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Abstract

IOA is a high-level distributed programming language based on the formal I/O automaton
model for asynchronous concurrent systems. A suite of software tools, called the IOA toolkit,
has been designed and partially implemented to facilitate the analysis and verification of dis-
tributed systems using techniques supported by the formal model. An important proof technique
for distributed systems defined by a hierarchy of abstractions involves the notion of a simulation
relation between pairs of automata at different levels in the hierarchy. The IOA toolkit’s sim-
ulator tests purported simulation relations by executing the low-level automaton and, given a
proposed correspondence between its steps and those of the higher-level automaton, generating
and checking an execution of the higher-level automaton. Once checked by the simulator, the
simulation relation and the step correspondence can be used in conjunction with the toolkit’s
proof tools to construct a formal proof that the low-level automaton implements the higher-level
one. This paper presents a case study that illustrates this use of the IOA toolkit to prove correct
an algorithm for mutual exclusion. The case study shows how tools like the IOA simulator can
play an important role in proving distributed systems correct.

1 Introduction

The input/output (I/O) automaton model [LT89, Lyn96] is a labeled transition system model
suitable for describing systems with asynchronously interacting components. In this model, a
component is represented as an I/O automaton which is a nondeterministic, possibly infinite-state,
state machine. The external behavior of each automaton is defined by a simple mathematical object
called a trace.

The I/O automata model supports viewing systems at multiple levels of abstraction. A system
can be described first at a high-level of abstraction, capturing only the essential requirements about
its behavior, and then be refined successively until the desired level of detail is reached. The model
defines what it means for an automaton to implement another (in terms of trace inclusion), and it
introduces the notion of a simulation relation as a sufficient condition to prove an implementation
relation between two automata. A parallel composition operator, also included in the model, allows
one to decompose the description, analysis and verification of large and complex systems.

IOA [GL00, GL98] is a formal language for describing I/O automata. It can be regarded as
a high-level distributed programming language. Its design was driven by a motivation to support
both simulation [Che98, RR00, Dea0l] and verification [Bog01]. The IOA toolkit is a partially
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implemented set of software tools that support the design, analysis, and development of systems
within the I/O automaton framework. The toolkit contains a front-end that checks whether system
descriptions (IOA programs) comply with IOA’s syntax and static semantics, and that produces
an intermediate representation of the code for use by the back-end tools (a simulator, interfaces to
a number of existing theorem provers, model checkers, and an automatic code generator).

A key feature of the I/O automaton model is nondeterminism. Nondeterminism allows systems
to be described in their most general forms and to be verified considering all possible behaviors
without being tied to a particular implementation of a system design. The results obtained for a
nondeterministic system carry over to different implementations of the same system. Nondetermin-
ism also makes it easier to prove correctness in the absence of extraneous, unnecessary restrictions.
A key challenge in the design of IOA has been to provide support for both simulation and ver-
ification in a unified framework. Nondeterminism in IOA assists verification in the ways noted
above. On the other hand, nondeterminism complicates simulation, which must choose particular
executions. Therefore, simulation requires mechanisms for resolving nondeterminism. The I0A
language and toolkit provide such mechanisms. Moreover, these mechanisms turn out to be useful
not just for simulation, but for verification as well.

In this paper, we describe by means of a case study how the IOA toolkit can be used for
simulating and subsequently verifying distributed algorithms. We focus on the capability of the
IOA simulator to simulate pairs of I/O automata at different levels of abstraction. Users present
the paired simulator with descriptions of two automata, a candidate simulation relation, and a
mapping, called a step correspondence, from the actions of the lower-level automaton to sequences
of actions of the higher-level one. The simulator simulates the low-level automaton, checks whether
the trace of the high-level automaton induced by the step correspondence is identical to that of the
low-level automaton, and checks whether the candidate simulation relation holds throughout the
simulated executions.

In our case study we present an algorithm for mutual exclusion and use the paired simulator to
obtain evidence that this algorithm satisfies the mutual exclusion property. We then verify that the
algorithm satisfies this property with LP [GG91]. The toolkit facilitates the automatic translation
of the algorithm and the candidate simulation relation into the language of LP.

