
Simulating Nondeterministi
 Systems at Multiple Levels ofAbstra
tionDilsun K�rl� Kaynar, Anna Chefter, Laura Dean, Stephen J. GarlandNan
y A. Lyn
h, Toh Ne Win, Antonio Ram��rez-RobredoMIT Laboratory for Computer S
ien
e�Abstra
tIOA is a high-level distributed programming language based on the formal I/O automatonmodel for asyn
hronous
on
urrent systems. A suite of software tools,
alled the IOA toolkit,has been designed and partially implemented to fa
ilitate the analysis and veri�
ation of dis-tributed systems using te
hniques supported by the formal model. An important proof te
hniquefor distributed systems de�ned by a hierar
hy of abstra
tions involves the notion of a simulationrelation between pairs of automata at di�erent levels in the hierar
hy. The IOA toolkit's sim-ulator tests purported simulation relations by exe
uting the low-level automaton and, given aproposed
orresponden
e between its steps and those of the higher-level automaton, generatingand
he
king an exe
ution of the higher-level automaton. On
e
he
ked by the simulator, thesimulation relation and the step
orresponden
e
an be used in
onjun
tion with the toolkit'sproof tools to
onstru
t a formal proof that the low-level automaton implements the higher-levelone. This paper presents a
ase study that illustrates this use of the IOA toolkit to prove
orre
tan algorithm for mutual ex
lusion. The
ase study shows how tools like the IOA simulator
anplay an important role in proving distributed systems
orre
t.1 Introdu
tionThe input/output (I/O) automaton model [LT89, Lyn96℄ is a labeled transition system modelsuitable for des
ribing systems with asyn
hronously intera
ting
omponents. In this model, a
omponent is represented as an I/O automaton whi
h is a nondeterministi
, possibly in�nite-state,state ma
hine. The external behavior of ea
h automaton is de�ned by a simple mathemati
al obje
t
alled a tra
e.The I/O automata model supports viewing systems at multiple levels of abstra
tion. A system
an be des
ribed �rst at a high-level of abstra
tion,
apturing only the essential requirements aboutits behavior, and then be re�ned su

essively until the desired level of detail is rea
hed. The modelde�nes what it means for an automaton to implement another (in terms of tra
e in
lusion), and itintrodu
es the notion of a simulation relation as a suÆ
ient
ondition to prove an implementationrelation between two automata. A parallel
omposition operator, also in
luded in the model, allowsone to de
ompose the des
ription, analysis and veri�
ation of large and
omplex systems.IOA [GL00, GL98℄ is a formal language for des
ribing I/O automata. It
an be regarded asa high-level distributed programming language. Its design was driven by a motivation to supportboth simulation [Che98, RR00, Dea01℄ and veri�
ation [Bog01℄. The IOA toolkit is a partially�Corresponding address: 200 Te
hnology Square, Cambridge, MA 02139, USA, dilsun�theory.l
s.mit.edu. Cur-rently, Chefter is employed by Merill Lyn
h, Dean is employed by Oryxa, and Ram��rez is in the PhD program inmathemati
s at Stanford University.

implemented set of software tools that support the design, analysis, and development of systemswithin the I/O automaton framework. The toolkit
ontains a front-end that
he
ks whether systemdes
riptions (IOA programs)
omply with IOA's syntax and stati
 semanti
s, and that produ
esan intermediate representation of the
ode for use by the ba
k-end tools (a simulator, interfa
es toa number of existing theorem provers, model
he
kers, and an automati

ode generator).A key feature of the I/O automaton model is nondeterminism. Nondeterminism allows systemsto be des
ribed in their most general forms and to be veri�ed
onsidering all possible behaviorswithout being tied to a parti
ular implementation of a system design. The results obtained for anondeterministi
 system
arry over to di�erent implementations of the same system. Nondetermin-ism also makes it easier to prove
orre
tness in the absen
e of extraneous, unne
essary restri
tions.A key
hallenge in the design of IOA has been to provide support for both simulation and ver-i�
ation in a uni�ed framework. Nondeterminism in IOA assists veri�
ation in the ways notedabove. On the other hand, nondeterminism
ompli
ates simulation, whi
h must
hoose parti
ularexe
utions. Therefore, simulation requires me
hanisms for resolving nondeterminism. The IOAlanguage and toolkit provide su
h me
hanisms. Moreover, these me
hanisms turn out to be usefulnot just for simulation, but for veri�
ation as well.In this paper, we des
ribe by means of a
ase study how the IOA toolkit
an be used forsimulating and subsequently verifying distributed algorithms. We fo
us on the
apability of theIOA simulator to simulate pairs of I/O automata at di�erent levels of abstra
tion. Users presentthe paired simulator with des
riptions of two automata, a
andidate simulation relation, and amapping,
alled a step
orresponden
e, from the a
tions of the lower-level automaton to sequen
esof a
tions of the higher-level one. The simulator simulates the low-level automaton,
he
ks whetherthe tra
e of the high-level automaton indu
ed by the step
orresponden
e is identi
al to that of thelow-level automaton, and
he
ks whether the
andidate simulation relation holds throughout thesimulated exe
utions.In our
ase study we present an algorithm for mutual ex
lusion and use the paired simulator toobtain eviden
e that this algorithm satis�es the mutual ex
lusion property. We then verify that thealgorithm satis�es this property with LP [GG91℄. The toolkit fa
ilitates the automati
 translationof the algorithm and the
andidate simulation relation into the language of LP.Related work Other toolkits su
h as AsmL [GSV01℄ tools, Mo
ha [dAAG+00℄, the SMV sys-tem [M
M℄, and TLC [LY01℄ support simulation or veri�
ation of
on
urrent and distributed sys-tems. The IOA toolkit di�ers from these in that it
ombines paired simulation
apability withtheorem-proving based veri�
ation. AsmL fa
ilitates simulating systems at di�erent levels of ab-stra
tion,
he
king step by step whether a system satis�es its spe
i�
ation, but it does not supportusing paired simulation in
onjun
tion with proof tools. The veri�
ation
omponents of Mo
ha,SMV, and TLC use model
he
king and hen
e are limited to exploring �nite state spa
es; the prooftools in the IOA toolkit apply to �nite and in�nite systems alike. Another feature that distin-guishes the IOA toolkit from other tools is the
onne
tion of its simulator to a program analysistool [ECGN01℄ for automati
 invariant dis
overy.2 I/O automata and the IOA LanguageThis se
tion in
ludes a brief introdu
tion to the I/O automaton model and the IOA Language. Werefer the reader to [Lyn96, GL98℄ for an in-depth introdu
tion.

