
Trade-o�s between Message Delivery andQuiesce Times in Connection Management ProtocolsJon Kleinberg� Hagit Attiyay Nancy LynchzAbstractThe problem of implementing reliable message delivery using timing information isconsidered. Two important parameters, from the point of view of system performance,are the time required to deliver a message and the time that elapses between periods ofquiescence, in which a processor returns to an initial state and deletes all earlier con-nection records. It has been frequently observed that there is no known protocol whichsimultaneously optimizes both these quantities; in this paper we prove such trade-o�sprecisely in the form of lower bounds. Despite the simple nature of the problem, therelationships among these lower bounds are quite subtle, in that they depend criticallyon the level of synchronization in the processors' clocks. We consider three basic timingmodels: asynchronous processors, processors that have (approximately) synchronizedclocks, and processors with clocks that read di�erent values but run at (approximately)the same rate. We mainly focus on networks that can duplicate and re-order packets;at the end, we also consider message loss and processor crashes.1 IntroductionReliable message delivery lies at the heart of fault-tolerant communication betweenparties on a distributed network. We are interested here in problems of connectionmanagement, in which a sender S wishes to open a connection to a remote receiverR, transmit information, and later release the connection. Connection managementconstitutes the transport layer of the OSI hierarchy (see e.g. [15]).Protocols based on the transport layer are the basis for ftp, telnet, remote procedurecalls, and a number of other common primitives. In a large network, each sender willtypically maintain a number of such sessions in parallel; moreover, there can be anumber of di�erent incarnations of a session with a single receiver, as the connectionis opened, closed, and opened again. In a network subject to faults such as packet�Laboratory for Computer Science, MIT, Cambridge MA 02139 USA, kleinber@theory.lcs.mit.edu. Au-thor is supported by an ONR Graduate Fellowship.yDepartment of Computer Science, The Technion, Haifa 32000, Israel, hagit@cs.technion.ac.il. Par-tially supported by grant No. 92-0233 from the United States-Israel Binational Science Foundation (BSF),Jerusalem, Israel, Technion V.P.R.|Argentinian Research Fund and the fund for the promotion of researchin the Technion.zLaboratory for Computer Science, MIT, Cambridge MA 02139 USA, lynch@theory.lcs.mit.edu. Partiallysupported by NSF grant 9225124-CCR,AFOSR grant F49620-94-1-0199, and ARPA grant N00014-92-J-4033.

duplication, it is important to maintain connection records keeping track of whichpackets have already been received, acted on, and so forth. At the same time, withmany parallel sessions going on, a processor cannot maintain its entire history for verylong. So a processor will periodically quiesce, deleting past connection records.Minimizing both the time required for message delivery and the amount of time in-formation is maintained before quiescence is important for optimizing the performanceof such a communication subsystem. Message delivery time determines the latency ofpacket transmission, especially in short incarnations such as remote procedure calls.Time until quiescence a�ects how much information must be stored at each node.A large number of protocols have been proposed to optimize these parameters (e.g.[4, 8, 14, 15, 16, 18]). Viewed on a spectrum that ranges from near-optimal messagedelivery time to near-optimal quiescence time, we have a number of clock-based proto-cols at the former extreme (e.g. [8]) and the canonical three-packet handshake [4, 16]at the latter.Clock-based protocols are in general based on the maximum packet lifetime (mpl)of the network; this is simply the longest amount of time that any copy of a packetcan remain undelivered in the network. R can deliver very quickly if it is prepared tomaintain a record for a length of time equal to the mpl; in this way, it can be surethat after quiescence it will never receive a duplicate copy of the current message.The three-packet handshake, on the other hand, operates with very little overheadin terms of clocks or connection records. Instead, each processor has a source of uniqueidenti�ers (UID's) | that is, a way to generate an abstract identi�er that has neverbeen used before. Now each message is sent using a three-way exchange: �rst S sendsa UID x; R generates a UID y and replies with hx; yi; and �nally S sends the messagetogether with y. In this way, R can be sure that it is not delivering a duplicate;unfortunately, it now takes three times as long to deliver the initial message in theconnection.Thus in practice, protocols tend to be ine�cient either in delivery or in quiescence;and it is a common belief that there is some sort of inherent trade-o� in these per-formance measures. In this paper, we prove such trade-o�s precisely in a number ofnatural settings, by demonstrating non-trivial lower bounds on delivery and quiescencetimes. Most of these trade-o�s are essentially the best possible, in the sense that weshow protocols whose performance guarantees nearly match the lower bounds.The relationships among our time bounds turn out to be more subtle than thesimple nature of the problem would seem to suggest. The trade-o�s one can achievedepend critically on the amount of synchrony in the clocks of the processors, and it ismainly from this perspective that we study the problem.We express time bounds in terms of two main parameters. The �rst of these is �,the maximum packet lifetime, which has been introduced above. The other parameteris de, the maximum packet delay in a speci�c execution e; this is simply the supremumof the times that elapse between the sending and the receipt of packets in e. Ourmotivation in bounding delay in terms of de, a quantity that S and R cannot knowa priori, is the following: we wish to be able to prove bounds that hold for everyexecution of a protocol, not just in a worst-case sense. Thus, for instance, while it iscorrect to say that the time required before delivery by the three-packet handshake is atmost 3�, one can make the stronger statement that the time required is at most 3de inexecution e. In this way, one can consider whether a given protocol has the following2

