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. INTRODUCTION of time: The clients comprising the stable component

Group communication provides a convenient mecke informed about the current membership of the client
anism for building applications that maintain a rep"group and the new state of the data object. The new state

cated state of some sort [1]. Such applications typicallj ComMPuted as an application-specified merge of the
implement certain consistency properties regarding h

tes of the members’ object replicas. From that point on

different application clients perceive the replicated stat¥/Nile stability lasts, the clients again perceive the object

One of the well-understood and often preferred consi@S @n atomic one. A formal definition of intermittent

tency properties istrong-consistencyr atomicity [2], atom!c?ty i_s presented.in [7, Ch._lO] (where intermittent
[3, Ch. 13], which creates a perception of the replicategfoMicity is calledinterim atomicity. o
state as being non-replicated. However, in large-scale! "€ 'ADS application can be conveniently built using
wide-area settings, providing atomicity may result isiandard group communication mechanisms. We demon-
prohibitive levels of overhead and sometimes, duringf’@t€ this by presenting a simple algorithmps, that
network partitions, in blocking the applications untiIOpE_”ateS atop a group _commumcatlon SevIeES,
partitions repair. Thus, weaker consistency propertiddlich we assume satisfies the formal design specifi-
may be more appropriate in such settings. A key questiGation of [8], [7]. The algorithm follows theactive

is which weaker consistency properties are still cohereffPlication’state-machinapproach [9], [10] and utilizes
and acceptable to the application clients. the state-transfer protocol of Amir, et al. [11]. The

In this paper, we propose one way to weaken tpdrtual Synchrony semantics provided by sallows the

atomicity property and illustrate the resulting propertﬁﬁp“cat'on;o Isomehmgs avor:d statel;transfferwhen VIEWS
intermittent atomicity with a simple application. We ¢"ange and also to reduce the number of state messages

call this applicationintermittently-atomic data service exchanged during a state-transfer protocol. The set of
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(1ADS); the application implements a variant of a datgr?(up membehrs that _tr_anS||t|ons :ogethgr /fr@ntorx]r
service that allows a dynamic group of clients to acce&s KNown as the tranS|t|oqa setof v and v’ [1]. The
and modify a replicated data object. Theos appli- Virtually Syn(_:hronou_s Delivery property guarantees thgt
cation is prototypical of some collaborative computin§VE!Y SErVer it receives the same set of messages while
applications, such as a shared white-board applicatihVéW V. before receiving view and sefr from Gcs
(e.g., [4], [5]) Thus, if the object replicas daf were mutually consistent

Roughly speaking, intermittent atomicity guaranteelépon e”te””g normal que in view, they remain
that, while the underlying network component is stabl(gr,wtually conS|ste_:nt Whe_n we_m/ is delivered. This leads
clients perceive the data object a®mic! During peri- 1o tWS obsfervanons. Flrs_t, It |shenough f?r_ only ?ne
ods of instability, the clients’ perceptions of the objeclfne'.’n er ofT to communicate the state of its rep Ica
may diverge from the atomic one. The non-atomic Séj_unng state-transfer protocol. Second, state-transfer is
mantics may persist until after the underlying componeHEnﬁcessary_ n s/|trL]1at|ons vyhen éhe entrl]re ;nembgrshlp
becomes stable again. When stability is regained, {RE the new viewv' has transitioned together from view

atomic semantics is restored within some finite amoufit(-€ v-set = T).

Il. APPLICATION DESCRIPTION
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object statesb) a distinguished initial state, € S; c) a machine) approach [9], [10] and utilizes the state-transfer
set R of response valuesaand d) a se of operations, protocol of Amir et al. [11]. The algorithm is composed
each of the types — (S x R). Furthermore, we assumeof a collection of application end-points, which run the
an application-defined functiomerge: Set0f(Proc x same algorithm. The application end-points operate as
S) — S. This function is used during state-transfer telients of theccs system — as members of the same
compute a new, common, state of the object based qmpcess group. Figure 2 shows interaction of an appli-
possibly different, states of the participating object repleation end-point with its client and with the underlying
cas. We assume that therge function has the identity Gcs end-point.

property, i.e.merge({(p1, %), (P2, %), .- - , (Px, X)}) = x.