2.1 Theoreti
al ba
kgroundAn I/O automaton is a simple type of state ma
hine in whi
h the transitions between states areasso
iated with named a
tions �. The a
tions are
lassi�ed as either input, output, or internal.The input a
tions are assumed not to be under the automaton's
ontrol, whereas the automatonitself
ontrols whi
h output and internal a
tions should be performed. An I/O automaton
onsistsof a signature, whi
h lists its a
tions, a set of states, some of whi
h are distinguished as start states,a state-transition relation, whi
h
ontains triples of the form (state, a
tion, state), and an optionalset of tasks. We do not
onsider automata with tasks in this paper.An a
tion � is said to be enabled in a state s if there is another state s0 su
h that (s; �; s0) isa transition of the automaton. Input a
tions are enabled in every state. The operation of an I/Oautomaton is des
ribed by its exe
utions s0; �1; s1; : : : , whi
h are alternating sequen
es of statesand a
tions, and its tra
es, whi
h are the externally visible behavior o

urring in exe
utions. Oneautomaton is said to implement another if all its tra
es are also tra
es of the other. The parallel
omposition operator allows an output a
tion of one automaton to be identi�ed with input a
tionsin other automata; this operator respe
ts the tra
e semanti
s.The I/O automaton model provides support for system des
riptions at multiple levels of ab-stra
tion. The pro
ess moving through a series of abstra
tions, from higher to lower levels, is
alledsu

essive re�nement. To prove that one automaton implements another, one needs to show thatfor any exe
ution of the lower level automaton there is a
orresponding exe
ution of the higherlevel automaton. The notion of a simulation relation proves useful in
onstru
ting proofs of imple-mentation relations.De�nition 2.1 (Forward simulation). A forward simulation from automaton A to automatonB is a relation f on states(A)� states(B) with the following properties:1. For every start state a of A, there exists a start state b of B su
h that f(a; b).2. If a is a rea
hable state of A, b is a rea
hable state of B su
h that f(a; b), and a �! a0, thenthere exists a state b0 of B and an exe
ution fragment � of B su
h that b �! b0, f(a0; b0) holds,and tra
e(�) = tra
e(�).Theorem 2.1. If there is a forward simulation relation from A to B, then every tra
e of A is atra
e of B. (See [Lyn96℄ for a proof.)2.2 The IOA languageIn the IOA language, the des
ription of an I/O automaton has four main parts: the a
tion signature,the states, the transitions, and the tasks of the automaton. States are represented by
olle
tions oftyped variables. The transition relation is usually given in pre
ondition-e�e
t style, whi
h groupstogether all transitions that involve a parti
ular a
tion into a single pie
e of
ode. Ea
h de�nitionhas a pre
ondition (indi
ated by the keyword pre), whi
h des
ribes a
ondition on the state thatshould be true before the transition
an be exe
uted, and an e�e
t (indi
ated by the keyword e�)whi
h des
ribes how the state
hanges when the transition is exe
uted. The entire pie
e of
ode inthe e�e
t of a transition is exe
uted indivisibly. If pre is not spe
i�ed, then it is assumed to alwayshold.The
ode may be written either in an imperative style, as a sequen
e of assignment,
onditional,and looping instru
tions, or in de
larative style, as a predi
ate relating state variables in the pre-and post-states, transition parameters, and nondeterministi
 parameters. It is also possible to usea
ombination of these two styles.

Nondeterminism appears in IOA in two ways: expli
itly in the form of
hoose
onstru
ts instate variable initializations and the e�e
ts of the transition de�nitions, and impli
itly, in the formof a
tion s
heduling un
ertainty. We present examples for both forms of nondeterminism later inthe paper and des
ribe how they are resolved by the IOA simulator.2.3 Example: Spe
i�
ation of mutual ex
lusionWe present a sample IOA program to illustrate some of the language
onstru
ts dis
ussed aboveand to introdu
e the mutual ex
lusion problem that
onstitutes the basis of our
ase study. Webuild on this example gradually as we dis
uss simulation and proof te
hniques based on simulationrelations.The mutual ex
lusion problem involves the allo
ation of a single, indivisible, non-shareableresour
e among n pro
esses. The resour
e
ould be an output devi
e that requires ex
lusive a

essto produ
e sensible output or a data stru
ture that requires ex
lusive a

ess in order to avoidinterferen
e among the operations of di�erent pro
esses. A pro
ess with a

ess to the resour
e ismodeled as being in a
riti
al region, whi
h is a designated subset of its states. When a pro
essis not involved in any way with the resour
e, it is said to be in the remainder region. In order togain admittan
e to its
riti
al region, a pro
ess exe
utes a trying proto
ol ; after it is done with theresour
e, it exe
utes an exit proto
ol. This pro
edure
an be repeated so that ea
h pro
ess followsa
y
le, moving from its remainder region to its trying region and arriving ba
k at the remainderregion after going through
riti
al and exit regions.We
onsider mutual ex
lusion within the shared memory model explained in [Lyn96℄. The sharedmemory system
ontains n pro
esses, numbered 1; : : : ; n. The try;
rit; exit, and rem a
tions arethe only external a
tions of a pro
ess. Input a
tions
onsist of tryi, whi
h models a request fora

