Trade-offs between Message Delivery and
Quiesce Times in Connection Management Protocols

Jon Kleinberg* Hagit Attiyal Nancy Lynch?

Abstract

The problem of implementing reliable message delivery using timing information is
considered. Two important parameters, from the point of view of system performance,
are the time required to deliver a message and the time that elapses between periods of
quiescence, in which a processor returns to an initial state and deletes all earlier con-
nection records. It has been frequently observed that there is no known protocol which
simultaneously optimizes both these quantities; in this paper we prove such trade-offs
precisely in the form of lower bounds. Despite the simple nature of the problem, the
relationships among these lower bounds are quite subtle, in that they depend critically
on the level of synchronization in the processors’ clocks. We consider three basic timing
models: asynchronous processors, processors that have (approximately) synchronized
clocks, and processors with clocks that read different values but run at (approximately)
the same rate. We mainly focus on networks that can duplicate and re-order packets;
at the end, we also consider message loss and processor crashes.

1 Introduction

Reliable message delivery lies at the heart of fault-tolerant communication between
parties on a distributed network. We are interested here in problems of connection
management, in which a sender § wishes to open a connection to a remote receiver
R, transmit information, and later release the connection. Connection management
constitutes the transport layer of the OSI hierarchy (see e.g. [15]).

Protocols based on the transport layer are the basis for ftp, telnet, remote procedure
calls, and a number of other common primitives. In a large network, each sender will
typically maintain a number of such sessions in parallel; moreover, there can be a
number of different incarnations of a session with a single receiver, as the connection
is opened, closed, and opened again. In a network subject to faults such as packet

*Laboratory for Computer Science, MIT, Cambridge MA 02139 USA, kleinber@theory.lcs.mit.edu. Au-
thor is supported by an ONR Graduate Fellowship.

TDepartment of Computer Science, The Technion, Haifa 32000, Israel, hagit@cs.technion.ac.il. Par-
tially supported by grant No. 92-0233 from the United States-Israel Binational Science Foundation (BSF),
Jerusalem, Israel, Technion V.P.R.—Argentinian Research Fund and the fund for the promotion of research
in the Technion.

tLaboratory for Computer Science, MIT, Cambridge MA 02139 USA, lynch@theory.les.mit.edu. Partially
supported by NSF grant 9225124-CCR, AFOSR grant F49620-94-1-0199, and ARPA grant N00014-92-J-4033.

duplication, it is important to maintain connection records keeping track of which
packets have already been received, acted on, and so forth. At the same time, with
many parallel sessions going on, a processor cannot maintain its entire history for very
long. So a processor will periodically quiesce, deleting past connection records.

Minimizing both the time required for message delivery and the amount of time in-
formation is maintained before quiescence is important for optimizing the performance
of such a communication subsystem. Message delivery time determines the latency of
packet transmission, especially in short incarnations such as remote procedure calls.
Time until quiescence affects how much information must be stored at each node.
A large number of protocols have been proposed to optimize these parameters (e.g.
[4, 8, 14, 15, 16, 18]). Viewed on a spectrum that ranges from near-optimal message
delivery time to near-optimal quiescence time, we have a number of clock-based proto-
cols at the former extreme (e.g. [8]) and the canonical three-packet handshake [4, 16]
at the latter.

Clock-based protocols are in general based on the mazimum packet lifetime (MPL)
of the network; this is simply the longest amount of time that any copy of a packet
can remain undelivered in the network. R can deliver very quickly if it is prepared to
maintain a record for a length of time equal to the MPL; in this way, it can be sure
that after quiescence it will never receive a duplicate copy of the current message.

The three-packet handshake, on the other hand, operates with very little overhead
in terms of clocks or connection records. Instead, each processor has a source of unique
identifiers (UID’s) — that is, a way to generate an abstract identifier that has never
been used before. Now each message is sent using a three-way exchange: first S sends
a UID z; R generates a UID y and replies with (z,y); and finally S sends the message
together with y. In this way, R can be sure that it is not delivering a duplicate;
unfortunately, it now takes three times as long to deliver the initial message in the
connection.

Thus in practice, protocols tend to be inefficient either in delivery or in quiescence;
and it is a common belief that there is some sort of inherent trade-off in these per-
formance measures. In this paper, we prove such trade-offs precisely in a number of
natural settings, by demonstrating non-trivial lower bounds on delivery and quiescence
times. Most of these trade-offs are essentially the best possible, in the sense that we
show protocols whose performance guarantees nearly match the lower bounds.

The relationships among our time bounds turn out to be more subtle than the
simple nature of the problem would seem to suggest. The trade-offs one can achieve
depend critically on the amount of synchrony in the clocks of the processors, and it is
mainly from this perspective that we study the problem.

We express time bounds in terms of two main parameters. The first of these is p,
the maximum packet lifetime, which has been introduced above. The other parameter
is d., the maximum packet delay in a specific execution e; this is simply the supremum
of the times that elapse between the sending and the receipt of packets in e. Our
motivation in bounding delay in terms of d., a quantity that S and R cannot know
a priori, is the following: we wish to be able to prove bounds that hold for every
execution of a protocol, not just in a worst-case sense. Thus, for instance, while it is
correct to say that the time required before delivery by the three-packet handshake is at
most 34, one can make the stronger statement that the time required is at most 3d, in
execution e. In this way, one can consider whether a given protocol has the following

desirable property: in “good executions” (those with d. < p), the time required is
small relative to d..

In a network that can duplicate and re-order messages, our main results are the
following. (Note that we will sometimes write d, as d when the execution is clear from
context.)

e Section 3: If the processors have no access to clocks and must eventually quiesce,
it can take at least time 3d to deliver some message.

e Section 4: If § and R have clocks that each run at the rate of real time but whose
values differ by some arbitrary translation, then there must be some be some
execution in which it takes time at least 3d to deliver or an execution in which it
takes time at least p to quiesce. This is the basic trade-off result, showing that
one must have either a delay before delivery as in the 3-packet handshake, or a
delay before quiescence as in the simple timer-based protocol.

o Section 4.2: If we introduce uncertainty, assuming that the rate of increase of the
clocks is always within a factor of p of real time, then the lower bound increases
to 3d for delivery or p?u — 3p?d for quiescence; again, this is essentially tight.

e Section 5: We also consider the case in which S and R have e-synchronized
clocks: each always holds a value that is within ¢ of real time, but no assumption
is made about their rates at any given instant. Here we define a novel family of
protocols which, for any pre-specified o > 1, allows for message delivery within
time (1+ 2)d+ O(e) and quiescence within time (o4 2)d 4+ O(ag). The key point
here is that neither value depends on the MPL 1. We give a lower bound showing
that this trade-off is essentially the tightest possible when ¢ = 0; finding a nearly
matching lower bound for arbitrary ¢ > 0 is left as an open problem.

