
The Theory of Timed I/O Automata

Dilsun K. Kaynar and Nany Lynh

�

MIT Computer Siene and Arti�ial Intelligene Laboratory

Roberto Segala

Dipartimento di Informatia, Universit�a di Verona

Frits Vaandrager

y

Nijmegen Institute for Computing and Information Sienes, University of Nijmegen

November 23, 2004

Abstrat

This paper presents the Timed Input/Output Automaton (TIOA) modeling frame-

work, a basi mathematial framework to support desription and analysis of timed

systems. An important feature of this model is its support for deomposing timed

system desriptions. In partiular, the framework inludes a notion of external be-

havior for a timed I/O automaton, whih aptures its disrete interations with its

environment. The framework also de�nes what it means for one TIOA to implement

another, based on an inlusion relationship between their external behavior sets, and

de�nes notions of simulations , whih provide suÆient onditions for demonstrating

implementation relationships. The framework inludes a omposition operation for

TIOAs, whih respets external behavior, and a notion of reeptiveness , whih implies

that a TIOA does not blok the passage of time.

�

Corresponding author's email address: dilsun�theory.ls.mit.edu. Manusript available at:

http://theory.ls.mit.edu/tds/reist.html. Researh supported by DARPA/AFOSR MURI Contrat

F49620-02-1-0325, DARPA SEC ontrat F33615-01-C-1850, NSF ITR ontrat CCR-0121277, and Air

Fore Aerospae Researh-OSR Contrat F49620-00-1-0097.

y

Supported by EU IST projet IST-2001-35304: Advaned Methods for Timed Systems (AMETIST)

and PROGRESS projet TES4999: Veri�ation of Hard and Softly Timed Systems (HaaST).

1

Contents

1 Introdution 5

1.1 Overview . 5

1.2 Related work . 8

1.3 Paper Organization . 9

2 Mathematial Preliminaries 9

2.1 Funtions and Relations . 9

2.2 Sequenes . 10

2.3 Partial Orders . 11

2.4 A Basi Graph Lemma . 12

2.5 Untimed Automata . 12

3 Desribing Timed System Behavior 12

3.1 Time . 13

3.2 Stati and Dynami Types . 13

3.3 Trajetories . 14

3.3.1 Basi De�nitions . 14

3.3.2 Pre�x Ordering . 15

3.3.3 Conatenation . 15

3.4 Hybrid Sequenes . 16

3.4.1 Basi De�nitions . 17

3.4.2 Pre�x Ordering . 18

3.4.3 Conatenation . 18

3.4.4 Restrition . 19

4 Timed Automata 20

4.1 De�nition of Timed Automata . 20

4.2 Exeutions and Traes . 31

4.3 Speial Kinds of Timed Automata . 35

4.3.1 Basi onstraints . 35

2

4.3.2 Alur-Dill Automata . 37

4.4 Implementation Relationships . 39

4.5 Simulation Relations . 41

4.5.1 Forward Simulations . 42

4.5.2 Re�nements . 46

4.5.3 Bakward Simulations . 47

4.5.4 History Relations . 50

4.5.5 Prophey Relations . 53

5 Operations on Timed Automata 55

5.1 Composition . 55

5.1.1 De�nitions and Basi Results . 55

5.1.2 Substitutivity Results . 61

5.2 Hiding . 62

5.3 Extending Timed Automata with Bounds 65

5.4 Untiming . 71

5.4.1 State Congruene . 73

5.4.2 De�nition of the Untiming Operation 73

5.4.3 Basi Results . 74

5.4.4 An Equivalene Relation for Alur-Dill Automata 77

6 Properties for Timed Automata 81

6.1 De�nitions and Basi Results . 81

6.1.1 Safety and Liveness Properties . 81

6.1.2 Mahine-losure . 83

6.1.3 Speial kinds of properties . 86

6.2 Implementation Relationships . 89

6.3 Simulation Relations . 89

6.4 Composition . 96

6.4.1 De�nitions and Basi Results . 96

6.4.2 Substitutivity Results . 96

3

7 Timed I/O Automata 97

7.1 De�nition of Timed I/O Automata . 97

7.2 Exeutions and Traes . 98

7.3 Speial Kinds of Timed I/O Automata . 98

7.3.1 Feasible and I/O Feasible TIOAs . 98

7.3.2 Progressive TIOAs . 99

7.3.3 Reeptive Timed I/O Automata . 100

7.4 Implementation Relationships . 102

7.5 Simulation Relations . 102

8 Operations on Timed I/O Automata 102

8.1 Composition . 102

8.1.1 De�nitions and Basi Results . 103

8.1.2 Substitutivity Results . 104

8.1.3 Composition of Speial Kinds of TIOAs 114

8.2 Hiding . 115

9 Properties for Timed I/O Automata 116

9.1 De�nitions and Basi Results . 116

9.2 Composition . 117

9.3 Reeptiveness for Properties . 119

10 Conlusions 121

A Notational Conventions 123

4

1 Introdution

1.1 Overview

Timed omputing systems are systems in whih desirable orretness or performane prop-

erties of the system depend on the timing of events, not just on the order of their our-

rene. A typial timed system onsists of omputer omponents, whih operate in disrete

steps, and timing-related omponents suh as physial or logial loks, whose behavior in-

volve ontinuous transformation over time. Timed systems are employed in a wide range

of domains inluding ommuniations, embedded systems, real-time operating systems,

and automated ontrol. Many appliations involving timed systems have strong safety,

reliability and preditability requirements, whih makes it important to have methods for

systemati design of systems and rigorous analysis of timing-dependent behavior.

In this paper, we introdue a basi mathematial framework { the Timed Input/Output

Automaton modeling framework { to support desription and analysis of timed systems.

A Timed I/O Automaton (TIOA) is a kind of nondeterministi, possibly in�nite-state,

state mahine. The state of a TIOA is desribed by a valuation of state variables that are

internal to the automaton. The state of a TIOA an hange in two ways: instantaneously

by the ourrene of a disrete transition, whih is labeled by a disrete ation, or aording

a trajetory, whih is a funtion that desribes the evolution of the state variables over

intervals of time. Trajetories may be ontinuous or disontinuous funtions.

The TIOA framework supports deomposition of system desription and analysis. A

key to this deomposition is the rigorously-de�ned notion of external behavior for timed

I/O automata. The external behavior of eah TIOA is de�ned by a simple mathematial

objet alled a trae{essentially, a sequene of ations interspersed with time-passage steps.

Abstration and parallel omposition are other important notions for deomposition of

system desription and analysis.

For abstration, the framework inludes notions of implementation and simulation,

whih an be used to view timed systems at multiple levels of abstration, starting from a

high-level version that desribes required properties, and ending with a low-level version

that desribes a detailed design or implementation. In partiular, the TIOA framework

de�nes what it means for one TIOA, A, to implement another TIOA, B, namely, any

trae that an be exhibited by A is also allowed by B. In this ase, A might be more

deterministi than B, in terms of either disrete transitions or trajetories. For instane,

B might be allowed to perform an output ation at an arbitrary time before noon, whereas

A produes the same output sometime between 10 and 11AM. The notion of a simulation

relation from A to B provides a suÆient ondition for demonstrating that A implements

B. A simulation relation is de�ned to satisfy three onditions, one relating start states,

one relating disrete transitions, and one relating trajetories of A and B.

For parallel omposition, the framework provides a omposition operation, by whih

TIOAs modeling individual timed system omponents an be ombined to produe a model

5

for a larger timed system. The model for the omposed system an desribe interations

among the omponents, whih involves joint partiipation in disrete transitions. Com-

position requires ertain \ompatibility" onditions, namely, that eah output ation be

ontrolled by at most one automaton, and that internal ations of one automaton annot

be shared by any other automaton. The omposition operation respets traes, for exam-

ple, if A

1

implements A

2

then the omposition of A

1

and B implements the omposition

of A

2

and B. Composition also satis�es projetion and pasting results, whih are funda-

mental for ompositional design and veri�ation of systems: a trae of a omposition of

TIOAs \projets" to give traes of the individual TIOAs, and traes of omponents are

\pastable" to give behaviors of the omposition.

A formal modeling framework needs to support the statement and veri�ation of both

safety and liveness properties if it is to be of general pratial use. A safety property

spei�es the absene of ertain undesirable events, while a liveness property spei�es that

ertain desirable events eventually our. The TIOA modeling framework de�nes the

notions of safety and liveness properties for a TIOA, and what it means for a pair of safety

and liveness properties to be mahine-losed. Mahine-losure refers to the ondition that

a liveness property does not impose safety onstraints beyond those already imposed by

the safety property, and is usually onsidered to be a reasonable ondition to satisfy in

de�ning safety and liveness properties for a system.

The proof of many interesting liveness properties for onurrent systems requires some

assumption about eah ativity in the system getting \enough" hanes to make progress.

Fairness properties are speial kinds of liveness properties that express this informal idea.

The TIOA framework inludes notions of weak and strong fairness, and results that state

under whih onditions the fair traes of a TIOA an be shown to be inluded in the fair

traes of another.

An interesting ompliation that arises in the timed setting is the possibility that a

state mahine ould exhibit the so alled Zeno behavior, by allowing time to approah

a �nite point in time without quite reahing it, or by sheduling in�nitely many disrete

ations to happen in a �nite amount of time. The TIOA framework inludes a notion

of reeptiveness, whih is used to lassify automata that do not ontribute to produing

Zeno behavior, and whih is preserved by omposition. Reeptiveness of a TIOA, A, in

the TIOA framework is de�ned in terms of the existene of a strategy, whih is de�ned as a

subautomaton of A that hooses some of the evolutions from eah state of A. This simple

notion of a strategy is used also in the statement of results that identify the onditions

under whih the outome of a system's interations with its environment satis�es a liveness

property.

The TIOA modeling framework presented in this paper has evolved from the reently

introdued Hybrid Input/Output Automaton (HIOA) modeling framework for hybrid sys-

tems [22℄ by Lynh, Segala and Vaandrager. Our approah is based on the assumption

that a timed system an be viewed as a speial kind of a hybrid system where the ontin-

uous transformation is limited to internal system omponents that determine the timing

6

of events. Therefore, we de�ne a TIOA as a restrited HIOA where the only essential

di�erene between an HIOA and a TIOA is that an HIOA may have external variables

to model the ontinuous information owing into and out of the system, in addition to

state variables. A major onsequene of this de�nition is that the ommuniation between

TIOAs is restrited to shared-ation ommuniation only. The TIOA model does not

impose any further restritions on the expressive power of the HIOA model.

We have undertaken the projet of developing this new modeling framework even

though there are several timed automaton models that extend the basi I/O automaton

model [29, 36, 27, 25℄, beause we have observed that the new HIOA modeling framework

of Lynh, Segala and Vaandrager o�ered a way of improving and simplifying previous

work on timed I/O automaton models [36, 27, 25℄. For example, the use of trajetories as

�rst-lass objets to represent the external behavior of a timed automaton, the de�nition

of a strategy as an automaton rather than a two-player game, and the variable struture

on states are all new features that were motivated by what we learned in developing the

HIOA framework and that gave rise to more elegant de�nitions and simpler proofs for

timed automata.

We intend the TIOA model to serve as a general semanti framework in whih previous

results for timed I/O automata [27, 29, 36, 25℄ and other related models [6, 28, 32, 11℄

an be re-ast in a style that is upwardly ompatible with the new HIOA model. Limiting

the ommuniation to disrete interations is an apt hoie sine the previous timed I/O

automaton models also adopt this type of ommuniation. On the other hand, by avoid-

ing any further restritions on the general hybrid model, we obtain an expressive model

suitable for speifying omplex timing behavior. For example, our model does not require

variables to be either disrete or to evolve at the same rate as real-time as in some other

models [6, 32℄. Consequently, algorithms suh as lok synhronization algorithms that

use loal loks evolving at di�erent and varying rates an be formalized naturally in our

framework.

The fat that HIOAs subsume TIOAs as a speial lass does not eliminate the need

for having a separate modeling framework for timed systems. First, having no external

variables in the TIOA model gives rise to onsiderable simpli�ations in the theory. For

example, proving that the omposition of two timed automata is a well-de�ned automaton

beomes simpler in the absene of external variables; no extra ompatibility onditions as

in the general HIOA framework are needed to obtain the desirable omposition theorems

for TIOAs.

Seond, we believe that fousing on the TIOA model presented in this paper is om-

patible with our longer-term goal of developing a uni�ed I/O automaton model that an

address timing-dependent, probabilisti and general hybrid behavior in a ommon frame-

work. We are planning to start out with a probabilisti model with disrete interations

only, and then extend the model to handle timing-dependent behavior, and only at later

stages onsider ontinuous interations. It would be harder to integrate probabilisti meh-

anisms into the full hybrid model than it would be to integrate them into the TIOA model

7

presented here.

1.2 Related work

One of the widely-used formal frameworks for timed systems is that of Alur-Dill timed

automata [6, 4℄. An Alur-Dill automaton is a �nite direted multigraph augmented with

a �nite set of lok variables. The semantis of suh a timed automaton are de�ned as a

state transition system in whih eah state onsists of a loation and a lok valuation.

Cloks are assumed to hange at the same time as real-time. The aim of failitating

automated veri�ation based on reahability analysis seems to be the main motivation

for the restritions on the expressive power of the model. The timed automaton model

presented in this paper is more expressive than the model of Alur-Dill automata. In our

model, there are no �niteness assumptions and no restritions imposed on the dynami type

of variables. We give a semantis for Alur-Dill automata by using a restrited lass of our

timed automata. Alur-Dill timed automata have been extensively studied with a formal

language theoreti-view. Our fous, on the other hand, has been to develop a general

formal framework with a well-de�ned notion of external behavior, parallel omposition

and abstration that supports reasoning with simulation relations.

Uppaal [32, 21℄ is a widely-used modeling and veri�ation tool for timed systems. It

supports the desription of systems as a network of Alur-Dill timed automata and enhanes

that model with CCS-style ommuniation [30℄ along with other notions suh as ommitted

and urgent loations. Uppaal also supports ommuniation via shared variables. Uppaal

has a sophistiated model-heker that explores the whole state spae of the modeled

system to verify timing properties. Therefore, �niteness assumptions are built into the

model to make suh veri�ation possible and the operations on loks are restrited. For

example, it is not possible to add the urrent value of a lok to a message as a timestamp

when it is plaed in a bu�er. One of our plans for the near future is to work on a formal

semantis for Uppaal based on some variation of our restrited hybrid I/O automaton

model. There are several small mismathes due to the style of ommuniation and notions

suh as ommitted loations but we intend to investigate to what extent we an use

the ommuniation mehanisms of our automata to model these formally. We ould, for

example, allow a non-empty set of external variables with restrited dynami types and

seek restritions on the use of shared variables in Uppaal whih would allow us to view

these variables as external variables in the HIOA sense.

A slight generalization of Alur-Dill timed automata are the linear hybrid automata

of [5℄. In this model, apart from loks that progress with rate 1, one an also use

ontinuous variables whose derivatives are ontained in some arbitrary interval. A well-

known model heking tool for linear hybrid automata is HyTeh [17℄. The input language

of HyTeh an easily be translated into our TIOA model.

The timed I/O automaton modeling framework presented in this paper an be used

to express models that use lower and upper time bounds on tasks or ations [29, 28℄.

8

Our framework inludes an operation for adding time bounds on a subset of the ations

of a timed automaton. As a result of this operation, lower bounds are transformed to

appropriate preonditions for transitions and upper bounds are transformed to stopping

onditions for trajetories.

An interesting timed automaton model alled \Clok GTA " has been introdued

in [11℄. The model was used for desribing algorithms that behave in aordane with

their timing onstraints in ertain intervals but may exhibit timing failures for some other

intervals. The possibility of expressing suh an ability turns out to be ruial for perfor-

mane and fault-tolerane analysis for pratial algorithms [11, 26℄. We are interested in

�nding a systemati way of desribing suh behavior with our new timed I/O automaton

model.

1.3 Paper Organization

The rest of this paper is organized as follows. Setion 2 ontains mathematial preliminar-

ies. Setion 3 de�nes notions that are useful for desribing the behavior of timed systems,

most importantly, trajetories and timed sequenes. Setion 4 de�nes timed automata

(TAs), whih ontain all of the struture of TIOAs exept for the lassi�ation of external

ations as inputs or outputs. It also de�nes external behavior for TAs and implementation

and simulation relationships between TAs. Setion 5 presents omposition and hiding op-

erations for TAs, along with operations for untiming and adding bounds that relate TIOAs

to other timed automaton models. Setion 6 presents de�nitions and results on the las-

si�ation of properties of TAs as safety and liveness properties. Setion 7 de�nes timed

I/O automata (TIOAs) by adding an input/output lassi�ation to TAs, and extends the

theory of TAs to TIOAs. It also de�nes speial kinds of TIOAs suh as progressive and

reeptive TIOAs. Setion 8 presents ompositionality results for TIOAs in general, and

for the speial lasses of progressive and reeptive TIOAs. Setion 9 presents a theory

for properties for TIOAs fousing on reeptiveness for properties. Examples are inluded

throughout.

2 Mathematial Preliminaries

In this setion, we give basi mathematial de�nitions and notation that will be used

as a foundation for our de�nitions of timed automata and timed I/O automata. These

de�nitions involve funtions, sequenes, partial orders, and untimed automata.

2.1 Funtions and Relations

If f is a funtion, then we denote the domain and range of f by dom(f) and range(f),

respetively. If also S is a set, then we write f dS for the restrition of f to S, that is, the

funtion g with dom(g) = dom(f) \ S suh that g() = f() for eah 2 dom(g).

9

We say that two funtions f and g are ompatible if f d dom(g) = g d dom(f). If

f and g are ompatible funtions then we write f [g for the unique funtion h with

dom(h) = dom(f) [dom(g) satisfying the ondition: for eah 2 dom(h), if 2 dom(f)

then h() = f() and if 2 dom(g) then h() = g(). More generally, if F is a set of

pairwise ompatible funtions then we write

S

F for the unique funtion h with dom(h) =

S

fdom(f) j f 2 Fg satisfying the ondition: for eah f 2 F and 2 dom(f), h() = f().

If f is a funtion whose range is a set of funtions and S is a set, then we write f # S

for the funtion g with dom(g) = dom(f) suh that g() = f() dS for eah 2 dom(g).

The restrition operation # is extended to sets of funtions by pointwise extension. Also,

if f is a funtion whose range is a set of funtions, all of whih have a partiular element d

in their domain, then we write f # d for the funtion g with dom(g) = dom(f) suh that

g() = f()(d) for eah 2 dom(g).

We say that two funtions f and g whose ranges are sets of funtions are pointwise

ompatible if for eah 2 dom(f)\ dom(g), f() and g() are ompatible. If f and g have

the same domain and are pointwise ompatible, then we denote by f

_

[g the funtion h

with dom(h) = dom(f) suh that h() = f() [g() for eah .

A relation over sets X and Y is de�ned to be any subset of X � Y . If R is a relation,

then we denote the domain and range of R by dom(R) and range(R), respetively. A

relation over X and Y is total over X if dom(R) = X. We say that a relation R over X

and Y is image-�nite if for eah x 2 X, R(x) is �nite.

2.2 Sequenes

Let S be any set. A sequene over S is a funtion from a downward-losed subset of

Z

>

to S. Thus, the domain of a sequene is either the set of all positive integers, or is

of the form f1; : : : ; kg for some k. In the �rst ase we say that the sequene is in�nite,

and in the seond ase �nite. We use j�j to denote the ardinality of dom(�). number

of elements in �. The sets of �nite and in�nite sequenes over S are denoted by S

�

and

S

!

, respetively. Conatenation of a �nite sequene with a �nite or in�nite sequene is

denoted by juxtaposition. We use � to denote the empty sequene, that is, the sequene

with the empty domain. The sequene ontaining one element 2 S is abbreviated as .

We say that a sequene � is a pre�x of a sequene �, denoted by � � �, if � = � d dom(�).

Thus, � � � if either � = �, or � is �nite and � = ��

0

for some sequene �

0

. If � is a

nonempty sequene then head (�) denotes the �rst element of � and tail(�) denotes � with

its �rst element removed. Moreover, if � is �nite, then last(�) denotes the last element of

� and init(�) denotes � with its last element removed. Let � and �

0

be sequenes over S.

Then �

0

is a subsequene of � provided that there exists a monotone inreasing funtion

f : dom(�

0

)! dom(�) suh that �

0

(i) = �(f(i)) for all i 2 dom(�

0

). If 1 � j

1

� j

2

� j�j,

then we de�ne �(j

1

: : : j

2

) to be the subsequene of � obtained by extrating the elements

in positions j

1

; : : : ; j

2

; that is, �

0

is the subsequene obtained from funtion f of length

j

2

� j

1

+ 1, where f(i) = i+ j

1

� 1 for all i.

10

2.3 Partial Orders

We reall some basi de�nitions and results regarding partial orders, and in partiular,

omplete partial orders (pos) from [15, 16℄. A partial order is a set S together with a

binary relation v that is reexive, antisymmetri, and transitive. In the sequel, we usually

denote posets by the set S without expliit mention to the binary relation v.

A subset P � S is bounded (above) if there is a 2 S suh that d v for eah d 2 P ;

in this ase, is an upper bound for P . A least upper bound (lub) for a subset P � S is an

upper bound for P suh that � d for every upper bound d for P . If P has a lub, then

it is neessarily unique, and we denote it by

F

P . A subset P � S is direted if every �nite

subset Q of P has an upper bound in P . A poset S is omplete, and hene is a omplete

partial order (po) if every direted subset P of S has a lub in S.

We say that P

0

� S dominates P � S, denoted by P v P

0

, if for every 2 P there

is some

0

2 P

0

suh that v

0

. We use the following two simple lemmas, adapted from

[16℄ [Lemmas 3.1.1 and 3.1.2℄.

Lemma 2.1 If P; P

0

are direted subsets of a po S and P v P

0

then

F

P v

F

P

0

.

Lemma 2.2 Let P = f

ij

j i 2 I; j 2 Jg be a doubly indexed subset of a po S. Let P

i

denote the set f

ij

j j 2 Jg for eah i 2 I. Suppose

1. P is direted,

2. eah P

i

is direted with lub

i

, and

3. the set f

i

j i 2 Ig is direted.

Then tP = tf

i

j i 2 Ig.

A �nite or in�nite sequene of elements,

0

1

2

: : :, of a partially ordered set (S;v)

is alled a hain if

i

v

i+1

for eah non-�nal index i. We de�ne the limit of the hain,

lim

i!1

i

, to be the lub of the set f

0

;

1

;

2

; : : :g if S ontains suh a bound; otherwise,

the limit is unde�ned. Sine a hain is a speial ase of a direted set, eah hain of a po

has a limit.

A funtion f : S ! S

0

between posets S and S

0

is monotone if f() v f(d) whenever

 v d. If f is monotone and P is a direted set, then the set f(P) = ff() j 2 Pg is

direted as well. If f is monotone and f(

F

P) =

F

f(P) for every direted P , then f is

said to be ontinuous.

An element of a po S is ompat if, for every direted set P suh that v

F

P ,

there is some d 2 P suh that v d. We de�ne K(S) to be the set of ompat elements

of S. A po S is algebrai if every 2 S is the lub of the set fd 2 K(S) j d v g.

A simple example of an algebrai po is the set of �nite or in�nite sequenes over some

given domain, equipped with the pre�x ordering. Here the ompat elements are the �nite

sequenes.

11

2.4 A Basi Graph Lemma

Lemma 2.3 Let G be an in�nite direted graph that satis�es the following properties.

1. G has �nitely many roots.

2. Eah node of G has �nite outdegree.

3. Eah node of G is reahable from some root of G.

Then, there is an in�nite path in G starting from some root.

Proof: The proof is an extension of K�onig's Lemma [20℄.

2.5 Untimed Automata

An untimed automaton (UA) A is de�ned as a tuple (Q;�; E;H;D) whih onsists of:

� A set Q of states.

� A non-empty set � � Q of start states.

� A set E of external ations and a set H of internal ations, disjoint from eah other.

We write A

�

= E [H.

� A set D � Q�A�Q of disrete transitions.

An exeution fragment of an untimed automaton A is either a �nite sequene

s

0

a

1

s

1

a

2

� � � a

n

s

n

or an in�nite sequene s

0

a

1

s

1

a

2

� � �, of alternating states and ations of

A suh that (s

k

; a

k+1

; s

k+1

) is in D for every non-�nal index k where k � 0. An exeution

fragment beginning with a start state is alled an exeution. If � is an exeution fragment

of A, then the trae of � is de�ned as the subsequene of � onsisting of all the external

ations.

If � is a �nite exeution fragment of an automaton A and �

0

is any exeution fragment

of A that begins with the last state of �, then we write �

_

�

0

to represent the sequene

obtained by onatenating � and �

0

, eliminating the dupliate ourrene of the last state

of �. It is easy to see that, �

_

�

0

is also an exeution fragment of A.

3 Desribing Timed System Behavior

In this setion, we give basi de�nitions that are useful for desribing disrete and on-

tinuous hanges to the system's state. The key notions are stati and dynami types for

variables, trajetories, and hybrid sequenes. Most of the material in this setion omes

from the paper on the HIOA modeling framework [22℄. The reader is referred to [22℄ for

the proofs that are not inluded here.

12

3.1 Time

Throughout this paper, we �x a time axis T, whih is a subgroup of (R;+), the real

numbers with addition. We assume that every in�nite, monotone, bounded sequene of

elements of T has a limit in T. The reader may �nd it onvenient to think of T as the set

R of real numbers, but the set Z of integers and the singleton set f0g are also examples of

allowed time axes. We de�ne T

�0

�

= ft 2 T j t � 0g.

An interval J is a nonempty, onvex subset of T. We denote intervals as usual: [t

1

; t

2

℄ =

ft 2 T j t

1

� t � t

2

g, [t

1

; t

2

) = ft 2 T j t

1

� t < t

2

g et. An interval J is left-losed

(right-losed) if it has a minimum (resp., maximum) element, and left-open (right-open)

otherwise. It is losed if it is both left-losed and right-losed. We write min(J) and max(J)

for the minimum and maximum elements, respetively, of an interval J (if they exist), and

inf(J) and sup(J) for the in�mum and supremum, respetively, of J in R [f�1;1g.

For K � T and t 2 T, we de�ne K + t

�

= ft

0

+ t j t

0

2 Kg. Similarly, for a funtion f

with domain K, we de�ne f + t to be the funtion with domain K + t satisfying, for eah

t

0

2 K + t, (f + t) (t

0

) = f(t

0

� t).

In some de�nitions and theorems in the paper where we use R as the time domain we

assume that the relation � on R extends to a relation on R [f1g suh that 1 �1 and

for all t 2 R, t <1.

3.2 Stati and Dynami Types

We assume a universal set V of variables. A variable represents a loation within the state

of a system. For eah variable v, we assume both a (stati) type, whih gives the set of

values it may take on, and a dynami type, whih gives the set of trajetories it may follow.

Formally, for eah variable v we assume the following:

� type(v), the (stati) type of v. This is a nonempty set of values.

� dtype(v), the dynami type of v. This is a set of funtions from left-losed intervals

of T to type(v) that satis�es the following properties:

1. (Closure under time shift)

For eah f 2 dtype(v) and t 2 T, f + t 2 dtype(v).

2. (Closure under subinterval)

For eah f 2 dtype(v) and eah left-losed interval J � dom(f), f d J 2

dtype(v).

3. (Closure under pasting)

Let f

0

f

1

f

2

; : : : be a sequene of funtions in dtype(v) suh that, for eah index i

suh that f

i

is not the �nal funtion in the sequene, dom(f

i

) is right-losed and

max(dom(f

i

)) = min(dom(f

i+1

)). Then the funtion f de�ned by f(t)

�

= f

i

(t),

where i is the smallest index suh that t 2 dom(f

i

), is in dtype(v).

13

Example 3.1 (Disrete variables) Let v be any variable and let Constant be the set

of onstant funtions from a left-losed interval of T to type(v). Then Constant is losed

under time shift and subinterval. If the dynami type of v is obtained by losing Constant

under the pasting operation, then v is alled a disrete variable. This is essentially the

same as the de�nition of a disrete variable in [28℄.

Example 3.2 (Analog variables) Assume that T = R. Let v be any variable whose

stati type is an interval of R and Continuous be the set of ontinuous funtions from

a left-losed interval of T to type(v). Then Continuous is losed under time shift and

subinterval. If the dynami type of v is obtained by losing Continous under the pasting

operation, then v is alled an analog variable.

Example 3.3 (Standard real-valued funtion lasses) If we take T = R and type(v) =

R, then other examples of dynami types an be obtained by taking the pasting losure of

standard funtion lasses from real analysis, the set of di�erentiable funtions, the set of

funtions that are di�erentiable k times (for any k), the set of smooth funtions, the set

of integrable funtions, the set of L

p

funtions (for any p), the set of measurable loally

essentially bounded funtions [37℄, or the set of all funtions.

Standard funtion lasses are losed under time shift and subinterval, but not under

pasting. A natural way of de�ning a dynami type is as the pasting losure of a lass of

funtions that is losed under time shift and subinterval. In suh a ase, it follows that

the new lass is losed under all three operations.

3.3 Trajetories

In this subsetion, we de�ne the notion of a trajetory, de�ne operations on trajetories,

and prove simple properties of trajetories and their operations. A trajetory is used to

model the evolution of a olletion of variables over an interval of time.

3.3.1 Basi De�nitions

Let V be a set of variables, that is, a subset of V. A valuation v for V is a funtion that

assoiates with eah variable v 2 V a value in type(v). We write val(V) for the set of

valuations for V . Let J be a left-losed interval of T with left endpoint equal to 0. Then a

J-trajetory for V is a funtion � : J ! val(V), suh that for eah v 2 V , � # v 2 dtype(v).

A trajetory for V is a J -trajetory for V , for any J . We write trajs(V) for the set of all

trajetories for V .

A trajetory for V with domain [0; 0℄ is alled a point trajetory for V . If v is a

valuation for V then }(v) denotes the point trajetory for V that maps 0 to v. We say

14

that a J -trajetory is �nite if J is a �nite interval, losed if J is a (�nite) losed interval,

open if J is a right-open interval, and full if J = T

�0

. If T is a set of trajetories, then

�nite(T), losed(T), open(T), and full(T) denote the subsets of T onsisting of all the

�nite, losed, open, and full trajetories in T , respetively.

If � is a trajetory then �:ltime, the limit time of � , is the supremum of dom(�). We

de�ne �:fval , the �rst valuation of � , to be �(0), and if � is losed, we de�ne �:lval , the

last valuation of � , to be �(�:ltime). For � a trajetory and t 2 T

�0

, we de�ne

� E t

�

= � d[0; t℄;

� C t

�

= � d[0; t);

� D t

�

= (� d[t;1))� t:

Note that, sine dynami types are losed under time shift and subintervals, the result of

applying the above operations is always a trajetory, exept when the result is a funtion

with an empty domain. By onvention, we also write � E1

�

= � and � C1

�

= � .

3.3.2 Pre�x Ordering

Trajetory � is a pre�x of trajetory �, denoted by � � �, if � an be obtained by restriting

� to a subset of its domain. Formally, if � and � are trajetories for V , then � � � i�

� = � d dom(�). Alternatively, � � � i� there exists a t 2 T

�0

[f1g suh that � = � E t

or � = � C t. If � � � then learly dom(�) � dom(�). If T is a set of trajetories for V ,

then pref (T) denotes the pre�x losure of T , de�ned by:

pref (T)

�

= f� 2 trajs(V) j 9� 2 T : � � �g:

We say that T is pre�x losed if T = pref (T).

The following lemma gives a simple domain-theoreti haraterization of the set of

trajetories over a given set V of variables:

Lemma 3.4 Let V be a set of variables. The set trajs(V) of trajetories for V , together

with the pre�x ordering �, is an algebrai po. Its ompat elements are the losed traje-

tories.

3.3.3 Conatenation

The onatenation of two trajetories is obtained by taking the union of the �rst trajetory

and the funtion obtained by shifting the domain of the seond trajetory until the start

time agrees with the limit time of the �rst trajetory; the last valuation of the �rst

trajetory, whih may not be the same as the �rst valuation of the seond trajetory, is

15

the one that appears in the onatenation. Formally, suppose � and �

0

are trajetories for

V , with � losed. Then the onatenation �

_

�

0

is the funtion given by

�

_

�

0

�

= � [(�

0

d(0;1) + �:ltime):

Beause dynami types are losed under time shift and pasting, it follows that �

_

�

0

is a

trajetory for V . Observe that �

_

�

0

is �nite (resp., losed, full) if and only if �

0

is �nite

(resp., losed, full). Observe also that onatenation is assoiative.

The following lemma, whih is easy to prove, shows the lose onnetion between

onatenation and the pre�x ordering.

Lemma 3.5 Let � and � be trajetories for V with � losed. Then

� � � , 9�

0

: � = �

_

�

0

:

Note that if � � �, then the trajetory �

0

suh that � = �

_

�

0

is unique exept that it has

an arbitrary value for �

0

:fval . Note also that the \(" impliation in Lemma 3.5 would

not hold if the �rst valuation of the seond argument, rather than the last valuation of

the �rst argument, were used in the onatenation.

We extend the de�nition of onatenation to any (�nite or ountably in�nite) number

of arguments. Let �

0

�

1

�

2

: : : be a (�nite or in�nite) sequene of trajetories suh that �

i

is losed for eah non�nal index i. De�ne trajetories �

0

0

; �

0

1

; �

0

2

; : : : indutively by

�

0

0

�

= �

0

;

�

0

i+1

�

= �

0

i

_

�

i+1

for non�nal i:

Lemma 3.5 implies that for eah non�nal i, �

0

i

� �

0

i+1

. We de�ne the onatenation

�

0

_

�

1

_

�

2

� � � to be the limit of the hain �

0

0

�

0

1

�

0

2

: : :; existene of this limit follows from

Lemma 3.4.

3.4 Hybrid Sequenes

In this subsetion, we introdue the notion of a hybrid sequene, whih is used to model a

ombination of hanges that our instantaneously and hanges that our over intervals

of time. Our de�nition is parameterized by a set A of ations, whih are used to model

instantaneous hanges and instantaneous synhronizations with the environment, and a

set V of variables, whih are used to model hanges over intervals of time. We also de�ne

some speial kinds of hybrid sequenes and some operations on hybrid sequenes, and give

basi properties.

16

3.4.1 Basi De�nitions

Fix a set A of ations and a set V of variables. An (A; V)-sequene is a �nite or in�nite

alternating sequene � = �

0

a

1

�

1

a

2

�

2

: : :, where

1. eah �

i

is a trajetory in trajs(V),

2. eah a

i

is an ation in A,

3. if � is a �nite sequene then it ends with a trajetory, and

4. if �

i

is not the last trajetory in � then dom(�

i

) is losed.

A hybrid sequene is an (A; V)-sequene for some A and V .

Sine the trajetories in a hybrid sequene an be point trajetories our notion of

hybrid sequene allows a sequene of disrete ations to our at the same real time, with

orresponding hanges of variable values. An alternative approah is desribed in [34℄,

where state hanges at a single real time are modeled using a notion of \superdense time".

Spei�ally, hybrid behavior is modeled in [34℄ using funtions from an extended time

domain, whih inludes ountably many elements for eah real time, to states.

If � is a hybrid sequene, with notation as above, then we de�ne the limit time of �,

�:ltime , to be

P

i

�

i

:ltime. A hybrid sequene � is de�ned to be:

� time-bounded if �:ltime is �nite.

� admissible if �:ltime =1.

� losed if � is a �nite sequene and the domain of its �nal trajetory is a losed

interval.

� Zeno if � is neither losed nor admissible, that is, if � is time-bounded and is either

an in�nite sequene, or else a �nite sequene ending with a trajetory whose domain

is right-open.

� non-Zeno if � is not Zeno.

For any hybrid sequene �, we de�ne the �rst valuation of �, �:fval , to be head (�):fval .

