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Abstract

The Probabilistic I/O Automata framework of Lynch, Segala and Vaandrager provides tools for
precisely specifying protocols and reasoning about their correctness using multiple levels of abstrac-
tion, based on implementation relationships between these levels. We enhance this framework to
allow analyzing protocols that use cryptographic primitives. This requires resolving and reconciling
issues such as nondeterministic behavior and scheduling, randomness, resource-bounded computa-
tion, and computational hardness assumptions. The enhanced framework allows for more rigorous
and systematic analysis of cryptographic protocols. To demonstrate the use of this framework, we
present an example analysis that we have done for an Oblivious Transfer protocol.
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1 Introduction

The task of modeling and analysis of cryptographic protocols is typically complex, involving many
subtleties and details, even when the analyzed protocols are simple. This causes security analysis of
cryptographic protocols to be susceptible to errors and omissions. Our goal is to present a method for
analyzing cryptographic protocols rigorously and systematically, while taking into account computa-
tional issues regarding cryptographic primitives.

Our approach is based on an extension of the Probabilistic I/O Automata (PIOA) framework de-
veloped in the concurrency semantics research community [Seg95, LSV03]. We represent protocols as
probabilistic I/O automata, which are essentially interacting state machines, and use the associated
modeling and proof techniques that have proved to be useful in the analysis of distributed algorithms
that use randomization [Seg97, PSL00].

Briefly, a PIOA is a kind of abstract automaton. It includes states, start states, and actions. Each
action has an associated set of transitions, which go from states to probability distributions on states.
PIOAs are capable of expressing both probabilistic choices and nondeterministic choices. PIOAs that
model individual components of a system may be composed to yield a PIOA model for the entire system.
Many interesting properties of systems described using PIOAs can be expressed as invariant assertions,
that is, properties of the system state that are true in all reachable states. Such properties are proved
by induction on the length of an execution. The PIOA framework also supports the description of
systems at multiple levels of abstraction. It includes notions of implementation, which assert that a
“low-level” system is indistinguishable from another, “higher-level” system, from the point of view of
some common “environment”. The framework also includes various kinds of simulation relations, which
provide sufficient conditions for proving implementation relationships between systems.

We think that the support for a combination of nondeterministic and probabilistic choices is a
significant feature of the PIOA framework that allows generality and simplicity in modeling. We prefer
not to be forced to specify results of choices that are not needed for achieving specific correctness or
security guarantees: unnecessary specification not only restricts generality, but also introduces “clutter”
into models that can obscure the reasons a system works correctly. This work demonstrates how
nondeterministic and probabilistic choices can be reconciled in a cryptographic setting that provides
security only against resource-bounded adversaries.

We formulate the security of a protocol based on the notion of “realizing an ideal functionality”
within the universally composable (UC) security framework [Can01]. In the UC framework, the func-
tionality that is to be achieved by a protocol is described as an ideal process, a kind of trusted party
that computes the correct result from given inputs. A protocol is defined to be secure if for any ad-
versary A that interacts with the protocol, there exists a “simulator” S that interacts with the ideal
process such that no external environment can distinguish whether it is interacting with the protocol
and A or, with the ideal process and S. In the PIOA framework we formalize this notions as follows.
We represent both the protocol and its specification (which is the composition of the ideal process
and the simulator) as PIOAs, and we say that the protocol satisfies both its correctness and security
requirements if it implements its specification. (The existential quantifier over the simulator in the UC
definition is captured via appropriate nondeterministic choices available to the simulator component.)

As an essential part of the analysis, we model computationally-bounded adversaries, and restrict
attention to such adversaries. In the same vein, a protocol is considered secure if the success probability
of an attack on the protocol is negligible. Furthermore, as typical in cryptographic protocols, the se-
curity claims are conditional: they guarantee security only under computational hardness assumptions.
Hence, to represent the computationally-bounded components we need special kinds of PIOAs, namely,
PIOAs whose executions are polynomial-time-bounded. Moreover, we have to reconcile issues regarding
nondeterminism and scheduling, time-bounded computation, and computational hardness assumptions.
We list below the major extensions we made to the existing PIOA theory to be able to use the tradi-
tional reasoning techniques of the PIOA framework in the analysis of cryptographic protocols and to
be able express computational assumptions.
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(1) Resolution of nondeterminism: In the original PIOA framework [Seg95, LSV03] the next
transition is chosen as a function of the entire past execution. This gives schedulers too much power
in the sense that a scheduler can make choices based on supposedly secret information within non-
adversarial components. This would provide a way of “leaking secrets” to the adversarial components.
We extended the PIOA framework with a new notion of tasks (an equivalence relation on actions)
and we describe the scheduler as simply an arbitrary sequence of tasks. For example, a scheduler can
specify that the next task in a security protocol is to “send the round 1 message”. Then the protocol
participant that is responsible for sending the round 1 message can determine from its state exactly
what round 1 message it should send, or if it should send no round 1 message at all. This is ensured
by means of certain restrictions imposed on task-PIOAs (see Section 3.1).

(2) Simulation relations: We defined a new kind of simulation relation, which allows one to establish
a correspondence between probability distributions of execution fragments at two levels of abstraction,
and which allows splitting of distributions in order to show that individual steps preserve the corre-
spondence.

(3) Time-bounded PIOAs: We developed a new theory for time-bounded PIOAs, which impose time
bounds on the individual steps of the PIOAs; and a new approximate, time-bounded, implementation
relationship between time-bounded PIOAs that uses time-bounded task schedulers. This notion of
implementation is sufficient to capture the typical relationships between cryptographic primitives and
the abstractions they are supposed to implement.

Example. We exemplify our approach by analyzing an Oblivious Transfer (OT) protocol. In par-
ticular, we analyze the classic protocol of [EGL85, GMW87], which uses trap-door permutations (and
hard-core predicates for them) as the underlying cryptographic primitive. The protocol is designed to
achieve the oblivious transfer functionality, that is, a transmitter T sends two bits (x0, x1) to a receiver
R who decides to receive only one of them, while preventing T from knowing which one was delivered.
We focus on realizing OT in the presence of a passive adversary where even the corrupted parties follow
the protocol instructions. Furthermore, we assume non-adaptive corruptions, where the set of corrupted
parties is fixed before the protocol execution starts.

Even though the analyzed protocol and functionality are relatively simple, our exercise is interesting.
OT is a powerful primitive that has been shown to be complete for multi-party secure protocols, in the
sense that one can construct protocols for securely realizing any functionality using OT as the only
cryptographic primitive. It is also interesting because it imposes secrecy requirements when either
party is corrupted, in addition to correctness requirements. The protocol uses cryptographic primitives
and computational hardness assumptions in an essential way and the analysis presents one with issues
that need to be resolved to be able to establish general modeling idioms and verification methods that
can be used in cryptographic analysis of any cryptographic protocol.

At a very high-level the analysis proceeds as follows. We define two PIOAs that represent the
“real system”, which captures the protocol execution, and the “ideal system”, which captures the ideal
specification for OT. We show that the real system implements the ideal system with respect to the
notion of approximate, time-bounded, implementation. The complete proof would consist of four cases,
depending on the set of parties that are corrupted. When only the transmitter T is corrupted, and
when both parties are corrupted, it is possible to show that the real system implements the ideal
system unconditionally. However, when neither party is corrupted or when the receiver is corrupted,
implementation can be shown only in a “computational sense”. We present here only the case where
the receiver R is corrupted, since we believe this is the most interesting case. The proof involves
relatively more subtle interactions of the automaton representing the functionality and the simulator;
the simulator needs to receive the selected bit from the functionality to be able to output the correct
value.

Following the usual proof methods for distributed algorithms, we decompose our proofs into several
stages, with general transitivity results used to combine the results of the stages. Specifically, we use a
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hierarchy of four automata, where the protocol automaton, which uses hard-core predicates lies at the
lowest level and the specification, which uses their random counterparts lies at the highest level. We
use two intermediate-level automata, which in two stages replace all the uses of hard-core predicates
by random bits. A feature of our proofs is that complicated reasoning about particular cryptographic
primitives—in this case, a hard-core predicate—is isolated to a single stage of the proof, the proof that
shows the implementation relationship between the two intermediate-level automata. This is the only
stage of the proof that uses our new approximate implementation relationship. For other stages we use
the perfect implementation relationship.

Preliminary version. In our initial versions of the Oblivious Transfer proof, described in Technical
Reports [CCK+05], the PIOA model used in the analysis has more restrictions than what we report
here—in fact, enough to rule out branching behavior of the sort that is needed for describing adaptive
adversarial schedulers. This restriction was undesirable. Therefore, we revisited some of the definitions
in that work to make our model more general. In [CCK+05] we present proofs for four cases, one for
each possible value for the set of corrupted parties. We have redone the proof for the case where only
the receiver is corrupted assuming the new generalized definitions. We think that redoing the remaining
three cases will be relatively straightforward.

Related work. Several papers have recently proposed the direct mechanization and formalization
of concrete cryptographic analysis of protocols, in a number of different contexts. Examples include
representing analysis as a sequence of games [Sho04, BR04], as well as methods for further formalizing
that process [Bla05, Hal05], or automated proof checking techniques [BCT04, Tar05]. Our work differs
from those in two main respects. First, those papers do not address ideal-process-based notion of secu-
rity, namely they do not address asserting that a protocol realizes a specification process in a standard
cryptographic sense, and hence do not provide any secure composability guarantees. In contrast, our
analytical framework provides strong composability guarantees in a natural way. Furthermore, our
analysis enjoys the extra rigor and detail that underly the PIOA framework.

There are other formal frameworks for analyzing cryptographic protocols that have similar motiva-
tions to ours such as those of Backes, Pfitzmann, and Waidner [PW00, BPW04b] (based on a variant
of probabilistic I/O automata), Lincoln et al. [LMMS98, RMST04] (based on process-algebra), and
Canetti [Can01] (based on interactive Turing machines). These frameworks use different mathematical
objects and techniques for modeling and analyzing cyrptographic protocols, each of which offers partic-
ular strengths. A key goal of our work has been to support simplicity and generality in modeling; we
allow the use of nondeterminism in modeling all kinds of choices that are inconsequential in achieving
correctness or security guarantees, not only in modeling uncertainties in the external environment. We
also provide a simple new scheduling mechanism for resolving nondeterminism, based on the notion
of tasks (equivalence relations on actions). We remark that in proving security properties, we do not
need to resolve nondeterminism beforehand to show that a protocol implements a specification. Our
implementation definitions quantify over all possible task schedules. A more detailed comparison be-
tween task-PIAOs and the asynchronous reactive systems of Backes et al. is available in Appendix A.
A similar comparison with the probabilistic polynomial-time process calculus of Lincoln et al. should
be available shortly.

Roadmap. In Section 2 we give the preliminary mathematical definitions that are used in subsequent
sections and define PIOAs, which are basic elements of the formal model presented in this paper. In
Section 3 we introduce our basic theory of task-PIOAs, including the definitions of implementation
and simulation relation. In Section 4 we define time-bounded task-PIOAs and extend our previous
results about task-PIOAs to time-bounded task-PIOAs. We also define polynomial-time-bounded task-
PIOA families. In Section 6, we show how a classical computational definition, namely the definition of
hard-core predicates for trap-door permutations, can be expressed in terms of polynomial-time-bounded
task-PIOA families, and prove the equivalence of the two definitions.
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We start presenting our example analysis in Section 7, which describes how we model the ideal
system. Then, in Section 5, we describe random source automata, which we will use in our task-PIOA
model of the protocol (real system) presented in Section 8. In Section 9, we explain the main security
theorems we prove, these proofs being detailed in Section 10.

2 Mathematical Foundations

2.1 Sets, functions etc.

We write R≥0 and R+ for the sets of nonnegative real numbers and positive real numbers, respectively.
If X is any set, then we denote the set of finite sequences and infinite sequences of elements from

X by X∗ and Xω, respectively. If ρ is a sequence then we use |ρ| to denote the length of ρ. We use λ
to denote the empty sequence (over any set).

If R is an equivalence relation over a set X, then we write x ≡R x′ provided that x and x′ are in
the same equivalence class. We sometimes write S ∈ R if S is an equivalence class of R.

2.1.1 Probability measures

We present the basic definitions that we need for probability measures. We also define three operations
involving probability measures: flattening, lifting, and expansion. We use these in defining a new kinds
of simulation relation for task-PIOAs, in Section 3.8. All of these have been defined elsewhere, for
example, [LSV03, JL91].

Basic definitions: A σ-field over a set X is a set F ⊆ 2X that contains the empty set and is closed
under complement and countable union. A pair (X,F) where F is a σ-field over X, is called a measurable
space. A measure on a measurable space (X,F) is a function µ : F → [0,∞] that is countably additive:
for each countable family {Xi}i of pairwise disjoint elements of F , µ(∪iXi) =

∑
i µ(Xi). A probability

measure on (X,F) is a measure on (X,F) such that µ(X) = 1. A sub-probability measure on (X,F) is
a measure on (X,F) such that µ(X) ≤ 1.

A discrete probability measure on a set X is a probability measure µ on (X, 2X), such that, for
each C ⊆ X, µ(C) =

∑
c∈C µ({c}). A discrete sub-probability measure on a set X, is a sub-probability

measure µ on (X, 2X), such that for each C ⊆ X, µ(C) =
∑

c∈C µ({c}). We define Disc(X) and
SubDisc(X) to be, respectively, the set of discrete probability measures and discrete sub-probability
measures on X. In the sequel, we often omit the set notation when we denote the measure of a singleton
set.

A support of a probability measure µ is a measurable set C such that µ(C) = 1. If µ is a discrete
probability measure, then we denote by supp(µ) the set of elements that have non-zero measure; supp(µ)
is a support of µ. We let δ(x) denote the Dirac measure for x, the discrete probability measure that
assigns probability 1 to {x}.

If {ρi}i∈I be a countable family of measures on (X,FX), and {pi}i∈I is a family of non-negative
values, then the expression

∑
i∈I piρi denotes a measure ρ on (X,FX) such that, for each C ∈ FX ,

ρ(C) =
∑

i∈I piρi(C).
Given two discrete measures µ1, µ2 on (X, 2X) and (Y, 2Y ), respectively, we denote by µ1 × µ2 the

product measure, that is, the measure on (X × Y, 2X×Y ) such that µ1 × µ2(x, y) = µ1(x) × µ2(y) for
each x ∈ X, y ∈ Y .

A function f : X → Y is said to be measurable from (X,FX)→ (Y,FY ) if the inverse image of each
element of FY is an element of FX , that is, for each C ∈ FY , f−1(C) ∈ FX . In such a case, given a
measure µ on (X,FX), the function f(µ) defined on FY by f(µ)(C) = µ(f−1(C)) for each C ∈ Y is a
measure on (Y,FY ) and is called the image measure of µ under f .

y more.
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Flattening: The first operation, which we call “flattening”, takes a discrete probability measure over
probability measures and “flattens” it into a single probability measure.

Let η be a discrete probability measure on Disc(X). Then the flattening of η, denoted by f latten(η),
is the discrete probability measure on X defined by f latten(η) =

∑
µ∈Disc(X) η(µ)µ.

Lemma 2.1 Let η be a discrete probability measure on Disc(X) and let f be a function from X to Y .
Then f(f latten(η)) = f latten(f(η)).

Proof. By the definition of flattening, f(f latten(η)) = f(
∑

µ∈Disc(X) η(µ)µ). By distributing f ,
we obtain that this is equal to

∑
µ∈Disc(X) η(µ)f(µ). By rearranging terms in this last expression,

we obtain that f(f latten(η)) =
∑

σ∈Disc(Y )

∑
µ∈f−1(σ) η(µ)σ. Now,

∑
µ∈f−1(σ) η(µ) = f(η)(σ), which

implies that f(f latten(η)) =
∑

σ∈Disc(Y ) f(η)(σ)σ. But the right-hand expression is the definition of
f latten(f(η)), as needed. 2

Lemma 2.2 Let {ηi}i∈I be a countable family of measures on Disc(X), and let {pi}i∈I be a family of
probabilities such that

∑
i∈I pi = 1. Then f latten(

∑
i∈I piηi) =

∑
i∈I pif latten(ηi).

Lifting: The second operation, which we call “lifting”, takes a relation between two domains X and
Y and “lifts” it to a relation between discrete measures over X and Y . We allow the correspondence to
be rather general: we express it in terms of the existence of a weighting function on elements of X × Y
that can be used to relate the two measures.

Let R be a relation from X to Y . The lifting of R, denoted by L(R), is a relation from Disc(X) to
Disc(Y ) such that µ1 L(R) µ2 iff there exists a function w : X×Y → R≥0, called a weighting function,
such that

1. for each x ∈ X and y ∈ Y , w(x, y) > 0 implies x R y,

2. for each x ∈ X,
∑

y w(x, y) = µ1(x), and

3. for each y ∈ Y ,
∑

x w(x, y) = µ2(y).

Expansion: Finally, we have the third operation, the “expansion” operation, which is the one we use
directly in our new definition of simulation relations. The expansion of a relation R relates a measure on
X to a measure on Y provided that the two measures can be “expanded” into corresponding measures
on measures. Here, the correspondence between the two measures on measures is rather general, in
fact, we express it in terms of the lifting operation.

Let R be a relation from Disc(X) to Disc(Y ). The expansion of R, denoted by E(R), is the relation
from Disc(X) to Disc(Y ) such that µ1 E(R) µ2 iff there exist two discrete measures η1 and η2 on
Disc(X) and Disc(Y ), respectively, such that

1. µ1 = f latten(η1),

2. µ2 = f latten(η2), and

3. η1 L(R) η2.

The following lemma provides an equivalent characterization of the expansion relation:

Lemma 2.3 Let R be a relation on Disc(X) × Disc(Y ). Then µ1 E(R) µ2 iff there exists a count-
able index set I, a discrete probability measure p on I, and two collections of probability measures
{µ1,i}I ,{µ2,i}I such that

1. µ1 =
∑

i∈I p(i)µ1,i,

2. µ2 =
∑

i∈I p(i)µ2,i, and

10



3. for each i ∈ I, µ1,i R µ2,i.

Proof. Let µ1 E(R) µ2, and let η1, η2 and w be the measures and weighting functions used in the
definition of E(R). Let {(µ1,i, µ2,i)}i∈I be an enumeration of the pairs for which w(µ1,i, µ2,i) > 0, and
let p(i) be w(µ1,i, µ2,i). Then p, {(µ1,i)}i∈I , and {(µ2,i)}i∈I satisfy Items 1, 2, and 3.

Conversely, given p, {(µ1,i)}i∈I , and {(µ2,i)}i∈I , define η1(µ) to be
∑

i|µ=µ1,i
p(i), η2(µ) to be∑

i|µ=µ2,i
p(i), and define w(µ′1, µ

′
2) to be

∑
i|µ′1=µ1,i,µ′2=µ2,i

p(i). Then, η1, η2 and w satisfy the proper-
ties required in the definition of E(R). 2

The next, rather technical lemma gives us a sufficient condition for showing that a pair of functions,
f and g, transforms E(R)-related probability measures µ1 and µ2 to other E(R)-related probability
measures. The required condition is that f and g convert each pair ρ1, ρ2 of R-related probability
measures witnessing that µ1 E(R) µ2 to E(R)-related probability measures. We will use this lemma in
the soundness proof for our new kind of simulation relation, in Lemma 3.28; there, the two functions f
and g apply corresponding sequences of tasks to corresponding measures on states.

Lemma 2.4 Let R be a relation from Disc(X) to Disc(Y ), and let f, g be two endo-functions on
Disc(X) and Disc(Y ), respectively, that distribute over convex combinations of measures, that is, for
each countable family {ρi}i of discrete measures on X and each countable family of probabilities {pi}i
such that

∑
i pi = 1, f(

∑
i piρi) =

∑
i pif(ρi), and similarly, for each countable family {ρi}i of discrete

measures on Y and each countable family of probabilities {pi}i such that
∑

i pi = 1, g(
∑

i piρi) =∑
i pig(ρi). Let µ1 and µ2 be two measures on X and Y respectively, such that µ1 E(R) µ2, and let

η1, η2, and w be a pair of measures and a weighting function witnessing that µ1 E(R) µ2. Suppose
further that, for any two distributions ρ1 ∈ supp(η1) and ρ2 ∈ supp(η2) such that w(ρ1, ρ2) > 0,
f(ρ1) E(R) g(ρ2).
Then f(µ1) E(R) g(µ2).

Proof. For each ρ1 ∈ supp(η1) and ρ2 ∈ supp(η2) such that w(ρ1, ρ2) > 0, let (η1)ρ1,ρ2 , (η2)ρ1,ρ2 , and
wρ1ρ2 be a pair of measures and a weighting function that prove that f(ρ1) E(R) g(ρ2). We know that
these are well-defined since, by assumption, f(ρ1) E(R) g(ρ2) whenever w(ρ1, ρ2) > 0. Let W denote
the set of pairs (ρ1, ρ2) such that w(ρ1, ρ2) > 0.

Let η′1 =
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)(η1)ρ1,ρ2 and let η′2 =
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)(η2)ρ1,ρ2 . Let w′ =∑
(ρ1,ρ2)∈W w(ρ1, ρ2)wρ1,ρ2 .
We show that η′1, η′2, and w′ prove that f(µ1) E(R) g(µ2).

1. f(µ1) = f latten(η′1).

By definition of η′1, f latten(η′1) = f latten(
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)(η1)ρ1,ρ2). By Lemma 2.2, this
is in turn equal to

∑
(ρ1,ρ2)∈W w(ρ1, ρ2)f latten((η1)(ρ1,ρ2)). By definition of (η1)(ρ1,ρ2), we know

that f latten((η1)(ρ1,ρ2)) = f(ρ1), so we obtain that f latten(η′1) =
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)f(ρ1).

We claim that the right side is equal to f(µ1): Since µ1 = f latten(η1), by the definition of flatten-
ing, µ1 =

∑
ρ1∈Disc(X) η1(ρ1)ρ1. Then, by distributivity of f , f(µ1) =

∑
ρ1∈Disc(X) η1(ρ1)f(ρ1).

By definition of lifting, η1(ρ1) =
∑

ρ2∈Disc(Y ) w(ρ1, ρ2).
Therefore, f(µ1) =

∑
ρ1∈Disc(X)

∑
ρ2∈Disc(Y ) w(ρ1, ρ2)f(ρ1), and this last expression is equal to∑

(ρ1,ρ2)∈W w(ρ1, ρ2)f(ρ1), as needed.

2. g(µ2) = f latten(η′2).

Analogous to the previous case.

3. η′1 L(R) η′2 using w′ as a weighting function.

We verify that w′ satisfies the three conditions in the definition of a weighting function:
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(a) Let ρ′1, ρ
′
2 be such that w′(ρ′1, ρ

′
2) > 0. Then, by definition of w′, there exists at least one

pair (ρ1, ρ2) ∈R such that wρ1,ρ2(ρ
′
1, ρ

′
2) > 0. Since wρ1,ρ2 is a weighting function, ρ′1 R ρ′2

as needed.

(b) By definition of w′,
∑

ρ′2∈Disc(Y ) w′(ρ′1, ρ
′
2) =

∑
ρ′2∈Disc(Y )

∑
(ρ1,ρ2)

w(ρ1, ρ2)wρ1,ρ2(ρ
′
1, ρ

′
2).

By rearranging sums and using the fact that wρ1,ρ2 is a weighting function, we obtain that∑
ρ′2∈Disc(Y ) w′(ρ′1, ρ

′
2) =

∑
(ρ1,ρ2)

w(ρ1, ρ2)(η1)ρ1,ρ2(ρ
′
1). (Specifically, this uses the fact that∑

ρ′2∈Disc(Y ) wρ1,ρ2(ρ
′
1, ρ

′
2) = (η1)ρ1,ρ2(ρ

′
1).) This suffices since the right-hand side is the

definition of η′1(ρ
′
1).

(c) Symmetric to the previous case.

2

2.2 Probabilistic I/O Automata

The definition of a PIOA is standard. A PIOA has states, a unique start state, and a set of actions,
partitioned into input, output, and internal actions. It also has a set of “transitions”, which are triples
consisting of a state, an action, and a discrete distribution on next states. Note that a PIOA may
exhibit both nondeterministic and probabilistic choices. Nondeterminism appears in the choice of the
next transition to perform. Probabilistic choice occurs only in the choice of the next state, when a
particular transition is performed.

Definition 2.5 A probabilistic I/O automaton (PIOA) is a tuple P = (Q, q̄, I, O,H,D), where

• Q is a countable set of states,

• q̄ ∈ Q is a start state,

• I is a countable set of input actions,

• O is a countable set of output actions,

• H is a countable set of internal (hidden) actions, and

• D ⊆ (Q× (I ∪O ∪H)×Disc(Q)) is a transition relation.

We write A for I ∪O ∪H and refer to A as the actions of P. We write E for I ∪O and we refer to E
as the external actions of P. We assume that PIOA P satisfies the following conditions.

1. I,O and H are disjoint sets.

2. Input enabling: For every state q ∈ Q and every action a ∈ I, D contains some triple of the
form (q, a, µ).

3. Next-transition determinism: For every state q and action a, there is at most one transition
of the form (q, a, µ). We write trq,a to denote this transition, and µq,a to denote the target measure
of this transition, if the transition exists. (Otherwise, these notations are undefined.)

We say that an action a is enabled in a state q if D contains a transition (q, a, µ) for some µ.

Note that the next-transition determinism and the countability of Q, I,O, and H are restrictions
that are not present in earlier definitions of probabilistic automata [LSV03]. We introduce these in the
interests of simplicity. Input-enabling is standard.

We denote the elements of an automaton P by QP , q̄P , IP , OP ,HP , DP , AP and EP . Often we
use the generic name P for a generic automaton; in this case we omit the subscripts, writing simply
Q, q̄, I, O,H,D, A and E.
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An execution fragment of a PIOA P is a finite or infinite sequence α = q0 a1 q1 a2 . . . of alternating
states and actions, starting with a state and, if the sequence is finite ending in a state, where for each
(qi, ai+1, qi+1) there exists a transition (qi, ai+1, µ) ∈ D with qi+1 ∈ supp(µ). If α is a finite sequence,
then the last state of α is denoted by lstate(α). If α is an execution fragment of P and a is an action
of P that is enabled in lstate(α), then we write trα,a as an abbreviation for trlstate(α),a.

An execution of P is an execution fragment whose first state is the start state q̄. We let frags(P)
and frags∗(P) denote, respectively, the set of all execution fragments and the set of finite execution
fragments of P. Similarly, we let execs(P) and execs∗(P) denote, respectively, the set of all executions
and the set of finite executions of P.

The trace of an execution fragment α of an automaton P, written trace(α), is the sequence obtained
by restricting α to the set of external actions of P. We say that β is a trace of automaton P if there is
an execution α of P with trace(α) = β.

2.2.1 σ-fields of execution fragments and traces

In order to talk about probabilities for executions and traces of a PIOA, we need appropriate σ-fields.
We define a σ-field over the set of execution fragments of a PIOA P:

Definition 2.6 The cone of a finite execution fragment α, denoted by Cα, is the set {α′ ∈ frags(P) |α ≤
α′}. Then FP is the σ-field generated by the set of cones of finite execution fragments of P.

Observe that, since Q, I, O, and H are countable, the set of finite execution fragments of P is countable,
and hence the set of cones of finite execution fragments of P is countable. Therefore, any union of cones
is measurable. Observe also that, for each finite execution fragment α, the set {α} is measurable since
it can be expressed as the intersection of Cα with the complement of ∪α′:α<α′Cα′ . Thus, any set of
finite execution fragments is measurable, or, in other words, the discrete σ-field of finite executions is
included in FP .

We often refer to a probability measure on the σ-field FP generated by cones of execution fragments
of a PIOA P as simply a probability measure on execution fragments of P.

In many places in this paper, we will want to talk about probability measures on finite execution
fragments, rather than arbitrary execution fragments. Thus, we define:

Definition 2.7 If ε is a probability measure on execution fragments of P, then we say that ε is finite
if the set of finite execution fragments is a support for ε.

Since any set of finite execution fragments is measurable, any finite probability measure on execution
fragments of P can also be viewed as a discrete probability measure on the set of finite execution
fragments. Formally, given any finite probability measure ε on execution fragments of P, we may define
a discrete probability measure finite(ε) on the set of finite execution fragments of P by simply defining
finite(ε)(α) = ε(α) for every finite execution fragment α of P. The difference between finite(ε) and ε
is simply that the domain of ε is the set of all execution fragments of P, whereas the domain of finite(ε)
is the set of all finite executions of P. Henceforth, we will ignore the distinction between finite(ε) and
ε.

Definition 2.8 Let ε and ε′ be probability measures on execution fragments of PIOA P. Then we say
that ε is a prefix of ε′, denoted by ε ≤ ε′, if, for each finite execution fragment α of P, ε(Cα) ≤ ε′(Cα).

Definition 2.9 A chain of probability measures on execution fragments of PIOA P is an infinite se-
quence, ε1, ε2, · · · of probability measures on execution fragments of P such that, for each i ≥ 0,
εi ≤ εi+1. Given a chain ε1, ε2, . . . of probability measures on execution fragments of P, we define
a new function ε on the σ-field generated by cones of execution fragments of P as follows: For each
finite execution fragment α,

ε(Cα) = lim
i→∞

εi(Cα).
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Standard measure theoretical arguments ensure that ε can be extended uniquely to a probability measure
on the σ-field generated by the cones of finite execution fragments. Furthermore, for each i ≥ 0, εi ≤ ε.
We call ε the limit of the chain, and we denote it by limi→∞ εi.

If α is a finite execution fragment of a PIOA P and a is an action of P, then Cαa denotes the set of
execution fragments of P that start with αa.

The cone construction can also be used to define a σ-field of traces:

Definition 2.10 The cone of a finite trace β, denoted by Cβ, is the set {β′ ∈ E∗∪Eω | β ≤ β′}, where
≤ denotes the prefix ordering on sequences. The σ-field of traces of P is simply the σ-field generated by
the set of cones of finite traces of P.

Again, the set of cones is countable and the discrete σ-field on finite traces is included in the σ-field
generated by cones of traces. We often refer to a probability measure on the σ-field generated by cones
of traces of a PIOA P as simply a probability measure on traces of P.

Definition 2.11 If τ is a probability measure on traces of P, then we say that τ is finite if the set of
finite traces is a support for τ . Any finite probability measure on traces of P can also be viewed as a
discrete measure on the set of finite traces.

Definition 2.12 Let τ and τ ′ be probability measures on traces of PIOA P. Then we say that τ is a
prefix of τ ′, denoted by τ ≤ τ ′, if, for each finite trace β of P, τ(Cβ) ≤ τ ′(Cβ).

Definition 2.13 A chain of probability measures on traces of PIOA P is an infinite sequence, τ1, τ2, · · ·
of probability measures on traces of P such that, for each i ≥ 0, τi ≤ τi+1. Given a chain τ1, τ2, . . .
of probability measures on traces of P, we define a new function τ on the σ-field generated by cones of
traces of P as follows: For each finite trace β,

τ(Cβ) = lim
i→∞

τi(Cβ).

Then τ can be extended uniquely to a probability measure on the σ-field of cones of finite traces. Fur-
thermore, for each i ≥ 0, τi ≤ τ . We call τ the limit of the chain, and we denote it by limi→∞ τi.

The trace function is a measurable function from the σ-field generated by cones of execution frag-
ments of P to the σ-field generated by cones of traces of P. If ε is a probability measure on execution
fragments of P then we define the trace distribution of ε, tdist(ε), to be the image measure of ε under
the function trace.

Lemma 2.14 Let ε1, ε2, · · · be a chain of measures on execution fragments, and let ε be limi→∞ εi.
Then limi→∞ tdist(εi) = tdist(ε).

Proof. It suffices to show that, for any finite trace β, limi→∞ tdist(εi)(Cβ) = tdist(ε)(Cβ). Fix a
finite trace β.

Let Θ be the set of minimal execution fragments whose trace is in Cβ . Then trace−1(Cβ) = ∪α∈ΘCα,
where all the cones are pairwise disjoint. Therefore, for i ≥ 0, tdist(εi)(Cβ) =

∑
α∈Θ εi(Cα), and

tdist(ε)(Cβ) =
∑

α∈Θ ε(Cα).
Since we have monote limits here (our limit are also supremums), limits commute with sums and our

goal can be restated as showing:
∑

α∈Θ limi→∞ εi(Cα) =
∑

α∈Θ ε(Cα). Since limi→∞ εi = ε, for each
finite execution fragment α, limi→∞ εi(Cα) = ε(Cα). Therefore,

∑
α∈Θ limi→∞ εi(Cα) =

∑
α∈Θ ε(Cα),

as needed. 2

The lstate function is a measurable function from the discrete σ-field of finite execution fragments
of P to the discrete σ-field of states of P. If ε is a probability measure on execution fragments of P,
then we define the lstate distribution of ε, lstate(ε), to be the image measure of ε under the function
lstate.
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2.2.2 Probabilistic executions and trace distributions

Having established some groundwork in Section 2.2.1, we now define the specific probability measures
on executions and traces that are generated by PIOAs. To define such probability measure, we must
resolve the PIOA’s nondeterminism. For this purpose, we define a “scheduler”, which, after any finite
execution fragment, selects the next transition:

Definition 2.15 A scheduler for a PIOA P is a function σ : frags∗(P) → SubDisc(D) such that
(q, a, µ) ∈ supp(σ(α)) implies q = lstate(α).

A scheduler σ describes what transitions to schedule after each finite execution fragment of P. It
associates sub-probability measures with finite execution fragments, which means that after a finite
execution fragment α the probability σ(α)(D) may be strictly smaller than 1, or, in other words, that
the scheduler σ terminates the computation after α with probability 1 − σ(α)(D). As a notational
convention we introduce a new symbol ⊥ to denote termination, and we write σ(α)(⊥) to denote the
probability 1− σ(α)(D) of terminating after α.

Definition 2.16 A scheduler σ and a finite execution fragment α generate a measure εσ,α on the σ-field
generated by cones of execution fragments. The measure of a cone Cα′ is defined recursively as follows:

εσ,α(Cα′) =

 0 if α′ 6≤ α and α 6≤ α′

1 if α′ ≤ α
εσ,α(Cα′′)µσ(α′′)(a, q) if α′ = α′′aq and α ≤ α′′,

(1)

where µσ(α′′)(a, q) is the probability that σ(α′′) gives a transition labeled by a and that the reached state
is q. That is, µσ(α′′)(a, q) = σ(α′′)(trα′′,a)µα′′,a(q). Standard measure theoretical arguments ensure that
εσ,α is well-defined. We say that εσ,α is generated by σ and α. We call the state f state(α) the first
state of εσ,α and denote it by f state(εσ,α).

If µ is a discrete probability measure over finite execution fragments, then we denote by εσ,µ the
measure

∑
α µ(α)εσ,α and we say that εσ,µ is generated by σ and µ. We call the measure εσ,µ a

generalized probabilistic execution fragment of P.
If supp(µ) contains only execution fragments consisting of a single state then we call εσ,µ a proba-

bilistic execution fragment of P. Finally, for the start state q̄, we call εσ,q̄ a probabilistic execution of
P.

The following lemmas give some simple equations expressing basic relationships involving the prob-
abilities of various sets of execution fragments.

Lemma 2.17 Let σ be a scheduler for PIOA P, µ be a discrete probability measure on finite execution
fragments of P, and α be a finite execution fragment of P. Then

εσ,µ(Cα) = µ(Cα) +
∑

α′<α

µ(α′)εσ,α′(Cα).

Proof. By definition of εσ,µ, εσ,µ(Cα) =
∑

α′ µ(α′)εσ,α′(Cα). Since, by definition, εσ,α′(Cα) = 1 when-
ever α ≤ α′, the equation above can be rewritten as εσ,µ(Cα) =

∑
α′:α≤α′ µ(α′)+

∑
α′<α µ(α′)εσ,α′(Cα).

Observe that
∑

α′:α≤α′ µ(α′) = µ(Cα). Thus, by substitution, we get the statement of the lemma. 2

Lemma 2.18 Let σ be a scheduler for PIOA P, µ be a discrete probability measure on finite execution
fragments of P, and α be a finite execution fragment of P. Then

εσ,µ(Cα) = µ(Cα − {α}) +
∑

α′≤α

µ(α′)εσ,α′(Cα).

Proof. Follows directly from Lemma 2.17 after observing that εσ,α(Cα) = 1. 2
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Lemma 2.19 Let σ be a scheduler for PIOA P, and µ be a discrete measure on finite execution frag-
ments of P. Let α = α̃aq be a finite execution fragment of P. Then

εσ,µ(Cα) = µ(Cα) + (εσ,µ(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(trα̃,a)µα̃,a(q).

Proof. By Lemma 2.17, by definition of εσ,α′(Cα), and by definition of µσ(α̃)(a, q), εσ,µ(Cα) = µ(Cα)+∑
α′<α µ(α′)εσ,α′(Cα̃)σ(α̃)(trα̃,a)µα̃,a(q). Observe that the factor σ(α̃)(trα̃,a)µα̃,a(q) is a constant with

respect to α′, and thus can be moved out of the sum, so
εσ,µ(Cα) = µ(Cα) + (

∑
α′<α µ(α′)εσ,α′(Cα̃))(σ(α̃)(trα̃,a)µα̃,a(q)). Since α′ ≤ α̃ if and only if α′ < α,

this yields εσ,µ(Cα) = µ(Cα) + (
∑

α′≤α̃ µ(α′)εσ,α′(Cα̃))(σ(α̃)(trα̃,a)µα̃,a(q)).
It suffices to show that

∑
α′≤α̃ µ(α′)εσ,α′(Cα̃) = εσ,µ(Cα̃)−µ(Cα̃−{α̃}). But this follows immediately

from Lemma 2.18 (with α instantiated as α̃). 2

Lemma 2.20 Let σ be a scheduler for PIOA P, µ be a discrete probability measure on finite execution
fragments of P, and α be a finite execution fragment of P. Then

εσ,µ(α) = (εσ,µ(Cα)− µ(Cα − {α}))(σ(α)(⊥)).