Related work Other toolkits such as AsmL [GSV01] tools, Mocha [dAAG™00], the SMV sys-
tem [McM], and TLC [LY01] support simulation or verification of concurrent and distributed sys-
tems. The IOA toolkit differs from these in that it combines paired simulation capability with
theorem-proving based verification. AsmlL facilitates simulating systems at different levels of ab-
straction, checking step by step whether a system satisfies its specification, but it does not support
using paired simulation in conjunction with proof tools. The verification components of Mocha,
SMV, and TLC use model checking and hence are limited to exploring finite state spaces; the proof
tools in the TOA toolkit apply to finite and infinite systems alike. Another feature that distin-
guishes the IOA toolkit from other tools is the connection of its simulator to a program analysis
tool [ECGNO1] for automatic invariant discovery.

2 1I/0 automata and the IOA Language

This section includes a brief introduction to the I/O automaton model and the IOA Language. We
refer the reader to [Lyn96, GL98] for an in-depth introduction.



2.1 Theoretical background

An I/0O automaton is a simple type of state machine in which the transitions between states are
associated with named actions m. The actions are classified as either input, output, or internal.
The input actions are assumed not to be under the automaton’s control, whereas the automaton
itself controls which output and internal actions should be performed. An I/O automaton consists
of a signature, which lists its actions, a set of states, some of which are distinguished as start states,
a state-transition relation, which contains triples of the form (state, action, state), and an optional
set of tasks. We do not consider automata with tasks in this paper.

An action 7 is said to be enabled in a state s if there is another state s’ such that (s,n,s’) is
a transition of the automaton. Input actions are enabled in every state. The operation of an I/O
automaton is described by its ezecutions sg,71,s1,-.., which are alternating sequences of states
and actions, and its traces, which are the externally visible behavior occurring in executions. One
automaton is said to implement another if all its traces are also traces of the other. The parallel
composition operator allows an output action of one automaton to be identified with input actions
in other automata; this operator respects the trace semantics.

The I/O automaton model provides support for system descriptions at multiple levels of ab-
straction. The process moving through a series of abstractions, from higher to lower levels, is called
successive refinement. To prove that one automaton implements another, one needs to show that
for any execution of the lower level automaton there is a corresponding execution of the higher
level automaton. The notion of a simulation relation proves useful in constructing proofs of imple-
mentation relations.

Definition 2.1 (Forward simulation). A forward simulation from automaton A to automaton
B is a relation f on states(A) x states(B) with the following properties:

1. For every start state a of A, there exists a start state b of B such that f(a,b).
2. If a is a reachable state of A, b is a reachable state of B such that f(a,b), and a = o', then

there exists a state b’ of B and an execution fragment 3 of B such that b LA b, f(a',b') holds,
and trace(w) = trace(f).

Theorem 2.1. If there is a forward simulation relation from A to B, then every trace of A is a
trace of B. (See [Lyn96] for a proof.)

2.2 The IOA language

In the IOA language, the description of an I/O automaton has four main parts: the action signature,
the states, the transitions, and the tasks of the automaton. States are represented by collections of
typed variables. The transition relation is usually given in precondition-effect style, which groups
together all transitions that involve a particular action into a single piece of code. Each definition
has a precondition (indicated by the keyword pre), which describes a condition on the state that
should be true before the transition can be executed, and an effect (indicated by the keyword eff)
which describes how the state changes when the transition is executed. The entire piece of code in
the effect of a transition is executed indivisibly. If pre is not specified, then it is assumed to always
hold.

The code may be written either in an imperative style, as a sequence of assignment, conditional,
and looping instructions, or in declarative style, as a predicate relating state variables in the pre-
and post-states, transition parameters, and nondeterministic parameters. It is also possible to use
a combination of these two styles.



Nondeterminism appears in IOA in two ways: explicitly in the form of choose constructs in
state variable initializations and the effects of the transition definitions, and implicitly, in the form
of action scheduling uncertainty. We present examples for both forms of nondeterminism later in
the paper and describe how they are resolved by the IOA simulator.

2.3 Example: Specification of mutual exclusion

We present a sample IOA program to illustrate some of the language constructs discussed above
and to introduce the mutual exclusion problem that constitutes the basis of our case study. We
build on this example gradually as we discuss simulation and proof techniques based on simulation
relations.

