read-config action) is invoked

after σ ′1 (and thus after the last read-config action during π1). Hence, combining the two implies
that µ (cp1σ1) ≤ µ (c

p2
σ2). Now from the last implication and the first statement we have µ (cp1σ1) ≤ ν (c

p2
σ2).

Therefore, it remains to examine whether the last finalized configuration witnessed by p2 appears
before or after c1, i.e.: (a) µ (cp2σ2) ≤ ν (c

p1
σ1) and (b) µ (cp2σ2) > ν (c

p1
σ1).

Case (a): Since π1 → π2 then, by Theorem 18, cp2σ2 value returned by read-config at p2 during the
execution of π2 satisfies cp1σ1 ⪯p cp2σ2 . Therefore, ν (cp1σ1) ≤ ν (cp2σ2), and hence in this case µ (cp2σ2) ≤
ν (cp1σ1) ≤ ν (cp2σ2). Since c1 is the last configuration in cp1σ1 , then it has index ν (cp1σ1). So if we take

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 23 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

24
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

c2 = c1 then the c1.put-data(⟨τπ1 ,vπ1⟩) action trivially satisfies both conditions of the lemma as: (i)
it completes in state σ1 which appears before σ2, and (ii) it puts a pair ⟨τ,v⟩ such that τ = τπ1 .

Case (b): This case is possible if there exists a reconfiguration client rc that invokes reconfig
operation ρ, during which it executes the finalize-config(crc∗) that finalized configuration with index
ν (crc∗) = µ (cp2σ2). Let σ be the state immediately after the read-config of ρ. Now, we consider two
sub-cases: (i) σ appears before σ1 in ξ , or (ii) σ appears after σ1 in ξ .

Subcase (b) (i): Since read-config at σ completes before the invocation of last read-config of opera-
tion π1 then, either crcσ ≺p cp1σ1 , or crcσ = cp1σ1 due to Lemma 15. Suppose crcσ ≺p cp1σ1 , then according
to Lemma 19 rc executes finalize-config on configuration sequence crc∗ with ν (crc∗) = ν (crcσ) + 1.
Since ν (crc∗) = µ (cp2σ2), then µ (cp2σ2) = ν (c

rc
σ) + 1. If however, crcσ ≺p cp1σ1 , then ν (crcσ) < ν (cp1σ1) and

thus ν (crcσ) + 1 ≤ ν (cp1σ1). This implies that µ (cp2σ2) ≤ ν (c
p1
σ1) which contradicts our initial assumption

for this case that µ (cp2σ2) > ν (c
p1
σ1). So this sub-case is impossible.

Now suppose, that crcσ = cp1σ1 . Then it follows that ν (crcσ) = ν (cp1σ1), and that µ (cp2σ2) = ν (c
p1
σ1) + 1

in this case. Since σ1 is the state after the last put-data during π1, then if σ ′1 is the state after the
completion of the last read-config of π1 (which follows the put-data), it must be the case that cp1σ1 =
cp1σ ′1

. So, during its last read-config process p1 does not read the configuration indexed at ν (cp1σ1) + 1.
This means that the put-config completes in ρ at state σρ after σ ′1 and the update-config operation
is invoked at state σ ′ρ after σρ with a configuration sequence crcσ ′ρ . During the update operation ρ

invokes get-data operation in every configuration crcσ ′ρ [i].c f д, for µ (crcσ ′ρ) ≤ i ≤ ν (crcσ ′ρ). Notice that

ν (crcσ ′ρ) = µ (c
p2
σ2) = ν (c

p1
σ1) + 1 and moreover the last configuration of crcσ ′ρ was just added by ρ and it

is not finalized. From this it follows that µ (crcσ ′ρ) < ν (c
rc
σ ′ρ
), and hence µ (crcσ ′ρ) ≤ ν (c

p1
σ1). Therefore, ρ

executes get-data in configuration crcσ ′ρ [j].c f д for j = ν (cp1σ1). Since p1 invoked put-data(⟨τπ1 ,vπ1⟩) at
the same configuration c1, and completed in a state σ1 before σ ′ρ , then by C1 of Property 1, it follows
that the get-data action will return a tag τ ≥ τπ1 . Therefore, the maximum tag that ρ discovers is
τmax ≥ τ ≥ τπ1 . Before invoking the finalize-config action, ρ invokes c1.put-data(⟨τmax ,vmax)⟩.
Since ν (crcσ ′ρ) = µ (c

p2
σ2), and since by Lemma 11, then the action put-data is invoked in a configuration

c2 = cp2σ2[j].c f д such that j = µ (cp2σ2). Since the read-config action of π2 observed configuration µ (cp2σ2),
then it must be the case that σ2 appears after the state where the finalize-config was invoked and
therefore after the state of the completion of the put-data action during ρ. Thus, in this case both
properties are satisfied and the lemma follows.

Subcase (b) (ii): Suppose in this case that σ occurs in ξ after σ1. In this case the last put-data in π1
completes before the invocation of the read-config in ρ in execution ξ . Now we can argue recursively,
ρ taking the place of operation π2, that µ (crcσ) ≤ ν (crcσ) and therefore, we consider two cases: (a)
µ (crcσ) ≤ ν (cp1σ1) and (b) µ (crcσ) > ν (cp1σ1). Note that there are finite number of operations invoked in ξ
before π2 is invoked, and hence the statement of the lemma can be shown to hold by a sequence of
inequalities. □

The following lemma shows the consistency of operations as long as the DAP used satisfy
Property 1.

LEMMA 22. Let π1 and π2 denote completed read/write operations in an execution ξ , from
processes p1,p2 ∈ I respectively, such that π1 → π2. If τπ1 and τπ2 are the local tags at p1 and

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 24 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 25

p2 after the completion of π1 and π2 respectively, then τπ1 ≤ τπ2; if π1 is a write operation then
τπ1 < τπ2 .

PROOF. Let ⟨τπ1 ,vπ1⟩ be the pair passed to the last put-data action of π1. Also, let σ2 be the
state in ξ that follows the completion of the first read-config action during π2. Notice that π2
executes a loop after the first read-config operation and performs c .get-data (if π2 is a read) or
c .get-tag (if π2 is a write) from all c = cp2σ2[i].c f д, for µ (cp2σ2) ≤ i ≤ ν (cp2σ2). By Lemma 21, there
exists a c ′.put-data(⟨τ,v⟩) action by some operation π ′ on some configuration c ′ = cp2σ2[j].c f д, for
µ (cp2σ2) ≤ j ≤ ν (cp2σ2), that completes in some state σ ′ that appears before σ2 in ξ . Thus, the get-data or
get-tag invoked by p2 on cp2σ2[j].c f д, occurs after state σ2 and thus after σ ′. Since the DAP primitives
used satisfy C1 and C2 of Property 1, then the get-tag action will return a tag τ ′π2 or a get-data
action will return a pair ⟨τ ′π2 ,v

′
π2⟩, with τ ′π2 ≥ τ. As p2 gets the maximum of all the tags returned,

then by the end of the loop p2 will retrieve a tag τmax ≥ τ
′
π2 ≥ τ ≥ τπ1 .