Proof. By definition of εσ,µ, εσ,µ(α) =
∑

α′ µ(α′)εσ,α′(α). The sum can be restricted to α′ ≤ α since
for all other α′, εσ,α′(α) = 0. Then, since for each α′ ≤ α, εσ,α′(α) = εσ,α′(Cα)σ(α)(⊥), we derive
εσ,µ(α) =

∑
α′≤α µ(α′)εσ,α′(Cα)σ(α)(⊥). Observe that σ(α)(⊥) is a constant with respect to α′, and

thus can be moved out of the sum, yielding εσ,µ(α) = (
∑

α′≤α µ(α′)εσ,α′(Cα))(σ(α)(⊥)).
It suffices to show that

∑
α′≤α µ(α′)εσ,α′(Cα) = εσ,µ(Cα)−µ(Cα−{α}). But this follows immediately

from Lemma 2.18. 2

Lemma 2.21 Let σ be a scheduler for PIOA P, and µ be a discrete probability measure on finite
execution fragments of P. Let α be a finite execution fragment of P and a be an action of P that is
enabled in lstate(α). Then

εσ,µ(Cαa) = µ(Cαa) + (εσ,µ(Cα)− µ(Cα − {α}))σ(α)(trα,a).

Proof. Observe that Cαa = ∪qCαaq. Thus, εσ,µ(Cαa) =
∑

q εσ,µ(Cαaq). By Lemma 2.19, the right-
hand side is equal to

∑
q (µ(Cαaq) + (εσ,µ(Cα)− µ(Cα − {α}))σ(α)(trα,a)µα,a(q)). Since

∑
q µ(Cαaq) =

µ(Cαa) and
∑

q µα,a(q) = 1, this is in turn equal to µ(Cαa) + (εσ,µ(Cα)− µ(Cα − {α}))σ(α)(trα,a).
Combining the equations yields the result. 2

Next, we consider limits of generalized probabilistic execution fragments.

Proposition 2.22 Let ε1, ε2, . . . be a chain of generalized probabilistic execution fragments of a PIOA
P, all generated from the same discrete probability measure µ on finite execution fragments. Then
limi→∞ εi is a generalized probabilistic execution fragment of P generated from µ.

Proof. Let ε denote limi→∞ εi. For each i ≥ 1, let σi be a scheduler such that εi = εσi,µ, and for
each finite execution fragment α, let pi

α = εσi,µ(Cα) − µ(Cα − {α}). For each finite execution α and
each action a, let pi

αa = εσi,µ(Cαa)− µ(Cαa).
By Lemma 2.21, if a is enabled in lstate(α) then pi

ασi(α)(trα,a) = pi
αa, and so, if pi

αa 6= 0, then
σi(α)(trα,a) = pi

αa/pi
α.

For each finite execution fragment α, let pα = ε(Cα) − µ(Cα − {α}). For each finite execution
fragment α and each action a, let pαa = ε(Cαa) − µ(Cαa). Define σ(α)(trα,a) to be pαa/pα if pα > 0;
otherwise define σ(α)(trα,a) = 0. By definition of ε and simple manipulations, limi→∞ pi

α = pα and
limi→∞ pi

αa = pαa. It follows that, if pα > 0, then σ(α)(trα,a) = limi→∞ σi(α)(trα,a).
It remains to show that σ is a scheduler and that εσ,µ = ε. To show that σ is a scheduler, we must

show that, for each finite execution fragment α, σ(α) is a sub-probability measure. Observe that, for
each i ≥ 1,

∑
tr σi(α)(tr) =

∑
a σi(α)(trαa). Similarly,

∑
tr σ(α)(tr) =

∑
a σ(α)(trαa). Since each σi is
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a scheduler, it follows that, for each i ≥ 0,
∑

a σi(α)(trαa) ≤ 1. Thus, also limi→∞
∑

a σi(α)(trαa) ≤ 1.
By interchanging the limit and the sum, we obtain

∑
a limi→∞ σi(α)(trαa) ≤ 1.

We claim that σ(α)(trα,a) ≤ limi→∞ σi(α)(trα,a), which immediately implies that σ(α)(trαa) ≤ 1,
as needed. To see this claim, we consider two cases: If pα > 0, then as shown earlier, σ(α)(trα,a) =
limi→∞ σi(α)(trα,a), which implies the claim. On the other hand, if pα = 0, then σ(α)(trα,a) is defined
to be zero, so that σ(α)(trα,a) = 0, which is less than or equal to limi→∞ σi(α)(trα,a), which again
implies the claim.

To show that εσ,µ = ε, we show by induction on the length of a finite execution fragment α that
εσ,µ(Cα) = ε(Cα). For the base case, let α consist of a single state q. By Lemma 2.17, εσ,µ(Cq) = µ(Cq),
and for each i ≥ 1, εσi,µ(Cq) = µ(Cq). Thus, ε(Cq) = limi→∞ εσi,µ(Cq) = µ(Cq), as needed.

For the inductive step, let α = α̃aq. By Lemma 2.19,

lim
i→∞

εσi,µ(Cα) = lim
i→∞

(µ(Cα) + (εσi,µ(Cα̃)− µ(Cα̃ − {α̃}))σi(α̃)(trα̃,a)µα̃,a(q)) .

Observe that the left side is ε(Cα). By algebraic manipulation, the equation above becomes

ε(Cα) = µ(Cα) +
((

lim
i→∞

εσi,µ(Cα̃)
)
− µ(Cα̃ − {α̃})

) (
lim

i→∞
σi(α̃)(trα̃,a)

)
µα̃,a(q).

By definition of ε, limi→∞ εσi,µ(Cα̃) = ε(Cα̃), and by inductive hypothesis, ε(Cα̃) = εσ,µ(Cα̃). Therefore,

ε(Cα) = µ(Cα) + (εσ,µ(Cα̃)− µ(Cα̃ − {α̃}))
(

lim
i→∞

σi(α̃)(trα̃,a)
)

µα̃,a(q).

Also by Lemma 2.19, we obtain that

εσ,µ(Cα) = µ(Cα) + (εσ,µ(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(trα̃,a)µα,a(q).

We claim that the right-hand sides of the last two equations are equal. To see this, consider two
cases. First, if pα̃ > 0, then we have already shown that limi→∞ σi(α̃)(trα̃,a) = σ(α̃(trα̃,a)). Since these
two terms are the only difference between the two expressions, the expressions are equal.

On the other hand, if pα̃ = 0, then by definition of pα̃, we get that ε(Cα̃) = µ(Cα̃ − {α̃}). Then the
second terms of the two right-hand sides are both equal to zero, which implies that both expressions
are equal to the first term µ(Cα). Again, the two right-hand sides are equal.

Since the right-hand sides are equal, so are the left-hand sides, that is, εσ,µ(Cα) = ε(Cα), as needed
to complete the inductive hypothesis. 2

We denote the set of trace distributions of probabilistic executions of a PIOA P by tdists(P).

2.2.3 Composition

We define composition for PIOAs:

Definition 2.23 Two PIOAs P1 and P2 are compatible if H1 ∩ A2 = A1 ∩H2 = O1 ∩ O2 = ∅. The
composition of two compatible PIOAs P1 and P2, denoted by P1‖P2, is the PIOA P = (Q, q̄, I, O,H,D)
where

• Q = Q1 ×Q2,

• q̄ = (q̄1, q̄2),

• I = (I1 ∪ I2)− (O1 ∪O2),

• O = (O1 ∪O2),

• H = (H1 ∪H2),

• D is the set of triples ((q1, q2), a, µ1 × µ2) such that for i ∈ {1, 2}, if a is an action of Pi, then
(qi, a, µi) ∈ Di, and if a is not an action of Pi then µi = δ(qi).

If q = (q1, q2) is a state of P then for i ∈ {1, 2}, we write qdPi to denote qi. We extend the definition
of composition and the d notation to any finite number of arguments, not just two.
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2.2.4 Hiding

We define a hiding operation for PIOAs, which hides output actions.

Definition 2.24 Let P = (Q, q̄, I, O,H, D) be a PIOA and S ⊆ O. Then hide(P, S) is the PIOA P ′
that is is the same as P except that OP′ = OP − S and HP = HP ∪ S.

3 Task-PIOAs

In this section, we introduce a new “task” mechanism for describing the resolution of nondetermin-
ism. For general PIOAs, we already have a notion of “scheduler”, which can use arbitrary knowledge
about the past execution in choosing a specific next transition. Such a scheduler is very powerful—too
powerful for the security protocol setting. In particular, a scheduler’s choice of transition may depend
on information that is supposed to be kept secret from the adversarial components. Moreover, the
scheduler has very fine-grained control over the precise choice of transition.

To reduce the power of the scheduler, we here define “task-PIOAs”, which provide equivalence
relations on the actions and on the states of the PIOAs. The action equivalence relation classifies the
actions into “tasks”, which are units of scheduling.

We begin by defining task-PIOAs, in Section 3.1. Then we define task schedulers, in Section 3.2,
which are a variant of our schedulers with coarser granularity (they schedule tasks rather than specific
transitions). Section 3.3 defines directly how a task scheduler generates a probability measure on
execution fragments, for a closed task-PIOA. Then, in a rather lengthy diversion, it relates this definition
to the more traditional definitions for PIOAs, by showing that the resulting probability measure is in
fact generated by some traditional scheduler. The next two sections define composition and hiding, for
task-PIOAs.

Then, we develop our notions of implementation between task-PIOAs. In Section 3.6, we define the
notion of an “environment” for a task-PIOA. We use this, in Section 3.7, to define what it means for one
task-PIOA to implement another. Finally, in Section 3.8, we define our new kind of simulation relation
between closed task-PIOAs, and prove that it is sound with respect to our implementation notion.

3.1 Task-PIOAs

Definition 3.1 We define a task-PIOA, to be a pair T = (P, R), where

• P = (Q, q̄, I, O,H,D) is a PIOA (satisfying next-transition determinism).

• R is an equivalence relation on the locally-controlled actions (O ∪H).
We refer to the equivalence classes of R as tasks.

A task T is enabled in a state q if there is some action in T that is enabled in q. A task T is enabled
in a set of states S provided that T is enabled in every q ∈ S.

We require a task-PIOA to satisfy the following condition:

• Next-action determinism: For every state q ∈ Q and every task T ∈ R, there is at most one
action a ∈ T that is enabled in q.

We denote the relation R of a task-PIOA T by RT .
The non-probabilistic executions and traces of a task-PIOA T = (P, R) are defined to be the

executions and traces of the underlying PIOA P.
Note that in prelimimary versions of this work [CCK+05], we defined a task-PIOA to have an

equivalence relation on states in addition to an equivalence relation on actions. We also had three
more axioms, called random-choice consistency, transition consistency, and enabling consistency. These
axioms imposed restrictions on the branching capabilities of the modeled components. For example, we
required the states resulting from internal random choices of an adversary to be equivalent; a random
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choice could not result in enabling a task in one branch and disabling it in another. In this work, we
generalize this older definition of a task-PIOA by removing the state relation and the related consistency
axioms.

3.2 Task Schedulers

Here we define our notion of a “task scheduler”, which chooses the next task to perform. For a closed
task-PIOA (that is, one with no input actions), a task scheduler resolves all nondeterminism, because
of the next-action determinism property of task-PIOAs and the next-transition determinism property
of general PIOAs.

Our notion of task scheduler is oblivious—that is, it is just a sequence of tasks.

Definition 3.2 Let T = (P, R) be a closed task-PIOA where P = (Q, q̄, I, O,H,D). A task scheduler
for T is defined to be a finite or infinite sequence ρ = T1 T2 . . . of tasks in R.

3.3 Probabilistic executions and trace distributions

Definition 3.3 Let T = (P, R) be an action-deterministic task-PIOA where P = (Q, q̄, I, O,H,D).
The function apply(, ) takes a discrete probability measure on finite execution fragments and a task
schedule and returns a probability measure on execution fragments. It is defined recursively as follows:

1. apply(µ, λ) = µ (recall that λ is the empty sequence).

2. Let T be a single task. Given finite execution fragment α, apply(µ, T )(α) is defined to be p1(α) +
p2(α), given as follows.

p1(α) =

 µ(α′)ρ(q) if α can be written as α′ a q, with α′ ∈ supp(µ), a ∈ T,
and (lstate(α′), a, ρ) ∈ D.

0 otherwise.

Notice, in the first case, transition determinism and the definition of execution fragments imply
that there is exactly one such ρ, so p1 is well-defined.

p2(α) =
{

µ(α) if T is not enabled in lstate(α),
0 otherwise.

3. If ρ is finite and of the form ρ′T , then apply(µ, ρ) = apply(apply(µ, ρ′), T ).

4. If ρ is infinite, let ρi denote the length-i prefix of ρ and let εi be apply(µ, ρi). Then apply(µ, ρ) =
limi→∞(εi).

Lemma 3.4 Let T = (P, R) be a closed action-deterministic task-PIOA. Let µ be a discrete probability
measure over finite execution fragments of P and let T be a task. Let p1 and p2 be the functions used
in the definition of apply(µ, T ). Then:

1. for each state q, p1(q) = 0;

2. for each finite execution fragment α,

µ(α) = p2(α) +
∑

(a,q):αaq∈Frags∗(P)

p1(αaq).

Proof. Item (1) follows trivially from the definition of p1(q).
For Item (2), we observe the following facts.
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• If T is not enabled from lstate(α), then, by definition of p2, µ(α) = p2(α). Furthermore, for each
action a and each state q such that αaq is an execution fragment, we claim that p1(αaq) = 0.
Indeed, if a /∈ T , then the first case of the definition of p1(α) trivially does not apply; if a ∈ T ,
then, since T is not enabled from lstate(α), there is no ρ such that (lstate(α), a, ρ) ∈ DP , and
thus, again, the first case of the definition of p1(α) does not apply.

• If T is enabled from lstate(α), then trivially p2(α) = 0. Furthermore, we claim that µ(α) =∑
(a,q) p1(αaq). By action determinism, only one action b ∈ T is enabled from lstate(α). By

definition of p1, p1(αaq) = 0 if a 6= b (either a /∈ T or a is not enabled from lstate(α)). Thus,∑
(a,q)

p1(αaq) =
∑

q

p1(αbq) =
∑

q

µ(α)µα,b(q).

This in turn is equal to µ(α) since
∑

q µα,b(q) = 1.

In each case, we get µ(α) = p2(α) +
∑

(a,q) p1(αaq), as needed. 2

Lemma 3.5 Let T = (P, R) be a closed action-deterministic task-PIOA. Let µ be a discrete probability
measure over finite execution fragments and ρ be a finite sequence of tasks. Then apply(µ, ρ) is a
discrete probability measure over finite execution fragments.

Proof. By a simple inductive argument. The key part of the inductive step consists of the claim that,
for each measure ε on finite executions fragments and each task T , apply(ε, T ) is a probability measure
over finite execution fragments.

Let ε′ be apply(ε, T ). The fact that ε′ is a measure on finite execution fragments follows di-
rectly by Item (2) of Definition 3.3. To show that ε′ is in fact a probability measure, we show that∑

α∈Frags∗(P) ε′(α) = 1. By Item (2) of Definition 3.3,∑
α∈Frags∗(P)

ε′(α) =
∑

α∈Frags∗(P)

(p1(α) + p2(α)).

Rearranging terms, we obtain∑
α∈Frags∗(P)

ε′(α) =
∑

q

p1(q) +
∑

α∈Frags∗(P)

(p2(α) +
∑

(a,q):αaq∈Frags∗(P)

p1(αaq)).

By Lemma 3.4, the right side becomes
∑

α∈Frags∗(P) ε(α), which equals 1 by the inductive hypothesis.
Therefore

∑
α∈Frags∗(P) ε′(α) = 1, as needed. 2

Lemma 3.6 Let T = (P, R) be a closed action-deterministic task-PIOA and let T be a task in R.
Define µ′ = apply(µ, T ). Then, for each finite execution fragment α:

1. If α consists of a single state q, then µ′(Cα) = µ(Cα).

2. If α = α̃aq and a /∈ T , then µ′(Cα) = µ(Cα).

3. If α = α̃aq and a ∈ T , then µ′(Cα) = µ(Cα) + µ(α̃)µα̃,a(q).

Proof. Let p1 and p2 be the functions used in the definition of apply(µ, T ), and let α be a fi-
nite execution fragment. By definition of a cone and of µ′, µ′(Cα) =

∑
α′|α≤α′(p1(α′) + p2(α′)).

By definition of a cone and Lemma 3.4, µ(Cα) =
∑

α′|α≤α′(p2(α′) +
∑

(a,q):α′aq∈Frags∗(P) p1(α′aq)) =∑
α′|α≤α′(p1(α′) + p2(α′)) − p1(α). Thus, µ′(Cα) = µ(Cα) + p1(α). We distinguish three cases. If α

consists of a single state, then p1(α) = 0 by Lemma 3.4, yielding µ′(Cα) = µ(Cα). If α = α̃aq and
a /∈ T , then p1(α) = 0 by definition, yielding µ′(Cα) = µ(Cα). Finally, if α = α̃aq and a ∈ T , then
p1(α) = µ(α̃)µα̃,a(q) by definition, yielding µ′(Cα) = µ(Cα) + µ(α̃)µα̃,a(q). 2
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Lemma 3.7 Let T = (P, R) be a closed action-deterministic task-PIOA. Let µ be a discrete measure
over finite execution fragments, T a task, and µ′ = apply(µ, T ). Then µ ≤ µ′.

Proof. Follows directly by Lemma 3.6. 2

Lemma 3.8 Let T = (P, R) be a closed action-deterministic task-PIOA. Let µ be a discrete measure
over finite execution fragments and let ρ1 and ρ2 be two finite sequences of tasks such that ρ1 is a prefix
of ρ2. Then apply(µ, ρ1) ≤ apply(µ, ρ2).

Proof. Simple inductive argument using Lemma 3.7 for the inductive step. 2

Lemma 3.9 Let T = (P, R) be a closed task-PIOA. Let µ be a discrete measure over finite execution
fragments. Then apply(µ, λ) is a generalized probabilistic execution fragment generated by µ.

Proof. Follows directly from the definitions, by defining a scheduler σ such that σ(α)(tran) = 0 for
each finite execution fragment α and each transition tran. 2

Lemma 3.10 Let T = (P, R) be a closed action-deterministic task-PIOA. Let µ be a discrete probability
measure over finite execution fragments of P, ρ a task scheduler for T , and q a state of T . Then
apply(µ, ρ)(Cq) = µ(Cq).

Proof. We prove the result for finite ρ’s by induction on the length of ρ. The infinite case then
follows immediately. The base case is trivial since, by definition, apply(µ, ρ) = µ. For the inductive
step, let ρ = ρ′T , and let ε be apply(µ, ρ′). By Definition 3.3, apply(µ, ρ) = apply(ε, T ). By induction,
ε(Cq) = µ(Cq). Therefore it suffices to show apply(ε, T )(Cq) = ε(Cq).

Let ε′ be apply(ε, T ). By definition of cone, ε′(Cq) =
∑

α:q≤α ε′(α). By Lemma 3.5, both ε and
ε′ are measures over finite execution fragments; therefore we can restrict the sum to finite execution
fragments. Let p1 and p2 be the two functions used for the computation of ε′(α) according to Item (2)
in Definition 3.3. Then ε′(Cq) =

∑
α∈Execs∗(P):q≤α(p1(α) + p2(α)). By rearranging terms, we get

ε′(Cq) = p1(q) +
∑

α∈Execs∗(P):q≤α(p2(α) +
∑

(a,s) p1(Cαas)). By Lemma 3.4, the right side of the
equation above is

∑
α:q≤α ε(α), which is precisely ε(Cq). 2

Lemma 3.11 Let T = (P, R) be a closed action-deterministic task-PIOA. If ε is a generalized proba-
bilistic execution fragment generated by a measure µ, then, for each task T , apply(ε, T ) is a generalized
probabilistic execution fragment generated by µ.

Proof. Suppose ε is generated by µ together with a scheduler σ (that is, εσ,µ = ε). Let ε′ be
apply(ε, T ). Let σ′ be a new scheduler such that, for each finite execution fragment α,

• if ε′(Cα)− µ(Cα − {α}) = 0, then σ′(α)(tran) = 0;

• otherwise,

– if tran ∈ D(lstate(α)) and act(tran) ∈ T ,

σ′(α)(tran) =
ε(Cα)− µ(Cα − {α})
ε′(Cα)− µ(Cα − {α})

(σ(α)(tran) + σ(α)(⊥)),

– otherwise,

σ′(α)(tran) =
ε(Cα)− µ(Cα − {α})
ε′(Cα)− µ(Cα − {α})

σ(α)(tran).

Here D(lstate(α)) denotes the set of transitions of D with source state lstate(α) and act(tran) denotes
the action that occurs in tran. We first prove that σ′, thus defined, is a scheduler. We prove by induction
on the length of a finite execution fragment α that εσ′,µ(Cα) = ε′(Cα).
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For the base case, let α = q. By Lemma 2.17, εσ,µ(Cq) = µ(Cq) and εσ′,µ(Cq) = µ(Cq). Thus,
εσ′,µ(Cq) = εσ,µ(Cq). By definition, the right-hand-side is equal to ε(Cq), which is equal to ε′(Cq) by
Lemma 3.10. Thus, εσ′,µ(Cq) = ε′(Cq), as needed.

For the inductive step, let α = α̃aq. By Lemma 2.17 and the definition of the measure of a cone
(Equation (1)), we get

εσ′,µ(Cα) = µ(Cα) +
∑

α′≤α̃

µ(α′)εσ′,α′(Cα̃)µσ′(α̃)(a, q).

We know that a is enabled from lstate(α̃), because α is an execution fragment of P. Thus, tranα̃,a

and µα̃,a are defined. By expanding µσ′(α̃)(a, q) in the equation above, we get

εσ′,µ(Cα) = µ(Cα) +
∑

α′≤α̃

µ(α′)εσ′,α′(Cα̃)σ′(α̃)(tranα̃,a)µα̃,a(q). (2)

We distinguish three cases.

1. ε′(Cα̃)− µ(Cα̃ − {α̃}) = 0.

By inductive hypothesis, εσ′,µ(Cα̃) = ε′(Cα̃). Then by Lemma 2.19, εσ′,µ(Cα) = µ(Cα). It is
therefore sufficient to show that ε′(Cα) = µ(Cα).

By Lemma 3.7, ε(Cα̃) ≤ ε′(Cα̃). Thus, using ε′(Cα̃) − µ(Cα̃ − {α̃}) = 0, we get ε(Cα̃) − µ(Cα̃ −
{α̃}) ≤ 0. On the other hand, from Lemma 2.18 and the fact that ε = εσ,µ, we have ε(Cα̃) −
µ(Cα̃ − {α̃}) ≥ 0. Thus, ε(Cα̃) − µ(Cα̃ − {α̃}) = 0. Now, using Lemma 2.19 and the fact that
εσ,µ = ε and ε(Cα̃)− µ(Cα̃ − {α̃}) = 0, we get ε(Cα) = µ(Cα).

Since Cα̃−{α̃} is a union of cones, we may use Lemma 3.7 to obtain µ(Cα̃−{α̃}) ≤ ε(Cα̃−{α̃}).
Adding ε({α̃}) on both sides, we get µ(Cα̃ − {α̃}) + ε({α̃}) ≤ ε(Cα̃ − {α̃}) + ε({α̃}) = ε(Cα̃).
Since ε(Cα̃) = µ(Cα̃ − {α̃}), the previous inequalities imply ε(Cα̃) + ε({α̃}) ≤ ε(Cα̃), therefore
ε({α̃}) = 0. By Lemma 3.6 (Items (2) and (3)), we have ε′(Cα) = ε(Cα) = µ(Cα), as needed.

2. ε′(Cα̃)− µ(Cα̃ − {α̃}) > 0 and a 6∈ T .

By Equation (2) and the definition of σ′, we know that εσ′,µ(Cα) equals

µ(Cα) +
∑

α′≤α̃

µ(α′)εσ′,α′(Cα̃)
ε(Cα̃)− µ(Cα̃ − {α̃})
ε′(Cα̃)− µ(Cα̃ − {α̃})

σ(α̃)(tranα̃,a)µα̃,a(q).

Observe that in the sum above only the factors µ(α′)εσ′,α′(Cα̃) are not constant with respect to the
choice of α′. By Lemma 2.18 and algebraic manipulation,

∑
α′≤α̃ µ(α′)εσ′,α′(Cα̃) = εσ′,µ(Cα̃) −

µ(Cα̃−{α̃}). By inductive hypothesis, εσ′,µ(Cα̃) = ε′(Cα̃). Thus, replacing
∑

α′≤α̃ µ(α′)εσ′,α′(Cα̃)
with ε′(Cα̃)− µ(Cα̃ − {α̃}) and simplifying the resulting expression, we get

εσ′,µ(Cα) = µ(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(tranα̃,a)µα̃,a(q).

By definition, ε = εσ,µ. Therefore, by Lemma 2.19, the right side of the equation above is ε(Cα).
Moreover, ε(Cα) = ε′(Cα) by Lemma 3.6, Item (2). Thus, εσ′,µ(Cα) = ε′(Cα), as needed.

3. ε′(Cα̃)− µ(Cα̃ − {α̃}) > 0 and a ∈ T .

As in the previous case, εσ′,µ(Cα) equals

µ(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))(σ(α̃)(tranα̃,a) + σ(α̃)(⊥))µα̃,a(q).

Also shown in the previous case, we have

ε(Cα) = µ(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(tranα̃,a)µα̃,a(q).
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Therefore,
εσ′,µ(Cα) = ε(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(⊥)µα̃,a(q).

By definition, ε = εσ,µ. Using Lemma 2.20, we may substitute ε(α̃) for (ε(Cα̃) − µ(Cα̃ −
{α̃}))σ(α̃)(⊥). Now we have

εσ′,µ(Cα) = ε(Cα) + ε(α̃)µα̃,a(q).

The desired result now follows from Lemma 3.6, Item (3).

2

Lemma 3.12 Let T = (P, R) be a closed action-deterministic task-PIOA. For each probability mea-
sure µ on finite execution fragments and each finite sequence of tasks ρ, apply(µ, ρ) is a generalized
probabilistic execution fragment generated by µ.

Proof. Simple inductive argument using Lemma 3.9 for the base case and Lemma 3.11 for the induc-
tive step. 2

Lemma 3.13 Let T = (P, R) be a closed action-deterministic task-PIOA. For each measure µ on
finite execution fragments and each infinite sequence of tasks ρ, apply(µ, ρ) is a generalized probabilistic
execution fragment generated by µ.

Proof. For each i ≥ 0, let ρi denote the length-i prefix of ρ and let εi be apply(µ, ρi). By Lemmas 3.12
and 3.8, the sequence ε0, ε1, . . . is a chain of generalized probabilistic execution fragments generated by
µ. By Proposition 2.22, limi→∞ εi is a generalized probabilistic execution fragment generated by µ.
This suffices, since apply(µ, ρ) is limi→∞ εi by definition. 2

Now we can prove Proposition 3.14, our main target. It says that, for any µ and ρ, the probability
measure on execution fragments generated by apply(µ, ρ) is “standard”, in that it can be obtained from
µ and a scheduler in the sense of Definition 2.15.

Proposition 3.14 Let T = (P, R) be a closed action-deterministic task-PIOA. For each measure µ
on finite execution fragments and each sequence of tasks ρ, apply(µ, ρ) is a generalized probabilistic
execution fragment generated by µ.

Proof. Follows directly by Lemmas 3.12 and 3.13. 2

Lemma 3.15 Let T = (P, R) be a closed action-deterministic task-PIOA. Let ρ1, ρ2, · · · be a finite or
infinite sequence of finite task schedulers and let µ be a discrete probability measure on finite execution
fragments. For each i > 0, let εi = apply(µ, ρ1ρ2 · · · ρi), where ρ1 · · · ρi denotes the concatenation of the
sequences ρ1 through ρi. Let ρ be the concatenation of all the ρi’s, and let ε = apply(µ, ρ). Then the
εi’s form a chain and ε = limi→∞ εi.

Proof. The fact that the εi’s form a chain follows from Lemma 3.7. For the limit property, if the
sequence ρ1, ρ2, . . . is finite, then the result is immediate. Otherwise, simply observe that the sequence
ε1, ε2, . . . is a sub-sequence of the sequence used in the definition of apply(µ, ρ1ρ2 . . .), therefore they
have the same limit. 2

A generalized probabilistic execution fragment of a closed task-PIOA T is any generalized probabilis-
tic execution fragment of the underlying PIOA P that is generated from any µ and any task scheduler
ρ, as apply(µ, ρ). If supp(µ) is included in the set of states of P, then we call apply(µ, ρ) a probabilistic
execution fragment of T . Finally, for the start state q̄, we call apply(q̄, ρ) a probabilistic execution of T .

Now we consider trace distributions of task-PIOAs. Namely, for any µ and ρ, we write tdist(µ, ρ)
as shorthand for tdist(apply(µ, ρ)). We write tdist(ρ) as shorthand for tdist(δ(apply(q̄, ))ρ), where
q̄ is the unique start state. A trace distribution of T is any tdist(ρ). We use tdists(T ) for a closed
task-PIOA T to denote the set {tdist(ρ) : ρ is a task scheduler for T }.
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3.4 Composition

The systems in this paper are described as compositions of task-PIOAs. Here we show how to regard
such a composition as a task-PIOA.

Definition 3.16 Two task-PIOAs T1 = (P1, R1) and T2 = (P2, R2) are said to be compatible provided
that the underlying PIOAs P1 and P2 are compatible. In this case, we define their composition T1‖T2
to be the task-PIOA (P1‖P2, R1 ∪R2).

Lemma 3.17 If T1 and T2 are compatible action-deterministic task-PIOAs, then T1‖T2 is also action-
deterministic.

3.5 Hiding

We define a hiding operation for task-PIOAs, which hides output tasks.

Definition 3.18 Let T = (P, R) be a task-PIOA where P = (Q, q̄, I, O,H,D), and let U ⊆ R be a set
of output tasks. Let S = ∪T∈UT , that is, S is the set of actions in all the tasks in U . Then we define
hide(T ,U) to be (hide(P, S), R).

3.6 Environments

We define the notion of environment as follows.

Definition 3.19 Suppose T and E are task-PIOAs. We say that E is an environment for T iff E is
compatible with T , T ‖E is closed and E has a special output action named accept.

The special accept output action is used by the environment to distinguish between different task-
PIOAs.

3.7 Implementation

Our notion of implementation for task-PIOAs is based on probabilistic executions that look the same
to any environment for the PIOAs. This notion of implementation makes sense only for comparable
task-PIOAs.

Definition 3.20 Two task-PIOAs (P1, R1) and (P2, R2) are comparable if P1 and P2 are comparable
(have the same external signature) .

We now define the ≤0-implementation notion for task-PIOAs.

Definition 3.21 Suppose T1 and T2 are two comparable task-PIOAs. We say that T1 ≤0 T2 provided
that, for every environment E for both T1 and T2, tdists(T1||E) ⊆ tdists(T2||E).

3.8 Simulation relations

We first give some auxiliary definitions that are used in the definitions of a simulation relation.
The definition below formulates a“consistency” condition between a distribution over execution finite

fragments and a task sequence. A discrete distribution over execution finite execution fragments is said
to be consistent with a task sequence if each execution fragment in the support of that distribution can
be obtained by performing the tasks in the sequence (in the order of their occurrence).

Definition 3.22 Let T = (P, R) be a closed task-PIOA and ε be a discrete distribution over finite
execution fragments of P, and ρ a finite task sequence for T . Then we say that ε is consistent with
ρ provided that the following holds: For every α ∈ supp(ε), α ∈ supp(apply(δ(f state(α)), ρ)). That is,
each execution fragment in the support of ε is “consistent with” the task scheduler ρ.
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We now define the operation full that will subsequently be used in the definition of a simulation
relation. Suppose that we have a mapping, which, given a task sequence ρ and a task T of an automaton
T1, yields a task sequence of another automaton T2. The intuition is that, for each task T of T1, this
mapping gives a task sequence of T2 that corresponds to the task T . The operation full transforms
this mapping to a mapping, which given a task sequence ρ of T1 gives a “full” task sequence of T2 that
corresponds to ρ, not just the incremental part that corresponds to a single task of T1.

Definition 3.23 If T1 = (P1, R1) and T2 = (P2, R2) are two task-PIOAs, and if c : (R1
∗×R1)→ R2

∗,
then define full(c) : R1

∗ → R2
∗ recursively, as follows:

full(c)(λ) = λ
full(c)(ρ T ) = full(c)(ρ) c(ρ, T ).

We now define what it means for a relation to be a simulation relation from one task-PIOA to
another. The definition of a simulation relation is new and we wish to establish its soundness with
respect to the ≤0 relation.

Definition 3.24 Let T1 = (P1, R1) and T2 = (P2, R2) be two comparable closed action-deterministic
task-PIOAs. Let R be a relation from discrete distributions over finite execution fragments of P1 to
discrete distributions over finite executions fragments of P2, satisfying the condition: If ε1 R ε2 then
tdist(ε1) = tdist(ε2). Let c : (R1

∗ × R1) → R2
∗. Then we say that R is a simulation relation from T1

to T2 using c provided that the following properties hold:

1. Start condition: δ(q̄1) R δ(q̄2).

2. Step condition: If ε1 R ε2, ρ1 ∈ R1
∗, ε1 is consistent with ρ1, ε2 is consistent with full(c)(ρ1),

and T ∈ R1, then ε′1 E(R) ε′2 where: ε′1 = apply(ε1, T ) and ε′2 = apply(ε2, c(ρ1, T )).

We say that R is a simulation relation from T1 to T2 provided that R is a simulation relation from
T1 to T2 using c, for some c.

Lemma 3.25 Let T1 and T2 be two comparable closed action-deterministic task-PIOAs, R a simulation
from T1 to T2. Let ε1 and ε2 be discrete distributions on finite execution fragments of T1 and T2,
respectively, such that ε1 E(R) ε2. Then tdist(ε1) = tdist(ε2).

Lemma 3.26 Let {µi}i be a countable family of discrete probability measures on finite execution frag-
ments and let {pi}i be a countable family of probabilities such that

∑
i pi = 1. Let T be a task. Then,

apply(
∑

i piµi, T ) =
∑

i pi apply(µi, T ).

Proof. Let p1 and p2 be the functions used in the definition of apply(
∑

i piµi, T ), and let, for
each i, pi

1 and pi
2 be the functions used in the definition of apply(µi, T ). Let α be a finite execu-

tion fragment. We show that p1(α) =
∑

i pip
i
1(α) and p2(α) =

∑
i pip

i
2(α). Then it follows that

apply(
∑

i piµi, T )(α) =
∑

i pi apply(µi, T )(α) since apply(
∑

i piµi, T )(α) is defined to be p1(α)+p2(α),
and

∑
i pi apply(µi, T )(α) =

∑
i pi(pi

1(α) + pi
2(α)) =

∑
i pip

i
1(α) +

∑
i pip

i
2(α) = p1(α) + p2(α).

To prove our claim about p1 we distinguish two cases. If α can be written as α′ a q, where α′ ∈
supp(µ), a ∈ T , and (lstate(α′), a, ρ) ∈ DP , then, by Definition 3.3, p1(α) = (

∑
i piµi)(α′)ρ(q), and,

for each i, pi
1(α) = µi(α′)ρ(q). Thus, p1(α) =

∑
i pip

i
1(α) trivially. Otherwise, again by Definition 3.3,

p1(α) = 0, and, for each i, pi
1(α) = 0. Thus, p1(α) =

∑
i pip

i
1(α) trivially.

To prove our claim about p2 we also distinguish two cases. If T is not enabled inlstate(α), then, by
Definition 3.3, p2(α) = (

∑
i piµi)(α), and, for each i, pi

2(α) = µi(α). Thus, p2(α) =
∑

i pip
i
2(α) trivially.

Otherwise, again by Definition 3.3, p2(α) = 0, and, for each i, pi
2(α) = 0. Thus, p2(α) =

∑
i pip

i
2(α)

trivially. 2

Proposition 3.27 Let {µi}i be a countable family of discrete probability measures on finite execution
fragments and let {pi}i be a countable family of probabilities such that

∑
i pi = 1. Let ρ be a finite

sequence of tasks. Then, apply(
∑

i piµi, ρ) =
∑

i pi apply(µi, ρ).
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Proof. We proceed by induction on the length of ρ. If ρ = λ, then the result is trivial since
apply(·, λ) is defined to be the identity function, which distributes over convex combinations of prob-
ability measures. For the inductive step, let ρ be ρ′T . By Definition 3.3, apply(

∑
i piµi, ρ

′T ) =
apply(apply(

∑
i piµi, ρ

′), T ). By induction, apply(
∑

i piµi, ρ
′) =

∑
i pi apply(µi, ρ

′). Thus, we obtain
apply(

∑
i piµi, ρ

′T ) = apply(
∑

i pi apply(µi, ρ
′), T ). By Lemma 3.5, for each i, apply(µi, ρ

′) is a discrete
probability measure over finite execution fragments. By Lemma 3.26, apply(

∑
i pi apply(µi, ρ

′), T ) =∑
i pi apply(apply(µi, ρ

′), T ), and by Definition 3.3, for each i, apply(apply(µi, ρ
′), T ) = apply(µi, ρ

′T ).
Thus, apply(

∑
i piµi, ρ

′T ) =
∑

i pi apply(µi, ρ
′T ) as needed. 2

Lemma 3.28 Let T1 and T2 be two comparable closed task-PIOAs, let R be a simulation relation from
T1 to T2, and let corrtasks be a mapping that satisfies the conditions required for a simulation relation.
Let ρ1 and ρ2 be finite task schedulers of T1 and T2 respectively, such that ρ2 = full(corrtasks)(ρ1).
Let ε1 = apply(δ(q̄1), ρ1) and ε2 = apply(δ(q̄2), ρ2) be the respective discrete distributions on finite exe-
cutions of T1 and T2 generated by ρ1 and ρ2. Suppose that ε1 E(R) ε2.

