
An Algorithm for an Intermittently Atomic
Data Service Based on Group Communication

Roger Khazan∗ and Nancy Lynch†

rkh _@mit.edu , lynch@lcs.mit.edu

I. I NTRODUCTION

Group communication provides a convenient mech-
anism for building applications that maintain a repli-
cated state of some sort [1]. Such applications typically
implement certain consistency properties regarding how
different application clients perceive the replicated state.
One of the well-understood and often preferred consis-
tency properties isstrong-consistencyor atomicity [2],
[3, Ch. 13], which creates a perception of the replicated
state as being non-replicated. However, in large-scale
wide-area settings, providing atomicity may result in
prohibitive levels of overhead and sometimes, during
network partitions, in blocking the applications until
partitions repair. Thus, weaker consistency properties
may be more appropriate in such settings. A key question
is which weaker consistency properties are still coherent
and acceptable to the application clients.

In this paper, we propose one way to weaken the
atomicity property and illustrate the resulting property,
intermittent atomicity, with a simple application. We
call this applicationintermittently-atomic data service
(IADS); the application implements a variant of a data
service that allows a dynamic group of clients to access
and modify a replicated data object. TheIADS appli-
cation is prototypical of some collaborative computing
applications, such as a shared white-board application
(e.g., [4], [5]).

Roughly speaking, intermittent atomicity guarantees
that, while the underlying network component is stable,
clients perceive the data object asatomic.1 During peri-
ods of instability, the clients’ perceptions of the object
may diverge from the atomic one. The non-atomic se-
mantics may persist until after the underlying component
becomes stable again. When stability is regained, the
atomic semantics is restored within some finite amount

∗ MIT Lincoln Laboratory. 244 Wood St., Lexington, MA 02420,
USA. This work was partially sponsored by the Department of the
Air Force under the Air Force Contract F19628-00-C-0002. Opinions,
interpretations, conclusions, and recommendations are not necessarily
endorsed by the US Government.† MIT Laboratory for Computer
Science. 200 Technology Square, Cambridge, MA 02139, USA.

1Atomic objects are also known aslinearizable [6], strongly-
consistent, non-replicated, andone-copy equivalent.

of time: The clients comprising the stable component
are informed about the current membership of the client
group and the new state of the data object. The new state
is computed as an application-specified merge of the
states of the members’ object replicas. From that point on
while stability lasts, the clients again perceive the object
as an atomic one. A formal definition of intermittent
atomicity is presented in [7, Ch. 10] (where intermittent
atomicity is calledinterim atomicity).

The IADS application can be conveniently built using
standard group communication mechanisms. We demon-
strate this by presenting a simple algorithm,IADS, that
operates atop a group communication service,GCS,
which we assume satisfies the formal design specifi-
cation of [8], [7]. The algorithm follows theactive
replication/state-machineapproach [9], [10] and utilizes
the state-transfer protocol of Amir, et al. [11]. The
Virtual Synchrony semantics provided byGCSallows the
application to sometimes avoid state-transfer when views
change and also to reduce the number of state messages
exchanged during a state-transfer protocol. The set of
group members that transitions together fromv to v′

is known as the transitional setT of v and v′ [1]. The
Virtually Synchronous Delivery property guarantees that
every server inT receives the same set of messages while
in view v, before receiving viewv′ and setT from GCS.
Thus, if the object replicas ofT were mutually consistent
upon entering normal mode in viewv, they remain
mutually consistent when viewv′ is delivered. This leads
to two observations: First, it is enough for only one
member ofT to communicate the state of its replica
during state-transfer protocol. Second, state-transfer is
unnecessary in situations when the entire membership
of the new viewv′ has transitioned together from view
v (i.e., v.set = T).