If now π2 is a read, it returns ⟨τmax ,vmax ⟩ after propagating that value to the last discovered
configuration. Thus, τπ2 ≥ τπ1 . If however π2 is a write, then before propagating the new value the
writer increments the maximum timestamp discovered (Line A4:13) generating a tag τπ2 > τmax .
Therefore the operation π2 propagates a tag τπ2 > τπ1 in this case. □

And the main result of this section follows:

THEOREM 23 (ATOMICITY). In any execution ξ of ARES, if in every configuration c ∈ GL ,
c .get-data(), c .put-data(), and c .get-tag() satisfy Property 1, then ARES satisfy atomicity.

As algorithm ARES handles each configuration separately, then we can observe that the algorithm
may utilize a different mechanism for the put and get primitives in each configuration. So the
following remark:

REMARK 24. Algorithm ARES satisfies atomicity even when the implementaton of the DAPs in
two different configurations c1 and c2 are not the same, given that the ci .get-tag, ci .get-data, and the
ci .put-data primitives in each ci satisfy Property 1.

7 PERFORMANCE ANALYSIS OF ARES
A major challenge in reconfigurable atomic services is to examine the latency of terminating read
and write operations, especially when those are invoked concurrently with reconfiguration operations.
In this section we provide an in depth analysis of the latency of operations in ARES. Additionally,
a storage and communication analysis is shown when ARES utilizes the erasure-coding algorithm
presented in Section 5, in each configuration.

7.1 Latency Analysis
The idea behind our latency analysis is quite straight forward: we construct the worst case execution
that would allow all concurrent reconfigurations to add their proposed configuration. This leads to
the longest configuration sequence that a read/write operation needs to traverse before completing.
Thus, given a bounded delay, we compute the delay for each operation and we finally compute how
long it is going to take for a read/write operation to catch up in the worst case and complete.

Liveness (termination) properties cannot be specified for ARES, without restricting asynchrony
or the rate of arrival of reconfig operations, or if the consensus protocol never terminates. Here,
we provide some conditional performance analysis of the operation, based on latency bounds on
the message delivery. We assume that local computations take negligible time and the latency of
an operation is due to the delays in the messages exchanged during the execution. We measure
delays in time units of some global clock, which is visible only to an external viewer. No process has

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 25 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

26
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

access to the clock. Let d and D be the minimum and maximum durations taken by messages, sent
during an execution of ARES, to reach their destinations. Also, let T (π) denote the duration of an
operation (or action) π . In the statements that follow, we consider any execution ξ of ARES, which
contains k reconfig operations. For any configuration c in an execution of ARES, we assume that any
c .Con.propose operation, takes at least Tmin (CN) time units.

Let us first examine what is the action delays based on the boundaries we assume. It is easy
to see that actions put-config, get-next-config perform two message exchanges thus take time
2d ≤ T (ϕ) ≤ 2D. From this we can derive the delay of a read-config action.

LEMMA 25. Let ϕ be a read-config operation invoked by a non-faulty reconfiguration client rc,
with the input argument and returned values of ϕ as crcσ and crcσ ′ respectively. Then the delay of ϕ is:
4d (ν (crcσ ′) − µ (c

rc
σ) + 1) ≤ T (ϕ) ≤ 4D (ν (crcσ ′) − µ (c

rc
σ) + 1).

From Lemma 25 it is clear that the latency of a read-config action depends on the number of
configurations installed since the last finalized configuration known to the recon client.

Given the latency of a read-config, we can compute the minimum amount of time it takes for k
configurations to be installed.

The following lemma shows the maximum latency of a read or a write operation, invoked by
any non-faulty client. From ARES algorithm, the latency of a read/write operation depends on the
delays of the DAPs operations. For our analysis we assume that all get-data, get-tag and put-data
primitives use two phases of communication. Each phase consists of a communication between the
client and the servers.

LEMMA 26. Suppose π , ϕ and ψ are operations of the type put-data, get-tag and get-data,
respectively, invoked by some non-faulty reconfiguration clients, then the latency of these operations
are bounded as follows: (i) 2d ≤ T (π) ≤ 2D; (ii) 2d ≤ T (ϕ) ≤ 2D; and (iii) 2d ≤ T (ψ) ≤ 2D.

In the following lemma, we estimate the time taken for a read or a write operation to complete,
when it discovers k configurations between its invocation and response steps.

LEMMA 27. Consider any execution of ARES where at most k reconfiguration operations are
invoked. Let σs and σe be the states before the invocation and after the completion step of a read/write
operation π , in some fair execution ξ of ARES. Then we have T (π) ≤ 6D (k + 2) to complete.

PROOF. Let σs and σe be the states before the invocation and after the completion step of a
read/write operation π by p respectively, in some execution ξ of ARES. By algorithm examination
we can see that any read/write operation performs the following actions in this order: (i) read-config,
(ii) get-data (or get-tag), (iii) put-data, and (iv) read-config. Let σ1 be the state when the first
read-config, denoted by read-config1, action terminates. By Lemma 25 the action will take time:

T (read-config1) ≤ 4D (ν (cpσ1) − µ (c
p
σs) + 1)

The get-data action that follows the read-config (Lines Alg. 4:34-35) also took at most (ν (cpσ1) −
µ (cpσs) + 1) time units, given that no new finalized configuration was discovered by the read-config
action. Finally, the put-data and the second read-config actions of π may be invoked at most
(ν (cpσe) − ν (c

p
σ1) + 1) times, given that the read-config action discovers one new configuration every

time it runs. Merging all the outcomes, the total time of π can be at most:

T (π) ≤ 4D (ν (cpσ1) − µ (c
p
σs) + 1) + 2D (ν (cpσ1) − µ (c

p
σs) + 1) + (4D + 2D) (ν (cpσe) − ν (c

p
σ1) + 1)

≤ 6D
[
ν (cpσe) − µ (c

p
σs) + 2

]
≤ 6D (k + 1)

where ν (cpσe) − µ (c
p
σs) ≤ k + 1 since there can be at most k new configurations installed. and the

result of the lemma follows. □

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 26 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 27

Fig. 2. Successful reconfig operations.

It remains now to examine the conditions under which a read/write operation may âĂIJcatch
upâĂİ with an infinite number of reconfiguration operations. For the sake of a worst case analysis
we will assume that reconfiguration operations suffer the minimum delay d , whereas read and write
operations suffer the maximum delay D in each message exchange. We first show how long it takes
for k configurations to be installed.

LEMMA 28. Let σ be the last state of a fair execution of ARES, ξ . Then k configurations can be
installed to cσ , in time T (k) ≥ 4d

∑k
i=1 i + k (Tmin (CN) + 2d) time units.

PROOF. In ARES a reconfig operation has four phases: (i) read-config(cseq), reads the latest
configuration sequence, (ii) add-config(cseq, c), attempts to add the new configuration at the end of
the global sequence GL , (iii) update-config(cseq), transfers the knowledge to the added configuration,
and (iv) finalize-config(cseq) finalizes the added configuration. So, a new configuration is appended
to the end of the configuration sequence (and it becomes visible to any operation) during the
add-config action. In turn, the add-config action, runs a consensus algorithm to decide on the added
configuration and then invokes a put-config action to add the decided configuration. Any operation
that is invoked after the put-config action observes the newly added configuration.

Notice that when multiple reconfigurations are invoked concurrently, then it might be the case
that all participate to the same consensus instance and the configuration sequence is appended by a
single configuration. The worst case scenario happens when all concurrent reconfigurations manage
to append the configuration sequence by their configuration. In brief, this is possible when the
read-config action of each reconfig operation appears after the put-config action of another reconfig
operation.