At the end, in Section 6, we consider two other types of network failures — message
loss and processor crashes. In each case, we mention natural assumptions under which
the problem can be reduced, from the protocol designer’s point of view, to the case
of duplication/re-ordering alone. Also, we consider a simple probabilistic model of
message loss in which each packet has an independent probability of being lost. We
prove a trade-off here between the expected number of packets sent and the expected
time to deliver a message; determining the relationship between these two performance
measures more precisely appears to be an interesting question.

The theoretical research on this problem has been much less voluminous than the
practical work mentioned above. Harvey and Lynch [7] propose a number of the prob-
lems considered here, and obtain some of the initial results on duplication. In the fully
asynchronous setting, Fekete, Lynch, Mansour, and Spinelli, and Afek et. al., prove
impossibility results for different types of reliable communication [5, 1]. Wang and
Zuck [17] consider the sequence transmission problem, in which a sender must trans-
mit a specified sequence of data to a receiver over a faulty channel. Further results
in an asynchronous model, based on the minimum amount of information that must
be maintained between connections, are proved by Attiya, Dolev, and Welch [2]; their
paper deals with the existence or non-existence of connection management algorithms,
and not with bounds on quiescence time. Attiya and Rappoport [3] consider the con-
nection management problem primarily in the asynchronous setting, focusing on the
amount of information exchange that must take place between parties establishing a
connection.

2 Preliminaries

1 was feeling kinda lonesome and blue
and needed somebody to talk to.
So I called up the operator time,
just to hear a voice of some kind.
“When you hear the beep it will be three o’clock.”
She said that for over an hour and I hung up.

— Bob Dylan,

Talking World War III Blues.

We are considering the problem of at-most-once message delivery between a sender
S and a receiver R communicating over an unreliable channel. For our purposes,
the sender is interested in transmitting a single message to the receiver; the receiver
is required to deliver the message eventually (subject to some liveness requirements
discussed below), and never to deliver it a second time.

We represent the system as a collection of four interacting automata (plus the
network, which is also modeled as an automaton):

o Ug and Ug are the two users at the opposite ends of the connection; Ug wants to
send a message to Ug.

e 5 and R are the network interfaces for Us and Ug respectively.

In general, we will not be concerned with the structure of Us and Ug; Us simply pro-
vides inputs to .5, consisting of messages that it wants delivered. Formally, 5 are R
are timed 1/O automata of the type considered by Lynch and Vaandrager [12], aug-
mented with liveness properties as in Gawlick et. al. [6]. (See also [10] for background
on general /O automata.) Speaking informally, the fundamental property of S and
R is that their states consist of an internal component and a clock component. The
clock is simply a monotone increasing (and unbounded) continuous function of real
time; processors can allow specified amounts of time to pass on the clock (modeled as
a time-passage action) and perform certain actions when the clock reaches a specified
value. For technical reasons, the state of the automaton always contains a now compo-
nent, which gives the value of real time; however, the automaton cannot directly make
use of this component of its state.

Each of § and R begins with the internal component of its state equal to initial
values o2 and o¥% respectively; no local actions are enabled in these states. Quiescence is
modeled as a transition of the internal component of a processor’s state to this initial
value; the clock component of its state is not affected. Similarly, when a processor
crashes, the internal component of the state reverts to the initial value, but the clock
component is not affected.

Processors § and R communicate by means of packets sent across the network; we
will say that a processor executes the action send(p) to send a packet, and receive(p)
when a new packet arrives. We will assume a total cause function I'; which maps each
receive(p) action to a send(p) action for the same packet. Note that in a network that
can duplicate packets, this function I' can be many-to-one — that is, receive(p) can be
executed several times for a single packet p sent once. However, we will assume that
each packet can be duplicated only a finite number of times. Finally, we reserve the

terms “transmit” and “deliver” for the higher-level primitives executed by the users
Us and Ug on messages.

Since we will be concerned with the delivery of a single message, we assume that
Us will provide a single input to S (i.e. the message) at the beginning of any given
execution, after which Us and Ug do not provide any inputs to S and R respectively.
Thus, in any execution e, the inputs to S, beginning in ¢%, will consist of an initial
input u* from Ug, followed by a sequence of packets ri,ry, ... from R; the inputs to
R, beginning in ¢%, will simply consist of a sequence of packets s, ss, ... from 5. For
an execution e and a processor P, we use the standard notation e|P to denote the
projection of e on P — this is the sequence obtained by projecting all states of the
system onto those of P, removing actions not belonging to P, and collapsing consecutive
subsequences corresponding to time-passage actions of P. If e and ¢’ are two execution
fragments, such that e ends with the same state (and value of real time) with which
¢’ begins, we write ee’ to denote the “concatenated execution” in which the common
state at the juncture between the two executions appears only once.

If the network can only duplicate and re-order packets, then informally one can
state fairly simply the correctness conditions for our message-delivery problem. We
say that a pair of automata (.5, R) constitute a message-delivery protocol if in every
execution e beginning with the input of a message from Ug to 5, there is exactly one
action in e in which R delivers the message to Ug, and at least one action following
this delivery in which R quiesces. When we consider processors with clocks, we also
consider the amount of time that elapses from the input of the message to .5 to the
action in which R delivers and to the first subsequent action in which it quiesces.

Our timing assumptions concern the properties of the clock components that we
can guarantee. The three basic timing models are

(i) Asynchronous processors. Neither $ nor R has access to a clock.

(ii) Translated clocks. The clocks of $ and R run at the rate of real time, but they
are offset by some arbitrary amount from each other (and from real time). We
will also consider the case of drifting clocks, in which the clocks of S and R run
at a rate between % and p times that of real time (the drift rate can also vary

with time).

(iii) e-Synchronized clocks. The clocks of both $ and R are always within ¢ of real
time (and hence always within 2¢ of each other).

In the latter two models we will assume, except where noted otherwise, that processors
know the maximum packet lifetime p; recall that this is defined as the maximum
amount of time that can elapse between events send(p) and receive(p) that are related
by the cause function I'. This is a global bound that holds for all executions. For
a specific execution e of a protocol, one can simply compute the maximum, over all
p that are received, of the time between send(p) and receive(p); this quantity is the
longest packet delay to occur in execution e, and we denote it by d.. (Sometimes we
will write it simply as d when the execution is clear from context.) Note that d, is
always at most p, but it can be substantially less in “well-behaved” executions.

If the network guarantees that, for example, one out of every k packets will not
be lost, for some fixed k, then one can incorporate enough re-sends into a protocol to
ensure that each packet a processor wants to send will get through — this notion is
discussed further in Section 6. Thus, for the bulk of our results (Sections 3, 4, and

5), we consider networks that only duplicate and re-order messages. In Section 6 we
consider other types of failures, specifically message loss and processor crashes. The
results are somewhat different with these failure models; however, as suggested above,
we can state in both cases fairly mild assumptions that result in natural reductions to
the case of duplication/re-ordering only.