The mutual exclusion problem involves the allocation of a single, indivisible, non-shareable
resource among n processes. The resource could be an output device that requires exclusive access
to produce sensible output or a data structure that requires exclusive access in order to avoid
interference among the operations of different processes. A process with access to the resource is
modeled as being in a critical region, which is a designated subset of its states. When a process
is not involved in any way with the resource, it is said to be in the remainder region. In order to
gain admittance to its critical region, a process executes a trying protocol; after it is done with the
resource, it executes an exit protocol. This procedure can be repeated so that each process follows
a cycle, moving from its remainder region to its trying region and arriving back at the remainder
region after going through critical and exit regions.

We consider mutual exclusion within the shared memory model explained in [Lyn96]. The shared
memory system contains n processes, numbered 1,... ,n. The try, crit, exit, and rem actions are
the only external actions of a process. Input actions consist of ¢ry;, which models a request for
access to the resource by process 4, and exit;, which models an announcement that process 4 is done
with the resource. Output actions consist of crit;, which models the granting of access to process
1, and rem,;, which tells process i that it can continue with the remainder of its work. Formally, we
define a sequence of try;, crit;, exit;, and rem,; actions to be well-formed for process i if it is a prefix
of the cyclically ordered sequence try;, crit;, exit;, rem;, try;, ... The automaton Mutex (Figure 1)
is an TOA specification of mutual exclusion for three processes in which the well-formedness of
interaction with the environment is guaranteed.

The state variable regionMap maps process indices to regions and keeps track of the current
region of each process. The initialization of regionMap to constant(rem) defines the start state.
The transition definitions are mostly self-explanatory. Each action updates the variable regionMap
to record the region entered upon its execution. The transition definition for crit imposes the
mutual exclusion condition: a process in a trying region is allowed to enter its critical region only
if there is no other process that is in region crit.

2.4 Example: An algorithm for mutual exclusion

Figure 2 contains IOA code for an algorithm for mutual exclusion. Comments in the code indicate
items that will be of particular interest when we discuss the mechanism for resolving nondetermin-
ism to enable simulation. We start, however, by explaining the algorithm briefly, pointing at the
sources of nondeterminism.

The algorithm described by the automaton Dijkstralnt is a simplified version of a mutual
exclusion algorithm by Dijkstra presented in [Lyn96]. It abstracts away those parts in the original
algorithm dedicated to dealing with liveness. The suffix “Int” in the automaton name indicates
that we consider it to be an intermediate level algorithm: not at as high a level as the specification,



type Index = enumeration of pl, p2, p3
type Region = enumeration of rem, try, crit, exit

automaton Mutex
signature output try(p: Index), crit(p: Index), exit(p: Index), rem(p: Index)
states regionMap: Array[Index, Region] := constant (rem)
transitions
output try(p)
pre regionMap[p] = rem
eff regionMap[p] := try
output crit (p)
pre regionMap[p]l] = try A V u: Index (p # u = regionMap[ul # crit)

eff regionMap[p] := crit
output exit (p)

pre regionMap[p] = crit

eff regionMap[p] := exit
output rem(p)

pre regionMap [p] = exit

eff regionMap[p] := rem

Figure 1: Specification of mutual exclusion

yet less detailed than the original algorithm of Dijkstra.

The automaton Dijkstralnt uses two types, PcValue and Stage, in addition to those in Figure 1.
Values of type PcValue represent possible program counter values for a process, while values of type
Stage represent stages of the algorithm. The automaton has four external and four internal actions.
The external actions have the same names as those of Mutex in Figure 1. This is no coincidence, as
our ultimate aim is to show that DijkstraInt implements mutual exclusion as specified by Mutex.

The algorithm has two stages. The first, stagel, indicates that a process is either inactive or
is about to enter the second stage. The second, stage2, embodies the crucial steps and determines
whether a process is allowed to enter its critical region. A process can enter its critical region only if
all other processes are in stagel. The transition definition for action check details how this works.
Each process p uses a set S[p] to keep track of the processes that it has detected as being in stagel.
The state variables flag and pc record the stage of the algorithm for each process and control the
order of occurrence of the actions mimicking the program counter for a process.

Explicit nondeterminism in this example arises from the choose statement in the transition
definition for action check. When a process p performs the check action, it nondeterministically
chooses the process u to be checked. The predicate in the where clause allows the nondeterministic
choice to yield any process that is not already in the set S[p]. Implicit nondeterminism also arises in
this example, because there may be more than one action enabled at a time. Consider, for example,
the very first action to be performed by the automaton. Since the program counters (pc) of all
processes are initialized to rem, all processes are enabled to perform the try action. To simulate
this automaton, one must select one of these processes to start execution.