ess to the resour
e by pro
ess i, and exiti, whi
h models an announ
ement that pro
ess i is donewith the resour
e. Output a
tions
onsist of
riti, whi
h models the granting of a

ess to pro
essi, and remi, whi
h tells pro
ess i that it
an
ontinue with the remainder of its work. Formally, wede�ne a sequen
e of tryi;
riti; exiti, and remi a
tions to be well-formed for pro
ess i if it is a pre�xof the
y
li
ally ordered sequen
e tryi;
riti; exiti; remi; tryi0 ; : : : The automaton Mutex (Figure 1)is an IOA spe
i�
ation of mutual ex
lusion for three pro
esses in whi
h the well-formedness ofintera
tion with the environment is guaranteed.The state variable regionMap maps pro
ess indi
es to regions and keeps tra
k of the
urrentregion of ea
h pro
ess. The initialization of regionMap to
onstant(rem) de�nes the start state.The transition de�nitions are mostly self-explanatory. Ea
h a
tion updates the variable regionMapto re
ord the region entered upon its exe
ution. The transition de�nition for
rit imposes themutual ex
lusion
ondition: a pro
ess in a trying region is allowed to enter its
riti
al region onlyif there is no other pro
ess that is in region
rit.2.4 Example: An algorithm for mutual ex
lusionFigure 2
ontains IOA
ode for an algorithm for mutual ex
lusion. Comments in the
ode indi
ateitems that will be of parti
ular interest when we dis
uss the me
hanism for resolving nondetermin-ism to enable simulation. We start, however, by explaining the algorithm brie
y, pointing at thesour
es of nondeterminism.The algorithm des
ribed by the automaton DijkstraInt is a simpli�ed version of a mutualex
lusion algorithm by Dijkstra presented in [Lyn96℄. It abstra
ts away those parts in the originalalgorithm dedi
ated to dealing with liveness. The suÆx \Int" in the automaton name indi
atesthat we
onsider it to be an intermediate level algorithm: not at as high a level as the spe
i�
ation,

type Index = enumeration of p1, p2, p3type Region = enumeration of rem , try,
rit , exitautomaton Mutexsignature output try(p: Index),
rit (p: Index), exit (p: Index), rem(p: Index)states regionMap : Array[Index, Region ℄ :=
onstant (rem)transit ionsoutput try(p)pre regionMap [p℄ = reme f f regionMap [p℄ := tryoutput
rit (p)pre regionMap [p℄ = try ^ 8 u: Index (p 6= u) regionMap [u℄ 6=
rit)e f f regionMap [p℄ :=
ritoutput exit (p)pre regionMap [p℄ =
rite f f regionMap [p℄ := exitoutput rem(p)pre regionMap [p℄ = exite f f regionMap [p℄ := remFigure 1: Spe
i�
ation of mutual ex
lusionyet less detailed than the original algorithm of Dijkstra.The automaton DijkstraInt uses two types, P
Value and Stage, in addition to those in Figure 1.Values of type P
Value represent possible program
ounter values for a pro
ess, while values of typeStage represent stages of the algorithm. The automaton has four external and four internal a
tions.The external a
tions have the same names as those of Mutex in Figure 1. This is no
oin
iden
e, asour ultimate aim is to show that DijkstraInt implements mutual ex
lusion as spe
i�ed by Mutex.The algorithm has two stages. The �rst, stage1, indi
ates that a pro
ess is either ina
tive oris about to enter the se
ond stage. The se
ond, stage2, embodies the
ru
ial steps and determineswhether a pro
ess is allowed to enter its
riti
al region. A pro
ess
an enter its
riti
al region only ifall other pro
esses are in stage1. The transition de�nition for a
tion
he
k details how this works.Ea
h pro
ess p uses a set S[p℄ to keep tra
k of the pro
esses that it has dete
ted as being in stage1.The state variables flag and p
 re
ord the stage of the algorithm for ea
h pro
ess and
ontrol theorder of o

urren
e of the a
tions mimi
king the program
ounter for a pro
ess.Expli
it nondeterminism in this example arises from the
hoose statement in the transitionde�nition for a
tion
he
k. When a pro
ess p performs the
he
k a
tion, it nondeterministi
ally
hooses the pro
ess u to be
he
ked. The predi
ate in the where
lause allows the nondeterministi

hoi
e to yield any pro
ess that is not already in the set S[p℄. Impli
it nondeterminism also arises inthis example, be
ause there may be more than one a
tion enabled at a time. Consider, for example,the very �rst a
tion to be performed by the automaton. Sin
e the program
ounters (p
) of allpro
esses are initialized to rem, all pro
esses are enabled to perform the try a
tion. To simulatethis automaton, one must sele
t one of these pro
esses to start exe
ution.3 Simulation and nondeterminism resolutionThe simulator runs sample exe
utions of an IOA program, allowing the user to help sele
t theexe
utions. It generates logs of exe
ution tra
es and displays information upon the user's request.The IOA Language allows users to propose invariants, whi
h the simulator
he
ks in the sele
tedexe
utions.The simulator requires that IOA programs be transformed into a form suitable for simulation.