3 The Asynchronous Model

Here we assume that the processors do not have access to clocks, and that there is no
MPL. We show that if the processors are provided with a source of unique identifiers
(UID’s) — making the three-packet handshake possible — it can take time at least
3d to deliver the message. Thus the three-packet handshake is in fact optimal in this
setting.

We are dealing with asynchronous processors, so the clock component of the state
can take only a single value (and hence is trivial). Without giving the processors any
additional power (i.e. UID’s), we can show that at-most-once delivery is impossible. A
similar result is proved in [2].

Proposition 1 Consider the asynchronous model without UID’s. If R must eventually
quiesce, then at-most-once delivery is not possible.

Proof. Consider, by way of contradiction, a protocol for at-most-once delivery in this
model. First consider an execution e in which R delivers a message and quiesces. For
notational purposes, suppose that e begins at real time 0 and ends with the quiescence
of R at real time T’; of course, the processors do not have access to these values of real
time.

We now construct an execution €’ in which R delivers the message twice. A prefix
of € is equal to e; at the end of this prefix, R is back in its initial state o%. The
remainder of ¢ will consist of an execution fragment e} which we construct so that
el|R = e|R, as follows.

Suppose that in e, R receives packets si,...,s; from 5, which arrive at times
0 <t <--- <t <T. Since we assume that the network can duplicate packets, we
can construct the execution fragment €] so that it begins at time 7', and the inputs
to R consist of the packets sq,...,s;, with packet s; arriving at time T+ ¢;. Since 5
has not necessarily quiesced, it may be continuing to send packets to R; however, we
will have all such packets arrive after time 27'. So in the interval [T, 2T], R begins in
its initial state, in which no local actions are enabled, and the only inputs it receives
are the replayed packets. Thus we can construct €| in the interval [T, 27] such that
el|R = e|R; specifically, R delivers the message in ¢|. Thus, in the execution ¢’ = ee,
R delivers the message twice. ®

The key point in the above impossibility proof is that R has no way to distinguish
its state following quiescence from its state at the beginning of the execution; we
can therefore construct an execution in which it delivers the message a second time
when presented with the appropriate sequence of duplicate packets. Introducing UID’s
changes the picture considerably.

We model UID’s as follows. The state of a processor P is augmented with an
additional component: an infinite set Ip of abstract identifiers. Since only the internal

component of P’s state is reset when it quiesces or crashes, this collection of UID’s
survives such events. The UID’s can be copied and included in messages; however, the
only operations a processor can perform on them are the following.

(i) generate(), which nondeterministically returns a new UID u and deletes it from
the set Ip (thus the UID component of P’s state undergoes a transition from Ip
to Ip — {u}; this ensures that u will never be used again).

(ii) If 2 and y are UID’s, then same(z,y) returns true iff = y and false otherwise.

In particular, P cannot directly “read” the current UID component of its state. In our
case, we additionally assume that the sets Is and [are disjoint (so R for example will
not confuse a UID from 5 with one of its own).

In subsequent sections we will be dealing with processors that have clocks, with
values that can be added, subtracted, and so on; here, however, we consider UID’s as
they are used in practice in the absence of clocks: as abstract identifiers that can only
be included in messages and compared with one another to test equality. Note that if
a processor receives a packet 7, it can determine whether it has previously received =
only in the interval since its last quiescence.

If there are UID’s, then the three-packet handshake allows for the delivery of a
message M within time 3d. We are concerned with the delivery of a single message;
hence for our purposes, the three-packet handshake can be implemented as follows.

(i) On input (M) from Ug, S generates a UID 2 and sends the packet ().

(ii) If R receives (z) and has not previously received () since its last quiescence, then
R generates a UID y and replies with the packet (z,7).

(iii) If S receives (z,y), and since its last quiescence it has sent a packet (z) and not
received (z,z) for any z, then S replies with the packet (y, M). (If S receives
(z,y) and this condition is not met, it sends an error message to R to allow R to
quiesce.)

(iv) If R receives (y, M), and since its last quiescence it has sent a packet (z,y) and
not received (y, M’) for any M’, then R delivers the message M.

In the case of single-message delivery, and assuming the network can only duplicate
and re-order, S and R can quiesce at the end of the third and fourth lines respectively.
For more complicated types of failures, some additional acknowledgement is needed
before quiescence. Analyzing this protocol in detail is not something we will undertake
here (see [9] and [13] for detailed analyses); for now we simply note that it is a very
robust way to deliver messages within time 3d and quiesce immediately.

The following lower bound shows that in an asynchronous system, there is no way
to improve on the worst-case performance of this protocol.

Theorem 1 Assume an asynchronous system with UID’s, and suppose that R must
eventually quiesce. Then for every message-delivery protocol and every positive d there
1s an execution e with d, = d in which at least time 3d, elapses before the delivery of
the message.

Proof. Assume that the claim does not hold for some protocol and some choice of d;
we derive a contradiction. In execution e, S sends its first packet at real time 0, and all
packets take time d, = d to arrive. Thus R delivers at time ¢ < 3d and then quiesces

- i deliver at time ¢ < 3d

:“._77 quiesce at time T

~ ——deliver before T'+ 3d

Figure 1: The skeleton of a lower bound proof

at time 7" > t. Let ug, up denote the (finite) sets of UID’s generated by S and R
respectively before time T. A key property of execution e is the following. Since R
begins in its initial state o% in which no local actions are enabled, it does not send any
packets before real time d; thus 5 receives no packets from R prior to real time 2d.
Therefore, since the only packets received by R before delivering the message are sent
by S in the interval from real time 0 to t — d < 2d, the only UID’s included in packets
received by R before delivering belong to the set ug.

Now we construct an execution f to be identical to e, except that the UID compo-
nent of R’s state begins with the value Ir — ug (note that this is still an infinite set, as
required). That is, S sends its first packet at real time 0, all packets take time d; = d
to arrive, and S generates the same set of UID’s in the interval [0, — d]. Since S and
R can only perform same(x,y) tests on the UID’s, and the UID’s in packets sent by
S before real time 2d all belong to ug, we can construct f so that e|S = f|S in the
interval [0, — d], R delivers the message at real time ¢, and quiesces at real time 7.