More formally we can build an execution where all reconfig operations append their configuration
in the configuration sequence. Consider the partial execution ξ that ends in a state σ . Suppose that
every process p ∈ I knows the same configuration sequence, cpσ = cσ . Also let the last finalized
operation in cσ be the last configuration of the sequence, e.g. µ (cσ) = ν (cσ). Notice that cσ can also
be the initial configuration sequence cpσ0 . We extend ξ0 by a series of reconfig operations, such that
each reconfiguration rci is invoked by a reconfigurer ri and attempts to add a configuration ci . Let
rc1 be the first reconfiguration that performs the following actions without being concurrent with any
other reconfig operation:
• read-config starting from µ (cσ)
• add-config completing both the consensus proposing c1 and the put-config action writing the

decided configuration

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 27 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

28
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

Since rc1 its not concurrent with any other reconfig operation, then is the only process to propose a
configuration in µ (cσ), and hence by the consensus algorithm properties, c1 is decided. Thus, cσ is
appended by a tuple ⟨c1, P⟩.

Let now reconfiguration rc2 be invoked immediately after the completion of the add-config action
from rc1. Since the local sequence at the beginning of rc2 is equal to cσ , then the read-config action
of rc2 will also start from µ (cσ). Since, rc1 already propagated c1 to µ (cσ) during is put-config
action, then rc2 will discover c1 during the first iteration of its read-config action, and thus it will
repeat the iteration on c1. Configuration c1 is the last in the sequence and thus the read-config action
of rc2 will terminate after the second iteration. Following the read-config action, rc2 attempts to
add c2 in the sequence. Since rc1 is the only reconfiguration that might be concurrent with rc2, and
since rc1 already completed consensus in µ (cσ), then rc2 is the only operation to run consensus in c1.
Therefore, c2 is accepted and rc2 propagates c2 in c1 using a put-config action.

So in general we let configuration rci to be invoked after the completion of the add-config action
from rci−1. As a result, the read-config action of rci performs i iterations, and the configuration ci
is added immediately after configuration ci−1 in the sequence. Figure 2 illustrates our execution
construction for the reconfiguration operations.

It is easy to notice that such execution results in the worst case latency for all the reconfiguration
operations rc1, rc2, . . . , rci . As by Lemma 25 a read-config action takes at least 4d time to complete,
then as also seen in Figure 2, k reconfigs may take time T (k) ≥

∑k
i=1 [4d ∗ i + (Tmin (CN) + 2d)].

Therefore, it will take time T (k) ≥ 4d
∑k

i=1 i + k (Tmin (CN) + 2d) and the lemma follows. □

The following theorem is the main result of this section, in which we define the relation between
Tmin (CN), d and D so to guarantee that any read or write issued by a non-faulty client always
terminates.

THEOREM 29. Suppose Tmin (CN) ≥ 3(6D − d), then any read or write operation π completes in
any execution ξ of ARES for any number of reconfiguration operations in ξ .

PROOF. By Lemma 28, k configurations may be installed in: T (k) ≥ 4d
∑k

i=1 i +
k (Tmin (CN) + 2d). Also by Lemma 27, we know that operation π takes at most T (π) ≤

6D
(
ν (cpσe) − µ (c

p
σs) + 2

)
. Assuming that k = ν (cpσe) − µ (c

p
σs), the total number of configurations

observed during π , then π may terminate before a k + 1 configuration is added in the configuration
sequence if 6D (k + 2) ≤ 4d

∑k
i=1 i + k (Tmin (CN) + 2d) then we have d ≥ 3D

k −
Tmin (CN)
2(k+2) . And that

completes the lemma. □

7.2 Storage and Communication Costs for ARES.
Storage and Communication costs for ARES highly depends on the DAP that we use in each
configuration. For our analysis we assume that each configuration utilizes the algorithms and the
DAPs presented in Section 5.

Recall that by our assumption, the storage cost counts the size (in bits) of the coded elements
stored in variable List at each server. We ignore the storage cost due to meta-data. For communication
cost we measure the bits sent on the wire between the nodes.

LEMMA 30. The worst-case total storage cost of Algorithm 5 is (δ + 1) nk .

PROOF. The maximum number of (tag, coded-element) pair in the List is δ + 1, and the size of
each coded element is 1

k while the tag variable is a metadata and therefore, not counted. So, the total
storage cost is (δ + 1) nk . □

We next state the communication cost for the write and read operations in Aglorithm 5. Once
again, note that we ignore the communication cost arising from exchange of meta-data.

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 28 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 29

LEMMA 31. The communication cost associated with a successful write operation in Algorithm 5
is at most n

k .

PROOF. During read operation, in the get-tag phase the servers respond with their highest tags
variables, which are metadata. However, in the put-data phase, the reader sends each server the
coded elements of size 1

k each, and hence the total cost of communication for this is n
k . Therefore,

we have the worst case communication cost of a write operation is n
k . □

LEMMA 32. The communication cost associated with a successful read operation in Algorithm 5
is at most (δ + 2) nk .

PROOF. During read operation, in the get-data phase the servers respond with their List variables
and hence each such list is of size at most (δ + 1) 1k , and then counting all such responses give us
(δ + 1) nk . In the put-data phase, the reader sends each server the coded elements of size 1

k each, and
hence the total cost of communication for this is n

k . Therefore, we have the worst case communication
cost of a read operation is (δ + 2) nk . □

From the above Lemmas we get.

THEOREM 33. The ARES algorithm has: (i) storage cost (δ + 1) nk , (ii) communication cost for
each write at most to n

k , and (iii) communication cost for each read at most (δ + 2) nk .

8 FLEXIBILITY OF DAPS
In this section, we argue that various implementations of DAPs can be used in ARES. In fact, via
reconfig operations, one can implement a highly adaptive atomic DSS: replication-based can be
transformed into erasure-code based DSS; increase or decrease the number of storage servers; study
the performance of the DSS under various code parameters, etc. The insight to implementing various
DAPs comes from the observation that the simple algorithmic template A (see Alg. 7) for reads and
writes protocol combined with any implementation of DAPs, satisfying Property 1 gives rise to a
MWMR atomic memory service. Moreover, the read and writes operations terminate as long as the
implemented DAPs complete.

Algorithm 7 Template A for the client-side read/write steps.

operation read()
2: ⟨t, v⟩ ← c .get-data()

c .put-data(⟨t, v⟩)
4: return ⟨t, v⟩

end operation

6: operation write(v)
t ← c .get-tag()

8: tw ← inc (t)
c .put-data(⟨tw , v⟩)

10: end operation

A read operation in A performs c .get-data() to retrieve a tag-value pair, ⟨τ,v⟩ from a configuration
c, and then it performs a c .put-data(⟨τ,v⟩) to propagate that pair to the configuration c. A write
operation is similar to the read but before performing the put-data action it generates a new tag
which associates with the value to be written. The following result shows that A is atomic and live, if
the DAPs satisfy Property 1 and live.

THEOREM 34 (ATOMICITY OF TEMPLATE A). Suppose the DAP implementation satisfies the
consistency properties C1 and C2 of Property 1 for a configuration c ∈ C. Then any execution ξ of
algorithm A in configuration c is atomic and live if each DAP invocation terminates in ξ under the
failure model c .F .