Also, if � is losed, we de�ne the last valuation of �, �:lval , to be last(�):lval , that is, the

last valuation in the �nal trajetory of �.

If � is a hybrid sequene of the form �

0

a

1

�

1

a

2

�

2

: : :, we use ations(�) to denote the

sequene a

1

a

2

a

3

: : :, whih is obtained by disarding the trajetories in �.

If � is a losed (A; V)-sequene, where V = ; and � 2 trajs(;), we all �

_

� a

time-extension of �.

17

3.4.2 Pre�x Ordering

We say that (A; V)-sequene � = �

0

a

1

�

1

: : : is a pre�x of (A; V)-sequene � = �

0

b

1

�

1

: : :,

denoted by � � �, provided that (at least) one of the following holds:

1. � = �.

2. � is a �nite sequene ending in some �

k

; �

i

= �

i

and a

i+1

= b

i+1

for every i, 0 � i < k;

and �

k

� �

k

.

Like the set of trajetories over V , the set of (A; V)-sequenes is an algebrai po:

Lemma 3.6 Let V be a set of variables and A a set of ations. The set of (A; V)-

sequenes, together with the pre�x ordering �, is an algebrai po. Its ompat elements

are the losed (A; V)-sequenes.

3.4.3 Conatenation

Suppose � and �

0

are (A; V)-sequenes with � losed. Then the onatenation �

_

�

0

is

the (A; V)-sequene given by

�

_

�

0

�

= init(�) (last(�)

_

head (�

0

)) tail(�

0

):

(Here, init, last, head and tail are ordinary sequene operations.)

Lemma 3.7 Let � and � be (A; V)-sequenes with � losed. Then

� � � , 9�

0

: � = �

_

�

0

:

Note that if � � �, then the (A; V)-sequene �

0

suh that � = �

_

�

0

is unique exept

that it has an arbitrary value in val(V) for �

0

:fval .

As we did for trajetories, we extend the onatenation de�nition for (A; V)-sequenes

to any �nite or in�nite number of arguments. Let �

0

�

1

: : : be a �nite or in�nite sequene

of (A; V)-sequenes suh that �

i

is losed for eah non�nal index i. De�ne (A; V)-sequenes

�

0

0

; �

0

1

; : : : indutively by

�

0

0

�

= �

0

;

�

0

i+1

�

= �

0

i

_

�

i+1

for non�nal i:

Lemma 3.7 implies that for eah non�nal i, �

0

i

� �

0

i+1

. We de�ne the onatenation

�

0

_

�

1

� � � to be the limit of the hain �

0

0

�

0

1

: : :; existene of this limit is ensured by

Lemma 3.6.

18

3.4.4 Restrition

Let A and A

0

be sets of ations and let V and V

0

be sets of variables. The (A

0

; V

0

)-

restrition of an (A; V)-sequene �, denoted by � d(A

0

; V

0

), is obtained by �rst projeting

all trajetories of � on the variables in V

0

, then removing the ations not in A

0

, and �nally

onatenating all adjaent trajetories. Formally, we de�ne the (A

0

; V

0

)-restrition �rst

for losed (A; V)-sequenes and then extend the de�nition to arbitrary (A; V)-sequenes

using a limit onstrution. The de�nition for losed (A; V)-sequenes is by indution on

the length of those sequenes:

� d(A

0

; V

0

) = � # V

0

if � is a single trajetory,

� a � d(A

0

; V

0

) =

�

(� d(A

0

; V

0

)) a (� # V

0

) if a 2 A

0

;

(� d(A

0

; V

0

))

_

(� # V

0

) otherwise.

It is easy to see that the restrition operator is monotone on the set of losed (A; V)-

sequenes. Hene, if we apply this operation to a direted set, the result is again a direted

set. Together with Lemma 3.6, this allows us to extend the de�nition of restrition to

arbitrary (A; V)-sequenes by:

� d(A

0

; V

0

) = tf� d(A

0

; V

0

) j � is a losed pre�x of �g:

Lemma 3.8 (A

0

; V

0

)-restrition is a ontinuous operation.

Lemma 3.9 (�

0

_

�

1

_

� � �) d(A; V) = �

0

d(A; V)

_

�

1

d(A; V)

_

: : :.

Lemma 3.10 (� d(A; V)) d(A

0

; V

0

) = � d(A \A

0

; V \ V

0

).

Lemma 3.11 Let � be a hybrid sequene A a set of ations and V a set of variables.

1. � is time-bounded if and only if � d(A; V) is time-bounded.

2. � is admissible if and only if � d(A; V) is admissible.

3. If � is losed then � d(A; V) is losed.

4. If � is non-Zeno then � d(A; V) is non-Zeno.

Example 3.12 (A Zeno exeution with a losed (A; V)-restrition) In order to

understand why we have an impliation in only one diretion in items 3 and 4, onsider the

Zeno sequene � of the form }(v)a}(v)a}(v) : : :. Let A be a set suh that a =2 A and let

V onsist of the variables in dom(v). Obviously, � d(A; V), whih is }(v), is losed, and

hene also non-Zeno. This shows that the fat that � d(A; V) is losed (resp., non-Zeno)

does not imply that � is losed (resp., non-Zeno).

19

4 Timed Automata

In this setion, as a preliminary step toward de�ning timed I/O automata, we de�ne a

slightly more general timed automaton model. In timed automata, ations are lassi�ed as

external or internal, but external ations are not further lassi�ed as input or output; the

input/output distintion is added in Setion 7. We de�ne how timed automata exeute

and de�ne implementation and simulation relations between timed automata.

4.1 De�nition of Timed Automata

A timed automaton is a state mahine whose states are divided into variables, and that

has a set of disrete ations, some of whih may be internal and some external. The state

of a timed automaton may hange in two ways: by disrete transitions, whih hange

the state atomially, and by trajetories, whih desribe the evolution of the state over

intervals of time. The disrete transitions are labeled with ations; this will allow us to

synhronize the transitions of di�erent timed automata when we ompose them in parallel.

The evolution desribed by a trajetory may be desribed by ontinuous or disontinuous

funtions.

Formally, a timed automaton (TA) A = (X;Q;�; E;H;D;T) onsists of:

� A set X of internal variables.

� A set Q � val(X) of states.

� A nonempty set � � Q of start states.

� A set E of external ations and a set H of internal ations, disjoint from eah other.

We write A

�

= E [H.

� A set D � Q�A�Q of disrete transitions.

We use x

a

!

A

x

0

as shorthand for (x; a;x

0

) 2 D. Here and elsewhere, we sometimes

drop the subsript and write x

a

! x

0

, when we think A should be lear from the

ontext. We say that a is enabled in x if x

a

! x

0

for some x

0

. We say that a set C

of ations is enabled in a state x if some ation in C is enabled in x.

� A set T of trajetories for X suh that �(t) 2 Q for every � 2 T and t 2 dom(�).

Given a trajetory � 2 T we denote �:fval by �:fstate and, if � is losed, we denote

�:lval by �:lstate . When �:fstate = x and �:lstate = x

0

, we sometimes write x

�

!

A

x

0

.

We require that the following axioms hold:

T0 (Existene of point trajetories)

If x 2 Q then }(x) 2 T .

20

T1 (Pre�x losure)

For every � 2 T and every �

0

� � , �

0

2 T .

T2 (SuÆx losure)

For every � 2 T and every t 2 dom(�), � D t 2 T .

T3 (Conatenation losure)

Let �

0

�

1

�

2

: : : be a sequene of trajetories in T suh that, for eah non�nal

index i, �

i

is losed and �

i

:lstate = �

i+1

:fstate . Then �

0

_

�

1

_

�

2

� � � 2 T .

Thus, a timed automaton is essentially a hybrid automaton in the sense of [22℄ in

whih W , the set of external variables, is empty. (The only di�erene is the addition of

the axiom T0, whih does not a�et any of the results of [22℄.) This de�nition di�ers from

previous de�nitions of timed automata [25, 36℄ in two major respets. First, the states are

strutured using variables, whih have dynami types with spei� losure properties. The

variable struture is onvenient for writing spei�ations and the dynami types are useful

in analyzing ontinuous evolution of the state. Seond, the set of trajetories is de�ned

as an expliit omponent of an automaton. In the previous de�nitions, time-passage was

represented by speial time-passage ations and trajetories were de�ned impliitly, as

auxiliary funtions desribing the e�ets of time-passage ations on states.

Notation: We often denote the omponents of a TA A by X

A

, Q

A

, �

A

, E

A

, et., and

the omponents of a TA A

i

by X

i

, Q

i

, �

i

, E

i

, et. We sometimes omit these subsripts,

where no onfusion seems likely. In examples we typially speify sets of trajetories using

di�erential and algebrai equations and inlusions. Below we explain a few notational

onventions that help us in doing this. Suppose the time domain T is R, � is a (�xed)

trajetory over some set of variables V , and v 2 V . With some abuse of notation, we use

the variable name v to denote the funtion � # v in dom(�) ! type(v), whih gives the

value of v at all times during trajetory � . Similarly, we view any expression e ontaining

variables from V as a funtion with domain dom(�). Suppose that v is a variable and e is

a real-valued expression ontaining variables from V . Using these onventions we an say,

for example, that � satis�es the algebrai equation

v = e

whih means that, for every t 2 dom(�), v(t) = e(t), that is, the onstraint on the variables

expressed by the equation v = e holds for eah state on trajetory � . Now suppose also

that e, when viewed as a funtion, is integrable. Then we say that � satis�es

d(v) = e

if, for every t 2 dom(�), v(t) = v(0) +

R

t

0

e(t

0

)dt

0

. Equivalently, for every t

1

; t

2

2 dom(�)

suh that t

1

� t

2

, v(t

2

) = v(t

1

)+

R

t

2

t

1

e(t

0

)dt

0

. Note that this interpretation of the di�erential

21

equation makes sense even at points where v is not di�erentiable. A similar interpretation

of di�erential equations is used by Polderman and Willems [35℄, who all funtions de�ned

in this way \weak solutions".

We generalize this notation to handle inequalities as well as equalities. Suppose that v

is a variable and e is a real-valued expression ontaining variables from V . The inequality

e � v

means that, for every t 2 dom(�), e(t) � v(t). That is, the onstraint expressed by the

inequality e � v holds for eah state of trajetory � . Similarly, the inequality

v � e

means that, for every t 2 dom(�), v(t) � e(t). Now suppose that e is integrable when

viewed as a funtion. Then we say that � satis�es

e � d(v)

if, for every t

1

; t

2

2 dom(�) suh that t

1

� t

2

, v(t

1

) +

R

t

2

t

1

e(t

0

)dt

0

� v(t), and � satis�es

d(v) � e

if, for every t

1

; t

2

2 dom(�) suh that t

1

� t

2

, v(t

2

) � v(t

1

) +

R

t

2

t

1

e(t

0

)dt

0

.

Conventions for automata spei�ations: In all the examples of this paper we as-

sume that T = R. The stati type of a variable v is always written expliitly. Disrete and

analog variables are designated using the keywords disrete and analog respetively. The

de�nition of what it means for a variable to be disrete or analog is given in Examples 3.1

and 3.2. Although timed automata may ontain variables that are neither disrete nor

analog, none of our examples use suh variables.

The transitions are spei�ed in preondition-e�et style. A preondition lause spe-

i�es the enabling ondition for an ation. The e�et lause ontains a list of statements

that speify the e�et of performing that ation on the state. All the statements in an

e�et lause are assumed to be exeuted sequentially in a single indivisible step. The

absene of a spei�ed preondition for an ation means that the ation is always enabled

and the absene of a spei�ed e�et means that performing the ation does not hange

the state.

The trajetories are spei�ed by using a variation of the language presented in [31℄. A

satis�es lause ontains a list of prediates that must be satis�ed by all the trajetories.

This lause is followed by a stops when lause. If the prediate in this lause beomes

22

Automaton T imedChannel(b;M) where b 2 R

+

Variables X : disrete queue, a �nite sequene of elements of M � R initially empty

analog now 2 R initially 0

States Q : val(X)

Ations A : external send(m); reeive(m) where m 2M

Transitions D : external send(m)

e�et

add (m;now + b) to queue

external reeive(m)

preondition

9u: (m;u) is �rst element of queue

e�et

remove �rst element of queue

Trajetories T : satis�es

onstant(queue)

d(now) = 1

stops when

9(m;u) 2 queue: (now = u)

Figure 1: Time-bounded hannel

true at a point t in time, then t must be the limit time of the trajetory. When there is

no stopping ondition for trajetories we omit the stops when lause. We write d(v) = e

for d(v) = e, d(v) � e for d(v) � e and e � d(v) for e � d(v). If the value of a variable is

onstant throughout a trajetory then we write onstant(v). If the evolution of a variable

follows a ontinuous funtion throughout a trajetory then we write ontinuous(v).

Example 4.1 (Time-bounded hannel) The automaton in Figure 2 is the spei�a-

tion of a reliable FIFO hannel that delivers its messages within a ertain time bound,

represented by the automaton parameter b of type R

+

. The other automaton parameter

M is an arbitrary type parameter that represents the type of messages ommuniated by

the hannel.

The disrete variable queue is used to hold pairs onsisting of a message that has been

sent and its delivery deadline. The analog variable now is used to desribe real time.

Every send(m) transition adds to the queue a new pair whose �rst omponent is m

and whose seond omponent is the deadline now + b. A reeive(m) transition an our

only when m is the �rst message in the queue and it results in the removal of the �rst

message from the queue.

23

automaton TimedChannel(b: Real, M)

signature

external send(m), reeive(m) where m 2 M

states

queue: Queue[M℄ := {}

now: Real := 0

i n i t i a l l y b > 0

trans i t ions

external send(m)

e f f

queue:= append((m,now+b),queue)

external reeive(m)

pre

\exists u (m,u) = head(queue)

e f f

queue := tail(queue)

t ra j e tor i e s

stop when \exists (m,u) 2 queue (now = u)

evolve

d(now)=1

Figure 2: Time-bounded hannel

The trajetory spei�ation shows that the disrete variable queue is kept onstant

by trajetories and that the variable now inreases with rate 1, that is, at the same rate

as real time. The stopping ondition implies that, within a trajetory, time annot pass

beyond the point where now beomes equal to the delivery deadline of some message in

the queue.

Example 4.2 (Periodi sending proess) The automaton in Figure 3 is the spei-

�ation of a proess that sends messages periodially, every u time units, where u is an

automaton parameter of type R

�0

. The type parameter M represents the type of the

messages sent by the proess.

The analog variable lok is a timer whose value reords the amount of time that has

elapsed sine it was last reset to 0. A send(m) transition an our only when lok = u,

and it auses lok to be reset. The trajetory spei�ation says that lok inreases at

the same rate as real time and time annot pass beyond the point where lok = u.

Example 4.3 (Periodi sending proess with failures) The spei�ation of the

PeriodiSend(u;M) proess from Example 4.2 does not model failures. We now onsider

24

Automaton PeriodiSend(u;M) where u 2 R

�0

Variables X : analog lok 2 R initially 0

States Q : val(X)

Ations A : external send(m) where m 2M

Transitions D : external send(m)

preondition

lok = u

e�et

lok := 0

Trajetories T : satis�es

d(lok) = 1

stops when

lok = u

Figure 3: Periodi sending proess

a variant of PeriodiSend(u;M) where the proess may fail and stop doing any disrete

ations. The spei�ation of this new automaton is given in Figure 4.

The disrete variable failed in automaton PeriodiSend2 is a boolean ag that reords

whether the proess is failed. It is initialized to false and is set to true when a fail

ation ours. The trajetory spei�ation of PeriodiSend2 shows that time an advane

without any bound when the proess is failed.

Example 4.4 (Timeout proess) The automaton Timeout(u;M) in Figure 5 is the

spei�ation of a proess that awaits the reeipt of a message from another proess. If

u time units elapse without suh a message arriving, Timeout(u;M) performs a timeout

ation, thereby \suspeting" the other proess. When a message arrives it \unsuspets"

the other proess. Timeout(u;M) may suspet and unsuspet repeatedly.

The disrete variable suspeted is a ag that shows whether Timeout(u;M) suspets

that the other proess is failed. The variable lok is a timer that reords the amount of

time that has elapsed sine the reeipt of the last message.

A reeive(m) transition an our at any time; this auses the variable lok to be

reset and the ag suspeted to be set to false. If lok reahes u before the arrival of a

message then the timeout ation beomes enabled. The proess sets suspeted to true as

a result of a timeout .

The disrete variable suspeted remains onstant throughout eah trajetory. The

trajetory spei�ation also shows that lok inreases at the same rate as real time and,

25

Automaton PeriodiSend2(u;M) where u 2 R

+

Variables X : disrete failed 2 Bool initially false

analog lok 2 R initially 0

States Q : val(X)

Ations A : external send(m) where m 2M

external fail

Transitions D : external send(m)

preondition

:failed

lok = u

e�et

lok := 0

external fail

e�et

failed := true

Trajetories T : satis�es

onstant(failed)

d(lok) = 1

stops when

: failed and lok = u

Figure 4: Periodi sending proess with failures

if suspeted = false, then time annot go beyond the point where lok = u. Note that if

suspeted = true, there is no restrition on the amount of time that an elapse.

Example 4.5 (Fisher's mutual exlusion algorithm) The automaton presented in

Figures 6 and 7 is the spei�ation of a shared memory mutual exlusion algorithm whih

uses a single shared variable that an be read and written by all the partiipants. The

automaton parameters u

set

and l

hek

represent upper and lower time bounds for the set

i

and hek

i

ations respetively. We assume that u

set

< l

hek

. The parameter I represents

the set of indies of proesses that partiipate in the algorithm and is required to be �nite.

The shared variable x an be assigned any value in I or the speial value ?. If a

proess is in the ritial region, then the variable x ontains the index of that proess. If

all users are in the remainder region, then the variable x ontains the value ?. The array

variable p reords the program ounters of all proesses. The array variable lastset keeps

trak of the deadlines by whih the proesses' set ations must our. Similarly, the array

variable �rsthek keeps trak of the earliest time the proesses' hek ations may our.

26

Automaton T imeout(u;M) where u 2 R

+

Variables X : disrete suspeted 2 Bool initially false

analog lok 2 R initially 0

States Q : val(X)

Ations A : external reeive(m) where m 2M

external timeout

Transitions D : external reeive(m)

e�et

lok := 0

suspeted := false

external timeout

preondition

: suspeted

lok = u

e�et

suspeted := true

Trajetories T : satis�es

onstant(suspeted)

d(lok) = 1

stops when

lok = u and : suspeted

Figure 5: Timeout

The analog variable now models real time.

The transition de�nitions for external ations try

i

; test

i

; rit

i

; exit

i

are straightforward.

When a proess performs one of these ations, its program ounter is updated to reord

the region entered by the proess. The most interesting transition de�nitions are test

i

; set

i

and hek

i

sine they are the ones that involve timing onstraints of the algorithm. When

a proess i performs a test ation and observes x to be ?, it sets lastset [i ℄ to now + u

set

.

This sets the deadline for the performane of the set

i

ation. Note that this deadline is

enfored through the stopping ondition in the trajetory spei�ation. The transition

set

i

sets �rsthek [i ℄ to now + l

hek

. The value of �rsthek [i ℄ determines the earliest

time hek

i

may our. The hek

i

ation is enabled only when the urrent time has at

least this value.

The trajetory spei�ation says that the values of disrete variables are kept onstant

by trajetories. The stopping ondition implies that if the value of now reahes the value

of lastset [i ℄ for some proess i at some point in time, then that point must be the limit

time of the trajetory.

27

Type PV alue = enumeration of rem; test; set; hek; leavetry; rit; leaveexit

Automaton FisherME(u

set

; l

hek

; I) where u

set

2 R

�0

, l

hek

2 R

�0

, u

set

< l

hek

Variables X : disrete x 2 I [f?g initially ?

disrete p, an array of elements of PV alue indexed by I

initially 8i 2 I: p[i℄ = rem

disrete lastset, an array of elements of R [f1g indexed by I

initially 8i 2 I: lastset[i℄ =1

disrete firsthek, an array of elements of type R

initially 8i 2 I:firsthek[i℄ = 0

analog now 2 R initially 0

States Q : val(X)

Ations A : external try

i

; rit

i

; exit

i

; rem

i

internal test

i

; set

i

; hek

i

; reset

i

where i 2 I

Figure 6: Fisher's mutual exlusion algorithm: Variables, states, and ations

Example 4.6 (Clok synhronization) The automaton in Figure 8 is the spei�ation

of a single proess in a lok synhronization algorithm. Eah proess has a physial lok

and generates a logial lok. The goal of the algorithm is to ahieve \agreement" and

\validity" among the logial lok values. Agreement means that the logial loks are

lose to one another. Validity means that the logial loks are within the range of the

physial loks.

The algorithm is based on the exhange of physial lok values between di�erent

proesses in the system. The parameter u determines the frequeny of sending messages.

Proesses in the system are indexed by the elements of a �nite set I. ClokSyn(u; �)

i

has

a physial lok physlok , whih may drift from the real time with a drift rate bounded

by �. It uses the variable maxother to keep trak of the largest physial lok value of the

other proesses in the system. The variable nextsend reords when it is supposed to send

its physial lok to the other proesses. The logial lok, loglok , is de�ned to be the

maximum of maxother and physlok . Formally loglok is a derived variable, whih is a

funtion whose value is de�ned in terms of the state variables.

A send(m)

i

transition is enabled when m = physlok and nextsend = physlok . It

auses the value of nextsend to be updated so that the next send an our when physlok

has advaned by u time units. The transition de�nition for reeive(m)

j ;i

spei�es the e�et

of reeiving a message from another proess j in the system. Upon the reeipt of a message

m from j , i setsmaxother to the maximum ofm and the urrent value ofmaxother , thereby

updating its knowledge of the largest physial lok value of other proesses in the system.

The trajetory spei�ation is slightly di�erent from that in the previous examples. In

this example, the analog variable physlok does not hange at the same rate as real time

28

Transitions D : external try

i

external rit

i

preondition preondition

p[i℄ = rem p[i℄ = leavetry

e�et e�et

p[i℄ := test p[i℄ := rit

internal test

i

external exit

i

preondition preondition

p[i℄ = test p[i℄ = rit

e�et e�et

if x =? then p[i℄ := reset

p[i℄ := set

lastset[i℄ := now + u

set

internal set

i

internal reset

i

preondition preondition

p[i℄ = set p[i℄ = reset

e�et e�et

x := i x :=?

p[i℄ := hek p[i℄ := leaveexit

lastset[i℄ :=1

firsthek[i℄ := now + l

hek

internal hek

i

external rem

i

preondition preondition

p[i℄ = hek p[i℄ = leaveexit

now � firsthek[i℄ e�et

e�et p[i℄ := rem

if x = i then

p[i℄ := leavetry

else

p[i℄ := test

Trajetories T : satis�es

onstant(x)

onstant(p)

onstant(lastset)

onstant(firsthek)

d(now) = 1

stops when

9i 2 I: now = lastset[i℄

Figure 7: Fisher's mutual exlusion algorithm: Transitions and trajetories

29

Automaton ClokSyn(u; �)

i

where u 2 R

+

, 0 � � < 1, i 2 I

Variables X : analog physlok 2 R initially 0

disrete nextsend 2 R initially 0

disrete maxother 2 R initially 0

Derived variables: loglok = max(maxother;physlok)

States Q : val(X)

Ations A : external send(m)

i

; reeive(m)

j;i

where m 2 R, j 2 I, j 6= i

Transitions D : external send(m)

i

preondition

m = physlok

physlok = nextsend

e�et

nextsend := nextsend+ u

external reeive(m)

j;i

e�et

maxother := max(maxother;m)

Trajetories T : satis�es

onstant(nextsend)

onstant(maxother)

ontinuous(physlok)

1� � � d(physlok) � 1 + �

stops when

physlok = nextsend

Figure 8: Clok synhronization

30

but it drifts with a rate that is bounded by �. The periodi sending of physial loks to

other proesses is enfored through the stopping ondition in the trajetory spei�ation.

Time is not allowed to pass beyond the point where physlok = nextsend .

4.2 Exeutions and Traes

We now de�ne exeution fragments, exeutions, trae fragments, and traes, whih are

used to desribe automaton behavior. An exeution fragment of a timed automaton A is

an (A; V)-sequene � = �

0

a

1

�

1

a

2

�

2

: : :, where (1) eah �

i

is a trajetory in T , and (2)

if �

i

is not the last trajetory in � then �

i

:lstate

a

i+1

! �

i+1

:fstate . An exeution fragment

reords what happens during a partiular run of a system, inluding all the instantaneous,

disrete state hanges and all the hanges to the state that our while time advanes. We

write frags

A

for the set of all exeution fragments of A.

If � is an exeution fragment, with notation as above, then we de�ne the �rst state of

�, �:fstate , to be �:fval . An exeution fragment of a timed automaton A from a state x

of A is an exeution fragment of A whose �rst state is x. We write frags

A

(x) for the set of

exeution fragments of A from x. An exeution fragment � is de�ned to be an exeution if

�:fstate is a start state, that is, �:fstate 2 �. We write exes

A

for the set of all exeutions

of A. If � is a losed (A; V)-sequene then we de�ne the last state of �, �:lstate , to be

�:lval .

If � is an exeution fragment, then � is a suÆx of � provided that there exists �

0

suh

that �

0 _

� = � and �

0

:lstate = �:fstate .

A state of A is reahable if it is the last state of some losed exeution of A. A property

that is true for all reahable states of an automaton is alled an invariant assertion, or

invariant, for short.

Lemma 4.7 Let �

0

�

1

: : : be a �nite or in�nite sequene of exeution fragments of A suh

that, for eah non�nal index i, �

i

is losed and �

i

:lstate = �

i+1

:fstate. Then �

0

_

�

1

_

� � �

is an exeution fragment of A.

Proof: Follows easily from the de�nitions, using axiom T3.

Lemma 4.8 Let � and � be exeution fragments of A with � losed. Then

� � � , 9�

0

2 frags

A

: � = �

_

�

0

:

31

Proof: Impliation \(" follows diretly from the orresponding impliation in Lemma 3.7.

Impliation \)" follows from the de�nitions and T2.

The external behavior of a timed automaton is aptured by the set of \traes" of

its exeution fragments, whih reord external ations and the trajetories that desribe

the intervening passage of time. A trae onsists of alternating external ations and

trajetories over the empty set of variables, ;; the only interesting information ontained

in these trajetories is the amount of time that elapses.

Formally, if � is an exeution fragment, then the trae of �, denoted by trae(�), is

the (E; ;)-restrition of �, � d(E; ;). A trae fragment of a timed automaton A from a

state x of A is the trae of an exeution fragment of A whose �rst state is x. We write

traefrags

A

(x) for the set of trae fragments of A from x. Also, we de�ne a trae of A to

be a trae fragment from a start state, that is, the trae of an exeution of A, and write

traes

A

for the set of traes of A.

In the earlier timed automaton models [25, 36℄, exeution fragments were de�ned in a

similar style to the one presented here, that is, as an alternating sequene of trajetories

and ations. However, the traes were not derived from exeution fragments by a simple

restrition to external ations and the empty set of variables. Rather, a trae was de�ned

as a sequene onsisting of ations paired with their time of ourrene together with

a limit time. The new de�nition inreases uniformity; the de�nitions, results and proof

tehniques for hybrid sequenes apply to both exeution fragments and traes.

We now revisit some of the automata presented earlier in this setion and give sample

exeutions and traes for these automata.

Example 4.9 (Periodi sending proess) Consider the automaton PeriodiSend(u;M)

from Example 4.2 where u is instantiated to the real number 3 and the message type pa-

rameter M is instantiated to the set fm

1

;m

2

: : :g. The following sequene is an exeution

of the automaton:

� = �

0

send(m

1

) �

1

send(m

2

) �

2

send(m

3

) �

3

: : :

where �

i

: [0; 3℄! val(flokg) are de�ned suh that �

i

(t)(lok) = t for all t 2 [0; 3℄.

The funtions �

i

are de�ned for losed intervals of length 3, starting at time 0. They

desribe the evolution of the variable lok , whih is 0 at the start of eah �

i

and inreases

with rate 1 for 3 time units. The disrete send events our periodially, every 3 time

units and reset the lok variable to 0.

The trae of the above exeution fragment, trae(�), is the sequene

�

0

0

send(m

1

) �

0

1

send(m

2

) �

0

2

send(m

3

) �

0

3

: : :

32

where �

0

i

: [0; 3℄! val(;).

Sine the range of eah funtion �

0

i

ontains only the funtion with the empty domain,

trae(�) does not ontain any information about what happens to the value of lok as

time progresses. Sine the domains of eah �

i

and �

0

i

are idential, � and trae(�

0

) express

the same information about the amount of time that elapses between disrete steps.

Example 4.10 (Timeout proess) We now present an exeution of the automaton

Timeout(u;M) from Example 4.4 where the the maximum waiting time u for a message

is 5 and the message alphabet M is the set fm

1

;m

2

g. The following �nite sequene is an

exeution of Timeout(u;M):

� = �

0

reeive(m

1

) �

1

timeout �

2

reeive(m

2

) �

3

timeout �

4

where Val = val(fsuspeted ; lok g) and the funtions �

0

; �

1

; �

2

; �

3

; �

4

are de�ned as follows:

�

0

: [0; 2℄! Val where �

0

(t)(suspeted) = false and �

0

(t)(lok) = t for all t 2 [0; 2℄.

�

1

: [0; 5℄! Val where �

1

(t)(suspeted) = false and �

1

(t)(lok) = t for all t 2 [0; 5℄.

�

2

: [0; 1℄! Val where �

2

(t)(suspeted) = true and �

2

(t)(lok) = 5 + t for all t 2 [0; 1℄.

�

3

: [0; 5℄! V al where �

3

(t)(suspeted) = false and �

3

(t)(lok) = t for all t 2 [0; 5℄.

�

4

: [0;1)! Val where �

4

(t)(suspeted) = true and �

4

(t)(lok) = 5 + t for all t 2 [0;1).

In this sample exeution, the �rst awaited message arrives at time 2. Sine no other

message arrives within the next 5 time units, the proess performs a timeout. A new

message arrives 1 time unit after the timeout and the variable lok is reset to 0. Sine no

new message arrives in the next 5 time units the proess performs another timeout. The

time elapses forever after this timeout sine no further message arrives.

This example illustrates that the automaton Timeout(u;M) an perform multiple

timeout transitions. Another point to note is that the sample exeution onsists of a

�nite (A; V)-sequene ending with a trajetory, as opposed to an in�nite sequene as in

Example 4.9 . The �nal trajetory here is a trajetory whose domain is right open and the

exeution is admissible and non-Zeno. Replaing �

4

with a funtion on a losed interval

would yield a non-Zeno exeution that is not admissible.

The trae of the exeution � an be obtained by letting the range of �

i

be the set

onsisting of the funtion with the empty domain, as we did in the previous example. That

is, by hiding the values of the internal variables lok and suspeted during trajetories.

Example 4.11 (Time-bounded hannel) Consider the time-bounded hannel automa-

ton from Example 4.1. It is easy to observe that time annot pass beyond any delivery

33

deadline reorded in the message queue and that eah deadline in the queue is less than

or equal to the sum of the urrent time and the bound b. This property an be stated as

an invariant assertion as follows.

Invariant 1 : In any reahable state x of automaton T imedChannel(b;M), for all

(m;u) in x(queue), x(now) � u � x(now) + b.

Suh an invariant an be proved by indution. Reall that reahable states are the

�nal states of losed exeutions. Axioms T1 and T2 allow us to view any losed exeution

as a onatenation of losed exeution fragments, �

0

_

�

1

_

: : : �

k

, where every �

i

is

either a losed trajetory or a disrete ation surrounded by point trajetories, and where

�

i

:lstate = �

i+1

:fstate for 0 � i � k�1. The invariant an then be proved using indution

on the length k of the sequene of exeution fragments �

i

.

Example 4.12 (Fisher's mutual exlusion) The main safety property that needs to

be satis�ed by the automaton FisherME from Example 4.5 is mutual exlusion. This

safety property an be expressed as an invariant assertion:

Invariant 1 : In any reahable state x of FisherME(u

set

; l

hek

; I), there do not

exist i 2 I and j 2 I suh that x(p)[i℄ = rit and x(p)[j℄ = rit.

Even though the invariant does not refer to time, its proof depends on the timing

onstraints of the automaton. For example, the following auxiliary invariant an be used

in proving Invariant 4.12:

Invariant 2 : In any reahable state x of FisherME(u

set

; l

hek

; I), if p[i℄ = hek,

x = i, and p[j℄ = set, then firsthek[i℄ > lastset[j℄.

This invariant states that if the program ounter of proess i has the value hek, the

program ounter of proess j has the value set, and the variable x has the value i, then

i will allow enough time for j to set x to j, before performing the hek. If this timing

onstraint were not satis�ed, it would be possible for i to hek that x = i before j sets

x to j. Both of the proesses would then observe x to ontain their own index and enter

the ritial region.

Lemma 4.13 If � is an exeution of A then

1. � is time-bounded if and only if trae(�) is time-bounded.

2. � is admissible if and only if trae(�) is admissible.

3. If � is losed then trae(�) is losed.

4. If � is non-Zeno then trae(�) is non-Zeno.

34

Proof: It follows diretly from the restrition of (A,V)-sequenes.

Lemma 4.14 If � is a trae of A then

1. If � is losed then there exists an exeution � of A suh that trae(�) = � and � is

losed.

2. If � is non-Zeno then there exists an exeution � of A suh that trae(�) = � and

� is non-Zeno.

Proof: For the �rst part of the theorem, let � = trae(�) be a losed trae of A. By

de�nition of a trae, we know that �:ltime = �:ltime . We also know that � is either losed

or has a suÆx whih is an in�nite sequene of alternating point trajetories and ations.

Now, let �

0

be the least losed pre�x of � suh that �

0

:ltime = �:ltime . Clearly, �

0

is a

losed exeution of A.

For the seond part of the theorem, observe that a non-Zeno trae is either losed or

admissible. Let � = trae(�). For the ase where � is losed, we have already shown how

we an �nd a losed exeution. For the ase where � = trae(�) is admissible, we know

that �:ltime =1. Hene, � is admissible, as needed.

Example 4.15 (Construting a losed exeution from a losed trae) Consider

the Zeno hybrid sequene � = }(v) a }(v) a }(v) : : : given in Example 3.12. Suppose that

� is an exeution of A and that a is an internal ation of A. Then, trae(�) = }(v

0

) where

}(v

0

) is a trajetory over the empty set of variables. However, the fat that trae(�) is

losed does not imply that � is losed. Thus, we see why we have a one way impliation

in item 3 of Lemma 4.13. On the other hand, we an onstrut a losed exeution of A

with trae }(v

0

) as explained in the proof of Lemma 4.14. The exeution onsisting of the

point trajetory }(v

0

) is a losed exeution of A with trae }(v

0

).

4.3 Speial Kinds of Timed Automata

This setion desribes several restrited forms of timed automata. In Setion 4.3.1 we give

de�nitions that are needed for theorems later in the paper. In Setion 4.3.2 we formulate

the timed automata of Alur and Dill [4, 6℄ as a speial ase of our timed automata.

4.3.1 Basi onstraints

Timed Automata with Finite Internal Nondeterminism: We are sometimes in-

terested in bounding the amount of internal nondeterminism in a timed automaton. Thus,

we say that a timed automaton A has �nite internal nondeterminism (FIN) provided that:

35

1. The set � of start states is �nite, and

2. For every state x of A and every trae fragment � of A from x, the set f�:lstate j

� 2 frags

A

(x) ^ trae(�) = �g is �nite.

Example 4.16 (Automata with FIN) The automata T imedChannel(u;M),

PeriodiSend(u;M), PeriodiSend2(u;M) and T imeout(u;M) given in Setion 4.1 all

have FIN. The �rst property of the de�nition of FIN is satis�ed sine eah of these au-

tomata has a unique start state. The seond property follows from the fat that in eah

automaton, for every state x and every trae fragment � from x, there is a unique exeution

fragment � suh that trae(�) = �.