II. A PPLICATION DESCRIPTION

The Obj Data Type: The IADS application man-
ages deterministic data objects whose serial behavior is
specified by some data type,Obj. The Obj data type
defines possible states of the objects and operators on
the objects; it is defined similarly to the variable type
of [3]. Formally, theObj type consists of: a) a setS of

object states; b) a distinguished initial states0 ∈ S; c) a
setR of response values; and d) a setO of operations,
each of the typeS → (S × R). Furthermore, we assume
an application-defined functionmerge: SetOf(Proc ×
S) → S. This function is used during state-transfer to
compute a new, common, state of the object based on,
possibly different, states of the participating object repli-
cas. We assume that themerge function has the identity
property, i.e.,merge({〈p1, x〉, 〈p2, x〉, . . . , 〈pk, x〉}) = x.
For simplicity we assume that the application manages
a single data object and all the operations requested by
clients pertain to this object.

request
response

refresh

Client p

The IADS Application

request
response

refresh

Client q
request

response
refresh

Client r

Fig. 1. Interaction of the application with its clients.

Application Interface: The interface between the
IADS application and its clients consists of the typical
request, and response actions: The application re-
ceives clientp’s request to process operationo ∈ O via
input action requestp(o), and it eventually responds
to the operation viaresponsep(o, r), where r ∈ R
is the return value resulting from applying operation
o to the underlying data object. In addition to the
request/reply actions, the interface with clientp in-
cludes specialrefreshp(set, x) actions, whereset ∈
SetOf(Proc) and x ∈ S. The application uses these
actions to refresh the client’s perception of its collab-
oration group (set) and the state of the underlying data
object (x). For simplicity, we do not include thejoin
andleave actions as part of the interface. Such actions
can be processed by the group communication service as
requests to join or leave a specified application group.

Application Semantics: Chapter 10 of [7] contains
a formal specification ofIADS. Among the specified
properties, there are some basic ones that are not specific
to intermittent atomicity; these include properties such
as correspondence between requests and responses, and
processing of requests submitted by a given client in
gap-free FIFO order. The properties thatare specific
to intermittent atomicity are Stabilization and Interim
Atomicity. The Stabilization property is a liveness prop-
erty that requiresIADS to eventually stabilize after a
set of clients becomes stable. The Interim Atomicity
property is a combination of safety and liveness; it
requires IADS to behave as an atomic data service in
situations whenIADS is stable.

III. GCS-BASED ALGORITHM

The algorithm for the intermittently-atomic data ser-
vice follows the standard active replication (state-

machine) approach [9], [10] and utilizes the state-transfer
protocol of Amir et al. [11]. The algorithm is composed
of a collection of application end-points, which run the
same algorithm. The application end-points operate as
clients of theGCS system — as members of the same
process group. Figure 2 shows interaction of an appli-
cation end-point with its client and with the underlying
GCS end-point.

s
e
n
d

b
l
o
c
k

b
l
o
c
k
_
o
k

d
e
l
i
v
e
r

v
i
e
w

response
request

refresh

Client

IADS End−point

GCS End−Point

Fig. 2. Application design architecture: An application end-point
interacts with its client and the underlyingGCS end-point.

normal
state transfer
completed

view

view

state
transfer

Fig. 3. Application modes of operation:view-labeled transitions lead-
ing to normal mode correspond to circumstances when an application
end-point avoids state-transfer by relying on theGCS semantics.

Every application end-point maintains a replica of
the data object. The object replicas are modified during
normal mode of operation when clients’ requests are
processed, and as a result of state-transfer when a new
state of the object is computed from the merge of the
object replicas of different application end-points.

Figure 3 depicts a state-transition diagram that governs
transitions between normal and state-transfer modes. Ini-
tially, the mode is normal. An application end-point may
switch from normal to state-transfer when it receives
a new view from GCS; in some situations, discussed
below, the application end-point is able to rely on
the guarantees provided byGCS to avoid state-transfer
and remain in normal mode. When an application end-
point completes state-transfer, it switches back to normal
mode. If GCS delivers a new view before the application
end-point completes state-transfer, the application end-
point typically remains in state-transfer mode, but in
some situations, discussed below, it may again rely on
the guarantees provided byGCS to immediately switch
to normal mode.