Let T be a task of T1. Let ε′1 = apply(δ(q̄1), ρ1T ) and let ε′2 = apply(δ(q̄2), ρ2 corrtasks(ρ1, T )).
Then ε′1 E(R) ε′2.

Proof. Let η1, η2 and w be the measures and weighting function that witness ε1 E(R) ε2. Observe
that ε′1 = apply(ε1, T ) and ε′2 = apply(ε2, corrtasks(ρ1, T )).

We apply Lemma 2.4: Define the function f on discrete distributions on finite execution fragments
of T1 by f(ε) = apply(ε, T ), and the function g on discrete distributions on finite execution fragments of
T2 by g(ε) = apply(ε, corrtasks(ρ1, T )). We show that the hypothesis of Lemma 2.4 is satisfied, which
implies that, by Lemma 2.4, ε′1 E(R) ε′2, as needed.

Distributivity of f and g follows directly by Proposition 3.27. Let µ1, µ2 be two measures such that
w(µ1, µ2) > 0. We must show that f(µ1) E(R) g(µ2). Since w is a weighting function for ε1 E(R) ε2,
µ1 R µ2. Observe that supp(µ1) ⊆ supp(ε1) and supp(µ2) ⊆ supp(ε2); thus, µ1 is consistent with ρ1 and
µ2 is consistent with ρ2. By the step condition for R, apply(µ1, T ) E(R) apply(µ2, corrtasks(ρ1, T )).
Observe that apply(µ1, T ) = f(µ1) and that apply(µ2, corrtasks(ρ1, T )) = g(µ2). Thus, f(µ1) E(R)
g(µ2), as needed. 2

The main theorem we would like to prove is the following:

Theorem 3.29 Let T1 and T2 be two comparable closed action-deterministic task-PIOAs. If there exists
a simulation relation from T1 to T2, then tdists(T1) ⊆ tdists(T2).

Proof. Let R be the assumed simulation relation from T1 to T2. Let ε1 be the probabilistic execution
of T1 generated by q̄1 and a (finite or infinite) task schedule, T1, T2, · · · . For each i > 0, define ρi to be
corrtasks(T1 · · ·Ti−1, Ti). Let ε2 be the probabilistic execution generated by q̄2 and the concatenation
ρ1ρ2 · · · . We claim that tdist(ε1) = tdist(ε2), which suffices.

For each j ≥ 0, let ε1,j = apply(q̄1, T1 · · ·Tj), and ε2,j = apply(q̄2, ρ1 · · · ρj). By Lemma 3.15, for
each j ≥ 0, ε1,j ≤ ε1,j+1 and ε2,j ≤ ε2,j+1, and furthermore, limj→∞ ε1,j = ε1 and limj→∞ ε2,j = ε2.
Also, note that for every j ≥ 0, apply(ε1,j , Tj+1) = ε1,j+1 and apply(ε2,j , ρj+1) = ε2,j+1.

Observe that ε1,0 = δ(q̄1) and ε2,0 = δ(q̄2). By the start condition for a simulation relation and a
trivial expansion, we see that ε1,0 E(R) ε2,0. Then by induction, using Lemma 3.28 for the inductive
step, for each j ≥ 0, ε1,j E(R) ε2,j . Then, by Lemma 3.25, for each j ≥ 0, tdist(ε1,j) = tdist(ε2,j). By
Lemma 2.14, tdist(ε1) = limj→∞ tdist(ε1,j), and tdist(ε2) = limj→∞ tdist(ε2,j). Since for each j ≥ 0,
tdist(ε1,j) = tdist(ε2,j), we conclude tdist(ε1) = tdist(ε2), as needed. 2

In order to use our implementation results in a setting involving polynomial time bounds, we need a
slight variant of Theorem 3.29. This variant assumes a constant bound on the lengths of the corrtasks
sequences, and guarantees a bound on the ratio of the sizes of the high-level and low-level task schedulers.
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Theorem 3.30 Let T1 and T2 be two closed task-PIOAs, and c ∈ N. Suppose there exists a simulation
relation from T1 to T2 using corrtasks, for which |corrtasks(ρ, T )| ≤ c for every ρ and T .
If τ is a trace distribution of T1 that is generated by a task scheduler ρ1, then τ is also generated by
some task scheduler ρ2 for T2, with |ρ2| ≤ c|ρ1|.

Proof. By examination of the proof of the proof of Theorem 3.29. 2

The lemma below captures a special case of the simulation relation definition we have given above.
Any relation that satisfies the hypotheses of this lemma is a simulation relation. We use this special
case in proving the correctness of the OT protocol.

Lemma 3.31 Let T1 = (P1, R1) and T2 = (P2, R2) be two comparable closed action-deterministic task-
PIOAs. Let R be a relation from discrete distributions over finite execution fragments of P1 to discrete
distributions over finite executions fragments of P2, satisfying: If ε1 R ε2 then tdist(ε1) = tdist(ε2).
Let c : (R1

∗ ×R1)→ R2
∗. Suppose further that the following conditions hold:

1. Start condition: δ(q̄1) R δ(q̄2).

2. Step condition: If ε1 R ε2, ρ1 ∈ R1
∗, ε1 is consistent with ρ1, ε2 is consistent with full(c)(ρ1),

and T ∈ R1, then there exist

• a probability measure p on a countable index set I,

• probability measures ε′1j, j ∈ I, on finite execution fragments of P1, and

• probability measures ε′2j, j ∈ I, on finite execution fragments of P2,

such that:

• for each j ∈ I, ε′1j R ε′2j,

•
∑

j∈I p(j)(ε′1j) = apply(ε1, T ), and

•
∑

j∈I p(j)(ε′2j) = apply(ε2, c(ρ1, T )).

Then R is a simulation relation from T1 to T2 using c.

Proof. The proof is straightforward, using Lemma 2.3. 2

Now we give a corollary of the main soundness result, for not-necessarily-closed task-PIOAs.

Corollary 3.32 Let T1 and T2 be two comparable action-deterministic task-PIOAs. Suppose that, for
every environment E for both T1 and T2, there exists a simulation relation R from T1‖E to T2‖E.
Then T1 ≤0 T2.

4 Time-Bounded Task-PIOAs

In this section, we impose time bounds on task-PIOAs. We will use this in the next section to define
polynomial-time-bounded task-PIOAs.

4.1 Time-Bounded Task-PIOAs

We assume a standard bit-string representation scheme for actions and tasks, which is the same for all
task-PIOAs that have these actions and tasks. We write 〈a〉 for the representation of action a, and 〈T 〉
for the representation of task T .

Definition 4.1 Task-PIOA T is said to be b-time-bounded, where b ∈ R≥0, provided that:
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1. Automaton parts: Every state q, transition tr, and task T has a bit-string representation, which
we denote by 〈q〉, 〈tr〉, and 〈T 〉, respectively. The length of the bit-string representation of every
action, state, transition and task of T is at most b.

2. Decoding: There is a deterministic Turing machine that, given the representation of a candidate
state q, decides whether q is a state of T , and always runs in time at most b. Also, there is a
deterministic Turing machine that, given the representation of a candidate state q, decides whether
q is the unique start state of T . Similarly for a candidate input action, output action, internal
action, transition, output task or internal task. Also, there is a deterministic Turing machine
that, given the representation of two candidate actions a1 and a2, decides whether (a1, a2) ∈ RT ,
and always runs in time at most b. Also, there is a deterministic Turing machine that, given the
representation of an action a of T and a task T , decides whether a ∈ T ; again, this machine runs
in time b.

3. Determining the next action: There is a deterministic Turing machine Mact that, given the
representation of a state q of T and the representation of an output or internal task T of T ,
produces the representation of the unique action a in task T that is enabled in q if one exists, and
otherwise produces a special “no-action” indicator. Moreover, Mact always runs in time at most
b.

4. Determining the next state: There is a probabilistic Turing machine Mstate that, given the
representation of a state q of T , and the representation of an action a of T that is enabled in q,
produces the representation of the next state resulting from the unique transition of T of the form
(q, a, µ). Moreover, Mstate always runs in time at most b.

Moreover, we require that every Turing machine mentioned in this definition can be described using
a bit string of length at most b, according to some standard encoding of Turing machines.

In the rest of this paper, we will not explicitly distinguish 〈x〉 from x.

4.2 Composition

We have already defined composition for task-PIOAs. Now we show that the composition of two time-
bounded task-PIOAs is also time-bounded, with a bound that is simply related to the bounds for the
two components.

Lemma 4.2 There exists a constant c such that the following holds. Suppose T1 is a b1-time-bounded
task-PIOA and T2 is a b2-time-bounded task-PIOA, where b1, b2 ≥ 1. Then T1‖T2 is a c(b1+b2)-bounded
task-PIOA.

Proof. We describe how the different bounds of Def. 4.1 combine when we compose T1 and T2.

1. Automaton parts: Every action or task of T1‖T2 has a standard representation, which is the
same as its representation in T1 or T2. The length of this representation is, therefore, at most
max(b1, b2).

Every state of T1‖T2 can be represented with a 2(b1 + b2) + 2 ≤ 3(b1 + b2)-bit string, by following
each bit of the bit-string representations of the states of T1 and T2 with a zero, and then concate-
nating the results, separating them with the string 11. Likewise, every transition of T1‖T2 can be
represented as a 3(b1 + b2)-bit string, by combining the representations of transitions of one or
both of the component automata.

2. Decoding: It is possible to decide whether a candidate state q = (q1, q2) is a state of T1‖T2 by
checking if q1 is a state of T1 and q2 is a state of T2. Similar verifications can be carried out for
candidate start states.
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It is possible to decide if a candidate input action is an input action of T1‖T2 by checking if it
is an input action of T1 or T2 but not an output action of T1 or T2. It is possible to decide if a
candidate internal (resp. output) action is an internal (resp. output) action of T1‖T2 by checking
if it is an internal (resp. output) action of T1 or T2. A similar verification can be carried out for
internal and output tasks.

Given two candidate actions a1 and a2 of T1‖T2, it is possible to decide whether (a1, a2) ∈ RT1‖T2

by checking if (a1, a2) ∈ RT1 or (a1, a2) ∈ RT2 . Also, given an action a of T1‖T2 and a task T of
T1‖T2, it is possible to decide whether a ∈ T by determining a component automaton Ti that has
T as a task and using the procedure assumed for Ti to check whether a ∈ T .

All these verifications can be done in time O(b1 + b2).

3. Determining the next action: Assume Mact1 and Mact2 are the deterministic Turing machines
described in Part 3 of Def. 4.1 for T1 and T2 respectively. We define Mact for T1‖T2 as the
deterministic Turing machine that, given state q = (q1, q2) of T1‖T2 where q1 = qdT1 and q2 = qdT2
and task T , outputs:

• The action (or “no-action” indicator) that is output by Mact1(q1, T ), if T is an output or
internal task of T1.
• The action (or “no-action” indicator) that is output by Mact2(q2, T ) if T is an output or

internal task of T2.

Mact always operates within time O(b1 + b2): this time is sufficient to determine whether T is an
output or internal task of T1 or T2, to extract the needed part of q to supply to Mact1 or Mact2,
and to run Mact1 or Mact2.

4. Determining the next state: Assume Mstate1 and Mstate2 are the probabilistic Turing machines
described in Part 4 of Def. 4.1 for T1 and T2 respectively. We define Mstate for T1‖T2 as the
probabilistic Turing machine that, given state q = (q1, q2) of T1‖T2 where q1 = qdT1 and q2 = qdT2
and action a, outputs the next state of T1‖T2 as q′ = (q′1, q

′
2), where q′1 is the next state of T1 and

q′2 is the next state of T2. The state q′ is computed as follows:

• If a is an action of T1 then q′1 is the output of Mstate1(q1, a), while q′1 = q1 otherwise.

• If a is an action of T2 then q′2 is the output of Mstate2(q2, a), while q′2 = q2 otherwise.

Mstate always operates within time O(b1 + b2): this time is sufficient to determine whether a is
an action of T1 and/or T2, to extract the needed parts of q to supply to Mact1 and/or Mact2, and
to run Mstate1 and/or Mstate2.

Using standard Turing machine encodings, each of the needed Turing machines can be reprsented using
O(b1 + b2) bits. 2

For the rest of the paper, we fix some constant ccomp satisfying the conditions of Lemma 4.2.

4.3 Hiding

Lemma 4.3 There exists a constant c such that the following holds. Suppose T is a b-time-bounded
task-PIOA, where b ∈ R≥0, b ≥ 1. Let U be a subset of the set of output tasks of T , where |U| ≤ c′.
Then hide(T ,U) is a c(c′ + 1)b-time-bounded task-PIOA.

Proof. All properties for hide(T ,U) are straightforward to check, except for the following.

1. Output actions: To check whether a given action a is an output action of hide(T ,U), we use
the fact that a is an output action of hide(T ,U) if and only if a is an output of T and is not in
any task in U . So, to determine whether a is an output of hide(T ,U), we can use the procedure
for checking whether a is an output of T , followed by checking whether a is in each task in U .
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2. Internal actions: To check whether a given action a is an internal action of hide(T ,U), we use
the fact that a is an internal action of hide(T ,U) if and only if a is an internal action of T or a
is in some task in U . So, to determine whether a is an internal action of hide(T ,U), we can use
the procedure for checking whether a is an internal action of T , followed by checking whether a
is in each task in U .

3. Output tasks: To check whether a given task T is an output task of hide(T ,U), we use the fact
that T is an output task of hide(T ,U) if and only if T is an output task of T and T /∈ U . So,
to determine whether T is an output task of hide(T ,U), we can use the procedure for checking
whether T is an output task of T , followed by comparing T with each task in U . Each of these
comparisons takes time proportional to b, which is a bound on the length of the tasks of T .

4. Internal tasks: To check whether a given task T is an internal task of hide(T ,U), we use the
fact that T is an internal task of hide(T ,U) if and only if T is an internal task of T or T ∈ U . So,
to determine whether T is an internal task of hide(T ,U), we can use the procedure for checking
whether T is an internal task of T , followed by comparing T with each task in U . Again, each of
these comparisons takes time proportional to b which is a bound on the length of the tasks of T .

In all cases, the total time is proportional to (c′ + 1)b. Using standard Turing machine encodings, each
of the needed Turing machines can be represented using O(b1 + b2) bits. 2

For the rest of this paper, we fix some constant chide satisfying the conditions of Lemma 4.3.

4.4 Time-Bounded Task Scheduler

Definition 4.4 Let ρ be a task scheduler for closed task-PIOA T , and let b ∈ N. Then we say that ρ
is b-time-bounded if |ρ| ≤ b, that is, if the number of tasks in the task scheduler ρ is at most b.

4.5 Implementation

In Section 3.7, we defined an implementation relation ≤0 for task-PIOAs. Informally speaking, for
task-PIOAs T1 and T2, T1 ≤0 T2 means that T1 “looks the same” as T2, to any environment E . Here,
“looking the same” means that any trace distribution of T1‖E is also a trace distribution of T2‖E .

Now we define another implementation relation, ≤ε,b,b1,b2 , for task-PIOAs that allows some dis-
crepancies in the trace distributions and also takes time bounds into account. Informally speaking,
T1 ≤ε,b,b1,b2 T2 means that T1 “looks almost the same” as task-PIOA T2 to any b-time-bounded envi-
ronment E . The subscripts b1 and b2 in the relation ≤ε,b,b1,b2 represent time bounds on task schedulers.
Namely, in the definition of ≤ε,b,b1,b2 , we assume that scheduling in T1‖E is controlled by a b1-time-
bounded task scheduler, and require that scheduling in T2‖E be controlled by a b2-bounded task sched-
uler. The fact that these task-PIOAs look “almost the same” is observed through the special accept
output of E :

Definition 4.5 If T is a closed task-PIOA and ρ is a task scheduler for T , then we define

Paccept(T , ρ) = Pr[β ← tdist(T , ρ) : β contains accept],

that is, the probability that a trace chosen randomly from the trace distribution generated by ρ contains
the accept output action.

Definition 4.6 Suppose T1 and T2 are comparable task-PIOAs, ε, b ∈ R≥0, and b1, b2 ∈ N. Then we
say that T1 ≤ε,b,b1,b2 T2 provided that, for every b-time-bounded environment E for both T1 and T2, and
for every b1-time-bounded task scheduler ρ1 for T1‖E, there is a b2-time-bounded task scheduler ρ2 for
T2‖E such that

|Paccept(T1‖E , ρ1)− Paccept(T2‖E , ρ2)| ≤ ε.
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A useful property of the ≤ε,b,b1,b2 relation is that it is transitive:

Lemma 4.7 Suppose T1, T2 and T3 are three comparable task-PIOAs such that T1 ≤ε12,b,b1,b2 T2 and
T2 ≤ε23,b,b2,b3 T3, where ε, b ∈ R≥0 and b1, b2, b3 ∈ N.
Then T1 ≤ε12+ε23,b,b1,b3 T3.

Proof. Fix T1, T2, T3 and all the constants as in the hypotheses. Consider any b-time-bounded
environment E for T1 and T3. We must show that, for every b1-time-bounded task scheduler ρ1 for T1,
there is a b3-time-bounded task scheduler ρ3 for T3 such that

|Paccept(T1‖E , ρ1)− Paccept(T3‖E , ρ3)| ≤ ε12 + ε23.

Fix ρ1 to be any b1-time-bounded task scheduler for T1. We consider two cases.
First, suppose that E is also an environment for T2. Then, since T1 ≤ε12,b,b1,b2 T2, we know that

there is a b2-time-bounded task scheduler ρ2 for T2‖E such that

|Paccept(T1‖E , ρ1)− Paccept(T2‖E , ρ2)| ≤ ε12.

Then since T2 ≤ε23,b,b2,b3 T3, we may conclude that there is a b3-time-bounded task scheduler ρ3 for
T3‖E such that

|Paccept(T2‖E , ρ2)− Paccept(T3‖E , ρ3)| ≤ ε23.

Combining these two properties, we obtain that:

|Paccept(T1‖E , ρ1)− Paccept(T3‖E , ρ3)|
≤ |Paccept(T1‖E , ρ1)− Paccept(T2‖E , ρ2)]|

+|Paccept(T2‖E , ρ2)− Paccept(T3‖E , ρ3)]|
≤ ε12 + ε23,

as needed.
Second, consider the case where E is not an environment for T2. This may be for two reasons: first,

because E has internal actions that are actions of T2; second, because E has output actions that are
internal or output actions of T2. In both cases, by an appropriate renaming of the internal and output
actions of E , we can transform this environment into an environment E ′ for T1, T2 and T3 such that, for
every schedulers ρ1 for T1 and ρ3 for T3, we have:

Paccept(T1‖E , ρ1) = Paccept(T1‖E ′, ρ1)

and
Paccept(T3‖E , ρ3) = Paccept(T3‖E ′, ρ3).

Now, we apply case 1 to E ′, obtaining a b3-time-bounded task scheduler ρ3 for T3 such that

|Paccept(T1‖E ′, ρ1)− Paccept(T3‖E ′, ρ3)| ≤ ε12 + ε23.

Therefore,

|Paccept(T1‖E , ρ1)− Paccept(T3‖E , ρ3)|
= |Paccept(T1‖E ′, ρ1)− Paccept(T3‖E ′, ρ3)|
≤ ε12 + ε23,

as needed. 2

Another useful property of the ≤ε,b,b1,b2 relation is that, under certain conditions, it is preserved
under composition:
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Lemma 4.8 Suppose ε, b, b3 ∈ R≥0, and b1, b2 ∈ N. Suppose that T1, T2 are comparable task-PIOAs
such that T1 ≤ε,ccomp(b+b3),b1,b2 T2. Suppose that T3 is a b3-time-bounded task-PIOA that is compatible
with both T1 and T2.
Then T1‖T3 ≤ε,b,b1,b2 T2‖T3.

Proof. Fix T1, T2 and T3 and all the constants as in the hypotheses. Consider any b-time-bounded
environment E for T1‖T3 and T2‖T3. We must show that, for every b1-time-bounded task scheduler ρ1

for T1‖T3, there is a b2-time-bounded task scheduler ρ2 for T2‖T3 such that

|Paccept(T1‖T3‖E , ρ1)− Paccept(T2‖T3‖E , ρ2)| ≤ ε.

To show this, fix ρ1 to be any b1-time-bounded task scheduler for T1‖T3. The composition T3‖E is
an environment for T1 and T2. Moreover, Lemma 4.2 implies that T3‖E is ccomp(b + b3)-time-bounded.

Since T1 ≤ε,ccomp(b+b3),b1,b2 T2, T3‖E is a ccomp(b + b3)-time-bounded environment for T1 and T2,
and ρ1 is a b1-time-bounded task scheduler for T1‖E , we know that there is a b2-time-bounded task
scheduler ρ2 for T2‖E such that

|Paccept(T1‖T3‖E , ρ1)− Paccept(T2‖T3‖E , ρ2)| ≤ ε.

This is as needed. 2

One last interesting property of our ≤ε,b,b1,b2 relation is that it is preserved when hiding output
actions of the related task-PIOAs:

Lemma 4.9 Suppose ε, b ∈ R≥0, and b1, b2 ∈ N. Suppose that T1, T2 are comparable task-PIOAs such
that T1 ≤ε,b,b1,b2 T2. Suppose also that U is a set of output tasks of both T1 and T2.
Then hide(T1,U) ≤ε,b,b1,b2 hide(T2,U).

Proof. This follows from the fact that every b-bounded environment for hide(T1,U) and hide(T2,U)
is also a b-bounded environment for T1 and T2. 2

4.6 Simulation Relations

The simulation relation we defined in Section 3.8 can be applied to time-bounded task-PIOAs. We
obtain the following additional soundness theorem:

Theorem 4.10 Let T1 and T2 be two comparable task-PIOAs, b ∈ R≥0, and c, b1 ∈ N. Suppose that,
for every b-bounded environment E for T1 and T2, there exists a simulation relation from T1‖E to T2‖E
using corrtasks, and |corrtasks(ρ, T )| ≤ c for every ρ and T .
Then T1 ≤0,b,b1,cb1 T2.

Proof. By Theorem 3.30 and the definition of our new implementation relationship. 2

4.7 Task-PIOA Families

Here we define families of task-PIOAs, and define what it means for a family of task-PIOAs to be
time-bounded by a function of the index of the family.

4.7.1 Basic Definitions

A task-PIOA family, T , is an indexed set, {Tk}k∈N, of task-PIOAs. A task-PIOA family T = {Tk}k∈N

is said to be closed provided that, for every k, Tk is closed.
Two task-PIOA families T 1 = {(T1)k}k∈N and T 2 = {(T2)k}k∈N are said to be comparable provided

that, for every k, (T1)k and (T2)k are comparable.
Two task-PIOA families T 1 = {(T1)k}k∈N and T 2 = {(T2)k}k∈N are said to be compatible pro-

vided that, for every k, (T1)k and (T2)k are compatible. Two compatible task-PIOA families T 1 =
{(T1)k}k∈N and T 2 = {(T2)k}k∈N can be composed to yield T = {(T )k}k∈N = T 1‖T 2 by defining
(T )k = (T1)k‖(T2)k for every k.
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Definition 4.11 A task-set family for a task-PIOA family T = {Tk}k∈N is an indexed set, U =
{Uk}k∈N, where each Uk is a set of tasks of Tk. We say that U is an output-task-set family if each Uk

is a set of output tasks of Tk.
If T is a task-PIOA family and U is an output-task-set family for T , then we define hide(T ,U) to

be the family (hide(Tk,Uk))k∈N.

A task-scheduler family ρ for a closed task-PIOA family T = {Tk}k∈N is an indexed set, {ρk}k∈N of
task schedulers, where ρk is a task scheduler for Tk.

4.7.2 Time-Bounded Task-PIOA Families

Definition 4.12 The task-PIOA family T = {Tk}k∈N is said to be b-time-bounded (or non-uniformly
b-time bounded), where b : N→ R≥0, provided that Tk is b(k)-time bounded for every k.

This definition allows different Turing machines to be used for each k. In some situations, we will
add a uniformity condition requiring the same Turing machines to be used for all task-PIOAs of the
family; these machines receive k as an auxiliary input.

Definition 4.13 The task-PIOA family T = {Tk}k∈N is said to be uniformly b-time-bounded, where
b : N→ R≥0, provided that:

1. Tk is b(k)-bounded for every k.

2. There is a deterministic Turing machine that, given k and a candidate state q, decides whether
q is a state of Tk, and always runs in time at most b(k). Similarly for a candidate start state,
input action, output action, internal action, transition, output task or internal task. Also, there
is a deterministic Turing machine that, given k and two candidate actions a1 and a2, decides
whether (a1, a2) ∈ RTk

, and always runs in time at most b(k). Also, there is a deterministic
Turing machine that, given k, an action a of Tk and a task T , decides whether a ∈ T ; again this
machine runs in time at most b(k).

3. There is a deterministic Turing machine Mact that, given k, state q of Tk and an output or
internal task T of Tk, produces the unique action a in task T that is enabled in q if one exists,
and otherwise produces a special “no-action” indicator. Moreover, Mact always runs in time at
most b(k).

4. There is a probabilistic Turing machine Mstate that, given k, state q of Tk, and the representation
of an action a of Tk that is enabled in q, produces the next state resulting from the unique transition
of Tk of the form (q, a, µ). Moreover, Mstate always runs in time at most b(k).

Lemma 4.14 Suppose T 1 and T 2 are two compatible task-PIOA families, T 1 is b1-time-bounded, and
T 2 is b2-time-bounded, where b1, b2 : N→ R≥0. Then T 1‖T 2 is a ccomp(b1+b2)-time-bounded task-PIOA
family.

Proof. By Lemma 4.2 and the definition of a time-bounded task-PIOA family. 2

Lemma 4.15 Suppose T is a b-time-bounded task-PIOA family, where b : N → R≥0. Suppose that
U = {Uk}k∈N is a task-set family for T , where each Uk is a set of output tasks for Tk with |Uk| ≤ c.
Then hide(T ,U) is a chide(c + 1)b-time-bounded task-PIOA family.

Proof. By Lemma 4.3. 2

Definition 4.16 Let ρ = {ρk}k∈N be a task-scheduler family for a closed task-PIOA family T =
{Tk}k∈N. Then ρ is said to be b-time-bounded, where b : N → R≥0 provided that ρk is b(k)-time
bounded for every k.
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Now we extend the time-bounded implementation notion to task-PIOA families:

Definition 4.17 Suppose T 1 = {(T1)k}k∈N and T 2 = {(T2)k}k∈N are comparable task-PIOA families
and ε, b, b1 and b2 are functions, where ε, b : N → R≥0, and b1, b2 : N → N. Then we say that
T 1 ≤ε,b,b1,b2 T 2 provided that (T1)k ≤ε(k),b(k),b1(k),b2(k) (T2)k for every k.

Our previous transitivity result for individual automata carries over to families:

Lemma 4.18 Suppose T 1, T 2 and T 3 are three comparable task-PIOA families such that T 1 ≤ε12,b,b1,b2

T 2 and T 2 ≤ε23,b,b2,b3 T 3, where ε, b : N→ R≥0 and b1, b2 : N→ N.
Then T 1 ≤ε12+ε23,b,b1,b3 T 3.

Proof. Suppose T 1 = {(T1)k}k∈N, T 2 = {(T2)k}k∈N and T 3 = {(T3)k}k∈N are three compara-
ble task-PIOA families satisfying the hypotheses. Then Definition 4.17 implies that, for every k,
(T1)k ≤ε12(k),b(k),b1(k),b2(k) (T2)k and (T2)k ≤ε23(k),b(k),b2(k),b3(k) (T3)k . Lemma 4.7 then implies that,
for every k, (T1)k ≤ε12(k)+ε23(k),b(k),b1(k),b3(k) (T3)k. Applying Definition 4.17 once again, we obtain that
T 1 ≤ε12+ε23,b,b1,b3 T 3, as needed. 2

Our previous composition result for individual automata also carries over to families:

Lemma 4.19 Suppose ε, b, b3 : N → R≥0, and b1, b2 : N → N. Suppose T 1 and T 2 are comparable
families of task-PIOAs such that T 1 ≤ε,ccomp(b+b3),b1,b2 T 2. Suppose that T 3 is a b3-time-bounded task-
PIOA family that is compatible with both T 1 and T 2.
Then T 1‖T 3 ≤ε,b,b1,b2 T 2‖T 3.

Proof. Fix T 1 = {(T1)k}k∈N, T 2 = {(T2)k}k∈N, T 3 = {(T3)k}k∈N and all the functions as in the
hypotheses. By Definition 4.17, for every k, (T1)k ≤ε(k),ccomp(b+b3)(k),b1(k),b2(k) (T2)k. Lemma 4.8 then
implies that, for every k, (T1)k‖(T3)k ≤ε(k),b(k),b1(k),b2(k) (T2)k‖(T3)k. Applying Definition 4.17 once
again, we obtain that T 1‖T 3 ≤ε,b,b1,b2 T 2‖T 3, as needed. 2

Hiding output actions of task-PIOA families also preserves the new relation:

Lemma 4.20 Suppose ε, b : N → R≥0, and b1, b2 : N → N. Suppose that T 1 and T 2 are comparable
task-PIOA families such that T 1 ≤ε,b,b1,b2 T 2. Suppose that U is an output-task-set family for both T 1

and T 2.
Then hide(T 1,U) ≤ε,b,b1,b2 hide(T 2,U).

Proof. By Lemma 4.9. 2

Finally, we obtain a soundness result for simulation relations:

Theorem 4.21 Let T 1 and T 2 be comparable task-PIOA families, c ∈ N, b : N→ R≥0, and b1 : N→ N.
Suppose that, for every k, and for every b(k)-bounded environment E for (T1)k and (T2)k, there exists
a simulation relation from (T1)k‖E to (T2)k‖E using corrtasks, and |corrtasks(ρ, T )| ≤ c for every ρ
and T .
Then T 1 ≤0,b,b1,cb1 T 2.

Proof. By Theorem 4.10. 2
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4.7.3 Polynomial-Time Task-PIOA Families

Definition 4.22 The task-PIOA family T is said to be polynomial-time-bounded (or non-uniformly
polynomial-time-bounded) provided that there exists a polynomial p such that T is p-time-bounded.
T is said to be uniformly polynomial-time-bounded provided that there exists a polynomial p such

that T is uniformly p-time-bounded.

Lemma 4.23 Suppose T 1 and T 2 are two compatible polynomial-time-bounded task-PIOA families.
Then T 1‖T 2 is a polynomial-time-bounded task-PIOA family.

Proof. Suppose p1 and p2 are polynomials such that T 1 is p1-time-bounded and T 2 is p2-time-
bounded. Then by Lemma 4.2, Then T 1‖T 2 is ccomp(p1 + p2)-time-bounded, which implies that it is
polynomial-time-bounded. 2

Lemma 4.24 Suppose T is a polynomial-time-bounded task-PIOA family. Suppose that U = {Uk}k∈N

is a task-set family for T , where each Uk is a set of output tasks for Tk with |Uk| ≤ c. Then hide(T ,U)
is a polynomial-time-bounded task-PIOA family.

Proof. By Lemma 4.15. 2

Definition 4.25 Let ρ = {ρk}k∈N be a task-scheduler family for a closed task-PIOA family T =
{Tk}k∈N. Then ρ is said to be polynomial time-bounded provided that there exists a polynomial p
such that ρ is p-time-bounded.

In the context of cryptography, we will want to say that, for every polynomial-time-bounded environ-
ment, the probability of distinguishing two systems is “negligible”. The notion of negligible probability
is expressed by saying that the that the probability must be less than a negligible function ε:

Definition 4.26 A function ε is said to be negligible iff, for every constant c ∈ R+, there exists k0

such that, ∀k ≥ k0, ε(k) < 1
kc .

Definition 4.27 Suppose T 1 and T 2 are comparable task-PIOA families. We say that T 1 ≤neg,pt T 2

iff, for every polynomial p and polynomial p1, there is a polynomial p2 and a negligible function ε such
that T 1 ≤ε,p,p1,p2 T 2.

Lemma 4.28 Suppose T 1, T 2 and T 3 are three comparable task-PIOA families such that T 1 ≤neg,pt T 2

and T 2 ≤neg,pt T 3.
Then T 1 ≤neg,pt T 3.

Proof. Suppose T 1 = {(T1)k}k∈N, T 2 = {(T2)k}k∈N and T 3 = {(T3)k}k∈N are three comparable
task-PIOA families satisfying the hypotheses. To show that T 1 ≤neg,pt T 3, we fix polynomials p and
p1; we must obtain a polynomial p3 and a negligible function ε13 such that T 1 ≤ε13,p,p1,p3 T 3.

Since T 1 ≤neg,pt T 2, we know that there exist polynomial p2 and negligible function ε12 such that
T 1 ≤ε12,p,p1,p2 T 3. Then since T 2 ≤neg,pt T 3, we may conclude that there exist polynomial p3 and
negligible function ε23 such that T 1 ≤ε23,p,p2,p3 T 3. Let ε13 = ε12 + ε23. Then Lemma 4.18 implies that
T 1 ≤ε13,p,p1,p3 T 3, as needed. 2

The ≤neg,pt relation is also preserved under composition with polynomial-time bounded task-PIOA
families.

Lemma 4.29 Suppose T 1, T 2 are comparable families of task-PIOAs such that T 1 ≤neg,pt T 2, and
suppose T 3 is a polynomial time-bounded task-PIOA family, compatible with both T 1 and T 2.
Then T 1‖T 3 ≤neg,pt T 2‖T 3.

35



Proof. Suppose T 1 = {(T1)k}k∈N, T 2 = {(T2)k}k∈N, and T 3 = {(T3)k}k∈N are as in the hypothe-
ses. Fix polynomial q such that T 3 is q-time-bounded. To show that T 1‖T 3 ≤neg,pt T 2‖T 3, we
fix polynomials p and p1; we must obtain a polynomial p2 and a negligible function ε such that
T 1‖T 3 ≤ε,p,p1,p2 T 2‖T 3.

Define p′ to be the polynomial ccomp(p + q). Since T 1 ≤neg,pt T 2, there exist a polynomial p2 and a
negligible function ε such that T 1 ≤ε,p′,p1,p2 T 2. Lemma 4.19 then implies that T 1‖T 3 ≤ε,p,p1,p2 T 2‖T 3,
as needed. 2

Hiding output actions of the task-PIOAs that we compare also preserves the ≤neg,pt relation.

Lemma 4.30 Suppose that T 1 and T 2 are comparable task-PIOA families such that T 1 ≤neg,pt T 2.
Suppose that U is an output-task-set family for both T 1 and T 2.
Then hide(T 1,U) ≤neg,pt hide(T 2,U).

Proof. By Lemma 4.20. 2

And we have another soundness result for simulation relations:

Theorem 4.31 Let T 1 and T 2 be comparable task-PIOA families, c ∈ N.
Suppose that for every polynomial p, for every k, and for every p(k)-bounded environment E for (T1)k

and (T2)k, there exists a simulation relation from (T1)k‖E to (T2)k‖E using corrtasks, for which
|corrtasks(ρ, T )| ≤ c for every ρ and T .
Then T 1 ≤neg,pt T 2.

Proof. By Theorem 4.21. 2

5 Random Source Automata

We now present a first example of task-PIOA. We will sometimes find it convenient to separate out
random choices into separate “random source” components. One type of random source is one that
simply chooses and outputs a single value, obtained from a designated probability distribution. We
define this type of source by a task-PIOA Src(D,µ), parameterized by a probability distribution (D,µ).
When µ is the uniform distribution over D, we write simply Src(D).

The code for task-PIOA Src(D,µ) appears in Figure 1.
We extend this definition to indexed families of data types and distributions, D = {Dk}k∈N and

µ = {µk}k∈N, to yield an indexed family of random source automata, Src(D,µ) = {Src(Dk, µk)}k∈N.
As before, when every µk is the uniform distribution, we write simply Src(D) = {Src(Dk)}k∈N.

6 Hard-Core Predicates

In this section, we define a cryptographic primitive—a hard-core predicate for a trap-door permutation—
that we use in several of our system descriptions. We define this in terms of task-PIOAs, and relate
the new definition to the standard cryptographic definition. Using our new task-PIOA formulation, we
show some consequences of the definition, in particular, we show how a hard-core predicate retains its
properties if it is used twice, and if it is combined with another value using an ⊕ operation.

Throughout this section, we fix D = {Dk}k∈N to be a family of finite domains, and Tdp = {Tdpk}k∈N

to be a family of sets of trap-door permutations such that the domain of f ∈ Tdpk is Dk.

6.1 Standard Definition of a Hard-Core Predicate

Informally, we say that B is a hard-core predicate for a set of trap-door permutations if, given a trap-
door permutation f in the set, an element z of the domain of this permutation, and a bit b, no efficient
algorithm can guess whether b = B(f−1(z)) or is a random bit with a non-negligible advantage.

More precisely, we define a hard-core predicate as follows:
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Src(D, µ):

Signature:
Input:

none
Output:

rand(d), d ∈ D

Internal:
choose− rand

State:
chosenval ∈ D ∪ {⊥}, initially ⊥

Transitions:

choose− rand
Precondition:

chosenval = ⊥
Effect:

chosenval := choose-random(D, µ)

rand(d)
Precondition:

d = chosenval 6= ⊥
Effect:

none

Tasks: {choose− rand}, {rand(∗)}.

Figure 1: Code for Src(D,µ)

Definition 6.1 A hard-core predicate for D and Tdp is a predicate B :
⋃

k∈N Dk → {0, 1}, such that

1. B is polynomial-time computable.

2. For every probabilistic polynomial-time non-uniform predicate G = {Gk}k∈N,1 there is a negligible
function ε such that, for all k,

Pr[ f ← Tdpk;
z ← Dk;
b← B(f−1(z)) :
Gk(f, z, b) = 1 ]

−

Pr[ f ← Tdpk;
z ← Dk;
b← {0, 1} :
Gk(f, z, b) = 1 ]

≤ ε(k).