Example 4.17 (Automata without FIN)We now show that FisherME(u

set

; l

hek

; I)

and ClokSyn(a; �)

i

do not have FIN. For eah automaton, we speify a trae, desribe

the set of all exeutions that have the spei�ed trae, and argue that the seond property

in the de�nition of FIN fails for the hosen trae.

Let x be the start state of FisherME(u

set

; l

hek

; I) and � = �

0

try

1

�

1

be a trae of

the same automaton where the domains of the funtions �

0

and �

1

are, respetively, the

single point interval [0; 0℄ and the interval [0; u℄, and the range of both funtions is the set

onsisting of the funtion with the empty domain. For any exeution �, trae(�) = �, if

and only if �:ltime = u, try

1

ours at time 0, and all the ations in � that our after try

1

are internal ations. There are in�nitely many di�erent times that the internal ations

may our, and in�nitely many values lasthek and firsthek ould have, by the time

u. Therefore, the set f�:lstate j � 2 frags

A

(x) ^ trae(�) = �

0

try

1

�

1

g is not �nite and

FisherME(u

set

; l

hek

; I) does not have FIN.

Now, let x be the start state of ClokSyn(a; �)

i

where x(physlok) = x(nextsend) =

x(maxother) = 0 and � = �

0

send(0) �

1

be a trae of ClokSyn(a; �)

i

where the domains

of funtions �

0

and �

1

are, respetively, the interval [0; 0℄ and the interval [0; u℄, and the

range of both funtions is the set onsisting of the funtion with the empty domain. For any

� in whih send(0) ours at time 0 and is followed by a trajetory � suh that �:ltime = u,

we have trae(�) = �. For any suh �, �:lstate(physlok) an be any value in the interval

[u(1��); u(1+�)℄. Therefore, the set f�:lstate j � 2 frags

A

(x)^ trae(�) = �

0

send(0) �

1

g

is not �nite and ClokSyn(a; �)

i

does not have FIN.

The following lemma states that if a timed automaton has FIN, then its set of traes

is limit-losed.

Lemma 4.18 Suppose that timed automaton A has FIN and x 2 Q. Suppose that

�

1

�

2

: : : is a hain of trae fragments of A from x. Then the hybrid sequene lim

i

�

i

is a trae fragment of A from x.

36

Proof: This is analogous to the proof of Lemma 4.3 of [25℄. Suppose that A is a timed

automaton that has FIN, x is a state of A, and �

1

�

2

: : : is a hain of trae fragments of

A from x. We de�ne a relation after between trae fragments from x and states of A:

after = f(�;y) j 9� 2 frags

A

(x): trae(�) = � ^ �:lstate = yg.

We onstrut a direted graph G whose nodes are pairs (�

i

;y) 2 after where �

i

is

an element of the given hain. In G, there is an edge from (�

i

;y) to (�

i+1

;y

0

) exatly if

�

i+1

= �

i

_

 suh that = trae(�) for some � 2 frags

A

(y), and �:lstate = y

0

. By the

de�nition of property FIN, there are �nitely many roots of G. By the de�nition of FIN

and the onstrution of G, eah node of G has �nite outdegree.

We laim that eah node (�

i

;y) of G is reahable from some root (�

1

; z) for some z.

By de�nition of the node set, there exists � 2 frags

A

(x) suh that trae(�) = �

i

and

�:lstate = y. Choose �

0

2 frags

A

(x) to be a pre�x of � suh that trae(�

0

) = �

1

and let

z = �

0

:lstate . By de�nition of the edge set of G, (�

i

;y) is reahable from (�

1

; z).

Hene, G satis�es the hypotheses of Lemma 2.3, whih implies that there is an in�nite

exeution fragment starting from x whose trae is lim

i

�

i

. Lemma 2.3 is an extension of

Konig's lemma.

There are two referenes to automata with FIN later in the paper. The �rst one is in

Theorem 4.20, whih lists some suÆient onditions for establishing an implementation

relationship between two automata. The seond referene appears in the disussion about

the kinds of automata that satisfy the assumptions of Theorem 8.7.

Feasible Timed Automata: A timed automaton A is feasible provided that, for every

state x of A, there exists an admissible exeution fragment of A from x.

Feasibility is a basi requirement that any \reasonable" timed automaton should sat-

isfy. Theorems 4.20, 6.11 and 7.2 establish some results about feasible automata.

Timing-Independent Timed Automata: A timed automaton A is said to be timing-

independent provided that all its state variables are disrete variables, and its set of tra-

jetories is exatly the set of onstant-valued funtions over left-losed time intervals with

left endpoint 0.

We refer to timing-independent automata later in Example 6.5 and in our disussion

about Corollary 8.8.

4.3.2 Alur-Dill Automata

The timed automaton framework of Alur and Dill [4, 6℄ is widely used in the formal

modeling and veri�ation of timed systems. An Alur-Dill timed automaton is a �nite

direted multigraph augmented with a �nite set of lok variables. The nodes and edges

37

of this multigraph are alled loations and swithes, respetively. Loations are generally

used to represent di�erent modes of operation of the automaton, whereas the loks are

used in expressing timing onstraints. Eah swith has an assoiated lok onstraint,

whih is a prediate on lok valuations that onstrains when the swith may be taken.

The semantis of suh a timed automaton are de�ned as a state transition system in whih

eah state onsists of a loation and a lok valuation. A transition between states ours

as a result of a swith or time passage.

Alur and Dill restrit the form of lok onstraints in order to make the reahability

problem (the problem of determining whether some target loation is reahable) deidable:

a lok onstraint an be either a simple onstraint omparing a lok variable to a rational

onstant, or a onjuntion of simple onstraints.

In this setion, we de�ne a version of the Alur-Dill timed automaton model as a

speial ase of our TA model. Our formulation relaxes the restritions on the form of

lok onstraints.

We assume that T = R and de�ne an Alur-Dill (AD) timed automaton as a TA

A = (X;Q;�; E;H;D;T) that satis�es the following onditions:

1. X is partitioned into two sets X

d

and X

where X

d

is a set of disrete variables and

X

is a set of analog variables. We all the variables in X

lok variables.

2. If x 2 �, then for every x 2 X

, x(x) = 0.

3. If (x; a;x

0

) 2 D, then for every x 2 X

, either x

0

(x) = 0 or x

0

(x) = x(x).

4. Eah trajetory � 2 T satis�es the following onditions:

(a) For every x 2 X

d

, x is onstant in � .

(b) For every x 2 X

; d(x) = 1.

Thus, in an AD timed automaton, the set of internal variables onsists of disrete

variables, whih together represent the loations, and analog variables, whih orrespond

to the loks. In the initial states, all the loks have value 0. A disrete transition either

resets a lok or leaves it unhanged. The evolution of variables during a time interval

is desribed by trajetories. In an AD automaton, the disrete variables are onstant

throughout a trajetory and loks inrease at the same rate as real time.

Example 4.19 (An AD automaton) We revisit a timed automaton example from [4℄.

We �rst present the timed automaton using the original graphial notation of Alur and

Dill, as in [4℄, and then rede�ne it as an AD timed automaton, using the notational

onventions we have been using in our other examples.

In the following multigraph, eah swith is annotated with a symbol from a spei�ed

alphabet of labels, a onstraint involving lok variables, and a statement that shows whih

38

loks are reset to 0 as a result of a loation swith. Note that some swithes have no

reset statements, meaning that the swith has no e�et on the lok variables.

The multigraph has four loations, s

0

; s

1

; s

2

, and s

3

, and two loks, x and y. A

loation swith, represented by an arrow annotated with a label a, b, , or d, an be

performed only when the onstraint on the same arrow is satis�ed. For example, the

automaton an hange its loation from s

3

to s

1

, following the swith labeled with a,

when the lok variable y has a value smaller than 1. The lok variable y is reset as an

e�et of this loation swith.

s

0

s

1

s

3

s

2

y := 0

b; y = 1

; x < 1

d; x > 1

a; y < 1; y := 0

; x < 1

a; x > 0

Figure 9 inludes the expression of this multigraph as an AD automaton using our no-

tational onventions. In the automaton AD, the disrete variable lo keeps trak of the

urrent loation in the multigraph and the analog variables x and y represent the loks.

The ations of AD orrespond to the labels in the original multigraph. Preonditions in

transition de�nitions are used to express lok onstraints assoiated with swithes. Ef-

fets lauses in transition de�nitions are used to desribe loation hanges and resetting

of loks. The trajetory spei�ation desribes the e�et of time passage on the loation

and the loks.

It is easy to hek that the automaton AD, given in Figure 9, is an AD automaton.

It satis�es the four onditions required to be lassi�ed as an AD automaton: (1) the set

of internal variables X an be partitioned into two sets X

d

and X

where X

d

= flog

and X

= fx; yg. (2) The lok variables x and y are initially 0. (3) The transition

de�nitions either reset a lok or leave it unhanged. (4) The disrete variable lo is

onstant throughout trajetories while x and y inrease at rate 1.

4.4 Implementation Relationships

Timed automata A

1

and A

2

are omparable if they have the same external interfae,

that is, if E

1

= E

2

. If A

1

and A

2

are omparable then we say that A

1

implements A

2

,

39

Automaton AD

Variables X : disrete lo 2 fs

0

; s

1

; s

2

; s

3

g initially s

0

analog x 2 R initially 0

analog y 2 R initially 0

States Q : val(X)

Ations A : external a; b; ; d

Transitions D : external a

preondition

(lo = s

0

and x > 0) or (lo = s

3

and y < 1)

e�et

lo := s

1

y := 0

external b

preondition

lo = s

1

and y = 1

e�et

lo := s

2

external

preondition

(lo = s

1

and x < 1) or (lo = s

2

and x < 1)

e�et

lo := s

3

external d

preondition

lo = s

3

and x > 1

Trajetories T : satis�es

onstant(lo)

d(x) = 1

d(y) = 1

Figure 9: An AD automaton

40

denoted by A

1

� A

2

, if the traes of A

1

are inluded among those of A

2

, that is, if

traes

A

1

� traes

A

2

.

1

Other preorders between timed automata ould also be used as implementation rela-

tionships, for example, if A

1

and A

2

are omparable timed automata, we ould onsider:

� Every losed trae of A

1

is a trae of A

2

.

� Every admissible trae of A

1

is a trae of A

2

.

� Every non-Zeno trae of A

1

is a trae of A

2

.

Theorem 4.20 Let A

1

and A

2

be omparable TAs.

1. If every losed trae of A

1

is a trae of A

2

and A

2

has FIN, then A

1

� A

2

.

2. If every admissible trae of A

1

is a trae of A

2

and A

1

is feasible, then every losed

trae of A

1

is a trae of A

2

.

3. If every admissible trae of A

1

is a trae of A

2

, A

1

is feasible, and A

2

has FIN, then

A

1

� A

2

.

Proof: Part 1 follows from Lemma 4.18.

For Part 2, onsider a losed trae � of A

1

. By feasibility of A

1

, we may extend �

to an admissible trae �

0

of A

1

. Then by assumption, �

0

is also a trae of A

2

. By pre�x

losure of the set of traes, � is a trae of A

2

.

Part 3 follows from Parts 1 and 2.

4.5 Simulation Relations

In this setion, we de�ne simulation relations between timed automata. Simulation rela-

tions may be used to show that one TA implements another, in the sense of inlusion of sets

of traes. We de�ne two types of simulation relations: forward and bakward simulations.

Forward simulations are more ommonly used than bakward simulations beause they

are easier to think about and are general enough to over most interesting situations that

arise in pratie. Bakward simulations are sometimes neessary, in partiular, when non-

deterministi hoies are resolved earlier in the spei�ation than in the implementation.

In proving implementation relations, we prefer to use forward simulation relations when-

ever they exist, sine bakward simulations are harder to think about.

1

In [25, 14, 23, 24℄, de�nitions of the set of traes of an automaton and of one automaton implementing

another are based on losed and admissible exeutions only. The results we obtain in this paper using

the newer, more inlusive de�nition imply orresponding results for the earlier de�nition. For example,

we have the following property: If A

1

� A

2

then the set of traes that arise from losed or admissible

exeutions of A

1

is a subset of the set of traes that arise from losed or admissible exeutions of A

2

. This

follows from Lemmas 4.13 and 4.14.

41

4.5.1 Forward Simulations

Let A and B be omparable TAs. A forward simulation from A to B is a relation R

� Q

A

� Q

B

satisfying the following onditions, for all states x

A

and x

B

of A and B,

respetively:

1. If x

A

2 �

A

then there exists a state x

B

2 �

B

suh that x

A

R x

B

.

2. If x

A

R x

B

and � is an exeution fragment of A onsisting of one ation surrounded

by two point trajetories, with �:fstate = x

A

, then B has a losed exeution fragment

� with �:fstate = x

B

, trae(�) = trae(�), and �:lstate R �:lstate .

3. If x

A

R x

B

and � is an exeution fragment of A onsisting of a single losed

trajetory, with �:fstate = x

A

, then B has a losed exeution fragment � with

�:fstate = x

B

, trae(�) = trae(�), and �:lstate R �:lstate .

Forward simulation relations indue a preorder between timed automata.

Theorem 4.21 Let A;B and C be omparable TAs. If R

1

is a forward simulation from

A to B and R

2

is a forward simulation from B to C, then R

2

ÆR

1

is a forward simulation

from A to C.

The de�nition of a forward simulation from A to B yields a orrespondene for open

trajetories of A:

Lemma 4.22 Let A and B be omparable TAs and let R be a forward simulation from A

to B. Let x

A

and x

B

be states of A and B, respetively, suh that x

A

R x

B

. Let � be an

exeution fragment of A from state x

A

onsisting of a single open trajetory. Then B has

an exeution fragment � with �:fstate = x

B

and trae(�) = trae(�).

Proof: Let � be the single open trajetory in �. Using axioms T1 and T2, we onstrut

an in�nite sequene �

0

�

1

: : : of losed trajetories of A suh that � = �

0

_

�

1

_

� � �. Then,

working reursively, we onstrut a sequene �

0

�

1

: : : of losed exeution fragments of

B suh that �

0

:fstate = x

B

and, for eah i, �

i

:lstate R �

i

:lstate , �

i

:lstate = �

i+1

:fstate ,

and trae(�

i

) = trae(�

i

). This onstrution uses indution on i, using Property 3 of the

de�nition of a forward simulation in the indution step. Now let � = �

0

_

�

1

_

� � �. By

Lemma 4.7, � is an exeution fragment of B. Clearly, �:fstate = x

B

. By Lemma 3.9

applied to both � and �, trae(�) = trae(�). Thus � has the required properties.

Theorem 4.23 Let A and B be omparable TAs and let R be a forward simulation from

A to B. Let x

A

and x

B

be states of A and B, respetively, suh that x

A

R x

B

. Then

traefrags

A

(x

A

) � traefrags

B

(x

B

).

42

Proof: Suppose that Æ is the trae of an exeution fragment of A that starts from

x

A

; we prove that Æ is also a trae of an exeution fragment of B that starts from x

B

.

Let � = �

0

a

1

�

1

a

2

�

2

: : : be an exeution fragment of A suh that �:fstate = x

A

and

Æ = trae(�). We onsider ases:

1. � is an in�nite sequene.

Using axioms T1 andT2, we an write � as an in�nite onatenation �

0

_

�

1

_

�

2

� � �,

in whih the exeution fragments �

i

with i even onsist of a trajetory only, and the

exeution fragments �

i

with i odd onsist of a single disrete step surrounded by

two point trajetories.

We de�ne indutively a sequene �

0

�

1

: : : of losed exeution fragments of B, suh

that �

0

:fstate = x

B

and, for all i, �

i

:lstate = �

i+1

:fstate , �

i

:lstate R �

i

:lstate , and

trae(�

i

) = trae(�

i

). We use Property 3 of the de�nition of a simulation for the

onstrution of the �

i

's with i even, and Property 2 for the onstrution of the �

i

's

with i odd. Let � = �

0

_

�

1

_

�

2

� � �. By Lemma 4.7, � is an exeution fragment

of B. Clearly, �:fstate = x

B

. By Lemma 3.9, trae(�) = trae(�). Thus � has the

required properties.

2. � is a �nite sequene ending with a losed trajetory.

Similar to the �rst ase.

3. � is a �nite sequene ending with an open trajetory.

Similar to the �rst ase, using Lemma 4.22.

Corollary 4.24 Let A and B be omparable TAs and let R be a forward simulation from

A to B. Then traes

A

� traes

B

.

Proof: Suppose � 2 traes

A

. Then � 2 traefrags

A

(x

A

) for some start state x

A

of A.

Property 1 of the de�nition of simulation implies the existene of a start state x

B

of B

suh that x

A

R x

B

. Then Theorem 4.23 implies that � 2 traefrags

B

(x

B

). Sine x

B

is a

start state of B, this implies that � 2 traes

B

, as needed.

Example 4.25 (Time-bounded hannels) Consider two instanes of the spei�ation

in Figure 2, T imedChannel(b

1

;M) and T imedChannel(b

2

;M) where b

1

� b

2

. We de�ne

a forward simulation R from T imedChannel(b

1

;M) to T imedChannel(b

2

;M) below. If x

is a state of T imedChannel(b

1

;M) and y is a state of T imedChannel(b

2

;M), then x R y

provided that the following onditions are satis�ed:

1. x(now) = y(now).

2. jx(queue)j = jy(queue)j.

43

3. 8i: 1 � i � jx(queue)j, if x(queue)(i) = (m;u

1

) then y(queue)(i) = (m;u

2

) and

u

1

� u

2

.

We an prove that R is a forward simulation from the automaton T imedChannel(b

1

;M)

to the automaton T imedChannel(b

2

;M) by showing that R satis�es eah of the three

properties in the de�nition of a forward simulation relation. In eah automaton there is

a unique initial state that maps the variable now to 0 and queue to the empty sequene.

It is obvious that the initial states, whih are idential, are related by R and so the �rst

property is satis�ed.

For the rest of the proof, we let x and y be, respetively, states of T imedChannel(b

1

;M)

and T imedChannel(b

2

;M) suh that x R y. In order to show that the seond property is

satis�ed, we need to onsider two ases, one for eah disrete ation that may be performed

by T imedChannel(b

1

;M).

If T imedChannel(b

1

;M) performs a send(m) ation, and the state hanges from x to

x

0

then we need to �nd an exeution fragment � of T imedChannel(b

2

;M) from y ending

in y

0

, suh that x

0

R y

0

and trae(�) is the same as the trae of }(x) send(m) }(y). The

exeution fragment � = }(y) send(m) }(y

0

) satis�es the required onditions. This follows

from the hypothesis that x R y and the de�nition of R, using the fat that the e�et

of a send(m) ation of T imedChannel(b

1

;M), T imedChannel(b

2

;M) are, respetively,

adding the entry (m;now + b

1

) to x(queue), and (m;now + b

2

) to y(queue) where b

1

� b

2

.

If T imedChannel(b

1

;M) performs a reeive(m) ation, and the state hanges from

x to x

0

then we need to show that reeive(m) is also enabled in y and that there is an

exeution fragment with the required properties that ends in a state y

0

suh that x

0

R y

0

.

In order to show that reeive(m) is enabled in y, we use the hypothesis that x R y, whih

implies that the �rst element of y(queue) is of the form (m;u) for some u. The exeution

fragment }(y) reeive(m) }(y

0

) of T imedChannel(b

1

;M) an be shown to satisfy the

required onditions.

For the third property, we onsider a losed trajetory � of T imedChannel(b

1

;M) with

�:fstate = x and show that there exists a losed exeution fragment � of the automaton

T imedChannel(b

2

;M) with �:fstate = y, trae(�) = trae(�), and �:lstate = �:lstate . It

is easy to hek that the trajetory �

0

of T imedChannel(b

2

;M) with �

0

:fstate = y and

�

0

:ltime = �:ltime satis�es the required onditions.

Example 4.26 (Time-bounded hannel that keeps all messages) In this example we

de�ne a variant of T imedChannel(b;M) from Example 4.1 alled T imedChannel2(b;M).

The main di�erene between T imedChannel(b;M) and T imedChannel2(b;M) is that

the message queue in T imedChannel2(b;M) is implemented using a �nite sequene of

(message, delivery deadline) pairs queue and a pointer ptr that points to the next element

that is to be delivered. Hene, the internal variables of T imedChannel2(b;M) onsist

of queue, now and ptr. The variable ptr initially has value 1, whih indiates that it

44

Automaton SendV al(u; �)

i

where u 2 R

+

, 0 � � < 1, i 2 I

Variables X : disrete ounter 2 R initially 0

analog now 2 R initially 0

States Q : val(X)

Ations A : external send(m)

i

; reeive(m)

j;i

where m 2 R, j 2 I, j 6= i

Transitions D : external send(m)

i

preondition

m = ounter � u

ounter � u=(1 + �) � now

e�et

ounter := ounter + 1

external reeive(m)

j;i

Trajetories T : satis�es

onstant(ounter)

d(now) = 1

stops when

now = ounter � u=(1� �)

Figure 10: Clok synhronization

is pointing to the �rst element in the sequene. A send(m) ation auses messages and

deadlines to be added to the sequene as in T imedChannel(b;M). A reeive(m) auses

ptr to be inremented to make it point to the next element in the sequene instead of

removing the �rst element. The automaton T imedChannel(b;M) an be viewed as an

optimized implementation of T imedChannel2(b;M).

We de�ne below a forward simulation R from T imedChannel(b;M) to

T imedChannel2(b;M). If x is a state of T imedChannel(b;M) and y is a state of

T imedChannel2(b;M), then x R y provided that the following onditions are satis�ed:

1. x(now) = y(now).

2. x(queue) = y(queue)(y(ptr) : : : jy(queue)j).

Example 4.27 (Clok synhronization) In this example, we de�ne a forward simula-

tion from ClokSyn(u; �)

i

of Figure 8 to an automaton that sends multiples of u. The

spei�ation of this automaton, whih is alled SendV al(u; �), is given in Figure 10. We

45

assume that the subsripts representing proess indies in both automata are drawn from

the same �nite set I.

The variable ounter keeps trak of whih multiple of u is to be sent next, and variable

now ontains the urrent time. The automaton parameter � is used in the preondition

of the send and the stopping ondition of the trajetory de�nition, to enfore bounds on

the times of ourrene of send.

We now de�ne a forward simulation R from the automaton ClokSyn(u; �)

i

to the

automaton SendV al(u; �) where u and � are atual parameters. If x is a state of the

automaton ClokSyn(u; �)

i

and y is a state of SendV al(u; �), then x R y provided that

the following onditions are satis�ed:

1. y(now)(1� �) � x(physlok) � y(now)(1 + �).

2. y(ounter) = x(nextsend)=u.

4.5.2 Re�nements

Let A and B be omparable TAs. A re�nement from A to B is a funtion F � Q

A

�Q

B

,

satisfying the following onditions, for all states x

A

and x

B

of A and B, respetively:

1. If x

A

2 �

A

then F (x

A

) 2 �

B

.

2. If � is an exeution fragment of A onsisting of one ation surrounded by two point

trajetories, with �:fstate = x

A

, then B has a losed exeution fragment � with

�:fstate = F (x

A

), trae(�) = trae(�), and �:lstate = F (�:lstate).

3. If � is an exeution fragment of A onsisting of a single losed trajetory, with

�:fstate = x

A

, then B has a losed exeution fragment � with �:fstate = F (x

A

),

trae(�) = trae(�), and �:lstate = F (�:lstate).

Theorem 4.28 Let A and B be two TAs and suppose R � Q

A

� Q

B

. Then R is a

re�nement from A to B if and only if R is a forward simulation from A to B and R is a

funtion.

Theorem 4.29 Let A;B and C be omparable TAs. If R

1

is a re�nement from A to B

and R

2

is a re�nement from B to C, then R

2

Æ R

1

is a re�nement from A to C.

An isomorphism from A to B is a re�nement F from A to B suh that F

�1

is a

re�nement from B to A. We say that two automata A and B are isomorphi, if there

exists an isomorphism from A to B (or, equivalently from B to A).

46

4.5.3 Bakward Simulations

Let A and B be omparable TAs. A bakward simulation from A to B is a total relation

R� Q

A

� Q

B

satisfying the following onditions, for all states x

A

and x

B

of A and B,

respetively:

1. If x

A

2 �

A

and x

A

R x

B

then x

B

2 �

B

.

2. If x

A

R x

B

and � is an exeution fragment of A with �:lstate = x

A

, onsisting of one

disrete ation surrounded by two point trajetories, then B has a losed exeution

fragment � with �:lstate = x

B

, trae(�) = trae(�), and �:fstate R �:fstate .

3. If x

A

R x

B

and � is an exeution fragment of A with �:lstate = x

A

, onsisting

of one trajetory, then B has a losed exeution fragment � with �:lstate = x

B

,

trae(�) = trae(�), and �:fstate R �:fstate .

Bakward simulations indue a preorder between timed automata.

Theorem 4.30 Let A;B and C be omparable TAs. If R

1

is a bakward simulation from

A to B and R

2

is a bakward simulation B to C, then R

2

Æ R

1

is a bakward simulation

from A to C.

Theorem 4.31 Let A and B be omparable TAs and let R be a bakward simulation from

A to B. Let x

A

and x

B

be states of A and B, respetively, suh that x

A

R x

B

. Let �

be the trae of a losed exeution fragment of A from y

A

with last state x

A

. Then there

exists y

B

suh that � is also the trae of a losed exeution fragment of B from y

B

with

last state x

B

and y

A

R y

B

.

Proof: Fix some R, x

A

, x

B

and � satisfying the onditions in the statement of the

theorem. Let � 2 frags

A

(y

A

) for some state y

A

of A with trae(�) = �. By using the

axioms T1 and T2, we an write � as the onatenation of a sequene of losed exeution

fragments, � = �

0

_

�

1

_

: : : �

n

, where eah �

i

is either a losed trajetory or an ation

surrounded by two point trajetories, and �

i

:lstate = �

i+1

:fstate for 0 � i � n.

By using the de�nition of a bakward simulation, working bakwards from �

n

, we an

onstrut an exeution fragment �

0

= �

0

0

_

�

0

1

_

: : : �

0

n

from a state y

B

of B suh that (a)

�

0

:lstate = x

B

, (b) for all i, 0 � i � n, �

i

:fstate R �

0

i

:fstate and trae(�

0

i

) = trae(�

i

), ()

for all i, 0 � i � n� 1, �

0

i

:lstate = �

0

i+1

:fstate . Using Lemma 4.7, we an see that �

0

is an

exeution fragment of B. By Lemma 3.9, trae(�) = trae(�

0

) as needed.

Corollary 4.32 Let A and B be omparable TAs and let R be a bakward simulation from

A to B. Then every losed trae of A is a trae of B.

47

Proof: Suppose R is a bakward simulation from A to B and � is a losed trae of A.

Then � = trae(�) for some losed exeution � of A. Let x

A

and y

A

be the �rst and

last states of � respetively. By the totality of relation R, there exists some state y

B

of

B suh that y

A

R y

B

. By Theorem 4.31, there exists x

B

of B suh that � is the trae of

a losed exeution fragment of B from x

B

with last state y

B

and x

A

R x

B

. Property 1 of

the de�nition of a bakward simulation relation implies that x

B

is a start state of B. It

follows that � 2 traes

B

, as needed.

Theorem 4.33 Let A and B be omparable TAs and let R be an image-�nite bakward

simulation from A to B. Then traes

A

� traes

B

.

Proof: Let � 2 traes

A

. If � is losed then Corollary 4.32 implies that � is a trae of B.

From now on we assume � is not losed.

Let � 2 exes

A

with trae(�) = �. Note that any suh � is either an in�nite sequene

�

0

a

1

�

1

: : : or a �nite sequene �

0

a

1

�

1

: : : �

n

where the �nal trajetory �

n

is right open. In

either ase, using the axioms T1 and T2, we an onstrut an in�nite sequene �

0

�

1

: : :

of losed exeution fragments suh that � = �

0

_

�

1

_

: : : where �

0

is a point trajetory,

eah �

i

is either a losed trajetory or an ation surrounded by two point trajetories, and

�

i

:lstate = �

i+1

:fstate for eah i, 0 � i.

We onstrut a direted graph G whose nodes are pairs (x; i) onsisting of a state of

B and an index suh that (�

i

:lstate ;x) 2R. In G, there is an edge from (x; i) to (x

0

; j)

exatly if j = i + 1 and there is an �

0

2 frags

B

(x) with trae(�

0

) = trae(�

i+1

) suh

that �

0

:lstate = x

0

. Sine R is image-�nite there are �nitely many roots of G. By image-

�niteness of R and the de�nition of the edge set, eah node has �nite outdegree. By using

the de�nition of a bakward simulation and the edge set of G, we an show that eah node

(x; i) is reahable from some root node (z; 0) for some start state z of B.

The direted graph G satis�es the hypotheses of Lemma 2.3, whih implies that there

is an in�nite path in G starting from a root. An edge from a node (x; i) to (x

0

; i + 1)

along this in�nite path orresponds to a losed exeution fragment

i+1

of B for i, 0 � i

suh that

i+1

:fstate = x,

i+1

:lstate = x

0

and trae(

i+1

) = trae(�

i+1

). By Lemma 4.7,

 =

1

_

2

_

: : : is an exeution of B and by Lemma 3.9, trae() = trae(

1

)

_

trae(

2

) : : :.

Sine trae(

i+1

) = trae(�

i+1

) for all i, 0 � i, and �

0

is a point trajetory, by Lemma 3.9,

we get trae() = trae(�) = �.

Example 4.34 (A bakward simulation relation) This example illustrates the

di�erene between forward and bakward simulations. We onsider two automata A and

48

B and show that a forward simulation from A to B does not exist while we exhibit a

bakward simulation from A to B.

Let A and B be two omparable automata spei�ed below. The trajetories onsist of

a set of point trajetories. This implies that the automaton does not allow time to pass

| everything happens at time 0.

� V

A

= fstateAg and V

B

= fstateBg where:

stateA is a disrete variable with type(stateA) = fx

A

; y

A

; q

A

; s

A

g, and

stateB is a disrete variable with type(stateB) = fx

B

; y

B

; y

0

B

; q

B

; s

B

g.

� Q

A

= val(V

A

) and Q

B

= val(V

B

). We write x

A

for the valuation that maps stateA

to x

A

, y

A

for the valuation that maps stateA to x

A

, et. Similarly, we write x

B

for

the valuation that maps stateB to x

B

, y

B

for the valuation that maps stateB to x

B

,

et.

� �

A

= fx

A

g and �

B

= fx

B

g.

� E

A

= E

B

= fa; b; g and H

A

= H

B

= ;.

� D

A

= f(x

A

; a;y

A

); (y

A

; b;q

A

); (y

A

; ; s

A

)g, and

D

B

= f(x

B

; a;y

B

); (x

B

; a;y

0

B

); (y

B

; b;q

B

); (y

0

B

; ; s

B

)g.

� T

A

= f}(v) j v 2 Q

A

g, and T

B

= f}(v) j v 2 Q

B

g

The following are representations of automata A and B as direted multigraphs. The

nodes in the graph represent states and the edges represent disrete transitions where a

label on an edge stands for the ation involved in the transition.

x

B

A B

x

A

a

b

s

A

y

A

q

A

a

a

y

B

b

y

0

B

q

B

s

B

An obvious andidate for a forward simulation from A to B is the relation

R = f(x

A

;x

B

); (y

A

;y

B

); (y

A

;y

0

B

); (q

A

;q

B

); (s

A

; s

B

)g. However, observe that even though

y

A

and y

B

are related by R, the exeution fragment }(y

A

) }(s

A

) of A annot be

mathed by any exeution fragment of B starting with state y

B

. Similarly, even though

y

A

and y

0

B

are related by R, the exeution fragment }(y

A

) b }(q

A

) of A annot be

mathed by any exeution fragment of B starting with y

0

B

. Therefore, R is not a forward

simulation. In fat, there is no forward simulation relation from A to B: there are �nitely

many possibilities for forward simulations from A to B and we see that none of them is

a forward simulation by examining all the possibilities. The main reason for this is that

49

while A makes the nondeterministi hoie between performing b or after performing a,

B makes its hoie earlier at the same time it performs a.

There is, however, a bakward simulation from A to B: the relation R de�ned above

is a bakward simulation.

4.5.4 History Relations

A relation R � Q

A

� Q

B

is a history relation from A to B if R is a forward simulation

from A to B and R

�1

is a re�nement from B to A. History relations indue a preorder

between timed automata.

An automaton B is obtained from an automaton A by adding history variables if there

exists a set of variables V suh that

1. V

B

= V

A

[V and V

A

\ V = ;,

2. Q

B

� val(V

B

) suh that Q

B

dV

A

� Q

A

, and

3. The relation f(x;y) j y 2 Q

B

and y dV

A

= xg is a history relation from A to B.

The method of adding history variables is typially used to make it possible to establish

an implementation relationship using a re�nement. If a re�nement does not exist from a

low-level automaton to a higher-level one, it an often be made to exist by adding history

variables to the low-level automaton.

Example 4.35 (Adding history variables to obtain a re�nement)We annot show

that T imedChannel(b;M) is an implementation of T imedChannel2(b;M) from Exam-

ple 4.26 by using a re�nement. This is beause we have no way of speifying what the

subsequene before the pointer should be in T imedChannel2(b;M) when relating the

states of the two automata. This example shows how we an add history variables to

T imedChannel(b;M) (atually, we add just one variable) to obtain a new automaton

that is related to T imedChannel2(b;M) by a re�nement.

Let log be a disrete variable whose stati type is the same as the stati type of

queue in T imedChannel(b;M) and let the initial value of log be the empty sequene.

We de�ne a new automaton T imedChannelH(b;M) whose set of variables onsists of

the variables of T imedChannel(b;M) and the variable log. The rest of the de�nition

of T imedChannelH(b;M) is the same as T imedChannel(b;M) exept for the transition

de�nition for reeive(m). A reeive(m) event in T imedChannelH(b;M) not only removes

the �rst message from the message queue but also appends this message to the sequene

ontained in log.

Let V

1

, V

2

be the set of variables andQ

1

, Q

2

be the set of states of T imedChannel(b;M)

and T imedChannelH(b;M) respetively. It is easy to verify that the relation f(x;y) j y 2

50

Q

2

and y d V

1

= xg is a history relation from T imedChannel(b;M) to T imedChannelH(b;M).

This means that T imedChannelH(b;M) is obtained from T imedChannel(b;M) by adding

a history variable.

We now de�ne a re�nement F from T imedChannelH(b;M) to T imedChannel2(b;M)

as follows. In our de�nition we assume the following onventions. Conatenation on the

left orresponds to putting an element on the front of a queue. Reall also that we use

juxtaposition for onatenation of sequenes. If x is a state of T imedChannelH(b;M)

and y is a state of T imedChannel2(b;M), then F (x) = y where:

1. y(now) = x(now).

2. y(queue) = x(log)x(queue) suh that jx(log)j = y(ptr)� 1.

Whenever an automaton B is obtained from A by adding history variables, then there

exists a history relation from A to B by de�nition. Theorem 4.36 states that the onverse

also holds, if isomorphi automata are onsidered.

Theorem 4.36 Let A and B be two omparable TAs suh that V

A

and V

B

are disjoint.

Suppose that there is a history relation from A to B. Then, there exists an automaton C

that is isomorphi to B and is obtained from A by adding history variables.

Proof: Let R be a history relation from A to B. De�ne automaton C as follows:

� V

C

= V

A

[V

B

.

� Q

C

= fx 2 val(V

C

) j (x d V

A

;x d V

B

) 2 Rg.

� �

C

= fx 2 Q

C

j x d V

B

2 �

B

g.

� E

C

= E

B

and H

C

= H

B

.

� x

a

!

C

y if and only if x d V

B

a

!

B

y d V

B

.

� x

�

!

C

y if and only if x d V

B

�

1

!

B

y d V

B

where �

1

= � # V

B

.