For simplicity we assume that the application manages [ Client ]
a single data object and all the operations requested by seqhest
clients pertain to this object. response refrpsh
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Fig. 1. Interaction of the application with its clients.

Application Interface: The interface between thel'd- 2 Vﬁtﬁlp:'tgaé'l‘i’e”mdaerf'dg;‘h:m;‘g:ﬁ“fre: SAgng_ppc')'iﬁ?“m end-point
IADS application and its clients consists of the typicaP HnaeryiteE point
request, and response actions: The application re-
ceives clientp’s request to process operationc O via
input action request,(o), and it eventually responds
to the operation viaresponsep(o,r), wherer € R
is the return value resulting from applying operation %
o to the underlying data object. In addition to the
request/reply actions, the interface with client in- view
cludes speciatefreshy(set,x) actions, whereset €
Set0f(Proc) and x € S. The application uses theserig. 3. Application modes of operationiew-labeled transitions lead-
actions to refresh the client's perception of its collalbing tonormal mode correspond to circumstances when an application
oration group get) and the state of the underlying data?nd—point avoids state-transfer by relying on thes semantics.
object &). For simplicity, we do not include thgoin L : - .
andleave actions as part of the interface. Such action Every ap_pllcatlon en_d-pomt _mamtalns a _rgpllca .Of
can be processed by the group communication service@g data object. The Ob]?Ct replicas are n,10d|f|ed during
requests to join or leave a specified application group.”ormal mode of operation when clients’ requests are
Application Semantics: Chapter 10 of [7] contains processed, and' as a result of state-transfer when a new
a formal specification ofiAps. Among the specified St&te Of the object is computed from the merge of the
properties, there are some basic ones that are not spe@RiECt replicas of different application end-points.
to intermittent atomicity: these include properties such 19Ure 3 depicts a state-transition diagram that governs
as correspondence between requests and responses,t_r itions betwgen normal and stgte—.transfer mgdes. Ini-
processing of requests submitted by a given client HfIY: the mode is normal. An application end-point may
gap-free FIFo order. The properties thatre specific switch frpm normal to _state-trans_fer yvhen |t_ receives
to intermittent atomicity are Stabilization and Interinf NEW View fromGcCs in some situations, discussed
Atomicity. The Stabilization property is a liveness propP€/oW: the application end-point is able to rely on
erty that requiressADS to eventually stabilize after athe guaraptges provided hi3Cs to avoid statg-trgnsfer
set of clients becomes stable. The Interim Atomicitgnfj remain in normal mode. When an application end-
property is a combination of safety and liveness; oint completes_state-transfer, it switches backtq nqrmal
requiresIADS to behave as an atomic data service if'0de- [fGCsdelivers a new view before the application
situations whenabps is stable. end-point completes state-transfer, the application end-
point typically remains in state-transfer mode, but in
lll. GCS-BASED ALGORITHM some situations, discussed below, it may again rely on
The algorithm for the intermittently-atomic data serthe guarantees provided l®cs to immediately switch
vice follows the standard active replication (stateto normal mode.



Figure 4 contains an I/O automatanps;, modeling with a timestampts from some application end-point
the application end-point at process(see [3] for the q, p updates its logical time taax(1t[p],ts) + 1. The
definition of 1/O automata). The application end-pointotal order on messages communicated within the same
maintains a replicapbj, of the data object. Requestsview is defined as their ordering by the “timestamp,
submitted by the client are placed into a queisp, application end-point identifier” pair. That is, totally
and later multicast usingsCs to the application end- precedes, if and only if ((ts, < tsq) V ((tsp = tsg) A
points comprising the current viewaCs delivers these (p < q)), whereo, is an operation sent by and tagged
requests within the same view and fFo order. The with timestampts,, and o4 is an operation sent by
application end-points append the requests delivered inythe same view as, and tagged with timestamis,.
GCsinto a queuepps|ql, according to the sender The Note that this total order is consistent with bathFo
requests stored in theps queues are processed duringnd causal orderings of requests and responses.
normal mode, according to a total order on all requestsNormal mode: In normal mode, application end-point
communicated in a given view; as we explain below, the processes the operations in égs queues according
algorithm establishes this total order by tagging requedtsthe total order defined above. Internal actée(q, o)
with logical timestamps [9] (see also [10] and [3, pagmodels processing of an operatiorsubmitted by client
607])? Processing of requests is done by an internat q. Operationo is processed if