type P
Value = enumeration of rem , setflag1 , setflag2 ,
he
k, leavetry ,
rit , reset , leaveexittype Stage = enumeration of stage1 , stage2automaton DijkstraIntsignatureoutput try(p: Index),
rit(p: Index), exit (p: Index), rem(p: Index)internal setflag1 (p: Index), setflag2 (p: Index),
he
k(p: Index), reset(p: Index)statesflag : Array[Index, Stage℄ :=
onstant (stage1),p
: Array[Index, P
Value ℄ :=
onstant (rem),S: Array[Index, Set[Index ℄℄ :=
onstant ({}),u: Indextransit ionsoutput try(p)pre p
[p℄ = reme f f p
[p℄ := setflag1internal setflag1 (p)pre p
[p℄ = setflag1e f f flag [p℄ := stage1 ; p
[p℄ := setflag2internal setflag2 (p)pre p
[p℄ = setflag2e f f flag [p℄ := stage2 ; S[p℄ := {p}; p
[p℄ :=
he
kinternal
he
k(p)pre p
[p℄ =
he
ke f f u :=
hoose x: Index where :(x 2 S[p℄);%% expli
it nondeterminism to be resolved for simulationi f flag[u℄ = stage2 then S[p℄ := {}; p
[p℄ := setflag1e lse S[p℄ := S[p℄ [{u};i f 8 i: Index (i 2 S[p℄) then p
[p℄ := leavetry f if ioutput
rit (p)pre p
[p℄ = leavetrye f f p
[p℄ :=
ritoutput exit (p)pre p
[p℄ =
rite f f p
[p℄ := resetinternal reset(p)pre p
[p℄ = resete f f flag [p℄ := stage1 ; S[p℄ := {}; p
[p℄ := leaveexitoutput rem(p)pre p
[p℄ = leaveexite f f p
[p℄ := rem%% impli
it nondeterminism to be resolved for simulationFigure 2: An algorithm for mutual ex
lusion

The
ru
ial problem in this transformation is resolving nondeterminism. The nondeterminismresolution approa
h adopted by the IOA simulator is to assign a program,
alled an NDR program,to ea
h sour
e of nondeterminism in an automaton. There is an NDR program
orresponding toevery
hoose statement, and an NDR program for s
heduling the a
tions of the automaton. Weexplain the nondeterminism resolution me
hanism of the IOA simulator by referring to the examplepresented in Se
tion 2.4.3.1 Resolving expli
it nondeterminismA simple NDR program (determinator), given below, resolves the expli
it nondeterminism for the
he
k a
tion in the automaton DijkstraInt. It yields a pro
ess index that is not in S[p℄. Thisindex is guaranteed to di�er from p be
ause p is pla
ed in S[p℄ before
he
k is enabled, and it isguaranteed to exist be
ause
he
k is no longer enabled on
e S[p℄
ontains all indi
es.det do i f :(p1 2 S[p℄) then yield p1e l s e i f :(p2 2 S[p℄) then yield p2e l s e i f :(p3 2 S[p℄) then yield p3f iod3.2 Resolving impli
it nondeterminismTo resolve impli
it nondeterminism, users of the IOA simulator must spe
ify a s
heduling poli
yusing the language
onstru
ts of IOA. We present below a sample s
hedule blo
k that implementsa randomized s
heduling poli
y for three pro
esses. It pi
ks a random integer between 1 and 3 anduses this integer to de
ide whi
h pro
ess will be given the turn to perform an a
tion. It
he
ks theenabling
onditions for the randomly
hosen pro
ess and �res the enabled a
tion. The while loopthat
ontains these steps is nonterminating; the IOA simulator prompts the users for the maximumnumber of steps to simulate and halts the exe
ution automati
ally when the predetermined step isrea
hed.s
hedulestates pi
k : Int, p: Indexdo while true dopi
k:= randomInt (1,3);i f pi
k = 1 then p := p1e l s e i f pi
k = 2 then p := p2e lse p := p3f i ;i f p
[p℄ = rem then f i r e output try(p)e l s e i f p
[p℄ = setflag1 then f i r e internal setflag1 (p)e l s e i f p
[p℄ = setflag2 then f i r e internal setflag2 (p)e l s e i f p
[p℄ =
he
k then f i r e internal
he
k(p)e l s e i f p
[p℄ = leavetry then f i r e output
rit(p)e l s e i f p
[p℄ =
rit then f i r e output exit (p)e l s e i f p
[p℄ = reset then f i r e internal reset(p)e lse f i r e output rem(p)f iodod3.3 Che
king invariantsThe IOA simulator
he
ks the validity of invariants proposed by users. We present below severalinvariants for the automaton DijkstraInt that are key lemmas for proving the algorithm
orre
t.

In Se
tion 5 we take up the question of how the user dis
overs su
h lemmas.Ea
h pro
ess p uses a set S[p℄ to keep tra
k of su