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 29 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

30
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

PROOF. We prove the atomicity by proving properties A1, A2 and A3 presented in Section 2 for
any execution of the algorithm.

Property A1: Consider two operations ϕ and π such that ϕ completes before π is invoked. We need
to show that it cannot be the case that π ≺ ϕ. We break our analysis into the following four cases:

Case (a): Both ϕ and π are writes. The c .put-data(∗) of ϕ completes before π is invoked. By
property C1 the tag τπ returned by the c .get-data() at π is at least as large as τϕ . Now, since τπ is
incremented by the write operation then π puts a tag τ ′π such that τϕ < τ ′π and hence we cannot have
π ≺ ϕ.

Case (b): ϕ is a write and π is a read. In execution ξ since c .put-data(⟨tϕ , ∗⟩) of ϕ completes before
the c .get-data() of π is invoked, by property C1 the tag τπ obtained from the above c .get-data() is
at least as large as τϕ . Now τϕ ≤ τπ implies that we cannot have π ≺ ϕ.

Case (c): ϕ is a read and π is a write. Let the id of the writer that invokes π we wπ . The
c .put-data(⟨τϕ , ∗⟩) call of ϕ completes before c .get-tag() of π is initiated. Therefore, by property C1
get-tag(c) returns τ such that, τϕ ≤ τ. Since τπ is equal to inc (τ) by design of the algorithm, hence
τπ > τϕ and we cannot have π ≺ ϕ.

Case (d): Both ϕ and π are reads. In execution ξ the c .put-data(⟨tϕ , ∗⟩) is executed as a part of
ϕ and completes before c .get-data() is called in π . By property C1 of the data-primitives, we have
τϕ ≤ τπ and hence we cannot have π ≺ ϕ.

Property A2: Note that because the tag set T is well-ordered we can show that A2 holds by first
showing that every write has a unique tag. This means that any two pair of writes can be ordered.
Note that a read can be ordered w.r.t. any write operation trivially if the respective tags are different,
and by definition, if the tags are equal the write is ordered before the read.

Observe that two tags generated from different writers are necessarily distinct because of the id
component of the tag. Now if the operations, say ϕ and π are writes from the same writer then,
by well-formedness property, the second operation will witness a higher integer part in the tag by
property C1, and since the c .get-tag() is followed by c .put-data(∗). Hence π is ordered after ϕ.

Property A3: By C2 the c .get-data() may return a tag τ, only when there exists an operation π that
invoked a c .put-data(⟨τ, ∗⟩). Otherwise it returns the initial value. Since a write is the only operation
to put a new tag τ in the system then Property A3 follows from C2. □

8.1 Representing Known Algorithms in terms of data-access primitives
A number of known tag-based algorithms that implement atomic read/write objects (e.g., ABD
[11], FAST[21]), can be expressed in terms of DAP. In this subsection we demonstrate how we can
transform the very celebrated ABD algorithm [11].

MWABD Algorithm. The multi-writer version of the ABD can be transformed to the generic
algorithm Template A. Algorithm 8 illustrates the three DAP for the ABD algorithm. The get-data
primitive encapsulates the query phase of MWABD, while the put-data primitive encapsulates the
propagation phase of the algorithm.

Let us now examine if the primitives satisfy properties C1 and C2 of Property 1. We begin with a
lemma that shows the monotonicity of the tags at each server.

LEMMA 35. Let σ and σ ′ two states in an execution ξ such that σ appears before σ ′ in ξ . Then
for any server s ∈ S it must hold that s .taд |σ ≤ s .taд |σ ′ .

PROOF. According to the algorithm, a server s updates its local tag-value pairs when it receives a
message with a higher tag. So if s .taд |σ = τ then in a state σ ′ that appears after σ in ξ , s .taд |σ ′ ≥
τ . □

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 30 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 31

Algorithm 8 Implementation of DAP for ABD at each process p using configuration c

Data-Access Primitives at process p:
2: procedure c.put-data(⟨τ, v⟩))

send (WRITE, ⟨τ, v⟩) to each s ∈ c .Servers
4: until ∃Q,Q∈c .Quorums s.t. p receives ACK from ∀s ∈ Q

end procedure

6: procedure c.get-tag()
send (QUERY-TAG) to each s ∈ c .Servers

8: until ∃Q, Q ∈ c .Quorums s.t.
p receives ⟨τs , vs ⟩ from ∀s ∈ Q

10: τmax ← max({τs : p received ⟨τs , vs ⟩ from s })

return τmax
12: end procedure

procedure c.get-data()
14: send (QUERY) to each s ∈ c .Servers

until ∃Q, Q ∈ c .Quorums s.t.
16: p receives ⟨τs , vs ⟩ from ∀s ∈ Q

τmax ← max({τs : ri received ⟨τs , vs ⟩ from s })
18: return {⟨τs , vs ⟩ : τs = τmax∧ p received ⟨τs , vs ⟩ from s }

end procedure

20:

Primitive Handlers at server si in configuration c:
22: Upon receive (QUERY-TAG) from q

send τ to q
24: end receive

Upon receive (QUERY) from q
26: send ⟨τ, v⟩ to q

end receive

28: Upon receive (WRITE, ⟨τin, vin ⟩) from q
if τin > τ then

30: ⟨τ, v⟩ ← ⟨τin, vin ⟩
send ACK to q

32: end receive

In the following two lemmas we show that property C1 is satisfied, that is if a put-data action
completes, then any subsequent get-data and get-tag actions will discover a higher tag than the one
propagated by that put-data action.

LEMMA 36. Let ϕ be a c .put-data(⟨τ ,v⟩) action invoked by p1 and γ be a c .get-tag() action
invoked by p2 in a configuration c, such that ϕ → γ in an execution ξ of the algorithm. Then γ returns
a tag τγ ≥ τ .

PROOF. The lemma follows from the intersection property of quorums. In particular, during the
c .put-data(⟨τ ,v⟩) action, p1 sends the pair ⟨τ ,v⟩ to all the servers in c .Servers and waits until all
the servers in a quorum Qi ∈ c .Quorums reply. When those replies are received then the action
completes.

During a c .get-data() action on the other hand, p2 sends query messages to all the servers in
c .Servers and waits until all servers in a quorum Q j ∈ c .Quorums (not necessarily different than
Qi) reply. By definition Qi ∩Q j , ∅, thus any server s ∈ Qi ∩Q j reply to both ϕ and γ actions. By
Lemma 35 and since s received a tag τ , then s replies to p2 with a tag τs ≥ τ . Since γ returns the
maximum tag it discovers then τγ ≥ τs . Therefore τγ ≥ τ and this completes the proof. □

With similar arguments and given that each value is associated with a unique tag then we can show
the following lemma.

LEMMA 37. Let π be a c .put-data(⟨τ ,v⟩) action invoked by p1 and ϕ be a c .get-data() action
invoked by p2 in a configuration c, such that π → ϕ in an execution ξ of the algorithm. Then ϕ
returns a tag-value ⟨τϕ ,vϕ⟩ such that τϕ ≥ τ .

Finally we can now show that property C2 also holds.

LEMMA 38. If ϕ is a c .get-data() that returns ⟨τπ ,vπ ⟩ ∈ T ×V , then there exists π such that π
is a c .put-data(⟨τπ ,vπ ⟩) and ϕ ↛ π .