3 Simulation and nondeterminism resolution

The simulator runs sample executions of an IOA program, allowing the user to help select the
executions. It generates logs of execution traces and displays information upon the user’s request.
The TOA Language allows users to propose invariants, which the simulator checks in the selected
executions.

The simulator requires that IOA programs be transformed into a form suitable for simulation.



type PcValue = enumeration of rem, setflagl, setflag2, check, leavetry,
crit, reset, leaveexit
type Stage = enumeration of stagel, stage2

automaton Dijkstralnt
signature
output try(p: Index), crit(p: Index), exit(p: Index), rem(p: Index)

internal setflagl(p: Index), setflag2(p: Index), check(p: Index), reset(p:

states
flag: Array[Index, Stage] := constant(stagel),
pc: Array[Index, PcValue] := constant (rem),
S: Array[Index, Set[Index]] := constant ({}),

u: Index
transitions
output try(p)
pre pclp]l = rem
eff pclp]l := setflagl
internal setflagl (p)
pre pclp]l = setflagl
eff flaglp]l := stagel; pclpl := setflag2
internal setflag2(p)
pre pclp]l = setflag2
eff flaglpl := stage2; S[pl := {p}; pclpl := check
internal check (p)
pre pcl[p] = check

eff u := choose x: Index where - (x € S[pl);
4% explicit nondeterminism to be resolved for simulation
if flaglul = stage2 then S[p] := {}; pclpl := setflagl
else S[pl := Slpl U {ul};
if V i: Index (i € S[pl]) then pc[p] := leavetry fi
fi

output crit (p)

pre pclp]l] = leavetry

eff pclpl := crit
output exit (p)

pre pclp]l = crit

eff pclpl := reset
internal reset (p)

pre pclp]l = reset

eff flaglpl := stagel; S[pl := {}; pclp]l := leaveexit
output rem(p)

pre pclp] = leaveexit

eff pclp] := rem

%% implicit nondeterminism to be resolved for simulation

Figure 2: An algorithm for mutual exclusion

Index)



The crucial problem in this transformation is resolving nondeterminism. The nondeterminism
resolution approach adopted by the IOA simulator is to assign a program, called an NDR program,
to each source of nondeterminism in an automaton. There is an NDR program corresponding to
every choose statement, and an NDR program for scheduling the actions of the automaton. We
explain the nondeterminism resolution mechanism of the IOA simulator by referring to the example
presented in Section 2.4.

3.1 Resolving explicit nondeterminism

A simple NDR program (determinator), given below, resolves the explicit nondeterminism for the
check action in the automaton DijkstraInt. It yields a process index that is not in S[p]. This
index is guaranteed to differ from p because p is placed in S[p] before check is enabled, and it is

guaranteed to exist because check is no longer enabled once S[p] contains all indices.
det do
if =(p1 € S[pl) then yield p1
elseif —(p2 € S[pl) then yield p2
elseif - (p3 € S[pl) then yield p3
fi
od

3.2 Resolving implicit nondeterminism

To resolve implicit nondeterminism, users of the IOA simulator must specify a scheduling policy
using the language constructs of IOA. We present below a sample schedule block that implements
a randomized scheduling policy for three processes. It picks a random integer between 1 and 3 and
uses this integer to decide which process will be given the turn to perform an action. It checks the
enabling conditions for the randomly chosen process and fires the enabled action. The while loop
that contains these steps is nonterminating; the IOA simulator prompts the users for the maximum
number of steps to simulate and halts the execution automatically when the predetermined step is

reached.
schedule
states pick: Int, p: Index
do while true do
pick:= randomInt (1,3);

if pick = 1 then p := pl
elseif pick = 2 then p := p2
else p := p3

fi;

if pclp]l] = rem then fire output try(p)
elseif pc[p] = setflagl then fire internal setflagl (p)
elseif pc[p] = setflag2 then fire internal setflag2(p)
elseif pcl[p]l] = check then fire internal check(p)
elseif pcl[p] = leavetry then fire output crit(p)
elseif pclp]l] = crit then fire output exit (p)
elseif pcl[p] = reset then fire internal reset(p)
else fire output rem(p)
fi
od
od

3.3 Checking invariants

The TOA simulator checks the validity of invariants proposed by users. We present below several
invariants for the automaton DijkstraInt that are key lemmas for proving the algorithm correct.