Note that, when A is a finite set, the notation x← A means that x is selected randomly (according to
the uniform distribution) from A.

This definition is a reformulation of Def. 2.5.1 of [Gol01].

6.2 Redefinition of Hard-Core Predicates in Terms of PIOAs

We now show how this last definition can be expressed in terms of task-PIOAs. To this purpose, we
define two new task-PIOA families. The first one, denoted by SH (for “System providing a Hard-core
bit”), outputs a random trap-door permutation, a random element z of the domain of this permutation,
and the bit B(f−1(z)). The second, denoted by SHR (for “System in which the Hard-core bit is
replaced by a Random bit”), is the same as the previous one excepted that the output bit b is simply
a random bit.

Definition 6.2 The task-PIOA family SH is defined as hiderand(y)yval
(Srctdp‖Srcyval‖H), where

• Srctdp = {(Srctdp)k}k∈N, where each (Srctdp)k is isomorphic to Src(Tdpk),

1This is defined to be a family of predicates that can be evaluated by a non-uniform family (Mk)k of probabilistic
polynomial-time-bounded Turing machines, that is, by a family of Turing machines for which there exist polynomials p
and q such that each Mk executes in time at most p(k) and has a standard representation of length at most q(k). An
equivalent requirement is that the predicates are computable by a family of Boolean circuits where the kth circuit in the
family is of size at most p(k).
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• Srcyval = {(Srcyval)k}k∈N, where each (Srcyval)k is isomorphic to Src(Dk),

• H = {Hk}k∈N, where each Hk receives the permutation f from (Srctdp)k and the element y ∈
Dk from (Srcyval)k, and outputs the two values z = f(y) and B(y). Each Hk is defined as
H(Dk, Tdpk, B), where H(D,Tdp,B) is defined in Fig. 2.

H(D, Tdp, B) :

Signature:
Input:

rand(f)tdp, f ∈ Tdp
rand(y)yval, y ∈ D

Output:
rand(z)zval, z ∈ D
rand(b)bval, b ∈ {0, 1}

Internal:
fix− bval
fix− zval

State:
fval ∈ Tdp ∪ ⊥, initially ⊥
yval ∈ D ∪ ⊥, initially ⊥
zval ∈ D ∪ ⊥, initially ⊥
bval ∈ {0, 1} ∪ ⊥, initially ⊥

Transitions:

rand(f)tdp

Effect:
if fval = ⊥ then fval := f

rand(y)yval

Effect:
if yval = ⊥ then yval := y

fix− zval
Precondition:

fval 6= ⊥, yval 6= ⊥
Effect:

if zval = ⊥ then zval := fval(yval)

fix− bval
Precondition:

yval 6= ⊥
Effect:

if bval = ⊥ then bval := B(yval)

rand(z)zval

Precondition:
z = zval 6= ⊥

Effect:
none

rand(b)bval

Precondition:
b = bval 6= ⊥

Effect:
none

Tasks: {fix− bval}, {fix− zval}, {rand(∗)zval}, {rand(∗)bval}.

Figure 2: Hard-core predicate automaton, H(D,Tdp,B)

Definition 6.3 The task-PIOA family SHR is defined as (Srctdp‖Srczval‖Srcbval), where

• Srctdp = {(Srctdp)k}k∈N, where each (Srctdp)k is isomorphic to Src(Tdpk),

• Srczval = {(Srczval)k}k∈N, where each (Srczval)k is isomorphic to Src(Dk),

• Srcbval = {(Srcbval)k}k∈N, where each (Srcbval)k is isomorphic to Src({0, 1}).

These two systems are represented in Fig. 3. In this figure, the automata labeled with $© represent
the different random source automata. Also, for clarity, the indices of the different actions are removed.

Using these two task-PIOA families, Definition 6.1 of hard-core predicates can be expressed in
terms of task-PIOAs by saying that SH ≤neg,pt SHR, which means (informally) that, for every
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$© H

rand(f)

rand(y)
rand(z)

rand(b)

$©

$©

$©

rand(f)

rand(z)

rand(b)

SH SHR

Figure 3: SH and SHR

polynomial-time-bounded family E of environments for SH and SHR, every polynomial-time-bounded
task-scheduler family for SH‖E , generates a family of trace distributions of SH‖E that can be mimicked
by SHR‖E with an appropriate task-scheduler family.

Definition 6.4 A hard-core predicate for D and Tdp is a polynomial-time-computable predicate B :⋃
k∈N Dk → {0, 1}, such that SH ≤neg,pt SHR.

We show that this definition is equivalent to Definition 6.1 by means of the following two theorems.

Theorem 6.5 If B is a hard-core predicate for D and Tdp according to Definition 6.1, then B is also
a hard-core predicate for D and Tdp according to Definition 6.4.

Proof. Suppose that B is a hard-core predicate for D and Tdp according to Definition 6.1. Defini-
tion 6.1 implies that B is polynomial-time computable, which is required by Definition 6.4.

It remains to show that SH ≤neg,pt SHR, where the same B defined above is used in the definition
of SH. To show this, we fix polynomials p and p1. It suffices to show the existence of a negligible
function ε such that SH ≤ε,p,p1,p1 SHR. This amounts to proving the existence of a negligible function
ε such that, for every k ∈ N, SHk ≤ε(k),p(k),p1(k),p1(k) SHRk. Unwinding this definition further, this
means that it is enough to show the existence of a negligible function ε such that, for every k ∈ N,
for every p(k)-time-bounded environment E for SHk and SHRk, and for every p1(k)-bounded task
scheduler ρ1 for SHk‖E , there exists a p1(k)-bounded task scheduler ρ2 for SHRk‖E , such that

|Paccept(SHk‖E , ρ1)− Paccept(SHRk‖E , ρ2)| ≤ ε(k).

We first define a homomorphism of task schedulers. Specifically, for every k and every environment E
for SHk and SHRk, we define a homomorphism hom from task schedulers of SHk‖E to task schedulers
of SHRk‖E . Namely,

1. Replace each occurrence of the {choose − randyval} and {rand(∗)yval} tasks of (Srcyval)k with
the empty task sequence λ.

2. Replace each occurrence of the {fix − bval} task of Hk with the {choose − randbval} task of
(Srcbval)k.

3. Replace each occurrence of the {fix − zval} task of Hk with the {choose − randzval} task of
(Srczval)k.

4. Keep every other task unchanged.

Note that homomorphism hom is independent of k and E . Also, note that hom is length-nonincreasing:
for every task scheduler ρ1 of SHk‖E , |hom(ρ1)| ≤ |ρ1|.

Thus, it is enough to show the existence of a negligible function ε such that, for every k ∈ N, for every
p(k)-time-bounded environment E for SHk and SHRk, and for every p1(k)-bounded task scheduler ρ1

for SHk‖E ,
|Paccept(SHk‖E , ρ1)− Paccept(SHRk‖E , hom(ρ1))| ≤ ε(k).
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Now, for every k ∈ N, define (Emax)k to be a p(k)-time-bounded environment for SHk and define
(ρ1max)k to be a p1(k)-time-bounded scheduler for SHk‖(Emax)k, with the property that, for every
p(k)-time-bounded environment E for SHk and every p1(k)-time-bounded scheduler ρ1 for SHk‖E ,

|Paccept(SHk‖E , ρ1)−Paccept(SHRk‖E , hom(ρ1))| ≤
|Paccept(SHk‖(Emax)k, (ρ1max)k)− Paccept(SHRk‖(Emax)k, hom((ρ1max)k))|

To see that such (Emax)k and (ρ1max)k must exist, note that we are considering only E for which all
parts of the description are bounded by p(k), and only ρ1 with length at most p1(k). Since there are
only a finite number of such (E , ρ1) pairs (up to isomorphism), we can select a particular pair that
maximizes the given difference.

This means that it is enough to show the existence of a negligible function ε such that, for every
k ∈ N,

|Paccept(SHk‖(Emax)k, (ρ1max)k)− Paccept(SHRk‖(Emax)k, hom((ρ1max)k))| ≤ ε(k).

To show this, we will apply Definition 6.1. This requires us to define an appropriate probabilistic
polynomial-time non-uniform predicate G = (Gk)k∈N.

We define Gk as follows: Gk has three input arguments: f ∈ Tdpk, z ∈ Dk and b ∈ {0, 1}; we only
care what Gk does if its inputs are in these designated sets. For these inputs, Gk simulates the behavior
of (Emax)k when it is executed with (ρ1max)k, as follows:

1. Gk reads its inputs f , z and b.

2. Gk then reads the tasks in (ρ1max)k, one by one. For each task T that it reads:

• Gk determines (in polynomial time) whether T is one of the following tasks:
– T is a task of (Emax)k,
– T ∈ {{rand(∗)tdp}, {rand(∗)zval}, {rand(∗)bval}}

and goes on to the next task if it is not.
• If T is a task of (Emax)k, then Gk simulates the performance of T , by determining the unique

enabled action (in polynomial time) and the next state (in probabilistic polynomial time).
• If T is a task of the form {rand(∗)tdp} then Gk checks if an action of this task is enabled

(that is, if the {choose − randtdp}-task has already been read in (ρ1max)k) and, if it is the
case, simulates the action rand(f)tdp, where f is Gk’s first input argument. If T is disabled,
then Gk does nothing. Similarly, if T is of the form {rand(∗)zval} and if this task is enabled,
then Gk simulates the action rand(z)zval, where z is Gk’s second input argument. And if T
is of the form {rand(∗)bval} and if this task is enabled, then Gk simulates rand(b)bval, where
b is Gk’s third input argument.

3. After completing the processing of (ρ1max)k, Gk checks if the accept action has been performed.
It outputs 1 in that case, and 0 otherwise.

Now, Definition 6.1 guarantees that there is a negligible function ε such that, for all k,

Pr[ f ← Tdpk;
z ← Dk;
b← B(f−1(z)) :
Gk(f, z, b) = 1 ]

−

Pr[ f ← Tdpk;
z ← Dk;
b← {0, 1} :
Gk(f, z, b) = 1 ]

≤ ε(k).

By the definitions of SH and SHR, and the homomorphism hom, we observe that:

Paccept(SHk‖(Emax)k, (ρ1max)k) =


Pr[ f ← Tdpk;

z ← Dk;
b← B(f−1(z)) :
Gk(f, z, b) = 1 ]
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and

Paccept(SHRk‖(Emax)k, hom((ρ1max)k)) =


Pr[ f ← Tdpk;

z ← Dk;
b← {0, 1} :
Gk(f, z, b) = 1 ]

 .

Therefore, we conclude that, for every k ∈ N,

Paccept(SHk‖(Emax)k, (ρ1max)k)− Paccept(SHRk‖(Emax)k, hom((ρ1max)) ≤ ε(k),

which is what we needed to show. 2

Theorem 6.6 If B is a hard-core predicate for D and Tdp according to Definition 6.4, then B is also
a hard-core predicate for D and Tdp according to Definition 6.1.

Proof. Suppose that B is a hard-core predicate for D and Tdp according to Definition 6.4. Defini-
tion 6.4 implies that B is polynomial-time computable, which is required by Definition 6.1.

It remains to show that, for every probabilistic polynomial-time non-uniform predicate G = {Gk}k∈N,
there is a negligible function ε such that, for every k ∈ N,

Pr[ f ← Tdpk;
z ← Dk;
b← B(f−1(z)) :
Gk(f, z, b) = 1 ]

−

Pr[ f ← Tdpk;
z ← Dk;
b← {0, 1} :
Gk(f, z, b) = 1 ]

≤ ε(k).

For the rest of this proof, we define PH(G, k) and PHR(G, k) as:

PH(G, k) =


Pr[ f ← Tdpk;

z ← Dk;
b← B(f−1(z)) :
Gk(f, z, b) = 1 ]

 and PHR(G, k) =


Pr[ f ← Tdpk;

z ← Dk;
b← {0, 1} :
Gk(f, z, b) = 1 ]


for any non-uniform predicate G = {Gk}k∈N and any k ∈ N.

Now, fix any probabilistic polynomial-time non-uniform predicate G = {Gk}k∈N. Starting from this
predicate, we define a polynomial-time-bounded environment family E(G) = {(E(G))k}k∈N for both SH
and SHR. Each (E(G))k is defined as E(Gk)(Dk, Tdpk, B), where E(G)(D,Tdp,B) is defined in Fig. 4.

We also define a polynomial-time-bounded task-scheduler family ρ1 = {(ρ1)k}k∈N for SH‖E(G): for
every k,

(ρ1)k ={choose− randtdp}{rand(∗)tdp}
{choose− randyval}{rand(∗)yval}
{fix− zval}{rand(∗)zval}
{fix− bval}{rand(∗)bval}
{accept}.

We observe that, from the definition of SHk, (E(G))k and (ρ1)k:

Paccept(SHk‖(E(G))k, (ρ1)k) = PH(G, k).

Definition 6.4 guarantees that there is a polynomial p and a negligible function ε such that, for every
k, there is a p(k)-bounded task-scheduler (ρ2)k such that:

|Paccept(SHk‖(E(G))k, (ρ1)k)− Paccept(SHRk‖(E(G))k, (ρ2)k)| ≤ ε(k).
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E(G)(D, Tdp, B) :

Signature:
Input:

rand(f)tdp, f ∈ Tdp
rand(z)zval, z ∈ D
rand(b)bval, b ∈ {0, 1}

Output:
accept

State:
fval ∈ Tdp ∪ ⊥, initially ⊥
zval ∈ D ∪ ⊥, initially ⊥
bval ∈ {0, 1} ∪ ⊥, initially ⊥

Transitions:

rand(f)tdp

Effect:
if fval = ⊥ then fval := f

rand(z)zval

Effect:
if zval = ⊥ then zval := z

rand(b)bval

Effect:
if bval = ⊥ then bval := b

accept
Precondition:

fval, zval, bval 6= ⊥
G(fval, zval, bval) = 1

Effect:
none

Tasks: {accept}.

Figure 4: Environment evaluating the G predicate, E(G)(D,Tdp,B)

Consider now the probabilistic polynomial-time non-uniform predicate G′ = {G′
k}k∈N where G′

k =
1 − Gk. For this predicate, Def. 6.4 also guarantees that there are a polynomial p′ and a negligible
function ε′ such that, for every k, there is a p′(k)-bounded task-scheduler (ρ′2)k such that:

|Paccept(SHk‖(E(G′))k, (ρ1)k)− Paccept(SHRk‖(E(G′))k, (ρ′2)k)| ≤ ε′(k).

We now define a new negligible function εmax as εmax(k) = max(ε(k), ε′(k)) for every k. Since εmax

is a negligible function, there is an index k0 such that εmax(k) < 1
2 for every k ≥ k0. Let us examine

the possible values of Paccept(SHRk‖(E(G))k, (ρ2)k) for every k ≥ k0.
Fix any k ≥ k0. Suppose first that (ρ2)k is such that:

Paccept(SHRk‖(E(G))k, (ρ2)k) = PHR(G, k),

which is the case when (ρ2)k schedules the choose− randtdp task followed by the rand(∗)tdp task, the
choose − randzval task followed by the rand(∗)zval task, the choose − randbval task followed by the
rand(∗)bval task, and all these tasks followed by the accept task (in the rest of this proof, we will refer
to this as (ρ2)k correctly scheduling accept). For this (ρ2)k, we have that

|PH(G, k)− PHR(G, k)| ≤ ε(k) ≤ εmax(k).

Suppose now that (ρ2)k is such that Paccept(SHRk‖(E(G))k, (ρ2)k) is independent of G, that is,
(ρ2)k does not correctly schedule the accept task. In that case, Paccept(SHRk‖(E(G))k, (ρ2)k) = 0.
Therefore,

Paccept(SHk‖(E(G))k, (ρ1)k) ≤ ε(k) ≤ εmax(k) <
1
2
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and
Paccept(SHk‖(E(G′))k, (ρ1)k) = 1− Paccept(SHk‖(E(G))k, (ρ1)k) >

1
2
,

which in turn imply that Paccept(SHRk‖(E(G′))k, (ρ′2)k) > 0 since ε′(k) < 1
2 . But the probability

Paccept(SHRk‖(E(G′))k, (ρ′2)k) can only be different from 0 if (ρ′2)k correctly schedules accept. So, we
have that:

Paccept(SHRk‖(E(G′))k, (ρ′2)k) = PHR(G′, k)

and

|PH(G, k)− PHR(G, k)| = |(1− PH(G′, k))− (1− PHR(G′, k))|
= |PH(G′, k)− PHR(G′, k)|
≤ ε′(k) ≤ εmax(k).

So, |PH(G, k)−PHR(G, k)| ≤ εmax(k) for every k ≥ k0. Finally, if we define the negligible function
ε′max as:

ε′max(k) =
{

1 if k < k0

εmax(k) otherwise,

the relation |PH(G, k)− PHR(G, k)| ≤ ε′max(k) holds for every k ∈ N, as needed. 2

6.3 Consequences of the New Definition

In this subsection, we provide a first illustration of the way our definition of hard-core predicates can be
exploited in the analysis of more complicate systems. More precisely, we show that a hard-core predicate
can be applied to two values, and a probabilistic polynomial-time environment still cannot distinguish
the results from random values. This fact is needed because, in the Oblivious Transfer protocol we
analyze, the transmitter applies the hard-core predicate to both f−1(zval(0)) and f−1(zval(1)), where
f is the chosen trap-door function.

Now, we show, if B is a hard-core predicate, then no probabilistic polynomial-time environment can
distinguish the distribution (f, z(0), z(1), B(f−1(z(0))), B(f−1(z(1)))) from the distribution (f, z(0), z(1),
b(0), b(1)), where f is a randomly-chosen trap-door permutation, z(0) and z(1) are randomly-chosen
elements of the domain Dk, and b(0) and b(1) are randomly-chosen bits. We do this by defining two
systems that produce the two distributions, and showing that one implements the other. We use our
second definition of hard-core predicate, Definition 6.4.

Definition 6.7 The task-PIOA family SH2 is defined as hide(Srctdp‖Srcyval0‖Srcyval1‖H0‖H1,
{rand(∗)yval0, rand(∗)yval1}), where

• Srctdp = {(Srctdp)k}k∈N, where each (Srctdp)k is isomorphic to Src(Tdpk),

• Srcyval0 = {(Srcyval0)k}k∈N, Srcyval1 = {(Srcyval1)k}k∈N, where each (Srcyval0)k and each
(Srcyval1)k is isomorphic to Src(Dk),

• H0 = {H0k}k∈N and H1 = {H1k}k∈N are two instances of H, where all actions have the cor-
responding index 0 or 1 appended to their name (e.g., rand(z)zval is renamed as rand(z)zval0 in
H0). The only exception is the rand(f)tdp action, which is kept as it is in H: we use the same
trapdoor permutation for both task-PIOA families.

Definition 6.8 The task-PIOA family SHR2 is defined as (Srctdp‖Srczval0‖Srczval1‖Srcbval0‖Srcbval1),
where

• Srctdp = {(Srctdp)k}k∈N, where each (Srctdp)k is isomorphic to Src(Tdpk),

• Srczval0 = {(Srczval0)k}k∈N and Srczval1 = {(Srczval1)k}k∈N, where each (Srczval0)k and each
(Srczval1)k is isomorphic to Src(Dk),
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• Srcbval0 = {(Srcbval0)k}k∈N and Srcbval1 = {(Srcbval1)k}k∈N, where each (Srcbval0)k and each
(Srcbval1)k is isomorphic to Src({0, 1})

Lemma 6.9 If B is a hard-core predicate, then SH2 ≤neg,pt SHR2.

Proof. By Theorem 6.5, we may assume that SH ≤neg,pt SHR. To prove that SH2 ≤neg,pt SHR2,
we introduce a new task-PIOA family Int, which is intermediate between SH2 and SHR2. Int is
defined as hide(Srctdp‖Srcyval0‖H0‖Srczval1‖Srcbval1, {rand(∗)yval0}), where

• Srctdp is exactly as in SH2 and SHR2.

• Srcyval0 and H0 are as in SH2.

• Srczval1 and Srcbval1 are as in SHR2.

Thus, Int generates one of the bits, bval0, using the hard-core predicate B, as in SH2, and generates
the other, bval1, randomly, as in SHR2.

We claim that SH2 ≤neg,pt Int. To see this, note that Definition 6.1 implies that

hide(Srctdp‖Srcyval1‖H1, {rand(∗)yval1}) ≤neg,pt Srctdp‖Srczval1‖Srcbval1.

This is because these two systems are simple renamings of the SH and SHR systems described in
Section 6.2.

Now let I be the task-PIOA family hiderand(y)yval0(Srcyval0‖H0). It is easy to see, from the code
for the two components of I, that I is polynomial-time-bounded. Then Lemma 4.19 implies that

hide(Srctdp‖Srcyval1‖H1, {rand(∗)yval1})‖I ≤neg,pt Srctdp‖Srczval1‖Srcbval1‖I.

Since the left-hand side of this relation is SH2 and the right-hand side is Int, this implies SH2 ≤neg,pt

Int, as needed.
Next, we claim that Int ≤neg,pt SHR2. To see this, note that Definition 6.1 implies that

hide(Srctdp‖Srcyval0‖H0, {rand(∗)yval0}) ≤neg,pt Srctdp‖Srczval0‖Srcbval0.

Now let I be the polynomial-time-bounded task-PIOA family Srczval1‖Srcbval1. Then Lemma 4.19
implies that

hide(Srctdp‖Srcyval0‖H0, {rand(∗)yval0})‖I ≤neg,pt Srctdp‖Srczval0‖Srcbval0‖I.

Since the left-hand side of this relation is Int and the right-hand side is SHR2, this implies Int ≤neg,pt

SHR2, as needed.
Since SH2 ≤neg,pt Int and Int ≤neg,pt SHR2, transitivity of ≤neg,pt (Lemma 4.28) implies that

SH2 ≤neg,pt SHR2. 2

7 Specification for Oblivious Transfer

In this section, we define “ideal systems” for Oblivious Transfer, which are used as specifications for
the correctness and secrecy properties that are supposed to be guaranteed by an Oblivious Transfer
protocol.

We parameterize our ideal systems by a set C ⊆ {Trans,Rec}, which indicates the corrupted end-
points.

The system, represented in Figure 5 consists of two interacting task-PIOAs: the Functionality Funct
and the Simulator Sim, which we describe now.

Notation: The states of each task-PIOA for which we provide explicit code are structured in terms
of a collection of state variables. Given a state q of a task-PIOA and a state variable v, we write q.v
for the value of v in state q.
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Funct Sim

in(x)Trans

in(i)Rec

out(x)Rec

out′(x)Rec

Figure 5: Funct and Sim

7.1 The Oblivious Transfer Functionality

The complete definition of Funct is given in Figure 6. It has two inputs corresponding to the inputs
sent by the environment to Trans and Rec, and one output that transmits the output intended to the
receiver Rec. The definitions are based on Canetti’s definition of Oblivious Transfer in the Universal
Composability framework [Can01].

Funct(C) :

Signature:
Input:

in(x)Trans , x ∈ ({0, 1} → {0, 1})
in(i)Rec , i ∈ {0, 1}

Output:
if Rec 6∈ C then out(x)Rec , x ∈ {0, 1}
if Rec ∈ C then out′(x)Rec , x ∈ {0, 1}

State:
inval(Trans) ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
inval(Rec) ∈ {0, 1,⊥}, initially ⊥

Transitions:

in(x)Trans

Effect:
if inval(Trans) = ⊥ then inval(Trans) := x

in(i)Rec

Effect:
if inval(Rec) = ⊥ then inval(Rec) := i

out(x)Rec or out′(x)Rec

Precondition:
inval(Trans), inval(Rec) 6= ⊥
x = inval(Trans)(inval(Rec))

Effect:
none

Tasks:

If Rec /∈ C then {out(∗)Rec}.
If Rec ∈ C then {out′(∗)Rec}.

Figure 6: The Functionality, Funct(C)

7.2 The Simulator

Simulator Sim(C) is defined as an arbitrary task-PIOA satisfying certain constraints regarding its
signature. This is why the composition of Funct and Sim in fact specifies a class of systems rather than
a single one. Sim(C) receives in inputs at endpoints in C. It also acts as an intermediary for outputs
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at Rec if Rec ∈ C, receiving out′ outputs from Funct(C) and producing out outputs. Sim(C) may
also have other, arbitrary, input and output actions. The constraints on the signature and relations of
Sim(C) is given in Figure 7.

Signature:
Input:

if Trans ∈ C then
in(x)Trans , x ∈ ({0, 1} → {0, 1})

if Rec ∈ C then
in(i)Rec , i ∈ {0, 1}
out′(x)Rec , x ∈ {0, 1}

Arbitrary other input actions

Output:
if Rec ∈ C then

out(x)Rec , x ∈ {0, 1}
Arbitrary other output actions

Internal:
Arbitrary internal actions

Tasks:
If Rec ∈ C then {out(∗)Rec}.
Arbitrary tasks for other actions.

Figure 7: Constraints on Sim(C)

7.3 The Complete System

A complete ideal system with parameter C is obtained by composing the task-PIOA Funct(C) with
some Sim(C), and then, if Rec ∈ C, hiding the {out′(∗)Rec} task.

8 Real Systems

A real system is defined as a parameterized task-PIOA, with the following parameters:

• D, a finite domain.

• Tdp, a set of trap door permutations for domain D.

• C ⊆ {Trans,Rec}, representing the corrupted endpoints.

Based on these, we define the following derived sets:

• Tdpp = {(f, f−1) : f ∈ Tdp}, the set of trap door permutation pairs for domain D. If p =
(f, f−1) ∈ Tdpp, then we refer to the components f and f−1 of p using record notation, as
p.funct and p.inverse, respectively.

• M , the message alphabet, equal to {(1, f) : f ∈ Tdp} ∪ {(2, z) : z ∈ ({0, 1} → D)} ∪ {(3, b) : b ∈
({0, 1} → {0, 1})}.

A real system with parameters (D,Tdp,C) consists of five interacting task-PIOAs: The Transmitter
Trans(D,Tdp), the Receiver Rec(D,Tdp,C), the Adversary Adv(D,Tdp,C), and two random source
automata Src(Tdpp)tdpp and Src({0, 1} → D)yval. Src(Tdpp)tdpp and Src({0, 1} → D)yval are iso-
morphic to Src(Tdpp) and Src({0, 1} → D) defined as in Section 5; the difference is that the literal
subscripts tdpp and yval are added to the names of the automata and to their actions. Throughout
this section, we abbreviate the automaton names by omiting their parameters when no confusion seems
likely.

8.1 The Transmitter

Trans(D,Tdp) receives in inputs from the environment of the real system. It produces send outputs
to and receives receive inputs from Adv . It also receives randtdpp inputs from Srctdpp. Task-PIOA
Trans(D,Tdp) is defined in Figure 8.
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Trans(D, Tdp):

Signature:
Input:

in(x)Trans , x ∈ ({0, 1} → {0, 1})
rand(p)tdpp, p ∈ Tdpp
receive(2, z)Trans , z ∈ ({0, 1} → D)

Output:
send(1, f)Trans , f ∈ Tdp
send(3, b)Trans , b ∈ ({0, 1} → {0, 1})

Internal:
fix− bvalTrans

State:
inval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
tdpp ∈ Tdpp ∪ {⊥}, initially ⊥
zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
bval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥

Transitions:

in(x)Trans

Effect:
if inval = ⊥ then inval := x

rand(p)tdpp

Effect:
if tdpp = ⊥ then tdpp := p

send(1, f)Trans

Precondition:
tdpp 6= ⊥, f = tdpp.funct

Effect:
none

receive(2, z)Trans

Effect:
if zval = ⊥ then zval := z

fix− bvalTrans

Precondition:
tdpp, zval, inval 6= ⊥
bval = ⊥

Effect:
for i ∈ {0, 1} do

bval(i) = B(tdpp.inverse(zval(i)))⊕ inval(i)

send(3, b)Trans

Precondition:
b = bval 6= ⊥

Effect:
none

Tasks: {send(1, ∗)Trans}, {send(3, ∗)Trans}, {fix− bvalTrans}.

Figure 8: Code for Trans(D,Tdp)

Lemma 8.1 In every reachable state of Trans(D,Tdp): If bval 6= ⊥ then tdpp 6= ⊥, zval 6= ⊥,
inval 6= ⊥, and ∀i ∈ {0, 1}, bval(i) = B(tdpp.inverse(zval(i)))⊕ inval(i).

8.2 The Receiver

Rec(D,Tdp,C) receives in inputs from the environment of the real system. Also, if Rec ∈ C, then
Rec(D,Tdp,C) produces out′ outputs to Adv , whereas if Rec /∈ C, then Rec(D,Tdp,C) produces out
outputs for the environment. Rec(D,Tdp,C) provides send outputs to and receives receive inputs from
Adv . It also receives randyval inputs from Srcyval.

Task-PIOA Rec(D,Tdp,C) is defined in Figure 9.

Lemma 8.2 In every reachable state of Rec(D,Tdp,C):

1. If zval = z 6= ⊥ then yval 6= ⊥, inval 6= ⊥, tdp 6= ⊥, z(inval) = tdp(yval(inval)), and z(1 −
inval) = yval(1− inval).

8.3 The Adversary

The Adversary encompasses the communication channel, although its powers to affect the communi-
cation are weak (it can hear messages and decide when to deliver them, but cannot manufacture or
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Rec(D, Tdp, C) :

Signature:
Input:

in(i)Rec , i ∈ {0, 1}
rand(y)yval, y ∈ ({0, 1} → D)
receive(1, f)Rec , f ∈ Tdp
receive(3, b)Rec , b ∈ ({0, 1} → {0, 1})

Output:
send(2, z)Rec , z ∈ ({0, 1} → D)
if Rec /∈ C then out(x)Rec , x ∈ {0, 1}
if Rec ∈ C then out′(x)Rec , x ∈ {0, 1}

Internal:
fix− zvalRec

State:
inval ∈ {0, 1,⊥}, initially ⊥
tdp ∈ Tdp ∪ {⊥}, initially ⊥
yval, zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
outval ∈ {0, 1,⊥}, initially ⊥

Transitions:

in(i)Rec

Effect:
if inval = ⊥ then inval := i

rand(y)yval

Effect:
if yval = ⊥ then yval := y

receive(1, f)Rec

Effect:
if tdp = ⊥ then tdp := f

fix− zvalRec

Precondition:
yval, inval, tdp 6= ⊥
zval = ⊥

Effect:
zval(inval) := tdp(yval(inval))
zval(1− inval) := yval(1− inval)

send(2, z)Rec

Precondition:
z = zval 6= ⊥

Effect:
none

receive(3, b)Rec

Effect:
if yval 6= ⊥ and outval = ⊥ then

outval := b(inval)⊕B(yval(inval))

out(x)Rec or out′(x)Rec

Precondition:
x = outval 6= ⊥

Effect:
none

Tasks:

{send(2, ∗)Rec}, {fix− zvalRec}.
If Rec ∈ C then {out′(∗)Rec}.
If Rec /∈ C then {out(∗)Rec}.

Figure 9: Code for Rec(D,Tdp,C)

corrupt messages).
Adv(D,Tdp,C) has two endpoints corresponding to Trans and Rec. It receives in inputs from

the environment for endpoints in C. It also acts as an intermediary for outputs at endpoints in C,
specifically, if R ∈ C, Adv(D,Tdp,C) receives out′ outputs from Rec and provides out outputs to the
environment at endpoint Rec. Adv(D,Tdp,C) also receives send inputs from and provides receive
outputs to Trans and Rec. It also receives random inputs from the random sources of corrupted
parties: rand(p)tdpp from Srctdpp if Trans ∈ C and rand(y)yval if Rec ∈ C. Finally, Adv(D,Tdp,C)
may communicate with the environment, using other, arbitrary inputs and outputs. We call these “new”
inputs and outputs here. We assume that they are disjoint from all the other actions that appear in any
of our explicitly-defined components. Thus, they will not be shared with any other state components
we define. (Later, when we consider closing the system with an environment automaton, we will allow
these new actions to be shared with the environment.)
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The Adversary again depends on the set C of corrupted parties. Also, for each case, there are
actually a set of possible adversary automata, not just one. This set is captured by the “arbitrary”
designation throughout the descriptions. The Adversary Adv(D,Tdp,C) is defined in Figures 10 and 11.

Adv(D, Tdp, C):

Signature:
Input:

send(1, f)Trans , f ∈ Tdp
send(2, z)Rec , z ∈ ({0, 1} → D)
send(3, b)Trans , b ∈ ({0, 1} → {0, 1})
if T ∈ C then

in(x)Trans , x ∈ ({0, 1} → {0, 1})
rand(p)tdpp, p ∈ Tdpp

if Rec ∈ C then in(i)Rec , i ∈ {0, 1}
out′(x)Rec , x ∈ {0, 1}
rand(y)yval, y ∈ ({0, 1} → D)

Arbitrary other input actions; call these “new” input actions

Output:
receive(1, f)Rec , f ∈ Tdp
receive(2, z)Trans , z ∈ ({0, 1} → D)
receive(3, b)Rec , b ∈ ({0, 1} → {0, 1})
if R ∈ C then

out(x)Rec , x ∈ {0, 1}
Arbitrary other output actions,

call these “new” output actions
Internal:

Arbitrary internal actions;
call these “new” internal actions

State:
messages, a set of pairs in M × {Trans,Rec}, initially ∅
if R ∈ C then outval(Rec) ∈ {0, 1,⊥}, initially ⊥
Arbitrary other variables; call these “new” variables

Transitions:

send(m)Trans

Effect:
messages := messages ∪ {(m,Rec)}

send(m)Rec

Effect:
messages := messages ∪ {(m,Trans)}

receive(m)Trans

Precondition:
(m,Trans) ∈ messages

Effect:
none

receive(m)Rec

Precondition:
(m,Rec) ∈ messages

Effect:
none

out′(x)Rec

Effect:
if outval(Rec) = ⊥ then outval(Rec) := x

out(x)Rec

Precondition:
x = outval(Rec) 6= ⊥

Effect:
none

in(x)Trans , in(i)Rec , rand(p)tdpp, or rand(y)yval

Effect:
Arbitrary changes to new state variables

New input action
Effect:

Arbitrary changes to new state variables

New output or internal action
Precondition:

Arbitrary
Effect:

Arbitrary changes to new state variables

Figure 10: Code for Adv(D,Tdp,C) (Part I)

Tasks: {receive(1, ∗)Rec}, {receive(2, ∗)Trans}, {receive(3, ∗)Rec},
If Rec ∈ C then {out(∗)Rec}.
Arbitrary tasks for new actions.

Figure 11: Code for Adv(D,Tdp,C) (Part II)
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8.4 The complete system

A complete real system with parameters (D,Tdp,C) is the result of composing the task-PIOAs
Trans(D,Tdp), Rec(D,Tdp,C), Src(Tdpp)tdpp and Src({0, 1} → D)yval and some adversary
Adv(D,Tdp,C), and then, hiding all the send, receive and rand actions. If Rec ∈ C we also hide
out′ outputs of Rec.

For instance, Figure 12 shows the interconnections of the parties that make up the real system when
Rec is corrupted. In this figure, we abbreviate all send and receive actions with the s and r letters
respectively. The T and R subscript refer to Trans and Rec. The dashed arrows represent the arbitrary
actions shared by the Adversary and the Environment. The automata labeled with $© represent the
random source automata Src(Tdpp)tdpp and Src({0, 1} → D)yval.

Invariants can be proved for this system.

$© Trans $©Rec

Adv

Env

rand(p)
rand(y)

r(m)T

s(m)T

r(m)R

s(m)R

out′(x)R

out(x)R in(i)Rin(x)T

Figure 12: RS when C = {Rec}

Lemma 8.3 In every reachable state of RS the following hold:

1. Adv .messages contains at most one round 1 message, at most one round 2 message, and at most
one round 3 message.

2. If Adv .messages contains (1, f) then Trans.tdpp.funct = f .

3. If Adv .messages contains (2, z) then Rec.zval = z.

4. If Adv .messages contains (3, b) then Trans(D,Tdp).bval = b.

5. If Rec.tdp = f 6= ⊥ then

(a) Adv .messages contains (1, f).

(b) Trans.tdpp 6= ⊥ and Trans.tdpp.funct = f .

6. If Rec.zval = z 6= ⊥ then Rec.yval 6= ⊥, Rec.inval 6= ⊥, Rec.tdp 6= ⊥, z(Rec.inval) =
Rec.tdp(Rec.yval(Rec.inval)), and z(1− Rec.inval) = Rec.yval(1− Rec.inval).

7. If Trans.zval = z 6= ⊥ then

(a) Adv .messages contains (2, z).

(b) Rec.zval = z.

8. If Trans.bval = b 6= ⊥ then
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(a) Trans.tdpp 6= ⊥, Trans.zval 6= ⊥, Trans.inval 6= ⊥, and i ∈ {0, 1},
b(i) = B(Trans.tdpp.inverse(Trans.zval(i)))⊕ Trans.inval(i).

(b) Rec.inval 6= ⊥ and for i = Rec.inval, b(i) = B(Rec.yval(i))⊕ Trans.inval(i).

9. If Rec.outval = x 6= ⊥ then

(a) x = Trans.bval(Rec.inval)⊕B(Rec.yval(Rec.inval)).

(b) x = Trans.inval(Rec.inval).

10. If Trans.tdpp 6= ⊥ and Trans.zval 6= ⊥, then Rec.yval 6= ⊥, Rec.inval 6= ⊥, and in addition
Trans.tdpp.inverse(Trans.zval(Rec.inval)) = Rec.yval(Rec.inval).