desirable property: in \good executions" (those with de � �), the time required issmall relative to de.In a network that can duplicate and re-order messages, our main results are thefollowing. (Note that we will sometimes write de as d when the execution is clear fromcontext.)� Section 3: If the processors have no access to clocks and must eventually quiesce,it can take at least time 3d to deliver some message.� Section 4: If S and R have clocks that each run at the rate of real time but whosevalues di�er by some arbitrary translation, then there must be some be someexecution in which it takes time at least 3d to deliver or an execution in which ittakes time at least � to quiesce. This is the basic trade-o� result, showing thatone must have either a delay before delivery as in the 3-packet handshake, or adelay before quiescence as in the simple timer-based protocol.� Section 4.2: If we introduce uncertainty, assuming that the rate of increase of theclocks is always within a factor of � of real time, then the lower bound increasesto 3d for delivery or �2� � 3�2d for quiescence; again, this is essentially tight.� Section 5: We also consider the case in which S and R have "-synchronizedclocks: each always holds a value that is within " of real time, but no assumptionis made about their rates at any given instant. Here we de�ne a novel family ofprotocols which, for any pre-speci�ed � � 1, allows for message delivery withintime (1+ 2�)d+O(") and quiescence within time (�+2)d+O(�"). The key pointhere is that neither value depends on the mpl �. We give a lower bound showingthat this trade-o� is essentially the tightest possible when " = 0; �nding a nearlymatching lower bound for arbitrary " > 0 is left as an open problem.At the end, in Section 6, we consider two other types of network failures | messageloss and processor crashes. In each case, we mention natural assumptions under whichthe problem can be reduced, from the protocol designer's point of view, to the caseof duplication/re-ordering alone. Also, we consider a simple probabilistic model ofmessage loss in which each packet has an independent probability of being lost. Weprove a trade-o� here between the expected number of packets sent and the expectedtime to deliver a message; determining the relationship between these two performancemeasures more precisely appears to be an interesting question.The theoretical research on this problem has been much less voluminous than thepractical work mentioned above. Harvey and Lynch [7] propose a number of the prob-lems considered here, and obtain some of the initial results on duplication. In the fullyasynchronous setting, Fekete, Lynch, Mansour, and Spinelli, and Afek et. al., proveimpossibility results for di�erent types of reliable communication [5, 1]. Wang andZuck [17] consider the sequence transmission problem, in which a sender must trans-mit a speci�ed sequence of data to a receiver over a faulty channel. Further resultsin an asynchronous model, based on the minimum amount of information that mustbe maintained between connections, are proved by Attiya, Dolev, and Welch [2]; theirpaper deals with the existence or non-existence of connection management algorithms,and not with bounds on quiescence time. Attiya and Rappoport [3] consider the con-nection management problem primarily in the asynchronous setting, focusing on theamount of information exchange that must take place between parties establishing aconnection. 3

2 PreliminariesI was feeling kinda lonesome and blueand needed somebody to talk to.So I called up the operator time,just to hear a voice of some kind.\When you hear the beep it will be three o'clock."She said that for over an hour and I hung up.| Bob Dylan,Talking World War III Blues.We are considering the problem of at-most-once message delivery between a senderS and a receiver R communicating over an unreliable channel. For our purposes,the sender is interested in transmitting a single message to the receiver; the receiveris required to deliver the message eventually (subject to some liveness requirementsdiscussed below), and never to deliver it a second time.We represent the system as a collection of four interacting automata (plus thenetwork, which is also modeled as an automaton):� US and UR are the two users at the opposite ends of the connection; US wants tosend a message to UR.� S and R are the network interfaces for US and UR respectively.In general, we will not be concerned with the structure of US and UR; US simply pro-vides inputs to S, consisting of messages that it wants delivered. Formally, S are Rare timed I/O automata of the type considered by Lynch and Vaandrager [12], aug-mented with liveness properties as in Gawlick et. al. [6]. (See also [10] for backgroundon general I/O automata.) Speaking informally, the fundamental property of S andR is that their states consist of an internal component and a clock component. Theclock is simply a monotone increasing (and unbounded) continuous function of realtime; processors can allow speci�ed amounts of time to pass on the clock (modeled asa time-passage action) and perform certain actions when the clock reaches a speci�edvalue. For technical reasons, the state of the automaton always contains a now compo-nent, which gives the value of real time; however, the automaton cannot directly makeuse of this component of its state.Each of S and R begins with the internal component of its state equal to initialvalues �0S and �0R respectively; no local actions are enabled in these states. Quiescence ismodeled as a transition of the internal component of a processor's state to this initialvalue; the clock component of its state is not a�ected. Similarly, when a processorcrashes, the internal component of the state reverts to the initial value, but the clockcomponent is not a�ected.Processors S and R communicate by means of packets sent across the network; wewill say that a processor executes the action send(p) to send a packet, and receive(p)when a new packet arrives. We will assume a total cause function �, which maps eachreceive(p) action to a send(p) action for the same packet. Note that in a network thatcan duplicate packets, this function � can be many-to-one | that is, receive(p) can beexecuted several times for a single packet p sent once. However, we will assume thateach packet can be duplicated only a �nite number of times. Finally, we reserve the4

terms \transmit" and \deliver" for the higher-level primitives executed by the usersUS and UR on messages.Since we will be concerned with the delivery of a single message, we assume thatUS will provide a single input to S (i.e. the message) at the beginning of any givenexecution, after which US and UR do not provide any inputs to S and R respectively.Thus, in any execution e, the inputs to S, beginning in �0S , will consist of an initialinput u� from US , followed by a sequence of packets r1; r2; : : : from R; the inputs toR, beginning in �0R, will simply consist of a sequence of packets s1; s2; : : : from S. Foran execution e and a processor P , we use the standard notation ejP to denote theprojection of e on P | this is the sequence obtained by projecting all states of thesystem onto those of P , removing actions not belonging to P , and collapsing consecutivesubsequences corresponding to time-passage actions of P . If e and e0 are two executionfragments, such that e ends with the same state (and value of real time) with whiche0 begins, we write ee0 to denote the \concatenated execution" in which the commonstate at the juncture between the two executions appears only once.If the network can only duplicate and re-order packets, then informally one canstate fairly simply the correctness conditions for our message-delivery problem. Wesay that a pair of automata (S;R) constitute a message-delivery protocol if in everyexecution e beginning with the input of a message from US to S, there is exactly oneaction in e in which R delivers the message to UR, and at least one action followingthis delivery in which R quiesces. When we consider processors with clocks, we alsoconsider the amount of time that elapses from the input of the message to S to theaction in which R delivers and to the �rst subsequent action in which it quiesces.Our timing assumptions concern the properties of the clock components that wecan guarantee. The three basic timing models are(i) Asynchronous processors. Neither S nor R has access to a clock.(ii) Translated clocks. The clocks of S and R run at the rate of real time, but theyare o�set by some arbitrary amount from each other (and from real time). Wewill also consider the case of drifting clocks, in which the clocks of S and R runat a rate between 1� and � times that of real time (the drift rate can also varywith time).(iii) "-Synchronized clocks. The clocks of both S and R are always within " of realtime (and hence always within 2" of each other).In the latter two models we will assume, except where noted otherwise, that processorsknow the maximum packet lifetime �; recall that this is de�ned as the maximumamount of time that can elapse between events send(p) and receive(p) that are relatedby the cause function �. This is a global bound that holds for all executions. Fora speci�c execution e of a protocol, one can simply compute the maximum, over allp that are received, of the time between send(p) and receive(p); this quantity is thelongest packet delay to occur in execution e, and we denote it by de. (Sometimes wewill write it simply as d when the execution is clear from context.) Note that de isalways at most �, but it can be substantially less in \well-behaved" executions.If the network guarantees that, for example, one out of every k packets will notbe lost, for some �xed k, then one can incorporate enough re-sends into a protocol toensure that each packet a processor wants to send will get through | this notion isdiscussed further in Section 6. Thus, for the bulk of our results (Sections 3, 4, and5