Let F : Q

C

! Q

B

be de�ned suh that F (x) = x d V

B

for all x 2 Q

C

. The funtion F

is an isomorphism from C to B: It is easy to hek that F is a re�nement from C to B.

We an also easily verify that F

�1

is a re�nement from B to C, by de�nition of C and the

fat that R

�1

is a funtion from the states of B to the states of A.

Now, we verify that C is obtained from A by adding history variables. Let V

B

be the

variable set V required in the de�nition of a history variable and let R

0

= f(x;y) j y 2

Q

C

^ y dV

A

= xg. We need to show that R

0

is a history relation from A to C.

51

1. R

0

is a forward simulation from A to C.

By de�nitions of the relations F , R

0

and the automaton C, R

0

= F

�1

ÆR. Sine F

�1

is a re�nement from B to C, by Theorem 4.28, we know that it is a forward simulation

from B to C. Sine R is a forward simulation from A to B, by Theorem 4.21 we have

R

0

is a forward simulation from A to C, as needed.

2. R

0

�1

is a re�nement from C to A.

By de�nitions of the relations F , R

0

and the automaton C, R

0

�1

= R

�1

ÆF . Sine F

is a re�nement from C to B and R

�1

is a re�nement from B to A, by Theorem 4.29,

we have R

0

�1

is a re�nement from C to A, as needed.

The following theorem shows that forward simulations are essentially the same as

history relations ombined with re�nements.

Theorem 4.37 Let A and B be two omparable TAs suh that V

A

and V

B

are disjoint.

There is a forward simulation from A to B if and only if there exists a TA C suh that

there is a history relation from A to C and a re�nement from C to B.

Proof: To prove the impliation), suppose R is a forward simulation from A to B. Let

C be an automaton de�ned as follows:

� V

C

= V

A

[V

B

.

� Q

C

= fx 2 val(V

C

) j (x d V

A

;x d V

B

) 2Rg.

� �

C

= fx 2 Q

C

j x d V

A

2 �

A

^ x d V

B

2 �

B

g.

� E

C

= E

A

and H

C

= H

A

.

� x

a

!

C

y if and only if both of the following onditions hold:

1. x d V

A

a

!

A

y dV

A

.

2. There exists an exeution fragment � of B suh that �:fstate = x d V

B

, �:lstate =

y d V

B

, and trae(�) = trae(}(x) a }(y)).

� x

�

!

C

y if and only if both of the following onditions hold:

1. �

1

= � # V

A

2 T

A

and x dV

A

�

!

A

y dV

A

.

2. �

2

= � # V

B

2 T

B

and x dV

B

a

!

B

y dV

B

.

52

Let �

A

and �

B

be the funtions that restrit states of C to, respetively, V

A

and V

B

.

It follows from the de�nitions that �

�1

A

is a history relation from A to C and �

B

is a

re�nement from C to B.

For the impliation (, suppose that there is a history relation from A to C and that

there is a re�nement from C to B. Then, by de�nition of a history relation, we know that

there is a forward simulation from A to C. We also know that there is a forward simulation

from C to B by Theorem 4.28. It follows that there is a forward simulation from A to B,

as needed.

Example 4.38 (Theorem 4.37 applied to time-bounded hannels) In Exam-

ple 4.26, we demonstrated a forward simulation from the automaton T imedChannel(b;M)

to the automaton T imedChannel2(b;M) . Theorem 4.37 implies that there exists an au-

tomaton A suh that there is a history relation from T imedChannel(b;M) to A and a

re�nement from A to T imedChannel2(b;M). The automaton T imedChannelH(b;M)

from Example 4.35 is a witness for A.

4.5.5 Prophey Relations

A relation R � Q

A

�Q

B

is a prophey relation from A to B if R is a bakward simulation

from A to B and R

�1

is a re�nement from B to A. Prophey relations indue a preorder

between timed automata.

An automaton B is obtained from an automaton A by adding prophey variables if

there exists a set of variables V suh that

1. V

B

= V

A

[V and V

A

\ V = ;,

2. Q

B

� val(V

B

) suh that Q

B

dV

A

� Q

A

, and

3. The relation f(x;y) j y 2 Q

B

and y dV

A

= xg is a prophey relation from A to B.

Example 4.39 (Adding prophey variables to obtain a re�nement) In this example

we onsider adding a prophey variable to the automaton A from Example 4.34. Let C be

an automaton de�ned as follows:

� V

C

= V

A

[fvg where v is a disrete variable with type(v) = fb; g.

53

� Q

C

= fx

C

;x

0

C

;y

C

;y

0

C

;q

C

; s

C

g suh that

x

C

dV

A

= x

A

and x

C

dfvg = b

x

0

C

dV

A

= x

A

and x

0

C

dfvg =

y

C

dV

A

= y

A

and y

C

dfvg = b

y

0

C

dV

A

= y

A

and y

0

C

dfvg =

q

C

dV

A

= q

A

and q

C

dfvg = b

s

C

dV

A

= s

A

and s

C

dfvg =

� �

C

= fx

C

;x

0

C

g.

� E

C

= fa; b; g.

� D

C

= f(x

C

; a;y

C

); (x

0

C

; a;y

0

C

); (y

C

; b;q

C

); (y

0

C

; ; s

C

)g.

� T

C

= f}(v) j v 2 Q

C

g.

x

C

x

0

C

a

a

y

C

y

0

C

b

C

s

C

q

C

b

a

A

x

A

y

A

q

A

s

A

The relation R= f(x

A

;x

C

); (x

A

;x

0

C

); (y

A

;y

C

); (y

A

;y

0

C

); (q

A

;q

C

); (s

A

; s

C

)g is a bak-

ward simulation from A to C and R

�1

is a re�nement. Therefore, C is obtained by adding

a prophey variable to A. Note that there is no re�nement from A to B de�ned in Exam-

ple 4.34. However, the relation F = f(x

C

;x

B

); (x

0

C

;x

B

); (y

C

;y

B

); (y

0

C

;y

0

B

); (q

C

;q

B

); (s

C

; s

B

)g

is a re�nement from C to B.

Theorem 4.40 Let A and B be two omparable TAs suh that V

A

and V

B

are disjoint.

Suppose that there is a prophey relation from A to B. Then, there exists an automaton

C that is isomorphi to B and is obtained from A by adding prophey variables.

Proof: The proof is analogous to the proof of Theorem 4.36. We assume a bakward

simulation relationR instead of a forward simulation relation. We onstrut the automaton

C as in Theorem 4.36 and verify that it is obtained from A by adding a prophey variable.

54

Theorem 4.41 Let A and B be two omparable TAs suh that V

A

and V

B

are disjoint.

There is a bakward simulation from A to B if and only if there exists a TA C suh that

there is a prophey relation from A to C and a re�nement from C to B.

Proof: The proof is analogous to the proof of Theorem 4.37. We assume a bakward

simulation relation R instead of a forward simulation. The onstrution of the automaton

C and the reasoning that follows are similar.

Example 4.42 (Theorem 4.41 applied to Examples 4.34 and 4.39) In Exam-

ple 4.34, we demonstrated a bakward simulation from A to B. Theorem 4.41 implies that

there exists an automaton C suh that there is a prophey relation from A to C and a

re�nement from C to B. The automaton C de�ned in Example 4.39 onstitutes a witness

for C.

5 Operations on Timed Automata

In this setion, we introdue four kinds of operations on timed automata: parallel ompo-

sition, hiding, adding lower and upper bounds for tasks, and untiming.

5.1 Composition

5.1.1 De�nitions and Basi Results

The omposition operation for timed automata allows an automaton representing a om-

plex system to be onstruted by omposing automata representing individual system

omponents. Our omposition operation identi�es external ations with the same name

in di�erent omponent automata. When any omponent automaton performs a disrete

step involving an ation a, so do all omponent automata that have a as an external a-

tion. The omposition operator for timed automata is simpler than it is for general hybrid

automata sine all the variables in a timed automaton are internal.

2

Formally, we say that timed automata A

1

andA

2

are ompatible ifH

1

\A

2

= H

2

\A

1

=

; and X

1

\X

2

= ;. If A

1

and A

2

are ompatible then their omposition A

1

kA

2

is de�ned

to be the struture A = (X;Q;�; E;H;D;T) where

� X = X

1

[X

2

.

� Q = fx 2 val(X) j x dX

i

2 Q

i

, i 2 f1; 2gg.

2

The omposition operation for general hybrid automata requires external variables to be identi�ed as

well as external ations. When any omponent automaton follows a partiular trajetory for an external

variable v, then so do all omponent automata of whih v is an external variable.

55

� � = fx 2 Q j x dX

i

2 �

i

, i 2 f1; 2gg.

� E = E

1

[E

2

and H = H

1

[H

2

.

� For eah x;x

0

2 Q and eah a 2 A, x

a

!

A

x

0

i� for i 2 f1; 2g, either (1) a 2 A

i

and

x dX

i

a

!

i

x

0

dX

i

, or (2) a 62 A

i

and x dX

i

= x

0

dX

i

.

� T � trajs(X) is given by � 2 T , � # X

i

2 T

i

, i 2 f1; 2g.

Theorem 5.1 If A

1

and A

2

are timed automata then A

1

kA

2

is a timed automaton.

Lemma 5.2 Let A = A

1

kA

2

and let � be an exeution fragment of A. Then � d(A

1

;X

1

)

and � d(A

2

;X

2

) are exeution fragments of A

1

and A

2

, respetively. Furthermore,

1. � is time-bounded i� both � d(A

1

;X

1

) and � d(A

2

;X

2

) are time-bounded.

2. � is admissible i� both � d(A

1

;X

1

) and � d(A

2

;X

2

) are admissible.

3. � is losed i� both � d(A

1

;X

1

) and � d(A

2

;X

2

) are losed.

4. � is non-Zeno i� both � d(A

1

;X

1

) and � d(A

2

;X

2

) are non-Zeno.

5. � is an exeution i� both � d(A

1

;X

1

) and � d(A

2

;X

2

) are exeutions.

Lemma 5.3 Let A = A

1

kA

2

, and let � be an exeution fragment of A. Then, for i = 1; 2,

trae(�) d(E

i

; ;) = trae(� d(A

i

;X

i

)).

The following theorem is a fundamental theorem that relates the set of traes of a om-

posed automaton to the sets of traes of its omponents. Set inlusion in one diretion

expresses the idea that a trae of a omposition \projets" to yield traes of the ompo-

nents. Set inlusion in the other diretion expresses the idea that traes of omponents

an be \pasted" to yield a trae of the omposition.

Theorem 5.4 Let A = A

1

kA

2

. Then traes

A

is exatly the set of (E; ;)-sequenes whose

restritions to A

1

and A

2

are traes of A

1

and A

2

, respetively.

That is, traes

A

= f� j � is an (E; ;)-sequene and � d(E

i

; ;) 2 traes

A

i

; i 2 f1; 2gg.

Notation: The ompatibility onditions for omposition require the set of internal vari-

ables of eah automaton to be disjoint from the set of internal variables of all the other

automata in the omposition. We use a general sheme to disambiguate the internal

variables of omponents in order to avoid possible name lashes that an violate the om-

patibility onditions. If A is the name of an automaton and v is an internal variable of A,

then we refer to this variable as A:v in the omposite automaton.

Example 5.5 (Periodi sending proess with timeouts) Let C be the omposition

of three automata from Examples 4.1, 4.2 and 4.4:

56

C = PeriodiSend(u

1

;M) k T imedChannel(b;M) k T imeout(u

2

;M)

where M = fm

1

; : : : ;m

n

g and b+ u

1

< u

2

. The following sequene is a trae of C.

� = �

0

send(m

1

) �

1

reeive(m

1

) �

2

send(m

2

) �

3

reeive(m

2

) �

4

: : :

where e is the set onsisting of the funtion with the empty domain and

�

0

: [0; u

1

℄! e �

1

: [0; b℄! e �

2

: [0; u

1

� b℄! e �

3

: [0; b℄! e �

4

: [0; u

1

� b℄! e

The following invariant states that C never performs a timeout ation.

Invariant 1 : In any reahable state x of C, x(T imeout:suspeted) = false.

In order to prove this invariant we an use an auxiliary invariant suh as the one below,

whih establishes the fat that every message is delivered before the variable now , whih

keeps trak of real-time, reahes the point at whih a timeout ation ours.

Invariant 2 :

1. if x(T imedChannel:queue) is not empty then

x(T imedChannel:queue)(1) < x(T imedChannel:now) + u

2

� x(T imeout:lok).

2. if x(T imedChannel:queue) is empty then

u

1

� x(PeriodiSend:lok) + b < u

2

� x(T imeout:lok).

Example 5.6 (Periodi sending proess with failures and timeouts) In this ex-

ample, we onsider a omposite automaton de�ned exatly like the one in Example 5.5

exept that the automaton PeriodiSend(u

1

;M) is replaed with PeriodiSend2(u

1

;M).

Let C = PeriodiSend2(u

1

;M) k T imedChannel(b;M) k T imeout(u

2

;M). The follow-

ing sequene is a trae of C.

�

0

send(m

1

) �

1

reeive(m

1

) �

2

fail �

3

timeout �

4

where e is the set onsisting of the funtion with the empty domain and

�

0

: [0; u

1

℄! e �

1

: [0; b℄! e �

2

: [0; b℄! e �

3

: [0; u

2

� b℄! e �

4

: [0;1)! e

57

Aording to this sample trae, the �rst message sent by the periodi sending proess

is reeived exatly b time units after it is sent. The periodi sending proess fails 2b time

units after sending its �rst message. The timeout proess performs a timeout sine no

seond message arrives within the next u

2

time units after the reeipt of the �rst message.

The following invariant states that a timeout performed by C an be used to onlude

that the sender proess has failed.

Invariant 1 : Let C = PeriodiSend2(u

1

;M) k T imedChannel(b;M) k T imeout(u

2

;M)

and assume that b + u

1

< u

2

. In any reahable state x of C, if x(T imeout:suspeted) =

true then x(PeriodiSend2:failed) = true.

The automaton C is guaranteed to perform a timeout to signal the failure of a proess,

within a spei�ed amount of time after the ourrene of a fail event. The following is a

formal statement of this property.

Let � be an exeution of C and let t be the point in time at whih a fail event ours

in �. Then � inludes a timeout event that ours in the interval (t+ b; t+ b+ u

2

℄.

Example 5.7 (Clok synhronization) In this example we onsider the omposition

of three lok synhronization automata with six time-bounded hannel automata. A

graphial representation of the omposite automaton is given below. The abbreviation

CS

i

represents the automaton ClokSyn(u; �)

i

. The abbreviation TC

i;j

represents the

timed hannel that ommuniates messages from ClokSyn(u; �)

i

toClokSyn(u; �)

j

.

We assume that the time-bounded hannel automata used in this omposition are de�ned

as in Example 4.1 where reeive and send ations in eah instane are renamed suh that

they an be shared with lok synhronization automata. Let C be

ClokSyn(u; �)

1

kClokSyn(u; �)

2

kClokSyn(u; �)

3

k

T imedChannel(b;M)

1

k : : : kT imedChannel(b;M)

6

where M = R

+

.

58

CS

2

send(m)

2

send(m)

3

send(m)

3

reeive(m)

3;2

reeive(m)

3;1

reeive(m)

2;1

send(m)

1

send(m)

1

reeive(m)

1;2

send(m)

2

reeive(m)

1;3

reeive(m)

2;3

TC

1;3

TC

3;1

TC

2;3

CS

3

TC

3;2

CS

1

TC

1;2

TC

2;1

A physial lok diverges from real time at the largest rate when it evolves with rate

1 + � or 1� �. For example, if a physial lok evolves with rate 1 + �, then at time t, its

value is t(1 + �). Hene, the largest possible di�erene between a physial lok and the

real time is t�. This property is stated by the invariant below.

Invariant 1 : In any reahable state x of C, at any time t 2 T, for any i 2 f1; 2; 3g,

jx(ClokSyn(u; �)

i

:physlok)� tj � t�.

Two physial loks in C diverge at the largest rate when one evolves with rate 1+� and

the other with 1 � �. It follows from Invariant 1 that, at any time t the largest possible

di�erene between the physial lok values for two proesses is 2t�. This property is

formalized by the following invariant.

Invariant 2 : In any reahable state x of C, at any time t 2 T, for any i; j 2

f1; 2; 3g, jx(ClokSyn(u; �)

i

:physlok) � x(ClokSyn(u; �)

j

:physlok)j � 2t� where

i; j 2 f1; 2; 3g.

The following invariant states that in any reahable state there exists a proess j suh

that the logial lok of eah other proess in the system is smaller than or equal to the

physial lok of j. This follows from the de�nition of a logial lok and the fat that

physial loks always inrease.

Invariant 3 : In any reahable state x of C, there exists j 2 f1; 2; 3g suh that for all

i 2 f1; 2; 3g, x(ClokSyn(u; �)

i

:loglok) � x(ClokSyn(u; �)

j

:physlok).

The following invariant states that in any reahable state there exists a proess j suh

that the logial lok of eah other proess in the system is larger than or equal to the

physial lok of j. This follows from the de�nition of a logial lok.

59

Invariant 4 : In any reahable state x of C, there exists j 2 f1; 2; 3g suh that for all

i 2 f1; 2; 3g, x(ClokSyn(u; �)

i

:loglok) � x(ClokSyn(u; �)

j

:physlok).

Invariants 3 and 4 together are alled validity properties. They express the ondition

that all the logial loks remain in an envelope bounded by the maximum and minimum

physial lok values in the system.

The following invariant formalizes the property that all the logial loks at a given

time lie within the envelope formed by the largest and the smallest physial lok values

in the system. It follows from Invariants 1, 3 and 4 that any point in this envelope an

diverge from real time t by at most t� time units.

Invariant 5 : In any reahable state x of C, at any time t 2 T, for any i 2 f1; 2; 3g

jx(ClokSyn(u; �)

i

:loglok) � tj � t�.

Finally, we state a property about the agreement of logial loks in C.

Invariant 6 : In any reahable state x of C, for i; j 2 f1; 2; 3g, jx(ClokSyn(u; �)

i

:loglok)�

x(ClokSyn(u; �)

j

:loglok)j � u+ b(1 + �).

To see why Invariant 6 holds, �x j to be a proess with the largest physial lok

in x, and �x i to be any other proess. Let v

j

; v

i

be the logial lok values of j and i

respetively in state x. Note that v

j

is also the physial lok value of j in x. By Invariant

3, we know that v

i

� v

j

. To show Invariant 6, it suÆes to show that v

j

�v

i

� u+b(1+�).

Let � be a �nite exeution that leads to state x. There are two ases to onsider.

1. Some message sent by j arrives at i in �.

Consider the last suh message and let v

1

be the value that it ontains. Let v

2

be

the newly adjusted logial lok value of i immediately after the message arrives.

We know that v

i

� v

2

� v

1

.

If j sends a later message to i in �, then it sends the next later message when its

physial lok has value v

1

+ u. By assumption, this message does not arrive at i.

Therefore, the real time that elapses after sending it must be at most b. It follows

that the physial lok inrease of j sine sending this message is at most b(1 + �)

and so v

j

� v

1

+ u+ b(1 + �). On the other hand, if j does not send a later message

to i in �, then v

j

� v

1

+ u. In either ase, we have v

j

� v

1

+ u + b(1 + �). Sine

v

i

� v

1

, we have v

j

� v

i

� u+ b(1 + �), as needed for Invariant 6.

2. No message sent by j arrives at i in �.

Sine the �rst send ours at time 0 and b is the largest possible ommuniation

delay, the fat that i has not reeived the �rst message sent by j at time 0 implies

that t � b. Sine both loks start at 0, we have v

j

� b(1+�) and v

i

� 0. Therefore,

v

j

� v

i

� u+ b(1 + �), whih suÆes for Invariant 6.

60

5.1.2 Substitutivity Results

Theorem 5.4, whih relates the set of traes of a omposed automaton to the set of traes

of omponent automata, is fundamental for ompositional reasoning. We now introdue

another important lass of results, substitutivity results, that are useful for deomposing

veri�ation of omposite automata. These results are best understood by viewing one of

the omponents of a omposition as the system and the other as the environment with

whih the system interats.

The following result states that if a TA A

1

an be shown to implement another one

A

2

, with no assumptions about their environments, then A

1

an be shown to implement

A

2

in a given environment B.

Theorem 5.8 Suppose A

1

, A

2

and B are TAs, A

1

and A

2

have the same external ations,

and eah of A

1

and A

2

is ompatible with B. If A

1

� A

2

then A

1

kB � A

2

kB.

Corollary 5.9 Suppose A

1

, A

2

, B

1

, and B

2

are TAs, A

1

and A

2

have the same external

ations, B

1

and B

2

have the same external ations, and eah of A

1

and A

2

is ompatible

with eah of B

1

and B

2

. If A

1

� A

2

and B

1

� B

2

then A

1

kB

1

� A

2

kB

2

.

We an strengthen Corollary 5.9 slightly by the following orollary: if A

1

implements

A

2

in an environment B

2

, then A

1

omposed with an environment that is more restritive

than B

2

(whose set of external behaviors is smaller than that of B

2

), implements A

2

omposed with B

2

.

Corollary 5.10 Suppose A

1

, A

2

, B

1

, and B

2

are TAs, A

1

and A

2

have the same external

ations, B

1

and B

2

have the same external ations, and eah of A

1

and A

2

is ompatible

with eah of B

1

and B

2

. If A

1

kB

2

� A

2

kB

2

and B

1

� B

2

then A

1

kB

1

� A

2

kB

2

.

Proof: Let � 2 traes

A

1

kB

1

. By Theorem 5.4, � d(E

A

1

; ;) 2 traes

A

1

and � d(E

B

1

; ;) 2

traes

B

1

. Sine B

1

� B

2

, � d(E

B

1

; ;) 2 traes

B

2

. Sine B

1

and B

2

have the same exter-

nal ations, it follows that � d(E

B

2

; ;) 2 traes

B

2

. We have � d(E

A

1

; ;) 2 traes

A

1

and

� d(E

B

2

; ;) 2 traes

B

2

. By Theorem 5.4, � 2 traes

A

1

kB

2

. Sine A

1

kB

2

� A

2

kB

2

by

assumption, � 2 traes

A

2

kB

2

, as needed.

For other preorders, we also get substitutivity results, for example:

Theorem 5.11 Suppose A

1

, A

2

and B are TAs, A

1

and A

2

have the same external

ations, and eah of A

1

and A

2

is ompatible with B.

61

1. If every losed trae of A

1

is a trae of A

2

then every losed trae of A

1

kB is a trae

of A

2

kB.

2. If every admissible trae of A

1

is a trae of A

2

then every admissible trae of A

1

kB

is a trae of A

2

kB.

3. If every non-Zeno trae of A

1

is a trae of A

2

then every non-Zeno trae of A

1

kB

is a trae of A

2

kB.

Example 5.12 (A ounterexample for a desirable substitutivity theorem) Sup-

pose A

1

and A

2

have the same external ations, B

1

and B

2

have the same external ations,

and that eah of A

1

and A

2

is ompatible with eah of B

1

and B

2

. If we view A

2

and

B

2

as spei�ations and want to prove that A

1

kB

1

� A

2

kB

2

, it would be useful to have

a theorem that says if A

1

kB

2

� A

2

kB

2

and A

2

kB

1

� A

2

kB

2

then A

1

kB

1

� A

2

kB

2

. That

is, if A

1

implements A

2

in the ontext of B

2

and B

1

implements B

2

in the ontext of

A

2

, we would like to onlude that A

1

kB

1

implements A

2

kB

2

. We show by means of a

ounterexample that it is impossible to prove suh a theorem.

Consider the de�nitions of automata A

1

;A

2

;B

1

;B

2

in Figures 11 and 12. All automata

have the same set of ations, onsisting of the external ations a and b. A

1

an perform

an arbitrary number of bs, and an perform an a provided that the ount of as and the

ount of bs are equal. A

1

allows the ount of as to inrease to one more than the ount of

bs.

B

1

an perform an arbitrary number of as, and an perform a b provided that the

ount of as is one more than the ount of bs. B

1

allows the ount of bs to reah the ount

of as.

A

2

has an in�nite number of start states, eah giving a di�erent �nite bound on the

number of a ations it an perform. Similarly, B

2

has an in�nite number of start states,

eah giving a di�erent �nite bound on the number of b ations it an perform.

Clearly, A

1

kB

2

� A

2

kB

2

, and A

2

kB

1

� A

2

kB

2

. On the other hand, A

1

kB

1

an per-

form an in�nite sequene of alternating as and bs, whih is not allowed allowed by the

spei�ation A

2

kB

2

This implies that A

1

kB

1

does not implement A

2

kB

2

.

In Setion 8, we revisit the substitutivity issue and prove Theorem 8.8, a variant of

the desirable theorem onsidered in the above example, by assuming ertain onditions on

the environments A

2

and B

2

.

5.2 Hiding

We de�ne one hiding operation for timed automata, whih hides external ations: if

E � E

A

, then AtHide(E;A) is the TA B that is equal to A exept that E

B

= E

A

� E

and H

B

= H

A

[E.

62

Automaton A

1

Variables X : disrete ounta 2 Z initially 0

disrete ountb 2 Z initially 0

States Q : val(X)

Ations A : external a; b

Transitions D : external a

preondition

ountb = ounta

e�et

ounta := ounta+ 1

external b

e�et

ountb := ountb+ 1

Trajetories T : f}(x) j x 2 Qg

Automaton B

1

Variables X : disrete ounta 2 Z initially 0

disrete ountb 2 Z initially 0

States Q : val(X)

Ations A : external a; b

Transitions D : external b

preondition

ounta = ountb + 1

e�et

ountb := ountb+ 1

external a

e�et

ounta := ounta+ 1

Trajetories T : f}(x) j x 2 Qg

Figure 11: Automata A

1

and B

1

63

Automaton A

2

Variables X : disrete maxount 2 Z

�0

initially arbitrary

disrete ounta 2 Z

�0

initially 0

States Q : val(X)

Ations A : external a; b

Transitions D : external a

preondition

ounta < maxount

e�et

ounta := ounta+ 1

external b

Trajetories T : f}(x) j x 2 Qg

Automaton B

2

Variables X : disrete maxount 2 Z

�0

initially arbitrary

disrete ountb 2 Z

�0

initially 0

States Q : val(X)

Ations A : external a; b

Transitions D : external b

ountb < maxount

e�et

ountb := ountb + 1

external a

Trajetories T : f}(x) j x 2 Qg

Figure 12: Automata A

2

and B

2

64

Lemma 5.13 If E � E

A

then AtHide(E;A) is a TA.

Lemma 5.14 If A is a TA and E � E

A

then traes

AtHide(E;A)

= f� d(E

A

� E; ;) j � 2

traes

A

g.

The following theorem states that the hiding operation respets the implementation

relation.

Theorem 5.15 Suppose A and B are TAs with A � B, and suppose E � E

A

. Then

AtHide(E;A) � AtHide(E;B).

5.3 Extending Timed Automata with Bounds

In this setion, we de�ne a new lass of automata, \TA with bounds" where the basi

de�nition of a timed automaton is extended with the notion of a task and a pair of bounds

(a lower and an upper bound) for eah task. We then de�ne an operation that transforms

a given TA with bounds to another TA. This operation supports speifying a system by

thinking in terms of tasks and bounds as in the timed automata of Merritt, Modugno, and

Tuttle [29℄ and the phase transition systems of Maler, Manna and Pnueli [28℄.

In de�ning the operation for extending timed automata with bounds, we restrit atten-

tion to a lass of automata where the enabling and disabling of ations during trajetories

follow ertain rules. Spei�ally, our operation is de�ned on automata in whih eah ation

is enabled or disabled throughout an entire trajetory, or beomes enabled one during a

trajetory and remains so until the end of that trajetory. The given restritions ensure

that the result of applying the operation to a TA is another TA and that the resulting TA

satis�es the restritions.

Let A be a TA, C a set of ations of A, and T the set of trajetories of A. We say that

T is well-formed with respet to C if eah � 2 T satis�es one of the following onditions:

1. For all t 2 dom(�), C is enabled in �(t).

2. For all t 2 dom(�), C is disabled in �(t).

3. There exists t 2 dom(�) suh that for all t

0

2 [0; t), C is disabled in �(t

0

) and for all

t

0

2 dom(�)� [0; t), C is enabled in �(t

0

).

A TA with bounds, A = (B; C; l; u) onsists of:

� A timed automaton B = (X;Q;�; E;H;D;T).

� A set C � E [H of ations alled a task ; we assume that T is well-formed with

respet to C.

65

� A lower time bound l and an upper time bound u for C. We require that the

following axioms are satis�ed for l and u:

B1 l 2 R

�0

and u 2 R

�0

[f1g.

B2 l � u.

Lower and upper bounds are used to speify how muh time is allowed to pass between

the enabling and the performane of an ation. If l is the lower bound for a task C, then

an ation in C must remain enabled at least for l time units before being performed. If u

is the upper bound for a task C, then an ation in C an remain enabled at most u time

units without being performed: it must either be performed or beome disabled within u

time units.

We now de�ne an operation Extend, whih transforms a TA A with bounds to another

TA A

0

that inorporates the new bounds, in addition to the timing onstraints already

present in A. Let A = (B; C; l; u) be a TA with bounds where B = (X;Q;�; E;H;D;T).

Then Extend(A) is the TA A

0

= (X

0

; Q

0

;�

0

; E

0

;H

0

;D

0

;T

0

) suh that the omponents of A

0

onsist of:

� X

0

= X [fnow ;�rst ; lastg where:

1. now ;�rst , and last are new variables that do not appear in X.

2. now is an analog variable suh that type(now) = R.

3. �rst and last are disrete variables where type(�rst) = R and type(last) =

R [f1g.

� Q

0

= fx 2 val(X

0

) j x dX 2 Qg.

� �

0

onsists of all the states x 2 Q

0

that satisfy the following onditions:

1. x dX 2 �.

2. x(now) = 0.

3. x(�rst) =

�

l if C is enabled in x dX;

0 otherwise:

x(last) =

�

u if C is enabled in x dX;

1 otherwise:

� E

0

= E and H

0

= H. We write A

0

�

= E

0

[H

0

.

� If a 2 (E [H) then (x; a;x

0

) 2 D

0

exatly if all of the following onditions hold:

1. (x dX)

a

!

A

(x

0

dX).

2. x

0

(now) = x(now).

66

3. (a) If a 2 C, then x(�rst) � x(now).

(b) If C is enabled both in x dX and x

0

dX and a =2 C, then x(�rst) = x

0

(�rst)

and x(last) = x

0

(last).

() If C is enabled in x

0

dX and either C is not enabled in x dX or a 2 C,

then x

0

(�rst) = x(now) + l and x

0

(last) = x(now) + u.

(d) If C is not enabled in x

0

dX, then x

0

(�rst) = 0 and x

0

(last) =1.

� T

0

is a set that onsists of all � 2 trajs(X

0

) that satisfy the following onditions:

1. (� # X) 2 T .

2. d(now) = 1.

3. (a) If for all t 2 dom(�), C is enabled in � # X(t) then �rst and last are

onstant throughout � .

(b) If for all t 2 dom(�), C is disabled in � # X(t) then �rst and last are

onstant throughout � .

() If for all t

0

2 [0; t), C is disabled in �(t

0

) and for all t

0

2 dom(�) � [0; t), C

is enabled in �(t

0

) then

i. �rst and last are onstant in [0; t).

ii. �(t)(�rst) = �(t)(now) + l and �(t)(last) = �(t)(now) + u.

iii. �rst and last are onstant in dom(�)� [0; t).

(d) now � last .

The transformation is based on the idea of augmenting the state of the original au-

tomaton with a variable to represent urrent time (now) and the earliest time (�rst) and

the latest time (last) a task an be performed. All these variables represent time in ab-

solute terms. Item 3(a) in the de�nition of D

0

expresses the new lower bound onstraint

and Item 3(d) in the de�nition of T

0

the new upper bound onstraint.

Let A be a TA with bounds (B; C; l; u). In a start state x of Extend(A), the variables

�rst and last are initialized to l and u respetively, if C is enabled in x. If C is not enabled

in x, then �rst is set to 0 and last is set to1. Items 3() in the de�nition of D

0

and 3() in

the de�nition of T

0

show how the variables �rst and last are updated. When C beomes

newly enabled by a disrete transition or when a C ation leads to a state in whih C is

enabled, �rst is set to now + l and last is set to now +u. The variables first and last are

updated similarly when C beomes newly enabled in the ourse of a trajetory.

Theorem 5.16 Suppose that A = (B; C; l; u) is a TA with bounds. Then Extend(A) is a

TA with a set of trajetories that is well-formed with respet to C.

Proof: The proof follows from the de�nitions of TA and the operation Extend. Step

3(a) in the de�nition of D

0

adds a new lower bound onstraint, whih makes enabling

67

start at some partiular time. Step 3(b) in the de�nition of T

0

, adds a new upper bound

onstraint, whih stops trajetories at a partiular time and whih does not add any

enabling or disabling to trajetories.

In the rest of this setion, we sometimes speak of variables, states and traes of a TA

with bounds. If A = (B; C; l; u) is a TA with bounds, variables, states and traes of A

refer to, respetively, the states and the traes of the underlying automaton B.

Theorem 5.17 Suppose A = (B; C; l; u) is a TA with bounds. Then traes

Extend(A)

�

traes

A

.

Proof: Let F : Q

0

! Q be de�ned as follows: F (x) = x dX where X is the set of

internal variables of A. It is easy to hek that F is a re�nement from Extend(A) to A.

By Theorem 4.28 and Corollary 4.24, we onlude that traes

Extend(A)

� traes

A

.

Lemma 5.18 Suppose that A is a TA with bounds. For any reahable state x of Extend(A),

if C is enabled in x dX in A, then x(last) � x(now) + u.

Proof: Consider a losed exeution � of Extend(A). Using the axioms T1 and T2 for

trajetories, we an write � as a onatenation of losed exeution fragments �

0

_

�

1

_

: : : �

k

where �

0

is a point trajetory, and eah �

i

for i � 1 is either a trajetory or a disrete ation

surrounded by two point trajetories suh that for all 0 � i � k�1, �

i

:lstate = �

i+1

:fstate .

We prove the invariant by indution on the length k of the sequene of exeution fragments.

For the base ase, suppose that C is enabled in �

0

:fstate dX. Sine � is an exeu-

tion, we know that �

0

:fstate is a start state of Extend(A). By de�nition of Extend(A),

�

0

:fstate(last) = u. Sine �

0

:fstate(now) = 0, �

0

:fstate(last) � �

0

:fstate(now) + u, as

required.

For the indutive step, we assume that the property is true for the sequene �

0

_

�

1

_

: : : �

k

and show that it is true in the sequene �

k+1

in �

0

_

�

1

_

: : : �

k

_

�

k+1

. There are

two ases to onsider depending on whether �

k+1

is a disrete ation surrounded by two

point trajetories or a trajetory.

1. �

k+1

is an ation a surrounded by two point trajetories. Suppose that C is enabled

in �

k+1

:lstate . There are two subases to onsider:

(a) C is enabled in �

k

:lstate dX and a =2 C.

Then, �

k+1

:fstate(last) = �

k

:fstate(last) and �

k+1

:fstate(now) = �

k

:fstate(now).

By indutive hypothesis, �

k

:lstate(last) � �

k

:lstate(now) + u. Therefore,

�

k+1

:lstate(last) � �

k+1

:lstate(now) + u, as needed.

68

(b) C is disabled in �

k

:lstate dX or a 2 C.

Then, by de�nition of Extend(A), �

k+1

:lstate(last) = �

k+1

:lstate(now) + u,

whih suÆes.

2. �

k+1

is a trajetory.

Suppose that C is enabled in �

k+1

:lstate dX in A. There are two subases to on-

sider:

(a) C is enabled in �

k+1

:fstate dX in A.

By indutive hypothesis �

k+1

:fstate(last) � �

k+1

:fstate(now)+u. By the well-

formedness assumption, we know that C must be enabled throughout �

k+1

and

by de�nition of Extend(A) last is onstant throughout �

k+1

. Sine the value of

now inreases, it is easy to see that �

k+1

:lstate(last) � �

k+1

:lstate(now) + u.