In Section 5 we take up the question of how the user discovers such lemmas.

Each process p uses a set S[p] to keep track of successfully checked processes, that is, of processes
that are not contending with p to enter the critical region. The first assertion states that two
processes cannot both be executing the second stage of the algorithm and be in each other’s set.
The second states that whenever the pc value for a process is leavetry or crit, its set contains
all of the processes. These two assertions express the key ideas we will use in our proof: if the pc
values for two processes were crit at the same time, it would be impossible for assertioni and

assertion2 to be both true.
invariant assertionl of Dijkstralnt:

V i: Index V j: Index —(i # j A flagli]l = stage2 A flaglj]l = stage2
A i e S[j1I A j € s[il)

invariant assertion2 of Dijkstralnt:
V i: Index ( (pcli]l = leavetry = V j:Index (j € S[il))
A (pcl[il = crit =V j:Index (j € S[il)) )

3.4 Simulator output

The automaton DijkstraInt from Figure 2 can be simulated with the IOA simulator after inserting
the NDR programs specified in Section 3 in the indicated places. The invariants to be checked need
to be appended to the code.

Some output of the simulator for running DijkstraInt is shown below. It displays the step
involving the first entry to the critical region (step 21) in a simulation for 200 steps. The simulator
reports errors if any of the invariants fail at a simulated step, if an NDR program attempts to fire
a transition that is not enabled, or if it attempts to yield a value that does not satisfy the where
clause of the corresponding choose statement.

[[L[ Begin step 21 [[LL

transition: output crit(pl) in automaton Dijkstralnt
%hhh Modified state variables:

pc --> (ArraySort (ConstantValue rem) (pl crit) (p2 setflag2) (p3 rem))
1111 End step 21 1111

4 Paired Simulation

In this section, we describe how the simulator simulates execution of a pair of automata related by a
simulation relation as defined in Section 2. The key problem here is that simulation relation, being
merely a predicate that relates the states of two automata, does not identify how each step in the
implementation automaton corresponds to a sequence of steps in the specification automaton. In
general, there might be multiple step correspondences that realize a given valid simulation relation
between automata; even if there is only one, it can be difficult to find it. The problem of deriving a
specification-level execution from an implementation-level execution is analogous to that of deriving
a deterministic execution of a single automaton from a specification that allows nondeterminism.
The design of the paired simulator is based on the observation that it is reasonable and beneficial
to require users to specify a step correspondence. In most correctness proofs, determining when a
particular action in the specification is performed by the implementation turns out to be the key to
the proof. By requiring a user to specify the step correspondence, the simulator actually urges the
user to understand the relationship between the two levels. Once the main invariants and the step
correspondence is determined, the rest of the proof is likely to involve routine bookkeeping steps.



4.1 Encoding step correspondences

A step correspondence needs to specify, for a given low-level transition, a high-level execution
fragment such that execution of both the low-level transition and the high-level fragment preserves
the simulation relation. Thus, a step correspondence can be seen as an “attempted proof” of the
simulation relation, missing only the reasoning that shows that the simulation relation is preserved.
To specify the proposed proof of a simulation relation, the IOA forward simulation assertion allows
a section called proof for specifying the step correspondence. This section contains one entry for
each possible transition definition in the low-level automaton; each entry provides an algorithm for
producing a high-level execution fragment. In addition to these entries, the proof section contains
an initialization block, which specifies how to set the variables of the high-level automaton given
the initial state of the low-level automaton, and an optional states section that declares auxiliary
variables used by the step correspondence.

4.2 Example: Forward simulation from Dijkstralnt to Mutex

Figure 3 defines a forward simulation relation in IOA and contains a proof block for that relation.
Together with the IOA descriptions of Mutex and DijkstraInt augmented with the NDR programs
from Section 3, this block allows one to use the paired simulator to check whether the relation holds
in the simulated executions.