essfully
he
ked pro
esses, that is, of pro
essesthat are not
ontending with p to enter the
riti
al region. The �rst assertion states that twopro
esses
annot both be exe
uting the se
ond stage of the algorithm and be in ea
h other's set.The se
ond states that whenever the p
 value for a pro
ess is leavetry or
rit, its set
ontainsall of the pro
esses. These two assertions express the key ideas we will use in our proof: if the p
values for two pro
esses were
rit at the same time, it would be impossible for assertion1 andassertion2 to be both true.invariant assertion1 of DijkstraInt :8 i: Index 8 j: Index :(i 6= j ^ flag [i℄ = stage2 ^ flag [j℄ = stage2^ i 2 S[j℄ ^ j 2 S[i℄)invariant assertion2 of DijkstraInt :8 i: Index ((p
[i℄ = leavetry) 8 j:Index (j 2 S[i℄))^ (p
[i℄ =
rit) 8 j:Index (j 2 S[i℄)))3.4 Simulator outputThe automaton DijkstraInt from Figure 2
an be simulated with the IOA simulator after insertingthe NDR programs spe
i�ed in Se
tion 3 in the indi
ated pla
es. The invariants to be
he
ked needto be appended to the
ode.Some output of the simulator for running DijkstraInt is shown below. It displays the stepinvolving the �rst entry to the
riti
al region (step 21) in a simulation for 200 steps. The simulatorreports errors if any of the invariants fail at a simulated step, if an NDR program attempts to �rea transition that is not enabled, or if it attempts to yield a value that does not satisfy the where
lause of the
orresponding
hoose statement.[[[[Begin step 21 [[[[transition: output
rit(p1) in automaton DijkstraInt%%%% Modified state variables:p
 --> (ArraySort (ConstantValue rem) (p1
rit) (p2 setflag2) (p3 rem))℄℄℄℄ End step 21 ℄℄℄℄4 Paired SimulationIn this se
tion, we des
ribe how the simulator simulates exe
ution of a pair of automata related by asimulation relation as de�ned in Se
tion 2. The key problem here is that simulation relation, beingmerely a predi
ate that relates the states of two automata, does not identify how ea
h step in theimplementation automaton
orresponds to a sequen
e of steps in the spe
i�
ation automaton. Ingeneral, there might be multiple step
orresponden
es that realize a given valid simulation relationbetween automata; even if there is only one, it
an be diÆ
ult to �nd it. The problem of deriving aspe
i�
ation-level exe
ution from an implementation-level exe
ution is analogous to that of derivinga deterministi
 exe
ution of a single automaton from a spe
i�
ation that allows nondeterminism.The design of the paired simulator is based on the observation that it is reasonable and bene�
ialto require users to spe
ify a step
orresponden
e. In most
orre
tness proofs, determining when aparti
ular a
tion in the spe
i�
ation is performed by the implementation turns out to be the key tothe proof. By requiring a user to spe
ify the step
orresponden
e, the simulator a
tually urges theuser to understand the relationship between the two levels. On
e the main invariants and the step
orresponden
e is determined, the rest of the proof is likely to involve routine bookkeeping steps.

4.1 En
oding step
orresponden
esA step
orresponden
e needs to spe
ify, for a given low-level transition, a high-level exe
utionfragment su
h that exe
ution of both the low-level transition and the high-level fragment preservesthe simulation relation. Thus, a step
orresponden
e
an be seen as an \attempted proof" of thesimulation relation, missing only the reasoning that shows that the simulation relation is preserved.To spe
ify the proposed proof of a simulation relation, the IOA forward simulation assertion allowsa se
tion
alled proof for spe
ifying the step
orresponden
e. This se
tion
ontains one entry forea
h possible transition de�nition in the low-level automaton; ea
h entry provides an algorithm forprodu
ing a high-level exe
ution fragment. In addition to these entries, the proof se
tion
ontainsan initialization blo
k, whi
h spe
i�es how to set the variables of the high-level automaton giventhe initial state of the low-level automaton, and an optional states se
tion that de
lares auxiliaryvariables used by the step
orresponden
e.4.2 Example: Forward simulation from DijkstraInt to MutexFigure 3 de�nes a forward simulation relation in IOA and
ontains a proof blo
k for that relation.Together with the IOA des
riptions of Mutex and DijkstraInt augmented with the NDR programsfrom Se
tion 3, this blo
k allows one to use the paired simulator to
he
k whether the relation holdsin the simulated exe
utions.The
andidate relation in this example is based on the relation between the values of the statevariable p
 of the low-level automaton and those of the state variable regionMap of the spe
i�
ationautomaton. The intuition behind this relation is as follows. For ea
h region in the spe
i�
ation ofmutual ex
lusion there are
ertain a
tions that
an be performed by the low-level automaton. Thesea
tions are determined by the p
 values. The relation states that whenever the program
ounterof a pro
ess at the low-level automaton is set to one of setflag1, setflag2,
he
k, or leavetry, theregionMap of the spe
i�
ation automaton must show region try for the same pro
ess. The rest ofthe relation is de�ned similarly. The delimiter \;"
an be interpreted as
onjun
tion.In paired simulation, the simulation of the low-level algorithm drives the simulation of the high-level one. For ea
h external a
tion performed by the low-level automaton, the proof blo
k dire
tsthe simulator to �re the a
tion with the spe
i�ed name at the high-level. The internal a
tionsare mat
hed by empty exe
ution fragments indi
ated by ignore statements. The simulator
he
kswhether the proposed simulation relation holds after the a
tions are performed. The following is asample output of the paired simulator, displaying the simulation step 17.[[[[Begin step 17 [[[[Exe
uted impl transition: output
rit(p1) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p
 --> (ArraySort (ConstantValue rem) (p1
rit) (p2 setflag2) (p3 setflag2))Exe
uted spe
 transition: output
rit(p1) in automaton Mutex%%%% Modified state variables for spe
 automaton:regionMap --> (ArraySort (ConstantValue rem) (p1
rit) (p2 try) (p3 try))℄℄℄℄ End step 17 ℄℄℄℄Note that the simulator gives information about how the states of the two automata
hangeupon the o

urren
e of an a
tion of the implementation automaton. In this example, ea
h stepin the low-level exe
ution is mat
hed by either a single step or an empty exe
ution fragment inthe spe
i�
ation. The IOA simulator
an also handle paired simulations in whi
h this is not the
ase. It allows exe
ution fragments to be spe
i�ed by any IOA program
onsisting of assignments,
onditional, while, and �re statements. For example, a step
orresponden
e in whi
h an output