(b) C is disabled in �

k+1

:fstate dX in A.

Then, sine it is enabled in �

k+1

:lstate dX by the well-formedness assumption,

it beomes enabled at some point t in the domain of �

k+1

and remains en-

abled thereafter. Therefore, �

k+1

(t)(last) = �

k+1

(t)(now) + u, by de�nition

of Extend(A). Sine last remains onstant after it is set and the value of now

inreases, �

k+1

:lstate(last) � �

k+1

:lstate(now) + u holds.

The theorem below shows that the exeutions of an automaton obtained by applying

the transformation Extend to a TA with bounds respet the time bounds spei�ed by the

lower bound l and the upper bound u.

Theorem 5.19 Let A = (B; C; l; u) be a TA with bounds. Then,

1. There does not exist a losed exeution fragment � of Extend(A) from a reahable

state, where �:ltime > u, C is enabled in A in all the states of � d(A;X) and no

ation in C ours in �.

2. There does not exist a losed exeution fragment � of Extend(A) from a reahable

state, where �:ltime < l, suh that C is not enabled in A in the �rst state of � d(A;X)

and an ation in C ours in �.

Proof:

1. Suppose, for the sake of ontradition, that there exists a losed exeution fragment

� = �

0

a

1

�

1

a

2

: : : �

n

of Extend(A) from a reahable state, where �:ltime > u, C is

enabled inA in all the states of � d(A;X) and none of the a

i

in � is inC. By de�nition

of trajetories for Extend(A) it must be the ase that �:lstate(now) � �:lstate(last).

69

Sine C is enabled in A in all states in �, by Lemma 5.18 we have �:fstate(last) �

�:fstate(now) + u. By de�nition of Extend(A), last remains onstant throughout �;

therefore, �:lstate(last) = �:fstate(last). Sine �:fstate(last) � �:fstate(now) + u,

it follows that �:lstate(last) � �:fstate(now) + u. By de�nition of �, we have

�:lstate(now) = �:fstate(now) + �:ltime . It follows that �:fstate(now) + �:ltime �

�:fstate(now) + u. This implies �:ltime � u. But this gives us the needed ontra-

dition sine �:ltime > u.

2. We assume that � is a losed exeution fragment of Extend(A) from a reahable state

where �:ltime < l, suh that C is not enabled in A in the �rst state of � and an

ation in C ours in �. Let (x; a;x

0

) be the �rst disrete transition of Extend(A) in

� suh that a 2 C. We show that the ondition x(�rst) � x(now), whih has to hold

for the disrete transition to our, annot be true, hene arrive at a ontradition.

By Theorem 5.16, the set of trajetories of Extend(A) is well-formed with respet

to C. Therefore, C an beome enabled by either a disrete transition or during a

trajetory, and remains enabled until the ourrene of (x; a;x

0

).

(a) C beomes enabled by a disrete transition and remains enabled in A until the

ourrene of (x; a;x

0

).

Let (y; b;y

0

) be the disrete transition of A that enables C. By item 3() in

the de�nition of D

0

we know that �rst is set to y(now) + l when C beomes

enabled. By item 3(b) in the de�nition of D

0

and 3(a) in the de�nition of T

0

, we

know that it remains onstant so that x(�rst) = y(now) + l. Sine (x; a;x

0

) is

a disrete transition of Extend(A), it must be the ase that x(�rst) � x(now).

Sine x(now) � y(now) + �:ltime and x(�rst) = y(now) + l it follows that

y(now) + l � y(now) + �:ltime . But we know by assumption that �:ltime < l

whih gives the needed ontradition.

(b) C beomes enabled at some point in the ourse of a trajetory � and remains

enabled in A until the ourrene of (x; a;x

0

).

Let y be a state in the range of � where C beomes enabled. By item 3() in

the de�nition of T

0

we know that �rst is set to y(now) + l when C beomes

enabled and it remains onstant in � so that x(�rst) = y(now) + l. By item

3(b) in the de�nition of D

0

and 3(a) in the de�nition of T

0

, we know that

�rst remains onstant until the ourene of (x; a;x

0

). Sine (x; a;x

0

) is a

disrete transition of Extend(A), it must be the ase that x(�rst) � x(now).

Sine x(now) � y(now) + �:ltime and x(�rst) = y(now) + l it follows that

y(now) + l � y(now) + �:ltime . But we know by assumption that �:ltime < l

whih gives the needed ontradition.

70

Example 5.20 (Fisher's mutual exlusion algorithm spei�ed using tasks and

bounds)

In Example 4.5 we presented the spei�ation of Fisher's mutual exlusion algorithm

as a TA. This example illustrates an alternative way of speifying the same algorithm by

using a TA with bounds.

Reall that, formally, we de�ne a TA with bounds as a TA augmented with a single

task along with lower and upper bounds for that task. The automaton in Figure 13 is,

however, augmented with a set of tasks and bounds. This is for notational onveniene

and the automaton in Figure 13 should be viewed as the automaton representing the

umulative result of adding in suessive steps two tasks for eah i 2 I. We assume that

Extend is applied one for eah task. That is, we start with the timing-independent version

of FisherME, apply Extend to the automaton augmented with the task fset

i

g to add the

lower bound 0 and the upper bound u

set

, then apply Extend to the resulting automaton

augmented with fhek

i

g to add the lower bound l

hek

and the upper bound 1. Suh

two suessive appliations are allowed sine the result of the �rst appliation of Extend

satis�es the the well-formedness onditions for the set of trajetories.

The result of these suessive appliations yields an automaton similar to the one in

Example 4.5. The only di�erene is that the mehanial appliation of the transformation

would reset the value of firsthek[i℄ to 0 as an e�et of hek

i

while we do not reset

firsthek[i℄ expliitly in 4.5, when it beomes disabled. This is beause we make use

of the fats that the value of firsthek[i℄ is used only in determining whether hek

i

is

enabled and that hek

i

beomes enabled only in the poststate of set

i

whih also sets the

value of firsthek[i℄. Note that this disrepeny does not give rise to any di�erene in

the behaviors of the two automata.

5.4 Untiming

We de�ne an \untiming" operation that transforms a timed automaton to an untimed

automaton of the kind de�ned in Setion 2.5. The idea behind this operation is to redue

the state spae of a timed automaton by identifying those states that are equivalent in

the sense that they give rise to similar disrete behavior. The exeutions of the untimed

automaton obtained as a result of applying the untiming operation to a TA, A, preserve

the order of disrete ations of A but forget the possible time passage between them. This

operation has its roots in a similar operation de�ned in [6, 4℄ but we do not deal with the

�niteness of the resulting state spae and ease of reahability analysis, as those papers do.

Instead, we aim to understand the main ideas of the untiming operation of [6, 4℄ using our

more general framework.

The untiming operation uses the notion of ongruene de�ned below to determine

equivalene lasses of states.

71

Type PV alue = enumeration rem; test; set; hek; leavetry; rit; leaveexit

Automaton FisherME2(u

set

; l

hek

; I) where u

set

2 R

�0

, l

hek

2 R

�0

, u

set

� l

hek

Variables X : disrete p, an array of elements of PV alue indexed by I

initially 8i 2 I: p[i℄ = rem

disrete x 2 I [f?g initially x =?

States Q : val(X)

Ations A : external try

i

; rit

i

; exit

i

; rem

i

internal test

i

; set

i

; hek

i

; reset

i

where i 2 I

Transitions D : external try

i

external rit

i

preondition preondition

p[i℄ = rem p[i℄ = leavetry

e�et e�et

p[i℄ := test p[i℄ := rit

internal test

i

external exit

i

preondition preondition

p[i℄ = test p[i℄ = rit

e�et e�et

if x =? then p[i℄ := reset

p[i℄ := set

internal set

i

internal reset

i

preondition preondition

p[i℄ = set p[i℄ = reset

e�et e�et

x := i x :=?

p[i℄ := hek p[i℄ := leaveexit

internal hek

i

external rem

i

preondition preondition

p[i℄ = hek p[i℄ = leaveexit

e�et e�et

if x = i then p[i℄ := rem

p[i℄ := leavetry

else

p[i℄ := test

Trajetories T : f� 2 trajs(X) j p andx onstant in �g

Tasks C : 8i 2 I: fset

i

g; fhek

i

g

Bounds B : 8i 2 I: lower(fset

i

g) = 0; upper(fset

i

g) = u

set

8i 2 I: lower(fhek

i

g) = l

hek

; ; upper(fhek

i

g) =1

Figure 13: FisherME with bounds

72

5.4.1 State Congruene

Let A = (X;Q;�; E;H;D;T) be a TA. An equivalene relation R � Q�Q is a ongruene

for A if, for all ations a 2 (E [H) and trajetories � 2 T the following hold:

1. If x R y and x 2 � then y 2 �.

2. If x R y and x

a

! x

0

then there exists a state y

0

suh that y

a

! y

0

and x

0

R y

0

.

3. If x R y, and x

�

! x

0

then there exists a state y

0

and a trajetory �

0

suh that

y

�

0

! y

0

and x

0

R y

0

.

The relation R partitions Q into equivalene lasses. In the rest of this setion, we use [x℄

to denote the equivalene lass of x 2 Q, that is [x℄ = fy j x R yg.

5.4.2 De�nition of the Untiming Operation

Given a TA A = (X;Q;�; E;H;D;T) and a ongruene R � Q�Q for A, the untiming

operation yields an untimed automaton Untime(A; R) = (Q

0

;�

0

; E

0

;H

0

;D

0

) where

� Q

0

= f[x℄ j x 2 Qg.

� �

0

= f[x℄ j x 2 �g.

� E

0

= E.

� H

0

= H [f�g where � is a speial ation representing time passage.

� D

0

� Q

0

�A

0

�Q

0

where A

0

�

= E

0

[H

0

suh that

1. s

a

! s

0

2 D

0

if and only if there exists (x; a;x

0

) 2 D where [x℄ = s and [x

0

℄ = s

0

.

2. s

�

! s

0

2 D

0

if and only if there exists � 2 T where � is losed, [�:fstate ℄ = s

and [�:lstate ℄ = s

0

.

Example 5.21 (Untime(AD;R)) In this example we de�ne a ongruene for the automa-

ton AD from Example 4.19 and give the result of applying the untiming operation to

AD by using this ongruene. Let I be the set of intervals f(0; 1); (1;1)g. Let R be an

equivalene relation de�ned as follows. x R y if the following onditions hold:

1. x dX

d

= y dX

d

.

2. For every x 2 X

, either x(x);y(x) 2 J for some J 2 I or x(x) = y(x) = i for some

integer i.

73

a a

a

a a

b

d d

1 < y < x

s

2

s

0

x = y = 0

s

0

s

0

s

1

s

1

s

1

s

1

s

3

s

3

s

3

s

3

x = y � 1

0 � y < 1 � x

y = 1 < x

1 � y < x

0 � y < x < 1

0 � y < x < 1

0 � y < x = 1

0 � y < 1 < x

1 � y < x

0 < x = y < 1

� �

�

��

� �

�

�

��

�

�

�

� �

�

�

�

�

Figure 14: Untime(AD;R)

3. For every z; w 2 X

, x(z) > x(w) if and only if y(z) > y(w).

R is a ongruene for the automaton AD from Example 4.19. Figure 14 ontains a

graphial representation of Untime(AD;R). Eah node in the graph represents a state

of Untime(AD;R), that is, an equivalene lass of states of AD with respet to R. The

annotations within the nodes are used to de�ne the equivalene lass. For example, a node

that is annotated with s

0

and x = y = 0 denotes the set of states fx 2 Q

AD

j x(lo) =

s

0

;x(x) = 0; and x(y) = 0g.

5.4.3 Basi Results

In this setion we present some results that establish a orrespondene between the exe-

utions of a TA and those of the orresponding untimed automaton.

The lemma below states that the trae of disrete events in an exeution fragment

of a timed automaton is also exhibited by some exeution fragment of the orresponding

untimed automaton.

74

Lemma 5.22 Suppose A is a TA and R is a ongruene for A. If � is an exeution

fragment of A, then Untime(A; R) has an exeution fragment �

0

suh that �

0

:fstate =

[�:fstate ℄ and trae(�

0

) = ations(trae(�)).

Proof: We onsider the following ases:

1. � is an in�nite sequene.

Using axioms T1 and T2 we an write � as an in�nite onatenation �

0

_

�

1

_

� � �,

in whih eah exeution fragment �

i

is either a trajetory with �

i

:ltime > 0 or a

single disrete ation surrounded by two point trajetories, and for every i � 0,

�

i

:lstate = �

i+1

:fstate .

We de�ne a sequene �

0

0

�

0

1

� � � of exeution fragments of Untime(A; R) suh that

(a) If �

i

is a trajetory, then �

0

i

= (s; �; s

0

) where s = [�

i

:fstate ℄ and s

0

= [�

i

:lstate ℄

(reall that we use [x℄ to denote the equivalene lass of x with respet to R).

(b) If �

i

is a single disrete ation a surrounded by two point trajetories, then

�

0

i

= (s; a; s

0

) where s = [�

i

:fstate ℄; s

0

= [�

i

:lstate ℄.

It is immediate from the de�nition of Untime(A; R) in Setion 5.4.2 that eah �

0

i

onstruted above is an exeution fragment of Untime(A; R) and that �

0

:fstate =

[�:fstate ℄ . By de�nitions of onatenation and exeution fragments for untimed

automata from Setion 2.5 we have that �

0

0

_

�

0

1

_

� � � is an exeution fragment

of Untime(A; R). By de�nitions of the operators trae for untimed automata from

Setion 2.5, and for timed automata from Setion 4, and disrete from Setion 3 we

have trae(�

0

) = ations(trae(�)), as needed.

2. � is a �nite sequene ending with a losed trajetory.

Similar to the �rst ase.

3. � is a �nite sequene ending with an open trajetory.

The sequene �

0

an be onstruted similarly to the �rst ase exept for the last

trajetory �

n

in �. Taking �

0

n

to be the empty sequene gives the required result.

Corollary 5.23 Suppose A is a TA and R is a ongruene for A. If � is an exeution of

A, then Untime(A; R) has an exeution �

0

suh that trae(�

0

) = ations(trae(�)).

Proof: Let � be an exeution of A. We know by Lemma 5.22 that Untime(A; R) has an

exeution �

0

suh that trae(�

0

) = ations(trae(�)) and �

0

:fstate = [�:fstate ℄. Sine � is

an exeution of A, �:fstate 2 Q

A

. Then by the de�nition in Setion 5.4.2, �

0

:fstate 2 �

0

and therefore �

0

is an exeution of Untime(A; R), as needed.

75

The following lemma states that, for every exeution fragment � of Untime(A; R) and

for every state x that is in the equivalene lass respresented by the �rst state of �, it is

possible to derive an exeution fragment of A from x that exhibits the same disrete trae

as Untime(A; R).

Lemma 5.24 Suppose A is a TA and R is a ongruene for A. If � is an exeution

fragment of Untime(A; R) and x is a state of A suh that [x℄ = �:fstate, then A has an

exeution fragment �

0

from x suh that trae(�) = ations(trae(�

0

)).

Proof:

1. � is an in�nite sequene of the form s

0

a

1

s

1

a

2

s

2

: : :

The sequene � an be written as the onatenation �

0

_

�

1

_

�

2

: : : of exeu-

tion fragments (s

i

; a

i+1

; s

i+1

) for i � 0. We de�ne �

0

indutively as the on-

atenation �

0

0

_

�

0

1

_

�

0

2

: : : where [�

0

0

:fstate ℄ = �:fstate and for every i � 0,

�

0

i

:lstate = �

0

i+1

:fstate and [�

0

i

:lstate ℄ = s

i

as follows:

(a) �

0

0

= }(x). By axiom T0, �

0

0

is an exeution fragment of A. Sine �

0

0

:fstate = x

by onstrution of �

0

0

and [x℄ = �:fstate by de�nition of x, we have [�

0

0

:fstate ℄ =

�:fstate . Sine �

0

0

:lstate = x by onstrution of �

0

0

and [x℄ = �:fstate by

de�nition of x and �:fstate = s

0

by the assumed struture of � we have

[�

0

0

:lstate ℄ = s

0

.

(b) For i � 1, if �

i�1

is (s

i�1

; a

i

; s

i

) where a

i

2 (A

0

n f�g), then de�ne �

0

i

to

be }(�

0

i�1

:lstate) a

i

}(y) where (�

0

i�1

:lstate ; a

i

;y) 2 D and [y℄ = s

i

. We

need to show that A has suh an exeution fragment �

0

i

. For i � 1, on-

sider �

i�1

= (s

i�1

; a

i

; s

i

). By de�nition of Untime(A; R) in Setion 5.4.2,

there must be some (z; a

i

; z

0

) 2 D suh that [z℄ = s

i�1

and [z

0

℄ = s

i

. By

indutive hypothesis [�

0

i�1

:lstate ℄ = s

i�1

. Sine [�

0

i�1

:lstate ℄ = s

i�1

= [z℄

we know by the de�nition of state ongruene in Setion 5.4.1 that there

exists y suh that (�

0

i�1

:lstate ; a

i

;y) 2 D and [y℄ = [z

0

℄ = s

i

. Therefore,

�

0

i

= }(�

0

i�1

:lstate) a

i

}(y) is an exeution fragment of A where �

0

i

:fstate =

�

0

i�1

:lstate and [�

0

i

:lstate ℄ = s

i

.

() For i � 1, if �

i�1

is (s

i�1

; a

i

; s

i

) where a

i

is the � ation, then de�ne �

0

i

to be

� where � 2 T , �:fstate = �

0

i�1

:lstate and [�:lstate ℄ = s

i

. We need to show that

A has suh an exeution fragment �

0

i

. For i � 1, onsider �

i�1

= (s

i�1

; a

i

; s

i

).

By de�nition of Untime(A; R) in Setion 5.4.2, there must be some trajetory

�

0

suh that �

0

is losed, [�

0

:fstate ℄ = s

i�1

and [�

0

:lstate ℄ = s

i

. By indutive

hypothesis [�

0

i�1

:lstate ℄ = s

i�1

. Sine [�

0

i�1

:lstate ℄ = s

i�1

= [�

0

:fstate ℄ we know

by the de�nition of state ongruene in Setion 5.4.1 that there exists � where

�:fstate = �

0

i�1

:lstate and [�:lstate ℄ = s

i

= [�

0

:lstate ℄. Therefore, �

0

i

= � is an

exeution fragment of A where �

0

i

:fstate = �

0

i�1

:lstate and [�

0

i

:lstate ℄ = s

i

.

76

By onstrution of �

0

, we have �:fstate = [�

0

:fstate ℄. Sine �

0

i

:lstate = �

0

i+1

:fstate

for all i � 0, we know by Lemma 4.7 that �

0

= �

0

0

_

�

0

1

_

�

0

2

: : : is an exeution

fragment of A. It is easy to hek that trae(�) = ations(trae(�

0

)).

2. � is a �nite sequene of the form s

0

a

1

s

1

a

2

s

2

: : : s

n

.

The proof is similar to the previous ase.

Corollary 5.25 Suppose A is a TA and R is a ongruene for A. If � is an exeution of

Untime(A; R), and x is a state of A suh that [x℄ = �:fstate, then A has an exeution �

0

from x suh that trae(�) = ations(trae(�

0

)).

Proof: Let � be an exeution of Untime(A; R) and x be a state of A suh that [x℄ =

�:fstate . By Lemma 5.24, we know that A has an exeution fragment �

0

from x suh that

trae(�) = ations(trae(�

0

)). Sine � is an exeution, �:fstate 2 �

0

. By the de�nition of

Untime(A; R) in Setion 5.4.2, we know that x 2 �, and therefore �

0

is an exeution of A,

as needed.

5.4.4 An Equivalene Relation for Alur-Dill Automata

In [6, 4℄ Alur and Dill present a region onstrution tehnique that allows an in�nite state

spae to be redued to a �nite state spae by using an equivalene relation on states.

Our untiming operation is based on a similar idea. It aims to redue the state spae by

identifying those states that exhibit \equivalent" behavior. Our operation, however, does

not use a �xed equivalene relation. Rather, it is parameterized by equivalene relations

that meet our ongruene riteria.

In this setion we formulate the equivalene relation of Alur and Dill presented in [6℄

in our framework and show that it is a ongruene for an AD automaton under a ertain

set of assumptions. Reall that our de�nition of AD automata (see Setion 4.3.2) does

not impose any restritions on the form of lok onstraints. Adopting suh a general

de�nition and seeking a minimal set of assumptions required for the proof allows us to

identify whih restritions were inorporated into the model of Alur and Dill mainly to

ensure that the resulting region automata have a �nite state spae.

Let A = (X;Q;�; E;H;D;T) be an AD timed automaton where X is partitioned into

two sets: X

d

of disrete variables and X

of lok variables. Let I be the set of intervals

and P be the set of points in the time domain T = R de�ned as follows:

I = f(t

1

; t

1

+ 1) j t

1

2 Ng.

77

P = N.

Now, we de�ne an equivalene relation � over Q. In our de�nition we use the notation

fr(v) for the frational part of a value v. Two states x;y 2 Q are related, written x � y,

if the following onditions hold:

1. x dX

d

= y dX

d

.

2. For every x 2 X

, either fx(x);y(x)g � J for some J 2 I or x(x) = y(x) = i for

some i 2 P .

3. For every z; w 2 X

, fr(x(z)) > fr(x(w)) if and only if fr(y(z)) > fr(y(w)).

The �rst property in the de�nition of � requires that a disrete variable have the

same value in two related states. The seond property involves lok variables. If a lok

variable has a value that falls between a pair of onseutive integers, then its value must

be between the same integers in a related state. Likewise, if a lok variable has an integer

value, it must have the same value in a related state. The third property states that the

ordering of the frational parts of di�erent lok variables must be the same aross related

states.

The following theorem states that the relation � de�ned above is a ongruene for an

AD automaton A if the same disrete ations anbe performed from two equivalent states

with the same e�et.

Theorem 5.26 Assume for an AD automaton A that whenever x � y for two states

x;y 2 Q, and x

a

! x

0

2 D, then there exists y

a

! y

0

2 D suh that

� x

0

dX

d

= y

0

dX

d

.

� For every x 2 X

, x

0

(x) = 0 if and only if y

0

(x) = 0.

Then relation � is a ongruene for A.

Proof: We establish the three properties of ongruene de�ned in Setion 5.4.1 for the

relation �.

1. Suppose x � y and x 2 �. By de�nition of AD automata from Setion 4.3.2, if

x 2 � then for all x 2 X

, x(x) = 0. Sine x � y, for all x 2 C, we have y(x) = 0,

and x dX

d

= y dX

d

. It follows that x = y, and therefore y 2 � as needed.

2. Suppose x � y and x

a

! x

0

where a is a disrete ation. By assumption there exists

y

0

suh that y

a

! y

0

. It remains to show that x

0

� y

0

. We do this by establishing

the three properties in the de�nition of �.

78

(a) The �rst property is immediate from the assumptions.

(b) For the seond property, we are required to show that for all x 2 X

, either

x

0

(x) and y

0

(x) are in the same interval or have the same integer value. We �x

x and onsider two ases:

i. x

0

(x) = 0.

By assumption x

0

(x) = 0 if and only if y

0

(x) = 0. Clearly, x

0

(x) and y

0

(x)

have the same integer value 0.

ii. x

0

(x) 6= 0.

By de�nition of AD automata from Setion 4.3.2, x

0

(x) = x(x). Sine

x

0

(x) = 0 if and only if y

0

(x) = 0 by assumption, we have y

0

(x) 6= 0,

and by de�nition of AD automata we have y

0

(x) = y(x). Sine x � y by

hypothesis, y(x) and x(x) are in the same interval. Sine y

0

(x) = y(x) and

x(x) = x(x

0

), x

0

(x) and y

0

(x) are in the same interval, as needed.

() For the third property, we are required to show that for any z; w 2 C, the

ordering between the frational parts of z and w in x

0

is preserved in y

0

. For a

�xed z and a �xed w onsider the following ases:

i. Neither z nor w is reset by ation a.

Then, x

0

(z) = x(z) and x

0

(w) = x(w). Sine x � y, we know that

fr(x(z)) > fr(x(w)) if and only if fr(y(z)) > fr(y(w)). It follows that

fr(x

0

(z)) > fr(x

0

(w)) if and only if fr(y

0

(z)) > fr(y

0

(w)), as needed.

ii. Both z and w are reset by ation a.

By assumption we have x

0

(z) = 0 if and only if y

0

(z) = 0 and x

0

(w) = 0

if and only if y

0

(w) = 0. Sine fr(x

0

(z)) = fr(x

0

(w)) = fr(y

0

(z)) =

fr(y

0

(w)) = 0, it is obvious that the ordering between the frational parts

of the loks in x

0

is preserved in y

0

.

iii. One of the loks is reset by ation a.

Without loss of generality, let the lok that is reset be z. That is, x

0

(z) = 0

and x

0

(w) = x(w). Then, either fr(x

0

(w)) = 0 or fr(x

0

(w)) 6= 0. First,

suppose fr(x

0

(w)) = 0. Then, fr(x

0

(z)) = fr(x

0

(w)). Sine fr(x

0

(w)) = 0,

x

0

(w) = v for an integer v. By ase (b), we have y

0

(w) = v and hene

fr(y

0

(w)) = 0. It follows that fr(y

0

(x)) = fr(y

0

(w)). Now, suppose that

fr(x

0

(w)) 6= 0. Then fr(x

0

(z)) < fr(x

0

(w)). By assumption whih says

for all x 2 X

, x

0

(x) = 0 if and only if y

0

(x) = 0, we have y

0

(z) = 0. Sine

fr(x

0

(w)) 6= 0, by the same assumption we get y

0

(w) 6= 0. It follows that

fr(y

0

(z)) < fr(y

0

(w)). Hene, we have shown that the ordering between

the frational parts of the loks in x

0

is preserved in y

0

.

3. Suppose x � y and x

�

! x

0

where � is a trajetory. We need to show that we an

�nd trajetory �

0

suh that x

0

� y

0

where y

0

(x) = y(x)+ �

0

:ltime for all x 2 X

. We

do this by establishing the three properties in the de�nition of �.

(a) The �rst property is immediate from the assumption.

79

(b) For the seond property, we are required to show that for all x 2 X

, either

x

0

(x) and y

0

(x) are in the same interval or have the same integer value. We

onsider the following ases:

i. Zero time passage (�:ltime = 0).

Clearly, �

0

with �

0

:ltime = 0 results in y

0

= y. Sine x � y by hypothesis,

we have x

0

� y

0

, as needed.

ii. �:ltime > 0 and � does not make any lok reah an integer boundary.

A. Some loks remain in the same interval.

Let Cross be the set of loks that rossed to a new interval and let

NotCross be the set of loks that did not ross to a new interval. We

need to make sure that �

0

that we hoose makes all elements of Cross

ross to a new interval in y

0

and all elements of NotCross remain in the

same interval, while preserving the ordering of frational parts of lok

values aross two equivalent states. Consider the set ft � y(z) j z 2

Cross ;x

0

(z) 2 (t; t+1)g and de�ne m to the maximum element of this

set if it is non-empty and to be 0 if it is empty. Now, onsider the set

f(t+ 1) � y(w) j w 2 NotCross ;x(w);x

0

(w) 2 (t; t + 1)g and de�ne n

to be minimum element of this set. It is easy to hek that for any �

0

suh that m < �

0

:ltime < n, property 2 holds for x

0

and y

0

.

B. All loks ross to a new interval.

Let m;n 2 T be respetively, the maximum and minimum elements

of the set ft � y(x) j x

0

(x) 2 (t; t + 1)g. Taking �

0

suh that m <

�

0

:ltime < n+ 1 gives the required result.

iii. �:ltime > 0 and � makes some loks reah an integer boundary.

Let Reah be the set of loks that reahed an integer boundary. Observe

that for any two elements z and w of Reah it must be the ase that

fr(x(z)) = fr(x(w)). Now, take some x 2 Reah and let m = (t � y(x))

where t = x

0

(x). Any �

0

suh that �

0

:ltime = m gives us the required

result. It is lear that suh a �

0

makes all the loks in Reah reah an

integer boundary. For any z 2 Reah and any lok w that has not reahed

an integer boundary in x

0

, it must be the ase that fr(x(z)) > fr(x(w)).

By hypothesis and the third property of �, we also know that fr(y(z)) >

fr(y(w)). It follows that w does not reah an integer boundary in y

0

,

as required. In the ase where w is a lok that has rossed an integer

boundary in x

0

, we observe that fr(x(z)) < fr(x(w)) holds and onlude

that the �

0

we have hosen makes w ross the same integer boundary in y

0

.

() For the third property, we need to show that the �

0

we de�ned for eah ase

above, ensures that the ordering between the frational parts of the loks in

x

0

is preserved in y

0

.

By property 2, whih we have established for x

0

and y

0

, we know that, for any

x 2 X

if � leads to x

0

(x) 2 J then �

0

has the same e�et on y suh that

80

y

0

(x) 2 J . Similarly, if � makes a lok ross reah an integer boundary in the

evolution from x to x

0

, that is x

0

(x) = t then �

0

yields y

0

(x) = t. Sine x � y,

by property 3, we also know that the ordering between the frational parts of

loks in x and y are the same. We know that in �

0

all the loks inrease by

the same amount. It follows that the ordering between the frational parts of

loks is the same in x

0

and y

0

are the same.

6 Properties for Timed Automata

In this setion, we de�ne what we mean by a property for a timed automaton, desribe

some types of properties that are typially spei�ed and proved for systems, and state

some results about omposition of automata with properties.

6.1 De�nitions and Basi Results

A property P for a timed automaton A is de�ned to be any subset of the exeution

fragments of A. We write exes

(A;P)

for the set of exeutions of A in P , traes

(A;P)

for the

set of traes of exeutions of A in P , and traefrags

(A;P)

for the set of traes of exeution

fragments of A in P .

6.1.1 Safety and Liveness Properties

[[Nany: We should ask Frits and Roberto to onsider/approve the hanged

disussion of safety and liveness properties, and other signi�ant hanges we

are making near the end of the paper.℄℄

A property P for a TA A is said to be a safety property if it is losed under pre�x and

limits of exeution fragments. In other words, if an exeution fragment satis�es a safety

property P , then so do all its pre�xes, and if all the exeutions in a \hain" of suessive

extensions satisfy P , then so does the \limit" of the hain. Safety properties represent

requirements that should be maintained by the system throughout its exeution.

We say that an automaton A satis�es a safety property S if every exeution of A is in

S. Typially, the satisfation of a safety property by an automaton is proved by indution.

One shows that the property holds in any trivial exeution fragment onsisting of a point

trajetory and that it is preserved by disrete steps and trajetories of the automaton.

A property P for A is de�ned to be a liveness property provided that for any losed

exeution fragment � of A, there exists an exeution fragment � suh that �

_

� 2 P . In

81

other words, no matter how A behaves for a �nite period of time, it is still possible for it

to ontinue in some way and satisfy P .

We say that an automaton A satis�es a liveness property L if every \maximal" exeu-

tion of A (an exeution � suh that there exists no exeution of whih � is a proper pre�x)

is in L. Typially, the proof of the satisfation of a liveness property by an automaton

involves the use of proof rules of a temporal logi, or progress funtions from states to a

well-founded set that measure the distane from the desired goal.

These de�nitions of safety and liveness are analogous to those onsidered for untimed

systems in [3, 8, 10℄, and have also been adopted in the few models for timed systems that

have addressed the lassi�ation of properties as safety and liveness properties [36, 1℄. In

order to support the de�nitions for our model we establish the following results, stated

formally in Theorems 6.1 and 6.4: (1) The lasses of safety and liveness properties are

disjoint, (2) Every property an be expressed as the intersetion of a safety and a liveness

property.

The following theorem states that no property of a timed automaton an be both a

safety and a liveness property, exept for the speial ase where the property onsists of

all the exeution fragments of the automaton.

Theorem 6.1 Let A be a TA. If P is both a safety property and a liveness property for

A, then P = frags

A

.

Proof: Suppose that P is both a safety and a liveness property for A and let � be any

exeution fragment of A. We show � 2 P . Now onsider the following ases:

1. � is a losed exeution fragment.

Then, sine P is a liveness property, there exists � suh that �

_

� 2 P . Sine P is

also a safety property and is pre�x-losed by de�nition, it must be that � 2 P .

2. � is an in�nite sequene or a �nite sequene ending with a right-open trajetory.

Then, � an be expressed as the limit of a hain of losed exeution fragments

�

0

�

1

�

2

: : :. In ase (1) we have established that for all i � 0, �

i

2 P . Sine P is a

safety property, the limit of this hain, whih is �, must be in P .

Cases (1) and (2) together imply that P = frags

A

.

Let A be a TA and P be a property for A. We de�ne safe(P) to be the pre�x- and

limit-losure of the property P .

Lemma 6.2 Let A be a TA. For any property P for A, safe(P) is a safety property for

A.

82

Proof: Immediate from the de�nitions of safe(P) and of a safety property.

Lemma 6.3 Let A be a TA and P be a property for A. If � is a losed exeution fragment

and � 2 safe(P) then � is a pre�x of some element in P .

The following theorem states that any property for an automaton an be expressed as

the intersetion of a safety and a liveness property for that automaton.

Theorem 6.4 Let A be a TA. If P is a property for A, then there exists a safety property

S and a liveness property L for A suh that P = S \ L.

Proof: Let S = safe(P). By Lemma 6.2, we know that S is a safety property for A.

Let L = P [f� j � 2 frags

A

; � is losed and no exeution fragment of the form�

_

� is inPg. We now show that L is a liveness property. Let � be a losed exeution

fragment of A. If there exists some exeution fragment � of A suh that �

_

� 2 P , then

�

_

� 2 L beause P � L. On the other hand, if there is no exeution fragment � suh

that �

_

� 2 P , then � is expliitly de�ned to be in L. Hene, we have shown that any

losed exeution fragment of A has an extension in L as needed.

In order to onlude P = S \L, we need to show that P � S \L and that S \L � P .

P � S \ L is immediate from the de�nitions of S and L. We now show that S \ L � P .

Let � be an exeution fragment in S \ L and suppose for the sake of ontradition that

� =2 P . Sine � 2 L � P , by de�nition of L, � is losed and there exists no exeution

fragment � suh that �

_

� 2 P . Sine � 2 S and � is losed, by Lemma 6.3, � must be

a pre�x of an exeution fragment in P . This gives the needed ontradition.

6.1.2 Mahine-losure

Consider a safety property S and a liveness property L for an automaton A. It is in

general desirable that L does not itself impose safety onstraints, beyond those already

imposed by S. To ahieve this, L should be de�ned so that every losed exeution in S

an be extended to some exeution that is in both S and L. The notion of mahine-losure

is used to formalize this ondition. The pair of properties (S,L) is de�ned to be mahine-

losed provided that, for every losed exeution fragment � 2 S, there exists � suh that

�

_

� 2 S \ L.

Example 6.5 (A non-mahine-losed pair of properties) Consider the timing-

independent TA A, given in Figure 15, whose set of state variables onsists of a single

disrete variable ountb, and whose set of trajetories is exatly the set of onstant-valued

funtions over left-losed time intervals with left endpoint 0. The automaton A an per-

83

Automaton A

Variables X : disrete ountb 2 Z initially 0

States Q : val(X)

Ations A : external a; b

Transitions D : external a

preondition

ountb = 0

external b

e�et

ountb := ountb + 1

Trajetories T : satis�es

onstant(ountb)

Figure 15: Mahine losure

form b any time and it an perform a provided that it has not performed b. Now, onsider

the liveness property L for A that onsists of all the exeutions with in�nitely many dis-

rete ations and the safety property S for A that onsists of all the exeutions ontaining

at most one b event. Then, sine b disables all future as, the intersetion of L and S

ontains all the exeutions of A with in�nitely many a events and no b events.

Now, onsider a losed exeution � in S whose last ation is b. This implies that �

has no extension that ontains an a, sine by assumption the ourrene of b disables a.