5), we consider networks that only duplicate and re-order messages. In Section 6 weconsider other types of failures, speci�cally message loss and processor crashes. Theresults are somewhat di�erent with these failure models; however, as suggested above,we can state in both cases fairly mild assumptions that result in natural reductions tothe case of duplication/re-ordering only.3 The Asynchronous ModelHere we assume that the processors do not have access to clocks, and that there is nompl. We show that if the processors are provided with a source of unique identi�ers(UID's) | making the three-packet handshake possible | it can take time at least3d to deliver the message. Thus the three-packet handshake is in fact optimal in thissetting.We are dealing with asynchronous processors, so the clock component of the statecan take only a single value (and hence is trivial). Without giving the processors anyadditional power (i.e. UID's), we can show that at-most-once delivery is impossible. Asimilar result is proved in [2].Proposition 1 Consider the asynchronous model without UID's. If R must eventuallyquiesce, then at-most-once delivery is not possible.Proof. Consider, by way of contradiction, a protocol for at-most-once delivery in thismodel. First consider an execution e in which R delivers a message and quiesces. Fornotational purposes, suppose that e begins at real time 0 and ends with the quiescenceof R at real time T ; of course, the processors do not have access to these values of realtime.We now construct an execution e0 in which R delivers the message twice. A pre�xof e0 is equal to e; at the end of this pre�x, R is back in its initial state �0R. Theremainder of e0 will consist of an execution fragment e01 which we construct so thate01jR = ejR, as follows.Suppose that in e, R receives packets s1; : : : ; sk from S, which arrive at times0 � t1 � � � � � tk � T: Since we assume that the network can duplicate packets, wecan construct the execution fragment e01 so that it begins at time T , and the inputsto R consist of the packets s1; : : : ; sk, with packet si arriving at time T + ti. Since Shas not necessarily quiesced, it may be continuing to send packets to R; however, wewill have all such packets arrive after time 2T . So in the interval [T; 2T], R begins inits initial state, in which no local actions are enabled, and the only inputs it receivesare the replayed packets. Thus we can construct e01 in the interval [T; 2T] such thate01jR = ejR; speci�cally, R delivers the message in e01. Thus, in the execution e0 = ee01,R delivers the message twice.The key point in the above impossibility proof is that R has no way to distinguishits state following quiescence from its state at the beginning of the execution; wecan therefore construct an execution in which it delivers the message a second timewhen presented with the appropriate sequence of duplicate packets. Introducing UID'schanges the picture considerably.We model UID's as follows. The state of a processor P is augmented with anadditional component: an in�nite set IP of abstract identi�ers. Since only the internal6

component of P 's state is reset when it quiesces or crashes, this collection of UID'ssurvives such events. The UID's can be copied and included in messages; however, theonly operations a processor can perform on them are the following.(i) generate(), which nondeterministically returns a new UID u and deletes it fromthe set IP (thus the UID component of P 's state undergoes a transition from IPto IP � fug; this ensures that u will never be used again).(ii) If x and y are UID's, then same(x; y) returns true i� x = y and false otherwise.In particular, P cannot directly \read" the current UID component of its state. In ourcase, we additionally assume that the sets IS and IR are disjoint (so R for example willnot confuse a UID from S with one of its own).In subsequent sections we will be dealing with processors that have clocks, withvalues that can be added, subtracted, and so on; here, however, we consider UID's asthey are used in practice in the absence of clocks: as abstract identi�ers that can onlybe included in messages and compared with one another to test equality. Note that ifa processor receives a packet �, it can determine whether it has previously received �only in the interval since its last quiescence.If there are UID's, then the three-packet handshake allows for the delivery of amessage M within time 3d. We are concerned with the delivery of a single message;hence for our purposes, the three-packet handshake can be implemented as follows.(i) On input hMi from US , S generates a UID x and sends the packet hxi.(ii) If R receives hxi and has not previously received hxi since its last quiescence, thenR generates a UID y and replies with the packet hx; yi.(iii) If S receives hx; yi, and since its last quiescence it has sent a packet hxi and notreceived hx; zi for any z, then S replies with the packet hy;Mi. (If S receiveshx; yi and this condition is not met, it sends an error message to R to allow R toquiesce.)(iv) If R receives hy;Mi, and since its last quiescence it has sent a packet hx; yi andnot received hy;M 0i for any M 0, then R delivers the message M .In the case of single-message delivery, and assuming the network can only duplicateand re-order, S and R can quiesce at the end of the third and fourth lines respectively.For more complicated types of failures, some additional acknowledgement is neededbefore quiescence. Analyzing this protocol in detail is not something we will undertakehere (see [9] and [13] for detailed analyses); for now we simply note that it is a veryrobust way to deliver messages within time 3d and quiesce immediately.The following lower bound shows that in an asynchronous system, there is no wayto improve on the worst-case performance of this protocol.Theorem 1 Assume an asynchronous system with UID's, and suppose that R musteventually quiesce. Then for every message-delivery protocol and every positive d thereis an execution e with de = d in which at least time 3de elapses before the delivery ofthe message.Proof. Assume that the claim does not hold for some protocol and some choice of d;we derive a contradiction. In execution e, S sends its �rst packet at real time 0, and allpackets take time de = d to arrive. Thus R delivers at time t < 3d and then quiesces7

S R0 dquiesce at time Tdeliver at time t < 3ddeliver before T + 3dFigure 1: The skeleton of a lower bound proofat time T � t. Let uS , uR denote the (�nite) sets of UID's generated by S and Rrespectively before time T . A key property of execution e is the following. Since Rbegins in its initial state �0R in which no local actions are enabled, it does not send anypackets before real time d; thus S receives no packets from R prior to real time 2d.Therefore, since the only packets received by R before delivering the message are sentby S in the interval from real time 0 to t� d < 2d, the only UID's included in packetsreceived by R before delivering belong to the set uS .Now we construct an execution f to be identical to e, except that the UID compo-nent of R's state begins with the value IR�uR (note that this is still an in�nite set, asrequired). That is, S sends its �rst packet at real time 0, all packets take time df = dto arrive, and S generates the same set of UID's in the interval [0; t� d]. Since S andR can only perform same(x; y) tests on the UID's, and the UID's in packets sent byS before real time 2d all belong to uS , we can construct f so that ejS = f jS in theinterval [0; t� d], R delivers the message at real time t, and quiesces at real time T .Finally, we construct an execution e0 in which R delivers the message twice; theoutline of this construction is depicted in Figure 1. A pre�x of e0 is equal to e; at theend of this pre�x, R has returned to its initial state �0R, and the value of real time isT . Recall that no local actions are enabled in the initial state of R, and its currentset of UID's is IR � uR. We now complete e0 with an execution fragment e01 as follows.As in the previous proof, we replay all packets sent by S in the interval [0; t� d], andhave any new packets sent by S arrive after real time T + t. So the only inputs Ris receiving in the interval [T; T + t] are the replays from S; since ejS = f jS in theinterval [0; t� d], we can construct e01 so that e01jR in the interval [T; T + t] is equal tof jR in the interval [0; t]. Thus R delivers the message in the fragment e01, and hencedelivers it twice in the execution e0 = ee01.4 Translated ClocksWhen we assume clocks that run at the rate of real time but are translated by somearbitrary amount, the main result is a trade-o� showing that either it takes time atleast 3d to deliver the message, or it takes time at least � to quiesce. If we weaken the8