11. If Rec.yval 6= ⊥ then Srcyval.chosenval = Rec.yval.

12. If Trans.tdpp 6= ⊥ then Srctdpp.chosenval = Trans.tdpp.

In addition, invariants can be proved for the four individual cases, for instance:

Lemma 8.4 If C = {Rec} then, in every reachable state of RS (D,Tdp,C), the following holds:

1. If Adv .outval(Rec) = b 6= ⊥ then Rec.outval = b.

9 The Main Theorem

In this section, we state the main theorem of this paper.
The theorem involves task-PIOA families, which are defined by instantiating the real and ideal

systems with families of domains and trap-door permutations.

9.1 Families of Sets

Using the two families of sets D = {Dk}k∈N and Tdp = {Tdpk}k∈N we defined in Section 6, we define
the following derived families of sets:

• Tdpp = {Tdppk}k∈N, a family of sets of trap-door permutations pairs. Each set Tdppk is the set
{(f, f−1) : f ∈ Tdpk}. As before, if p = (f, f−1) then we refer to the two components of p as
p.funct and p.inverse, respectively.

• M = {Mk}k∈N, a family of message alphabets, where Mk = {(1, f) : f ∈ Tdpk} ∪ {(2, z) : z ∈
({0, 1} → Dk)} ∪ {(3, b) : b ∈ ({0, 1} → {0, 1})}.

9.2 Families of Systems

A real-system family RS for domain family D, trap-door permutation set family Tdp, and C ⊆
{Trans,Rec} is a family {RSk}k∈N, where, for each k, RSk is a real system with parameters (Dk, Tdpk, C).
Thus, RSk = Trans(Dk, Tdpk)‖Rec(Dk, Tdpk, C)‖Src(Tdppk)tdpp‖Src({0, 1} → Dk)yval‖Advk, where
Advk is some adversary Adv(Dk, Tdpk, C).

An ideal-system family IS for C ⊆ {Trans,Rec} is a family {ISk}k∈N, where, for each k, ISk is an
ideal system with parameter C. Thus, ISk = Funct(C)k‖Simk, where Simk is some simulator Sim(C).
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9.3 Theorem Statement

Theorem 9.1 For every C = {Rec} the following holds:
Let RS be a real-system family for (D,Tdp,C), in which the family Adv of adversary automata is
polynomial-time-bounded.
Then there exists an ideal-system family IS for C, in which the family Sim is polynomial-time-bounded,
and such that RS ≤neg,pt IS .

Note that in [CCK+05], the above theorem was stated for every C ⊆ {Trans,Rec}, hence covering
all possible values for the set of corrupted parties. We believe that we can prove that theorem using
our generalized notion of task-PIOAs, which is the one defined in this paper and our new notion of
simulation relation. We foresee that minor modifications to the formulation of the ideal system will be
necessary to achieve the “synchronization” between the actions of the ideal system and the real system
in showing the simulation relation.

10 Correctness proof

This section contains the most interesting case: where only the receiver is corrupted. We prove the
following theorem:

Theorem 10.1 Let RS be a real-system family for (D,Tdp,C), C = {Rec}, in which the family Adv
of adversary automata is polynomial-time-bounded.
Then there exists an ideal-system family IS for C = {Rec}, in which the family Sim is polynomial-time-
bounded, and such that RS ≤neg,pt IS .

Since C = {Rec} everywhere in this section, we drop explicit mention of C.
We express each Simk as a composition of automata. This composition describes the particular sim-

ulation strategy needed to mimic the behavior of the real system. We define a “structured ideal system”
SISk to be the composition of a structured simulator SSimk with Functk. It is easy to see that SIS is
an ideal-system family, according to our definition of an ideal system. Moreover, if Adv is polynomial-
time-bounded, then Sim is also polynomial-time-bounded. It remains to show that RS ≤neg,pt SIS .

In order to show that RS ≤neg,pt SIS , we use two intermediate families of systems, Int1 and Int2 .
These two families of systems are nearly identical; in fact, they differ only in that Int1 uses a hard-core
predicate of a trap-door permutation in situations where Int2 uses random bits. Then the proof breaks
down into three pieces, showing that RS ≤neg,pt Int1 , that Int1 ≤neg,pt Int2 , and that Int2 ≤neg,pt SIS .
All reasoning about computational indistinguishability and other cryptographic issues is isolated to the
middle level, the proof that Int1 ≤neg,pt Int2 .

To show that Int1 ≤neg,pt Int2 , we use results from Section 6. The proofs that RS ≤neg,pt Int1 and
that Int2 implements SIS do not involve cryptographic issues. They are reasonably straightforward,
using simulation relations of the new kind defined in Section 3.8.

10.1 Simulator structure

For each k, we define a structured simulator SSimk, as the composition of the following five task-PIOAs,
with all send, receive, rand and out′′ tasks hidden.

• TR(Dk, Tdpk), an abstract combination of Trans(Dk, Tdpk) and Rec(Dk, Tdpk, {Rec}).

• (Src(Tdppk)tdpp)k, isomorphic to Src(Tdppk).

• (Src({0, 1} → Dk)yval)k, isomorphic to Src({0, 1} → Dk).

• (Src({0, 1})bval1)k, isomorphic to Src({0, 1}).
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$©

$©

$©

Adv ′

Env

Funct

TR
rand(p)

rand(b)

rand(y)

out(x)R

RS

out′′(x)R

in(i)R

in(x)T

out′(x)R

SSim

Figure 13: SIS

• Adv ′k, isomorphic to the adversary Advk in (RS )k. Adv ′k is identical to Adv except that its
out′(x)Rec input actions are renamed to out′′(x)Rec .

Figure 13 shows SSimk and its interconnections with the functionality and the environment. (We
abbreviated all send(∗)∗ and receive(∗)∗ arrows as thick S and R arrows respectively.)

TR has send outputs that are inputs to Adv ′.
Since Rec is corrupted, Adv ′ sees inputs to Rec, and acts as an intermediary for outputs from Rec.

Thus, Adv ′ has in(i)Rec inputs, which come from the environment. Adv ′ has out′′(x)Rec inputs, which
are outputs of TR, out(x)Rec outputs, which go to the environment, and receive outputs, which go to
TR. Adv ′ may also interact with the environment, using other inputs and outputs.

Also, Funct provides out′(x)Rec outputs to TR. Thus, TR sees the output produced by Funct , which
is one of the input bits provided by the environment to Trans.

The outputs of Srctdpp and Srcbval1 go to TR only. The outputs of Srcyval go both to TR and to
Adv ′.

TR(D,Tdp) is defined in Figure 14 and Figure 15. TR plays roles corresponding to those of both
Trans and Rec in the real system. Note that TR produces the bval values without using the inverse
of the trap-door permutation. It can do this because it knows the receiver’s input value and the yval
values.

We define SISk, the structured ideal system, to be the composition Functk‖SSimk, with all the
out′(∗) actions hidden.

Lemma 10.2 In every reachable state of SISk:

1. If TRk.inval(Trans) 6= ⊥ then Functk.inval(Trans) 6= ⊥, Functk.inval(Rec) 6= ⊥, and
TRk.inval(Trans) = Functk.inval(Trans)(Functk.inval(Rec)).

10.2 Int1

We derive the definition of Int1 k from SISk as before. TR(Dk, Tdpk) is replaced by TR1 (Dk, Tdpk),
whose code appears in Figure 16.
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TR(D, Tdp):

Signature:
Input:

out′(x)Rec , x ∈ {0, 1}
in(i)Rec , i ∈ {0, 1}
rand(p)tdpp, p ∈ Tdpp
rand(y)yval, y ∈ ({0, 1} → D)
rand(b)bval1, b ∈ {0, 1}
receive(1, f)Rec , f ∈ Tdp
receive(2, z)Trans , z ∈ ({0, 1} → D)
receive(3, b)Rec , b ∈ ({0, 1} → {0, 1})

Output:
send(1, f)Trans , f ∈ Tdp
send(2, z)Rec , z ∈ ({0, 1} → D)
send(3, b)Trans , b ∈ ({0, 1} → {0, 1})
out′′(x)Rec , x ∈ {0, 1}

Internal:
fix− zvalRec

fix− bvalTrans

State:
inval(Trans), inval(Rec) ∈ {0, 1,⊥}, initially ⊥
tdpp ∈ Tdp ∪ {⊥}, initially ⊥
yval, zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
bval1 ∈ {0, 1,⊥}, initially ⊥
bval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
receivedtdp ∈ {⊥,>}, initially ⊥
receivedz ∈ {⊥,>}, initially ⊥
receivedb ∈ {⊥,>}, initially ⊥

Figure 14: TR(D,Tdp), for the case where C = {Rec} (Signature and State).

We define Int1 k to be the same as SISk except that TR(Dk, Tdpk) is replaced by TR1 (Dk, Tdpk),
whose code appears in Figure 16. TR1 differs from TR as follows: TR1 has input actions in(x)Trans , by
which it receives transmitter input values directly from the environment. Also, TR1 does not have an
input randbval1 nor a bval1 state variable; rather, TR1 calculates bval values as follows: For the chosen
index i (the one that it received in the in(i)Rec input), TR1 uses the hard-core predicate applied to the
corresponding yval, combined with the transmitter input obtained as output from Funct ; for this, TR1
does not need to use the inverse of the trap-door permutation. On the other hand, for the non-chosen
index, TR1 uses the hard-core predicate and the inverse of the trap-door permutation, applied to the
zval value.

Lemma 10.3 In every reachable state of Int1 k:

1. If TR1 k.inval(Trans) 6= ⊥ then Functk.inval(Trans) 6= ⊥, Functk.inval(Rec) 6= ⊥, and
TR1 k.inval(Trans) = Functk.inval(Trans)(Functk.inval(Rec)).

2. If TR1 k.bval 6= ⊥ then
TR1 k.tdpp 6= ⊥, TR1 k.zval 6= ⊥, TR1 k.inval(Trans) 6= ⊥, TR1 k.inval2(Trans) 6= ⊥, and
TR1 k.inval(Rec) 6= ⊥.

3. If TR1 k.zval 6= ⊥ then Functk.inval(Rec) 6= ⊥, TR1 k.inval(Rec) 6= ⊥, and TR1 k.tdpp 6= ⊥.

10.3 Int2

Int2 k is the same as SISk, except that:

1. It includes a new random source (Src({0, 1})cval1)k, which is isomorphic to Src({0, 1}).

2. TR(Dk, Tdpk) is replaced by TR2 (Dk, Tdpk), where TRtwo(D,TDp) is identical to TR1 (D,Tdp)
except that:

(a) TR2 includes an extra state variable cval1 ∈ {0, 1}.
(b) TR2 has input action rand(c)cval1, which sets cval1 := c.
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Transitions:

out′(x)Rec

Effect:
if inval(Trans) = ⊥ then inval(Trans) := x

in(i)Rec

Effect:
if inval(Rec) = ⊥ then inval(Rec) := i

rand(p)tdpp

Effect:
if tdpp = ⊥ then tdpp := p

rand(y)yval

Effect:
if yval = ⊥ then yval := y

rand(b)bval1

Effect:
if bval1 = ⊥ then bval1 := b

receive(1, f)Rec

Effect:
if receivedtdp = ⊥ then receivedtdp := >

receive(2, z)Trans

Effect:
if receivedz = ⊥ then receivedz := >

receive(3, b)Rec

Effect:
if yval 6= ⊥ and receivedb = ⊥

then receivedb := >

fix− zvalRec

Precondition:
yval, inval(Rec), tdpp, receivedtdp 6= ⊥
zval = ⊥

Effect:
zval(inval(Rec)) := tdpp.funct(yval(inval(Rec)))
zval(1− inval(Rec)) := yval(1− inval(Rec))

fix− bvalTrans

Precondition:
yval, zval, inval(Trans), inval(Rec), bval1 6= ⊥
receivedz 6= ⊥
bval = ⊥

Effect:
bval(inval(Rec)) :=

B(yval(inval(Rec)))⊕ inval(Trans)
bval(1− inval(Rec)) := bval1

out′′(x)Rec

Precondition:
x = inval(Trans) 6= ⊥, receivedb 6= ⊥

Effect:
none

send(1, f)Trans

Precondition:
tdpp 6= ⊥, f = tdpp.funct

Effect:
none

send(2, z)Rec

Precondition:
z = zval 6= ⊥

Effect:
none

send(3, b)Trans

Precondition:
b = bval 6= ⊥

Effect:
none

Tasks: {send(1, ∗)Trans}, {send(2, ∗)Rec}, {send(3, ∗)Trans}, {out′′(∗)Rec}, {fix− zvalRec}, {fix− bvalTrans}.

Figure 15: TR(D,Tdp), for the case where C = {Rec} (Transitions and Tasks).
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TR1 (D, Tdp):

Signature:
Input:

in(x)Trans , x ∈ ({0, 1} → {0, 1})
out′(x)Rec , x ∈ {0, 1}
in(i)Rec , i ∈ {0, 1}
rand(p)tdpp, p ∈ Tdpp
rand(y)yval, y ∈ ({0, 1} → D)
receive(1, f)Rec , f ∈ Tdp
receive(2, z)Trans , z ∈ ({0, 1} → D)
receive(3, b)Rec , b ∈ ({0, 1} → {0, 1})

Output:
send(1, f)Trans , f ∈ Tdp
send(2, z)Rec , z ∈ ({0, 1} → D)
send(3, b)Trans , b ∈ ({0, 1} → {0, 1})
out′′(x)Rec , x ∈ {0, 1}

Internal:
fix− zvalRec

fix− bvalTrans

State:
inval(Trans), inval(Rec) ∈ {0, 1,⊥}, initially ⊥
inval2(Trans) ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
tdpp ∈ Tdpp ∪ {⊥}, initially ⊥
yval, zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
bval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
receivedtdp ∈ {⊥,>}, initially ⊥
receivedz ∈ {⊥,>}, initially ⊥
receivedb ∈ {⊥,>}, initially ⊥

Transitions:

in(x)Trans

Effect:
if inval2(Trans) = ⊥

then inval2(Trans) := x

out′(x)Rec , in(i)Rec , rand(p)tdpp,
rand(y)yval, receive(1, f)Rec ,
receive(2, z)Trans , or receive(3, b)Rec ,
Effect:

As for TR(D, Tdp).

fix− bvalTrans

Precondition:
tdpp, zval, inval(Trans), inval2(Trans) 6= ⊥
inval(Rec), receivedz 6= ⊥,
bval = ⊥

Effect:
bval(inval(Rec)) :=

B(yval(inval(Rec)))⊕ inval(Trans)
bval(1− inval(Rec)) :=

B(tdpp.inverse(zval(1− inval(Rec))))
⊕inval2(Trans)(1− inval(Rec))

fix− zvalRec , out′′(x)Rec , send(1, f)Trans ,
send(2, z)Rec , or send(3, b)Trans

Precondition:
As for TR(D, Tdp).

Effect:
As for TR(D, Tdp).

Tasks: {send(1, ∗)Trans}, {send(2, ∗)Rec}, {send(3, ∗)Trans}, {out′′(∗)Rec}, {fix− zvalRec}, {fix− bvalTrans}.

Figure 16: TR1 (D,Tdp), for the case where C = {Rec}.

(c) The line in fix− bval in which bval(1− inval(Rec)) is determined is replaced by:

bval(1− inval(Rec)) := cval1⊕ inval2(Trans)(1− inval(Rec)).

Thus, instead of calculating the bval value for the non-selected index using the hard-core
predicate, TR2 obtains it by applying ⊕ to a bit chosen randomly and the actual x input
for that index.

The code for TR2 (D,Tdp) appears in Figure 17.

10.4 RS implements Int1

We show:
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TR2 (D, Tdp):

Signature:
Input:

in(x)Trans , x ∈ ({0, 1} → {0, 1})
out′(x)Rec , x ∈ {0, 1}
in(i)Rec , i ∈ {0, 1}
rand(p)tdpp, p ∈ Tdpp
rand(y)yval, y ∈ ({0, 1} → D)
rand(c)cval1, c ∈ {0, 1}
receive(1, f)Rec , f ∈ Tdp
receive(2, z)Trans , z ∈ ({0, 1} → D)
receive(3, b)Rec , b ∈ ({0, 1} → {0, 1})

Output:
send(1, f)Trans , f ∈ Tdp
send(2, z)Rec , z ∈ ({0, 1} → D)
send(3, b)Trans , b ∈ ({0, 1} → {0, 1})
out′′(x)Rec , x ∈ {0, 1}

Internal:
fix− zvalRec

fix− bvalTrans

State:
inval(Trans), inval(Rec) ∈ {0, 1,⊥}, initially ⊥
inval2(Trans) ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
tdpp ∈ Tdpp ∪ {⊥}, initially ⊥
yval, zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
bval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
cval1 ∈ {0, 1,⊥}, initially ⊥
receivedtdp ∈ {⊥,>}, initially ⊥
receivedz ∈ {⊥,>}, initially ⊥
receivedb ∈ {⊥,>}, initially ⊥

Transitions:

in(x)Trans

Effect:
if inval2(Trans) = ⊥ then inval2(Trans) := x

out′(x)Rec , in(i)Rec , rand(p)tdpp, rand(y)yval

receive(1, f)Rec , receive(2, z)Trans , or receive(3, b)Rec ,
Effect:

As for TR(D, Tdp).

rand(c)cval1

Effect:
if cval1 = ⊥ then cval1 := c

fix− bvalTrans

Precondition:
yval, zval, cval1, inval(Trans), inval2(Trans) 6= ⊥
inval(Rec), receivedz 6= ⊥
bval = ⊥

Effect:
bval(inval(Rec)) :=

B(yval(inval(Rec)))⊕ inval(Trans)
bval(1− inval(Rec)) :=

cval1⊕ inval2(Trans)(1− inval(Rec))

fix− zvalRec , out′′(x)Rec , send(1, f)Trans ,
send(2, z)Rec , or send(3, b)Trans

Precondition:
As for TR(D, Tdp).

Effect:
As for TR(D, Tdp).

Tasks: {send(1, ∗)Trans}, {send(2, ∗)Rec}, {send(3, ∗)Trans}, {out′′(∗)Rec}, {fix− zvalRec}, {fix− bvalTrans}.

Figure 17: TR2 (D,Tdp), for the case where C = {Rec}.

Lemma 10.4 For every k, RSk ≤0 Int1 k.

We prove Lemma 10.4 by choosing an arbitrary environment Env for RSk and Int1 k, and establishing
a simulation relation from RSk‖Env to Int1 k‖Env . Then we appeal to Theorem 3.29, the soundness
result for simulation relations. The mapping must reconcile the different ways in which zval gets defined
in RS and Int1 . We also show the following lemma, which is what we need to put the pieces of the
proof together:

Lemma 10.5 RS ≤neg,pt Int1 .

In the rest of this subsection fix Env , an environment for RSk and Int1 k.
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10.4.1 State correspondence

Here we define the correspondence R between the states of RS‖Env and Int1‖Env , which we will show
to be a simulation relation in Section 10.4.2.

Let ε1 and ε2 be discrete probability measures on finite execution fragments of RS‖Env and
Int1‖Env , respectively satisfying the following property:

• Trace distribution equivalence: tdist(ε1) = tdist(ε2).

Then we say that (ε1, ε2) ∈ R if and only if all of the following hold:

1. For every s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)):

(a) u.Funct .inval(Trans) = s.Trans.inval.

(b) u.Funct .inval(Rec) = s.Rec.inval.

(c) If s.Rec.outval 6= ⊥ then u.TR1 .inval(Trans) = s.Rec.outval.

(d) u.TR1 .inval2(Trans) = s.Trans.inval.

(e) u.TR1 .inval(Rec) = s.Rec.inval.

(f) u.TR1 .tdpp = s.Trans.tdpp.

(g) u.TR1 .yval = s.Rec.yval.

(h) u.TR1 .zval = s.Rec.zval.

(i) u.TR1 .bval = s.Trans.bval.

(j) u.Srctdpp = s.Srctdpp.

(k) u.Srcyval = s.Srcyval.

(l) u.Adv ′ = s.Adv .

(m) u.Env = s.Env .

(n) u.TR1 .receivedtdp 6= ⊥ iff s.Rec.tdp 6= ⊥
(o) u.TR1 .receivedz 6= ⊥ iff s.Trans.zval 6= ⊥
(p) s.Rec.outval 6= ⊥ iff u.TR1 .receivedb 6= ⊥

10.4.2 The mapping proof

Lemma 10.6 The relation R defined in Section 10.4.1 is a simulation relation from RS‖Env to
Int1‖Env. Furthermore, for each step of RS‖Env, the step correspondence yields at most two steps
of Int1‖Env, that is, there is a mapping corrtasks that can be used with R such that, for every ρ, T ,
|corrtasks(ρ, T )| ≤ 2.

The idea of the proof is as follows. All of the tasks in RS‖Env correspond to the same tasks in
Int1‖Env , with two exceptions. The first exception is the {fix−bvalTrans} task, by which Trans in the
RS system determines the value of bval, having already received its own input and a round 2 message.
This gets mapped to an output task {out′(∗)Rec} from Funct to TR1 in the Int1 system, followed by
the {fix− bvalTrans} task of TR1 . The second exception is the {out′(∗)Rec} task, by which Rec in the
RS system outputs its result to Adv ; this gets mapped to the {out′′(∗)Rec} task from TR1 to Adv ′ in
the Int1 system.

Proof. We prove that R is a simulation relation from RS‖Env to Int1‖Env using the mapping
corrtasks : R∗

RS‖Env ×RRS‖Env → R∗
Int1‖Env , which is defined as follows:

For any (ρ, T ) ∈ (R∗
RS‖Env ×RRS‖Env ):

• If T ∈ {{choose− randtdpp}, {randtdpp}, {choose− randyval}, {randyval}, {fix− zvalRec},
{send(1, ∗)Trans}, {send(2, ∗)Rec}, {send(3, ∗)Trans}, {out(∗)Rec}}, then corrtasks(ρ, T ) = T .
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• If T is an output or internal task of Env or Adv , then corrtasks(ρ, T ) = T .

• If T = {fix− bvalTrans} then corrtasks(ρ, T ) = {out′(∗)Rec} {fix− bvalTrans}.

• If T = {out′(∗)Rec} then corrtasks(ρ, T ) = {out′′(∗)Rec}.
We show that R satisfies the two conditions in Lemma 3.31.

Start condition: It is obvious that the Dirac measures on execution fragments consisting of the unique
start states s and u of, respectively, RS‖Env and Int1‖Env are R-related. Property 1 of R holds
because the state components of s and u on which R depends are all ⊥.
Step condition: Suppose (ε1, ε2) ∈ R, ρ1 ∈ R∗

RS‖Env , ε1 is consistent with ρ1, ε2 is consistent with
full(corrtasks)(ρ1) and T ∈ RRS‖Env . Let ε′1 = apply(ε1, T ) and ε′2 = apply(ε2, corrtasks(ρ1, T )).
Claim 1:

1. The state of Env is the same in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)). Let qEnv denote
this state of Env .

This follows from Property 1m.

2. The state of Adv or Adv ′ is the same in all states in supp(lstate(ε1))∪ supp(lstate(ε2)). Let qAdv

denote this state of Adv and Adv ′.

This follows from Property 1l.

Claim 2:

1. If T is an output or internal task of Env , then T is either enabled or disabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)) (simultaneously). Furthermore, if T is enabled in all states in
supp(lstate(ε1)) ∪ supp(lstate(ε2)), then:

(a) There is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)).
(b) There is a unique transition of Env from qEnv with action a; let trEnv = (qEnv , a, µEnv ) be

this transition.

2. If T is an output or internal task of Adv , then T is either enabled or disabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)) (simultaneously). Furthermore, if T is enabled in all states in
supp(lstate(ε1)) ∪ supp(lstate(ε2)), then:

(a) There is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)).
(b) There is a unique transition of Adv from qAdv with action a; let trAdv = (qAdv , a, µAdv ) be

this transition.

We establish the step condition by considering cases based on the value of T . In each case we define a
probability measure p on an index set I, and for each j ∈ I, two probability measures ε′1j and ε′2j , on
execution fragments of RS‖Env and Int1‖Env respectively. The rest of the proof consists of showing,
for each j ∈ I, that (ε′1j , ε

′
2j) ∈ R, and that ε′1 =

∑
j∈I p(j)(ε′1j) and ε′2 =

∑
j∈I p(j)(ε′2j).

In each case, the two summations will follow easily from the definition of apply(, ) and the definitions
of p(j), ε′1j , and ε′2j , so we will not mention them within the individual cases. More specifically, in each
proof case, p satisfies one of the following conditions: (1) p is the Dirac measure on I = {1}, (2) p is
the uniform probability distribution on a finite set I of indices, or (3) p is a probability distribution on
a countable set I such that, for every j ∈ I, p(j) = µ(xj), where µ is a fixed probability distribution
and xj is an element in supp(µ) that is defined within the proof case. Whenever (1) holds, ε′1 and
ε′2 are defined to be ε′11 and ε′21, respectively, so the summation clearly holds. Whenever (2) holds,
the first summation follows from the following facts: (a) Each execution fragment α ∈ supp(ε′1) is in
supp(ε′1j) for a unique j; for every j′ 6= j, ε′1j′(α) = 0. (b) For each execution fragment α ∈ supp(ε′1),
ε′1(α) = p(j)ε′1j(α) for the unique j in property (a); this is because apply(, ) causes a choice from a
uniform distribution and because of the way ε′1j is defined. The second summation holds for similar
reasons. The reasoning for case (3) is similar to that for case (2), but using µ instead of the uniform
distibution.
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1. T = {choose− randtdpp}.
We first show that T is uniformly enabled or disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)). Fix
any pair of states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)). Task T = corrtasks(ρ1, T ) is
enabled in s (resp. u) iff s.Srctdpp.chosenval = ⊥ (resp. u.Srctdpp.chosenval = ⊥). Property 1j
implies that T is uniformly enabled or disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)), as needed.

(a) T is disabled in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Let I be the singleton index {1}, let p be the Dirac measure on 1 and let ε′11 = ε′1 and
ε′21 = ε′2. By Definition 3.3 we have ε′1 = ε1, ε′2 = ε2. Since ε1 R ε2, we have ε′11 R ε′21, as
needed. The trace distribution equivalence condition tdist(ε′1) = tdist(ε′2) also holds since
tdist(ε1) = tdist(ε2). The summation clearly holds.

(b) T is enabled in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
We define the probability measures needed to show the step correspondence. Let p be the
uniform probability measure on the index set I = {1 · · · r} where r = |Tdp|. That is, p(j) =
1/r for each j ∈ I. For each j ∈ I, we define probability measure ε′1j as follows. The support
supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that lstate(α).Srctdpp.chosenval
is the jth element in domain Tdp. For each α ∈ supp(ε′1j) of the form α′ choose− randtdpp q,
let ε′1j(α) = ε1(α′). We define ε′2j analogously from ε′2.
Now fix j ∈ I; we show that (ε′1j , ε

′
2j) ∈ R. To do this, we establish Property 1 of R for ε′1j

and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .
To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)).
By definitions of ε′1j and ε′2j , we know that u′.Srctdpp.chosenval = s′.Srctdpp.chosenval.
Hence, Property 1j holds. Since no component other than Srctdpp.chosenval is updated by
the application of T , we conclude that Property 1 holds for s′ and u′, and hence, for ε′1 and
ε′2.
The fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1j and ε′2j .

2. T = {rand(∗)tdpp}.
We first show that T is uniformly enabled or disabled in supp(lstate(ε1))∪ supp(lstate(ε2)). This
part of the proof is identical to the case where T = choose− randomtdpp.

(a) T is disabled in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
This part of the proof is identical to the case where T = choose− randtdpp.

(b) T is enabled in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
We show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)). We know by Property 1j that the state of Srctdpp is the same in all states
in supp(lstate(ε1))∪ supp(lstate(ε2)). Let q denote this state of Srctdpp. By the next-action
determinism property for Srctdpp we know that there is a unique action a ∈ T that is enabled
in q. Since T is an output task of Srctdpp, a is also the unique action in T that is enabled in
each state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
The probability measures for this case are trivial: Let I be the singleton index set {1}, let
p be the Dirac measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2. To show that (ε′1, ε

′
2) ∈ R, we

establish Property 1 of R for ε′1 and ε′2, and show trace distribution equivalence for ε′1 and
ε′2.
To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)).
Let s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env .
Similarly, let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈
DInt1‖Env .
By definitions of RS and Int1 we know that application of T updates Trans.tdpp in the
RS system, and TR1 .tdpp in the Int1 system. We know by Property 1f that u.TR1 .tdpp =
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s.Trans.tdpp. By the effects of T in Trans and TR1 , we know that u′.TR1 .tdpp = s′.Trans.tdpp;
hence, Property 1f holds. Since no component other than Trans.tdpp in the RS system and
TR1 .tdpp in the Int1 system is updated by the application of T , we conclude that Property
1 holds for s′ and u′, and hence, for ε′1 and ε′2.
The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

3. T = {choose− randyval}.
This case is analogous to the case where T = {choose− randtdpp}. In the argument for enabling
we use Property 1k instead of Property 1j. In showing the step correspondence, we use the domain
{0, 1} → D instead of Tdp and also use Property 1k instead of Property 1j.

4. T = {rand(∗)yval}.

We show that T is uniformly enabled or disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)) using
an argument analogous to the one for T = {rand(p)tdpp}. Here we use Property 1k instead of
Property 1j.

(a) T is disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
This part of the proof is identical to the case where T = choose− randomtdpp.

(b) T is enabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
In this case the application of T may cause probabilistic branching in Adv and Adv ′. We
define the probability measures needed to show the step correspondence. Suppose that
supp(µAdv ) is the set {qj : j ∈ I} of states of Adv , where I is a countable index set. Let p be
the probability measure on the index set I such that, for each j ∈ I, p(j) = µAdv (qj). For
each j ∈ I, we define probability measure ε′1j as follows. The support supp(ε′1j) is the set of
execution fragments α ∈ supp(ε′1) such that lstate(α).Adv = qj . For each α ∈ supp(ε′1j) of
the form α′ a qj , let ε′1j(α) = ε1(α′). We define ε′2j analogously from ε′2.
Now fix j ∈ I; it remains to show that (ε′1j , ε

′
2j) ∈ R. To do this, we establish Property 1 of

R for ε′1j and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .
To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)).
Let s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env .
Similarly, let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈
DInt1‖Env .
If s.Rec.yval 6= ⊥ then by Property 1g, u.TR1 .yval 6= ⊥. In this case, task T has no effect
on any component other than Adv , Adv ′ in either system. Since s′.Adv = qj = u′.Adv ′ by
definition, it is easy to see that Property 1 holds for s′ and u′, and hence, for ε′1 and ε′2.
Now suppose that s.Rec.yval = ⊥. Then again by Property, 1g u.TR1 .yval = ⊥. Then by
the definitions of RS and Int1 , we know that application of T updates Rec.yval in the RS
system, and TR1 .yval in the Int1 system. It also updates the states of Adv and Adv ′.
We know by Property 1g that TR1 .yval = Rec.yval and by 1l that u.Adv = s.Adv ′. By the
effects of T in definitions of Rec and TR1 , we know that u′.TR1 .yval = s′.Rec.yval, hence,
Property 1g holds for s′ and u′. We also know that 1l holds by definition of ε′1j and ε′2j .
Since no component other than Rec.inval and Adv in the RS system, and TR1 .yval, and
Adv ′ in the Int1 system, is updated by the application of T , we conclude that Property 1
holds for s′ and u′, and hence, for ε′1 and ε′2.
The fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1j and ε′2j .

5. T = {fix− zvalRec}.
We first show that T is uniformly enabled or disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)). Fix
any pair of states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)). First, assume that T is enabled
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in s. This implies that s.Rec.yval 6= ⊥, s.Rec.inval 6= ⊥, s.Rec.tdp 6= ⊥, s.Rec.zval = ⊥.
Since s.Rec.yval 6= ⊥, by Property 1g we have u.TR1 .yval 6= ⊥. Since s.Rec.inval 6= ⊥, by
Property 1e, we have u.TR1 .inval(Rec) 6= ⊥. Since s.Rec.tdp 6= ⊥, by Lemma 5b, we have
s.Rec.tdp = s.Trans.tdpp and by Property 1f we have u.TR1 .tdpp 6= ⊥. Since s.Rec.tdp 6= ⊥,
by Property 1n we have u.TR1 .receivedtdp 6= ⊥. Since s.Rec.zval = ⊥, by Property 1h we have
u.TR1 .zval = ⊥. Hence, T is enabled in u, as needed.

Now assume that T is disabled in s. We need to show that if any of the preconditions of fix −
zvalRec is false in s then at least one of the preconditions in u is false. If s.Rec.yval = ⊥ then
by Property 1g, we have u.TR1 .yval = ⊥ If s.Rec.inval = ⊥, then by Property 1e, we have
u.TR1 .inval(Rec) = ⊥. If s.Rec.tdp = ⊥, then by Property 1n, we have u.TR1 .receivedtdp = ⊥.
If s.Rec.zval 6= ⊥, by Property 1h we have u.TR1 .zval 6= ⊥. Hence T is disabled in u, as needed.

(a) T is disabled in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
This part of the proof is identical to the case where T = choose− randtdpp.

(b) T is enabled in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
The rest of the proof is easy because zval is computed in the same way in both the RS
and Int1 systems. The only difference is that in the Int1 system, the funct component of a
trap-door permutation pair is used, whereas in the RS system this pair is not available but
only a function. The correspondence between the tdpp.funct component of TR1 and the tdp
value of Rec is established using Lemma 5b.

6. T = {fix − bvalTrans}. In this case, we cannot show uniform enabling or disabling of the cor-
responding task sequence as in previous cases. Let ε′′2 = apply(ε2, out′(x)Rec). We examine the
following two cases:

(a) T is enabled in supp(lstate(ε1)).
We show that the sequence of tasks {out′(x)Rec}{fix−bvalTrans} is enabled in supp(lstate(ε2)).
First, consider any state u ∈ supp(lstate(ε2)); we show that {out′(x)Rec} is enabled in u.
Choose any s ∈ supp(lstate(ε1)). Since T is enabled in s and T is an internal task of Trans,
T is enabled in s.Trans. By the precondition of fix − bvalTrans in Trans, we know that
s.Trans.tdpp 6= ⊥, s.Trans.zval 6= ⊥, s.Trans.inval 6= ⊥, and s.Trans.bval = ⊥. By Proper-
ties 1a, 1b, and Lemma 10.3, we have u.Funct .inval(Trans) 6= ⊥ and u.Funct .inval(Rec) 6=
⊥. This implies that the action out′(x)Rec is enabled in u, as needed.
We now show that fix − bvalTrans is enabled in supp(lstate(ε′′2)). So consider any state
u′′ ∈ supp(lstate(ε′′2)). Choose u ∈ supp(lstate(ε2)) such that u′′ ∈ supp(µu) where
(u, fix− bvalTrans , µu) ∈ DInt1‖Env . Choose any s ∈ supp(lstate(ε1)). Since fix− bvalTrans

is enabled in s, we have s.Trans.tdpp 6= ⊥, s.Trans.zval 6= ⊥, s.Trans.inval 6= ⊥, and
s.Trans.bval = ⊥. Then we have u.TR1 .tdpp 6= ⊥, by Property 1f applied to s and u.
And u.TR1 .zval 6= ⊥, by Property 1h and Lemma 7b. And u.TR1 .inval2(Trans) 6= ⊥,
by Property 1d. And u.TR1 .inval(Rec) 6= ⊥, by Lemma 7b and 6 and Property 1e. And
u.TR1 .receivedz 6= ⊥, by Property 1o. And finally, u.TR1 .bval = ⊥, by Property 1i. Since
the only effect of out′(x)Rec is to set inval(Trans) in TR1 to x if inval(Trans) = ⊥, we
know that u′′.TR1 .inval(Trans) 6= ⊥, and also that u′′.TR1 .tdpp 6= ⊥, u′′.TR1 .zval 6= ⊥,
u′′.TR1 .inval2(Trans) 6= ⊥, u′′.TR1 .inval(Rec) 6= ⊥, u′′.TR1 .inval(Rec) 6= ⊥, u′′.TR1 .receivedz 6=
⊥, and u′′.TR1 .bval = ⊥. Combining all these conditions, we see that fix − bvalTrans is
enabled in u′′, as needed. Next, we define the probability measures. Let I be the singleton
index set {1}, let p be the Dirac measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2. To show
that (ε′1, ε

′
2) ∈ R, we establish Property 1 of R for ε′1 and ε′2, and show trace distribution

equivalence.
To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)).
Let s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, fix−bvalTrans , µs) ∈
DRS‖Env . Let u′′ be any state in supp(lstate(ε′′2)) such that u′ ∈ supp(µ′u) where (u′′, out′(x)Rec , µ

′
u) ∈
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DInt1‖Env . Let u be any state in supp(lstate(ε2)) such that u′′ ∈ supp(µu) where (u, out′(x)Rec , µu) ∈
DInt1‖Env .
We first show that s′.Trans.bval = u′.TR1 .bval. By the effect of T , we know that for
i ∈ {0, 1}, s′.Trans.bval(i) = B(s.Trans.tdpp.inverse(s.Trans.zval(i))) ⊕ s.Trans.inval(i).
All state variables other than bval are unchanged in moving from s to s′.
Also, by the effects of the out′(x)Rec and fix − bvalTrans actions and by Lemma 10.3 (for
the second equality),
u′.TR1 .bval(u.TR1 .inval(Rec))

= B(u.TR1 .yval(u.TR1 .inval(Rec)))⊕ u′′.TR1 .inval(Trans)
= B(u.TR1 .yval(u.TR1 .inval(Rec)))⊕ u′′.Funct .inval(Trans)(u′′.Funct .inval(Rec))
= B(u.TR1 .yval(u.TR1 .inval(Rec)))⊕ u.Funct .inval(Trans)(u.Funct .inval(Rec))

Also, we have
u′.TR1 .bval(1− u.TR1 .inval(Rec))

= B(u.TR1 .tdpp.inverse(u.TR1 .zval(1− u.TR1 .inval(Rec))))
⊕ u.TR1 .inval2(Trans)(1− u.TR1 .inval(Rec)).