Finally, we construct an execution ¢’ in which R delivers the message twice; the
outline of this construction is depicted in Figure 1. A prefix of ¢’ is equal to e; at the
end of this prefix, R has returned to its initial state 0%, and the value of real time is
T. Recall that no local actions are enabled in the initial state of R, and its current
set of UID’s is Ip — ur. We now complete ¢’ with an execution fragment ¢/ as follows.
As in the previous proof, we replay all packets sent by S in the interval [0,¢ — d], and
have any new packets sent by 5 arrive after real time T 4 ¢. So the only inputs R
is receiving in the interval [T, T 4 t] are the replays from 9; since e[S = f|.5 in the
interval [0,¢ — d], we can construct €| so that €;|R in the interval [T, T +] is equal to
fIR in the interval [0,¢]. Thus R delivers the message in the fragment ¢}, and hence
delivers it twice in the execution ¢ = ee|. B

4 Translated Clocks

When we assume clocks that run at the rate of real time but are translated by some
arbitrary amount, the main result is a trade-off showing that either it takes time at
least 3d to deliver the message, or it takes time at least u to quiesce. If we weaken the

timing guarantee so that clocks are only running at a rate within p of real time, then
the lower bound on the time to quiesce in this trade-off is multiplied by a factor of p*.
There are simple protocols nearly matching these lower bounds in all cases.

4.1 Clocks at the Rate of Real-Time

Here, we assume that the two processors have clocks that run at the rate of real time,
but their values are shifted by an unknown amount. The clocks of 5 and R can be
represented by functions

~vs, YRR — R.

Our assumption can then be expressed by saying that for all values ¢; and ¢y of real
time, we have

Yr(t1) — Yr(t2) = vs(t1) — vs(la) =t — 1s.

To specify local times at .5 and R, we will sometimes use the terms 5-time and R-time
respectively; that is, S-time ¢ (resp. R-time ¢) is equal to real time y5'(¢) (resp. 75" (¢)).

Recall that we measure the time to quiesce from the first send event. If the value
w1 of the MPL is known, there is a natural algorithm that allows for immediate delivery
(i.e. delay d), but requires time p + d to quiesce. This is simply the following rule:
as soon as R gets the first packet, it delivers the message; it then counts off u on
its clock before quiescing. Of course, the 3-packet handshake still allows for R to
deliver and quiesce within time 3d. The following lower bound shows that one cannot
simultaneously improve on both these quantities.

Theorem 2 Consider a system with translated clocks and a known value of u; let d
be a constant satisfying 0 < d < %,u. For any message-delivery protocol there is an
execution e with d, = d for which at least time 3d. elapses before the delivery of the
message, or at least time p elapses before the quiescence of R.

Proof. Assume that the claim does not hold for some protocol and some choice of d;
we derive a contradiction. First we construct an execution e in which both clocks start
at 0, and all packets take time d, = d. By our assumption about the protocol, we can
have R deliver the message at some time ¢ < 3d, and quiesce at time T" < u. The
execution e ends with the quiescence of R.

We now construct execution f. In f, the clock of § starts at 0, the clock of R starts
at u —d, and d; = d. The first packet is sent by S at S-time 0 (which is the same as
R-time p — d); thus by our assumption about the delivery bound, R delivers by R-time
w—d+1t < p+2d. Since no local actions are enabled in the initial state of R, .5 does
not receive a packet from R until S-time 2d > t' —d, and so we can construct f so that
elS = f|S in the interval [0, — d] of S-time.

Finally, we construct an execution e’ in which R delivers the message twice. A
prefix of €' is equal to e. The remainder of ¢’ is an execution fragment €| constructed
as follows. We replay the packets sent by S in the interval [0, — d] of S-time, and have
any other packets sent by 5 take time y to arrive at R. At R-time T, R is in its initial
state because it has just quiesced; between R-time T and p, R receives no packets from
S and hence remains in its initial state. Since no local actions are enabled in this initial
state, and the inputs received by R in the interval [u, p 41t — d] of R-time are the same
as they are in f, we can construct €| in the interval [p, u 4+ ¢ — d] of R-time so that

€1|R = f|R in this interval. Thus, R delivers the message in €/, and hence delivers the
message twice in execution ¢ = ee|. B

Suppose that there exists a value for p that holds in all executions, but the proces-
sors do not know this value. Then using the technique of the previous proof, we could
construct execution e by replaying the packets of S regardless of how long R waits
before quiescing (if R quiesces after 7" units of real time, we simply choose u > T).
Thus we obtain an execution in which R delivers twice, simply assuming that the time
until delivery is strictly less than 3d.; in this way, one can prove the following result.

Theorem 3 Consider a system with translated clocks in which the value of v is not
known, and suppose R must eventually quiesce. Then for every message-delivery pro-
tocol and every positive d, there is an execution e with d, = d for which at least time
3d. elapses before the delivery of the message.

For the remainder of the paper we will assume that the value of u is known.

4.2 Drift in Translated Clocks

In this section, we assume translated clocks, and weaken the guarantee that the two
clocks run at the same rate. Thus, for a clock v, our guarantee is that

}S 7(y) —v(x) <

p y—=

Ve,y e R, 2 <y :

A clock with this property will be called p-drifting.

In this setting, the 3-packet handshake still provides for delivery and quiescence
within time 3d. At the other extreme, there is a natural algorithm that ensures delivery
in time d and quiescence within p*u + d units of real time: R delivers immediately and
then counts off pu on its clock.

Again, we can prove that one cannot improve substantially on both bounds at the
same time.

Theorem 4 Consider a system with p-drifting clocks; let d be a constant satisfying
0<d< %,u. For any message-delivery protocol there is an execution e with d, = d
for which at least time 3d, elapses before the delivery of the message, or at least time
p’u — 3pd, elapses before the quiescence of R.

Proof. Assume that the claim does not hold for some protocol and some choice of d;
we derive a contradiction. Set 7 = %.

First we construct an execution e in which both clocks start at 0 and run at % times
the rate of real time (that is, ys(t) = Yr(t) = 5). Packets take d. = pr = d units of
real time to arrive. Thus, we can construct e so that R delivers in less than 3p7 units
of real time; hence it delivers before local time 37. Similarly, since it quiesces in less
than p?u — 3p®7 units of real time, it quiesces before local time

ty = pu — 3p°T.

Next we construct executions f and e’ as follows. In f, the clock of S begins at 0
and the clock of R begins at t; = pp — 3p?7. The clocks again run at % times the rate

10

clocks run fast:
real time

1t — 3pT elapses

—— local time pp — 3p27' = tp

clocks run slow:

real time

3p7 elapses

| local time pu — 3p27' + 37

Figure 2: Final execution in Theorem 4

of real time and packets take pr units of real time to arrive. We can construct f so
that R delivers at local time

ty < pp— 3p°t + 37.

Let ¢ = t; —t5; sot’ < 37. For any « € [0, — 7], a packet sent by S at S-time x
should be received by R at R-time ¢, + 7 4+ x. Also, since no local actions are enabled
in the initial state of R, .S does not receive a packet from R before S-time 27 > ¢/ — 7;
thus we can construct f so that f|.S = e|.S in the interval [0, — 7] of S-time.