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 31 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

32
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

PROOF. This follows from the facts that (i) servers set their tag-value pair to a pair received by a
put-data action, and (ii) a get-data action returns a tag-value pair that it received from a server. So if
a c .get-data() operation ϕ returns a tag-value pair ⟨τπ ,vπ ⟩, there should be a server s that replied to
that operation with ⟨τπ ,vπ ⟩, and s received ⟨τπ ,vπ ⟩ from some c .put-data(⟨τπ ,vπ ⟩) action, π . Thus,
π can proceed or be concurrent with ϕ, and hence ϕ ̸→ π . □

9 EXPERIMENTAL EVALUATION
The theoretical findings suggest that ARES is an algorithm to provide robustness and flexibility on
shared memory implementations, without sacrificing strong consistency. In this section we present a
proof-of-concept implementation of ARES and we run preliminary experiments to get better insight
on the efficiency and adaptiveness of ARES. In particular, our experiments measure the latency of
each read, write, and reconfig operations, and examine the persistence of consistency even when the
service is reconfigured between configurations that add/remove servers and utilize different shared
memory algorithms.

9.1 Experimental Testbed
We ran experiments on two different setups: (i) simulated locally on a single machine, and (ii) on a
LAN. Both type of experiments run on Emulab [2], an emulated WAN environment testbed used
for developing, debugging, and evaluating the systems. We used nodes with two 2.4 GHz 64-bit
8-Core E5-2630 "Haswell" processors, 64GB RAM, with 1GB and 10GB NICs. In both setups
we used an external implementation of Raft[45] consensus algorithms, which was used for the
service reconfiguration (line 16 of Alg. 2) and was deployed on top of small RPi devices. Small
devices introduced further delays in the system, reducing the speed of reconfigurations and creating
harsh conditions for longer periods in the service. The Python implementation of Raft used for
consensus is PySyncObj [5]. Some modifications were done to allow the execution of Raft in the
ARES environment. We built an HTTP API for the management of the Raft subsystem. A reconfigurer
can propose a configuration at a particular index in the configuration sequence by sending a POST
request to the url of each Raft node, and receives a response from the RAFT on which configuration
is decided for that index.
Local Experimental Setup: The local setup was used to have access to a global synchronized clock
(the clock of the local machine) in order to examine whether our algorithm preserves global ordering
and hence atomicity even when using different algorithms between configurations. Therefore, all the
instances are hosted on the same physical machine avoiding the skew between computer clocks in
a distributed system. Furthermore, the use of one clock guarantees that when an event occurs after
another, it will assign a later time.
Distributed Experimental Setup: The distributed experiments in Emulab enabled the examination
of the performance of the algorithm in a close to real environment. For the deployment and remote
execution of the experimental tasks on the Emulab, we used Ansible Playbooks [1]. All physical
nodes were placed on a single LAN using a DropTail queue without delay or packet loss. Each
physical machine runs one server or client process. This guarantees a fair communication delay
between a client and a server node.
Node Types: In all experiments, we use four distinct types of nodes, writers, readers , reconfigurers
and servers. Their main role is listed below:

• writer w ∈W ⊆ C : a client that sends write requests to all servers and waits for a quorum of
the servers to reply
• reader r ∈ R ⊆ C: a client that sends read requests to servers and waits for a quorum of the

servers to reply

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 32 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 33

• reconfigurer д ∈ G ⊆ C: a client that sends reconfiguration requests to servers and waits for a
quorum of the servers to reply
• server s ∈ S: a server listens for read and write requests, it updates its object replica according

to the atomic shared memory and replies to the process that originated the request.

Performance Metric: The metric for evaluating the algorithms is the operational latency. This
includes both communication and computational delays. The operation latency is computed as the
average of all clients’ average operation latencies. For better estimations, each experiment in every
scenario was repeated 6 times. In the graphs, we use error bars to illustrate the standard error of the
mean (SEM) from the 6 repeated experiments.

9.2 Experimental Scenarios
In this section, we describe the scenarios we constructed and the settings for each of them. In our
scenarios we constructed the DAPs and used two different atomic storage algorithms in ARES: (i) the
erasure coding based algorithm presented in Section 5, and (ii) the ABD algorithm (see Section 8.1).
Implementation of DAPs : Clients initialize the appropriate configuration objects to handle any
request. Notice that the client creates a configuration object when it is the first time that the client
requests an operation or when doing a reconfiguration operation. Once the configuration object is
initialized, it is stored on the client cseq and it is retrieved directly on any subsequent request from
the client. Therefore, the DAPs procedures are called from a configuration object. The asynchronous
communication between components is achieved by using DEALER and ROUTER sockets, from the
ZeroMQ Python library [6].
Erasure Coding: The type of erasure coding we use is (n,k)-Reed-Solomon code, which guarantees
that any k of n coded fragments is enough to reassemble the original object. The parameter k is
the number of encoded data fragments, n is the total number of servers and m is the number of
parity fragments, i.e. n − k. A high number of k and consequently a small number of m means
less redundancy with the system tolerating fewer failures. When k = 1 we essentially converge to
replication. In practice, the get-data and put-data functions from algorithm 5 integrate the standard
Reed-Solomon implementation provided by liberasurecode from the PyEClib Python library [4].
Fixed Parameters: In all scenarios, the number of servers is fixed to 10. The number of writers and
the value of delta are set to 5; delta being the maximum number of concurrent put-data operations.
The parity value of the EC is set to 2 in order to minimize the redundancy, leading to 8 data servers
and 2 parity servers. It is worth mentioning that the quorum size of the EC algorithm is

⌈
10+8
2

⌉
= 9,

while the quorum size of ABD algorihtm is
⌊
10
2

⌋
+ 1 = 6. In relation to the EC algorithm, we can

conclude that the parameter k is directly proportional to the quorum size. But as the value of k and
quorum size increase, the size of coded elements decreases.
Distributed Experiments: For the distributed experiments we use a stochastic invocation scheme
in which readers and writers pick a random time uniformly distributed (discrete) between inter-
vals to invoke their next operations. Respectively the intervals are [1...rInt] and [1..wInt], where
rInt ,wInt = 2sec. In total, each writer performs 60 writes and each reader 60 reads. The reconfigurer
invokes its next operation every 15sec and performs a total of 6 reconfigurations. The intervals are set
within these values in order to generate a continuous flow of operations and stress the concurrency in
the system. Note that these values are not based on any real world scenario.