The candidate relation in this example is based on the relation between the values of the state
variable pc of the low-level automaton and those of the state variable regionMap of the specification
automaton. The intuition behind this relation is as follows. For each region in the specification of
mutual exclusion there are certain actions that can be performed by the low-level automaton. These
actions are determined by the pc values. The relation states that whenever the program counter
of a process at the low-level automaton is set to one of setflagl, setflag?2, check, or leavetry, the
regionMap of the specification automaton must show region try for the same process. The rest of
the relation is defined similarly. The delimiter “;” can be interpreted as conjunction.

In paired simulation, the simulation of the low-level algorithm drives the simulation of the high-
level one. For each external action performed by the low-level automaton, the proof block directs
the simulator to fire the action with the specified name at the high-level. The internal actions
are matched by empty execution fragments indicated by ignore statements. The simulator checks
whether the proposed simulation relation holds after the actions are performed. The following is a
sample output of the paired simulator, displaying the simulation step 17.

[[L[ Begin step 17 [LLL
Executed impl transition: output crit(pl) in automaton Dijkstralnt
hhhh Modified state variables for impl automaton:
pc -—> (ArraySort (ConstantValue rem) (pl crit) (p2 setflag2) (p3 setflag2))
Executed spec transition: output crit(pl) in automaton Mutex
hhhh Modified state variables for spec automaton:
regionMap --> (ArraySort (ConstantValue rem) (pl crit) (p2 try) (p3 try))
1111 End step 17 1111

Note that the simulator gives information about how the states of the two automata change
upon the occurrence of an action of the implementation automaton. In this example, each step
in the low-level execution is matched by either a single step or an empty execution fragment in
the specification. The IOA simulator can also handle paired simulations in which this is not the
case. It allows execution fragments to be specified by any IOA program consisting of assignments,
conditional, while, and fire statements. For example, a step correspondence in which an output



forward simulation from DijkstralInt to Mutex
V i: Index (Dijkstralnt.pcl[i] = setflagl V Dijkstralnt.pc[i] = setflag2 V
DijkstraInt.pc[i] = check V DijkstralInt.pcl[i] = leavetry

< Mutex.regionMap[i] = try);
V i: Index (Dijkstralnt.pc[i] = crit < Mutex.regionMap[i] = crit);
V i: Index (Dijkstralnt.pcl[i]l = rem < Mutex.regionMap[i] = rem);
V i: Index (Dijkstralnt.pc[i] = reset V Dijkstralnt.pc[i] = leaveexit
4 Mutex.regionMap[i]l = exit);
proof
initially Mutex.regionMap := constant (rem)

for output try(p:Index) do fire output try(p) od
for output crit(p:Index) do fire output crit(p) od
for output exit(p:Index) do fire output exit(p) od
for output rem(p:Index) do fire output rem(p) od
for internal setflagl(p:Index) ignore

for internal setflag2(p:Index) ignore

for internal check(p:Index) ignore

for internal reset(p:Index) ignore

Figure 3: Forward simulation from Dijkstralnt to Mutex

action a at the low-level is matched by a sequence consisting of an output action a that is preceded

and followed by an internal action b could be encoded as follows:
for output a do fire internal b; fire output a; fire internal b od

5 Using simulation results to help construct a proof of correctness

In the previous section we introduced a method for simulating pairs of automata at different levels of
abstraction with the aid of the IOA toolkit. It is important to note that paired simulation provides
only empirical evidence for the correctness of a simulation relation. In most cases it is desirable
to complement this evidence with a proof. In this section we describe the support provided by the
TIOA toolkit for formal verification.

5.1 Method

The TOA toolkit has been designed to support verification of safety properties, which specify that
a “bad’ event never happens. LP is an interactive theorem proving system for multisorted first-
order logic and is suitable for reasoning about safety properties expressible in this kind of logic.
It admits specifications of theories in the Larch Shared Language (LSL). The IOA toolkit includes
a tool called ioa21sl [Bog01], which translates IOA definitions of automata, their invariants, and
simulation relations into LSL theories. The tool ioa21sl combines the definition of an automaton
with standard LSL definitions of I/O automata to produce axioms in first-order logic that describe
the operation of the automaton. These are subsequently used to generate input for LP.

5.2 Example: Proof of forward simulation

We now describe how we proved that a candidate simulation relation, presented in Figure 3 and
checked with the paired simulator for selected executions, is actually a forward simulation relation
from DijkstraInt to Mutex. It then follows from Theorem 2.1 that Dijkstralnt implements mutual
exclusion.