forward simulation from DijkstraInt to Mutex :8 i: Index (DijkstraInt .p
[i℄ = setflag1 _ DijkstraInt .p
[i℄ = setflag2 _DijkstraInt .p
[i℄ =
he
k _ DijkstraInt .p
[i℄ = leavetry, Mutex.regionMap [i℄ = try);8 i: Index (DijkstraInt .p
[i℄ =
rit , Mutex.regionMap [i℄ =
rit);8 i: Index (DijkstraInt .p
[i℄ = rem , Mutex.regionMap [i℄ = rem);8 i: Index (DijkstraInt .p
[i℄ = reset _ DijkstraInt .p
[i℄ = leaveexit, Mutex.regionMap [i℄ = exit);proofi n i t i a l l y Mutex.regionMap :=
onstant (rem)for output try(p:Index) do f i r e output try(p) odfor output
rit (p:Index) do f i r e output
rit (p) odfor output exit (p:Index) do f i r e output exit (p) odfor output rem(p:Index) do f i r e output rem(p) odfor internal setflag1 (p:Index) ignorefor internal setflag2 (p:Index) ignorefor internal
he
k(p:Index) ignorefor internal reset(p:Index) ignoreFigure 3: Forward simulation from DijkstraInt to Mutexa
tion a at the low-level is mat
hed by a sequen
e
onsisting of an output a
tion a that is pre
ededand followed by an internal a
tion b
ould be en
oded as follows:for output a do f i r e internal b; f i r e output a; f i r e internal b od5 Using simulation results to help
onstru
t a proof of
orre
tnessIn the previous se
tion we introdu
ed a method for simulating pairs of automata at di�erent levels ofabstra
tion with the aid of the IOA toolkit. It is important to note that paired simulation providesonly empiri
al eviden
e for the
orre
tness of a simulation relation. In most
ases it is desirableto
omplement this eviden
e with a proof. In this se
tion we des
ribe the support provided by theIOA toolkit for formal veri�
ation.5.1 MethodThe IOA toolkit has been designed to support veri�
ation of safety properties, whi
h spe
ify thata \bad' event never happens. LP is an intera
tive theorem proving system for multisorted �rst-order logi
 and is suitable for reasoning about safety properties expressible in this kind of logi
.It admits spe
i�
ations of theories in the Lar
h Shared Language (LSL). The IOA toolkit in
ludesa tool
alled ioa2lsl [Bog01℄, whi
h translates IOA de�nitions of automata, their invariants, andsimulation relations into LSL theories. The tool ioa2lsl
ombines the de�nition of an automatonwith standard LSL de�nitions of I/O automata to produ
e axioms in �rst-order logi
 that des
ribethe operation of the automaton. These are subsequently used to generate input for LP.5.2 Example: Proof of forward simulationWe now des
ribe how we proved that a
andidate simulation relation, presented in Figure 3 and
he
ked with the paired simulator for sele
ted exe
utions, is a
tually a forward simulation relationfrom DijkstraInt to Mutex. It then follows from Theorem 2.1 that DijkstraInt implements mutualex
lusion.

We �rst used ioa2lsl to pro
ess the �le
ontaining the de�nitions of the two automata, theirinvariants, and the simulation relation.1 We then used the LSL Che
ker to prepare the axioms andproof obligations for LP.The proof of the simulation relation pro
eeds by indu
tion. The basis step
onsists of showingthat the relation holds for the start state. The proof of the indu
tion step takes the form of proof by
ases. The heart of the proof lies in providing a \witness" for an existential quanti�er asserting theexisten
e of a simulating step sequen
e in the high-level automaton that preserves the simulationrelation and has the the same tra
e as a given step of the low-level automaton. The step sequen
ealready
onstru
ted for the paired simulator turns out to be exa
tly what is needed to provide thiswitness.Proofs of the invariants were routine proofs by indu
tion. The proof of assertion1 gave rise tothe need to prove two other simpler invariants:invariant assertion3 of DijkstraInt :8 i: Index (p
[i℄ = leavetry) flag [i℄ = stage2)invariant assertion4 of DijkstraInt :8 i: Index (p
[i℄ =
rit) flag [i℄ = stage2)5.3 Automati
 dete
tion of invariantsFinding key invariants is an essential step in proofs of
orre
tness. Any help from automati
 toolsin �nding these invariants would alleviate the burden on the user. For example, if a tool
oulddis
over simple invariants su
h as assertion3 and assertion4, whi
h LP
an prove more or lessautomati
ally, and if LP
ould use these to prove the invariants assertion1 and assertion2 usedin the
orre
tness proof, that proof would be
ome mu
h easier.We have begun [WE02℄ developing this kind of automated proof assistan
e by
onne
ting theIOA simulator to Daikon [ECGN01℄, a tool for dynami
 invariant dis
overy. The user
an instru
tthe IOA simulator to re
ord the values of state variables upon entry to and exit from ea
h transitionin the
ourse of a sele
ted exe
ution. Then Daikon
an infer invariants about the pre-state andpost-state of ea
h transition by examining these values.In our preliminary experiments, Daikon was able to infer some potentially useful invariants.For example, Daikon dete
ted that flag[p℄=stage2 in the pre-state of
rit(p). The invariantassertion3 in the previous is just the impli
ation of this invariant by the pre
ondition of the
rita
tion. We are
ontinuing to work on the Daikon-IOA
onne
tion to dete
t other useful invariantsand to automate the formulation of invariants su
h as assertion3.6 Overview of the implementationA preliminary \IOA toolkit distribution" (software pa
kage in
luding sour
e and Java exe
utables)is available from the home page of the IOA proje
t (http://theory.l
s.mit.edu/tds/ioa.html).The front-end of the toolkit takes IOA des
riptions and LSL spe
i�
ations as input and outputsan equivalent spe
i�
ation written in an intermediate language. Ea
h ba
k-end tool takes as inputthe intermediate form of an IOA spe
i�
ation. There is
ommon support for the ba
k-end tools inthe form of an intermediate language parser and an internal representation of IOA elements, in theform of a Java
lass hierar
hy.Data types are de�ned axiomati
ally in IOA so as to fa
ilitate their translation into theoremprover input languages. We provide de�nitions for built-in data types and allow the programmer to1The tool ioa2lsl is still under development, and we had to edit its output to
orre
t a number of small errors.