Figure 4 contains an I/O automaton,IADSp, modeling
the application end-point at processp (see [3] for the
definition of I/O automata). The application end-point
maintains a replica,obj, of the data object. Requests
submitted by the client are placed into a queue,inp,
and later multicast usingGCS to the application end-
points comprising the current view.GCS delivers these
requests within the same view and inFIFO order. The
application end-points append the requests delivered by
GCS into a queue,ops[q], according to the senderq. The
requests stored in theops queues are processed during
normal mode, according to a total order on all requests
communicated in a given view; as we explain below, the
algorithm establishes this total order by tagging requests
with logical timestamps [9] (see also [10] and [3, page
607]).2 Processing of requests is done by an internal
action do and as a result of receiving aview input
from GCS. When an application end-point processes an
operation request, it applies the operation to its object
replica. If the operation request that is being processed
was submitted by the application end-point’s own client,
the application end-point places the operation and the
resulting return value into an output queue,out, to be
later reported to the client.

Consider application end-points belonging to some
stable view. Assume that, at the times when the appli-
cation end-points start processing requests in the view,
the states of their object replicas are the same. In order
for their object replicas to stay mutually consistent, the
object replicas should undergo the same modifications in
the same order at different application end-points; that
is, different application end-points should apply the same
sequences of operations to their object replicas.

Total order through logical time: The IADS algo-
rithm establishes a total ordering on all requests com-
municated throughGCS in a given view using logical
timestamps, as in [9] and [3, Sec. 18.3.3]. We chose
this well-known, symmetric approach for the sake of
concreteness and simplicity. Many different algorithms
for implementing totally ordered multicast exist and can
be used here, including those that focus on scalability
and efficiency in WANs (see [12]).

Application end-pointp maintains an integerlt[p]
which corresponds top’s logical time within the current
view; the initial value oflt[p] is 0 and it is reset to0
whenp receives view inputs. Whenp starts processing
a request by multicasting it to other application end-
points,p incrementslt[p] and tags the request with the
timestamp. Also, wheneverp receives a request tagged

2Note that we implement total ordering within the application
algorithm to make it easier to visualize how the algorithm works. In
general, however, total ordering would be implemented as a separate
layer, aboveGCS and below the application.

with a timestampts from some application end-point
q, p updates its logical time tomax(lt[p], ts) + 1. The
total order on messages communicated within the same
view is defined as their ordering by the “timestamp,
application end-point identifier” pair. That is,op totally
precedesoq if and only if ((tsp < tsq) ∨ ((tsp = tsq) ∧
(p < q)), whereop is an operation sent byp and tagged
with timestamptsp, and oq is an operation sent byq
in the same view asop and tagged with timestamptsq.
Note that this total order is consistent with bothFIFO

and causal orderings of requests and responses.
Normal mode: In normal mode, application end-point

p processes the operations in itsops queues according
to the total order defined above. Internal actiondop(q, o)
models processing of an operationo submitted by client
at q. Operationo is processed if

(a) operationo totally precedes all other operations
currently in theops queues; and

(b) p knows that the logical times of all other
application end-points in the view exceed the
timestamp associated witho.

Condition (b) guarantees thatp has received all the
operations that precedeo, and thus,o is the next one
in the totally ordered sequence of operations sent in
the current view; see [3, Sec. 18.3.3]. The algorithm
implements condition (b) by keeping track of the known
logical time of every application end-pointq in the
current view. The application end-point updateslt[q]
whenever it receives operation requests sent byq. In
addition to communicating the values of their logical
times through operations, application end-points also
let others know of their logical times by periodically
sending special heartbeat messages,〈‘ lt msg’ , ts〉.

While the current view remains stable, the application
end-points process the same sequences of operations, and
thus, remain mutually consistent.

When an application end-point receives a new view
from GCS, the application end-point processes all of
the operations in itsops queues according to the total
order, even though condition (b) may not hold for these
messages. The sequence of operations processed at this
point may diverge from the global sequence because the
application end-point may have received only a subset
of all of the operations sent in the current view; for
example, it may be missing some of the operations sent
by disconnected application end-points. However, what
is guaranteed byGCS is that members of the transitional
set of the new view receive the same set of messages,
and hence process the same sequence, if they receive the
new view. Thus, after processing the operations in their
ops queues, the members of the transitional set have the
same states of their object replicas.