The only way of extending � to an exeution �

_

�

0

that ontains in�nitely many disrete

ations is to perform in�nitely many bs, but this would yield an exeution �

_

�

0

in L�S.

Hene, the pair (S;L) is not mahine-losed.

The above example illustrates that if a pair of safety and liveness properties for an

automaton is not mahine-losed, then the automaton may exhibit an anomaly. Namely,

after some pre�xes, the automaton may not be able to meet its liveness requirement

without violating its safety requirement. This phenomenon has been observed in several

studies on the lassi�ation of properties for untimed systems, inluding those by Dederihs

and Weber [10℄, and Abadi and Lamport [1℄. These studies suggest that the problem lies

in de�ning the intended safety and liveness properties independently from one another.

If the above-mentioned anomaly is to be avoided, a pair of safety and liveness properties

need to be de�ned so that the pair is mahine-losed.

The following theorem states that a pair of a safety and a liveness property for an

automaton is mahine-losed if the liveness property is de�ned as a subset of the safety

property.

84

Theorem 6.6 Let A be a TA, S be a safety property and L be a liveness property for A

suh that L � S. Then the pair (S;L) is mahine-losed.

Proof: Let � be a losed exeution fragment in S. Sine L is a liveness property for A,

there exists � suh that �

_

� 2 L. Sine L � S, we have that �

_

� 2 S \ L. Thus,

(S;L) is mahine-losed.

The fat that two properties are mahine-losed an be formalized by using other

onditions equivalent to those we used in our formal de�nition above. The �rst property

in the following theorem states that a pair (S;L) is mahine losed if S is the same as

the pre�x and limit losure of the intersetion of S and L. The seond property states

that if the intersetion of S and L is ontained in a safety property, it must be the ase

that S itself is ontained in the same safety property. That is, L does not add new safety

onstraints to those already de�ned by S.

Theorem 6.7 Let S be a safety property and L be a liveness property for an automaton

A. The pair (S;L) is mahine losed i� either of the following holds:

1. S = safe(S \ L).

2. If S

0

is a safety property and S \ L � S

0

then S � S

0

.

Proof: We show the following three impliations: (1) if (S;L) is mahine-losed then

S = safe(S \ L), (2) if S = safe(S \ L), then for any safety property S

0

, S\L � S

0

implies

S � S

0

, and (3) if for every safety property S

0

, S \ L � S

0

implies S � S

0

, then (S;L) is

mahine-losed.

1. Suppose (S;L) is mahine-losed. In order to show that S = safe(S \ L), we need

to establish S � safe(S \ L) and safe(S \ L) � S. To establish S � safe(S \ L) we

take some � 2 S and onsider the following two ases:

(a) � is a losed exeution fragment.

By the mahine-losure assumption there exists � suh that �

_

� 2 S \ L.

Sine safe(S \ L) ontains all the pre�xes of elements of S\L, � 2 safe(S \ L),

as needed.

(b) � is an in�nite sequene or a �nite sequene ending with a right-open trajetory.

Then � must be the limit of a hain of losed exeution fragments �

0

�

1

� � � in

S. Sine S is a safety property, every pre�x of � is in S. Therefore for eah i,

we have �

i

2 S. By ase (a), for eah eah i, �

i

2 safe(S \ L). By de�nition of

safe(S \ L) the limit � is also in safe(S \ L), as needed.

To show safe(S \ L) � S, take some � 2 safe(S \ L). We onsider two ases:

85

(a) � is a losed exeution fragment.

Then, by Lemma 6.3, � is a pre�x of some element in S \ L. That is to say,

�

_

� 2 (S \ L) for some � and it follows that �

_

� 2 S. Sine S is a safety

property we have � 2 S, as needed.

(b) � is an in�nite sequene or a �nite sequene ending with a right-open trajetory.

Then � must be the limit of a hain of losed exeution fragments �

0

�

1

� � � in

safe(S\L). We have established in ase (a) that eah losed exeution fragment

�

i

is in S. Sine S is a safety property, the limit � must also be in S, as needed.

2. Suppose S = safe(S \ L). Let S

0

be a safety property suh that S \ L � S

0

. Let

� 2 S and show that � 2 S

0

.

(a) � is a losed exeution fragment.

Sine S = safe(S \ L) by assumption, � 2 safe(S \ L), and sine � is losed,

by Lemma 6.3, � is a pre�x of some element in S \ L. Sine (S \ L) � S

0

we

have that � is a pre�x of some element of S

0

. Sine S

0

is a safety property,

� 2 S

0

.

(b) � is an in�nite sequene or a �nite sequene ending with a right-open trajetory.

Then � must be the limit of a hain of losed exeution fragments �

0

�

1

� � �

in safe(S \ L). We have established in ase (a) that eah losed exeution

fragment �

i

is in S

0

. Sine S

0

is a safety property, the limit � must also be in

S

0

, as needed.

3. Suppose that for every safety property S

0

, S\L � S

0

implies S � S

0

. We must show

that for every losed exeution fragment � 2 S, there exists � suh that �

_

� 2 S\L.

Let � be a losed exeution fragment in S. By Lemma 6.2 we have that safe(S \ L)

is a safety property. Sine S \ L � safe(S \ L), by assumption S � safe(S \ L).

Sine � 2 S, we have that � 2 safe(S \ L). Sine � is losed, by Lemma 6.3, � is a

pre�x of some element of S\L. That is to say, there exists � suh that �

_

� 2 S\L,

as needed.

6.1.3 Speial kinds of properties

Fairness properties: Proving interesting liveness properties requires some assump-

tions saying that ertain ativities in a onurrent system get \enough" hanes to make

progress. Fairness properties are speial kinds of liveness properties that express suh

assumptions. We de�ne two types of fairness: weak fairness and strong fairness.

Let A be a TA and let C be a subset of the ations of A. Let � be an exeution

fragment of A. Then:

86

1. � is weakly fair for C if (at least) one of the following onditions holds:

(a) � ontains in�nitely many events from C.

(b) There is no suÆx � of � suh that C is enabled in all states of �.

2. � is strongly fair for C if (at least) one of the following onditions holds:

(a) � ontains in�nitely many events from C.

(b) There is some suÆx � of � suh that C is disabled in all states of �.

Consider a �nite exeution fragment �. If � ends with a losed trajetory, the de�nition

above says that for � to be weakly fair or strongly fair for C, C must be disabled in �:lstate .

On the other hand, if � ends with a right-open trajetory, � is weakly fair provided that

there are state ourrenes with C disabled, at times arbitrarily lose to �:ltime and � is

strongly fair provided that C is ontinuously disabled from some point on in �.

Theorem 6.8 Let A be a TA, C a subset of ations of A and � be an exeution fragment

of A. If � is strongly fair for C then � is weakly fair for C.

Proof: Follows from the de�nitions of strong and weak fairness.

Theorem 6.9 For any timed automaton A and any subset C of its ations, the set of

strongly fair exeution fragments for C is a liveness property for A.

Proof: Fix A a TA, C a subset of the ations of A and let � be a losed exeution

fragment of A. We are required to show that for some �, �

_

� is strongly fair for C.

Construt an exeution fragment � = �

0

_

�

1

_

� � � as follows:

� �

0

= }(�:lstate),

� For eah i � 1, if there exists (�

i�1

:lstate ; b;y) 2 D

A

for some b 2 C and some

y 2 Q

A

, then hoose some suh b and y and de�ne �

i

= }(�

i�1

:lstate) b }(y);

otherwise, i� 1 is the �nal index in the sequene.

It follows that, if � is a �nite sequene then C is disabled in its last state. Therefore,

for some suÆx of �, C is disabled in all states and �

_

� is strongly fair with respet to

C. On the other hand, if � is an in�nite sequene then �

_

� has in�nitely many events

from C, as needed.

Corollary 6.10 For any timed automaton A and any subset C of its ations, the set of

weakly fair exeution fragments for C is a liveness property for A.

Proof: Follows from Theorem 6.8 and Theorem 6.9.

87

Admissibility: Admissibility is another notion that is fundamental to any useful formal

model for timed systems. It is hard to think about exeutions suh as those that arise from

Zeno behavior, yet they make formal sense. Admissibility onditions help one to avoid

onsidering suh exeutions in reasoning about properties. The formal de�nition of admis-

sibility is given in 3.4.1. Formally, an exeution fragment � is admissible if �:ltime =1.

Theorem 6.11 A timed automaton A is feasible if and only if its set of admissible exe-

ution fragments is a liveness property for A.

Proof: Immediate from the de�nitions of feasibility and liveness property.

History-independene: History-independene is an important harateristi of prop-

erties that simpli�es the analysis of the behavior of an automaton. A property P of a

timed automaton A is said to be history-independent provided that the following holds:

For every exeution fragment �, if �

0

is a suÆx of �, then � 2 P if and only if �

0

2 P .

In other words, whether or not � satis�es P is determined only by what happens in its

suÆxes|it is not a�eted by what happens in any initial portion of �. If a property P

is known to be history-independent, then one an prove that an exeution fragment �

satis�es P by onsidering the portion of � from some point onward.

The liveness properties that are typially used are history-independent. Fairness

and admissibility properties de�ned earlier in the setion onstitute examples of history-

independent properties, as shown in the following theorems.

Theorem 6.12 For any timed automaton A, and any subset C of its ations, the set of

weakly fair exeution fragments for C is history-independent.

Proof: Fix A a TA, C a subset of ations of A and let � = �

0 _

�

00

with �

0

:lstate =

�

00

:fstate be an exeution fragment of A.

First, suppose that � is weakly fair for C. We are required to show that �

00

is also

weakly fair with respet to C. By de�nition of weak fairness, either � ontains in�nitely

many events from C, or it has no suÆx in whih C is enabled in all states. Sine �

00

is a

suÆx of �, in either ase we onlude that �

00

is weakly fair with respet to C by using

the de�nition of weak fairness.

Now, suppose that �

00

is weakly fair for C. We are required to show that � is also

weakly fair with respet to C. Similar to the ase above, this is easy to show by using the

de�nition of weak fairness and the fat that �

00

is a suÆx of �.

Theorem 6.13 For any timed automaton A, and a subset C of its ations, the set of

strongly fair exeution fragments for C is history-independent.

88

Theorem 6.14 For any timed automaton A, the set of admissible exeution fragments is

history-independent.

6.2 Implementation Relationships

We de�ne another preorder for automata with properties:

� (A

1

; P

1

) � (A

2

; P

2

) provided that traes

(A

1

;P

1

)

� traes

(A

2

;P

2

)

.

If P

1

is a liveness property for a TA A

1

and P

2

is any property for a TA A

2

, and

(A

1

; P

1

) and (A

2

; P

2

) are related by the preorder de�ned above, then every losed trae

of A

1

is also a trae of A

2

. This is shown in the following theorem.

Theorem 6.15 Suppose that P

1

is a liveness property for A

1

and P

2

is any property for

A

2

. If (A

1

; P

1

) � (A

2

; P

2

) then every losed trae of A

1

is a trae of A

2

.

Proof: Assume (A

1

; P

1

) � (A

2

; P

2

) and let � be a losed trae of A

1

. Let � be a losed

exeution of A

1

with trae(�) = �. Sine P

1

is a liveness property of A

1

, there exists an

exeution fragment �

0

of A

1

suh that �

_

�

0

2 P

1

.

Let �

0

= trae(�

_

�

0

); then learly �

0

2 traes

(A

1

;P

1

)

. Then beause (A

1

; P

1

) �

(A

2

; P

2

), we have that �

0

2 traes

(A

2

;P

2

)

. Sine � is a pre�x of �

0

and the set of traes of

A

2

is pre�x-losed, it follows that � is a trae of A

2

, as needed.

6.3 Simulation Relations

As we have seen in Setion 4.5, simulation relations provide a useful tool for reasoning

about implementation relationships between automata at multiple levels of abstration.

The existene of a forward or a bakward simulation relation, or a history or a prophey

relation, from one timed automaton A to another, B, is suÆient to establish that eah

trae of A is also a trae of B.

For any TA A the set of all exeution fragments of A, frags

A

, onstitutes a safety

property. This follows from the de�nition of a safety property in Setion 6.1.1 by using

the fat that frags

A

is pre�x and limit losed. Suppose we de�ne a safety property S

1

for an automaton A to be frags

A

and a safety property S

2

for an automaton B to be

frags

B

. The existene of a forward simulation relation from A to B would imply that

for any exeution � 2 S

1

, there is an exeution � 2 S

2

suh that trae(�) = trae(�).

However, the same impliation does not in general hold, if we replae safety properties S

1

and S

2

with arbitrary liveness properties L

1

� S

1

and L

2

� S

2

for A and B, respetively.

In [9℄ Attie adresses this issue in an untimed setting and proposes several notions of

\liveness-preserving" simulation relations. The liveness properties that he onsiders are

89

of a speial form that are analogous to the aeptane ondition of a omplemented-pairs

automaton [7℄.

In the two theorems below, we onsider the speial lasses of weak and strong fairness

properties and state some extra onstraints on forward simulation relations. The existene

of a forward simulation relation from an automaton A to another B that satis�es these

additional onstraints allows us to onlude that the trae of eah fair exeution of A

is also a trae of a fair exeution of B. The onstraints that we impose on the forward

simulation relation for disrete steps turn out to be speial ases of Attie's onstraints[9℄.

Let A and B be omparable TAs. Let C

A

be a set of ations of A and C

B

be a set

of ations of B. A fair forward simulation from A to B with respet to C

A

and C

B

is a

relation R � Q

A

�Q

B

satisfying the following onditions, for all states x

A

and x

B

of A

and B, respetively:

1. If x

A

2 �

A

then there exists a state x

B

2 �

B

suh that x

A

R x

B

. Moreover, if C

A

is disabled in x

A

, then C

B

is disabled in x

B

.

2. If x

A

R x

B

and � is an exeution fragment of A onsisting of an ation a surrounded

by two point trajetories, with �:fstate = x

A

, then B has a losed exeution fragment

� suh that �:fstate = x

B

, trae(�) = trae(�), and �:lstate R �:lstate . Moreover,

(a) If a 2 C

A

then � ontains some event in C

B

.

(b) If C

A

is disabled in �:lstate then

i. If � = }(x

B

) then C

B

is disabled in x

B

.

ii. If � 6= }(x

B

) then C

B

is disabled in all states in � exept possibly in x

B

.

3. If x

A

R x

B

and � is an exeution fragment of A onsisting of a single losed tra-

jetory, with �:fstate = x

A

, then B has a losed exeution fragment � suh that

�:fstate = x

B

, trae(�) = trae(�), and �:lstate R �:lstate . Moreover,

(a) If �:ltime = 0 and C

A

is disabled in x

A

then C

B

is disabled in all states in �.

(b) If �:ltime > 0 then for all t suh that 0 < t � �:ltime , if C

A

is disabled in

�(t) then for eah losed pre�x �

0

of � suh that �

0

:ltime = t, C

B

is disabled in

�

0

:lstate .

We say that R is a fair forward simulation from A to B, without mentioning C

A

and

C

B

expliitly, when those sets are lear from the ontext.

Now, we de�ne a onstrution that, given two automata A and B, two sets of ations

C

A

and C

B

, a fair forward simulation R from A to B, and an exeution � of A, generates

an exeution � of B by using the de�nition of a fair forward simulation.

Let A and B be two TAs, C

A

and C

B

be sets of ations for A and B, respetively,

and R be a fair forward simulation from A to B with respet to C

A

and C

B

. Let � be an

exeution of A. The onstrution onsists of the following steps:

90

1. Using axiomsT1 andT2, write � as a onatenation �

0

_

�

1

_

�

2

� � � (�

0

_

�

1

_

� � �

_

�

n

if � is a �nite sequene ending with a losed trajetory), in whih eah exeution

fragment �

i

onsists of either a single losed trajetory or one ation surrounded by

two point trajetories. Without loss of generality, we an assume that for eah i � 0,

�

i

:lstate = �

i+1

:fstate :

2. De�ne indutively a sequene �

0

�

1

: : : of losed exeution fragments of B, suh that

�

0

:fstate = x

B

for some x

B

2 �

B

and, for eah i, �

i

:lstate R �

i

:lstate , �

i

:lstate =

�

i+1

:fstate , and trae(�

i

) = trae(�

i

). We use Properties 1 and 3 of a fair forward

simulation in the onstrution of �

0

, Property 2 in the onstrution of �

i

onsisting of

one ation surrounded by two point trajetories, and Property 3 in the onstrution

of �

i

onsisting of a single losed trajetory.

3. Let � be the onatenation �

0

_

�

1

_

� � �.

For suh �, we say that � orresponds to � with respet to R;C

A

and C

B

. When

R;C

A

and C

B

are lear from the ontext, we do not state their names expliitly.

Lemma 6.16 Let A and B be two TAs, C

A

and C

B

be sets of ations for A and B,

respetively, and R be a fair forward simulation from A to B with respet to C

A

and C

B

.

Let � be an exeution of A and � be an exeution of B that orresponds to �. Suppose

that � is expressed as �

0

_

�

1

_

� � � and � is expressed as �

0

_

�

1

_

� � � in the onstrution

of �. Then, � satis�es the following properties:

1. If C

A

is disabled in �

0

:fstate, then C

B

is disabled in �

0

:fstate.

2. For eah �

i

of the form }(x

A

) a }(x

0

A

) let x

B

= �

i

:fstate. Then,

� If a 2 C

A

then �

i

ontains some event in C

B

.

� If C

A

is disabled in x

0

A

then

� If �

i

= }(x

B

) then C

B

is disabled in x

B

.

� If �

i

6= }(x

B

) then C

B

is disabled in all states in �

i

exept possibly in x

B

.

3. For eah �

i

onsisting of a single losed trajetory:

� If �

i

:ltime = 0 and C

A

is disabled in �

i

:fstate then C

B

is disabled in all states

in �

i

.

� If �

i

:ltime > 0 then for all t suh that 0 < t � �

i

:ltime, if C

A

is disabled in

�

i

(t) then for eah losed pre�x �

0

i

of �

i

suh that �

0

i

:ltime = t, C

B

is disabled

in �

0

i

:lstate.

4. � is an exeution of B suh that trae(�) = trae(�).

91

Proof: Properties 1, 2 and 3 follow from the onstrution of � and the de�nition of a

fair forward simulation relation. We show property 4 as follows. By Lemma 4.7, � is an

exeution fragment of B. By the onstrution of �, �

0

:fstate = x

B

for some x

B

2 �

B

.

Therefore, that � is an exeution of B. By Lemma 3.9 applied to both � and �, trae(�) =

trae(�).

Lemma 6.17 Let A and B be two TAs, C

A

and C

B

be sets of ations for A and B,

respetively, and R be a fair forward simulation from A to B with respet to C

A

and C

B

.

Let � be an exeution of A, and let � be an exeution of B that orresponds to A. Then,

if � ontains in�nitely many events from C

A

it must be the ase that � ontains in�nitely

many events from C

B

.

Proof: We know that, in the onstrution of �, � is expressed as �

0

_

�

1

_

� � � in

whih eah exeution fragment �

i

onsists of either a single losed trajetory or one ation

surrounded by two point trajetories, and � is expressed as �

0

_

�

1

_

� � �. Suppose that �

ontains in�nitely many events from C

A

. By property 2 of Lemma 6.16 in the onstrution

of �, we have that for eah �

i

onsisting of one ation surrounded by two point trajetories,

if �

i

ontains a C

A

event, then �

i

ontains a C

B

event. Sine there are in�nitely many C

A

events in �, there must be in�nitely many C

B

events in �, as needed.

Lemma 6.18 Let A and B be two TAs, C

A

and C

B

be sets of ations for A and B,

respetively, and R be a fair forward simulation from A to B with respet to C

A

and C

B

.

Let � be an exeution of A that is a �nite sequene ending with a losed trajetory, and let

� be an exeution of A that orresponds to �. Then, if C

A

is disabled in �:lstate it must

be the ase that C

B

is disabled in �:lstate.

Proof: We know that, in the onstrution of �, � is expressed as �

0

_

�

1

_

� � �

_

�

n

in

whih eah exeution fragment �

i

onsists of either a single losed trajetory or one ation

surrounded by two point trajetories and � is expressed as �

0

_

�

1

_

� � �

_

�

n

. Suppose

that C

A

is disabled in �:lstate . Sine �:lstate = �

n

:lstate , we have that C

A

is disabled in

�

n

:lstate . Now, onsider the following ases:

1. �

n

is a single losed trajetory.

Sine C

A

is disabled in �

n

:lstate , by using property 3 in Lemma 6.16, we have that

C

B

is disabled in �

n

:lstate . Sine �:lstate = �

n

:lstate , we have that C

B

is disabled

in �:lstate , as needed.

2. �

n

is one ation surrounded by point trajetories.

Sine C

A

is disabled in �

n

:lstate , by using property 2 in Lemma 6.16, we have that

C

B

is disabled in �

n

:lstate . Sine �:lstate = �

n

:lstate , we have that C

B

is disabled

in �:lstate , as needed.

92

Lemma 6.19 Let A and B be two TAs, C

A

and C

B

be sets of ations for A and B,

respetively, and R be a fair forward simulation from A to B with respet to C

A

and C

B

.

Let � be an exeution of A suh that � is an in�nite sequene or a �nite sequene ending

with an open trajetory, and let � be an exeution of B that orresponds to �. Then, if for

some suÆx �

0

of �, C

A

is disabled in all states in �

0

, it must be the ase that for some

suÆx �

0

of �, C

B

is disabled in all states in �

0

.

Proof: We know that, in the onstrution of �, � is expressed as �

0

_

�

1

_

� � � in

whih eah exeution fragment �

i

onsists of either a single losed trajetory or one ation

surrounded by two point trajetories, and � is expressed as �

0

_

�

1

_

� � �. Suppose that

for some suÆx �

0

of �, C

A

is disabled in all states in �

0

. Consider the following ases:

1. For in�nitely many i � 0, �

i

is an exeution fragment onsisting of an ation sur-

rounded by point trajetories.

Without loss of generality we an assume that �

0

= �

i

_

�

i+1

_

� � � for some i � 0

and �

0

is an in�nite sequene starting with a disrete ation surrounded by two point

trajetories. Now, onsider the orresponding exeution fragment �

0

= �

i

_

�

i+1

_

� � �

of B. Let �

00

be the suÆx �

i+1

_

�

i+2

_

� � � of �

0

. Sine C

A

is disabled in all states

in �

0

, C

A

is disabled in �

i

:lstate . By property 2 of Lemma 6.16 we know that C

B

is disabled in �

i

:lstate . Then for eah j > i, by properties 2 and 3 of Lemma 6.16,

we know that C

B

is disabled in all states in �

j

, exept possibly in �

j

:fstate . Sine

for eah j > i, �

0

j

:fstate = �

0

j�1

:lstate by the onstrution of �, we know that C

B

is

disabled in all states of �

00

, whih is a suÆx of �.

2. For only �nitely many i � 0, �

i

onsists of an ation surrounded by point trajetories.

Then for all suÆiently large i � 0, �

i

onsists of a single losed trajetory. Without

loss of generality we an assume that �

0

= �

i

_

�

i+1

_

� � � for some suÆiently

large i � 0 and for eah j � i, �

j

is a single losed trajetory. Now onsider

the orresponding exeution fragment �

0

= �

i

_

�

i+1

_

� � �. Let �

00

be the suÆx

�

i+1

_

�

i+2

_

� � � of �

0

. Sine C

A

is disabled in all states in �

0

, C

A

is disabled

in �

i

:lstate . Then, by property 3 of Lemma 6.16, we know that C

B

is disabled in

�

i

:lstate and for eah j > i, C

B

is disabled in all states in �

j

, exept possibly in

�

j

:fstate . Sine for eah j > i, �

0

j

:fstate = �

0

j�1

:lstate by the onstrution of �, we

know that C

B

is disabled in all states of �

00

, whih is a suÆx of �.

Lemma 6.20 Let A and B be two TAs, C

A

and C

B

be sets of ations for A and B,

respetively, and R be a fair forward simulation from A to B with respet to C

A

and C

B

.

93

Let � be an exeution of A suh that � is an in�nite sequene or a �nite sequene ending

with an open trajetory, and let � be an exeution of A that orresponds to �. Then, if

there is no suÆx �

0

of � suh that C

A

is enabled in all states in �

0

it must be the ase

that there is no suÆx �

0

of � suh that C

B

is enabled in all states in �

0

.

Proof: We know that, in the onstrution of �, � is expressed as �

0

_

�

1

_

� � � in

whih eah exeution fragment �

i

onsists of either a single losed trajetory or one ation

surrounded by two point trajetories, and � is expressed as �

0

_

�

1

_

� � �. Suppose that

there is no suÆx �

0

of � suh that C

A

is enabled in all states in �

0

. This means that for

in�nitely many i � 0, C

A

is disabled in some state of �

i

. Then, by properties 2 and 3 in

Lemma 6.16, we know that for in�nitely many i � 0, C

B

is disabled in some state of �

i

.

This implies that � has no suÆx in whih C

B

is enabled in all states.

The following lemma states that a fair forward simulation from A to B yields a orre-

spondene for open trajetories.

Lemma 6.21 Let A and B be omparable TAs, C

A

and C

B

be sets of ations of A and

B respetively, and R be a fair forward simulation from A to B with respet to C

A

and

C

B

. Let x

A

and x

B

be states of A and B, respetively, suh that x

A

R x

B

. Let � be an

exeution fragment of A from state x

A

onsisting of a single open trajetory � . Then B

has an exeution fragment � with �:fstate = x

B

and trae(�) = trae(�). Moreover, �

satis�es the following ondition: for all t suh that 0 < t � �:ltime, if C

A

is disabled in

�(t) then for eah pre�x �

0

of � suh that �

0

:ltime = t, C

B

is disabled in �

0

:lstate.

Proof: Let � be the single open trajetory in �. Using axioms T1 and T2, we onstrut

an in�nite sequene �

0

�

1

: : : of losed trajetories of A suh that � = �

0

_

�

1

_

� � �. Then,

working reursively, we onstrut a sequene �

0

�

1

: : : of losed exeution fragments of

B suh that �

0

:fstate = x

B

and, for eah i, �

i

:lstate R �

i

:lstate , �

i

:lstate = �

i+1

:fstate ,

trae(�

i

) = trae(�

i

), and the following fairness ondition holds: for all t suh that 0 <

t � �

i

:ltime , if C

A

is disabled in �

i

(t) then for eah pre�x �

0

i

of �

i

suh that �

0

i

:ltime = t,

C

B

is disabled in �

0

i

:lstate . This onstrution uses indution on i, using Property 3 of the

de�nition of a fair forward simulation in the indution step. Now let � = �

0

_

�

1

_

� � �. By

Lemma 4.7, � is an exeution fragment of B. Clearly, �:fstate = x

B

. By Lemma 3.9 applied

to both � and �, trae(�) = trae(�). Using Property 3 for eah �

i

, and the indutive

hypothesis �

i

:lstate = �

i+1

:fstate, we have that for all t suh that 0 < t � �:ltime , if C

A

is disabled in �(t) then for eah pre�x �

0

of � suh that �

0

:ltime = t, C

B

is disabled in

�

0

:lstate . Thus � has the required properties.

Theorem 6.22 Suppose that R is a fair forward simulation relation from A to B with

respet to a set C

A

of ations of A and a set C

B

of ations of B. Let L

A

be the set of

strongly fair exeutions of A for C

A

and let L

B

be the set of strongly fair exeutions of B

for C

B

. Then (A; L

A

) � (B; L

B

).

94

Proof: Let � be an exeution of A suh that � 2 L

A

and let � be an exeution fragment

of B that orresponds to � with respet to R;C

A

and C

B

. By property 4 in Lemma 6.16

we know that � is an exeution of B suh that trae(�) = trae(�). We show that � 2 L

B

by onsidering the following ases:

1. � ontains in�nitely many events from C

A

.

By Lemma 6.17, we know that � has in�nitely many events from C

B

. Then, by

de�nition of strong fairness � 2 L

B

, as needed.

2. For some suÆx �

0

of �, C

A

is disabled in all states in �

0

.

(a) � is either an in�nite sequene or a �nite sequene ending with an open traje-

tory.

Then, by Lemma 6.19, we have that C

B

is disabled in all states in some suÆx

of �. Then, by de�nition of strong fairness � 2 L

B

, as needed.

(b) � is a �nite sequene ending with a losed trajetory.

By Lemma 6.18, we have that C

B

is disabled in �:lstate . Sine �:lstate is a

suÆx of �, by de�nition of strong fairness � 2 L

B

, as needed.

Theorem 6.23 Suppose that R is a fair forward simulation relation from A to B with

respet to a set C

A

of ations of A and a set C

B

of ations of B. Let L

A

be the set of

weakly fair exeutions of A for C

A

and let L

B

be the set of weakly fair exeutions of B for

C

B

. Then (A; L

A

) � (B; L

B

).

Proof: Let � be an exeution of A suh that � 2 L

A

and let � be an exeution fragment

of B that orresponds to � with respet to R;C

A

and C

B

. By property 4 in Lemma 6.16

we know that � is an exeution of B suh that trae(�) = trae(�). We show that � 2 L

B

by onsidering the following ases:

1. � ontains in�nitely many events from C

A

.

By Lemma 6.17, we know that � has in�nitely many events from C

B

. Then, by

de�nition of weak fairness � 2 L

B

, as needed.

2. There is no suÆx �

0

of � suh that C

A

is enabled in all states in �

0

.

(a) � is either an in�nite sequene or a �nite sequene ending with an open traje-

tory.

Then, by Lemma 6.20, we have that there is no suÆx �

0

of � suh that C

B

is

enabled in all states in �

0

. By de�nition of weak fairness � 2 L

B

, as needed.

95

(b) � is a �nite sequene ending with a losed trajetory.

By Lemma 6.18, we have that C

B

is disabled in �:lstate . Therefore, � annot

have any suÆx in whih C

B

is enabled in all states. Then, by de�nition of weak

fairness � 2 L

B

, as needed.

It would have been possible to prove Theorem 6.23 for a slightly di�erent notion of

fair forward simulation obtained by weakening Property 3 of the urrent de�nition. The

urrent de�nition requires that the disabling is arried over from the low-level automaton

to the high-level one for all states in a trajetory, exept for the �rst state of trajetories

with limit time greater than zero. For proving Theorem 6.23, it would have been suÆient

to require that the disabling be arried over for some states only.

6.4 Composition

This setion inludes results that are essential for ompositional reasoning about timed

automata with properties. They are speializations of the similar results in Setion 5.1.

6.4.1 De�nitions and Basi Results

If A

1

and A

2

are two ompatible timed automata and P

1

and P

2

are properties for A

1

and A

2

, respetively, then we de�ne P

1

kP

2

to be f� 2 frags

A

1

kA

2

j � d(A

i

;X

i

) 2 P

i

; i 2

f1; 2gg. Using this, we de�ne omposition of automata with properties (A

1

; P

1

)k(A

2

; P

2

)

as (A

1

kA

2

; P

1

kP

2

).

Theorem 6.24 Let A

1

and A

2

be two ompatible TAs and P

1

and P

2

be properties for A

1

and A

2

, respetively. Then traes

(A

1

kA

2

;P

1

kP

2

)

is exatly the set of (E; ;)-sequenes whose

restritions to A

1

and A

2

are traes

(A

1

;P

1

)

and traes

(A

2

;P

2

)

, respetively. That is,

traes

(A

1

kA

2

;P

1

kP

2

)

= f� j � is an (E; ;)-sequene and � d(E

i

; ;) 2 traes

(A

i

;P

i

)

; i 2 f1; 2gg.

Proof: Follows from de�nition of omposition of automata with properties and Theo-

rem 5.4.

6.4.2 Substitutivity Results

Theorem 6.25 Suppose that A

1

, A

2

, and B are TAs, A

1

and A

2

have the same external

ations, and eah of A

1

and A

2

is ompatible with B. Suppose that P

1

, P

2

, and Q are

properties for A

1

, A

2

, and B, respetively. If (A

1

; P

1

) � (A

2

; P

2

) then (A

1

; P

1

)k(B; Q) �

(A

2

; P

2

)k(B; Q).

96

This theorem an be strengthened with two orollaries.

Corollary 6.26 Suppose A

1

, A

2

, B

1

, and B

2

are TAs, A

1

and A

2

have the same external

ations, B

1

and B

2

have the same external ations, and eah of A

1

and A

2

is ompatible

with eah of B

1

and B

2

. Suppose that P

i

and Q

i

are properties for A

i

and B

i

, respetively

for i 2 f1; 2g. If (A

1

; P

1

) � (A

2

; P

2

) and (B

1

; Q

1

) � (B

2

; Q

2

) then (A

1

; P

1

)k(B

1

; Q

1

) �

(A

2

; P

2

)k(B

2

; Q

2

).

Corollary 6.27 Suppose A

1

, A

2

, B

1

, and B

2

are TAs, A

1

and A

2

have the same external

ations, B

1

and B

2

have the same external ations, and eah of A

1

and A

2

is ompatible

with eah of B

1

and B

2

. Suppose that P

i

and Q

i

are properties for A

i

and B

i

, respetively

for i 2 f1; 2g. If (A

1

; P

1

)k(B

2

; Q

2

) � (A

2

; P

2

)k(B

2

; Q

2

) and (B

1

; Q

1

) � (B

2

; Q

2

) then

(A

1

; P

1

)k(B

1

; Q

1

) � (A

2

; P

2

)k(B

2

; Q

2

).

7 Timed I/O Automata

In this setion we re�ne the timed automaton model of Setion 4 by distinguishing between

input and output ations. Typially, an interation between a system and its environment

is modeled by using output and input ations to represent, respetively, the external events

under the ontrol of the system and the environment. We extend the results on simulation

relations and omposition from Setions 4 and 5 to this new setting. We also introdue

speial kinds of timed I/O automata: I/O feasible, progressive, and reeptive TIOAs.

7.1 De�nition of Timed I/O Automata

A timed I/O automaton (TIOA) A is a tuple (B; I; O) where

� B = (X;Q;�; E;H;D;T) is a timed automaton.

� I and O partition E into input and output ations, respetively. Ations in L

�

=

H [O are alled loally ontrolled ; as before we write A

�

= E [H.

� The following additional axioms are satis�ed:

E1 (Input ation enabling)

For every x 2 Q and every a 2 I, there exists x

0

2 Q suh that x

a

! x

0

.

E2 (Time-passage enabling)

For every x 2 Q, there exists � 2 T suh that �:fstate = x and either

1. �:ltime =1, or

2. � is losed and some l 2 L is enabled in �:lstate .

97

Input ation enabling is the input enabling ondition of ordinary I/O automata; it says

that a TIOA is able to perform an input ation at any time. The time-passage enabling

ondition says that says that a TIOA either allows time to advane forever, or it allows

time to advane for a while, up to a point where it is prepared to reat with some loally

ontrolled ation. Beause TIOAs have no external variables, E1 and E2 are slightly

simpler than the orresponding axioms for HIOAs.

Notation: As we did for TAs, we often denote the omponents of a TIOA A by

B

A

; I

A

; O

A

;X

A

; Q

A

;�

A

, et., and those of a TIOA A

i

by H

i

; I

i

; O

i

; : : : ;X

i

, Q

i

;�

i

, et.

We sometimes omit these subsripts, where no onfusion is likely. We abuse notation

slightly by referring to a TIOA A as a TA when we intend to refer to B

A

.

Example 7.1 (TAs viewed as TIOAs) The automaton T imedChannel(b;M) desribed

in Example 4.1 an be turned into a TIOA by lassifying the send ations as inputs, and

the reeive ations as outputs. Sine there is no preondition for send ations, they are

enabled in eah state, so learly the input enabling ondition E1 holds. It is also easy to

see that axiom E2 holds: in eah state either queue is nonempty, in whih ase a reeive

output ation is enabled after a point trajetory, or queue is empty, in whih ase time

an advane forever.