In execution €', both clocks start at 0 and run at p times the rate of real time;
packets take d., = % units of real time to arrive. Since the amount of local time that
elapses between the sending and the receipt of every packet is the same in e and ¢,
we can construct €’ so that €'|S = e|S and €|R = e¢|R. So R quiesces before local
time pu — 3p*r in €’; thus it quiesces in less than g — 3p7 units of real time. Also, we
have f|S = €|S in the interval [0,# — 7] of S-time. The execution ¢’ ends with the
quiescence of R.

Finally, we construct an execution f’ in which R delivers the message twice. A
prefix of f’is equal to ¢/. The remainder of f’ is an execution fragment f; which
begins at real time p — 3p7 (and hence local time pu — 3p*r on both clocks). In f,
both clocks Tun at % times the rate of real time, and replays begin arriving at R as
they did in execution f. (By having any other packets sent by S take p units of real
time to arrive at R, we can ensure that such packets will not interfere with this part of
the construction.) So as in execution f, a packet sent by S at S-time x € [0, — 7] is
received by R at R-time t, + 7 + 2. For any such packet sent at S-time 2 € [0, — 7],
note that at most g — 3p7 units of real time elapse before R quiesces, and at most
p(z + 1) < 3p7 elapse after. Thus, no replay arrives more than g units of real time
after it was sent by 5.

11

By our construction, the only inputs that R receives following quiescence and up
to R-time ¢; = 1y, + t' are replays of packets sent by S in the interval [0, — 7] of
S-time. But we argued above that €[5 = f|S in this interval; thus, we can construct
the fragment f/ so that f|R = f{|R in the interval [to, ;] of R-time. Thus R delivers
the message in f|, and hence delivers it twice in the execution f = ff/. m

5 Approximately Synchronized Clocks

Having approximately synchronized clocks gives the processors a considerable amount
of additional power; specifically, the trade-off lower bound of Section 4 no longer applies.
In fact, we can show that for arbitrarily small 6 > 0, R can deliver within time (1 +§)d
and still quiesce in an amount of time that depends only on d, and not on the MPL p.
This is in striking contrast with the bounds of the previous section.

Recall that an approximately synchronized clock v is one that is always within ¢
of real time, and always monotone increasing. That is, for all ¢ we have |y(t) — ¢| < e.
Note that this condition implies |ys(t) — vg(t)| is always at most 2¢. In this section,
we will assume that 2¢ < p; otherwise, we essentially have the case of translated clocks
as in Section 4.

In the previous section, we saw an algorithm that allowed for immediate delivery
(in time d), at the cost of requiring p for quiescence. Here we are after something quite
different: we want R to wait only a little bit more than d before delivering, and still
quiesce in an amount of time that depends only on d. We sketch an algorithm that
achieves this now, and then define it precisely in the proof of Theorem 5.

Assume that S sends out the initial packet at local time 0 (hence at real time
75'(0)). Subsequently, both § and R send out time-stamped packets at regular inter-
vals (say at intervals of ¢’). Since 75 and v are approximately synchronized, R can
use the time-stamps on the packets it receives to maintain an estimate of the value of
d,. To be a little more concrete, define the lag of a packet to be the local time at which
it was received, minus its time-stamp (so because y¢ and yg are only approximately
synchronized, a packet with very small transit time could have negative lag). It is not
difficult to prove that the maximum of the lags that R observes cannot be much less
than d..

Suppose that we want R to deliver within time at most (1 + §)d,, for some small
6 > 0. Then R waits until its local time is roughly (14 6) times the maximum observed
lag, and then delivers the message. An important point is the following: if such a time
never comes, R is not required to deliver. R now waits a much longer amount of time,
roughly (% + 2)d., and then quiesces. What has it accomplished by waiting this long?
We argue that it has provided itself with some protection against replays.

For consider an execution f in which a replay of the packet sent by 5 at local time
0 arrives after R wakes up from quiescence. Then the lag observed by R, and hence its
estimate of d;, will immediately become extremely large. Moreover, R now expects to
receive a packet from S at regular intervals of ¢/; thus there are two possibilities:

(i) Following quiescence, but before R meets the criterion for delivery (i.e. its local
time has not yet reached (14 ¢) times d;), some S-packet is not replayed. Then
the maximum lag computed by R will increase linearly with its local time (due
to the unreceived S-packet), and it will therefore never be required to deliver.

12

(ii) All S-packets are replayed until R meets the criterion for delivery. Then since
the lag is at least %de, the “short” amount of time R waited before delivery was
at least 6 - %de = 2d., and so it must have received the replay of an S-packet
in which 5 announces the receipt of an earlier R-packet. But this could only be
possible if the S-packet is a replay (as its time-stamp is much earlier than the
time at which R first started generating replies); thus R will be able to abort the
connection without delivering the message a second time.

We now turn to a precise statement of the result.

Theorem 5 For each a > 1 and ¢ > 0, there is a protocol in which R delivers within
time (1 4+ %)d + (4 + %)5 + ¢ and quiesces within time (a4 2)d + (2a+ 6)c + c.

Proof. Fix ¢ < ats Each of § and R sends a time-stamped packet to the other at
increments of time ¢’. We can view the protocol as operating in discrete “ticks” of
length ¢'; a discrete R-time t is a local time at R which is a positive integral multiple of
¢, with discrete S-time defined analogously. Note that the gap between two consecutive
discrete R-times can be arbitrarily small (though not indefinitely), and can be as large
as ¢'+2¢. The threshold of R at discrete R-time ¢ is defined to be the largest ¢’ for which
R has received all S-packets with time-stamp at most ¢’ (i.e. it has not yet received
the S-packet with time-stamp ¢’ + ¢’); the threshold of ' is defined analogously.

The first packet sent by S contains the message, as well as the current local time.
Subsequent S-packets consist of the current local time and the current threshold of 5.
Initially, S has received no packets from R and hence reports a trivial threshold; after it
receives its first R-packet, it reports a non-trivial threshold. R-packets consist simply
of the current local time (to enable S to compute its threshold); the first R-packet is
sent when R first receives the initial S-packet.

Assume that S sends its initial packet at discrete S-time 0. Let rq denote the
discrete R-time at which R first receives the initial S-packet, and hence at which it
sends out its first packet to 5. R maintains an estimate of the current value of d, by
computing the maximum lag () of any packet observed up to time ¢; this is equal to
c + M(t), where M® is the maximum over the following three finite sets:

(i) The set of all r — s, where the threshold of R at discrete R-time 7 is equal to s.

(ii) The set of all ' — 7/, where the threshold value in the S-packet time-stamped s’
is equal to 7.

(iii) The set of all s’ —rq, where the S-packet time-stamped s’ reports a trivial thresh-

old.