In moving from u to u′, TR1 .inval(Trans) is updated to a non-⊥ value and all other state
variables except bval are unchanged.
To show that s′.Trans.bval = u′.TR1 .bval, we consider the two indices separately:

i. i = s.Rec.inval
Then by Property 1e, i = u.TR1 .inval(Rec). In this case, we must show that B(s.Trans.tdpp.
inverse(s.Trans.zval(i)))⊕s.Trans.inval(i) = B(u.TR1 .yval(u.TR1 .inval(Rec)))⊕u.Funct .
inval(Trans)(u.Funct .inval(Rec)), that is, that B(s.Trans.tdpp.inverse(s.Trans.zval(i)))⊕
s.Trans.inval(i) = B(u.TR1 .yval(i))⊕ u.Funct .inval(Trans)(u.Funct .inval(Rec)).
Now, s.Trans.inval(i) = s.Trans.inval(s.Rec.inval), which is in turn equal to u.Funct .inval
(Trans)(u.Funct .inval(Rec)). by Properties 1a and 1b for s and u. And s.Trans.tdpp.inverse
(s.Trans.zval(i))) = s.Rec.yval(i), by Lemma 10, which is equal to u.TR1 .yval(i)) by
Property 1g. Thus, s.Trans.tdpp.inverse(s.Trans.zval(i))) = u.TR1 .yval(i)), and so
B(s.Trans.tdpp.inverse(s.Trans.zval(i))) = B(u.TR1 .yval(i)). Combining the equa-
tions yielded the needed equation B(s.Trans.tdpp.inverse(s.Trans.zval(i)))⊕s.Trans.inval(i) =
B(u.TR1 .yval(i))⊕ u.Funct .inval(Trans)(u.Funct .inval(Rec)).

ii. i = 1− s.Rec.inval
Then i = 1 − u.TR1 .inval(Rec) by Property 1e. In this case, we must show that
B(s.Trans.tdpp.inverse(s.Trans.zval(i)))⊕s.Trans.inval(i) = B(u.TR1 .tdpp.inverse(u.TR1 .zval(1−
u.TR1 .inval(Rec))))⊕u.TR1 .inval2(Trans)(1−u.TR1 .inval(Rec)), that is, that B(s.Trans.tdpp.inverse
(s.Trans.zval(i)))⊕s.Trans.inval(i) = B(u.TR1 .tdpp.inverse(u.TR1 .zval(i)))⊕u.TR1 .inval2
(Trans)(i).
Now, s.Trans.inval(i) = u.TR1 .inval2(Trans)(i) by Property 1d. And s.Trans.tdpp =
u.TR1 .tdpp by Property 1f. And s.Trans.zval = u.TR1 .zval by Property 1h and
Lemma 7. It follows that s.Trans.tdpp.inverse(s.Trans.zval(i)) = u.TR1 .tdpp.inverse
(u.TR1 .zval(i)), and so B(s.Trans.tdpp.inverse(s.Trans.zval(i))) = B(u.TR1 .tdpp.inverse
(u.TR1 .zval(i))). Combining the equations yields B(s.Trans.tdpp.inverse(s.Trans.zval(i)))⊕
s.Trans.inval(i) = B(u.TR1 .tdpp.inverse(u.TR1 .zval(i))) ⊕ u.TR1 .inval2(Trans)(i),
as needed.

Thus, we have shown that s′.Trans.bval = u′.TR1 .bval. To see that Property 1 holds for s′

and u′, note that it holds for s and u, and the only changes are in the new assigments to bval
(which are equal, as just shown), and in setting u′.TR1 .inval(Trans) to a non-⊥ value. The
only part of Property 1 that mentions u′.TR1 .inval(Trans) is 1c; thus, to see that Property
1 holds for s′ and u′ (and hence for ε′1 and ε′2), it suffices to show that Property 1c holds for
s′ and u′.
So, suppose that s′.Rec.outval 6= ⊥. Then s′.Rec.outval = s.Rec.outval, which is equal to
s.Trans.inval(s.Rec.inval) by Lemma 9b.
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This in turn equals u.Funct .inval(Trans)(u.Funct .inval(Rec)) by Properties 1a and 1b for s
and u, which is equal to u′.Funct .inval(Trans)(u′.Funct .inval(Rec)).
Since we know that u′.TRone.inval(Trans) 6= ⊥, Lemma 10.3 implies that u′.TRone.inval(Trans) =
u′.Funct .inval(Trans)(u′.Funct .inval(Rec)).
Combining all the equations, we obtain that s′.Rec.outval = u′.TRone.inval(Trans), as
needed for 1c.
The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

(b) T is disabled in supp(lstate(ε1)).
In this case, the enabling of out′(x)Rec in supp(lstate(ε2)) cannot be deduced by looking
at the precondition of fix − bvalTrans of Trans and using R. If Trans.inval = ⊥ and
Rec.inval = ⊥, then by Property 1a and Property 1b, we have Funct .inval(Trans) = ⊥ and
Funct .inval(Rec) = ⊥, and hence out′(x)Rec is disabled in supp(lstate(ε2)). However if it is
not the case that Trans.inval = ⊥ and Rec.inval = ⊥ Property 1a and Property 1b are not
sufficient to determine whether out′(x)Rec is enabled or disabled in supp(lstate(ε2)).
First suppose that out′(x)Rec is disabled in supp(lstate(ε2)). Let ε′′2 = apply(ε2, out′(x)Rec).
We know by Definition 3.3 that ε′′2 = ε2. We can show that fix − bvalTrans is disabled in
supp(lstate(ε′′2)). This follows from Properties 1f,1h,1o,1a,1d,1i, since the negation of any of
the preconditions of fix−bvalTrans in Trans, implies the negation of one of the preconditions
of fix− bvalTrans in TR1 . Then we can show Property 1 and trace distibution equivalence
condition by letting I be the singleton index {1}, as in the first case for choose−randomtdpp.
Now suppose that out′(x)Rec is enabled in supp(lstate(ε2)). Let ε′′2 = apply(ε2, out′(x)Rec).
We can show that fix − bvalTrans is disabled in supp(lstate(ε′′2)). Consider any state
u′′ ∈ supp(lstate(ε′′2)). Choose u ∈ supp(lstate(ε2)) such that u′′ ∈ supp(µu) where
(u, out′(x)Rec , µu) ∈ DInt1‖Env . Choose any s ∈ supp(lstate(ε1)). By applying Proper-
ties 1f,1h,1o,1a,1d,1i to s and u, we can show that the negation of any of the preconditions of
fix− bvalTrans in Trans, implies the negation of one of the preconditions of fix− bvalTrans

in TR1 . Note that we do not make use of TR1 .inval(Trans) in showing this, which is the
only variable that may be updated by out′(x)Rec in moving from ε2 to ε′′2 .
Next, we define the probability measures. Let I be the singleton index set {1}, let p be the
Dirac measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2. The only part of Property 1 that mentions
u′.TR1 .inval(Trans) is 1c; thus, to see that Property 1 holds for s′ and u′ (and hence for
ε′1 and ε′2), it suffices to show that Property 1c holds for s′ and u′.
So, suppose that s′.Rec.outval 6= ⊥. Then s′.Rec.outval = s.Rec.outval, which is equal to
s.Trans.inval(s.Rec.inval) by Lemma 9b.
This in turn equals u.Funct .inval(Trans)(u.Funct .inval(Rec)) by Properties 1a and 1b for s
and u, which is equal to u′.Funct .inval(Trans)(u′.Funct .inval(Rec)).
Since we know that u′.TRone.inval(Trans) 6= ⊥, Lemma 10.3 implies that u′.TRone.inval(Trans) =
u′.Funct .inval(Trans)(u′.Funct .inval(Rec)).
Combining all the equations, we obtain that s′.Rec.outval = u′.TRone.inval(Trans), as
needed for 1c.
The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

7. T = {send(1, ∗)Trans}.
We first show that T is uniformly enabled or disabled in supp(lstate(ε1))∪ supp(lstate(ε2)). This
is analogous to case for T = choose − randtdpp. We use Property 1f to show that Trans.tdpp =
TR1 .tdpp for all states in supp(lstate(ε1)) and supp(lstate(ε2)).

(a) T is disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Identical to the corresponding part in the case for T = choose− randtdpp.
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(b) T is enabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
First, we show that there is a unique action a ∈ T that is enabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)). We know by Property 1f that variables Trans.tdpp and
TR1 .tdpp have the same unique value in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Since the parameter f in send(1, f)Trans is defined to be Trans.tdpp.funct we conclude that
the action send(1,Trans.tdpp.funct) is the unique action in T that is enabled in every state
in supp(lstate(ε1))∪supp(lstate(ε2)). We use a as a shorthand for send(1,Trans.tdpp.funct)
in the rest of the proof for this case.
Let I be the singleton index set {1}, let p be the Dirac measure on 1, and let ε′11 = ε′1 and
ε′21 = ε′2. To show that (ε′1, ε

′
2) ∈ R, we establish Property 1 of R for ε′1 and ε′2, and show

trace distribution equivalence for ε′1 and ε′2. To establish Property 1, consider any state s′ ∈
supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)). Let s be any state in supp(lstate(ε1)) such that
s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env . Similarly, let u be any state in supp(lstate(ε2))
such that u′ ∈ supp(µu) where (u, a, µu) ∈ DInt1‖Env .
By definitions of RS and Int1 we know that application of T updates only Adv .messages
in the RS system and Adv ′.messages in the Int1 system. By Property 1l, u.Adv ′ = s.Adv .
It is obvious that u′.Adv ′ = s′.Adv and that Property 1l holds, since Adv and Adv ′ are the
same automaton (except for renaming of the out′ actions). Since no component other than
Adv .messages and Adv ′.messages is updated, we conclude that Property 1 holds.
The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

8. T = {send(2, ∗)Rec}.
We first show that T is uniformly enabled or disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
This is analogous to case for T = choose − randomtdpp. We use Property 1h to show that
Rec.zval = TR1 .zval for all states in supp(lstate(ε1)) and supp(lstate(ε2)).

(a) T is disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Identical to the corresponding part in the case for T = choose− randomtdpp.

(b) T is disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Next, we show that there is a unique action a ∈ T that is enabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)). We know by Property 1h that variables Rec.zval and
TR1 .zval have the same unique value in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)),
and there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1)) ∪
supp(lstate(ε2)). Note that here a is send(2, z)Rec for a fixed value of z.
The rest is identical to the proof for T = {send(1, f)Trans}.

9. T = {send(3, ∗)Trans}.
We first show that T is uniformly enabled or disabled in supp(lstate(ε1))∪ supp(lstate(ε2)). This
is analogous to case for T = choose − randtdpp. We use Property 1i to show that Trans.bval =
TR1 .bval for all states in supp(lstate(ε1)) and supp(lstate(ε2)).

(a) T is disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Identical to the corresponding part in the case for T = choose− randomtdpp.

(b) T is enabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
We show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)), arguing as in the case for T = {send(1, f)Trans}. Here, the unique action
is determined by fixing the value of parameter b to the value of variables Trans.bval and
TR1 .bval, which is the same in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)). The rest
of the proof is identical to the proof for T = {send(1, f)Trans}.

10. T = {out′(∗)Rec}. We first show that the corresponding task {out′′(x)} is enabled in every state in
supp(lstate(ε2)) if and only if {out′(x)} is enabled in every state in supp(lstate(ε1)). Fix any state
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u ∈ supp(lstate(ε2)). Note that {out′′(x)Rec} is an output task of TR1 in the Int1 system. Choose
any s ∈ supp(lstate(ε1)). First, suppose T is enabled in s. Since T is an output task of Rec in the
RS system, T is enabled in s.Rec and therefore s.Rec.outval 6= ⊥. Then by Properties 1c and 1p
u.TR1 .inval(Trans) 6= ⊥ and u.TR1 .receivedb 6= ⊥. So, {out′′(x)Rec} is enabled in u.TR1 , and
hence in u, as needed. Now suppose that T is disabled in s. This implies Rec.outval = ⊥. By
Property 1p, we get u.receivedb = ⊥ which is sufficient to show that out′′(x)Rec is disabled in u,
as needed.

(a) T is disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Identical to the corresponding part in the case for T = choose− randomtdpp.

(b) T is enabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Let I be the singleton index set {1}, let p be the Dirac measure on 1, and let ε′11 = ε′1 and
ε′21 = ε′2. In showing Property 1, we use the fact that applications of T in the RS system
and {out′′(x)Rec} in the Int1 system update only the outval(Rec) state variables in both
Adv and Adv ′, which preserves Property 1.
The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

11. T is a task of Env .
Claim 2 implies that T is uniformly enabled or disabled in every state in supp(lstate(ε1)) ∪
supp(lstate(ε2)). If T is disabled, we simply define I = {1}, ε′11 = ε1, ε′21 = ε2, and we have that
ε′11 R ε′21 since ε1 R ε2. Suppose now that T is enabled in in every state in supp(lstate(ε1)) ∪
supp(lstate(ε2)). Claim 2 now implies that there is a unique action a enabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)) and that there is a unique transition of Env from qEnv with
action a; let trEnv = (qEnv , a, µEnv ) be this transition. We distinguish several cases, according to
the possible values for a.

(a) a is an input action of Trans. This means that a = in(x)Trans for some fixed x.
We define the probability measures needed to show the step correspondence. Suppose that
supp(µEnv ) is the set {qj : j ∈ I} of states of Env , where I is a countable index set. Let p
be the probability measure on the index set I such that, for each j ∈ I, p(j) = µEnv (qj). For
each j ∈ I, we define probability measure ε′1j as follows. The support supp(ε′1j) is the set of
execution fragments α ∈ supp(ε′1) such that lstate(α).Env = qj . For each α ∈ supp(ε′1j) of
the form α′ a qj , let ε′1j(α) = ε1(α′). We define ε′2j analogously from ε′2.
Now fix j ∈ I; it remains to show that (ε′1j , ε

′
2j) ∈ R. To do this, we establish Property 1 of

R for ε′1j and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .
To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)).
Let s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env .
Similarly, let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈
DInt1‖Env .
If s.Trans.inval 6= ⊥ then by Properties 1a and 1d, u.Funct .inval(Trans) 6= ⊥ and
u.TR1 .inval2(Trans) 6= ⊥. In this case, task T has no effect on any component other than
Env , in either system. Since s′.Env = qj = u′.Env by definition, it is easy to see that
Property 1 holds for s′ and u′, and hence, for ε′1 and ε′2.
Now suppose that s.Trans.inval = ⊥. Then again by Properties, 1a and 1d u.Funct .inval(Trans)
= u.TR1 .inval2(Trans) = ⊥. Then by the definitions of RS and Int1 , we know that applica-
tion of T updates Trans.inval in the RS system, and Funct .inval(Trans) and TR1 .inval2(Trans)
in the Int1 system. It also updates the state of Env in both systems.
We know by Property 1a that u.Funct .inval(Trans) = s.Trans.inval, by 1d that
u.TR1 .inval2(Trans) = s.Trans.inval, and by 1m that u.Env = s.Env . By the effects of T in
definitions of Trans, Funct , and TR1 , we know that u′.Funct .inval(Trans) = s′.Trans.inval,
and u′.TR1 .inval2(Trans) = s′.Trans.inval; hence, Properties 1a and 1d hold for s′ and u′.
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We also know that 1m holds by definition of ε′1j and ε′2j . Since no component other than
Trans.inval and Env in the RS system, and Funct .inval(Trans), TR1 .inval2(Trans), and
Env in the Int1 system, is updated by the application of T , we conclude that Property 1
holds for s′ and u′, and hence, for ε′1 and ε′2.
The fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1j and ε′2j .

(b) a is an input action of Rec and Adv . This means that a = in(i)Rec for some fixed i.
Here, T is shared between Env and Adv in both systems. In addition, it is an input to
Rec in the RS system and to TR1 in the Int1 system. We must consider the probabilistic
branching of Adv as well as Env in this case.
Recall from Claim 1 that the state of Adv or Adv ′ is the same in all sates in supp(lstate(ε1))∪
supp(lstate(ε2)), and we let qAdv denote this state. Claim 2 states that there is a unique
transition of Adv with action a from qAdv . Let trAdv = (qAdv , a, µAdv ) be this transition.
Next we define the probability measures needed to show the step correspondence. Suppose
that supp(µEnv ×µAdv ) is the set {(qj1, qj2) : j ∈ I} of pairs of states, where I is a countable
index set. Let p be the probability measure on the index set I such that, for each j ∈ I,
p(j) = (µEnv × µAdv )(q1j , q2j). For each j ∈ I, we define probability measure ε′1j as follows.
The supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that lstate(α).Env = q1j

and lstate(α).Adv = q2j . For each α ∈ supp(ε′1j) of the form α′ a q, let ε′1j(α) = ε1(α′). We
construct ε′2j analogously from ε′2.
The rest of the proof for this case follows the proof for a = in(x)Trans . The only difference
is that in showing Property 1 for ε′1j and ε′2j , for a fixed j, we use the fact that applica-
tion of T affects only Rec.inval, Adv , and Env in the RS system, and Funct .inval(Rec),
TR1 .inval(Rec), Adv ′, and Env in the Int1 system, and use Properties 1b, 1e, 1l and 1m,
instead of 1a, 1d and 1m.

(c) a is an input of Adv but not an input of Rec.
Claim 2 implies that there is a unique transition of Adv with action a from qAdv . Let
trAdv = (qAdv , a, µAdv ) be this transition.
Suppose that supp(µEnv × µAdv ) is the set {(qj1, qj2) : j ∈ I} of pairs of states, where I is
a countable index set. Let p be the probability measure on the index set I such that, for
each j ∈ I, p(j) = (µEnv × µAdv )(q1j , q2j). For each j ∈ I, we define probability measure ε′1j

as follows. The support supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that
lstate(α).Env = q1j and lstate(α).Adv = q2j . For each α ∈ supp(ε′1j) of the form α′ a q, let
ε′1j(α) = ε1(α′). We construct ε′2j analogously from ε′2.
In the rest of the proof we proceed as for a = {in(x)Trans}. The only difference is that in
showing Property 1 for ε′1j and ε′2j , for a fixed j, we use the fact that application of T affects
only the states of Adv , Adv ′, and Env (by definition of the RS and Int1 systems) and use
Properties 1l and 1m.

(d) a is an internal action of Env or an output action of Env that is not an input of Trans, Rec,
or Adv .
To show the step correspondence, we proceed as for a = in(x)Trans . The only difference is
that in showing Property 1 for ε′1j and ε′2j , for a fixed j, we use the fact that application of
T affects only the state of Env , and use Property 1m.
For each index j in the decomposition, the fact that tdist(ε′1j) = tdist(ε′2j) follows from the
fact that tdist(ε1) = tdist(ε2) and the definitions of ε′1j and ε′2j .

12. T is a task of Adv .

Claim 2 implies that T is either simultaneously enabled or disabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)). If T is disabled, we simply define I = {1}, ε′11 = ε1, ε′21 = ε2, and we have that
ε′11Rε′21 since ε1Rε2. Suppose now that T is enabled in in every state in supp(lstate(ε1)) ∪
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supp(lstate(ε2)). Claim 2 now implies that there is a unique action a enabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)) and that there is a unique transition of Adv from qAdv with
action a; let trAdv = (qAdv , a, µAdv ) be this transition. We distinguish several cases, according to
possible values for a.

(a) T = {out(∗)Rec} for a fixed x.
Since T is an output task of Adv , Claim 2 implies that T is enabled in every state in
supp(lstate(ε2)), that there is a unique action a ∈ T that is enabled in every state in
supp(lstate(ε1))∪supp(lstate(ε2)), and that there is a unique transition trAdv = (qAdv , a, µAdv )
of Adv from qAdv with action a. (Here µAdv is a Dirac distribution.) Also, by next-transition
determinism, it follows that there is a unique transition of Env with action a from qEnv . Let
trEnv = (qEnv , a, µEnv ) be this transition.
To show the step correspondence, we proceed as for the case where T is a task of Env which
consists of the action a = in(x)Trans , decomposing the measures generated by the application
of T according to the resulting state in Env , and using Property 1m to show that Property
1 holds for each component measure.
For each index j in the decomposition, the fact that tdist(ε′1j) = tdist(ε′2j) follows from the
fact that tdist(ε1) = tdist(ε2) and the definitions of ε′1j and ε′2j .

(b) a is an input action of Env that is different from out(x).
Claim 2 states that the state of Env is the same in every state in supp(lstate(ε1)) ∪
supp(lstate(ε2)), let qEnv be this unique state. Also, there is a unique transition of Env
with action a from qEnv . Let trEnv = (qEnv , a, µEnv ) be this transition.
To show the step correspondence, we proceed as in proof case where T is a task of Env and
the unique action in this task is an input of Adv . using Properties 1l and 1m.
For each index j in the decomposition, the fact that tdist(ε′1j) = tdist(ε′2j) follows from the
fact that tdist(ε1) = tdist(ε2) and the definitions of ε′1j and ε′2j .

(c) a is an input action of Rec.
This means that a = receive(1, f)Rec for some f , or a = receive(3, b)Rec for some f . Suppose
first that a = receive(1, f)Rec for some f . The action a is an output of Adv ′ and input of
TR1 in Int1.
The rest is similar to the proof for T = {send(1, f)Trans}. The only difference is that in
showing that Property 1 holds, we must show that Property 1n holds. We use the fact that
application of T updates only Rec.tdp in RS and TR1 .receivedtdp, and its effect is to set
these variables to a non-⊥ value if they are ⊥, and Property 1n can be easily seen to holds
in this case.
Suppose now that a = receive(3, b)Rec for some b.
The rest of the proof differs from that for T = {receive(1, f)Rec} in that in showing that
Property 1 holds, we must show that Properties 1c and 1p are preserved. Thus, consider any
state s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)). Let s be some state in supp(lstate(ε1))
such that s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env . Similarly, let u be some state in
supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DInt1‖Env .
If s′.Rec.outval 6= ⊥ from the effect of receive(3, b)Rec . Then s′.Rec.outval = s′.Trans.inval(s′.Rec.inval)
by Lemma 9b, which is equal to s.Trans.inval(s.Rec.inval).
This in turn equals u.Funct .inval(Trans)(u.Funct .inval(Rec)) by Properties 1a and 1b for s
and u. Now, s.Trans.bval 6= ⊥, by Lemma 4, so by Property 1i, u.TR1 .bval 6= ⊥. Therefore,
by Lemma 10.3, u.TRone.inval(Trans) 6= ⊥, and again by Lemma 10.3, u.TRone.inval(Trans) =
u.Funct .inval(Trans)(u.Funct .inval(Rec)). Combining the equations, we obtain s′.Rec.outval =
u.TR1 .inval(Trans). Since u′.TR1 .inval(Trans) = u.TR1 .inval(Trans), we obtain s′.Rec.outval =
u′.TR1 .inval(Trans) which shows Property 1c.
For s and u we have s.Rec.outval 6= ⊥ iff u.TR1 .receivedb 6= ⊥. Moreover by Property 1g,
we have s.Rec.yval = u.TR1 .yval. From the effects of receive(3, b)Rec actions we know that
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Property 1n is preserved.
(d) a is an input action of Trans. This means that a = receive(2, z)Trans for some z.

The rest of the proof differs from the case for T = {receive(1, f)Rec} only in showing that
Property 1 holds; here we have to show that Property 1o holds, which is easy by obesrving
that the application of T updates Trans.zval in and TR1 .receivedz in the same way.

(e) a is either an output action of Adv that is not an input action of Env , Trans, or Rec, or is
an internal action of Adv .

To show the step correspondence, we proceed as for a = in(x)Trans , in the case where T is
an output task of Env , but using Adv instead of Env . In showing Property 1 for ε′1j and ε′2j ,
for a fixed j, we use the fact that application of T affects only the state of Adv (by definition
of RS and Int1 ) and use Property 1l.
For each index j in the decomposition, the fact that tdist(ε′1j) = tdist(ε′2j) follows from the
fact that tdist(ε1) = tdist(ε2) and the definitions of ε′1j and ε′2j .

2

Proof. (Of Lemma 10.4:)
By Lemma 10.6, R is a simulation relation from RSk‖Env to Int1 k‖Env . Then Theorem 3.29 im-
plies that tdists(RSk‖Env) ⊆ tdists(Int1 k‖Env). Since Env was chosen arbitrarily, this implies (by
definition of ≤0) that RSk ≤0 Int1 k. 2

Proof. (Of Lemma 10.5:)
By Lemma 10.6, R is a simulation relation from RSk‖Env to Int1 k‖Env for which |corrtasks(ρ, T )| ≤ 2
for every ρ and T . Since that lemma holds for every k and every Env , Theorem 4.31 implies that
RS ≤neg,pt Int1 . 2

10.5 Int1 implements Int2

We show:

Lemma 10.7 Assume that Adv is a polynomial-time-bounded family of adversary automata. Then
Int1 ≤neg,pt Int2 .

In order to prove this lemma, we consider the following two task-PIOA families, SInt1 and SInt2 ,
which are subsystems of the Int1 and Int2 families respectively:

• SInt1 = hide(TR1‖Srctdpp‖Srczval, {{rand(∗)tdpp}, {rand(∗)zval}}),

• SInt2 = hide(TR2‖Srctdpp‖Srczval‖Srccval1, {{rand(∗)tdpp}, {rand(∗)zval}, {rand(∗)cval1}}).

The only difference between these two systems is in the way the bval state variable is computed: a
hard-core bit used in TR1 is replace by a random bit. This is exactly the difference between the SH
and SHR systems we defined in Section 6.3, and we stated that SH ≤neg,pt SHR (as definition of
hard-core predicates).

So, in order to use this relation, we define a new polynomial time-bounded task-PIOA family Ifc′

which we compose to SH and SHR in order to mimic SInt1 and SInt2 respectively.

10.5.1 Using hard-core predicate definition

We define new SHOT ′ and SHROT ′ families.

Definition 10.8 The task-PIOA family SHOT ′ is defined as

hide(SH‖Srcyval′‖Ifc′, {{rand(∗)tdp}, {rand(∗)zval}, {rand(∗)bval}, {rand(∗)yval′}}),

where
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• SH is given in Def. 6.2,

• Srcyval′ = {(Srcyval′)k}k∈N, where each (Srcyval′)k is isomorphic to Src(Dk),

• Ifc′ is defined in Fig. 18 and 19.

Ifc′(Tdp, D) :

Signature:
Input:

rand(f)tdp, f ∈ Tdp
rand(z)zval, z ∈ D
rand(y)yval′ , y ∈ D
rand(b)bval, b ∈ {0, 1}
in(x)Trans , x ∈ {0, 1} → {0, 1}
in(i)Rec , i ∈ {0, 1}
out′(x)Rec , x ∈ {0, 1}
receive(1, f)Rec , f ∈ Tdp
receive(2, z)Trans , z ∈ ({0, 1} → D)
receive(3, b)Rec , b ∈∈ {0, 1} → {0, 1}

Output:
send(1, f)Trans , f ∈ Tdp
send(2, z)Rec , z ∈ {0, 1} → D
send(3, b)Trans , b ∈ {0, 1} → {0, 1}
out′′(x)Rec , x ∈ {0, 1}

Internal:
fix− zvalRec

fix− bvalTrans

State:
fval ∈ (Tdp ∪ ⊥), initially ⊥,
zval′ ∈ (D ∪ ⊥), initially ⊥
yval′ ∈ (D ∪ ⊥), initially ⊥
zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
bval′ ∈ {0, 1,⊥}, initially ⊥
bval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
inval(Trans), inval(Rec) ∈ {0, 1,⊥}, initially ⊥
inval2(Trans) ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
receivedtdp ∈ {⊥,>}, initially ⊥
receivedz ∈ {⊥,>}, initially ⊥
receivedb ∈ {⊥,>}, initially ⊥

Figure 18: Interface, Ifc′(Tdp,D) (Part I)

Definition 10.9 The task-PIOA family SHROT ′ is defined as

hide(SHR‖Srcyval′‖Ifc′, {{rand(∗)tdp}, {rand(∗)zval}, {rand(∗)bval}, {rand(∗)yval′}}),

where SHR is given in Def. 6.3 while Srcyval′ and Ifc′ are as in Def. 10.8.

Given these two definitions, we have:

Lemma 10.10 SHOT ′ ≤neg,pt SHROT ′.

Proof. By Definition 6.4, SH ≤neg,pt SHR. The task-PIOA families Ifc′ and Srcyval′ are polynomial-
time-bounded. Therefore, since the ≤neg,pt relation is preserved when the related automata are com-
posed with polynomial-time-bounded task-PIOA families (Lemma 4.29),

SH‖Ifc′‖Srcyval′ ≤neg,pt SHR‖Ifc′‖Srcyval′ .

Now, if we define U = {{rand(∗)tdp}, {rand(∗)zval}, {rand(∗)bval}, {rand(∗)yval′}}, we have that

hide(SH‖Ifc′‖Srcyval′ , U) ≤neg,pt hide(SHR‖Ifc′‖Srcyval′ , U),

since hiding output tasks of polynomial-time-bounded task-PIOA families preserves the ≤neg,pt relation
(Lemma 4.30).

This is equivalent to say that SHOT ′ ≤neg,pt SHROT ′, as needed. 2

70



Ifc′(Tdp, D) :

Transitions:

out′(x)Rec

Effect:
if inval(Trans) = ⊥ then inval(Trans) := x

in(i)Rec

Effect:
if inval(Rec) = ⊥ then inval(Rec) := i

in(x)Trans

Effect:
if inval2(Trans) = ⊥ then inval2(Trans) := x

rand(f)tdp

Effect:
if fval = ⊥ then fval := f

rand(y)yval′

Effect:
if yval′ = ⊥ then yval′ := y

rand(z)zval

Effect:
if zval′ = ⊥ then zval′ := z

rand(b)bval

Effect:
if bval′ = ⊥ then bval′ := b

receive(1, f)Rec

Effect:
if receivedtdp = ⊥ then receivedtdp := >

receive(2, z)Trans

Effect:
if receivedz = ⊥ then receivedz := >

receive(3, b)Rec

Effect:
if yval 6= ⊥ and receivedb = ⊥

then receivedb := >

fix− zvalRec

Precondition:
yval′, zval′, inval(Rec), fval 6= ⊥
receivedtdp 6= ⊥
zval = ⊥

Effect:
zval(inval(Rec)) := fval(yval′)
zval(1− inval(Rec)) := zval′

fix− bvalTrans

Precondition:
bval′, yval′, zval 6= ⊥
inval(Trans), inval2(Trans), inval(Rec) 6= ⊥
receivedz 6= ⊥
bval = ⊥

Effect:
bval(inval(Rec)) :=

B(yval′)⊕ inval(Trans)
bval(1− inval(Rec)) :=

bval′ ⊕ inval2(Trans)(1− inval(Rec))

out′′(x)Rec

Precondition:
x = inval(Trans) 6= ⊥, receivedb 6= ⊥

Effect:
none

send(1, f)Trans

Precondition:
tdpp 6= ⊥, f = tdpp.funct

Effect:
none

send(2, z)Rec

Precondition:
z = zval 6= ⊥

Effect:
none

send(3, b)Trans

Precondition:
b = bval 6= ⊥

Effect:
none

Tasks: {send(1, ∗)Trans}, {send(2, ∗)Rec}, {send(3, ∗)Trans}, {out′′(∗)Rec}, {fix− zvalRec}, {fix− bvalTrans}.

Figure 19: Interface, Ifc′(Tdp,D) (Part II)
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Some invariants will be helpful in the later proofs:

Lemma 10.11 In all reachable states of H:

1. If H.zval 6= ⊥ then H.fval 6= ⊥, H.yval 6= ⊥ and H.zval = H.fval(H.yval).

2. If H.bval 6= ⊥ then H.yval 6= ⊥ and H.bval = B(H.yval).

Lemma 10.12 In all reachable states of Ifc′:

1. If Ifc′.zval 6= ⊥ then Ifc′.yval′ 6= ⊥, Ifc′.fval 6= ⊥, and Ifc′.zval′ 6= ⊥.

Lemma 10.13 In all reachable states of SHOT ′:

1. Ifc′.fval = H.fval.

2. If Ifc′.fval 6= ⊥ then Ifc′.fval = Srctdp.chosenval.

3. If H.yval 6= ⊥ then H.yval = Srcyval.chosenval.

4. If Ifc′.yval′ 6= ⊥ then Ifc′.yval′ = Srcyval′ .chosenval.

5. If Ifc′.zval′ 6= ⊥ then Ifc′.zval′ = H.zval.

6. If Ifc′.bval′ 6= ⊥ then Ifc′.bval′ = H.bval.

Lemma 10.14 In all reachable states of SHROT ′:

1. If Ifc′.fval 6= ⊥ then Ifc′.fval = Srctdp.chosenval.

2. If Ifc′.zval′ 6= ⊥ then Ifc′.zval′ = Srczval.chosenval.

3. If Ifc′.yval′ 6= ⊥ then Ifc′.yval′ = Srcyval′ .chosenval.

4. If Ifc′.bval′ 6= ⊥ then Ifc′.bval′ = Srcbval.chosenval.

10.5.2 The SInt1 subsystem implements SHOT ′

Now, using mappings of the sort we used in Section 10.4.2, we show that SInt1 ≤0 SHOT ′ and, in the
next subsection, we will prove that SHROT ′ ≤0 SInt2 . Finally, in Section 10.5.4, we will prove that
Int1 ≤neg,pt Int2 by using the properties of the mappings we defined and the different properties of the
≤neg,pt relation.

In order to prove SInt1 ≤0 SHOT ′, we show that SInt1 k ≤0 SHOT ′k and SHROT ′k ≤0 SInt2 k for
every k. In the rest of this section, we remove the mention of k everywhere.

Fix any environment Env ′ for both SInt1 and SHOT ′. We define a simulation relation R from
SInt1‖Env ′ to SHOT ′‖Env ′.

Let ε1 and ε2 be discrete probability measures on finite execution fragments of SInt1‖Env ′ and
SHOT ′‖Env ′, respectively, satisfying the trace distribution equivalence and state equivalence proper-
ties. Then we say that (ε1, ε2) ∈ R if and only if all of the following hold:

For every s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)):

1. u.Ifc′.inval(Trans) = s.TR1 .inval(Trans).

2. u.Ifc′.inval2(Trans) = s.TR1 .inval2(Trans).

3. u.Ifc′.inval(Rec) = s.TR1 .inval(Rec).

4. if s.Srctdpp.chosenval = ⊥ then u.Srctdp.chosenval = ⊥.

5. if s.Srctdpp.chosenval 6= ⊥ then u.Srctdp.chosenval = s.Srctdpp.chosenval.funct.
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6. if s.TR1 .tdpp 6= ⊥ then u.Ifc′.fval = s.TR1 .tdpp.funct else u.Ifc′.fval = ⊥.

7. if s.Srcyval.chosenval = ⊥ then u.Srcyval.chosenval = u.Srcyval′ .chosenval = ⊥

8. if s.Srcyval.chosenval 6= ⊥ then lstate(ε2).Srcyval.chosenval and lstate(ε2).Srcyval′ .chosenval are
the uniform distribution on D.

9. s.TR1 .yval 6= ⊥ iff u.H.yval 6= ⊥ and u.Ifc′.yval′ 6= ⊥.

10. if s.TR1 .zval = ⊥ then u.Ifc′.zval = ⊥ else

• u.Ifc′.zval(u.Ifc′.inval(Rec)) = s.TR1 .zval(s.TR1 .inval(Rec)) and
• u.Ifc′.zval(1− u.Ifc′.inval(Rec)) = s.TR1 .zval(1− s.TR1 .inval(Rec)).

11. if s.TR1 .bval = ⊥ then u.Ifc′.bval = ⊥ else

• u.Ifc′.bval(u.Ifc′.inval(Rec)) = s.TR1 .bval(s.TR1 .inval(Rec)) and
• u.Ifc′.bval(1− u.Ifc′.inval(Rec)) = s.TR1 .bval(1− s.TR1 .inval(Rec)).

12. u.Ifc′.receivedtdp = s.TR1 .receivedtdp.

13. u.Ifc′.receivedz = s.TR1 .receivedz.

14. u.Ifc′.receivedb = s.TR1 .receivedb.

15. u.Env ′ = s.Env ′.

Lemma 10.15 The relation R defined above is a simulation relation from SInt1‖Env′ to SHOT ′‖Env′.
Furthermore, for each step of SInt1‖Env′, the step correspondence yields at most three steps of
SHOT ′‖Env′, that is, there is a mapping corrtasks that can be used with R such that, for every
ρ, T , |corrtasks(ρ, T )| ≤ 3.

Proof. We prove that R is a simulation relation from SInt1‖Env′ to SHOT ′‖Env′ using the mapping
corrtasks(R∗

SInt1‖Env ′ ×RSInt1‖Env ′)→ R∗
SHOT ′‖Env ′ , which is defined as follows:

For any (ρ, T ) ∈ (R∗
SInt1‖Env ′ ×RSInt1‖Env ′):

• If T ∈ {{out′′(∗)Rec}, {send(1, ∗)Trans}, {send(2, ∗)Rec}, {send(3, ∗)Trans}} then corrtasks(ρ, T ) =
T .

• If T is an output or internal task of Env ′, then corrtasks(ρ, T ) = T .

• If T = {choose− randtdpp} then corrtasks(ρ, T ) = {choose− randtdp}.

• If T = {choose− randyval} then corrtasks(ρ, T ) = {choose− randyval}{choose− randyval′}.

• If T = {rand(∗)tdpp} then corrtasks(ρ, T ) = {rand(∗)tdp}.

• If T = {rand(∗)yval} then corrtasks(ρ, T ) = {rand(∗)yval}{rand(∗)yval′}.

• If T = {fix− zvalRec} then corrtasks(ρ, T ) = {fix− zval}{rand(∗)zval}{fix− zvalRec}.

• If T = {fix− bvalTrans} then corrtasks(ρ, T ) = {fix− bval}{rand(∗)bval}{fix− bvalTrans}.