We first used ioa21sl to process the file containing the definitions of the two automata, their
invariants, and the simulation relation.! We then used the LSL Checker to prepare the axioms and
proof obligations for LP.

The proof of the simulation relation proceeds by induction. The basis step consists of showing
that the relation holds for the start state. The proof of the induction step takes the form of proof by
cases. The heart of the proof lies in providing a “witness” for an existential quantifier asserting the
existence of a simulating step sequence in the high-level automaton that preserves the simulation
relation and has the the same trace as a given step of the low-level automaton. The step sequence
already constructed for the paired simulator turns out to be exactly what is needed to provide this
witness.

Proofs of the invariants were routine proofs by induction. The proof of assertionl gave rise to

the need to prove two other simpler invariants:
invariant assertion3 of Dijkstralnt:
V i: Index (pcl[i]l = leavetry = flagl[i]l = stage2)

invariant assertion4 of Dijkstralnt:
V i: Index (pcl[i]l = crit = flagl[i]l = stage2)

5.3 Automatic detection of invariants

Finding key invariants is an essential step in proofs of correctness. Any help from automatic tools
in finding these invariants would alleviate the burden on the user. For example, if a tool could
discover simple invariants such as assertion3 and assertion4, which LP can prove more or less
automatically, and if LP could use these to prove the invariants assertionl and assertion2 used
in the correctness proof, that proof would become much easier.

We have begun [WE02] developing this kind of automated proof assistance by connecting the
IOA simulator to Daikon [ECGNO1], a tool for dynamic invariant discovery. The user can instruct
the IOA simulator to record the values of state variables upon entry to and exit from each transition
in the course of a selected execution. Then Daikon can infer invariants about the pre-state and
post-state of each transition by examining these values.

In our preliminary experiments, Daikon was able to infer some potentially useful invariants.
For example, Daikon detected that flag[p]l=stage2 in the pre-state of crit(p). The invariant
assertion3 in the previous is just the implication of this invariant by the precondition of the crit
action. We are continuing to work on the Daikon-IOA connection to detect other useful invariants
and to automate the formulation of invariants such as assertion3.

6 Overview of the implementation

A preliminary “IOA toolkit distribution” (software package including source and Java executables)
is available from the home page of the IOA project (http://theory.lcs.mit.edu/tds/ioa.html).

The front-end of the toolkit takes IOA descriptions and LSL specifications as input and outputs
an equivalent specification written in an intermediate language. Each back-end tool takes as input
the intermediate form of an IOA specification. There is common support for the back-end tools in
the form of an intermediate language parser and an internal representation of IOA elements, in the
form of a Java class hierarchy.

Data types are defined axiomatically in IOA so as to facilitate their translation into theorem
prover input languages. We provide definitions for built-in data types and allow the programmer to

!The tool i0a21s1l is still under development, and we had to edit its output to correct a number of small errors.



define new data types using LSL. However, in order to simulate data type operations, the simulator
needs actual code for the specified operations. Each IOA sort is implemented by a Java class, and
each operator is implemented by a method on that class. The implementation classes extend the
ioa.runtime.ADT class, which provides two operators common to all IOA data types. The simulator
obtains implementations for sorts and operators by querying a global implementation registry.

The simulator shares runtime type libraries with the IOA code generator to ensure similar code
behavior and to reduce repeated code [Tsa02].

7 Discussion and conclusions

Formal correctness proofs for distributed systems can be long, hard, or tedious to construct. Sim-
ulation can be used as a way of testing system designs before delving into correctness proofs. It
either reveals bugs or increases confidence that a system behaves as expected. Simulation can also
assist users in constructing correctness proofs. It is this aspect of simulation that we focused on
throughout this paper.

We considered nondeterministic systems modeled using the I/O automata formalism and de-
scribed how these systems can be simulated with the support of the IOA language and the toolkit.
Our aim was to draw attention to a useful capability of the IOA simulator paired simulation
— that allows users to check whether two automata at different levels of abstraction are related
by a simulation relation for the selected executions. In the I/O automaton model, the notion of
a simulation relation between two automata is a useful conceptual tool to prove the correctness
of systems. Hence, the ability to propose and check simulation relations with the IOA simulator
constitutes a valuable step towards a formal proof based on a simulation relation. The specification
of a relation is not the only thing that is required from a user by the paired simulator. A user is also
required to specify a step correspondence that will make the simulation relation hold throughout
paired simulation. This is particularly useful since finding the right step correspondence is usually
the key to the proof of a simulation relation. This indeed happened in our case study.