AUTOMATON IADSp
Type:
AppMsg = (O × Int) ∪ Int ∪ (SetOf(Proc) × S) // operations, heartbeats, and state--transfer
OutType = (O × R) ∪ (SetOf(Proc) × S) // operation replies and refresh information

Signature:
Input: request p(o), O o

gcs.deliver p(q, m), Proc q, m ∈ AppMsg
gcs.view p(v, T), View v, SetOf(Proc) T
gcs.block p()

Internal: do p(q, o), Proc q, O o

Output: response p(o, r), O o, R r
refresh p(s, x), SetOf(Proc) s, S x
gcs.send p(m), m ∈ AppMsg
gcs.block ok p()

State:
S obj, initially s0
QueueOf(O) inp, initially empty
QueueOf(OutType) out, initially empty
(∀ q ∈ Proc) Int lt[q], initially 0
(∀ q ∈ Proc) QueueOf(O × Int) ops[q], initially empty
block status ∈ {unblocked, requested, blocked },

initially unblocked

View myview, initially v p
Bool mode ∈ {normal, st }
Bool send state, initially false
SetOf(Proc) SS, initially {p}
SetOf(Proc × S) StatesV, initially empty
SetOf(Proc) States Await, initially {}

Transitions:
INPUT requestp(o)
eff: append o to inp

OUTPUT gcs.sendp(〈 ‘ op msg’, o, ts 〉)
pre: block status 6= blocked

o = First(inp) ∧ ts = lt[p] + 1
eff: remove o from inp

lt[p] ← lt[p]+1
append 〈o, ts 〉 to ops[p]

INPUT gcs.deliverp(q, 〈 ‘ op msg’, o, ts 〉)
eff: if (q 6= p) then

lt[q] ← ts
lt[p] ← max(lt[p], ts) + 1
append 〈o, ts 〉 to ops[q]

INTERNAL dop(q, o)
pre: mode = normal

q = min {t ∈ myview.set : First(ops[t]).ts =
= (min {First(ops[r]).ts : r ∈ myview.set }) }

(∀ t ∈ myview.set) lt[t] > First(ops[q]).ts
〈o, ts 〉 = First(ops[q])
let x and r be s.t. 〈x, r 〉 = o(obj)

eff: remove 〈o, ts 〉 from ops[q]
obj ← x
if(p = q) then append 〈o, r 〉 to out

OUTPUT responsep(o, r)
pre: 〈o, r 〉 is first on out
eff: remove 〈o, r 〉 from out

OUTPUT refreshp(set, x)
pre: 〈set, x 〉 is first on out
eff: remove 〈set, x 〉 from out

OUTPUT gcs.sendp(〈 ‘ lt msg’, ts 〉)
pre: block status 6= blocked ∧ ts = lt[p]

INPUT gcs.deliverp(q, 〈 ‘ lt msg’, ts 〉)
eff: if (q 6= p) then

lt[q] ← ts
lt[p] ← max(lt[p], ts) + 1

INPUT gcs.blockp()
eff: block status ← requested

OUTPUT gcs.blockokp()
pre: block status = requested
eff: block status ← blocked

INPUT gcs.viewp(v, T)
eff: // process all operations in the ops queue

while (∃ q) such that
(q = min {t ∈ myview.set : First(ops[t]).ts =

= (min {First(ops[r]).ts : r ∈myview.set }) })
remove first element 〈o, ts 〉 from ops[q]
〈obj, r 〉 ← o(obj)
if(p = q) then append 〈o, r 〉 to out

end
(∀ t ∈ myview.set) lt[t] ← 0
myview ← v
block status ← unblocked
// state transfer decision:
(mode = normal ? SS ← T : SS ← SS ∩ T)
if(v.set = SS) then // normal mode

append 〈v.set, obj 〉 to out
mode ← normal

else // state--transfer
State Await ← v.set; StatesV ← empty
send state ← (p = min(SS))
mode ← st

state transfer

OUTPUT gcs.sendp(〈 ‘ st msg’, set, x 〉)
pre: block status = unblocked

send state = true ∧ 〈set, x 〉 = 〈SS, obj 〉
eff: send state ← false

INPUT gcs.deliverp(q, 〈 ‘ st msg’, set, x 〉)
eff: (∀ t ∈ set) add 〈 t, x 〉 to StatesV

States Await ← States Await - set
if (States Await = {}) then

obj ← merge(StatesV)
append 〈myview.set, obj 〉 to out
mode ← normal

Fig. 4. Application end-pointIADSp of an Interim-Atomic Data Service.