timing guarantee so that clocks are only running at a rate within � of real time, thenthe lower bound on the time to quiesce in this trade-o� is multiplied by a factor of �2.There are simple protocols nearly matching these lower bounds in all cases.4.1 Clocks at the Rate of Real-TimeHere, we assume that the two processors have clocks that run at the rate of real time,but their values are shifted by an unknown amount. The clocks of S and R can berepresented by functions
S;
R : < ! <:Our assumption can then be expressed by saying that for all values t1 and t2 of realtime, we have
R(t1)�
R(t2) =
S(t1)�
S(t2) = t1 � t2:To specify local times at S and R, we will sometimes use the terms S-time and R-timerespectively; that is, S-time t (resp. R-time t) is equal to real time
�1S (t) (resp.
�1R (t)).Recall that we measure the time to quiesce from the �rst send event. If the value� of the mpl is known, there is a natural algorithm that allows for immediate delivery(i.e. delay d), but requires time � + d to quiesce. This is simply the following rule:as soon as R gets the �rst packet, it delivers the message; it then counts o� � onits clock before quiescing. Of course, the 3-packet handshake still allows for R todeliver and quiesce within time 3d. The following lower bound shows that one cannotsimultaneously improve on both these quantities.Theorem 2 Consider a system with translated clocks and a known value of �; let dbe a constant satisfying 0 < d < 13�. For any message-delivery protocol there is anexecution e with de = d for which at least time 3de elapses before the delivery of themessage, or at least time � elapses before the quiescence of R.Proof. Assume that the claim does not hold for some protocol and some choice of d;we derive a contradiction. First we construct an execution e in which both clocks startat 0, and all packets take time de = d. By our assumption about the protocol, we canhave R deliver the message at some time t < 3d, and quiesce at time T < �. Theexecution e ends with the quiescence of R.We now construct execution f . In f , the clock of S starts at 0, the clock of R startsat � � d, and df = d. The �rst packet is sent by S at S-time 0 (which is the same asR-time ��d); thus by our assumption about the delivery bound, R delivers by R-time�� d+ t0 < �+ 2d. Since no local actions are enabled in the initial state of R, S doesnot receive a packet from R until S-time 2d > t0�d, and so we can construct f so thatejS = f jS in the interval [0; t0 � d] of S-time.Finally, we construct an execution e0 in which R delivers the message twice. Apre�x of e0 is equal to e. The remainder of e0 is an execution fragment e01 constructedas follows. We replay the packets sent by S in the interval [0; t0�d] of S-time, and haveany other packets sent by S take time � to arrive at R. At R-time T , R is in its initialstate because it has just quiesced; between R-time T and �, R receives no packets fromS and hence remains in its initial state. Since no local actions are enabled in this initialstate, and the inputs received by R in the interval [�; �+ t0�d] of R-time are the sameas they are in f , we can construct e01 in the interval [�; � + t0 � d] of R-time so that9

e01jR = f jR in this interval. Thus, R delivers the message in e01, and hence delivers themessage twice in execution e0 = ee01.Suppose that there exists a value for � that holds in all executions, but the proces-sors do not know this value. Then using the technique of the previous proof, we couldconstruct execution e0 by replaying the packets of S regardless of how long R waitsbefore quiescing (if R quiesces after T units of real time, we simply choose � > T).Thus we obtain an execution in which R delivers twice, simply assuming that the timeuntil delivery is strictly less than 3de; in this way, one can prove the following result.Theorem 3 Consider a system with translated clocks in which the value of � is notknown, and suppose R must eventually quiesce. Then for every message-delivery pro-tocol and every positive d, there is an execution e with de = d for which at least time3de elapses before the delivery of the message.For the remainder of the paper we will assume that the value of � is known.4.2 Drift in Translated ClocksIn this section, we assume translated clocks, and weaken the guarantee that the twoclocks run at the same rate. Thus, for a clock
, our guarantee is that8x; y 2 <; x < y : 1� �
(y)�
(x)y � x � �A clock with this property will be called �-drifting.In this setting, the 3-packet handshake still provides for delivery and quiescencewithin time 3d. At the other extreme, there is a natural algorithm that ensures deliveryin time d and quiescence within �2�+d units of real time: R delivers immediately andthen counts o� �� on its clock.Again, we can prove that one cannot improve substantially on both bounds at thesame time.Theorem 4 Consider a system with �-drifting clocks; let d be a constant satisfying0 < d < 13�. For any message-delivery protocol there is an execution e with de = dfor which at least time 3de elapses before the delivery of the message, or at least time�2� � 3�2de elapses before the quiescence of R.Proof. Assume that the claim does not hold for some protocol and some choice of d;we derive a contradiction. Set � = d� .First we construct an execution e in which both clocks start at 0 and run at 1� timesthe rate of real time (that is,
S(t) =
R(t) = t�). Packets take de = �� = d units ofreal time to arrive. Thus, we can construct e so that R delivers in less than 3�� unitsof real time; hence it delivers before local time 3� . Similarly, since it quiesces in lessthan �2� � 3�3� units of real time, it quiesces before local timet0 = ��� 3�2�:Next we construct executions f and e0 as follows. In f , the clock of S begins at 0and the clock of R begins at t0 = ��� 3�2� . The clocks again run at 1� times the rate10