In particular, we present six types of scenarios:

• File Size Scalability (Emulab): The first scenario is made to evaluate how the read and write
latencies are affected by the size of the shared object. There are two separated runs, one for

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 33 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

34
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

each examined storage algorithm. The file size is doubled from 1MB to 128MB. The number
of readers is fixed to 5, without any reconfigurers.
• Reader Scalability (Emulab): This scenario is constructed to compare the read and write

latency of the system with two different storage algorithms, while the readers increase. In
particular, we execute two separate runs, one for each storage algorithm. We use only one
reconfigurer which requests recon operations that lead to the same shared memory emulation
and server nodes. The size of the file used is 4MB.
• Changing Reconfigurations (Emulab): In this scenario, we evaluate how the read and write

latencies are affected when increasing the number of readers, while also changing the storage
algorithm. We run two different runs which differ in the way the reconfigurer chooses the next
storage algorithm: (i) the reconfigurer chooses randomly between the two storage algorithms,
and (ii) the reconfigurer switches between the two storage algorithms. The size of the file used,
in both scenarios, is 4MB.
• k Scalability (Emulab, EC only): In this scenario, we examine the read and write latencies

with different numbers of k (a parameter of Reed-Solomon). We increase the k of the EC
algorithm from 1 to 9. The number of readers is fixed to 5, without any reconfigurers. The size
of the file used is 4MB.
• Changing the number of Reads/Writes (Emulab): In these scenarios, we examine the read

and write latencies with different numbers of read and write operations respectively. We change
the number of reads/writes that each reader/writer performs, from 10 to 60, increasing by 10.
We calculate all possible pairs of writes and reads. The number of readers is fixed to 5. The
reconfigurer switches between the two storage algorithms. The size of the file used is 4MB
• Consistency Persistence (Local): In this scenario, we run multiple client operations in order to

check if the data is consistent across servers. The number of readers is set to 5. The readers and
writers invoke their next operations without any time delay, while the reconfigurer waits 15sec
for the next invocation. We run two different scenarios which differ in the reconfigurations. In
both scenarios, the reconfigurer switches between the two storage algorithms. In the second
scenario, the reconfigurer changes concurrently the quorum of servers. In total, each writer
performs 500 writes, each reader 500 reads and the reconfigurer 50 reconfigurations. The size
of the file used is 4MB.

9.3 Experimental Results
In this section, we present and explain the evaluation results of each scenario. As a general observation,
the ARES algorithm with the EC storage provides data redundancy with a lower communicational
and storage cost compared to the ABD storage that uses a strict replication technique.
File Size Scalability Results: Fig. 3(a) shows the results of the file size scalability experiments.
The read and write latencies of both storage algorithms remain in low levels until 16MB. In bigger
sizes we observe the latancies of all operations to grow significantly. It is worth noting that the
fragmentation applied by the EC algorithm, benefits its write operations which follow a slower
increasing curve than the rest of the operations. From the rest the reads seem to suffer the worst
delay hit, as they are engaged in more communication phases. Nevertheless, the larger messages
sent by ABD result in slower read operations. We had noticed that EC has lower SEM values than
ABD, which indicates that the calculated mean latencies of EC align very closely throughout the
experiments. As EC breaks each file into smaller fragments, in combination with the fact that the
variation is smaller when using smaller files in ABD, may lead to the conclusion that the file size has
a significant impact on the error variation. To this end it appears that larger file sizes introduce higher
variation on the delivery times of the file and hence higher statistical errors.

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 34 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 35

(a) (b)

(c) (d)

(e) (f)
Fig. 3. Simulation results.

Reader Scalability Results: The results of reader scalability experiments can be found in Fig. 3(b).
The read and write latencies of both algorithms remain almost unchanged, while the number of
readers increases. This indicates that the system does not reach a state where it can not handle the
concurrent read operations. Still, the reduced message size of read and write operations in EC keep
their latencies lower than the corresponding latencies of ABD. On the other hand, the reconfiguration
latency in both algorithms witnesses wild fluctuations between about 1 sec and 4 sec. This is probably

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 35 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

36
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

due to the unstable connection in the external service which handles the reconfigurations. Notice
that the number of readers does not have a great impact on the results we obtain in each experiment
as the SEM error bars are small. The same goes for the next scenario where the number of readers
changes while switching algorithms between reconfigurations.
Changing Reconfigurations Results: Fig. 3(c) illustrates the results of experiments with the random
storage change. While, in Fig. 3(d), we can find the results of the experiments when the reconfigurer
switches between storage algorithms. During both experiments, there are cases where a single
read/write operation may access configurations that implement both ABD and EC algorithms, when
concurrent with a recon operation. Thus, the latencies of such operations are accounted in both ABD
and EC latencies. As we mentioned earlier, our choice of k minimizes the coded fragment size but
introduces bigger quorums and thus larger communication overhead. As a result, in smaller file sizes,
ARES may not benefit from the coding, bringing the delays of the two algorithms closer to each other.
It is again obvious that the reconfiguration delays are higher than the delays of all other operations.
k Scalability Results: From Figs. 3(e) we can infer that when smaller k are used, the write and
read latencies reach their highest values. In both cases, small k results in the generation of smaller
number of data fragments and thus bigger sizes of the fragments and higher redundancy. For example
we can see that for RS(10,8) and RS(10,7) we have the same size of quorum, equal to 9, whereas
the latter has more redundant information. As a result, with a higher number of m (i.e. smaller k)
we achieve higher levels of fault-tolerance, but that it would waste storage efficiency. The write
latency seems to be less affected by the number of k since the encoding is considerably faster as it
requires less computation. In conclusion, there appears to be a trade-off between operation latency
and fault-tolerance in the system: the further increase of the k (and thus lower fault-tolerance) the
smaller the latency of read/write operations. This experiment proves that the object size plays a
significant role on the error variation. Notice that while k is small, and thus the object we send out is
bigger, the error is higher. As k goes bigger and the fragments get smaller the SEM minimizes. This
is an indication that communication of larger data over the wire may fluctuate the delivery times (as
also seen in the file size scenario).
Changing the number of Reads/Writes Results: Fig. 3(f) shows a subset of the results of the
experiments where the number of read operations changes and the number of write operations is fixed
to 60. The experiments show that the total read/write latency (both EC and ABD) has very similar
values for all the combinations of writes and reads, which indicates that the system performance is
not affected by the number of reads and writes. This is expected since the number of participants is
the same in all cases and by well-formedness (i.e., each participant invokes a single operation at a
time) at most 10 operations will be concurrent in the execution at any given state. Higher concurrency
can be captured by the scalability scenario. Note again that the read latency is higher than the write
one, since the read operation actually transfers data twice: once to fetch the data from the servers,
and once during the propagation phase.
Consistency Persistence Results: Though ARES protocol is probably strongly consistent, it is
important to ensure that our implementation is correct. Validating strong consistency of an execution
requires precise clock synchronization across all processes, so that one can track operations with
respect to a global time. This is impossible to achieve in a distributed system where clock drift is
inevitable. To circumvent this, we deploy all the processes in a single beefy machine so that every
process observes the same clock running in the same physical machine.

Our checker gathers data regarding an execution, and this data includes start and end times of all
the operations, as well as other parameters like logical timestamps used by the protocol. The checker
logic is based on the conditions appearing in Lemma 13.16 [38], which provide a set of sufficient
conditions for guaranteeing strong consistency. The checker validates strong consistency property for
every atomic object individually for the execution under consideration. Note that consistency holds

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 36 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 37

despite the existence of concurrent read/write and reconfiguration operations that may add/remove
servers and switch the storage algorithm in the system.

10 CONCLUSIONS
We presented an algorithmic framework suitable for reconfigurable, erasure code-based atomic
memory service in asynchronous, message-passing environments. In particular, we provide a new
modular framework, called ARES, which abstracts the implementation of the underlying shared
memory within a set of DAPs with specific correctness properties. Using these structures, ARES
may implement a large class of atomic shared algorithms (those that can be expressed using the
proposed DAPs) allowing any such algorithm to work on a reconfigurable environment. A set of
erasure-coded-based atomic memory algorithms are included in this class. To demonstrate the use of
our framework, we provided a new two-round erasure code-based algorithm that has near optimal
storage cost, implemented in terms of the proposed DAPs. Such implementation gave rise to the first
(to our knowledge) reconfigurable erasure-coded atomic shared memory object. We provided a proof-
of-concept implementation of our framework and obtained initial experimental results proving the
feasibility of the presented approach, demonstrating its correctness and comparing its performance
with traditional approaches.