After the operations are processed, application end-
point p decides whether or not to enter the state-transfer
protocol. VariableSS is used for keeping track of the
set of application end-points whose object replicas are
synchronized withp; according to [11],SS is computed
as the intersection of all the transitional sets delivered
since normal mode. IfSS is the same as the membership
of a new view v, then everyone in the new view is
already synchronized andp does not need to participate
in a state-transfer protocol for viewv; it may resume
its normal mode of operation. Otherwise,p enters the
state-transfer protocol (see below).

The following two paragraphs explain why computing
SS as the intersection of all the transitional sets delivered
since normal mode makes sense.

Consider an application end-pointp that receives
gcs.viewp(v, T) while in view v−, and assume that
p’s mode is normal prior to receiving the new view. If
the membershipv.set of the new view is the same as
transitional setT, then all of the members ofv enter the
new view directly fromv− (provided they do enterv).
The Virtual Synchrony semantics guarantees that these
members have received the same sets of messages while
in view v−, and hence have applied the same operations
in the same order to their object replicas. Since the states
of the object replicas of the members ofT were the same
when they began normal mode in viewv−, their object
replicas are the same after receiving viewv from GCS.

As an alternative, consider a situation in which the
application end-pointp receivesgcs.viewp(v, T) while
already engaged in state-transfer in viewv−. Even
though all the application end-points may be transi-
tioning together fromv− to v, it may be the case
that these application end-points had inconsistent object
replicas prior to entering viewv. Since the state-transfer
protocol was interrupted, they did not have a chance to
synchronize their object replicas. Thus, it is not sufficient
to simply consider transitional setT. The intersection of
the currentSS set andT yields the set of application end-
points that a) were synchronized when they switched
from normal mode to state-transfer, and b) have been
synchronized since then.

State-transfer protocol: The state-transfer protocol
involves each end-point collecting the states of the object
replicas of the members of the new view, and then
computing a new state for its replica as a merge of the
collected states. After the object replica is updated with
the result of the merge, the refresh information is placed
on theout queue. The refresh information contains the
new membership set and the new state of the object.

The GCS semantics allows us to reduce the number of
messages and the amount of information communicated
during the protocol: Only one end-point among the

members ofSS needs to send the state of its object
replica to others. This is because our algorithm maintains
a property that after receiving a view, all members of
SS have their object replicas in the same state. The op-
timization is important because state-transfer messages
are typically “costly” due to their large size.

The state-transfer protocol in Figure 4 follows the
algorithm of [11]. Boolean variablesend state controls
whether end-pointp is the one that has to send its object
replica’s state on behalf of the end-points in setSS. Set
StatesV is used for collecting object replicas’ states of
the view members, and setStates Await is used for
keeping track of the list of end-points from whomp has
not yet received a state-transfer message.

Note that end-points keep multicasting their clients’
operations to one another in the new view, in parallel
with the state-transfer protocol. The only part of the
algorithm that is blocked during state-transfer is the
actual processing of the operations. When state-transfer
completes, the end-point may be able to process a whole
bunch of operations collected in theops queues right
away, by executing a sequence ofdo actions.

If the state-transfer protocol is interrupted by a deliv-
ery of a newview, the end-point, as before, processes
all of the operations in itsops queues according to the
total order, and then decides whether to re-start a state-
transfer protocol or to switch back to normal mode.

IV. CONCLUSIONS

A proof of the algorithm’s correctness and two theo-
retical performance analysis results are presented in [7,
Ch. 10]. One of the performance results deals with
how quickly theIADS algorithm processes requests and
delivers responses to its clients. The algorithm is able to
process a given request as soon as it determines the re-
quest’s position in the totally-ordered sequence of all the
requests communicated in the current view and as soon
as it receives and processes all the preceding requests.
This time depends on the specific algorithm used for
totally ordering requests. In general, the performance of
state-of-the-art total order algorithms, in situations when
the underlying network is well-behaved, is close to a
single message latency.