real timereal time3�� elapses�� 3�� elapsesclocks run fast:clocks run slow:local time �� � 3�2� + 3�local time �� � 3�2� = t0S R
Figure 2: Final execution in Theorem 4of real time and packets take �� units of real time to arrive. We can construct f sothat R delivers at local time t1 < ��� 3�2� + 3�:Let t0 = t1 � t0; so t0 < 3� . For any x 2 [0; t0 � �], a packet sent by S at S-time xshould be received by R at R-time t0 + � + x. Also, since no local actions are enabledin the initial state of R, S does not receive a packet from R before S-time 2� > t0� � ;thus we can construct f so that f jS = ejS in the interval [0; t0� �] of S-time.In execution e0, both clocks start at 0 and run at � times the rate of real time;packets take de0 = �� units of real time to arrive. Since the amount of local time thatelapses between the sending and the receipt of every packet is the same in e and e0,we can construct e0 so that e0jS = ejS and e0jR = ejR. So R quiesces before localtime ��� 3�2� in e0; thus it quiesces in less than �� 3�� units of real time. Also, wehave f jS = e0jS in the interval [0; t0 � �] of S-time. The execution e0 ends with thequiescence of R.Finally, we construct an execution f 0 in which R delivers the message twice. Apre�x of f 0 is equal to e0. The remainder of f 0 is an execution fragment f 01 whichbegins at real time � � 3�� (and hence local time �� � 3�2� on both clocks). In f 01,both clocks run at 1� times the rate of real time, and replays begin arriving at R asthey did in execution f . (By having any other packets sent by S take � units of realtime to arrive at R, we can ensure that such packets will not interfere with this part ofthe construction.) So as in execution f , a packet sent by S at S-time x 2 [0; t0 � �] isreceived by R at R-time t0 + � + x. For any such packet sent at S-time x 2 [0; t0 � �],note that at most � � 3�� units of real time elapse before R quiesces, and at most�(x + �) � 3�� elapse after. Thus, no replay arrives more than � units of real timeafter it was sent by S. 11

By our construction, the only inputs that R receives following quiescence and upto R-time t1 = t0 + t0 are replays of packets sent by S in the interval [0; t0 � �] ofS-time. But we argued above that e0jS = f jS in this interval; thus, we can constructthe fragment f 01 so that f jR = f 01jR in the interval [t0; t1] of R-time. Thus R deliversthe message in f 01, and hence delivers it twice in the execution f = ff 01.5 Approximately Synchronized ClocksHaving approximately synchronized clocks gives the processors a considerable amountof additional power; speci�cally, the trade-o� lower bound of Section 4 no longer applies.In fact, we can show that for arbitrarily small � > 0, R can deliver within time (1+�)dand still quiesce in an amount of time that depends only on d, and not on the mpl �.This is in striking contrast with the bounds of the previous section.Recall that an approximately synchronized clock
 is one that is always within "of real time, and always monotone increasing. That is, for all t we have j
(t)� tj � ".Note that this condition implies j
S(t)�
R(t)j is always at most 2". In this section,we will assume that 2" < �; otherwise, we essentially have the case of translated clocksas in Section 4.In the previous section, we saw an algorithm that allowed for immediate delivery(in time d), at the cost of requiring � for quiescence. Here we are after something quitedi�erent: we want R to wait only a little bit more than d before delivering, and stillquiesce in an amount of time that depends only on d. We sketch an algorithm thatachieves this now, and then de�ne it precisely in the proof of Theorem 5.Assume that S sends out the initial packet at local time 0 (hence at real time
�1S (0)). Subsequently, both S and R send out time-stamped packets at regular inter-vals (say at intervals of c0). Since
S and
R are approximately synchronized, R canuse the time-stamps on the packets it receives to maintain an estimate of the value ofde. To be a little more concrete, de�ne the lag of a packet to be the local time at whichit was received, minus its time-stamp (so because
S and
R are only approximatelysynchronized, a packet with very small transit time could have negative lag). It is notdi�cult to prove that the maximum of the lags that R observes cannot be much lessthan de.Suppose that we want R to deliver within time at most (1 + �)de, for some small� > 0. Then R waits until its local time is roughly (1+�) times the maximum observedlag, and then delivers the message. An important point is the following: if such a timenever comes, R is not required to deliver. R now waits a much longer amount of time,roughly (2� + 2)de, and then quiesces. What has it accomplished by waiting this long?We argue that it has provided itself with some protection against replays.For consider an execution f in which a replay of the packet sent by S at local time0 arrives after R wakes up from quiescence. Then the lag observed by R, and hence itsestimate of df , will immediately become extremely large. Moreover, R now expects toreceive a packet from S at regular intervals of c0; thus there are two possibilities:(i) Following quiescence, but before R meets the criterion for delivery (i.e. its localtime has not yet reached (1 + �) times df), some S-packet is not replayed. Thenthe maximum lag computed by R will increase linearly with its local time (dueto the unreceived S-packet), and it will therefore never be required to deliver.12

(ii) All S-packets are replayed until R meets the criterion for delivery. Then sincethe lag is at least 2�de, the \short" amount of time R waited before delivery wasat least � � 2�de = 2de, and so it must have received the replay of an S-packetin which S announces the receipt of an earlier R-packet. But this could only bepossible if the S-packet is a replay (as its time-stamp is much earlier than thetime at which R �rst started generating replies); thus R will be able to abort theconnection without delivering the message a second time.We now turn to a precise statement of the result.Theorem 5 For each � � 1 and c > 0, there is a protocol in which R delivers withintime (1 + 2�)d+ (4 + 4�)"+ c and quiesces within time (�+ 2)d+ (2�+ 6)"+ c.Proof. Fix c0 � c2�+5 . Each of S and R sends a time-stamped packet to the other atincrements of time c0. We can view the protocol as operating in discrete \ticks" oflength c0; a discrete R-time t is a local time at R which is a positive integral multiple ofc0, with discrete S-time de�ned analogously. Note that the gap between two consecutivediscrete R-times can be arbitrarily small (though not inde�nitely), and can be as largeas c0+2". The threshold of R at discrete R-time t is de�ned to be the largest t0 for whichR has received all S-packets with time-stamp at most t0 (i.e. it has not yet receivedthe S-packet with time-stamp t0 + c0); the threshold of S is de�ned analogously.The �rst packet sent by S contains the message, as well as the current local time.Subsequent S-packets consist of the current local time and the current threshold of S.Initially, S has received no packets from R and hence reports a trivial threshold; after itreceives its �rst R-packet, it reports a non-trivial threshold. R-packets consist simplyof the current local time (to enable S to compute its threshold); the �rst R-packet issent when R �rst receives the initial S-packet.Assume that S sends its initial packet at discrete S-time 0. Let r0 denote thediscrete R-time at which R �rst receives the initial S-packet, and hence at which itsends out its �rst packet to S. R maintains an estimate of the current value of de bycomputing the maximum lag `(t) of any packet observed up to time t; this is equal toc0 +M (t), where M (t) is the maximum over the following three �nite sets:(i) The set of all r� s, where the threshold of R at discrete R-time r is equal to s.(ii) The set of all s0 � r0, where the threshold value in the S-packet time-stamped s0is equal to r0.(iii) The set of all s0�r0, where the S-packet time-stamped s0 reports a trivial thresh-old.By de�nition, we say that that threshold of R at discrete R-time r0 � c0 (i.e. justbefore it received the initial packet) is 0. So by the �rst rule for estimating `, we haveM (r0) � r0 � c0 and hence `(r0) � r0; by the third rule, we have `(r0) � �r0. Thus`(r0) � jr0j.R delivers at the �rst discrete R-time t0 whent0 > (1 + 2�)`(t0)and quiesces at the �rst discrete R-time t00 whent00 > (�+ 2)`(t00):13