By definition, we say that that threshold of R at discrete R-time ry — ¢’ (i.e. just
before it received the initial packet) is 0. So by the first rule for estimating ¢, we have
Mo > 5o — ¢ and hence () > py: by the third rule, we have (") > —r;. Thus
00r0) > |rg].

R delivers at the first discrete R-time t' when

2.
> (14 =)t
o
and quiesces at the first discrete R-time t” when

" > (a4 2007,

13

It then sends a done message to 5; 5 quiesces immediately upon receiving this done
message. If at any time S reports a threshold that is less than rg, (i.e. one can conclude
that R is hearing replays), R aborts the connection without delivering and sends an
error message to 5.

First we argue that for any ¢, the actual maximum message delay d. is at least
() —2¢ —2¢. Consider the discrete R-time 7 at which the maximum value for £(*) was
attained — i.e. the first r < ¢ for which () = () — and suppose that it was updated
using the first rule (the other cases are strictly analogous). Then the threshold of R at
r must be equal to 7 — {() + ¢/, so the S-packet from discrete S-time 7 — ((Y) + 2¢' has
not yet arrived. Thus

de

vV

YR (r) =95 (r = LD 4 2¢)
(r—e)—(r =LY 4+2¢ 4 ¢)
(D —92¢ — 2.

v

So at the discrete R-time just before quiescence we have

Y < (a_l_ Q)K(t”_cl)
(a +2)(d. + 2¢ 4 2¢)

<
< (a+2)(de+2¢)+c.

t//
Since the initial send event was at real time y5'(0) > —¢ and v5'(¢") < t” + ¢, the
time required for R to quiesce is at most

(o +2)(d. +2¢) 4 2¢ +c.

Note also that the time required for S to quiesce is at most an additional d,. A similar
analysis gives the bound for the time required to deliver.

Now let us show why R will not deliver the message a second time. First we
argue that R will not quiesce until it has received an S-packet with a non-trivial
threshold. Let 4 denote the S-packet with minimal time-stamp that reports a non-
trivial threshold, and consider a discrete R-time r at which R has not yet received 1.
Let r — vy be the timestamp of the most recent S-packet, and set v = r —v; —rq. Then
by the first rule for estimating the lag, £ is at least r, and at least v;; by the third
rule, (") is at least v. Thus,

r=ro+ v+ v <3 < (a+2)0",

so R will not yet quiesce.

Now let £* (resp. M*) denote the maximum value of £(*) (resp. M) over all discrete
R-times t up to quiescence, and s; denote the time-stamp of the S-packet ». We claim
that s; < 2£*. Indeed, the S-packet time-stamped s; — ¢’ reports a trivial threshold,
so by the third rule for estimating the lag, M™* > s; — ¢/ — ro, whence £* > s; — 5. We
have already argued that £* > rg; adding, we obtain s; < 20*.

Finally, suppose T' > t" and a replay of the original message arrives at time T. We
will show that if 7" > T is some time at which R has not received the replay of the
S-packet 1, it is not required to deliver. Since 1 has not been received at T, we have

K(TI) T/ — 51

T — 207

(VALY

14

by the fact that R quiesced by R-time T" we have (a + 2)(* < T, and hence

< T
T a+2
Thus
S T
S 2T
- a+ 2
S - 27"
- a+ 2

2
T < (14 =)
(8%

Thus R is not required to deliver until it receives a replay of 4. But % reports a
threshold smaller than 7', which is the discrete R-time at which R first started sending
packets to 5 following quiescence. By our rule from above, R will abort the connection
in this case. Thus R never delivers the message a second time. m

In the case in which ¢ = 0 (so the clocks of S and R are perfectly synchronized),
we can show that the trade-off implicit in the previous result is tight up to additive
terms.

Theorem 6 Consider a system with e-synchronized clocks; let 0 < § < 2 and h(z) =
min(u,2z/6). For any message-delivery protocol there is an execution e for which at
least time (1 + 6)d, elapses before R delivers, or at least time h(d.) elapses before R
GUIESCES.

Proof. Assume that the claim does not hold for some protocol and some choice of ¢;
we derive a contradiction. Note that the local times of the two processors are always
equal to the value of real time. Fix d small enough so that (1 + 6)h(d) < pu. We first
construct execution e in which both clocks start at 0 and packets take time d, = d; by
our assumption about the protocol, we can define e so that R delivers the message at
time ¢ < (14 é)d and quiesces at time T' < 2d. Execution e ends with the quiescence
of R at time T.

We now construct execution f in which both clocks start at 0 and messages take
time dy = h(d). Again by our assumption about the protocol, we can construct f so
that R delivers before time (14 6)h(d). Note that in e, S receives its first packet from
R at time 2d. Thus in both e and f the only inputs it receives in the interval [0,2d) is
the initial input from Ug; hence we can construct f so that e[S = f|.9 in the interval
[0,2d).

Finally, we construct an execution €’ in which R delivers the message twice. A
prefix of ¢’ will be equal to e; the remainder of €’ is an execution fragment e} which
begins at time T. We replay all packets sent by 5 so that they arrive after a delay of
h(d) > T. No local actions are enabled in the initial state of R, and the only inputs
R receives in the interval [h(d), h(d) 4 2d) are these replayed packets; since €|S = f|.9
in the interval [0,2d), we can therefore construct €] so that €}|R = f|R in the interval
[A(d), h(d) + 2d). But h(d) < 2d, so h(d) + 2d > (14 6)h(d) and hence R delivers the

message in e}. Thus it delivers the message twice in the execution e’ = ee/. m

15

When 6 = %, the time required to quiesce in Theorem 6 is at least min(ad, p),
which is close to matching the bound achieved in Theorem 5. For general ¢ > 0, we
do not know how to obtain a correspondingly tight lower bound, and leave this as an
open question.

6 Other Types of Failures

There are a number of possible models for message loss, some of which allow for natural
reductions to the case of duplication/re-ordering only. Under a simple probabilistic
model of message loss, we show the following type of trade-off: if the expected number
of packets sent by a processor is bounded by a constant, then the expected time until
quiescence is at least a constant fraction of the MPL p.

Introducing crashes into the model of Section 5 changes the time bounds one can
achieve. In particular, if we assume that R can crash, we obtain a lower bound of 3d
on the time for delivery; this is in contrast to the fast algorithm presented in Section 5.

6.1 Message Loss

We must assume that the network satisfies some minimal sort of liveness guarantee, or
it will not be possible to design any protocol at all. A theoretically appealing liveness
formulation is the following: if a processor sends an infinite number of copies of a
packet, one will get through. Unfortunately, this still does not allow one to provide
any performance guarantees for a protocol with respect to real time.