de�ne new data types using LSL. However, in order to simulate data type operations, the simulatorneeds a
tual
ode for the spe
i�ed operations. Ea
h IOA sort is implemented by a Java
lass, andea
h operator is implemented by a method on that
lass. The implementation
lasses extend theioa.runtime.ADT
lass, whi
h provides two operators
ommon to all IOA data types. The simulatorobtains implementations for sorts and operators by querying a global implementation registry.The simulator shares runtime type libraries with the IOA
ode generator to ensure similar
odebehavior and to redu
e repeated
ode [Tsa02℄.7 Dis
ussion and
on
lusionsFormal
orre
tness proofs for distributed systems
an be long, hard, or tedious to
onstru
t. Sim-ulation
an be used as a way of testing system designs before delving into
orre
tness proofs. Iteither reveals bugs or in
reases
on�den
e that a system behaves as expe
ted. Simulation
an alsoassist users in
onstru
ting
orre
tness proofs. It is this aspe
t of simulation that we fo
used onthroughout this paper.We
onsidered nondeterministi
 systems modeled using the I/O automata formalism and de-s
ribed how these systems
an be simulated with the support of the IOA language and the toolkit.Our aim was to draw attention to a useful
apability of the IOA simulator { paired simulation{ that allows users to
he
k whether two automata at di�erent levels of abstra
tion are relatedby a simulation relation for the sele
ted exe
utions. In the I/O automaton model, the notion ofa simulation relation between two automata is a useful
on
eptual tool to prove the
orre
tnessof systems. Hen
e, the ability to propose and
he
k simulation relations with the IOA simulator
onstitutes a valuable step towards a formal proof based on a simulation relation. The spe
i�
ationof a relation is not the only thing that is required from a user by the paired simulator. A user is alsorequired to spe
ify a step
orresponden
e that will make the simulation relation hold throughoutpaired simulation. This is parti
ularly useful sin
e �nding the right step
orresponden
e is usuallythe key to the proof of a simulation relation. This indeed happened in our
ase study.Another
apability of the IOA simulator that helps the
onstru
tion of proofs is invariant
he
king. The invariants that are observed to be true for simulated exe
utions
onstitute
andidatesfor useful lemmas. The invariants that we
he
ked with the paired simulator in our
ase study werelater used as lemmas in the full proof.The
ase study in this paper suggests a general methodology for the analysis and veri�
ationof distributed systems with the IOA toolkit, using multiple levels of abstra
tion. The basi
 stepsare to:1. Write the IOA
ode for the spe
i�
ation and the implementation automata;2. For ea
h automaton, resolve nondeterminism and perform simulation to test that the automa-ton behaves as expe
ted;3. Formulate a
andidate forward simulation relation from the implementation automaton tothe spe
i�
ation automaton, spe
ify a step
orresponden
e and perform paired simulation to
he
k whether the relation holds for the sele
ted exe
utions;4. Formulate the potentially useful invariants for the proof of the simulation relation and
he
kwhether they are true for the sele
ted exe
utions;5. Use the tool ioa2lsl to translate the IOA
ode for automata and the forward simulation relationto LSL, and to generate proof obligations for LP; and

6. Prove with LP that the simulation relation holds for all possible exe
utions, making use ofthe step
orresponden
e and the key invariants.A
urrent proje
t aims at improving the
onne
tion between the program analysis tool Daikonand the IOA simulator. We expe
t this
onne
tion to
ontribute to this methodology by automatingparts of the
orre
tness proofs.Referen
es[Bog01℄ Andrej Bogdanov. Formal veri�
ation of simulations between I/O automata. Master's the-sis, Department of Ele
tri
al Engineering and Computer S
ien
e, Massa
husetts Institute ofTe
hnology, Cambridge, MA, 2001.[Che98℄ Anna E. Chefter. A simulator for the IOA language. Master's thesis, Department of Ele
tri
alEngineering and Computer S
ien
e, Massa
husetts Institute of Te
hnology, Cambridge, MA,May 1998.[dAAG+00℄ L. de Alfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, R. Majumdar, F. Mang, C. Meyer-Kirs
h, and B.Y. Wang. Mo
ha: Exploiting Modularity in Model Che
king. University ofCalifornia at Berkeley Department of Ele
tri
al Engineering and Computer S
ien
es, Uni-versity of Pennsylvania Department of Computer and Information S
ien
es, 2000. URLhttp://www-
ad.ee
s.berkeley.edu/~mo
ha/refs.shtml.[Dea01℄ Laura G. Dean. Improved simulation of Input/Output automata. Master's thesis, Depart-ment of Ele
tri
al Engineering and Computer S
ien
e, Massa
husetts Institute of Te
hnology,Cambridge, MA, September 2001.[ECGN01℄ Mi
hael Ernst, Jake Co
krell, William G. Griswold, and David Notkin. Dynami
ally dis
over-ing likely program invariants to support program evolution. IEEE Transa
tions on SoftwareEngineering, 27(2):1{25, 2001.[GG91℄ Stephen Garland and John Guttag. A guide to LP, the Lar
h Prover. Te
hni
al report, DECSystems Resera
h Center, 1991. Updated version avaliable at URL http://nms.l
s.mit.edu/Lar
h/LP.[GL98℄ Stephen J. Garland and Nan
y A. Lyn
h. The IOA language and toolset: Support for designing,analyzing, and building distributed systems. Te
hni
al Report MIT/LCS/TR-762, Laboratoryfor Computer S
ien
e, Massa
husetts Institute of Te
hnology, Cambridge, MA, August 1998.URL http://theory.l
s.mit.edu/tds/papers/Lyn
h/IOA-TR-762.ps.[GL00℄ Stephen J. Garland and Nan
y A. Lyn
h. Using I/O automata for developing distributedsystems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations of Component-BasedSystems,
hapter 13, pages 285{312. Cambridge University Press, USA, 2000.[GSV01℄ Yuri Gurevi
h, Wolfram S
hulte, and Margus Veanes. Toward industrial strength abstra
t statema
hines. Te
hni
al Report MSR-TR-2001-98, Mi
rosoft Resear
h, 2001. URL for softwarehttp://www.resear
h.mi
rosoft.
om/foundations/asml/.[LT89℄ Nan
y A. Lyn
h and Mark R. Tuttle. An introdu
tion to input/output automata. CWI-Quarterly, 2(3):219{246, September 1989. Centrum voor Wiskunde en Informati
a, Amster-dam, The Netherlands. Te
hni
al Memo MIT/LCS/TM-373, Laboratory for Computer S
ien
e,Massa
husetts Institute of Te
hnology, Cambridge, MA 02139, November 1988.[LY01℄ Leslie Lamport and Yuan Yu. TLC { The TLA+ Model Che
ker. Compaq Systems Resear
hCenter, Palo Alto, California, 2001. URL http://resear
h.mi
rosoft.
om/users/lamport/tla/tl
.html.[Lyn96℄ Nan
y Lyn
h. Distributed Algorithms. Morgan Kaufmann Publishers, In
., San Mateo, CA,Mar
h 1996.