It then sends a done message to S; S quiesces immediately upon receiving this donemessage. If at any time S reports a threshold that is less than r0, (i.e. one can concludethat R is hearing replays), R aborts the connection without delivering and sends anerror message to S.First we argue that for any t, the actual maximum message delay de is at least`(t)� 2"� 2c0. Consider the discrete R-time r at which the maximum value for `(t) wasattained | i.e. the �rst r � t for which `(r) = `(t) | and suppose that it was updatedusing the �rst rule (the other cases are strictly analogous). Then the threshold of R atr must be equal to r� `(t) + c0, so the S-packet from discrete S-time r � `(t) + 2c0 hasnot yet arrived. Thus de >
�1R (r)�
�1S (r� `(t) + 2c0)� (r� ")� (r � `(t) + 2c0 + ")= `(t) � 2c0 � 2":So at the discrete R-time just before quiescence we havet00 � c0 � (�+ 2)`(t00�c0)� (�+ 2)(de+ 2"+ 2c0)t00 � (�+ 2)(de+ 2") + c:Since the initial send event was at real time
�1S (0) � �" and
�1R (t00) � t00 + ", thetime required for R to quiesce is at most(�+ 2)(de + 2") + 2" + c:Note also that the time required for S to quiesce is at most an additional de. A similaranalysis gives the bound for the time required to deliver.Now let us show why R will not deliver the message a second time. First weargue that R will not quiesce until it has received an S-packet with a non-trivialthreshold. Let denote the S-packet with minimal time-stamp that reports a non-trivial threshold, and consider a discrete R-time r at which R has not yet received .Let r�v1 be the timestamp of the most recent S-packet, and set v = r�v1�r0. Thenby the �rst rule for estimating the lag, `(r) is at least r0 and at least v1; by the thirdrule, `(r) is at least v. Thus,r = r0 + v1 + v � 3`(r) � (�+ 2)`(r);so R will not yet quiesce.Now let `� (resp.M�) denote the maximum value of `(t) (resp.M (t)) over all discreteR-times t up to quiescence, and s1 denote the time-stamp of the S-packet . We claimthat s1 � 2`�. Indeed, the S-packet time-stamped s1 � c0 reports a trivial threshold,so by the third rule for estimating the lag, M� � s1� c0� r0, whence `� � s1� r0. Wehave already argued that `� � r0; adding, we obtain s1 � 2`�.Finally, suppose T > t00 and a replay of the original message arrives at time T . Wewill show that if T 0 � T is some time at which R has not received the replay of theS-packet , it is not required to deliver. Since has not been received at T 0, we have`(T 0) � T 0 � s1� T 0 � 2`�;14

by the fact that R quiesced by R-time T we have (�+ 2)`� � T , and hence`� � T� + 2 :Thus `(T 0) � T 0 � 2`�� T 0 � 2T�+ 2� T 0 � 2T 0�+ 2T 0 � (1 + 2�)`(T 0)Thus R is not required to deliver until it receives a replay of . But reports athreshold smaller than T , which is the discrete R-time at which R �rst started sendingpackets to S following quiescence. By our rule from above, R will abort the connectionin this case. Thus R never delivers the message a second time.In the case in which " = 0 (so the clocks of S and R are perfectly synchronized),we can show that the trade-o� implicit in the previous result is tight up to additiveterms.Theorem 6 Consider a system with "-synchronized clocks; let 0 < � < 2 and h(x) =min(�; 2x=�). For any message-delivery protocol there is an execution e for which atleast time (1 + �)de elapses before R delivers, or at least time h(de) elapses before Rquiesces.Proof. Assume that the claim does not hold for some protocol and some choice of �;we derive a contradiction. Note that the local times of the two processors are alwaysequal to the value of real time. Fix d small enough so that (1 + �)h(d) < �. We �rstconstruct execution e in which both clocks start at 0 and packets take time de = d; byour assumption about the protocol, we can de�ne e so that R delivers the message attime t < (1 + �)d and quiesces at time T < 2�d. Execution e ends with the quiescenceof R at time T .We now construct execution f in which both clocks start at 0 and messages taketime df = h(d). Again by our assumption about the protocol, we can construct f sothat R delivers before time (1+ �)h(d). Note that in e, S receives its �rst packet fromR at time 2d. Thus in both e and f the only inputs it receives in the interval [0; 2d) isthe initial input from US ; hence we can construct f so that ejS = f jS in the interval[0; 2d).Finally, we construct an execution e0 in which R delivers the message twice. Apre�x of e0 will be equal to e; the remainder of e0 is an execution fragment e01 whichbegins at time T . We replay all packets sent by S so that they arrive after a delay ofh(d) > T . No local actions are enabled in the initial state of R, and the only inputsR receives in the interval [h(d); h(d) + 2d) are these replayed packets; since ejS = f jSin the interval [0; 2d), we can therefore construct e01 so that e01jR = f jR in the interval[h(d); h(d)+ 2d). But h(d) � 2�d, so h(d) + 2d � (1 + �)h(d) and hence R delivers themessage in e01. Thus it delivers the message twice in the execution e0 = ee01.15