The automaton ClokSyn(u; �)

i

of Example 4.6 an be turned into a TIOA by lassi-

fying the send ations as outputs, and the reeive ations as inputs. Axiom E1 then holds

trivially. Axiom E2 holds sine from eah state either time an advane forever, or we have

an outgoing trajetory (possibly of length 0) to a state in whih physlok = nextsend,

and from there a send output ation is enabled.

7.2 Exeutions and Traes

An exeution fragment , exeution, trae fragment , or trae of a TIOA A is de�ned to

be an exeution fragment, exeution, trae fragment, or trae of the underlying TA B

A

,

respetively.

We say that an exeution fragment of a TIOA is loally-Zeno if it is Zeno and ontains

in�nitely many loally ontrolled ations, or equivalently, if it has �nite limit time and

ontains in�nitely many loally ontrolled ations.

7.3 Speial Kinds of Timed I/O Automata

7.3.1 Feasible and I/O Feasible TIOAs

A TIOA A = (B; I; O) is de�ned to be feasible provided that its underlying TA B is feasible

aording to the de�nition given in Setion 4.3.1. As noted in Setion 4.3.1, feasibility is a

98

basi requirement that any TA (or TIOA) should satisfy. I/O feasibility is a strengthened

version of feasibility that take inputs into aount. It says that the automaton is apable of

providing some response from any state, for any sequene of input ations and any amount

of intervening time-passage. In partiular, it should allow time to pass to in�nity if the

environment does not submit any input ations. Formally, we de�ne a TIOA to be I/O

feasible provided that, for eah state x and eah (I; ;)-sequene �, there is some exeution

fragment � from x suh that � d(I; ;) = �. That is, an I/O feasible TIOA aommodates

arbitrary input ations ourring at arbitrary times. The given (I; ;)-sequene � desribes

the inputs and the amounts of intervening times.

7.3.2 Progressive TIOAs

A progressive TIOA never generates in�nitely many loally ontrolled ations in �nite

time. Formally, a TIOA A is progressive if it has no loally-Zeno exeution fragments.

The following lemma says that any progressive TIOA is apable of advaning time

forever.

Lemma 7.2 Every progressive TIOA is feasible.

Proof: Let A be a progressive TIOA and let x be a state of A. Sine A is a TIOA it

satis�es axiom E2. We onstrut an admissible exeution fragment � = �

0

_

�

1

_

�

2

� � �

from x as follows.

1. �

0

= }(x).

2. For eah i > 0,

(a) If there exists a trajetory � from �

i�1

:lstate suh that �:ltime =1 then �

i

is

the �nal exeution fragment in the sequene and �

i

= � .

(b) Otherwise, let �

i

be a losed exeution fragment from �

i�1

:lstate suh that l 2 L

is enabled in �

i

:lstate . De�ne �

i

= �

i

l�

i+1

where �

i+1

= }(y) and �

i

:lstate

l

! y.

The above onstrution either ends after �nitely many stages suh that the last tra-

jetory of � is admissible, or goes through in�nitely many stages suh that � ontains

in�nitely many loal ations. In the former ase, we know that � is admissible sine it

ends with an admissible trajetory. In the latter ase, sine A is progressive, the fat

that � has in�nitely many loal ations implies that � is admissible, as needed.

The following lemma says that a progressive TIOA is apable of allowing any amount

of time to pass from any state.

99

Lemma 7.3 Let A be a progressive TIOA, let x be a state of A, and let � 2 trajs(;).

Then there exists an exeution fragment � of A suh that �:fstate = x and � d(I; ;) = � .

Proof: The result follows from the onstrution used in the proof of Lemma 7.2. Let

� be an admissible exeution fragment from x onstruted as in the proof of Lemma 7.2.

Let �

0

be a pre�x of � suh that �

0

d(;; ;) = � . Sine our onstrution uses no ations

from I, we have �

0

d(I; ;) = �

0

d(;; ;) = � , as needed.

The following theorem says that a progressive TIOA is apable not just of allowing

arbitrary amounts of time to pass, but of allowing arbitrary input ations at arbitrary

times.

Theorem 7.4 Every progressive TIOA is I/O feasible.

Proof: Let A be a progressive TIOA, let x be a state of A, and let � = �

0

a

1

�

1

a

2

�

2

: : :

be an (I; ;)-sequene. We onstrut a �nite or in�nite sequene �

0

�

1

: : : of exeution

fragments suh that:

1. �

0

:fstate = x.

2. For eah non�nal index i, �

i

:lstate = �

i+1

:fstate .

3. For eah i, (�

0

_

�

1

_

� � �

_

�

i

) d(I; ;) = �

0

a

1

�

1

: : : �

i

.

The onstrution is arried out reursively. To de�ne �

0

, we start with x and use

Lemma 7.3 to span �

0

. For i > 0, we de�ne �

i

by starting with �

i�1

:lstate , using axiom

E1 to perform the input ation a

i

and move to a new state and then using Lemma 7.3 to

span �

i

.

Let � = �

0

_

�

1

_

� � �. By Lemma 3.8, � is an exeution fragment of A from x suh

that � d(I; ;) = �, as needed.

7.3.3 Reeptive Timed I/O Automata

In this setion, we de�ne the notion of reeptiveness for TIOAs. A TIOA will be de�ned

to be reeptive provided that it admits a strategy for resolving its nondeterministi hoies

that never generates in�nitely many loally ontrolled ations in �nite time. This notion

has an important onsequene: A reeptive TIOA provides some response from any state,

for any sequene of disrete input ations at any times. This implies that the automa-

ton has a nontrivial set of exeution fragments, in fat, it has exeution fragments that

aommodate any inputs from the environment. The automaton annot simply stop at

100

some point and refuse to allow time to elapse; it must allow time to pass to in�nity if the

environment does so. Previous studies of reeptiveness properties inlude [12, 1, 36, 24℄.

The notion of reeptiveness for TIOAs as disussed here is a speial ase of the same notion

for HIOAs [22℄.

We build our de�nition of reeptiveness on our earlier de�nition of progressive TIOAs.

Namely, we de�ne a strategy for resolving nondeterministi hoies, and de�ne reeptive-

ness in terms of the existene of a progressive strategy.

We de�ne a strategy for a TIOA A to be a TIOA A

0

that di�ers from A only in that

D

0

� D and T

0

� T . That is, we require:

� D

0

� D.

� T

0

� T .

� X = X

0

, Q = Q

0

, � = �

0

, E = E

0

, H = H

0

, I = I

0

, and O = O

0

.

Our strategies are nondeterministi and memoryless. They provide a way of hoosing some

of the evolutions that are possible from eah state x of A. The fat that the state set Q

0

of A

0

is the same as the state set Q of A implies that A

0

hooses evolutions from every

state of A.

Notions of strategy have been used also in previous studies of reeptiveness [12, 1,

36, 24℄. However, in these earlier works, strategies have been formalized using two-player

games rather than automata. De�ning strategies using automata allows us to avoid intro-

duing extra mathematial mahinery.

Lemma 7.5 If A

0

is a strategy for A, then every exeution fragment of A

0

is also an

exeution fragment of A.

We de�ne a TIOA to be reeptive if it has a progressive strategy. The following theorem

says that any reeptive TIOA an respond to any inputs from the environment.

Theorem 7.6 Every reeptive TIOA is I/O feasible.

Proof: The proof is similar to that of the orresponding theorem for HIOAs [22℄.

Example 7.7 (Progressive and reeptive TIOAs) The time-bounded hannel au-

tomaton desribed in Example 4.1 is not progressive sine it allows for an in�nite exeution

in whih send and reeive ations alternate without any passage of time in between. The

time-bounded hannel automaton is reeptive, however, as we may onstrut a progressive

strategy for it by adding a ondition u = now to the preondition of the reeive ation.

101

In this way we enfore that the hannel operates maximally slow and messages are only

delivered at their delivery deadline. The lok synhronization automaton of Example 4.6

is progressive (and therefore reeptive) sine it an only generate a loally ontrolled a-

tion eah time its physial lok advanes by u time units and the real time that elapses

between two loally produed ations is at least u(1� �) time units.

7.4 Implementation Relationships

Two TIOAs A

1

and A

2

are omparable if their inputs and outputs oinide, that is, if

I

1

= I

2

and O

1

= O

2

. If A

1

and A

2

are omparable, then A

1

� A

2

is de�ned to mean

that the traes of A

1

are inluded among those of A

2

: A

1

� A

2

�

= traes

A

1

� traes

A

2

.

Lemma 7.8 Let A

1

, A

2

be two omparable TIOAs and let B

1

, B

2

be, respetively, the

underlying TAs for A

1

and A

2

. Then B

1

and B

2

are omparable and A

1

� A

2

i� B

1

� B

2

.

Proof: Immediate from the de�nitions.

7.5 Simulation Relations

The de�nition of forward simulation for TIOAs is the same as for TAs. Formally, if

A

1

= (B

1

; I

1

; O

1

) and A

2

= (B

2

; I

2

; O

2

) are two omparable TIOAs, then a forward

simulation from A

1

to A

2

is a forward simulation from B

1

to B

2

.

Theorem 7.9 If A

1

and A

2

are omparable TIOAs and there is a forward simulation

from A

1

to A

2

, then A

1

� A

2

.

The de�nitions and results about bakward simulations, history and prophey relations

for timed automata from Setion 4 arry over to timed automata with input and output

distintion in a similar fashion.

8 Operations on Timed I/O Automata

8.1 Composition

In this setion, we de�ne the operations of omposition and hiding and present proje-

tion, pasting and substitutivity results for TIOAs. We revisit the speial kinds of TIOAs

introdued in Setion 7 and show that the lasses of progressive and reeptive timed I/O

automata are losed under omposition, while this is not true for the lass of I/O feasible

automata.

102

8.1.1 De�nitions and Basi Results

The de�nition of omposition for TIOAs is based on the orresponding de�nition for TAs,

but also takes the input/output struture into aount. We say that TIOAs A

1

and A

2

are ompatible if, for i 6= j, X

i

\X

j

= H

i

\A

j

= O

i

\O

j

= ;.

Lemma 8.1 If A

1

= (B

1

; I

1

; O

1

) and A

2

= (B

2

; I

2

; O

2

) are ompatible TIOAs, then B

1

and B

2

are ompatible TAs.

If A

1

and A

2

are ompatible TIOAs then their omposition A

1

kA

2

is de�ned to be the

tuple A = (B; I; O) where

� B = B

1

kB

2

,

� I = (I

1

[I

2

)� (O

1

[O

2

)

� O = O

1

[O

2

.

Thus, an external ation of the omposition is lassi�ed as an output if it is an output of

one of the omponent automata, and otherwise it is lassi�ed as an input. The omposition

of two TIOAs is guaranteed to be a TIOA:

Theorem 8.2 If A

1

and A

2

are TIOAs then A

1

kA

2

is a TIOA.

Proof: The proof is straightforward exept for showing that Axiom E2 is satis�ed by the

omposition. Let x be a state of A

1

kA

2

. We need to show the existene of a trajetory

from x that satis�es E2.

By de�nition of A

1

kA

2

, x dX

1

is a state of A

1

and x dX

2

is a state of A

2

. We know

that both A

1

and A

2

satisfy E2. Let �

1

be a trajetory of A

1

with �

1

:fstate = x dX

1

that

satis�es E2, let �

2

be a trajetory of A

2

with �

2

:fstate = x dX

2

that satis�es E2, and

onsider the following ases:

1. �

1

:ltime =1 and �

2

:ltime =1.

Then, de�ne � suh that � # X

1

= �

1

and � # X

2

= �

2

.

2. �

1

:ltime =1 and �

2

is losed where some l 2 L

2

is enabled in �

2

:lstate .

Then, de�ne � suh that � # X

1

= �

1

d dom(�

2

) and � # X

2

= �

2

.

3. �

1

is losed where some l 2 L

1

is enabled in �

1

:lstate and �

2

:ltime =1.

Then, de�ne � suh that � # X

1

= �

1

and � # X

2

= �

2

d dom(�

1

).

103

4. �

1

is losed where some l 2 L

1

is enabled in �

1

:lstate and �

2

is losed where some

l 2 L

2

is enabled in �

2

:lstate .

If dom(�

1

) � dom(�

2

), then de�ne � suh that � # X

1

= �

1

and � # X

2

=

�

2

d dom(�

1

). Otherwise, de�ne � suh that � # X

1

= �

1

d dom(�

2

) and � # X

2

= �

2

.

In all the ases, by de�nition of trajetories for a TIOA, � is a trajetory of A

1

kA

2

from

x, whih satis�es E2 by onstrution.

Note that this theorem is stronger than the orresponding theorem (Theorem 6.12

in [22℄) for general HIOAs. Two HIOAs A

1

and A

2

are required to be \strongly ompati-

ble" for their omposition to be a hybrid I/O automaton. This extra ondition is needed

to rule out dependenies among external variables that may prevent the omponent au-

tomata from evolving together. The absene of external variables in TIOA eliminates this

kind of problemati behavior. Thus, for the timed ase, we do not require the notion of

strong ompatibility that was needed for the hybrid ase.

Composition of TIOAs satis�es the following projetion and pasting result, whih

follows from Theorem 5.4.

Theorem 8.3 Let A

1

and A

2

be omparable TIOAs, and let A = A

1

kA

2

. Then traes

A

is exatly the set of (E; ;)-sequenes whose restritions to A

1

and A

2

are traes of A

1

and A

2

, respetively. That is, traes

A

= f� j � is an (E; ;)-sequene and � d(E

i

; ;) 2

traes

A

i

; i = f1; 2gg.

8.1.2 Substitutivity Results

The following theorem is analogous to Theorem 5.8 for TAs without input/output distin-

tion. It shows that the introdution of the input/output distintion does not ause any

hanges to the substitutivity results we obtained for general TAs.

Theorem 8.4 Suppose A

1

and A

2

are omparable TIOAs with A

1

� A

2

. Suppose that B

is a TIOA that is ompatible with eah of A

1

and A

2

. Then A

1

kB � A

2

kB.

The orollaries below follow from the Corollaries 5.9 and 5.10 of Theorem 5.8.

Corollary 8.5 Suppose A

1

, A

2

, B

1

, and B

2

are TIOAs, A

1

and A

2

are omparable, B

1

and B

2

are omparable, and eah of A

1

and A

2

is ompatible with eah of B

1

and B

2

. If

A

1

� A

2

and B

1

� B

2

then A

1

kB

1

� A

2

kB

2

.

Corollary 8.6 Suppose A

1

, A

2

, B

1

, and B

2

are TAs, A

1

and A

2

are omparable, B

1

and B

2

are omparable, and eah of A

1

and A

2

is ompatible with eah of B

1

and B

2

. If

A

1

kB

2

� A

2

kB

2

and B

1

� B

2

then A

1

kB

1

� A

2

kB

2

.

104

The basi substitutivity theorem, Theorem 8.4, is desirable for any formalism for in-

terating proesses. For design purposes, it enables one to re�ne individual omponents

without violating the orretness of the system as a whole. For veri�ation purposes, it

enables one to prove that a omposite system satis�es its spei�ation by proving that

eah omponent satis�es its spei�ation, thereby breaking down the veri�ation task into

more manageable piees. However, it might not always be possible or easy to show that

eah omponent A

1

(resp. B

1

) satis�es its spei�ation A

2

(resp. B

2

) without using any

assumptions about the environment of the omponent. Assume-guarantee style results

suh as those presented in [19, 33, 38, 1, 2, 18, 39℄ are speial kinds of substitutivity re-

sults that state what guarantees are expeted from eah omponent in an environment

onstrained by ertain assumptions. Sine the environment of eah omponent onsists of

the other omponents in the system, assume-guarantee style results need to break the ir-

ular dependenies between the assumptions and guarantees for omponents. We present

below two assume-guarantee style theorems Theorem 8.7 and Corollary 8.8, whih an be

used for proving that a system spei�ed as a omposite automaton A

1

kB

1

implements a

spei�ation represented by a omposite automaton A

2

kB

2

.

The main idea behind Theorem 8.7 is to assume that A

1

implements A

2

in a ontext

represented by B

2

, and symmetrially that B

1

implements B

2

in a ontext represented

by A

2

where A

2

and B

2

are automata whose trae sets are losed under limits. The

requirement about limit-losure implies that A

2

and B

2

speify trae safety properties.

Moreover, we assume that the trae sets of A

2

and B

2

are losed under time-extension.

That is, the automata allow arbitrary time-passage. This is the most general assumption

one ould make to ensure that A

2

kB

2

does not impose stronger onstraints on time-passage

than A

1

kB

1

. Note that the de�nitions of limit and time extension of a hybrid sequene

an be found in Setion 9.2.

Theorem 8.7 Suppose A

1

, A

2

, B

1

, B

2

are TIOAs suh that A

1

and A

2

are omparable,

B

1

and B

2

are omparable, and A

i

is ompatible with B

i

for i 2 f1; 2g. Suppose further

that:

1. The sets traes

A

2

and traes

B

2

are losed under limits.

2. The sets traes

A

2

and traes

B

2

are losed under time-extension.

3. A

1

kB

2

� A

2

kB

2

and A

2

kB

1

� A

2

kB

2

.

Then A

1

kB

1

� A

2

kB

2

.

Proof: We �rst prove by indution on the length of traes of A

1

kB

1

that every losed

trae of A

1

kB

1

is a trae of A

2

kB

2

.

For the base ase, let � be a trae of A

1

kB

1

suh that � 2 trajs(;) (a single trajetory

over the empty set of variables). By Axiom T0 in the de�nition of a TA, we know that

105

A

2

and B

2

have traes �

1

and �

2

suh that �

1

:ltime = �

2

:ltime = 0. By Assumption 2 we

have �

1

_

� 2 traes

A

2

and �

2

_

� 2 traes

B

2

. Sine, �

1

_

� = � and �

2

_

� = �, it follows

that � 2 traes

A

2

and � 2 traes

B

2

. By pasting using Theorem 8.3, � 2 traes

A

2

kB

2

, as

needed.

For the indutive step we onsider the following ases:

1. � = �

0

a � , where a is an output ation of A

1

and � is a point trajetory.

Then � d(E

A

1

; ;) 2 traes

A

1

by projetion using Theorem 8.3. By indutive hypoth-

esis, �

0

2 traes

A

2

kB

2

. So �

0

d(E

B

2

; ;) 2 traes

B

2

, by projetion using Theorem 8.3.

Let � be an exeution of B

2

suh that trae(�) = �

0

d(E

B

2

; ;). Sine A

1

and B

1

are ompatible TIOAs, B

1

and B

2

are omparable, and a is an output ation of

A

1

, we know that either a is an input ation of B

2

or the ation set of B

2

does

not ontain a. In the former ase, by the input-enabling axiom (E1) we know that

there exists x

0

suh that (�:lstate ; a;x

0

) is a disrete transition of B

2

. It follows

that � d(E

B

2

; ;) 2 traes

B

2

. In the latter ase, sine � d(E

B

2

; ;) = �

0

d(E

B

2

; ;) and

�

0

d(E

B

2

; ;) 2 traes

B

2

we get � d(E

B

2

; ;) 2 traes

B

2

. By pasting using Theorem 8.3,

� 2 traes

A

1

kB

2

. Then by Assumption 3, � 2 traes

A

2

kB

2

.

2. � = �

0

b � , where b is an output ation of B

1

and � is a point trajetory.

This ase is symmetri with the previous one.

3. � = �

0

 � , where is an input ation of both A

1

and B

1

and � is a point trajetory.

By indutive hypothesis, �

0

2 traes

A

2

kB

2

. By projetion using Theorem 8.3 we

get �

0

d(E

A

2

; ;) 2 traes

A

2

and �

0

d(E

B

2

; ;) 2 traes

B

2

. Let � be an exeution of A

2

suh that trae(�) = �

0

d(E

A

2

; ;). Sine A

1

and A

2

are omparable and a is an input

ation of A

1

we know that a is an input ation of A

2

. By the input-enabling axiom

(E1) we know that there exists x

0

suh that (�

0

:lstate ; a;x

0

) is a disrete transition

of A

2

. It follows that � d(E

A

2

; ;) 2 traes

A

2

. Similarly, let �

0

be an exeution of B

2

suh that trae(�

0

) = �

0

d(E

B

2

; ;). Sine B

1

and B

2

are omparable and a is an input

ation of B

1

we know that a is an input ation of B

2

. By the input-enabling axiom

(E1) we know that there exists y

0

suh that (�

0

:lstate ; a;y

0

) is a disrete transition

of B

2

. It follows that � d(E

B

2

; ;) 2 traes

B

2

. By pasting using Theorem 8.3, we get

� 2 traes

A

2

kB

2

.

4. � = �

0

d � , where d is an input ation of A

1

but not an ation of B

1

and � is a point

trajetory.

By indutive hypothesis, �

0

2 traes

A

2

kB

2

. By projetion using Theorem 8.3, we

have �

0

d(E

A

2

; ;) 2 traes

A

2

and �

0

d(E

B

2

; ;) 2 traes

B

2

. Let � be an exeution

of A

2

suh that trae(�) = �

0

d(E

A

2

; ;). Sine A

1

and A

2

are omparable TIOAs

and a is an input ation of A

1

, a must be an input ation of A

2

. By the input-

enabling axiom (E1) we know that there exists x

0

suh that (�:lstate ; a;x

0

) is a

disrete transition of A

2

. It follows that � d(E

A

2

; ;) 2 traes

A

2

. Sine B

1

and

106

B

2

are omparable and a is not an ation of B

1

, a annot be an external ation

of B

2

. Therefore, � d(E

B

2

; ;) = �

0

d(E

B

2

; ;). Sine �

0

d(E

B

2

; ;) 2 traes

B

2

we get

� d(E

B

2

; ;) 2 traes

B

2

. By pasting using Theorem 8.3, we get � 2 traes

A

2

kB

2

.

5. � = �

0

d� , where d is an input ation of B

1

but not an ation of A

1

and � is a point

trajetory.

This ase is symmetri with the previous one.

6. � = �

0 _

�

00

, where �

00

is a hybrid sequene onsisting of a single trajetory � .

By indutive hypothesis, �

0

2 traes

A

2

kB

2

. By projetion using Theorem 8.3, we

get �

0

d(E

A

2

; ;) 2 traes

A

2

and �

0

d(E

B

2

; ;) 2 traes

B

2

. By Assumption 2, we have

�

0

d(E

A

2

; ;)

_

�

00

d(E

A

2

; ;) 2 traes

A

2

and �

0

d(E

B

2

; ;)

_

�

00

d(E

B

2

; ;) 2 traes

B

2

.

Then by pasting using Theorem 8.3, � 2 traes

A

2

kB

2

, as needed.

We have thus shown that every losed trae of A

1

kB

1

is a trae of A

2

kB

2

. Now onsider

any non-losed trae � of A

1

kB

1

. This � an be written as the limit of a sequene

�

1

�

2

� � � of losed traes of A

1

kB

1

. By the �rst part of the proof we know that eah

�

i

2 traes

A

2

kB

2

, and by projetion using Theorem 8.3 eah �

i

d(E

A

2

; ;) is a losed trae

of A

2

, and �

i

d(E

B

2

; ;) is a losed trae of B

2

. We know that � d(E

A

2

; ;) is the limit of

the �

i

d(E

A

2

; ;) and similarly � d(E

B

2

; ;) is the limit of the �

i

d(E

B

2

; ;). Sine the sets

traes

A

2

and traes

B

2

are limit-losed by Assumption 1, we get � d(E

A

2

; ;) 2 traes

A

2

and

� d(E

B

2

; ;) 2 traes

B

2

. Finally, by pasting using Theorem 8.3, we get � 2 traes

A

2

kB

2

.

Note that automata with FIN and timing-independene (see Setion 4.3.1 for de�ni-

tions) onstitute examples for ontext automata A

2

and B

2

that satisfy Assumptions 1

and 2. The property FIN implies Assumption 1 (Lemma 4.18) and timing-independene

implies Assumption 2.

Theorem 8.7 has a orollary, Corollary 8.8 below, whih an be used in the deom-

position of proofs even when A

2

and B

2

neither admit arbitrary time-passage nor have

limit-losed trae sets. The main idea behind this orollary is to assume that A

1

imple-

ments A

2

in a ontext B

3

that is a variant of B

2

, and symmetrially that B

1

implements

B

2

in a ontext that is a variant of A

2

. That is, the orretness of implementation rela-

tionship between A

1

and A

2

does not depend on all the environment onstraints, just on

those expressed by B

3

(symmetrially for B

1

,B

2

, and A

3

). In order to use this orollary

to prove A

1

kB

1

� A

2

kB

2

one needs to be able to �nd appropriate variants of A

2

and B

2

that meet the required losure properties. This orollary prompts one to pin down what

is essential about the behavior of the environment in proving the intended implementa-

tion relationship, and also allows one to avoid the unneessary details of the environment

in proofs. In Setion 9 we extend this orollary to the ase where properties, typially

liveness properties, are added to automaton spei�ations.

107

Corollary 8.8 Suppose A

1

, A

2

, A

3

, B

1

, B

2

, B

3

are TIOAs suh that A

1

, A

2

, and A

3

are

omparable, B

1

, B

2

, and B

3

are omparable, and A

i

is ompatible with B

i

for i 2 f1; 2; 3g.

Suppose further that:

1. The sets traes

A

3

and traes

B

3

are losed under limits.

2. The sets traes

A

3

and traes

B

3

are losed under time-extension.

3. A

2

kB

3

� A

3

kB

3

and A

3

kB

2

� A

3

kB

3

.

4. A

1

kB

3

� A

2

kB

3

and A

3

kB

1

� A

3

kB

2

.

Then A

1

kB

1

� A

2

kB

2

.

Proof: Sine A

2

� A

3

by Assumption 3 and A

1

kB

3

� A

2

kB

3

by Assumption 4, we

get A

1

kB

3

� A

2

kB

3

� A

3

kB

3

, by Theorem 8.4. Similarly, we have A

3

kB

1

� A

3

kB

2

�

A

3

kB

3

. Sine A

1

kB

3

� A

3

kB

3

and A

3

kB

1

� A

3

kB

3

, by using Assumptions 1 and 2, and

Theorem 8.7 we have A

1

kB

1

� A

3

kB

3

.

Let � be a trae of A

1

kB

1

. By projetion using Theorem 8.3, � d(E

A

1

; ;) 2 traes

A

1

and � d(E

B

1

; ;) 2 traes

B

1

. Sine A

1

kB

1

� A

3

kB

3

, we know that � 2 traes

A

3

kB

3

. By

projetion using Theorem 8.3, � d(E

A

3

; ;) 2 traes

A

3

and � d(E

B

3

; ;) 2 traes

B

3

. By

pasting using Theorem 8.3, we have � 2 traes

A

1

kB

3

and � 2 traes

A

3

kB

1

. By Assumption

4, we get � 2 traes

A

2

kB

3

and � 2 traes

A

3

kB

2

. Then, by projetion using Theorem 8.3,

� d(E

A

2

; ;) 2 traes

A

2

and � d(E

B

2

; ;) 2 traes

B

2

. Finally, by pasting using Theorem 8.3

we have � 2 traes

A

2

kB

2

, as needed.

Example 8.9 (Using environment assumptions to prove safety)

This example illustrates that, in ases where spei�ations A

2

and B

2

satisfy ertain

losure properties, it is possible to deompose the proof of A

1

kB

1

� A

2

kB

2

by using

Theorem 8.7, even if it is not the ase that A

1

� A

2

or B

1

� B

2

.

The automata AlternateA and AlternateB in Figure 16 are timing-independent au-

tomata in whih no onseutive outputs our without inputs happening in between.

AlternateA and AlternateB perform a handshake, outputting an alternating sequene

of a and b ations when they are omposed. The automata CathUpA and CathUpB

in Figure 17 are timing-dependent automata that do not neessarily alternate inputs and

outputs as AlternateA and AlternateB. CathUpA an perform an arbitrary number

of b ations, and an perform an a provided that ounta � ountb. It allows ounta to

inrease to one more than ountb. CathUpB an perform an arbitrary number of a a-

tions, and an perform a b provided that ounta � ountb+ 1. It allows ountb to reah

ounta. Timing onstraints require eah output to our exatly one time unit after the

last ation. CathUpA and CathUpB perform an alternating sequene of a ations and

b ations when they are omposed.

108

Automaton AlternateA

Variables X : disrete myturn 2 Bool initially true

States Q : val(X)

Ations A : input b, output a

Transitions D : input b output a

e�et preondition

myturn := true myturn

e�et

myturn := false

Trajetories T : satis�es

onstant(myturn)

Automaton AlternateB

Variables X : disrete myturn 2 Bool initially false

States Q : val(X)

Ations A : input a, output b

Transitions D : input a output b

e�et preondition

myturn := true myturn

e�et

myturn := false

Trajetories T : satis�es

onstant(myturn)

Figure 16: Example automata for A

2

and B

2

in Theorem 8.7

Suppose that we want to prove that CathUpAkCathUpB � AlternateAkAlternateB.

We annot apply the basi substituvity theorem Theorem 8.7, in partiular Corollary 8.5,

sine the assertions CathUpA � AlternateA and CathUpB � AlternateB are not true.

Consider the trae �

0

b�

1

a�

2

a�

3

of CathUpA where �

0

, �

1

, �

2

and �

3

are trajetories with

limit time 1. After having performed one b and one a, CathUpA an perform another

a. But, this is impossible for AlternateA whih needs an input to enable the seond a.

AlternateA and CathUpA behave similarly only when put in a ontext that imposes

alternation.

It is easy to hek that AlternateA and AlternateB satisfy the losure properties

required by Assumptions 1 and 2 of Theorem 8.7 and, hene an be substituted for A

2

109

Automaton CathUpA

Variables X : disrete ounta; ountb 2 N initially 0

analog now 2 R

�0

initially 0

analog next 2 R

�0

[f1g initially 0

States Q : val(X)

Ations A : input b, output a

Transitions D : input b output a

e�et preondition

ountb := ountb + 1 ounta � ountb ^ now = next

next := now + 1 e�et

ounta := ounta+ 1

next := now + 1

Trajetories T : satis�es

onstant(ounta,ountb)

stops when

now = next

Automaton CathUpB

Variables X : disrete ounta; ountb 2 N initially 0

analog now 2 R

�0

initially 0

analog next 2 R

�0

[f1g initially 0

States Q : val(X)

Ations A : input a, output b, internal

Transitions D : input a output b

e�et preondition

ounta := ounta+ 1 ountb+ 1 � ounta ^ now = next

next := now + 1 e�et

ountb := ountb + 1

next = now + 1

Trajetories T : satis�es

onstant(ounta,ountb)

stops when

now = next

Figure 17: Example automata A

1

and B

1

for Theorem 8.7

110

and B

2

respetively. Similarly, we an easily hek that Assumption 3 is satis�ed if we

substitute CathUpA for A

1

and CathUpB for B

1

.

Example 8.10 (Extrating essential environment assumptions with auxiliary

automata) This example illustrates that it may be possible to deompose veri�ation,

using Corollary 8.8, in ases where Theorem 8.7 is not appliable. If the aim is to show

A

1

kB

1

� A

2

kB

2

where A

2

and B

2

do not satisfy the assumptions of Theorem 8.7, then

we �nd appropriate ontext automata A

3

and B

3

that abstrat from those details of A

2

and B

2

that are not essential in proving A

1

kB

1

� A

2

kB

2

.

Consider the automata UseOldInputAandUseOldInputB in Figure 18. UseOldInputA

keeps trak of whether or not it is UseOldInputA's turn, and when it is UseOldInputA's

turn, it keeps trak of the next time it is supposed to perform an output. The number of

outputs that UseOldInputA an perform is bounded by a natural number. In the ase

of repeated b inputs, it is the oldest input that determines when the next output will

our. The automaton UseOldInputB is the same as UseOldInputA (inputs and outputs

reversed) exept that the turn variable of UseOldInputB is set to false initially. Note

that UseOldInputA and UseOldInputA are not timing-independent and their trae sets

are not limit-losed. For eah automaton, there are in�nitely many start states, one for

eah natural number. We an build an in�nite hain of traes, where eah element in the

hain orresponds to an exeution starting from a distint start state. The limit of suh

a hain, whih ontains in�nitely many outputs, annot be a trae of UseOldInputA or

UseOldInputA sine the number of outputs they an perform is bounded by a natural

number. The automaton UseNewInputA in Figure 19 behaves similarly to UseOldInputA

exept for the handling of inputs. In the ase of repeated b inputs, it is the most reent

input that determines when the next output will our. The automaton UseNewInputB

in Figure 19 is the same as UseNewInputA (inputs and outputs reversed) exept that the

turn variable of UseNewInputB is set to false initially.

Suppose that we want to prove that:

UseNewInputAkUseNewInputB � UseOldInputAkUseOldInputB.

Theorem 8.7 is not appliable here beause the high-level automata UseOldInputA

and UseOldInputB do not satisfy the required losure properties. However, we an use

Corollary 8.8 to deompose veri�ation. It requires us to �nd auxiliary automata that are

less restritive than UseOldInputA and UseOldInputB but that are restritive enough

to express the onstaints that should be satis�ed by the environment, for UseNewInputA

to implement UseOldInputA and for UseNewInputB to implement UseOldInputB.

The automata AlternateA and AlternateB in Figure 16 an be used as auxiliary

automata in this example. They satisfy the losure properties required by Corollary 8.8

and impose alternation, whih is the only additional ondition to ensure the needed trae

inlusion.

111

Automaton UseOldInputA

Variables X : disrete myturn 2 Bool initially true

disrete maxout 2 N initially arbitrary

analog now 2 R

�0

initially 0

analog next 2 R

�0

[f1g initially 0

States Q : val(X)

Ations A : input b, output a

Transitions D : input b output a

e�et preondition

myturn := true myturn ^ (maxout > 0) ^ (now = next)

if next =1 e�et

then next := now + 1 myturn := false

maxout := maxout� 1

next :=1

Trajetories T : satis�es

onstant(myturn;maxout; next)

d(now) = 1

stops when

now = next

Automaton UseOldInputB

Variables X : disrete myturn 2 Bool initially false

disrete maxout 2 N initially arbitrary

analog now 2 R

�0

initially 0

analog next 2 R

�0

[f1g initially 0

States Q : val(X)

Ations A : input a, output b

Transitions D : input a output b

e�et preondition

myturn := true myturn ^ (maxout > 0) ^ (now = next)

if next =1 e�et

then next := now + 1 myturn := false

maxout := maxout� 1

next :=1

Trajetories T : satis�es

onstant(myturn;maxout; next)

d(now) = 1

stops when

now = next

Figure 18: Example automata for A

2

and B

2

in Theorem 8.8

112

Automaton UseNewInputA

Variables X : disrete myturn 2 Bool initially true

disrete maxout 2 N initially arbitrary

analog now 2 R

�0

initially 0

analog next 2 R

�0

[f1g initially 0

States Q : val(X)

Ations A : input b, output a

Transitions D : input b output a

e�et preondition

myturn := true myturn ^ (maxout > 0) ^ (now = next)

next := now + 1 e�et

myturn := false

maxout := maxout� 1

next :=1

Trajetories T : satis�es

onstant(myturn;maxout; next)

d(now) = 1

stops when

now = next

Automaton UseNewInputA

Variables X : disrete myturn 2 Bool initially false

disrete maxout 2 N initially arbitrary

analog now 2 R

�0

initially 0

analog next 2 R

�0

[f1g initially 0

States Q : val(X)

Ations A : input a, output b

Transitions D : input a output b

e�et preondition

myturn := true myturn ^ (ount > 0) ^ (now = next)

next := now + 1 e�et

myturn := false

maxout := maxout� 1

next :=1

Trajetories T : satis�es

onstant(myturn;maxout; next)

d(now) = 1

stops when

now = next

Figure 19: Example automata for A

1

and B

1

in Theorem 8.8

113

We an de�ne a forward simulation relation from UseNewInputAkUseNewInputB

to UseOldInputAkUseOldInputB, whih is based on the equality of the turn variables

of the implementation and the spei�ation automata. The fat that this simulation

relation only uses the equality of turn variables reinfores the idea that the auxiliary

ontexts, whih only keep trak of their turn, apture exatly what is needed for the proof

of UseNewInputAkUseNewInputB � UseOldInputAkUseOldInputB. We an observe

that a diret proof of this assertion would require one to deal with state variables suh

as maxout and next of both UseOldInputA and UseOldInputB, whih do not play any

essential role in the proof. On the other hand, by deomposing the proof along the lines

of Corollary 8.8 some of the unneessary details an be avoided. Even though, this is a

toy example with an easy proof it should not be hard to observe how this simpli�ation

would sale to large proofs.