We prove that R satisfies the two conditions in Lemma 3.31.
Start condition: It is obvious that the Dirac measures on execution fragments consisting of the unique
start states s and u of SInt1‖Env ′ and SHOT ′‖Env ′, respectively, are R-related: all properties of R
holds because the state components of s and u on which R depends are all ⊥.
Step condition: Suppose (ε1, ε2) ∈ R and T is a task of SInt1‖Env ′.

Let ε′1 = apply(ε1, T ) and ε′2 = apply(ε2, corrtasks([lstate(ε1)], T )).
The proof follows the same outline as that of Lemma 10.6. Identical versions of Claim 1 and Claim 2

in that proof carry over for Env′ to this case. We again consider cases based on the values of T .
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1. T = {out′′(∗)Rec}.
Property 1 and Property 14 of R guarantee that T is uniformly enabled or disabled in all states
in supp(lstate(ε1)) ∪ supp(lstate(ε2)).

If T is uniformly disabled, then this case is similar to the corresponding one in the treatment of
the {choose− randtdpp}-task in Lemma 10.6.

Suppose now that T is uniformly enabled in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Property 1 implies that there is only one action a enabled in every state of supp(lstate(ε1)) ∪
supp(lstate(ε2)). We distinguish two cases, according to possible environments Env ′.

(a) a is not an input action of Env ′.
The probability measures for this case are trivial: Let I be the singleton index set {1}, let
p be the Dirac measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2. To show that (ε′1, ε

′
2) ∈ R,

we observe that executing a does not change any state variable in SInt1‖Env ′. The trace
distribution equivalence for ε′1 and ε′2 follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

(b) a is an input action of Env ′. Claim 1 states that the state of Env ′ is the same in all states
in supp(lstate(ε1)) ∪ supp(lstate(ε2)). Let qEnv ′ be this state, and trEnv ′ = (qEnv ′ , a, µEnv ′)
be the unique transition with action a from qEnv ′ .
Suppose that supp(µ′Env ) is the set {qj : j ∈ I} of states of Env ′, where I is a countable
index set. Let p be the probability measure on the index set I such that, for each j ∈ I,
p(j) = µ′Env (qj). For each j ∈ I, we define probability measure ε′1j as follows. The support
supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that lstate(α).Env ′ = qj . For
each α ∈ supp(ε′1j) of the form α′ a qj , let ε′1j(α) = ε1(α′). We define ε′2j analogously from
ε′2.
Now, we see that (ε′1j , ε

′
2j) ∈ R because the only modified state variable when applying a

are those of Env ′, our definition of ε′1j and ε′2j keeps Property 15 true, and the fact that
tdist(ε′1j) = tdist(ε′2j) follows from the fact that tdist(ε1) = tdist(ε2) and the definitions of
ε′1j and ε′2j .

2. T = {send(1, ∗)Trans}.
Property 6 of R guarantees that T is uniformly enabled or disabled in all states in supp(lstate(ε1))∪
supp(lstate(ε2)). The rest of this case can be treated in the same way as the previous one.

3. T = {send(2, ∗)Rec}.
Property 10 of R guarantees that T is uniformly enabled or disabled in all states in supp(lstate(ε1))∪
supp(lstate(ε2)). The rest of this case can be treated in the same way as the previous one.

4. T = {send(3, ∗)Trans}.
Property 11 of R guarantees that T is uniformly enabled or disabled in all states in supp(lstate(ε1))∪
supp(lstate(ε2)). The rest of this case can be treated in the same way as the previous one.

5. T is an output or internal task of Env′.

Claim 2 implies that T is uniformly enabled or disabled in every state in supp(lstate(ε1)) ∪
supp(lstate(ε2)). If T is disabled, we simply define I = {1}, ε′11 = ε1, ε′21 = ε2, and we have
that ε′11 R ε′21 since ε1 R ε2. Suppose now that T is enabled in every state in supp(lstate(ε1)) ∪
supp(lstate(ε2)). Claim 2 now implies that there is a unique action a enabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)) and that there is a unique transition of Env from qEnv with
action a; let trEnv = (qEnv , a, µEnv ) be this transition. We distinguish several cases, according to
the possible values for a.
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(a) a = in(x)Trans for some fixed x.
This case is similar to the corresponding one in Lemma 10.6: we use the properties 2 and 15
of the definition of R.

(b) a = in(i)Rec for some fixed i.
This case is similar to the corresponding one in Lemma 10.6: we use the properties 3 and 15
of R, and check the properties 10 and 11.

(c) a = out′(x)Rec for some fixed x.
This case is similar to the previous one: we use the properties 1 and 15 of R.

(d) a = receive(1, f)Rec for some fixed f .
This case is similar to the previous one: we use the properties 12 and 15 of R.

(e) a = receive(2, z)Trans for some fixed z.
This case is similar to the previous one: we use the properties 13 and 15 of R.

(f) a = receive(3, b)Rec for some fixed b.
This case is similar to the previous one: we use the properties 9, 14 and 15 of R.

6. T = {choose− randtdpp}.
Property 4 and Property 5 of R guarantee that either T is uniformly enabled in all states in
supp(lstate(ε1)) and corrtasks(ρ, T ) is uniformly enabled in all states in supp(lstate(ε2)), or they
are uniformly disabled in all these states.

The rest of this case is similar to the corresponding one in Lemma 10.6, except that we rely on
an ordering of the elements of Tdp and Tdpp such that the j-th permutation of Tdp is equal to
the funct field of the j-th permutation pair of Tdpp.

7. T = {choose− randyval}.
Property 7 and Property 8 of R guarantee that either T is uniformly enabled in all states in
supp(lstate(ε1)) and the tasks in corrtasks(ρ, T ) are enabled in all states in supp(lstate(ε2)), or
they are uniformly disabled in all these states.

Property 7 and Property 8 of R are the only properties containing variables modified by the effect
of T and corrtasks(ρ, T ), and they remain verified after applying those tasks.

8. T = {rand(∗)tdpp}.
Property 4 and Property 5 of R guarantee that either T is uniformly enabled in all states in
supp(lstate(ε1)) and corrtasks(ρ, T ) is enabled in all states in supp(lstate(ε2)), or they are uni-
formly disabled in all these states.

Property 6 of R is the only one containing variables modified by the effect of T and corrtasks(ρ, T ),
and it remains verified after applying those tasks.

9. T = {rand(∗)yval}.
Property 7 and Property 8 of R guarantee that either T is uniformly enabled in all states in
supp(lstate(ε1)) and the tasks in corrtasks(ρ, T ) are enabled in all states in supp(lstate(ε2)), or
they are uniformly disabled in all these states.

Property 9 of R is the only one containing variables modified by the effect of T and corrtasks(ρ, T ),
and it remains verified after applying those tasks.

10. T = {fix− zvalRec}.
Properties 9, 3, 6, 12, and 10 guarantee that either T is uniformly enabled or disabled in all states
in supp(lstate(ε1)).

Suppose first that T is uniformly enabled in those states. Let u be any state in supp(lstate(ε2)).
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(a) Property 9 implies that u.H.yval 6= ⊥ and u.Ifc′.yval′ 6= ⊥.

(b) Property 3 implies that u.Ifc′.inval(Rec) 6= ⊥.

(c) Property 6 and Lemma 10.13 imply that u.Ifc′.fval = u.H.fval 6= ⊥.

(d) Property 12 implies that u.Ifc′.receivedtdp 6= ⊥.

(e) Property 10 implies that u.Ifc′.zval = ⊥.

(f) Items (a) and (c) imply that the {fix− zval}-task is enabled. After executing this task, we
have that u.H.zval 6= ⊥.

(g) Item (f) implies that the {rand(z)zval}-task is enabled. After executing this task, we have
that u.Ifc′.zval′ 6= ⊥.

(h) Items (a), (g), (b), (c), (d) and (e) imply that the {fix− zvalRec}-task is enabled.

So, all tasks in the sequence corrtasks(ρ, T ) are uniformly enabled. We can verify that ε′1Rε′2 by
using the same properties.

Suppose now that T is uniformly disabled in all states in supp(lstate(ε1)). Let s be any state in
supp(lstate(ε1)) and u be any state in supp(lstate(ε2)). We distinguish several cases, according
to the variables responsible of disabling T.

• s.TR1 .yval = ⊥. Then, by Property 9, u.H.yval = ⊥ and, by Lemma 10.13, u.H.zval = ⊥
and u.H.bval = ⊥. Therefore, the {fix−zval}, {rand(z)zval}, {fix−bval} and {rand(b)bval}
tasks are disabled. Furthermore, by Property 9, u.Ifc′.yval′ = ⊥, which implies that
the {fix − zvalRec}-task is disabled too. So, nothing happens when we apply T and
corrtasks(ρ, T ) in that case.

• s.TR1 .inval(Rec) = ⊥. In this case:

(a) The {fix−zval}-task is either uniformly enabled or disabled. If it is uniformly enabled,
the only effect of this task is to change the u.H.zval variable, which preserves R since
this variable does not appear in its definition. If it is uniformly disabled, then nothing
happens and R is preserved too.

(b) The {rand(z)zval}-task is either uniformly enabled or disabled. If it is uniformly enabled,
the only effect of this task is to change the u.Ifc′.zval′ variable, which preserves R since
this variable does not appear in its definition. If it is uniformly disabled, then nothing
happens and R is preserved too.

(c) The {fix− zvalRec}-task is always disabled, by Property 3.

• s.TR1 .tdpp = ⊥. Property 6 and Lemma 10.13 imply that u.Ifc′.fval = ⊥, u.H.fval = ⊥.
Therefore, the {fix− zval}, {rand(z)zval}, and {fix− zvalRec} tasks are disabled.

• s.TR1 .receivedtdp = ⊥. This case can be treated in the same way as the inval(Rec) = ⊥
case, if we note that Property 12 implies that u.Ifc′.receivedtdp = ⊥.

• s.TR1 .zval 6= ⊥. Property 10 and Lemma 10.13, we know that u.Ifc′.zval 6= ⊥, u.Ifc′.fval 6=
⊥, u.Ifc′.zval′ 6= ⊥, u.H.fval 6= ⊥, u.H.yval 6= ⊥. This implies that the {fix− zval} and
{rand(z)zval} tasks have no effect, and that the {fix− zvalRec} task is disabled.

11. T = {fix− bvalTrans}.
Properties 6, 10, 1, 2, 3, 13, and 11 guarantee that either T is uniformly enabled or disabled in
all states in supp(lstate(ε1)).

Suppose first that T is uniformly enabled in those states. Let u be any state in supp(lstate(ε2)).

(a) Property 10 and Lemma 10.13 imply that u.Ifc′.zval 6= ⊥, u.Ifc′.yval′ 6= ⊥, and u.Ifc′.bval′ 6=
⊥.

(b) Properties 1, 2 and 3 imply that u.Ifc′.inval(Trans), u.Ifc′.inval2(Trans), u.Ifc′.inval(Rec) 6=
⊥.
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(c) Property 13 implies that u.Ifc′.receivedz 6= ⊥.

(d) Property 11 implies that u.Ifc′.bval = ⊥.

(e) Items (a) implies that the {fix − bval}-task is enabled. After executing this task, we have
that u.H.bval 6= ⊥.

(f) Item (e) implies that the {rand(b)bval}-task is enabled. After executing this task, we have
that u.Ifc′.bval′ 6= ⊥.

(g) Items (f), (a), (b), (c) and (d) imply that the {fix− bvalRec}-task is enabled.

So, all tasks in the sequence corrtasks(ρ, T ) are uniformly enabled. We can verify that ε′1Rε′2 by
using the same properties.

Suppose now that T is uniformly disabled in all states in supp(lstate(ε1)). Let s be any state in
supp(lstate(ε1)) and u be any state in supp(lstate(ε2)). We distinguish several cases, according
to the variables responsible of disabling T.

(a) s.TR1 .tdpp = ⊥. Lemma 10.3 implies that s.TR1 .zval = ⊥ too. We refer to that case.

(b) s.TR1 .zval = ⊥. Property 10 implies that u.Ifc′.zval = ⊥.

i. The {fix − bval}-task is either uniformly enabled or disabled (by Property 9). If it
is uniformly enabled, the only effect of this task is to change the u.H.bval variable,
which preserves R since this variable does not appear in its definition. If it is uniformly
disabled, then nothing happens and R is preserved too.

ii. The {rand(b)zval}-task is either uniformly enabled or disabled. If it is uniformly enabled,
the only effect of this task is to change the u.Ifc′.bval′ variable, which preserves R since
this variable does not appear in its definition. If it is uniformly disabled, then nothing
happens and R is preserved too.

iii. The {fix− bvalTrans} task is uniformly disabled.

(c) s.TR1 .inval(Trans) = ⊥. Idem, but using Property 1.

(d) s.TR1 .inval2(Trans) = ⊥. Idem, but using Property 2.

(e) s.TR1 .inval(Rec) = ⊥. Idem, but using Property 3.

(f) s.TR1 .receivedz = ⊥. Idem, but using Property 13.

(g) s.TR1 .bval 6= ⊥. Idem, but using Property 11.

2

10.5.3 SHROT ′ implements the SInt2 subsystem

Fix any environment Env ′ for both SHROT ′ and SInt2 . We define a simulation relation R from
SHROT ′‖Env ′ to SInt2‖Env ′.

Let ε1 and ε2 be discrete probability measures on finite execution fragments of SHROT ′‖Env ′ and
SInt2‖Env ′, respectively, satisfying the trace distribution equivalence and state equivalence properties.
Then we say that (ε1, ε2) ∈ R if and only if all of the following hold:

For every s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)):

1. u.TR2 .inval(Trans) = s.Ifc′.inval(Trans).

2. u.TR2 .inval2(Trans) = s.Ifc′.inval2(Trans).

3. u.TR2 .inval(Rec) = s.Ifc′.inval(Rec).

4. if s.Srctdp.chosenval = ⊥ then u.Srctdpp.chosenval = ⊥.

5. if s.Srctdp.chosenval 6= ⊥ then u.Srctdpp.chosenval.funct = s.Srctdp.chosenval.
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6. if s.Ifc′.fval 6= ⊥ then u.TR2 .tdpp.funct = s.Ifc′.fval else u.TR2 .tdpp = ⊥.

7. if s.Srczval.chosenval = ⊥ or s.Srcyval′ .chosenval = ⊥ then u.Srcyval.chosenval = ⊥.

8. if s.Srczval.chosenval 6= ⊥ and s.Srcyval′ .chosenval 6= ⊥ then lstate(ε2).Srcyval.chosenval is the
uniform distribution on ({0, 1} → D).

9. if s.Ifc′.zval′ = ⊥ or s.Ifc′.yval′ = ⊥ then u.TR2 .yval = ⊥ else u.TR2 .yval 6= ⊥.

10. s.Srcbval.chosenval = u.Srccval1.chosenval.

11. if s.Ifc′.bval′ = u.TR2 .cval1.

12. if s.Ifc′.zval = ⊥ then u.TR2 .zval = ⊥ else

• u.TR2 .zval(u.TR2 .inval(Rec)) = s.Ifc′.zval(s.Ifc′.inval(Rec)) and

• u.TR2 .zval(1− u.TR2 .inval(Rec)) = s.Ifc′.zval(1− s.Ifc′.inval(Rec)).

13. if s.Ifc′.bval = ⊥ then u.TR2 .bval = ⊥ else

• u.TR2 .bval(u.TR2 .inval(Rec)) = s.Ifc′.bval(s.Ifc′.inval(Rec)) and

• u.TR2 .bval(1− u.TR2 .inval(Rec)) = s.Ifc′.bval(1− s.Ifc′.inval(Rec)).

14. u.Ifc′.receivedtdp = s.TR1 .receivedtdp.

15. u.Ifc′.receivedz = s.TR1 .receivedz.

16. u.Ifc′.receivedb = s.TR1 .receivedb.

17. u.Env ′ = s.Env ′.

Lemma 10.16 The relation R defined above is a simulation relation from SHROT ′‖Env′ to SInt2‖Env′.
Furthermore, for each step of SHROT ′‖Env′, the step correspondence yields at most one step of
SInt2‖Env′, that is, there is a mapping corrtasks that can be used with R such that, for every ρ,
T , |corrtasks(ρ, T )| ≤ 1.

Proof. We prove that R is a simulation relation from SHROT ′‖Env′ to SInt2‖Env′ using the
mapping corrtasks(R∗

SHROT ′‖Env ′ ×RSHROT ′‖Env ′)→ R∗
SInt2‖Env ′ , which we define as follows:

For any (ρ, T ) ∈ (R∗
SHROT ′‖Env ′ ×RSHROT ′‖Env ′):

• If T ∈ {{out′′(∗)Rec}, {fix−zvalRec}, {fix−bvalTrans}, {send(1, ∗)Trans}, {send(2, ∗)Rec}, {send(3, ∗)Trans}}
then corrtasks(ρ, T ) = {T}.

• If T is an output or internal task of Env ′, then corrtasks(ρ, T ) = T .

• If T = {choose− randtdp} then corrtasks(ρ, T ) = {choose− randtdpp}.

• If T = {rand(∗)tdp} then corrtasks(ρ, T ) = {rand(∗)tdpp}.

• If T = {choose− randyval′} then

– if ρ does not contain {choose− randzval} then corrtasks(ρ, T ) = λ,

– else corrtasks(ρ, T ) = {choose− randyval}.

• If T = {rand(∗)yval′} then

– if {choose−randzval}, {rand(∗)zval} is a subsequence of ρ then corrtasks(ρ, T ) = {choose−
randyval},

– else corrtasks(ρ, T ) = λ.
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• If T = {choose− randzval} then

– if ρ does not contain {choose− randyval′} then corrtasks(ρ, T ) = λ,

– else corrtasks(ρ, T ) = {choose− randyval}.

• If T = {rand(∗)zval} then

– if {choose−randyval′}, {rand(∗)yval} is a subsequence of ρ then corrtasks(ρ, T ) = {choose−
randyval},

– else corrtasks(ρ, T ) = λ.

• If T = {choose− randbval} then corrtasks(S, T ) = {choose− randcval1}.

• If T = {rand(∗)bval} then corrtasks(ρ, T ) = {rand(∗)cval1}.

We show that R satisfies the two conditions in Lemma 3.31.
Start condition: It is obvious that the Dirac measures on execution fragments consisting of the unique
start states s and u of SHROT ′‖Env ′ and SInt2‖Env ′, respectively, are R-related. All properties of
R hold because the state components of s and u on which R depends are all ⊥.
Step condition: Suppose (ε1, ε2) ∈ R and ρ be a task scheduler for SInt2‖Env ′, T is a task of
SInt2‖Env ′, and let s be any state in supp(lstate(ε1)).

Let ε′1 = apply(ε1, T ) and ε′2 = apply(ε2, corrtasks(ρ, T )).
The proof follows the same outline as that of Lemma 10.6 and 10.15. Identical versions of Claim 1

and Claim 2 in that proof carry over for Env′ to this case. We again consider cases based on the values
of T .

1. T = {out′′(∗)Rec}.
We proceed as for the same task in Lemma 10.15.

2. T = {fix− zvalRec}.
Properties 9, 3, 6, 14 and 12 guarantee that either T is uniformly enabled or disabled in all states
in supp(lstate(ε1)).

Suppose first that T is uniformly enabled in those states. Let u be any state in supp(lstate(ε2)).

(a) Property 9 implies that u.TR2 .yval 6= ⊥.

(b) Property 3 implies that u.TR2 .inval(Rec) 6= ⊥.

(c) Property 6 implies that u.TR2 .tdpp 6= ⊥.

(d) Property 14 implies that u.TR2 .receivedtdp 6= ⊥.

(e) Property 12 implies that u.TR2 .zval = ⊥.

So, corrtasks(ρ, T ) is uniformly enabled. We can verify that ε′1Rε′2 by using the same properties.

The same five properties can be used to check that corrtasks(ρ, T ) is uniformly disabled when T
is uniformly disabled.

3. T = {fix− bvalTrans}
Properties 11, 9, 12, 1, 2, 3, 15 and 13 guarantee that either T is uniformly enabled or disabled
in all states in supp(lstate(ε1)).

Suppose first that T is uniformly enabled in those states. Let u be any state in supp(lstate(ε2)).

(a) Property 11 implies that u.TR2 .cval1 6= ⊥.

(b) Property 9 and Lemma 10.12 imply that u.TR2 .yval 6= ⊥.

(c) Property 12 implies that u.TR2 .zval = ⊥.
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(d) Properties 1, 2 and 3 imply that u.TR2 .inval(Trans), u.TR2 .inval2(Trans), u.TR2 .inval(Rec) 6=
⊥

(e) Property 15 implies that u.TR2 .receivedz 6= ⊥.

(f) Property 13 implies that u.TR2 .bval = ⊥.

So, corrtasks(ρ, T ) is uniformly enabled. We can verify that ε′1Rε′2 by using the same properties.

The same eight properties can be used to check that corrtasks(ρ, T ) is uniformly disabled when
T is uniformly disabled.

4. T = {send(1, ∗)Trans} We proceed as for the same task in Lemma 10.15.

5. T = {send(2, ∗)Rec} We proceed as for the same task in Lemma 10.15.

6. T = {send(3, ∗)Trans} We proceed as for the same task in Lemma 10.15.

7. T = {choose− randtdp} We proceed as for the {choose− randtdpp} task in Lemma 10.15.

8. T = {rand(∗)tdp} We proceed as for the {rand(∗)tdpp} task in Lemma 10.15.

9. T = {choose− randyval′} and {choose− randzval} 6∈ ρ

The condition on ρ implies that s.Srczval.chosenval = ⊥. Property 7 implies that T is uniformly
enabled or disabled in all states in supp(lstate(ε1)).

The condition on ρ implies that Property 7 and Property 8 remain verified after applying T .

10. T = {choose− randyval′} and {choose− randzval} ∈ ρ

The condition on ρ implies that s.Srczval.chosenval 6= ⊥. Property 7 and Property 8 imply that
T is uniformly enabled or disabled in all states in supp(lstate(ε1)).

Suppose first that T is uniformly enabled. Then, Property 7 implies that corrtasks(ρ, T ) is
uniformly enabled too. Applying T makes the condition in this property become false, and makes
the one in Property 8 become true. The effect of corrtasks(ρ, T ) guarantees that Property 8 is
verified after applying T and corrtasks(ρ, T ).

Suppose next that T is uniformly disabled. Then, Property 8 implies that corrtasks(ρ, T ) is
uniformly disabled too.

11. T = {rand(∗)yval′} and {choose− randzval}, {rand(∗)zval} is a subsequence of ρ

The condition on ρ implies that s.Ifc′zval′ 6= ⊥. Property 9 implies that T is uniformly enabled
or disabled in all states in supp(lstate(ε1)).

Suppose first that T is uniformly enabled. Then, Property 7 and the condition on ρ imply that
corrtasks(ρ, T ) is uniformly enabled too. The effect of corrtasks(ρ, T ) guarantees that Property 9
is verified after applying T and corrtasks(ρ, T ).

Suppose next that T is uniformly disabled. Then, Property 7 implies that corrtasks(ρ, T ) is
uniformly disabled too.

12. T = {rand(∗)yval′} and {choose− randzval}, {rand(∗)zval} is not a subsequence of ρ

The condition on ρ implies that s.Ifc′zval′ = ⊥. Property 9 implies that T is uniformly enabled
or disabled in all states in supp(lstate(ε1)).

Suppose first that T is uniformly enabled. Then, Property 9 remains verified after applying T .

13. T = {choose− randzval}. This case is similar to the one of the T = {choose− randyval′}-task.

14. T = {rand(∗)zval}. This case is similar to the one of the T = {rand(∗)yval′}-task.
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15. T = {choose− randbval}. This case is similar to the one of the T = {choose− randtdp}-task, but
using Property 10.

16. T = {rand(∗)bval}. This case is similar to the one of the T = {rand(∗)tdp}-task, but using
Property 11.

2

10.5.4 Int1 implements Int2

Proof. (of Lemma 10.7)
In Lemma 10.15 and 10.16, we proved that SInt1 ≤0 SHOT ′ and SHROT ′ ≤0 SInt2 . Furthermore,
the corrtasks mappings we used in these proofs only increase the length of the schedules by a constant
factor. So, we can use the soundness result of our simulation relation given in Thm. 4.31 to deduce that
SInt1 ≤neg,pt SHOT ′ and SHROT ′ ≤neg,pt SInt2

Now, since SHOT ′ ≤neg,pt SHROT ′ (see Lemma 10.10) and since the ≤neg,pt implementation
relation is transitive (see Lemma 4.28), we obtain SInt1 ≤neg,pt SInt2 .

Now, by composing SInt1 and SInt2 with the polynomial-time bounded task-PIOA families Adv
and Funct , and using Lemma 4.29, we obtain:

Funct‖Adv‖SInt1 ≤neg,pt Funct‖Adv‖SInt2 .

Now, coming back to the definitions of SInt1 and SInt1 , we observe that this is equivalent to saying
that:

hide(Funct‖Adv‖TR1‖Srctdpp‖Srczval, {{rand(∗)tdpp}, {rand(∗)zval}})
≤neg,pt hide(Funct‖Adv‖TR2‖Srctdpp‖Srczval‖Srccval1, {{rand(∗)tdpp}, {rand(∗)zval}, {rand(∗)cval1}})

or, in other words, Int1 ≤neg,pt Int2 , as needed. 2

10.6 Int2 implements SIS

We show:

Lemma 10.17 For every k, Int2 k ≤0 SISk.

We prove Lemma 10.17 by choosing an arbitrary environment Env for Int2 k and SISk, establishing
a simulation relation from Int2 k‖Env to SISk‖Env , and appealing to Theorem 3.29, the soundness
result for simulation relations.

The only differences between Int2 and SIS are that Int2 uses TR2 and Srccval1 whereas SIS uses
TR and Srcbval1. The key difference here is that TR2 calculates the bval value for the non-selected
index as the ⊕ of a random cval1 bit and the real input bit, whereas TR chooses it randomly (using
bval1). Either way, it’s a random bit.

We also show:

Lemma 10.18 Int2 ≤neg,pt SIS.

10.6.1 State correspondence

Here we define the correspondence R from the states of Int2‖Env to states of SIS‖Env , which we will
show to be a simulation relation in Section 10.6.2.

Let ε1 and ε2 be discrete probability measures on finite execution fragments of Int2 and SIS ,
respectively, satisfying the following property:

1. Trace distribution equivalence: tdist(ε1) = tdist(ε2).
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Then we say that (ε1, ε2) ∈ R if and only if all of the following hold:

1. For every s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)):

(a) u.Funct = s.Funct .

(b) u.Funct .inval(Trans) = s.TR2 .inval2(Trans).

(c) u.TR.inval(Trans) = s.TR2 .inval(Trans).

(d) u.TR.inval(Rec) = s.TR2 .inval(Rec).

(e) u.TR.tdpp = s.TR2 .tdpp.

(f) u.TR.yval = s.TR2 .yval.

(g) u.TR.zval = s.TR2 .zval.

(h) If u.TR.bval 6= ⊥ then s.TR2 .cval1 6= ⊥, s.TR2 .inval(Trans) 6= ⊥, s.TR2 .inval(Rec)) 6= ⊥,
and u.TR.bval1 = s.TR2 .cval1⊕ s.TR2 .inval2(Trans)(1− s.TR2 .inval(Rec)).
That is, the high-level bval1 value is calculated as the ⊕ of the low-level cval1 value and the
transmitter’s input bit.

(i) u.TR.bval = s.TR2 .bval.

(j) u.Srctdpp = s.Srctdpp.

(k) u.Srcyval = s.Srcyval.

(l) u.Srcbval1.chosenval = s.Srccval1.chosenval.

(m) u.Adv ′ = s.Adv ′.

(n) u.Env = s.Env .

(o) u.TR.receivedtdp = TR2 .receivedtdp.

(p) u.TR.receivedz = TR2 .receivedz.

(q) u.TR.receivedb = TR2 .receivedb.

2. For ε1 and ε2, if for every u ∈ supp(lstate(ε2)) u.TR.bval = ⊥, then one of the following holds:

(a) For every s ∈ support(lstate(ε1)) and u ∈ support(lstate(ε2)), s.Srccval1.chosenval = u.Srcbval1.chosenval =
⊥.

(b) For every s ∈ support(lstate(ε1)) and u ∈ supp(lstate(ε2)), u.TR.bval1 = s.TR2 .cval1 = ⊥
and lstate(ε1) projected on Srccval1.chosenval and lstate(ε2) projected on Srcbval1.chosenval
is the uniform distribution on {0, 1}.

(c) lstate(ε1) projected on TR2 .cval1 is the uniform distribution on {0, 1} and lstate(ε2) pro-
jected on TR.bval1 is the uniform distribution on {0, 1}.

10.6.2 The mapping proof

Lemma 10.19 The relation R defined in Section 10.6.1 is a simulation relation from Int2‖Env to
SIS‖Env. Furthermore, for each step of Int2‖Env, the step correspondence yields at most three steps
of SIS‖Env, that is, there is a mapping corrtasks that can be used with R such that, for every ρ, T ,
|corrtasks(ρ, T )| ≤ 3.

Proof. We prove that R is a simulation relation from RS‖Env to Int1‖Env using the mapping
corrtasks : R∗

Int2‖Env ×RInt2‖Env → R∗
SIS‖Env , which is defined as follows:

For any (ρ, T ) ∈ (R∗
Int2‖Env ×RInt2‖Env ):
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• If T ∈ {{choose− randtdpp}, {rand(∗)tdpp}, {choose− randyval}, {rand(∗)yval},
{out(∗)Rec}, {out′(∗)Rec}, {out′′(∗)Rec}
{send(1, ∗)Trans}, {send(2, ∗)Rec}, {send(3, ∗)Trans}}, {fix − bvalTrans}} then corrtasks(ρ, T ) =
T .

• If T is an output or internal task of Env or Adv , then corrtasks(ρ, T ) = T .

• If T = {choose− randcval1} then corrtasks(ρ, T ) = {choose− randbval1}.

• If T = {rand(∗)cval1} then corrtasks(ρ, T ) = {rand(∗)bval1}.

We show that R satisfies the two conditions in Lemma 3.31.
Start condition: It is obvious that the Dirac measures on execution fragments consisting of the unique
start states s and u of Int2‖Env and SIS‖Env , respectively, are R-related. Property 1 holds be-
cause the state components of s and u on which R depends are all ⊥. Property 2 holds because
s.Srccval1.chosenval = u.Srcbval1.chosenval = ⊥.

Step condition: Suppose (ε1, ε2) ∈ R, ρ1 ∈ R∗Int2‖Env , ε1 is consistent with ρ1, ε2 is consistent with
full(corrtasks)(ρ1),and T is a task of Int2‖Env . Let ε′1 = apply(ε1, T ) and ε′2 = apply(ε2, corrtasks(ρ1, T )).
Claim 1: Claim 1:

1. The state of Env is the same in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)). Let qEnv denote
this state of Env .

This follows from Property 1n.

2. The state of Adv ′ is the same in all states in supp(lstate(ε1))∪ supp(lstate(ε2)). Let qAdv denote
this state of Adv ′.

This follows from Property 1m.

Claim 2:

1. If T is an output or internal task of Env , then T is either enabled or disabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)) (simultaneously). Furthermore, if T is enabled in all states in
supp(lstate(ε1)) ∪ supp(lstate(ε2)), then:

(a) There is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)).
(b) There is a unique transition of Env from qEnv with action a; let trEnv = (qEnv , a, µEnv ) be

this transition.

2. If T is an output or internal task of Adv , then T is either enabled or disabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)) (simultaneously). Furthermore, if T is enabled in all states in
supp(lstate(ε1)) ∪ supp(lstate(ε2)), then:

(a) There is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)).
(b) There is a unique transition of Adv from qAdv with action a; let trAdv = (qAdv , a, µAdv ) be

this transition.

1. T = {choose− randtdpp}.
We first show that T is uniformly enabled or disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)). Fix
any pair of states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)). Task T = corrtasks(ρ1, T ) is
enabled in s (resp. u) iff s.Srctdpp.chosenval = ⊥ (resp. u.Srctdpp.chosenval = ⊥). Property 1j
implies that T is uniformly enabled or disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)), as needed.

(a) T is disabled in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Let I be the singleton index {1}, let p be the Dirac measure on 1, and let ε′11 = ε′1 and
ε′21 = ε′2. By Definition 3.3 we have ε′1 = ε1, ε′2 = ε2. Since ε1 R ε2, we have ε′11 R ε′21, as
needed. The trace distribution equivalence condition tdist(ε′1) = tdist(ε′2) also holds since
tdist(ε1) = tdist(ε2).
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(b) T is enabled in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
We define the probability measures needed to show the step correspondence. Let p be the
uniform probability measure on the index set I = {1 · · · r} where r = |Tdp|. That is, p(j) =
1/r for each j ∈ I. For each j ∈ I, we define probability measure ε′1j as follows. The support
supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that lstate(α).Srctdpp.chosenval
is the jth element in domain Tdp. For each α ∈ supp(ε′1j) of the form α′ choose− randtdpp q,
let ε′1j(α) = ε1(α′). We define ε′2j analogously from ε′2.
Now fix j ∈ I; we show that (ε′1j , ε

′
2j) ∈ R. To do this, we establish Property 1 of R for ε′1j

and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .
To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)).
By definitions of ε′1j and ε′2j , we know that u′.Srctdpp.chosenval = s′.Srctdpp.chosenval.
Hence, Property 1j holds. Since no component other than Srctdpp.chosenval is updated by
the application of T , we conclude that Property 1 holds for s′ and u′, and hence, for ε′1 and
ε′2.
To establish Property 2, we need to show that for ε′1j and ε′2j , if for every u′ ∈ supp(lstate(ε′2j))
u′.TR.bval = ⊥, then one of the following holds:

i. For every s′ ∈ support(lstate(ε1j)) and u′ ∈ supp(lstate(ε′2j)), s′.Srccval1.chosenval =
u′.Srcbval1.chosenval = ⊥.

ii. For every s′ ∈ support(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)), u′.TR.bval1 = s′.TR2 .cval1 =
⊥ and lstate(ε′1j) projected on Srccval1.chosenval and lstate(ε′2j) projected on Srcbval1.chosenval
is the uniform distribution on {0, 1}.

iii. lstate(ε′1j) projected on TR2 .cval1 is the uniform distribution on {0, 1} and lstate(ε′2j)
projected on TR.bval1 is the uniform distribution on {0, 1}.

Suppose for every u′ ∈ supp(lstate(ε′2j)) u′.TR.bval = ⊥. Let u be any state in supp(lstate(ε2))
such that u′ ∈ supp(µu) where (u, a, µu) ∈ DInt2‖Env . Since T does not update TR.bval and
by Property 1i, we know that for every u ∈ supp(lstate(ε2)) u.TR.bval = ⊥. Then by
Property 2 one of the following is true.

i. For every s ∈ support(lstate(ε1)) and u ∈ support(lstate(ε2)), s.Srccval1.chosenval =
u.Srcbval1.chosenval = ⊥.

ii. For every s ∈ support(lstate(ε1)) and u ∈ supp(lstate(ε2)), u.TR.bval1 = s.TR2 .cval1 =
⊥ and lstate(ε1) projected on Srccval1.chosenval and lstate(ε2) projected on Srcbval1.chosenval
is the uniform distribution on {0, 1}.

iii. lstate(ε1) projected on TR2 .cval1 is the uniform distribution on {0, 1} and lstate(ε2)
projected on TR.bval1 is the uniform distribution on {0, 1}.

We can show that if (a) holds for ε1 and ε2, then since T modifies neither Srcbval1.chosenval
nor Srccval1.chosenval Property (a) holds for ε′1j , and ε′2j as well. If Property (b) holds for
ε1 and ε2, recall that we have defined ε′1j in such a way that for each α ∈ supp(ε′1j), where α
is of the form α′ aqj , we have ε′1j(α) = ε1(α′). Since T transitions modify neither TR2 .cval1,
TR.bval1, Srcbval1.chosenval, nor Srccval1.chosenval (b) holds for s′, u′, ε′1j , and ε′2j . If (c)
holds for ε1 and ε2, we can argue as in the case for (b) to show that (c) holds for ε′1j and ε′2j .

2. T = {rand(∗)tdpp}.
We first show that T is uniformly enabled or disabled in supp(lstate(ε1))∪ supp(lstate(ε2)). This
part of the proof is identical to the case where T = choose− randtdpp.

(a) T is disabled in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
This part of the proof is identical to the case where T = choose− randtdpp.

(b) T is enabled in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
We show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)). We know by Property 1j that the state of Srctdpp is the same in all states
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in supp(lstate(ε1))∪ supp(lstate(ε2)). Let q denote this state of Srctdpp. By the next-action
determinism property for Srctdpp we know that there is a unique action a ∈ T that is enabled
in q. Since T is an output task of Srctdpp, a is also the unique action in T that is enabled in
each state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
The probability measures for this case are trivial: Let I be the singleton index set {1}, let
p be the Dirac measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2. To show that (ε′1, ε

′
2) ∈ R, we

establish Properties 1 and 2 of R for ε′1 and ε′2, and show trace distribution equivalence for
ε′1 and ε′2.
To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)).
Let s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DInt2‖Env .
Similarly, let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈
DInt2‖Env .
By definitions of Int2 and SIS we know that application of T updates TR2 .tdpp in the
Int2 system, and TR.tdpp in the SIS system. We know by Property 1e that u.TR2 .tdpp =
s.TR.tdpp. By the effects of T in TR1 and TR2 , we know that u′.TR2 .tdpp = s′.TR.tdpp;
hence, Property 1e holds. Since no component other than TR1 .tdpp in the Int2 system and
TR.tdpp in the SIS system is updated by the application of T , we conclude that Property 1
holds for s′ and u′, and hence, for ε′1 and ε′2.
To establish Property 2, we proceed as in the case for T = choose− randomtdpp.

3. T = {choose− randyval}.
This case is analogous to the case where T = {choose− randtdpp}. In the argument for enabling
we use Property 1k instead of Property 1j. In showing the step correspondence, we use the domain
{0, 1} → D instead of Tdp and also use Property 1k instead of Property 1j.