We propose two kinds of liveness guarantees. The first is to say that for some fixed
value of k, if a processor tries to send the same message k times, it will succeed at
least once. Under this formulation, there is a general transformation from a protocol
tolerating message duplication to one tolerating both message loss and duplication:
whenever a processor is supposed to send a packet, it sends it k& times in immediate
succession.

An equally natural and more slippery kind of guarantee is the following: each packet
has an independent probability p, 0 < p < 1, of being received. Of course, this is a
rather simplistic assumption, but it is one that is often made in practice, and it suggests
a perspective for approaching these problems in general. Let us imagine a system with
synchronized clocks, and consider the following two implementations of the 3-packet

handshake.

(i) To send a packet, a processor does the following: it sends the packet, waits 2y,
and tries again if it has gotten no reply. Since three packets must get through

in the 3-packet handshake, the expected running time of this implementation is

6
p

(ii) To send a packet, a processor sends it over and over very rapidly until it hears
a reply; then it switches to the next packet that it wants to send. The running
time of this implementation is 3d plus additive terms depending on zl?'

Of course, the problem with the second implementation is that it uses an astronomical

number of packets. One naturally observes that a whole range of implementations is

possible by having a processor wait until time h(j) (for some function h) to try its

j™ re-send of the packet; this is simply the class of “back-off” algorithms. We believe

16

that an appropriate kind of trade-off to analyze in this model is that of expected time
versus expected number of packets sent. In analyzing such algorithms, we must be
careful about a number of points. Two of these are

o What is the underlying set over which the expectation is taken in the above
examples?

¢ How do we define d. in an execution e if some packets are being lost?

We choose to set things up as follows. First of all, the lower bound we prove does not
make use of duplicates, so we will assume that the channel only loses packets and does
not duplicate them; note that this only strengthens the lower bound. Define a packet
history P to be an infinite sequence of positive real numbers ¢;,¢5,.... The idea is that
we will construct executions e in which the 7" packet sent in e takes time ¢;.

Let P[i] denote the i™ element of P. If [= ¢; < iy < --- is a sequence of natural
numbers, we define P! to be the packet history in which every entry P[i;] (i; € 1) is
replaced by the special symbol loss; this indicates that the corresponding packet was
lost. We now define ® to be the set of packet histories P! for all possible subsequences
[. We can define a probability on ® as follows. First, let = denote a finite prefix of P,
in which some of the elements have been replaced by loss. Consider the subset &7 of ®
consisting of all histories in ® that begin with the finite prefix 7. If 7 has length £ and
contains ¢ < k occurrences of the symbol loss, assign ®™ a probability of p*~*(1 — p)".
This probability now extends uniquely to the o-algebra . generated by all sets of the
form ®7; i.e. the smallest collection of sets containing all ®™ which is closed under
complement and countable union. Constructions of this sort are a central topic of [11].

An execution e is consistent with a packet history P’ if the ;™ packet sent in e

takes time ¢;, or is lost if 7 € [. An execution tree F is a function which maps each

7
P! € ® to an execution F(P'). F must satisfy the following two properties.

(i) E(P')is consistent with P'.

(ii) Tf P! and P" are the same on a finite prefix 7 of length j, then E(P') and E(P")
are the same through the value of real time corresponding to the sending of the
(j 4+ 1)*" packet.

For some index set L, let ® = {P': [€ L} denote the set of all packet histories for
which R delivers the message in F(P'). Every P; € ®, contains some finite prefix
of length j; such that by the time the j,"" packet is sent in E(PY), R has delivered the
message. By property (ii) of the fuction F, this means that R delivers the message in
every execution induced by a packet history in ™. Thus,

o=]om.

leL

But since there are only countably many finite prefixes 7;, this is a countable union
of members of ¥, which is therefore in X.. Thus, the set of packet histories inducing
executions in which R delivers the message is measurable, and we can compute its
probability.

Similarly, we can compute the expected time to deliver the message and the ex-
pected number of packets sent before the delivery of the message (these could be infinite
if, for example, the measure of ¢’ is not 1). For an execution tree E associated with a

17

packet history P, let dg denote the least upper bound of the set of packet delays ¢; in
P.

As an example of the sort of lower bound one might try to prove in this model, we
show the following result; speaking informally, it says that every algorithm either uses
an expected number of packets that is super-constant, or requires an expected amount
of time to deliver that is a constant fraction of pu.

Theorem 7 Let p denote the probability of each packet being received, and let ¢ be a
positive constant. Then there is a constant § > 0 such that the following holds for every
message-delivery protocol: there is an execution tree in which the expected number of
packets sent is at least ¢, or for every positive d < u, there is an execution tree E with
dg = d for which the expected time to deliver is at least ép.

Proof. We claim that the theorem holds with ¢ = (1 — p)~°. We consider a protocol
for which the expected number of packets sent is at most ¢ in all execution trees; for
each d < p we construct such an execution tree F with dg = d for which the expected
time to deliver is at least épu.

Suppose that both clocks start at 0. Let P, denote the packet history in which
all packets take time p; we construct an execution tree £, consistent with P,. For
any subsequence [, the only input received by S in the interval [0,) in Eu(PL) is the
initial input from Ug; R receives no inputs in the interval [0, u) in Eu(PL)- Thus we
can construct K, so that for all 1,I', E,(P))|S = E.(P))|S = es and E,(PL)|R =
EN(PLI)|R = eg in the interval [0,). Thus, by our assumption about the expected
number of packets sent, the total number of packets sent by S and R in this interval
must be at most ¢, in every execution E,(P}).

Now for any positive d < p, let P; denote the packet history in which all packets
take time d. We now construct an execution tree F; consistent with P;. Let P}
denote the packet history in which every packet is lost. (Of course, R need not deliver
the message in E4(P;).) In the interval [0, u) in E4(Pj), S receives only the initial
input from Ug and R receives no inputs at all; thus we can construct £,(P}) so that
Eq (P)|S = es and E4(P;)|R = eg in the interval [0, p), where es and eg are the
execution prefixes defined in the previous paragraph.

But this says that in the interval [0, 1) in F4(P}), S and R send a total of at most
¢ packets. Let m denote the finite prefix of length ¢ consisting of ¢ copies of the symbol
loss; that is, ®7 is the subset of ® in which the first ¢ packets are all lost. Then by the
definition of an execution tree, F4(P}) and F4(P;) are the same in the interval [0, u),
for every P} that belongs to ®~.

Since the probability of ®™ is (1 — p)=° = ¢, and the time before delivery is clearly
at least u in every execution E4(P}) for Py € ®7, the expected time for R to deliver in
the execution tree F; is at least u. m

6.2 Crashes

In this section, we will assume that clocks are synchronized, that messages can be
duplicated but not lost, and that R but not S can crash. Note that quiescence is not
needed in our lower bounds — we can force untimely quiescence using a crash.