When � = 2� , the time required to quiesce in Theorem 6 is at least min(�d; �),which is close to matching the bound achieved in Theorem 5. For general " > 0, wedo not know how to obtain a correspondingly tight lower bound, and leave this as anopen question.6 Other Types of FailuresThere are a number of possible models for message loss, some of which allow for naturalreductions to the case of duplication/re-ordering only. Under a simple probabilisticmodel of message loss, we show the following type of trade-o�: if the expected numberof packets sent by a processor is bounded by a constant, then the expected time untilquiescence is at least a constant fraction of the mpl �.Introducing crashes into the model of Section 5 changes the time bounds one canachieve. In particular, if we assume that R can crash, we obtain a lower bound of 3don the time for delivery; this is in contrast to the fast algorithm presented in Section 5.6.1 Message LossWe must assume that the network satis�es some minimal sort of liveness guarantee, orit will not be possible to design any protocol at all. A theoretically appealing livenessformulation is the following: if a processor sends an in�nite number of copies of apacket, one will get through. Unfortunately, this still does not allow one to provideany performance guarantees for a protocol with respect to real time.We propose two kinds of liveness guarantees. The �rst is to say that for some �xedvalue of k, if a processor tries to send the same message k times, it will succeed atleast once. Under this formulation, there is a general transformation from a protocoltolerating message duplication to one tolerating both message loss and duplication:whenever a processor is supposed to send a packet, it sends it k times in immediatesuccession.An equally natural and more slippery kind of guarantee is the following: each packethas an independent probability p, 0 < p < 1, of being received. Of course, this is arather simplistic assumption, but it is one that is often made in practice, and it suggestsa perspective for approaching these problems in general. Let us imagine a system withsynchronized clocks, and consider the following two implementations of the 3-packethandshake.(i) To send a packet, a processor does the following: it sends the packet, waits 2�,and tries again if it has gotten no reply. Since three packets must get throughin the 3-packet handshake, the expected running time of this implementation is6p � �.(ii) To send a packet, a processor sends it over and over very rapidly until it hearsa reply; then it switches to the next packet that it wants to send. The runningtime of this implementation is 3d plus additive terms depending on 1p .Of course, the problem with the second implementation is that it uses an astronomicalnumber of packets. One naturally observes that a whole range of implementations ispossible by having a processor wait until time h(j) (for some function h) to try itsjth re-send of the packet; this is simply the class of \back-o�" algorithms. We believe16

that an appropriate kind of trade-o� to analyze in this model is that of expected timeversus expected number of packets sent. In analyzing such algorithms, we must becareful about a number of points. Two of these are� What is the underlying set over which the expectation is taken in the aboveexamples?� How do we de�ne de in an execution e if some packets are being lost?We choose to set things up as follows. First of all, the lower bound we prove does notmake use of duplicates, so we will assume that the channel only loses packets and doesnot duplicate them; note that this only strengthens the lower bound. De�ne a packethistory P to be an in�nite sequence of positive real numbers t1; t2; : : :. The idea is thatwe will construct executions e in which the ith packet sent in e takes time ti.Let P [i] denote the ith element of P . If l = i1 < i2 < � � � is a sequence of naturalnumbers, we de�ne P l to be the packet history in which every entry P [ij] (ij 2 l) isreplaced by the special symbol loss; this indicates that the corresponding packet waslost. We now de�ne � to be the set of packet histories P l for all possible subsequencesl. We can de�ne a probability on � as follows. First, let � denote a �nite pre�x of P ,in which some of the elements have been replaced by loss. Consider the subset �� of �consisting of all histories in � that begin with the �nite pre�x �. If � has length k andcontains ` � k occurrences of the symbol loss, assign �� a probability of pk�`(1� p)`.This probability now extends uniquely to the �-algebra � generated by all sets of theform ��; i.e. the smallest collection of sets containing all �� which is closed undercomplement and countable union. Constructions of this sort are a central topic of [11].An execution e is consistent with a packet history P l if the jth packet sent in etakes time tj , or is lost if j 2 l. An execution tree E is a function which maps eachP l 2 � to an execution E(P l). E must satisfy the following two properties.(i) E(P l) is consistent with P l.(ii) If P l and P l0 are the same on a �nite pre�x � of length j, then E(P l) and E(P l0)are the same through the value of real time corresponding to the sending of the(j + 1)st packet.For some index set L, let �0 = fP l : l 2 Lg denote the set of all packet histories forwhich R delivers the message in E(P l). Every Pl 2 �0, contains some �nite pre�x �lof length jl such that by the time the jlth packet is sent in E(P l), R has delivered themessage. By property (ii) of the fuction E, this means that R delivers the message inevery execution induced by a packet history in ��l . Thus,�0 = [l2L��l :But since there are only countably many �nite pre�xes �l, this is a countable unionof members of �, which is therefore in �. Thus, the set of packet histories inducingexecutions in which R delivers the message is measurable, and we can compute itsprobability.Similarly, we can compute the expected time to deliver the message and the ex-pected number of packets sent before the delivery of the message (these could be in�niteif, for example, the measure of �0 is not 1). For an execution tree E associated with a17

packet history P , let dE denote the least upper bound of the set of packet delays ti inP . As an example of the sort of lower bound one might try to prove in this model, weshow the following result; speaking informally, it says that every algorithm either usesan expected number of packets that is super-constant, or requires an expected amountof time to deliver that is a constant fraction of �.Theorem 7 Let p denote the probability of each packet being received, and let c be apositive constant. Then there is a constant � > 0 such that the following holds for everymessage-delivery protocol: there is an execution tree in which the expected number ofpackets sent is at least c, or for every positive d � �, there is an execution tree E withdE = d for which the expected time to deliver is at least ��.Proof. We claim that the theorem holds with � = (1� p)�c. We consider a protocolfor which the expected number of packets sent is at most c in all execution trees; foreach d � � we construct such an execution tree E with dE = d for which the expectedtime to deliver is at least ��.Suppose that both clocks start at 0. Let P� denote the packet history in whichall packets take time �; we construct an execution tree E� consistent with P�. Forany subsequence l, the only input received by S in the interval [0; �) in E�(P l�) is theinitial input from US ; R receives no inputs in the interval [0; �) in E�(P l�). Thus wecan construct E� so that for all l; l0, E�(P l�)jS = E�(P l0�)jS = eS and E�(P l�)jR =E�(P l0�)jR = eR in the interval [0; �). Thus, by our assumption about the expectednumber of packets sent, the total number of packets sent by S and R in this intervalmust be at most c, in every execution E�(P l�).Now for any positive d � �, let Pd denote the packet history in which all packetstake time d. We now construct an execution tree Ed consistent with Pd. Let P�ddenote the packet history in which every packet is lost. (Of course, R need not deliverthe message in Ed(P�d).) In the interval [0; �) in Ed(P�d), S receives only the initialinput from US and R receives no inputs at all; thus we can construct Ed(P�d) so thatEd(P�d)jS = eS and Ed(P�d)jR = eR in the interval [0; �), where eS and eR are theexecution pre�xes de�ned in the previous paragraph.But this says that in the interval [0; �) in Ed(P�d), S and R send a total of at mostc packets. Let � denote the �nite pre�x of length c consisting of c copies of the symbolloss; that is, �� is the subset of � in which the �rst c packets are all lost. Then by thede�nition of an execution tree, Ed(P ld) and Ed(P�d) are the same in the interval [0; �),for every P ld that belongs to ��.Since the probability of �� is (1� p)�c = �, and the time before delivery is clearlyat least � in every execution Ed(P ld) for P ld 2 ��, the expected time for R to deliver inthe execution tree Ed is at least ��.6.2 CrashesIn this section, we will assume that clocks are synchronized, that messages can beduplicated but not lost, and that R but not S can crash. Note that quiescence is notneeded in our lower bounds | we can force untimely quiescence using a crash.We begin by noting the following general principle. Suppose that R is able tomaintain the time of its last crash (in stable storage), and that it is not required to18