Another capability of the IOA simulator that helps the construction of proofs is invariant
checking. The invariants that are observed to be true for simulated executions constitute candidates
for useful lemmas. The invariants that we checked with the paired simulator in our case study were
later used as lemmas in the full proof.

The case study in this paper suggests a general methodology for the analysis and verification
of distributed systems with the IOA toolkit, using multiple levels of abstraction. The basic steps
are to:

1. Write the IOA code for the specification and the implementation automata;

2. For each automaton, resolve nondeterminism and perform simulation to test that the automa-
ton behaves as expected;

3. Formulate a candidate forward simulation relation from the implementation automaton to
the specification automaton, specify a step correspondence and perform paired simulation to
check whether the relation holds for the selected executions;

4. Formulate the potentially useful invariants for the proof of the simulation relation and check
whether they are true for the selected executions;

5. Use the tool ioa2lsl to translate the IOA code for automata and the forward simulation relation
to LSL, and to generate proof obligations for LP; and



6. Prove with LP that the simulation relation holds for all possible executions, making use of
the step correspondence and the key invariants.

A current project aims at improving the connection between the program analysis tool Daikon
and the IOA simulator. We expect this connection to contribute to this methodology by automating

parts of the correctness proofs.
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A Proof Script

The following is the Larch proof script for the simulation relation presented in Section 4. The
set of axioms DijkstraInt2Mutex_Axioms is generated by the LSL checker by processing the LSL
specification of the simulation relation. The tactics that are referred to in the proof are given in
Section A.2.

Al

Main simulation proof

execute DijkstraInt2Mutex_Axioms

declare variables u’: States[Dijkstralnt], act: Actions[DijkstraInt], pi: ActionSeq[Mutex]

set name theorem
prove start(u:States[DijkstraInt]) => \E s:States[Mutex] (start(s:States[Mutex]) /\ F(u, s))
resume by specializing s:States[Mutex] to [constant(rem)]

execute tactic_implies

qed

prove

isStep(u:States[DijkstraInt], act, u’) /\ F(u, s)
/\ assertionl(u) /\ assertion2(u) /\ assertion3(u) /\ assertion4(u)
=> \E pi:ActionSeq[Mutex] (execFrag(s, pi) /\ trace(pi:ActionSeq[Mutex]) = trace(act)

/\ first(s, pi) = s /\ F(u’, last(s, pi)))

resume by induction on act
% try action
resume by =>

resume by specializing pi to try(ilc) * {}

execute tactic_and4cases

% crit action

resume by =>
resume by specializing pi to crit(ilc) * {}

resume by /\
critical-pairs *Hyp with *Hyp
execute tactic_4cases
resume by =>

resume by contradiction
critical-pairs *Hyp with *Hyp

% exit action

resume by =>



resume by specializing pi to exit(ilc) * {}
execute tactic_and4cases
% rem action
resume by =>
resume by specializing pi to rem(ilc) * {}
resume by /\
critical-pairs *Hyp with *Hyp
execute tactic_4cases
% setflagl action
resume by =>
resume by specializing pi to {}
critical-pairs *Hyp with *Hyp
execute tactic_and4cases
% setflag2 action
resume by =>
resume by specializing pi to {}
critical-pairs *Hyp with *Hyp
execute tactic_and4cases
% check action
resume by =>
resume by specializing pi to {}
critical-pairs *Hyp with *Hyp
resume by /\
execute tactic_stage2_i2c
execute tactic_stage2_i2c
execute tactic_stage2_i2c
execute tactic_stage2_i2c
% reset action
resume by =>
resume by specializing pi to {}
critical-pairs *Hyp with *Hyp
exe tactic_and4cases
qed
quit

A.2 Tactics

% tactic_implies
resume by =>

% tactic_case
res by case ilc =i

% tactic_4cases

execute tactic_case
execute tactic_case
execute tactic_case
execute tactic_case

% tactic_and4cases
resume by /\
execute tactic_4cases

% tactic_stage2_i2c.lp
resume by case uc.flagl[i2c] = stage2
execute tactic_case
resume by case \A i:Index (i = i2¢ \/ i \in uc.S[ilc])
execute tactic_case