ARES is designed to address the real-world problem of system migration from a replicated
system to a system that uses erasure codes and vice-versa. ARES can also enable replacing of failed
nodes with new non-failed nodes. It’s key difference with existing state of the art systems is that
it can perform such reconfigurations with relatively minimal interruption of service unlike current
implementations that would block ongoing operations for reconfiguration. We anticipate that ARES
will be very useful for workloads that are prone to fast changes in properties, and have stringent
constraints on the latencies. For such workloads, ARES enables the system to adapt itself to the
changes in the workload in an agile manner - utilizing the full flexibility that EC brings to the system
- without causing latency constraint or consistency violations due to interruptions.

Our main goal was to establish that non-blocking reconfiguration is feasible and compatible with
EC based atomic data storage.Our experimental study is designed as a proof-of-concept prototype to
verify the correctness properties we have developed, and show some benefits. It must be emphasized
that a full-fledged system study of our algorithms - albeit an interesting area of future work that is
motivated by our paper - is outside our current scope. In particular, although our study provides some
initial hints, we anticipate such a future study would examine the following questions in more detail:

• Real-world applications that would indeed benefit from our design
• Workloads generated from these real-world applications to test our algorithms, and competing

ones
• The synergies between our reconfiguration algorithm and existing failure detection and recovery

mechanisms.
• Adding efficient repair and reconfiguration using regenerating codes

REFERENCES
[1] Ansible. https://www.ansible.com/overview/how-ansible-works.
[2] Emulab network testbed. https://www.emulab.net/.
[3] Intel storage acceleration library (open source version). https://goo.gl/zkVl4N.
[4] PyEClib.
[5] PySyncObj.
[6] ZeroMQ.
[7] ABEBE, M., DAUDJEE, K., GLASBERGEN, B., AND TIAN, Y. Ec-store: Bridging the gap between storage and latency

in distributed erasure coded systems. In 2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS) (July 2018), pp. 255–266.

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 37 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

https://www.ansible.com/overview/how-ansible-works
https://www.emulab.net/

38
Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel Medard, and Nancy

Lynch

[8] AGUILERA, M. K., KEIDAR, I., MALKHI, D., AND SHRAER, A. Dynamic atomic storage without consensus. In
Proceedings of the 28th ACM symposium on Principles of distributed computing (PODC ’09) (New York, NY, USA,
2009), ACM, pp. 17–25.

[9] AGUILERA, M. K., KEIDARY, I., MALKHI, D., MARTIN, J.-P., AND SHRAERY, A. Reconfiguring replicated atomic
storage: A tutorial. Bulletin of the EATCS 102 (2010), 84–081.

[10] ANTA, A. F., NICOLAOU, N., AND POPA, A. Making “fast” atomic operations computationally tractable. In
International Conference on Principles Of Distributed Systems (2015), OPODIS’15.

[11] ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly in message passing systems. Journal of the
ACM 42(1) (1996), 124–142.

[12] BURIHABWA, D., FELBER, P., MERCIER, H., AND SCHIAVONI, V. A performance evaluation of erasure coding libraries
for cloud-based data stores. In Distributed Applications and Interoperable Systems (2016), Springer, pp. 160–173.

[13] CACHIN, C., AND TESSARO, S. Optimal resilience for erasure-coded byzantine distributed storage. In Dependable
Systems and Networks, International Conference on (Los Alamitos, CA, USA, 2006), IEEE Computer Society, pp. 115–
124.

[14] CADAMBE, V. R., LYNCH, N., MÉDARD, M., AND MUSIAL, P. A coded shared atomic memory algorithm for message
passing architectures. In Network Computing and Applications (NCA), 2014 IEEE 13th International Symposium on
(Aug 2014), pp. 253–260.

[15] CADAMBE, V. R., LYNCH, N. A., MÉDARD, M., AND MUSIAL, P. M. A coded shared atomic memory algorithm for
message passing architectures. Distributed Computing 30, 1 (2017), 49–73.

[16] CHEN, Y. L. C., MU, S., AND LI, J. Giza: Erasure coding objects across global data centers. In Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC âĂŹ17) (2017), pp. 539–551.

[17] CHOCKLER, G., GILBERT, S., GRAMOLI, V., MUSIAL, P. M., AND SHVARTSMAN, A. A. Reconfigurable distributed
storage for dynamic networks. Journal of Parallel and Distributed Computing 69, 1 (2009), 100–116.

[18] CHOCKLER, G., AND MALKHI, D. Active disk paxos with infinitely many processes. Distributed Computing 18, 1
(2005), 73–84.

[19] DOBRE, D., KARAME, G. O., LI, W., MAJUNTKE, M., SURI, N., AND VUKOLIÄĞ, M. Proofs of writing for robust
storage. IEEE Transactions on Parallel and Distributed Systems 30, 11 (2019), 2547–2566.

[20] DUTTA, P., GUERRAOUI, R., AND LEVY, R. R. Optimistic erasure-coded distributed storage. In DISC ’08: Proceedings
of the 22nd international symposium on Distributed Computing (Berlin, Heidelberg, 2008), Springer-Verlag, pp. 182–196.

[21] DUTTA, P., GUERRAOUI, R., LEVY, R. R., AND CHAKRABORTY, A. How fast can a distributed atomic read be? In
Proceedings of the 23rd ACM symposium on Principles of Distributed Computing (PODC) (2004), pp. 236–245.

[22] FAN, R., AND LYNCH, N. Efficient replication of large data objects. In Distributed algorithms (2003), F. E. Fich, Ed.,
vol. 2848 of Lecture Notes in Computer Science, pp. 75–91.

[23] FERNÁNDEZ ANTA, A., HADJISTASI, T., AND NICOLAOU, N. Computationally light “multi-speed” atomic memory.
In International Conference on Principles Of Distributed Systems (2016), OPODIS’16.

[24] GAFNI, E., AND MALKHI, D. Elastic Configuration Maintenance via a Parsimonious Speculating Snapshot Solution.
In International Symposium on Distributed Computing (2015), Springer, pp. 140–153.

[25] GEORGIOU, C., NICOLAOU, N. C., AND SHVARTSMAN, A. A. On the robustness of (semi) fast quorum-based
implementations of atomic shared memory. In DISC ’08: Proceedings of the 22nd international symposium on
Distributed Computing (Berlin, Heidelberg, 2008), Springer-Verlag, pp. 289–304.

[26] GEORGIOU, C., NICOLAOU, N. C., AND SHVARTSMAN, A. A. Fault-tolerant semifast implementations of atomic
read/write registers. Journal of Parallel and Distributed Computing 69, 1 (2009), 62–79.

[27] GILBERT, S. RAMBO II: Rapidly reconfigurable atomic memory for dynamic networks. Master’s thesis, MIT, August
2003.