deliver any message whose initial packet was sent before this time. Then there is ageneral reduction to a protocol that tolerates only message duplication: each packetis labeled with the time of the initial packet in the current exchange, and R simplythrows away any packet for which this label is less than the time of its last crash.If R does not know the time of its last crash, then we prove a lower bound thatcontrasts with the algorithm of Theorem 5.Theorem 8 Consider a system with synchronized clocks, in which messages can beduplicated and R can crash, and suppose that R does not know the time of its lastcrash. For every message-delivery protocol, there is an execution e for which at leasttime 3de elapses before the delivery of the message.Proof. Assume that the claim does not hold; we derive a contradiction. Choose d < 19�.We �rst construct execution e in which both clocks start at 0 and packets take timede = d. By our assumption about the protocol, we can construct e so that R deliversthe message at time t < 3d; we then have R crash immediately. Note that the onlyinput S receives in the interval [0; t� d] is the initial input from US .We now construct an execution e0 so that both clocks start at 0, packets from Stake time d, and packets from R take time �. Since S receives no inputs from R in theinterval [0; t � d], we can construct e0 so that e0jS = ejS in the interval [0; t� d]; wecan also ensure that e0jR = ejR in the interval [0; t], since R will be getting the sameinputs from S in this interval in the two executions. Thus R delivers at time t in e0.We construct execution f in which both clocks start 0 and packets take time df = t.By assumption, we can construct f so that R delivers at time t0 < 3t; we then haveR crash immediately. Note that since packets take time t, the only input S receivesin the interval [0; t0 � t] is the initial input from US ; thus we can construct f so thatf jS = e0jS in the interval [0; t0 � t].Finally, we construct execution f 0 in which R delivers the message twice. A pre�x off 0 is equal to e0. The remainder of f 0 is an execution fragment f 01 which begins at timet with R in its initial state. We replay the packets sent by S in the interval [0; t0 � t]so that each takes time t to arrive; we have all other packets take time �. Thus, theonly inputs received by R in the interval [t; t0] are the replays of these packets; sincee0jS = f jS in the interval [0; t0 � t], we can therefore construct f 01 so that f 01jR = f jRin the interval [t; t0]. Thus, R delivers the message in f 01, and hence delivers it twice inthe execution f 0 = e0f 01.7 Conclusion and Open ProblemsWe have studied the time bounds one can achieve for message delivery and quiescencewith a spectrum of di�erent synchrony assumptions. These results both provide the�rst precise formulation of some lower bound trade-o�s inherent in the problem ofmessage delivery, and reveal some of the relationships between the di�erent types oftiming guarantees that are possible in such systems.A number of possible directions for future work remain open. At the most concretelevel, we do not have a lower bound for the case of approximately synchronized clocksthat comes close to matching our upper bound when " is relatively large compared tod. 19

For the case of message loss and crashes, we feel that a more comprehensive collec-tion of trade-o�s can be developed, as we have done in the case of duplication; muchof the problem here may lie in �nding an appropriate model. Our model involvingindependent probability of message loss could be explored further; there are also anumber of more complicated and more realistic models that could be developed. Weare also interested in obtaining tight bounds for the case of processor crashes; onepossible approach is the \pumping" technique of Fekete et. al. [5]. The e�ects of stablestorage in the crash model is another direction that could be investigated (knowing thetime of the last crash was a simple example in this direction.)AcknowledgementThe third author would like to thank Arthur Harvey, George Varghese, and Tony Lauckat DEC for discussions out of which some of this work began.References[1] Y. Afek, H. Attiya, A. Fekete, M. Fischer, N. Lynch, Y. Mansour, D. Wang, L.Zuck, \Reliable communication over an unreliable channel," to appear in Journal ofthe ACM. (Also Technical Memo MIT/LCS/TM-447.)[2] H. Attiya, S. Dolev, J. Welch, \Connection management without retaining informa-tion," Technical Report LPCR 9316, Laboratory for Parallel Computing Research,Dept. of Computer Science, The Technion, June 1993.[3] H. Attiya, R. Rappoport, \The level of handshake required for establishing a con-nection," Proc 8th Internation Workshop on Distributed Algorithms, 1994.[4] D. Belsnes, \Single message communication," IEEE Transactions on Communica-tions, 24(1976).[5] A. Fekete, N. Lynch, Y. Mansour, J. Spinelli, \The impossibility of implementingreliable communication in the face of crashes," Journal of the ACM, 40(1993), pp.1087{1107.[6] R. Gawlick, R. Segala, J. S�gaard-Andersen, N. Lynch, \Liveness in timed anduntimed systems," Proc. 21st International Colloquium on Automata, Languages,and Programming, 1994.[7] A. Harvey, N. Lynch, Notes on connection management, DEC, 1990.[8] B. Liskov, L. Shrira, J. Wroclawski, \E�cient at-most-once messages based onsynchronized clocks," ACM Transactions on Computer Systems[9] J. S�gaard-Andersen, N. Lynch, B. Lampson, \Correctness of communications pro-tocols: a case study," Technical Report MIT/LCS/TR-589, November 1993.[10] N. Lynch, M. Tuttle, \Hierarchical correctness proofs for distributed algorithms,"Proc. 6th ACM Symposium on Principles of Distributed Computing, 1987, pp. 137{151. (Full version in Technical Report MIT/LCS/TR-387.)[11] N. Lynch, I. Saias, R. Segala, \Proving time bounds for randomized distributedalgorithms," Proc. 13th ACM Symposium on Principles of Distributed Computing,1994. 20

[12] N. Lynch, F. Vaandrager, \Forward and backward simulations part II: timing-based systems," Technical Memo MIT/LCS/TM-487.b, September 1993.[13] L. Murphy, A.U. Shankar, \Connection management for the transport layer:service speci�cation and protocol veri�cation," IEEE Trans. on Communications,39(1991), pp. 1762{1775.[14] C. Sunshine, Y. Dalal, \Connection management in transport protocols," Com-puter Networks, 2(1978),.[15] A. Tanenbaum, Computer Networks, Prentice-Hall, 1988.[16] R. Tomlinson, \Selecting sequence numbers," ACM Operating Systems Review,3(1975).[17] D. Wang, L. Zuck, \Tight bounds for the sequence transmission problem," Proc.8th ACM Symposium on Principles of Distributed Computing, 1989, pp. 73{83.[18] R. Watson, \The Delta-t transport protocol: features and experience," Proc. IEEEConference on Local Computer Networks, pp. 399{407, 1989.

21