To put this result in a larger context, an alternative
approach to using Group Communication for building
replicated data services is to use Consensus (e.g., [13],
[10]). In this approach, during normal mode of operation,
the servers hosting object replicas run Consensus to
agree on the order in which to process clients’ requests.
For the data services that provide weaker consistency se-
mantics, such as theIADS application, using Consensus
is an overkill. Optimized solutions based on Consensus
require two round-trip messages: the original message to

the leader, a “query” message from the leader to the end-
points and back, and then the “decision” message from
the leader to the end-points [13]. In contrast, theIADS

algorithm is able to process requests in the time it takes
to totally-order them, which in the case of a leader-based
scheme requires only one round-trip time to the leader.
In addition, unlike Consensus, Group Communication
provides convenient mechanisms to support partitionable
semantics and dynamic sets of clients.

The second performance result in [7] expresses
how quickly IADS reconfigures and deliversrefresh
inputs when instabilities occur. Roughly speaking,
the performance theorem proved in [7] states that,
when used in conjunction with a WAN-oriented group
communication service described in [8], [7], every
application end-point delivers the final refresh event
within about two latencies – one detection latency and
one message latency – away from the time the final
group event occurs, provided the application end-point is
able to rely on Virtual Synchrony to avoid participating
in a state-transfer protocol. Otherwise, if state-transfer
is necessary, the final refresh event occurs within about
three latencies – one detection latency and two message
latencies – away from the time the final group event
occurs.

Acknowledgments:We thank Idit Keidar for her helpful
comments on the algorithm and this paper.

REFERENCES

[1] G. V. Chockler and I. Keidar and R. Vitenberg, “Group Commu-
nication Specifications: A Comprehensive Study,”ACM Computing
Surveys, vol. 33, no. 4, pp. 1–43, December 2001.

[2] L. Lamport, “On interprocess communication, Parts I and II,”
Distributed Computing, vol. 1, no. 2, pp. 77–101, 1986.

[3] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann Publish-
ers, 1996.

[4] S. McCanne, A Distributed Whiteboard for Network Confer-
encing, UC Berkeley CS Dept., May 1992, Available from
ftp://ftp.ee.lbl.gov/conferencing/wb .

[5] G. Shamir, “Shared Whiteboard: A Java Application in the Transis
Environment,” Lab project, High Availability lab, The Hebrew
University of Jerusalem, Jerusalem, Israel, October 1996, Available
from: http://www.cs.huji.ac.il/labs/transis/ .

[6] Maurice P. Herlihy and Jeannette M. Wing, “Linearizability: A
correctness condition for concurrent objects,”ACM Transactions on
Programming Languages and Systems, vol. 12, no. 3, pp. 463–492,
July 1990.

[7] Roger Khazan,A One-Round Algorithm for Virtually Synchronous
Group Communication in Wide Area Networks, Ph.D. thesis, MIT
Dept. of Electrical Eng. and Computer Science, May 2002.

[8] Idit Keidar and Roger Khazan, “A virtually synchronous group
multicast algorithm for WANs: Formal approach,”SIAM Journal
on Computing, vol. 32, no. 1, pp. 78–130, November 2002, Previous
version in ICDCS 2000, pp. 344–355.

[9] Lamport, L., “Time, clocks, and the ordering of events in a
distributed system,”Communications of the ACM, vol. 21, no. 7,
pp. 558–565, July 78.

[10] Schneider, F. B., “Implementing fault tolerant services using the
state machine approach: A tutorial,”ACM Computing Surveys, vol.
22, no. 4, pp. 299–319, December 1990.

[11] Y. Amir and G. V. Chockler and D. Dolev and R. Vitenberg,
“Efficient state transfer in partitionable environments,” in2nd
European Research Seminar on Advances in Distributed Systems
(ERSADS’97), pp., 183–192, Full version: TR CS98-12, Institute
of Computer Science, The Hebrew University, Jerusalem, Israel.

[12] Xavier Défago and Andŕe Schiper and Ṕeter Urb́an, “Totally or-
dered broadcast and multicast algorithms: A comprehensive survey,”
Tech. Rep.DSC/2000/036, Swiss Federal Institute of Technology,
Lausanne, Switzerland, September 2000.

[13] B. Lampson, “How to build a highly available system using
consensus,” inDistributed Algorithms, LNCS 1151, 1996.