[28] GILBERT, S., LYNCH, N., AND SHVARTSMAN, A. RAMBO II: Rapidly reconfigurable atomic memory for dynamic
networks. In Proceedings of International Conference on Dependable Systems and Networks (DSN) (2003), pp. 259–268.

[29] HERLIHY, M. P., AND WING, J. M. Linearizability: a correctness condition for concurrent objects. ACM Transactions
on Programming Languages and Systems 12, 3 (1990), 463–492.

[30] HUANG, J., LIANG, X., QIN, X., XIE, P., AND XIE, C. Scale-rs: An efficient scaling scheme for rs-coded storage
clusters. IEEE Transactions on Parallel and Distributed Systems 26, 6 (2015), 1704–1717.

[31] HUFFMAN, W. C., AND PLESS, V. Fundamentals of error-correcting codes. Cambridge university press, 2003.
[32] JEHL, L., VITENBERG, R., AND MELING, H. Smartmerge: A new approach to reconfiguration for atomic storage. In

International Symposium on Distributed Computing (2015), Springer, pp. 154–169.
[33] JOSHI, G., SOLJANIN, E., AND WORNELL, G. Efficient redundancy techniques for latency reduction in cloud systems.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS) 2, 2 (2017), 12.
[34] KONWAR, K. M., PRAKASH, N., KANTOR, E., LYNCH, N., MÉDARD, M., AND SCHWARZMANN, A. A. Storage-

optimized data-atomic algorithms for handling erasures and errors in distributed storage systems. In 2016 IEEE

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 38 of 39Transactions on Storage

https://mc.manuscriptcentral.com/tos

ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage 39

International Parallel and Distributed Processing Symposium (IPDPS) (May 2016), pp. 720–729.
[35] KONWAR, K. M., PRAKASH, N., LYNCH, N., AND MÉDARD, M. Radon: Repairable atomic data object in networks.

In The International Conference on Distributed Systems (OPODIS) (2016).
[36] LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized structured storage system. SIGOPS Oper. Syst. Rev. 44, 2

(Apr. 2010), 35–40.
[37] LAMPORT, L. The part-time parliament. ACM Transactions on Computer Systems 16, 2 (1998), 133–169.
[38] LYNCH, N. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
[39] LYNCH, N., AND SHVARTSMAN, A. RAMBO: A reconfigurable atomic memory service for dynamic networks. In

Proceedings of 16th International Symposium on Distributed Computing (DISC) (2002), pp. 173–190.
[40] LYNCH, N. A., AND SHVARTSMAN, A. A. Robust emulation of shared memory using dynamic quorum-acknowledged

broadcasts. In Proceedings of Symposium on Fault-Tolerant Computing (1997), pp. 272–281.
[41] MICHAEL, E., PORTS, D. R. K., SHARMA, N. K., AND SZEKERES, A. Recovering Shared Objects Without Stable

Storage. In 31st International Symposium on Distributed Computing (DISC 2017) (Dagstuhl, Germany, 2017), A. W.
Richa, Ed., vol. 91 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, pp. 36:1–36:16.

[42] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system.
[43] NICOLAOU, N., CADAMBE, V., KONWAR, K., PRAKASH, N., LYNCH, N., AND MÉDARD, M. Ares: Adaptive,

reconfigurable, erasure coded, atomic storage. CoRR abs/1805.03727 (2018).
[44] NICOLAOU, N., CADAMBE, V., PRAKASH, N., KONWAR, K., MEDARD, M., AND LYNCH, N. Ares: Adaptive,

reconfigurable, erasure coded, atomic storage. In 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS) (2019), pp. 2195–2205.

[45] ONGARO, D., AND OUSTERHOUT, J. In search of an understandable consensus algorithm. In Proceedings of the 2014
USENIX Conference on USENIX Annual Technical Conference (Berkeley, CA, USA, 2014), USENIX ATC’14, USENIX
Association, pp. 305–320.

[46] RASHMI, K., CHOWDHURY, M., KOSAIAN, J., STOICA, I., AND RAMCHANDRAN, K. Ec-cache: Load-balanced,
low-latency cluster caching with online erasure coding. In OSDI (2016), pp. 401–417.

[47] SHRAER, A., MARTIN, J.-P., MALKHI, D., AND KEIDAR, I. Data-centric reconfiguration with network-attached
disks. In Proceedings of the 4th Int’l Workshop on Large Scale Distributed Sys. and Middleware (LADIS âĂŹ10) (2010),
p. 22âĂŞ26.

[48] SPIEGELMAN, A., KEIDAR, I., AND MALKHI, D. Dynamic Reconfiguration: Abstraction and Optimal Asynchronous
Solution. In 31st International Symposium on Distributed Computing (DISC 2017) (2017), vol. 91, pp. 40:1–40:15.

[49] WANG, S., HUANG, J., QIN, X., CAO, Q., AND XIE, C. Wps: A workload-aware placement scheme for erasure-coded
in-memory stores. In Networking, Architecture, and Storage (NAS), 2017 International Conference on (2017), IEEE,
pp. 1–10.

[50] WU, C., AND HE, X. Gsr: A global stripe-based redistribution approach to accelerate raid-5 scaling. In 2012 41st
International Conference on Parallel Processing (2012), pp. 460–469.

[51] WU, C., AND HE, X. A flexible framework to enhance raid-6 scalability via exploiting the similarities among mds
codes. In 2013 42nd International Conference on Parallel Processing (2013), pp. 542–551.

[52] XIANG, Y., LAN, T., AGGARWAL, V., AND CHEN, Y.-F. R. Multi-tenant latency optimization in erasure-coded storage
with differentiated services. In 2015 IEEE 35th International Conference on Distributed Computing Systems (ICDCS)
(2015), IEEE, pp. 790–791.

[53] XIANG, Y., LAN, T., AGGARWAL, V., CHEN, Y.-F. R., XIANG, Y., LAN, T., AGGARWAL, V., AND CHEN, Y.-F. R.
Joint latency and cost optimization for erasure-coded data center storage. IEEE/ACM Transactions on Networking (TON)
24, 4 (2016), 2443–2457.

[54] YU, Y., HUANG, R., WANG, W., ZHANG, J., AND LETAIEF, K. B. Sp-cache: load-balanced, redundancy-free cluster
caching with selective partition. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis (2018), IEEE Press, pp. 1–13.

[55] ZHANG, G., LI, K., WANG, J., AND ZHENG, W. Accelerate rdp raid-6 scaling by reducing disk i/os and xor operations.
IEEE Transactions on Computers 64, 1 (2015), 32–44.

[56] ZHANG, H., DONG, M., AND CHEN, H. Efficient and available in-memory kv-store with hybrid erasure coding and
replication. In 14th USENIX Conference on File and Storage Technologies (FAST 16) (Santa Clara, CA, 2016), USENIX
Association, pp. 167–180.

[57] ZHANG, X., HU, Y., C. LEE, P. P., AND ZHOU, P. Toward optimal storage scaling via network coding: From theory to
practice. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications (2018), pp. 1808–1816.

[58] ZHOU, P., HUANG, J., QIN, X., AND XIE, C. Pars: A popularity-aware redundancy scheme for in-memory stores.
IEEE Transactions on Computers (2018), 1–1.

, Vol. 1, No. 1, Article . Publication date: January 2022.

Page 39 of 39 Transactions on Storage

https://mc.manuscriptcentral.com/tos