We begin by noting the following general principle. Suppose that R is able to
maintain the time of its last crash (in stable storage), and that it is not required to

18

deliver any message whose initial packet was sent before this time. Then there is a
general reduction to a protocol that tolerates only message duplication: each packet
is labeled with the time of the initial packet in the current exchange, and R simply
throws away any packet for which this label is less than the time of its last crash.

If R does not know the time of its last crash, then we prove a lower bound that
contrasts with the algorithm of Theorem 5.

Theorem 8 Consider a system with synchronized clocks, in which messages can be
duplicated and R can crash, and suppose that R does not know the time of ils last
crash. For every message-delivery protocol, there is an execution e for which at least
time 3d, elapses before the delivery of the message.

Proof. Assume that the claim does not hold; we derive a contradiction. Choose d < %,u.
We first construct execution e in which both clocks start at 0 and packets take time
d. = d. By our assumption about the protocol, we can construct e so that R delivers
the message at time ¢ < 3d; we then have R crash immediately. Note that the only
input S receives in the interval [0, — d] is the initial input from Us.

We now construct an execution e’ so that both clocks start at 0, packets from §
take time d, and packets from R take time p. Since S receives no inputs from R in the
interval [0,7 — d], we can construct € so that €¢’|S = e[S in the interval [0, — d]; we
can also ensure that €| R = e|R in the interval [0,¢], since R will be getting the same
inputs from .5 in this interval in the two executions. Thus R delivers at time ¢ in ¢’

We construct execution f in which both clocks start 0 and packets take time d; = t.
By assumption, we can construct f so that R delivers at time ¢’ < 3t¢; we then have
R crash immediately. Note that since packets take time ¢, the only input .5 receives
in the interval [0, — t] is the initial input from Ug; thus we can construct f so that
f|S = €[S in the interval [0, — ¢].

Finally, we construct execution f’in which R delivers the message twice. A prefix of
f"is equal to €’. The remainder of f’ is an execution fragment f; which begins at time
t with R in its initial state. We replay the packets sent by S in the interval [0, ¢ — ¢]
so that each takes time ¢ to arrive; we have all other packets take time p. Thus, the
only inputs received by R in the interval [¢,t'] are the replays of these packets; since
€’|S = f|5 in the interval [0,¢ — t], we can therefore construct f] so that f||R = f|R
in the interval [¢,#']. Thus, R delivers the message in f], and hence delivers it twice in
the execution f' =¢€'f/. m

7 Conclusion and Open Problems

We have studied the time bounds one can achieve for message delivery and quiescence
with a spectrum of different synchrony assumptions. These results both provide the
first precise formulation of some lower bound trade-offs inherent in the problem of
message delivery, and reveal some of the relationships between the different types of
timing guarantees that are possible in such systems.

A number of possible directions for future work remain open. At the most concrete
level, we do not have a lower bound for the case of approximately synchronized clocks
that comes close to matching our upper bound when ¢ is relatively large compared to

d.

19

For the case of message loss and crashes, we feel that a more comprehensive collec-
tion of trade-offs can be developed, as we have done in the case of duplication; much
of the problem here may lie in finding an appropriate model. Our model involving
independent probability of message loss could be explored further; there are also a
number of more complicated and more realistic models that could be developed. We
are also interested in obtaining tight bounds for the case of processor crashes; one
possible approach is the “pumping” technique of Fekete et. al. [5]. The effects of stable
storage in the crash model is another direction that could be investigated (knowing the
time of the last crash was a simple example in this direction.)

Acknowledgement

The third author would like to thank Arthur Harvey, George Varghese, and Tony Lauck
at DEC for discussions out of which some of this work began.

References

[1] Y. Afek, H. Attiya, A. Fekete, M. Fischer, N. Lynch, Y. Mansour, D. Wang, L.
Zuck, “Reliable communication over an unreliable channel,” to appear in Journal of

the ACM. (Also Technical Memo MIT/LCS/TM-447.)

[2] H. Attiya, S. Dolev, J. Welch, “Connection management without retaining informa-
tion,” Technical Report LPCR 9316, Laboratory for Parallel Computing Research,
Dept. of Computer Science, The Technion, June 1993.

[3] H. Attiya, R. Rappoport, “The level of handshake required for establishing a con-
nection,” Proc 8th Internation Workshop on Distributed Algorithms, 1994.

[4] D. Belsnes, “Single message communication,” IFEE Transactions on Communica-
tions, 24(1976).
[5] A. Fekete, N. Lynch, Y. Mansour, J. Spinelli, “The impossibility of implementing

reliable communication in the face of crashes,” Journal of the ACM, 40(1993), pp.
1087-1107.

[6] R. Gawlick, R. Segala, J. Sggaard-Andersen, N. Lynch, “Liveness in timed and
untimed systems,” Proc. 21st International Colloquium on Automata, Languages,
and Programming, 1994.

[7] A. Harvey, N. Lynch, Notes on connection management, DEC, 1990.

[8] B. Liskov, L. Shrira, J. Wroclawski, “Efficient at-most-once messages based on
synchronized clocks,” ACM Transactions on Computer Systems

[9] J. Segaard-Andersen, N. Lynch, B. Lampson, “Correctness of communications pro-
tocols: a case study,” Technical Report MIT/LCS/TR-589, November 1993.

[10] N. Lynch, M. Tuttle, “Hierarchical correctness proofs for distributed algorithms,”
Proc. 6th ACM Symposium on Principles of Distributed Computing, 1987, pp. 137—
151. (Full version in Technical Report MIT/LCS/TR-387.)

[11] N. Lynch, I. Saias, R. Segala, “Proving time bounds for randomized distributed
algorithms,” Proc. 13th ACM Symposium on Principles of Distributed Computing,
1994.

20

[12] N. Lynch, F. Vaandrager, “Forward and backward simulations part II: timing-
based systems,” Technical Memo MIT/LCS/TM-487.b, September 1993.

[13] L. Murphy, A.U. Shankar, “Connection management for the transport layer:
service specification and protocol verification,” IEFE Trans. on Communications,
39(1991), pp. 1762-1775.

[14] C. Sunshine, Y. Dalal, “Connection management in transport protocols,” Com-
puter Networks, 2(1978),.

[15] A. Tanenbaum, Computer Networks, Prentice-Hall, 1988.

[16] R. Tomlinson, “Selecting sequence numbers,” ACM Operating Systems Review,
3(1975).

17] D. Wang, L. Zuck, “Tight bounds for the sequence transmission problem,” Proc.
g g
S8th ACM Symposium on Principles of Distributed Computing, 1989, pp. 73-83.

[18] R. Watson, “The Delta-t transport protocol: features and experience,” Proc. IEEFE
Conference on Local Computer Networks, pp. 399-407, 1989.

21