4. T = {rand(∗)yval}.
This case is analogous to the case where T = {rand(p)tdpp}. In the argument for enabling we
use Property 1k instead of Property 1j. In showing the step correspondence, we use the domain
{0, 1} → D instead of Tdp and also use Property 1f instead of Property 1e.

5. T = {choose− randomcval1}.
We show that T is uniformly enabled or disabled in supp(lstate(ε1)). We know by Property 1l that
Srccval1.chosenval has the same value in all states in supp(lstate(ε1)). If Srccval1.chosenval = ⊥
in for each s ∈ supp(lstate(ε1)) then T is enabled, otherwise it is disabled.

(a) T is disabled in supp(lstate(ε1)).
This implies for each s ∈ supp(lstate(ε1)) we have s.Srccval1.chosenval 6= ⊥. We use Prop-
erty 1l to show that the corresponding task sequence {choose − randbval1} is also disabled.
The rest of the proof is identical to the case where T = {choose− randtdpp}.

(b) T is enabled in supp(lstate(ε1)).
This implies for each s ∈ supp(lstate(ε1)) we have s.Srccval1.chosenval = ⊥. We use Prop-
erty 1l to show that the corresponding task sequence {choose − randbval1} is also enabled.
Let I be the singleton index {1}, let p be the Dirac measure on 1, and let ε′11 = ε′1 and
ε′21 = ε′2.
In showing (ε11, ε′21) ∈ R, Property 1 is easy to show, since all we do is update Src.cval1.chosenval
andSrc.bval1.chosenval to a non-⊥ value. Property 1l is preserved.
For Property 2, suppose for every u′ ∈ supp(lstate(ε′21)) u′.TR.bval = ⊥. Let u be any state
in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DInt2‖Env . Since T does not
update TR.bval and by Property 1i, we know that for every u ∈ supp(lstate(ε2)) u.TR.bval =
⊥. Then by Property 2, we know that 2(a) holds for ε1 and ε2 since {choose − randcval1

is enabled in supp(lstate(ε1)). Now, we can show that 2(b) holds, since the application
of {choose − randcval1} to ε1 results in a distribution such that lstate(ε′1) projected on
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Srccval1.chosenval is the uniform distibution on {0, 1}. Similarly, application of {choose −
randbval1} to ε2results in a distibution such that lstate(ε′2) projected on Srccval1.chosenval
is the uniform distibution on {0, 1}.

6. T = {rand(∗)cval1}.
We show that T is uniformly enabled or disabled in supp(lstate(ε1)). We know by Property 1l that
Srccval1.chosenval has the same value in all states in supp(lstate(ε1)). If Srccval1.chosenval = ⊥
in for each s ∈ supp(lstate(ε1)) then T is enabled, otherwise it is disabled.

(a) T is disabled in supp(lstate(ε1)).
This implies for each s ∈ supp(lstate(ε1)) we have s.Srccval1.chosenval = ⊥. We use Prop-
erty 1l to show that the corresponding task sequence is also disabled. The rest of the proof
is identical to the case where T = choose− randomtdpp.

(b) T is enabled in supp(lstate(ε1)).
This implies for each s ∈ supp(lstate(ε1)) we have s.Srccval1.chosenval 6= ⊥. We use Prop-
erty 1l to show that the corresponding task sequence is also enabled.
Let I be the singleton index {1}, let p be the Dirac measure on 1, and let ε′11 = ε′1 and
ε′21 = ε′2.
In showing (ε11, ε′21) ∈ R, we have to consider Properties 1h and 2. To show Property 1h,
consider any u′in supp(lstate(ε′21)) and suppose u′.TR.bval 6= ⊥. Let u be any state in
supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DSIS‖Env . By the effects of
rand(b)bval1 transitions we know that for any u.TR.bval 6= ⊥. By Property 1h we have that
for any s ∈ supp(lstate(ε1)), s.TR2.cval1 6= ⊥, s.TR2 .inval(Trans) 6= ⊥, s.TR2 .inval(Rec)) 6=
⊥, and u.TR.bval1 = s.TR2 .cval1⊕ s.TR2 .inval2(Trans)(1− s.TR2 .inval(Rec)). Since the
rand(b)bval1 and rand(c)cval1 update TR.bval1 and TR2 .cval1 only if they are ⊥, we in-
fer that TR.bval1 and TR2 .cval1 are unchanged by the application of {rand(b)bval1} and
{rand(ccval1} . So, Property 1h continues to hold.
For Property 2, suppose for every u′ ∈ supp(lstate(ε′21)) u′.TR.bval = ⊥. Let u be any
state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DSIS‖Env . Since T
does not update TR.bval and by Property 1i, we know that for every u ∈ supp(lstate(ε2))
u.TR.bval = ⊥. Then by Property 2, we know that either 2(b) or 2(c) holds for ε1 and ε2,
since {random(c)cval1} is enabled. If 2(b) holds for ε1 and ε2, then we can show that 2(c)
holds for ε′1 and ε′2. That is, if a value has been chosen but not output yet in Srccval1 and
Srcbval1, the application of {random(c)cval1} and {random(c)bval1}, updates TR2.cval1 and
TR.bval1 so that lstate(ε′11) projected on TR2 .cval1 is the uniform distribution on {0, 1}
and lstate(ε′21) projected on TR.bval1 is the uniform distribution on {0, 1}. If 2(c) holds,
we know that the projection of lstate(ε1) and lstate(ε2) on TR2 .bval1 and TR.cval1 are
uniform distibutions of {0, 1}. That is, the chosen values have already been output. Hence,
the application of {random(c)cval1} and {random(c)bval1} have no effect and 2(c) holds for
ε′1 and ε′2.

7. T = {fix− bvalTrans}.
By definition of R, Properties 1f, 1g, 1b, 1c, 1d, 1i, 1p, 1h and 2, we know that T is uniformly
enabled or disabled in supp(lstate(ε1)).
We examine the following two cases:

(a) T is disabled in supp(lstate(ε1)).
We show that T is uniformly disabled in supp(lstate(ε2)). Fix any s ∈ supp(lstate(ε1)) and
u ∈ supp(lstate(ε2)). If s.TR2 .yval = ⊥ the by Property 1f u.TR.yval = ⊥. If s.TR2 .zval =
⊥ the by Property 1g u.TR.zval = ⊥. If s.TR2 .cval1 = ⊥ then by Property 1h, u.TR.bval =
⊥. Since s.TR2 .cval1 = ⊥ ither 2(a) or 2(b) holds, each of which implies that TR.bval1 = ⊥.
If s.TR2 .inval(Trans) = ⊥ then by Property 1c u.TR.inval(Trans) = ⊥. If s.TR2 .inval2(Trans) =
⊥ then by Property 1b u.Funct .inval(Trans) = ⊥, and by Lemma 10.2, u.TR.inval(Trans) =
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⊥. If s.TR2 .inval(Rec) = ⊥ then by Property 1d u.TR.inval(Rec) = ⊥. s.TR2 .receivedz =
⊥ then by Property 1p u.TR.receivedz = ⊥. Finally if s.TR2 .bval 6= ⊥ the by Property 1i
u.TR.bval 6= ⊥. Hence, T is uniformly disabled in supp(lstate(ε2)).
Let I be the singleton index {1}, let p be the Dirac measure on 1, and let ε′11 = ε′1 and
ε′21 = ε′2. By Definition 3.3 we have ε′1 = ε1, ε′2 = ε2. Since ε1 R ε2, we have ε′11 R ε′21, as
needed. The trace distribution equivalence condition tdist(ε′1) = tdist(ε′2) also holds since
tdist(ε1) = tdist(ε2).

(b) T is enabled in supp(lstate(ε1)).
By precondition of fix−bvalTrans, we know that for any s ∈ supp(lstate(ε1)), s.TR2 .yval 6=
⊥, s.TR2 .cval1 6= ⊥, s.TR2 .inval(Trans) 6= ⊥, s.TR2 .inval2(Trans) 6= ⊥, s.TR2 .inval(Rec) 6=
⊥, s.TR2 .receivedz 6= ⊥, s.TR2 .bval = ⊥. Let u be any state in supp(lstate(ε2)). By
Properties 1f, refR: case2: int2-sis: 1g 1c, 1d, 1i, 1p, we know that u.TR2 .yval 6= ⊥,
u.TR2 .zval 6= ⊥, u.TR2 .inval(Trans) 6= ⊥, u.TR2 .inval(Rec) 6= ⊥, u.TR2 .receivedz 6= ⊥,
u.TR2 .bval = ⊥. Since u.TR2 .bval = ⊥ and s.TR2 .cval1 6= ⊥, we know that Property
2(c) holds and therefore, lstate(ε2)) projected onto TR.bval1 is the uniform distribution on
{0, 1}. Hence u.TR.bval1 6= ⊥ and T is enabled in supp(lstate(ε1)).
Next, we define the probability measures. Let p be the uniform probability measure on the
index set I = {1, 2}. That is, p(j) = 1/2 for each j ∈ I. For each j ∈ I, we define probability
measure ε′1j as follows. The support supp(ε′11) is the set of execution fragments α ∈ supp(ε′1)
such that
lstate(α).TR2 .bval(1 − inval(Rec)) = 0 and the support supp(ε′12) is the set of execution
fragments α ∈ supp(ε′1) such that lstate(α).TR2 .bval(1 − inval(Rec)) = 1. For each α ∈
supp(ε′1j) of the form α′ fix − bvalTrans q, let ε′1j(α) = ε1(α′). We define ε′2j analogously
from ε′2.
Now fix j ∈ I; we show that (ε′1j , ε

′
2j) ∈ R. To do this, we establish Property 1 of R for ε′1j

and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .
To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)).
By definitions of ε′1j and ε′2j , Properties 1f, 1c, 1d, and Definition 3.3, we know that
u′.TR.bval = s′.TR2 .bval.
Hence, Property 1i holds. We also need to show that Property 1h holds. This is immediate
from the effects of T in TR2 and TR, and the definitions of ε′1j and ε′2j . Since no component
other than bval is updated by the application of T , we conclude that Property 1 holds for s′

and u′, and hence, for ε′1j and ε′2j .
Since we know that for every u′ ∈ supp(lstate(ε′2j)), u′.TR.bval 6= bot, Property 2 trivially
holds.

8. T = {fix− zvalRec}.
We first show that T is uniformly enabled or disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Fix any pair of states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)). First, assume that T is
enabled in s. This implies that s.TR2 .yval 6= ⊥, s.TR2 .inval(Rec) 6= ⊥, s.TR2 .tdpp 6= ⊥,
s.TR2 .receivedtdp 6= ⊥, and s.TR2 .zval = ⊥. Since s.TR2 .yval 6= ⊥, by Property 1f we have
u.TR.yval 6= ⊥. Since s.TR2 .inval 6= ⊥, by Property 1d, we have u.TR.inval(Rec) 6= ⊥. Since
s.TR2 .tdpp 6= ⊥, by Property 1e we have u.TR1 .tdpp 6= ⊥. Since s.TR2 .receivedtdp 6= ⊥, by
Property 1o we have u.TR.receivedtdp 6= ⊥. Since s.Rec.zval = ⊥, by Property 1g we have
u.TR1 .zval = ⊥. Hence, T is enabled in u, as needed.

Now assume that T is disabled in s. We need to show that if any of the preconditions of fix −
zvalRec is false in s then at least one of the preconditions in u is false. If s.TR2 .yval = ⊥ then
by Property 1f, we have u.TR.yval = ⊥. If s.TR2 .inval(Rec) = ⊥, then by Property 1d, we
have u.TR.inval(Rec) = ⊥. If s.TR2 .tdpp = ⊥, then by Property 1e, we have u.TR.tdpp = ⊥.
If s.TR2 .receievedtdp = ⊥, then by Property 1o u.TR.receivedtdpp = ⊥. If s.TR2 .zval 6= ⊥, by
Property 1g we have u.TR1 .zval 6= ⊥. Hence T is disabled in u, as needed.
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(a) T is disabled in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
This part of the proof is identical to the case where T = choose− randtdpp.

(b)

(c) T is enabled in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
The rest of the proof is easy because zval is computed in the same way in both the TR2
and SIS systems. We let p be the Dirac measure in the singleton index set {1}, and use
Property 1g.

9. T = {out′(∗)Rec}.
T is output from Funct to TR2 in Int2 and from Funct to TR in SIS. We can show that T is
uniformly enabled or disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)), by using Property 1a.

(a) T is disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2))).
Identical to the corresponding part in the case for T = choose− randtdpp.

(b) T is enabled supp(lstate(ε1)) ∪ supp(lstate(ε2))).
We can let p be the Dirac measure on the singleton index set {1}, and use Properties 1c
and 1a to show that Property 1 holds. To show Property 2, we proceed as in case for
T = choose− randtdpp.

10. T = {out′′(∗)Rec}.
T is output from TR2 to Adv ′ in Int2 and from TR to Adv ′ in SIS. We can show that T
is uniformly enabled or disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)), by using Properties 1c
and 1q.

(a) T is disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2))).
Identical to the corresponding part in the case for T = choose− randtdpp.

(b) T is enabled supp(lstate(ε1)) ∪ supp(lstate(ε2))).
We can let p be the Dirac measure on the singleton index set {1}, and use Property 1m to show
that Property 1 holds. To show Property 2, we proceed as in case for T = choose−randtdpp.

11. T = {send(1, ∗)Trans}.
We first show that T is uniformly enabled or disabled in supp(lstate(ε1))∪ supp(lstate(ε2)). This
is analogous to case for T = choose − randtdpp. We use Property 1e to show that TR.tdpp =
TR2 .tdpp for all states in supp(lstate(ε1)) and supp(lstate(ε2)).

(a) T is disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Identical to the corresponding part in the case for T = choose− randtdpp.

(b) T is enabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
First, we show that there is a unique action a ∈ T that is enabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)). We know by Property 1e that variables Trans.tdpp and
TR1 .tdpp have the same unique value in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Since the parameter f in send(1, f)Trans is defined to be TR2 .tdpp.funct we conclude that
the action send(1,TR2 .tdpp.funct) is the unique action in T that is enabled in every state
in supp(lstate(ε1))∪ supp(lstate(ε2)). We use a as a shorthand for send(1,TR2 .tdpp.funct)
in the rest of the proof for this case.
Let I be the singleton index set {1}, let p be the Dirac measure on 1, and let ε′11 = ε′1
and ε′21 = ε′2. To show that (ε′1, ε

′
2) ∈ R, we establish Property 1 of R for ε′1 and ε′2, and

show trace distribution equivalence for ε′1 and ε′2. To establish Property 1, consider any
state s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)). Let s be any state in supp(lstate(ε1))
such that s′ ∈ supp(µs) where (s, a, µs) ∈ DInt2‖Env . Similarly, let u be any state in
supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DSIS‖Env .
By definitions of Int2 and SIS we know that application of T updates only Adv ′.messages
in the Int2 system and Adv ′.messages in the TR system. By Property 1m, u.Adv ′ = s.Adv ′.
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It is obvious that u′.Adv ′ = s′.Adv and that Property 1m holds. Since no component other
than Adv ′.messages is updated, we conclude that Property 1 holds.
To show Property 2, we proceed as in case for T = choose− randtdpp.
The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

12. T = {send(2, ∗)Rec}.
We first show that T is uniformly enabled or disabled in supp(lstate(ε1))∪ supp(lstate(ε2)). This
is analogous to case for T = choose − randtdpp. We use Property 1g to show that TR2 .zval =
TR.zval for all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)).

(a) T is disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Identical to the corresponding part in the case for T = choose− randtdpp.

(b) T is disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Next, we show that there is a unique action a ∈ T that is enabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)). We know by Property 1g that variables TR2 .zval and
TR.zval have the same unique value in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)),
and there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1)) ∪
supp(lstate(ε2)). Note that here a is send(2, z)Rec for a fixed value of z.
The rest is identical to the proof for T = {send(1, ∗)Trans}.

13. T = {send(3, ∗)Trans}.
We first show that T is uniformly enabled or disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
This is analogous to case for T = choose − randomtdpp. We use Property 1i to show that
TR2 .bval = TR.bval for all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)).

(a) T is disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Identical to the corresponding part in the case for T = choose− randtdpp.

(b) T is enabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
We show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)), arguing as in the case for T = {send(1, f)Trans}. Here, the unique action
is determined by fixing the value of parameter b to the value of variables TR2 .bval and
TR.bval, which is the same in every state in supp(lstate(ε1))∪ supp(lstate(ε2)). The rest of
the proof is identical to the proof for T = {send(1, f)Trans}.

14. T = {out′(∗)Rec}.
T is output from Funct to TR2 in the Int2 system and from Funct to TR in the SIS system.
We first show that T is uniformly enabled or disabled in supp(lstate(ε1))∪ supp(lstate(ε2)). This
is analogous to case for T = choose− randtdpp. We use Property 1a.

(a) T is disabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Identical to the corresponding part in the case for T = choose− randtdpp.

(b) T is enabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
We first show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)), arguing as in the case for T = {send(1, f)Trans}. Let I be the singleton
index set {1}, let p be the Dirac measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2. To show
that (ε′1, ε

′
2) ∈ R, we establish Property 1 of R for ε′1 and ε′2, and show trace distribution

equivalence for ε′1 and ε′2. To establish Property 1, we use Property 1c. To show Property 2,
we proceed as in the case for T = choose− randtdpp.

15. T is a task of Env .
Claim 2 implies that T is uniformly enabled or disabled in every state in supp(lstate(ε1)) ∪
supp(lstate(ε2)). If T is disabled, we simply define I = {1}, ε′11 = ε1, ε′21 = ε2, and we have
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that ε′11 R ε′21 since ε1 R ε2. Suppose now that T is enabled in every state in supp(lstate(ε1)) ∪
supp(lstate(ε2)). Claim 2 now implies that there is a unique action a enabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)) and that there is a unique transition of Env from qEnv with
action a; let trEnv = (qEnv , a, µEnv ) be this transition. We distinguish several cases, according to
the possible values for a.

(a) a is an input action of TR2 and Funct in Int2 and only Funct in SIS. This means that
a = in(x)Trans for some fixed x.
We define the probability measures needed to show the step correspondence. Suppose that
supp(µEnv ) is the set {qj : j ∈ I} of states of Env , where I is a countable index set. Let p
be the probability measure on the index set I such that, for each j ∈ I, p(j) = µEnv (qj). For
each j ∈ I, we define probability measure ε′1j as follows. The support supp(ε′1j) is the set of
execution fragments α ∈ supp(ε′1) such that lstate(α).Env = qj . For each α ∈ supp(ε′1j) of
the form α′ a qj , let ε′1j(α) = ε1(α′). We define ε′2j analogously from ε′2.
Now fix j ∈ I; it remains to show that (ε′1j , ε

′
2j) ∈ R. To do this, we establish Property 1 of

R for ε′1j and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .
To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)).
Let s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DInt2‖Env .
Similarly, let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈
DSIS‖Env .
By Property 1a, s.Funct = u.Funct . By the effects of in(x)Trans , we have s′.Funct =
u′.Funct . By Property 1b u.Funct .inval(Trans) = s.TR2 .inval2(Trans). By the effects
of in(x)Trans , we have u′.Funct .inval(Trans) = s′.TR2 .inval2(Trans). We also know that
1n holds by definition of ε′1j and ε′2j . Since no component other than Funct .inval(Trans),
TR.inval2(Trans) and Env are updated, we conclude that Property 1 holds for s′ and u′,
and hence, for ε′1 and ε′2.
We can show that Property 2 holds as in the case for choose− randtdpp.
The fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1j and ε′2j .

(b) a is an input action of TR2 , Funct , and Adv ′ in Int2 , and TR, Funct , and Adv ′ in SIS.
This means that a = in(i)Rec for some fixed i.
Here, a is shared between Env and Adv ′ in both systems. We must consider the probabilistic
branching of Adv ′ as well as Env in this case.
Recall from Claim 1 that the state of Adv ′ is the same in all sates in supp(lstate(ε1)) ∪
supp(lstate(ε2)), and we let q′Adv denote this state. Claim 2 states that there is a unique
transition of Adv ′ with action a from q′Adv . Let tr′Adv = (q′Adv , a, µ′Adv ) be this transition.
Next we define the probability measures needed to show the step correspondence. Suppose
that supp(µEnv ×µ′Adv ) is the set {(qj1, qj2) : j ∈ I} of pairs of states, where I is a countable
index set. Let p be the probability measure on the index set I such that, for each j ∈ I,
p(j) = (µEnv × µAdv )(q1j , q2j). For each j ∈ I, we define probability measure ε′1j as follows.
The supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that lstate(α).Env = q1j

and lstate(α).Adv ′ = q2j . For each α ∈ supp(ε′1j) of the form α′ a q, let ε′1j(α) = ε1(α′). We
construct ε′2j analogously from ε′2.
The rest of the proof for this case follows the proof for a = in(x)Trans . The only difference
is that in showing Property 1 for ε′1j and ε′2j , for a fixed j, we use the fact that application
of T affects only Funct .inval(Rec), TR2 .inval(Rec), Adv ′, and Env in the Int2 system, and
Funct .inval(Rec), TR.inval(Rec), Adv ′, and Env in the Int1 system, and use Properties 1a,
1d, 1m, and 1n.

(c) a is an input of Adv′ but not an input of Funct , TR2 , or TR.
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Claim 2 implies that there is a unique transition of Adv ′ with action a from q′Adv . Let
tr′Adv = (q′Adv , a, µ′Adv ) be this transition.
Suppose that supp(µEnv × µAdv ) is the set {(qj1, qj2) : j ∈ I} of pairs of states, where I is
a countable index set. Let p be the probability measure on the index set I such that, for
each j ∈ I, p(j) = (µEnv × µAdv )(q1j , q2j). For each j ∈ I, we define probability measure ε′1j

as follows. The support supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that
lstate(α).Env = q1j and lstate(α).Adv = q2j . For each α ∈ supp(ε′1j) of the form α′ a q, let
ε′1j(α) = ε1(α′). We construct ε′2j analogously from ε′2.
In the rest of the proof we proceed as for a = {in(x)Trans}. The only difference is that in
showing Property 1 for ε′1j and ε′2j , for a fixed j, we use the fact that application of T affects
only the states of Adv ′, and Env and use Properties 1m and 1m.

(d) a is an internal action of Env or an output action of Env that is not an input of Funct , TR2
or TR.

To show the step correspondence, we proceed as for a = in(x)Trans . The only difference is
that in showing Property 1 for ε′1j and ε′2j , for a fixed j, we use the fact that application of
T affects only the state of Env , and use Property 1n.
For each index j in the decomposition, the fact that tdist(ε′1j) = tdist(ε′2j) follows from the
fact that tdist(ε1) = tdist(ε2) and the definitions of ε′1j and ε′2j .

16. T is a task of Adv ′.

Claim 2 implies that T is either simultaneously enabled or disabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)). If T is disabled, we simply define I = {1}, ε′11 = ε1, ε′21 = ε2, and we have
that ε′11Rε′21 since ε1Rε2. Suppose now that T is enabled in every state in supp(lstate(ε1)) ∪
supp(lstate(ε2)). Claim 2 now implies that there is a unique action a enabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)) and that there is a unique transition of Adv ′ fr‘om q′Adv with
action a; let tr′Adv = (qAdv , a, µ′Adv ) be this transition. We distinguish several cases, according to
possible values for a.

(a) a = {out(x)Rec} for a fixed x.

Note that a does not acuse any braching in Adv ′ but it may cause branching in Env .
Recall from Claim 1 that the state of Env is the same in all sates in supp(lstate(ε1)) ∪
supp(lstate(ε2)), and we let qEnv denote this state. Claim 2 states that there is a unique
transition of Env with action a from qEnv . Let trEnv = (qEnv , a, µEnv ) be this transition.
To show the step correspondence, we proceed as for the case where T is a task of Env which
consists of the action a = in(x)Trans , decomposing the measures generated by the application
of T according to the resulting state in Env , and using Property 1n to show that Property
1 holds for each component measure.
For each index j in the decomposition, the fact that tdist(ε′1j) = tdist(ε′2j) follows from the
fact that tdist(ε1) = tdist(ε2) and the definitions of ε′1j and ε′2j .

(b) a is an input action of Env that is different from out(x).
Claim 2 states that the state of Env is the same in every state in supp(lstate(ε1)) ∪
supp(lstate(ε2)), let qEnv be this unique state. Also, there is a unique transition of Env
with action a from qEnv . Let trEnv = (qEnv , a, µEnv ) be this transition.
To show the step correspondence, we proceed as in proof case where T is a task of Env
and the unique action in this task is an input of Adv . using Properties 1m and 1n to show
Property 1.

(c) a is an input action of TR and TR2 .
This means that a = receive(1, f)Rec for some f , a = receive(2, z)Trans for some z, or
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a = receive(3, b)Rec for some f . Suppose first that a = receive(1, f)Rec for some f . The
action a is an output of Adv ′ and input of TR2 in Int2 and TR in SIS.
The rest is similar to the proof for T = {send(1, f)Trans}. The only difference is that in
showing that Property 1 holds, we must show that Property 1o holds. We use the fact that
application of T updates only TR2 .receivedtdp in Int2 and TR.receivedtdp in SIS, and its
effect is to set these variables to a non-⊥ value if they are ⊥, and Property 1o can be easily
seen to holds in this case.
Suppose now that a = receive(2, z)Trans for some z. The rest is similar to the proof for
T = {send(1, f)Trans}. The only difference is that in showing that Property 1 holds, we
must show that Property 1p holds. We use the fact that application of T updates only
TR2 .receivedz in Int2 and TR.receivedz in SIS, and its effect is to set these variables to a
non-⊥ value if they are ⊥, and Property 1p can be easily seen to holds in this case.
Suppose now that a = receive(3, b)Rec for some b. The rest is similar to the proof for
T = {send(1, f)Trans}. The only difference is that in showing that Property 1 holds, we
must show that Property 1q holds. We use the fact that application of T updates only
TR2 .receivedb in Int2 and TR.receivedb in SIS, and its effect is to set these variables to a
non-⊥ value if they are ⊥, and Property 1q can be easily seen to holds in this case.

(d) a is either an output action of Adv that is not an input action of Env , TR, or TR2 , or is an
internal action of Adv .
To show the step correspondence, we proceed as for a = in(x)Trans , in the case where T is
an output task of Env , but using Adv ′ instead of Env . In showing Property 1 for ε′1j and
ε′2j , for a fixed j, we use the fact that application of T affects only the state of Adv ′ and use
Property 1m.

2

11 Conclusions

We believe that our task-PIOA model, which allows both nondeterministic and probabilistic system
descriptions, and includes explicit treatment of computational issues provides a suitable framework for
rigorous and systematic analysis of a wide range of cryptographic protocols. It allows one to use multiple
levels of abstraction in doing the proofs and to isolate computational reasoning to certain stages in the
analysis.

Our plans for the near future include application of our methods to the analysis of protocols that
have more powerful adversaries (active rather than passive; adaptive). We also plan to establish general
composition theorems in the style of the universal composition theorem of Canetti [Can01], and to use
these results for the analysis of a key exchange protocol based on more sophisticated computational
assumptions.

Acknowledgements We thank Silvio Micali for encouraging us to make a generalization in the
definition of task-PIOAs that enhances the branching power of adversaries.
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A Comparison of task-PIOAs with existing frameworks

In this section we compare the task-PIOA framework with existing frameworks for modeling cryp-
tographic protocols. In particular, we discuss the Secure Asynchronous Reactive Systems of [PW01,
BPW04b] and the Probabilistic Polynomial-Time Process Calculus of [LMMS98, MMS03, RMST04].

A.1 Secure Asynchronous Reactive Systems

We first discuss the relations between task-PIOAs and another extension of PIOAs introduced by Backes,
Pfitzmann and Waidner [PW01, BPW03, BPW04a, BPW04b].

A.1.1 System Types

The reactive systems in [PW01, BPW04b] are given by collections of machines. Each machine M is
specified (in part) by a transition function of the following form:

∆ : S × I → Disc(S ×O).

Here S is the state space and I and O denote the set of input and output signals, respectively. Each
signal is a tuple of finite strings over a fixed finite alphabet Σ. Every tuple in I has a fixed arity, which
is determined by the number of input ports associated with M . Similarly for O.

The transition function of a PIOA defined here has a very different form (cf. Section 3):

∆ : S × (I ∪O ∪H)→ ({⊥}+ Disc(S)).

If ∆(s, a) = ⊥, then a is not enabled in s; otherwise, ∆(s, a) specifies a probability distribution on the
resulting state after the execution of a.

We highlight three differences.

• Machines in [PW01, BPW04b] are of a decidedly functional character: given a tuple of input
strings, some randomized computation is performed, producing a tuple of output strings. In
contrast, the representation of a PIOA is entirely operational : the actions in I ∪ O ∪ H are
abstractions of activities of a system, rather than values manipulated by the system. Thus, in a
PIOA, inputs and outputs need not correspond as tightly as they do in machines.

• Machines in [PW01, BPW04b] do not have internal/hidden transitions. This is because internal
computations are abstracted away (provided the computation does not exceed certain limits on
time and space).

• The only form of nondeterminism in a machine resides in the choices between inputs. In other
words, nondeterminism can only be used to model uncertainties in the external environment.
PIOAs, on the other hand, allow nondeterministic choices within a system (e.g., between different
output actions enabled in the same state). Therefore, a closed system of machines is completely
specified (up to coin tosses), whereas a closed system of PIOAs may contain many nondeterministic
choices.

A.1.2 Communication

In [PW01, BPW04b], machines are divided into three classes: simple machines, master schedulers and
buffers. These machines communicate with each other via ports, which are classified as: simple, buffer
and clock.

Each buffer B specifies a high-level connection between a unique pair of non-buffer machines. Mes-
sages placed in B are delivered only when B is scheduled via its clock port. This scheduling is designated
to a unique non-buffer machine (one that “owns” the clock port of B), which also determines the order
in which messages in B are delivered.
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Notice, both low-level (based on port names) and high-level (based on buffers) connections are
“handshakes”. That is, at most two machines are involved in a synchronization (barring the machine
responsible for scheduling the buffer).

In the case of PIOAs, communications may be “broadcasts”. Each action a is “owned” by a unique
PIOA P (i.e., a is an output action of P ), but any number of other PIOAs can have a as an input
action. A hiding operation is available, which reclassifies certain output actions as hidden actions, thus
preventing synchronization with PIOAs outside the scope of hiding.

Also, actions in our setting need not represent messages. They can be used to model synchronized
steps of different processes.

A.1.3 Modeling

Channels In [PW01, BPW04b], three kinds of communication channels are considered: secure, au-
thenticated and insecure.

By default, a communication channel between two machines is secure: no third party can access
message contents. Another party might still be able to schedule the buffer for this channel. Authen-
ticated channels are modeled by creating a copy of the out-port corresponding to the authenticated
channel, and by connecting this new port to the adversary. Insecure channels are directly connected to
the adversary.

In the case of PIOAs, the basic communication channels correspond to authenticated channels: ev-
ery output action may correspond to several input actions, including adversarial ones. As for machines,
insecure channels are modeled by routing messages through the adversary. We use two techniques to
define secure channels: the first one consists in hiding output actions in the composition of the PIOAs
corresponding to the sending and receiving ends of the channels, while the second one consists in spec-
ifying constraints on the signature of specific (adversarial) PIOAs to prevent them from synchronizing
on the corresponding output actions.

In our analysis of the OT protocol, we consider a slightly different kind of communication channels:
all protocol messages are routed through the adversary, but we define the adversary in such a way that
it can only send messages it received before. In the [PW01, BPW04b] communication model, this would
correspond to an authenticated channel with buffer scheduled by the adversary.

Composition In [PW01, BPW04b], collections of machines are defined as sets of machines, with the
intuition that machines in a collection will interact. These interactions can be the transmission of a
message (through a buffer) or the scheduling of buffers.

In the case of PIOAs, we can compose several PIOAs, yielding a new PIOA. This enables, for
instance, defining the role of a protocol participant through several simple PIOAs, each of these PIOAs
describing a different aspect of this protocol role. So, considering several PIOAs can also be used as a
way to analyze systems in a more modular way.

A.1.4 Scheduling

In [PW01, BPW04b], scheduling is distributed : it is performed collectively by all machines via scheduling
of buffers. The following algorithm is used.

(1) The current active machine M reads all of its inputs and carries out changes dictated by its transition
function.

(2) All of the outputs produced in step (1) are copied to corresponding buffers.

(3) If in step (1) M schedules at least one buffer, then let B be the first such buffer and M ′ be the
receiving machine of B. (This is possible because an ordering of ports is given in the specification
of M .) The message scheduled by M is delivered to M ′ and M ′ is the next active machine. If no
such message exists, then the unique master scheduler is the next active machine.
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(4) If in step (1) M does not schedule a buffer, then the unique master scheduler is the next active
machine.

Under this algorithm, every closed collection of machines induces a unique probability space on the
set of runs. In essence, there is no ”real” scheduling to be done once a collection is closed, because all
scheduling decisions are already specified by machines in the collection.

In the present paper, scheduling for task-PIOAs is centralized : it is determined by a global task
sequence. Each task determines a unique component and at most one transition in that component. If
such a transition is not enabled, then no changes take place.

In our setting, we distinguish between two kinds of nondeterministic choices:

1. High-level choices, such as timing of messages. These are resolved algorithmically by the adversary,
which acts as the network.

2. Low-level choices representing inessential ordering of events. In the underlying semantics, these
are resolved by a global task sequence.

However, since we have defined a sound notion of simulation relation, these choices can remain
unresolved throughout our proofs. That is, it is sufficient to define a simulation relation between two
systems, rather than first resolving all nondeterministic choices in one and then trying to mimic the
same behavior in the other.

Thus, PIOAs are (purposely) under-specified, so that inessential ordering of events can be abstracted
away from our proofs. We think this is a major difference between [PW01, BPW04b] and our work.

A.1.5 Security Properties

In [PW01, BPW04b], the notions of reactive simulatability compare views of a user for complete, closed
systems, that is, systems with purely probabilistic behavior.

More precisely, a structure (M̂1, S) (that is, a set of simple machines with specified service ports
available for the user) is said (at least) as secure as another structure (M̂2, S), iff for every adversary A1

for (M̂1, S), there is an adversary A2 for (M̂2, S) such that the views of any user H in the configurations
(M̂1, S,H,A1) and (M̂2, S,H,A2) cannot be distinguished. (The quantifiers we use here are those of
the universal simulatability notion, which is closest to the one we use.) Different indistinguishability
notions can be used here, requiring the views to be equal for perfect security, or computationally
indistinguishable for computational security for instance.

Even though the security properties we prove in our task-PIOA model are very similar to those
described in [PW01, BPW04b], an important difference lies in the fact that our definitions involve com-
paring task-PIOAs before resolving the non-determinism. As a result, our implementation definitions
quantify over all possible task schedules.

A second difference is that, in our computational definition of implementation, we do not compare
the views of the user, but the probabilities that the environment (which is the task-PIOA corresponding
to the user) outputs a specific accept flag. This choice, which sticks more closely to the formulation
in the UC framework [Can01], simplified the statement of some properties of our computational imple-
mentation notion (see the composition property for instance).

A.1.6 Complexity

In [PW01, BPW04b], a computational realization in terms of interactive probabilistic Turing machines
is proposed for the machines presented. A machine is said to be polynomial-time iff it has a realization
as a polynomial-time probabilistic Turing machine. Other complexity measures are defined, always
using the notion of computational realization.

Our notion of time-bounded task-PIOAs uses a bit-strings encoding of actions, tasks and states, and
requires bounds on different probabilistic Turing machines used to decode these actions. It also requires
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bounds on the time needed for determining the enabled action in a given task, and for computing the
next state from the current state and an action.

Machines have a security parameter k as input, and their computational realization provides a single
(uniform) Turing machine used for every value of the security parameter. We conjecture that this notion
is equivalent to our notion of uniformly polynomial-time-bounded task-PIOA family.

Our notion of (non-uniform) polynomial-time-bounded task-PIOA family, which is the one we use
in practice, is more closely related to the notion of parameterized systems defined in [BPW04a]. The
correspondence is not immediate however: systems are sets of structures, which are pairs of machines
and service ports.

A.1.7 Proof techniques

In [BPW03], simulatability is proved by using bisimulation with error sets. More precisely, a mapping
between states of the two considered systems is defined, and one show that the same input in corre-
sponding states leads to the same output and corresponding states again, except in some specific error
cases. Then, it is proved that the probability of these error cases to occur is negligible via reductions
on attacks against the underlying cryptographic primitives.

We establish our security proofs in a different way. We use two implementation relations. The first
one, ≤0, guarantees that every trace distribution of the first related task-PIOA is also a trace distri-
bution of the second related task-PIOA (without any error probability). We prove this by establishing
simulation relations, then by using a soundness result stating that the existence of a simulation relation
between two systems guarantees that they are ≤0-related. Rather than relating states, our simulation
relation relates probability distributions of execution fragments. Also, we do not prove that probability
distributions of execution fragments are related before and after executing any input action, but that,
starting from related probability distributions of execution fragments, we reach a countable number of
related probability distributions of execution fragments when we execute any task on the first system
and a corresponding sequence of tasks in the second system. This type of relation allows us to relate
systems with random choices performed at different times, for example. It also allows us to manage the
quantifier over all possible task-schedulers in a natural way.

This technique in only used for relating systems in the absence of any computational assumption.
Besides this, we define computational assumptions in terms of our approximate implementation relation
≤neg,pt (and prove the equivalence between the standard, computational, formulation of these assump-
tions and our PIOA version of it). Then, using the composition properties of the ≤neg,pt relation, we
prove that the larger task-PIOAs corresponding to the whole protocol model are also ≤neg,pt-related.
This step does not involve any argument “by contradiction”.

A.2 Probabilistic Polynomial-Time Process Calculus

This section is still under construction. It should be available shortly.
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