[M
M℄ K. L M
Millan. The SMV Language. Caden
e Berkeley Labs, 2001 Addison Street, Berkeley,CA 94 704, USA. URL http://www.
is.ksu.edu/santos/smv-do
/.[RR00℄ J. Antonio Ramirez-Robredo. Paired simulation of I/O automata. Master's thesis, Depart-ment of Ele
tri
al Engineering and Computer S
ien
e, Massa
husetts Institute of Te
hnology,Cambridge, MA, September 2000.[Tsa02℄ Mi
hael Tsai. Code generation for the IOA language. Master's thesis, Department of Ele
tri
alEngineering and Computer S
ien
e, Massa
husetts Institute of Te
hnology, Cambridge, MA,June 2002.[WE02℄ Toh Ne Win and Mi
hael Ernst. Verifying distibuted algorithms via dynami
 analysis andtheorem proving. Te
hni
al Report MIT-LCS-TR-841, MIT Laboratory for Computer S
ien
e,May 2002.A Proof S
riptThe following is the Lar
h proof s
ript for the simulation relation presented in Se
tion 4. Theset of axioms DijkstraInt2Mutex_Axioms is generated by the LSL
he
ker by pro
essing the LSLspe
i�
ation of the simulation relation. The ta
ti
s that are referred to in the proof are given inSe
tion A.2.A.1 Main simulation proofexe
ute DijkstraInt2Mutex_Axiomsde
lare variables u': States[DijkstraInt℄, a
t: A
tions[DijkstraInt℄, pi: A
tionSeq[Mutex℄set name theoremprove start(u:States[DijkstraInt℄) => \E s:States[Mutex℄ (start(s:States[Mutex℄) /\ F(u, s))resume by spe
ializing s:States[Mutex℄ to [
onstant(rem)℄exe
ute ta
ti
_impliesqedproveisStep(u:States[DijkstraInt℄, a
t, u') /\ F(u, s)/\ assertion1(u) /\ assertion2(u) /\ assertion3(u) /\ assertion4(u)=> \E pi:A
tionSeq[Mutex℄ (exe
Frag(s, pi) /\ tra
e(pi:A
tionSeq[Mutex℄) = tra
e(a
t)/\ first(s, pi) = s /\ F(u', last(s, pi)))..resume by indu
tion on a
t% try a
tionresume by =>resume by spe
ializing pi to try(i1
) * {}exe
ute ta
ti
_and4
ases%
rit a
tionresume by =>resume by spe
ializing pi to
rit(i1
) * {}resume by /\
riti
al-pairs *Hyp with *Hypexe
ute ta
ti
_4
asesresume by =>resume by
ontradi
tion
riti
al-pairs *Hyp with *Hyp% exit a
tionresume by =>

resume by spe
ializing pi to exit(i1
) * {}exe
ute ta
ti
_and4
ases% rem a
tionresume by =>resume by spe
ializing pi to rem(i1
) * {}resume by /\
riti
al-pairs *Hyp with *Hypexe
ute ta
ti
_4
ases% setflag1 a
tionresume by =>resume by spe
ializing pi to {}
riti
al-pairs *Hyp with *Hypexe
ute ta
ti
_and4
ases% setflag2 a
tionresume by =>resume by spe
ializing pi to {}
riti
al-pairs *Hyp with *Hypexe
ute ta
ti
_and4
ases%
he
k a
tionresume by =>resume by spe
ializing pi to {}
riti
al-pairs *Hyp with *Hypresume by /\exe
ute ta
ti
_stage2_i2
exe
ute ta
ti
_stage2_i2
exe
ute ta
ti
_stage2_i2
exe
ute ta
ti
_stage2_i2
% reset a
tionresume by =>resume by spe
ializing pi to {}
riti
al-pairs *Hyp with *Hypexe ta
ti
_and4
asesqedquitA.2 Ta
ti
s% ta
ti
_impliesresume by =>% ta
ti
_
aseres by
ase i1
 = i% ta
ti
_4
asesexe
ute ta
ti
_
aseexe
ute ta
ti
_
aseexe
ute ta
ti
_
aseexe
ute ta
ti
_
ase% ta
ti
_and4
asesresume by /\exe
ute ta
ti
_4
ases% ta
ti
_stage2_i2
.lpresume by
ase u
.flag[i2
℄ = stage2exe
ute ta
ti
_
aseresume by
ase \A i:Index (i = i2
 \/ i \in u
.S[i1
℄)exe
ute ta
ti
_
ase