8.1.3 Composition of Speial Kinds of TIOAs

The following example illustrates that the set of I/O feasible TIOAs is not losed under

omposition:

Example 8.11 (Two I/O feasible TIOAs whose omposition is not I/O feasible)

Consider two I/O feasible TIOAs A and B, where O

A

= I

B

= fag and O

B

= I

A

= fbg.

Suppose that A performs its output a at time 0 and then waits, allowing time to pass,

until it reeives input b. If and when it reeives b, it responds with output a without

allowing any time to pass (and ignoring any inputs that our before it has a hane to

perform its output). On the other hand, B starts out waiting, allowing time to pass, until

it reeives input a. If and when it reeives a, it responds with output b without allowing

time to pass.

It is not diÆult to see that A and B are individually I/O feasible. We laim that the

omposition AkB is not I/O feasible. To see this, onsider the start state of AkB and the

unique input sequene � with �:ltime =1; � simply allows time to pass to in�nity. The

omposition AkB has no way of aommodating this input, sine it will never allow time

to pass beyond 0.

On the other hand, the following theorems say that the lasses of progressive and

reeptive TIOAs are losed under omposition:

Theorem 8.12 If A

1

and A

2

are ompatible progressive TIOAs, then their omposition

is also progressive.

Proof: The proof is similar to the proof of Theorem 7.4 in [22℄. The main idea behind the

proof is that a Zeno exeution of A

1

kA

2

with in�nitely many loally ontrolled ontains

114

in�nitely many loally ontrolled ations of either A

1

or A

2

. Suppose without loss of

generality that the automaton that ontributes in�nitely many loally ontrolled ations

is A

1

. Then the projetion onto A

1

violates progressiveness for A

1

.

Theorem 8.13 Let A

1

and A

2

be two ompatible TIOAs with strategies A

0

1

and A

0

2

,

respetively. Then A

0

1

kA

0

2

is a strategy for A

1

kA

2

.

Proof: The proof is similar to the proof of Theorem 7.7 in [22℄.

Now, we an state the main result of this setion, whih follows easily from the previous

two theorems. It shows that the lass of reeptive TIOAs is losed under omposition.

Theorem 8.14 Let A

1

and A

2

be two ompatible reeptive TIOAs with progressive strate-

gies A

0

1

and A

0

2

, respetively. Then A

1

kA

2

is a reeptive TIOA with progressive strategy

A

0

1

kA

0

2

.

Example 8.15 (Composition of reeptive TIOAs) Theorem 8.14 implies that the

omposition of lok synhronization automata with hannel automata desribed in Ex-

ample 5.7 (viewed as TIOAs as explained in Example 7.1) is reeptive. By Theorem 7.6

we also have that it is I/O feasible.

In fat, the fat that the set of I/O feasible TIOAs is not losed under omposition

motivated the de�nition of the more restritive lass of reeptive TIOAs. That is, reep-

tiveness is a reasonable suÆient ondition that implies I/O feasibility, and that also is

preserved by omposition.

The speial ase of the HIOA model, represented by the TIOA model, has simpler and

stronger omposition theorems than the general HIOA model. In partiular, the main

ompositionality result for reeptive HIOAs (Theorem 7.12 in [22℄) has a more intriate

proof than ours. It makes an assumption about the existene of strongly ompatible

strategies (disussed briey at the end of Setion 8.1.1) and needs an additional lemma

that shows that if two HIOAs A

1

and A

2

whih may not be strongly ompatible have

strongly ompatible strategies A

0

1

and A

0

2

, then A

1

and A

2

are also strongly ompatible.

8.2 Hiding

We extend the de�nition of ation hiding to any TIOA A. For TIOAs, we onsider

hiding outputs only (but not inputs), by onverting them to internal ations. Namely, if

O � O

A

, then AtHide(O;A) is the TIOA B that is equal to A exept that O

B

= O

A

�O

and H

B

= H

A

[O.

115

Lemma 8.16 If A is a TIOA and O � O

A

then AtHide(O;A) is a TIOA.

Lemma 8.17 If A is a TIOA and O � O

A

then traes

AtHide(O;A)

= f� d(O

A

� O;V

A

) j

� 2 traes

A

g.

Theorem 8.18 Suppose A and B are TIOAs with A � B, and suppose O � O

A

. Then

AtHide(O;A) � AtHide(O;B).

9 Properties for Timed I/O Automata

In this setion, we present some de�nitions and results for timed I/O automata with

properties. We fous on the de�nitions and results, suh as those that involve reeptiveness

for properties, that beome of interest with the introdution of input, output distintion

to the model.

9.1 De�nitions and Basi Results

A property for a timed I/O automaton A = (B; I; O) is de�ned to be a property of its

underlying timed automaton, that is, it is a subset of the exeution fragments of B.

Now, we introdue a notion of liveness property that takes into aount how a system

responds to inputs from its environment. A property P for a TIOA A is de�ned to be

an I/O liveness property provided that for eah losed exeution fragment � of A and

eah (I; ;)-sequene �, there is some exeution fragment �

0

suh that �

0

d(I; ;) = � and

�

_

�

0

2 P . In other words, no matter how A behaves for a �nite period of time, and no

matter what inputs arrive, it is still possible for A to ontinue in some way and satisfy P .

The following theorem relates I/O feasibility and I/O liveness. An I/O feasible TIOA

an be haraterized by the fat that its set of exeution fragments form an I/O liveness

property.

Theorem 9.1 A TIOA is I/O feasible if and only if its set of exeution fragments is an

I/O liveness property.

Proof: Fix A, a TIOA. First, assume that A is I/O feasible. Let � be a losed exeution

fragment of A with �:lstate = x and let � be an (I; ;)-sequene. I/O feasibility of A

implies that there is some �

0

from x suh that �

0

d(I; ;) = �. Sine �

_

�

0

2 frags

A

, we

an onlude that the set of exeution fragments frags

A

of A is an I/O liveness property.

For the onverse, suppose that the set of exeution fragments of A is an I/O liveness

property. Let x be a state of A and � be an (I; ;)-sequene. Sine the set of exeution

fragments of A is an I/O liveness property, there must be some �

0

suh that }(x)

_

�

0

2

frags

A

and �

0

d(I; ;) = �. Clearly, (}(x)

_

�

0

) d(I; ;) = �, and therefore A is I/O feasible.

116

9.2 Composition

The following projetion and pasting theorem for TIOAs with properties follows from a

similar theorem, Theorem 6.24, for TAs with properties.

Theorem 9.2 Let A

1

and A

2

be two ompatible TAs and P

1

and P

2

be properties for A

1

and A

2

, respetively. Then traes

(A

1

kA

2

;P

1

kP

2

)

is exatly the set of (E; ;)-sequenes whose

restritions to A

1

and A

2

are traes

(A

1

;P

1

)

and traes

(A

2

;P

2

)

, respetively. That is,

traes

(A

1

kA

2

;P

1

kP

2

)

= f� j � is an (E; ;)-sequene and � d(E

i

; ;) 2 traes

(A

i

;P

i

)

; i 2 f1; 2gg.

Theorem 8.7 and its orollary presented in Setion 8 assume spei�ation automata

whose trae sets are losed under limits, and hene express safety onstraints. In this

setion we present a theorem that an be used in the deomposition of veri�ation where

the spei�ation automata may also express liveness properties.

The deomposition of a proof of the assertion (A

1

; P

1

)k(B

1

; Q

1

) � (A

2

; P

2

)k(B

2

; Q

2

)

an be viewed as onsisting of two parts. The �rst part involves the deomposition of the

proof that (A

1

; P

1

) and (B

1

; Q

1

) satisfy their safety properties and the seond part involves

the deomposition of the proof that (A

1

; P

1

) and (B

1

; Q

1

) satisfy their liveness properties.

Theorem 9.3 uses Corollary 8.8 for the safety part of proofs; the �rst four hypotheses

of Theorem 9.3 imply those of Corollary 8.8. The remaining two hypotheses involve

the liveness part of proofs. It requires one to �nd auxiliary automata with properties,

(A

3

; P

3

) and (B

3

; Q

3

), suh that (A

1

; P

1

) implements (A

3

; P

3

) in the ontext of B

3

without

relying on the liveness property of B

3

, and (B

1

; Q

1

) implements (B

3

; Q

3

) in the ontext of

A

3

without relying on the liveness property of A

3

. Moreover, (A

1

; P

1

) must implement

(A

2

; P

2

) in the ontext of (B

3

; Q

3

) and (B

1

; Q

1

) must implement (B

2

; Q

2

) in the ontext of

(A

3

; P

3

). That is, the implementation relation between (A

1

; P

1

) and (A

2

; P

2

) depend on

the liveness property Q

3

of the auxiliary ontext, and the implementation relation between

(B

1

; Q

1

) and (B

2

; Q

2

) depend on the liveness property P

3

of the auxiliary ontext.

Theorem 9.3 Suppose A

1

, A

2

, A

3

, B

1

, B

2

, B

3

are TIOAs suh that A

1

, A

2

, and A

3

are

omparable, B

1

, B

2

, and B

3

are omparable, and A

i

is ompatible with B

i

for i 2 f1; 2; 3g.

Suppose that P

i

is a property for A

i

and Q

i

is a property for B

i

for i 2 f1; 2; 3g. Suppose

further that:

1. The sets traes

A

3

and traes

B

3

are losed under limits.

2. The sets traes

A

3

and traes

B

3

are losed under time-extension.

3. A

2

� A

3

and B

2

� B

3

.

4. A

1

kB

3

� A

2

kB

3

and A

3

kB

1

� A

3

kB

2

.

5. (A

1

; P

1

)k(B

3

; frags

B

3

) � (A

3

; P

3

)k(B

3

; frags

B

3

) and

(A

3

; frags

A

3

)k(B

1

; Q

1

) � (A

3

; frags

A

3

)k(B

3

; Q

3

).

117

6. (A

1

; P

1

)k(B

3

; Q

3

) � (A

2

; P

2

)k(B

3

; Q

3

) and

(A

3

; P

3

)k(B

1

; Q

1

) � (A

3

; P

3

)k(B

2

; Q

2

).

Then (A

1

; P

1

)k(B

1

; Q

1

) � (A

2

; P

2

)k(B

2

; Q

2

).

Proof: Let � 2 traes

(A

1

;P

1

)k(B

1

;Q

1

)

. By de�nition of omposition for automata with

properties, � 2 traes

(A

1

kB

1

)

. By Assumptions 1, 2, 3 and 4 and Theorem 8.8, we have � 2

traes

(A

2

kB

2

)

. By projetion using Theorem 8.3, � d(E

A

2

; ;) 2 traes

A

2

and � d(E

B

2

; ;) 2

traes

B

2

. By Assumption 3, � d(E

A

2

; ;) 2 traes

A

3

and � d(E

B

2

; ;) 2 traes

B

3

. Sine A

2

and A

3

are omparable, � d(E

A

2

; ;) = � d(E

A

3

; ;) and � d(E

B

2

; ;) = � d(E

B

3

; ;). There-

fore, � d(E

A

3

; ;) 2 traes

A

3

and � d(E

B

3

; ;) 2 traes

B

3

.

By projetion using Theorem 9.2, we have � d(E

A

1

; ;) 2 traes

(A

1

;P

1

)

and � d(E

B

1

; ;) 2

traes

(B

1

;Q

1

)

. By pasting using Theorem 9.2, we have � 2 traes

(A

1

;P

1

)k(B

3

;frags

B

3

)

and

� 2 traes

(B

1

;Q

1

)k(A

3

;frags

A

3

)

. By Assumption 5, we have � 2 traes

(A

3

;P

3

)k(B

3

;frags

B

3

)

and

� 2 traes

(B

3

;Q

3

)k(A

3

;frags

A

3

)

. By projetion using Theorem 9.2, we get � d(E

A

3

; ;) 2

traes

(A

3

;P

3

)

and � d(E

B

3

; ;) 2 traes

(B

3

;Q

3

)

. Sine � d(E

A

1

; ;) 2 traes

(A

1

;P

1

)

, by past-

ing using Theorem 9.2, we have � 2 traes

(A

1

;P

1

)k(B

3

;Q

3

)

, similarly sine � d(E

B

1

; ;) 2

traes

(B

1

;Q

1

)

, we have � 2 traes

(B

1

;Q

1

)k(A

3

;P

3

)

.

Example 9.4 (Using environment assumptions to prove liveness)This example

illustrates the use of Theorem 9.3 in deomposing the proof of an implementation relation-

ship where the implementation and spei�ation are not merely omposition of automata

but omposition of automata that satisfy some liveness property.

Let UseOldInputA

0

, UseOldInputB

0

, UseNewInputA

0

, and UseNewInputB

0

be au-

tomata whih are de�ned exatly as UseOldInputA, UseOldInputB, UseNewInputA,

and UseNewInputB from Example 8.10 exept that there is no bound on the number of

outputs that the automata an perform. That is, maxout is removed from their sets of

state variables. Let P

1

; P

2

; Q

1

and Q

2

be properties for, respetively, UseNewInputA

0

,

UseOldInputA

0

, UseNewInputB

0

and UseOldInputB

0

de�ned as follows:

� P

1

onsists of the admissible exeution fragments of UseNewInputA

0

.

� Q

1

onsists of the admissible exeution fragments of UseNewInputB

0

.

� P

2

onsists of the exeution fragments of UseOldInputA

0

that ontain in�nitely

many a ations.

� Q

2

onsists of the exeution fragments of UseOldInputB

0

that ontain in�nitely

many b ations.

Suppose that we want to prove that:

(UseNewInputA

0

; P

1

)k(UseNewInputB

0

; Q

1

) � (UseOldInputA

0

; P

2

)k(UseOldInputB

0

; Q

2

).

118

The automata UseNewInputA

0

kUseNewInputB

0

and UseOldInputA

0

kUseOldInputB

0

perform an alternating sequene of a and b ations. The properties express the additional

ondition that as time goes to in�nity the omposite automaton UseNewInputA

0

kUseNewInputB

0

performs in�nitely many a and in�nitely many b ations where a and b ations alternate.

As in Example 8.10 automata AlternateA and AlternateB from Figure 16 satisfy the

required losure properties for auxiliary automata and apture what is essential about

the safety part of the proof, namely that the environments of UseNewInputA

0

and

UseNewInputB

0

impose alternation. The essential point in the proof of the liveness

part is that eah automaton responds to eah input it reeives from its environment.

Therefore, we need to pair AlternateA and AlternateB with properties that eliminate

non-responding behavior. The properties P

3

and Q

3

de�ned below satisfy this ondition:

� P

3

onsists of exeution fragments � of AlternateA that satisfy the following ondi-

tion: if � has �nitely many ations then the last ation in � is a.

� Q

3

onsists of exeution fragments � of AlternateB that satisfy the following ondi-

tion: if � has �nitely many ations and ontains at least one a then the last ation

in � is b.

In order to see why the �rst part of Assumption 5 is satis�ed we an inspet the

de�nition of UseNewInputA and observe that UseNewInputA performs an output a one

time unit after eah input b, when it is omposed with AlternateB. This implies that

in any admissible exeution fragment of UseNewInputAkAlternateB with �nitely many

ations the last ation must be a. This is exatly the liveness onstraint expressed by P

3

.

The seond part of Assumption 5 an be seen to hold using a symmetri argument.

In order to see why the �rst part of Assumption 6 holds onsider any exeution fragment

� of UseNewInputAkAlternateB. For � to satisfy P

1

and Q

3

at the same time, it must

onsist of an in�nite sequene in whih a and b ations alternate. It is not possible for

UseNewInputAkAlternateB to have an admissible exeution fragment with �nitely many

ations beause the de�nition of UseNewInputA requires suh a sequene to end in a while

this is ruled out by Q

3

, whih requires AlternateB to respond to a. The seond part of

Assumption 6 an be seen to hold using a symmetri argument.

Note that in our explanations we refer to exeution fragments rather than traes of

exeution fragments. This is beause our examples do not inlude any internal ations

and our arguments for exeution fragments extend to trae fragments in a straightforward

way.

9.3 Reeptiveness for Properties

If we would de�ne a live TIOA to be a pair (A; L) of a TIOAA oupled with an I/O liveness

property L then the resulting lass of systems would not be losed under omposition. The

119

problem, and this was noted already in previous studies of liveness properties for timed

I/O automata suh as [36℄, is that this de�nition allows a system to hoose its relative

speed with respet to the environment, and to base its deisions on the future behavior of

the environment. As a result, the live preorder is not substitutive for parallel omposition.

To solve these problems, previous studies have introdued notions of reeptive strategies

to guarantee that a system does not onstrain its environment. The TIOA framework

inorporates a simpler (although less general) notion of strategy than those onsidered in

previous work on timed I/O automata [36℄.

We begin with a de�nition of reeptiveness for a property. Let A be a TIOA and let

P be a property for A, that is, a subset of the exeution fragments of A. Then we say

that A is reeptive for P provided that there exists a strategy A

0

for A suh that every

exeution fragment of A

0

is in P . That is, A has a strategy that an always ensure that

P is satis�ed (regardless of the behavior of the environment).

The following theorem shows that if A is reeptive for P and P is history-independent,

then we an onlude that P is a liveness property for A. Theorem 9.6 strengthens this

result: if we also know that P onsists of non-loally-Zeno exeution fragments, then P

must be an I/O liveness property.

Theorem 9.5 If a TIOA A is reeptive for P and P is history-independent then P is a

liveness property for A.

Proof: Suppose that A is reeptive for P . That is, A has a strategy A

0

suh that

frags

A

0

� P . Let � be a losed exeution fragment of A with �:lstate = x. Sine

Q

A

= Q

A

0

, we know that x 2 Q

A

0

. Now, we need to show that there exists some �

0

suh

that �

_

�

0

2 P . Let �

0

= }(x). We know that }(x) 2 frags

A

0

by axiom T0. Sine

frags

A

0

� P , �

0

2 P . Sine P is history-independent �

_

�

0

2 P , as needed.

Theorem 9.6 If a TIOA A is reeptive for P and P is a history-independent property for

A onsisting of non-loally-Zeno exeution fragments, then P is an I/O liveness property

for A.

Proof: Suppose A is reeptive for P . Then there exists a strategy A

0

for A suh that

frags

A

0

� P . Sine all elements of P are non-loally-Zeno, it follows that every element

in frags

A

0

is non-loally-Zeno, equivalently, A

0

is progressive. By Theorem 7.4, we know

that any progressive strategy is I/O feasible.

Now, let � be a losed exeution fragment of A with �:lstate = x and let � be an

(I; ;)-sequene. Sine Q

A

= Q

A

0

, we have x 2 Q

A

0

, and sine A

0

is I/O feasible, there

exists some exeution fragment �

0

of A

0

from x suh that �

0

d(I; ;) = �. Sine �

0

2 P and

P is history-independent we have that �

_

�

0

2 P . Hene, P is an I/O liveness property

for A.

120

The need for the history-independene assumption for the two theorems above stems

from the fat that strategies of our framework are memoryless whereas liveness properties

are de�ned in terms of the possibility of extending every losed exeution fragment to a

live exeution fragment. The history-independene assumption might beome unneessary

if we de�ned strategies to have memory while keeping the liveness property de�nition as

is. Alternatively, we ould hange the de�nition of a liveness property to a non-standard

one suh that a property P for A is de�ned to be a liveness property provided that for

any state x of A, there is some exeution fragment � from x that is in P .

The following is a basi theorem that has nie onsequenes for omposition of au-

tomata with liveness properties. Together with Theorems 9.5 and 9.6, it an be used for

ompositional reasoning about TIOAs with liveness properties.

Theorem 9.7 Let A

1

and A

2

be two ompatible TIOAs. If A

1

is reeptive for P

1

and A

2

is reeptive for P

2

then A

1

kA

2

is reeptive for P

1

kP

2

.

Proof: The proof follows from Theorem 8.13 and the de�nition of omposition of prop-

erties P

1

kP

2

from Setion 6.

10 Conlusions

In this paper, we have de�ned a new timed I/O automaton modeling framework for de-

sribing and analyzing the behavior of timed systems. This framework is a speial ase of

the reently presented hybrid I/O automaton modeling framework [22℄. We used what we

have learned in developing the HIOA framework to revise the earlier work on timed I/O

automaton models. Our main motivation was to have a timed I/O automaton model that

is ompatible with the new HIOA model. We sought to bene�t from the new style used

in desribing hybrid behavior in simplifying the prior de�nitions and results on timed

I/O automata. Moreover, we extended the work on the HIOA model by investigating

safety and liveness properties and reeptiveness for general liveness, not only for feasibil-

ity as in the HIOA framework. The results presented in this paper suggest that we are

not that far from having a uni�ed framework for timed and hybrid systems in whih we

an ollet and summarize previous results of our own work. We have also established

formal relationships with other models that are omparable to ours, showing that the

TIOA framework is general enough to express previous results from other frameworks,

suh as [29, 28, 6, 27, 25, 36℄.

Designers of real-time systems or timing-based algorithms an use the TIOA frame-

work to desribe omplex systems and to deompose them into manageable piees. In

partiular, they an use the TIOA framework to desribe their systems at multiple lev-

els of abstration, to establish implementation relationships between these levels and to

deompose their systems into more primitive, interating omponents.

121

The TIOA framework supports preise statement and veri�ation of safety, liveness,

and performane properties of timing-dependent systems. Sine the TIOA framework is

purely mathematial, proofs are generally done by hand at present. However, the TIOA

framework provides a natural basis for omputer support tools, whih will be developed

in the future as an extension to the IOA toolkit [13℄. These tools inlude a syntax and

stati semantis heker for TIOA spei�ations, a simulator and partially automated proof

tools that employ dynami invariant detetion tehniques. There is also work in progress

toward a tool to automatially translate TIOA spei�ations into the input language of

UPPAAL [32, 21℄, whih is disussed in more detail in Setion 1.2. This would allow

us to bene�t from fully automated methods in verifying TIOAs that are expressible in

UPPAAL.

122

A Notational Conventions

a; b ation

f; g; h funtion

i; j index

l loally ontrolled ation

t time point

v; x variable

A set of ations

C task

E set of external ations

F set of funtions

H set of internal (hidden) ations

I set of input ations

J interval

K set of time points

L set of loally ontrolled ations

O set of output ations

P set of elements in po

Q set of automaton states

R (simulation) relation

S set

T set of trajetories

V set of variables

X set of internal variables

x state

v valuation

A;B; C timed (I/O) automaton

D set of disrete transitions

T set of trajetories

N the natural numbers

R the real numbers

T the time axis

Z the integers

V the universe of variables

�; �; Æ (A; V)-sequene

 sequene

� the empty sequene

� projetion funtion

�; � sequene

� , � trajetory

� set of start states

123

Referenes

[1℄ M. Abadi and L. Lamport. Composing spei�ations. ACM Transations on Pro-

gramming Languages and Systems, 1(15):73{132, 1993.

[2℄ M. Abadi and L. Lamport. Conjoining spei�ations. ACM Transations on Pro-

gramming Languages and Systems, 17(3):507{534, 1995.

[3℄ B. Alpern and F.B. Shneider. De�ning liveness. Information Proessing Letters,

21:181{185, 1985.

[4℄ R. Alur. Timed automata. In Pro. of 11th International Conferene on Computer-

Aided Veri�ation (CAV), volume 1633 of LNCS, pages 8{22. Springer-Verlag, 1999.

An earlier and longer version appears in NATO-ASI Summer Shool on Veri�ation

of Digital and Hybrid Systems.

[5℄ R. Alur, C. Couroubetis, N. Halbwahs, T. A. Henzinger, P. H. Ho, X. Niolin,

A. Olivero, J. Sifakis, and Yovine S. The algorithmi analysis of hybrid systems.

Theoretial Computer Siene, 138:3{34, 1995.

[6℄ R. Alur and D.L. Dill. A theory of timed automata. Theoretial Computer Siene,

126:183{235, 1994.

[7℄ R. Alur and T. A. Henzinger. Loal liveness for ompositional modeling of fair reative

systems. In P. Wolper, editor, Proeedings of CAV 95: Computer Aided Veri�ation,

volume 939 of Leture Notes in Computer Siene, pages 166{179. Springer-verlag,

1995.

[8℄ K.R. Apt, N. Franez, and S. Katz. Appraising fairness in languages for distributed

programming. Distributed Computing, 2:226{241, 1988.

[9℄ Paul C. Attie. Liveness-preserving simulation relations. In Pro. of Priniples of

Distibuted Computing, 1999.

[10℄ F. Dederihs and R. Weber. Safety and liveness from a methodologial point of view.

Information Proessing Letters, 36(1):25{30, 1990.

[11℄ Roberto DePriso, Butler Lampson, and Nany Lynh. Revisiting the Paxos algo-

rithm. In Marios Mavroniolas and Philippas Tsigas, editors, Distributed Algorithms

11th International Workshop, WDAG'97, Saarbr�uken, Germany, September 1997

Proeedings, volume 1320 of Leture Notes in Computer Siene, pages 111{125,

Berlin-Heidelberg, 1997. Springer-Verlag.

[12℄ D. Dill. Trae Theory for Automati Hierarhial Veri�ation of Speed-Independent

Ciruits. ACM Distinguished Dissertations. MIT Press, 1988.

124

[13℄ S. Garland, N. Lynh, and M. Vaziri. IOA: A Language for Speifying, Program-

ming, and Validating Distributed Systems. MIT Laboratory for Computer Siene,

Cambridge, MA, 2001. URL http://groups.sail.mit.edu/tds/ioa.html.

[14℄ R. Gawlik, R. Segala, J.F. S�gaard-Andersen, and N.A. Lynh. Liveness in timed and

untimed systems. In S. Abiteboul and E. Shamir, editors, Proeedings 21

th

ICALP,

Jerusalem, volume 820 of Leture Notes in Computer Siene. Springer-Verlag, 1994.

A full version appears as MIT Tehnial Report number MIT/LCS/TR-587.

[15℄ C.A. Gunter. Semantis of Programming Languages: Strutures and Tehniques. MIT

Press, Cambridge, Massahusetts, 1992.

[16℄ M. Hennessy. Algebrai Theory of Proesses. MIT Press, Cambridge, Massahusetts,

1988.

[17℄ T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTeh: A Model Cheker for Hybrid

Systems. In O. Grumberg, editor, Proeedings of the 9th International Conferene

on Computer Aided Veri�ation, volume 1254 of Leture Notes in Computer Siene,

pages 460{463. Springer-Verlag, 1997.

[18℄ T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Deomposing re�nement proofs

using assume-guarantee reasoning. In Proeedings of the International Conferene

on Computer-Aided Design (ICCAD), pages 245{252. IEEE Computer Soiety Press,

2000.

[19℄ C. B. Jones. Spei�ation and design of parallel prorgrams. In R. E. A. Mason, editor,

Information Proessing 83: Proeedings of the IFIP 9th World Congress, pages 321{

332. North-Holland, 1983.

[20℄ D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Program-

ming. Addision-Wesley, Reading, Massahusetts, seond edition, 1973.

[21℄ Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Journal of

Software Tools for Tehnology Transfer, 1{2:134{152, 1997.

[22℄ N.A. Lynh, R. Segala, and F.W. Vaandrager. Hybrid I/O automata. Information

and Computation, 185(1):105{157, 2003. Also Tehnial Report MIT-LCS-TR-827d,

MIT Laboratory for Computer Siene.

[23℄ N.A. Lynh, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid I/O automata.

In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hybrid Systems III, volume

1066 of Leture Notes in Computer Siene, pages 496{510. Springer-Verlag, 1996.

[24℄ N.A. Lynh, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid I/O automata.

Report CSI-R9907, Computing Siene Institute, University of Nijmegen, April 1999.

125

[25℄ N.A. Lynh and F.W. Vaandrager. Ation transduers and timed automata. Formal

Aspets of Computing, 8(5):499{538, 1996.

[26℄ Nany Lynh and Alex Shvartsman. RAMBO: A reon�gurable atomi memory ser-

vie for dynami networks. In D. Malkhi, editor, Distributed Computing (Proeedings

of the 16th International Symposium on DIStributed Computing (DISC), Toulouse,

Frane, Otober 2002), volume 2508 of Leture Notes in Computer Siene, pages

173{190. Springer-Verlag, 2002. Also, Tehnial Report MIT-LCS-TR-856.

[27℄ Nany Lynh and Frits Vaandrager. Forward and bakward simulations | Part II:

Timing-based systems. Information and Computation, 128(1):1{25, July 1996.

[28℄ O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J.W. de Bakker,

C. Huizing, W.P. de Roever, and G. Rozenberg, editors, Proeedings REX Workshop

on Real-Time: Theory in Pratie, Mook, The Netherlands, June 1991, volume 600

of Leture Notes in Computer Siene, pages 447{484. Springer-Verlag, 1992.

[29℄ M. Merritt, F. Modugno, and M. Tuttle. Time onstrained automata. In J.C.M.

Baeten and J.F. Groote, editors, Proeedings CONCUR 91, Amsterdam, volume 527

of Leture Notes in Computer Siene, pages 408{423. Springer-Verlag, 1991.

[30℄ R. Milner. A Calulus of Communiating Systems, volume 92 of Leture Notes in

Computer Siene. Springer-Verlag, 1980.

[31℄ S. Mitra, Y. Wang, N. Lynh, and E. Feron. Safety veri�ation of pith ontroller

for model heliopter. In O. Maler and A. Pnueli, editors, Pro. of Hybrid Systems:

Computation and Control, volume 2623 of Leture Notes in Computer Siene, pages

343{358, Prague, the Czeh Republi April 3-5, 2003.

[32℄ Paul Petterson. Modelling and Veri�ation of Real-Time Systems Using Timed Au-

tomata:Theory and Pratie. PhD thesis, Department of Computer Systems, Uppsala

University, 1999. Tehnial Report DoCs 99/101.

[33℄ A. Pnueli. In transition from global to modular temporal reasoning about programs.

In K. R. Apt, editor, Logis and Models of Conurret Systems, NATO ASI, pages

123{144. Springer-Verlag, 1984.

[34℄ A. Pnueli. Development of hybrid systems. In H. Langmaak, W.-P. de Roever, and

J. Vytopil, editors, Proeedings of the Third International Shool and Symposium on

Formal Tehniques in Real-Time and Fault-Tolerant Systems (FTRTFT'94), L�ubek,

Germany, September 1994, volume 863 of Leture Notes in Computer Siene, pages

77{85. Springer-Verlag, 1994.

[35℄ J.W. Polderman and J.C. Willems. Introdution to Mathematial Systems Theory: A

Behavioural Approah, volume 26 of Texts in Applied Mathematis. Springer-Verlag,

1998.

126

[36℄ R. Segala, R. Gawlik, J.F. S�gaard-Andersen, and N.A. Lynh. Liveness in timed

and untimed systems. Information and Computation, 141(2):119{171, Marh 1998.

[37℄ E.D. Sontag. Mathematial Control Theory | Deterministi Finite Dimensional

Systems, volume 6 of Texts in Applied Mathematis. Springer-Verlag, 1990.

[38℄ E. W. Stark. A proof tehnique for relt/guarantee properties. In S. N. Mahesh-

wari, editor, Foundations of Software Tehnology and Theoretial Computer Siene,

volume 206 of LNCS, pages 369{391. Springer-Verlag, 1985.

[39℄ S. Tasiran, R. Alur, R.P. Kurshan, and R.K. Brayton. Verifying abstrations of

timed systems. In Proeedings of the Seventh Conferene on Conurreny Theory

(CONCUR 1996, volume 1119 of LNCS.

127

Index

(A; V)-restrition, 19

(A; V)-sequene, 17

abstration, 5

admissible, 17, 19, 88

Alur-Dill timed automaton, 8, 37, 38, 77

analog, 14

analog variable, 22

assume-guarentee, 105

bakward simulation, see simulation rela-

tion, 48

hain, 11

lok synhronization, 27, 44

ClokSyn, 29, 58, 98

omparable

TA, 39

TIOA, 102

ompatible

TA, 55

TIOA, 103

omplete partial order, 11

omposition, 5, 55, 103

ongruene, 73

po, see omplete partial order

disrete

variable, 14

disrete ation, 20

disrete transition, 20

disrete variable, 14, 22

dynami type, 13

e�et, 22

enabled, 20

exeution, 30, 98

PeriodiSend, 32

T imeout, 32

exeution fragment, 30, 31, 98

fair forward simulation, see simulation rela-

tion

fairness property, see property

feasible, 37

FIN, see �nite internal nondeterminism, 107

�nite internal nondeterminism, 35

Fisher's mutual exlusion, 26, 33, 71

FisherME, 27

FisherME2, 71

forward simulation, see simulation relation

lok synhronization, 44

time-bounded hannels, 43

hiding, 62

HIOA, 6, 104

history relation, 50, 51, 103

time-bounded hannels, 53

history variable, 50, 51

time-bounded hannels, 50

history-independent property, see property

hybrid automaton, 21, 55

Hybrid I/O Automaton modeling framework,

6, 122

hybrid sequene, 16

admissible, 17

losed, 17

onatenation, 18

limit time, 17

pre�x, 18

time-bounded, 17

Zeno, 17

HyTeh, 8

I/O feasible, 99, 114

I/O liveness property, see property

implementation, 5, 39

invariant, 31

lok agreement, 60

lok validity, 59, 60

ClokSyn, 59, 60

128

failure and timeout, 58

FisherME, 33, 34

T imedChannel, 33

timeout, 57

isomorphism, 46

limit, 11

linear hybrid automaton, 8

liveness property, see property

loally Zeno, 98

mahine-losed, 83{85

mahine-losure, 6

non-Zeno, 17, 19

parallel omposition, see omposition

partial order, 11

omplete partial order, 11

periodi sending proess, 24, 32

periodi sending proess with failures, 24

PeriodiSend, 24, 56

PeriodiSend2, 57

PeriodiSend2, 25

point trajetory, see trajetory

preondition, 22

progressive, 99, 102

property, 81, 116

fairness, 6, 86

history-independent, 88

I/O liveness, 116

liveness, 6, 82, 89, 116, 118

safety, 6, 81, 89

prophey relation, 53, 103

prophey variable, 53

reahable, 31

reeptive, 102, 115

reeptiveness, 6, 100

reeptiveness for a property, 120

re�nement, 46

safety property, see property

sequene, 10

simulation relation, 5, 41

bakward simulation, 41, 47, 103

forward simulation, 41, 102

re�nement, 46

stati type, 13

stopping ondition, 23

strategy, 100, 101

strongly fair, 87

substitutivity, 61, 62, 104, 105

suÆx, 31

TA, see timed automaton

TA with bounds, 65

task, 65

lower bound, 66

upper bound, 66

time axis, 13

time interval, 13

time-bounded hannel, 23, 33, 43, 50, 53

timed automaton, 20

timed automaton model, 20

Timed I/O automaton, 5, 97

Timed Input/Output Automaton modeling

framework, 5

T imedChannel, 23, 56, 57, 98

T imeout, 26, 56, 57

timeout proess, 25, 32

timing-independent, 37, 107

TIOA, see Timed I/O automaton

trae, 5, 31, 98

PeriodiSend, 32

T imeout, 33

trae fragment, 31, 98

trajetory, 14, 20

onatenation, 15

limit time, 15

point trajetory, 14, 17

pre�x, 15

untimed automaton, 12

untiming, 71, 73

UPPAAL, 8, 123

variables, 13, 14, 20

129

analog, 14

disrete, 14

dynami types, see stati type

stati type, see stati type

weakly fair, 87

Zeno, 6, 17, 34, 88

130