action do and as a result of receiving @iew input  (a)  operatiom totally precedes all other operations

from ccs. When an application end-point processes an currently in theops queues; and

operation request, it applies the operation to its object(h) p knows that the logical times of all other
replica. If the operation request that is being processed application end-points in the view exceed the
was submitted by the application end-point’s own client, timestamp associated with

the application end-pqint places the operation and th&,qition (b) guarantees that has received all the
resulting return value into an output queust, 10 be  gnerations that precede and thus,o is the next one
later reported to the client. _ in the totally ordered sequence of operations sent in
Consider application end-points belonging to somge cyrrent view; see [3, Sec. 18.3.3]. The algorithm
stable view. Assume that, at the times when the appliplements condition (b) by keeping track of the known
cation end-points start processing requests in the Viefgical time of every application end-point in the
the states of their object replicas are the same. In orqgfirent view. The application end-point updatesiq]
for_ their ot_)ject replicas to stay mutually cons_igten_t, th\?/henever it receives operation requests sentqbyn
object replicas should undergo the same modifications Jiygition to communicating the values of their logical
the same order at different application end-points; thgtyes through operations, application end-points also
is, different application end-points should apply the samg; others know of their logical times by periodically
sequences of operations tp the_lr object replicas. sending special heartbeat messagés,msg, ts).
_Total order through logical time: The IADS algo-  \whjle the current view remains stable, the application
rithm establishes a total ordering on all requests comg.noints process the same sequences of operations, and
municated througtccs in a given view using logical {hus remain mutually consistent.
timestamps, as in [9] and [3, Sec. 18.3.3]. We chose\yhen an application end-point receives a new view
this well-known, symmetric approach for the sake ofym gcg the application end-point processes all of
con.creteness.and simplicity. Many d_lfferent_algorlthmlshe operations in iteps queues according to the total
for |mplement|ng totaI_Iy ordered multicast exist and CaBrder, even though condition (b) may not hold for these
be used here, including those that focus on scalabiliffessages. The sequence of operations processed at this
and efficiency in WANs (see [12]). . point may diverge from the global sequence because the
Application end-po!ntp maintains an integelt[p] application end-point may have received only a subset
which corresponds tg’s logical time within the current ot 5| of the operations sent in the current view; for
view; the |n|jual vallue Qflt[p] is 0 and it is reset tcp example, it may be missing some of the operations sent
whenp receives view inputs. Whep starts processing py gisconnected application end-points. However, what
a request by multicasting it to other application endg gyaranteed bgcsis that members of the transitional
points, p incrementslt[p] and tags the request with thee; of the new view receive the same set of messages,
timestamp. Also, whenever receives a request taggedyng hence process the same sequence, if they receive the
new view. Thus, after processing the operations in their

2Note that we implement total ordering within the applicatiorops queues, the members of the transitional set have the
algorithm to make it easier to visualize how the algorithm works. IRgme states of their object replicas.
general, however, total ordering would be implemented as a separate
layer, abovescs and below the application.



AUTOMATON IADSp

Type:
AppMsg = (O x Int) U Int U (SetOf(Proc) x S)
OutType = (O x R) U (SetOf(Proc) x S)
Signature:
Input: request p(o), O o
gcs.deliver p(q, m), Proc g, m € AppMsg
gcs.view p(v, T), View v, SetOf(Proc) T
gcs.block p()
Internal: do p(q, 0), Proc q, O o
State:
S obj, initially 80

QueueOf( O) inp, initially empty

QueueOf(OutType) out, initially empty

(V q € Proc) Int It[g], initially O

(V q € Proc) QueueOf( O x Int) ops[q], initially empty

block _status € {unblocked, requested, blocked IS
initially unblocked

Transitions:

INPUT requesb(o)

eff: append o to inp

OUTPUT gcs.seng( (‘op.msg, o, ts )

pre: block _status # blocked

o = First(inp) A ts =ltfp] + 1
eff: remove o from inp

It[p] — lt[p]+1

append (o, ts ) to ops[p]
INPUT gcs.deliveb(q, (*op.msg, o, ts ))
eff: if (g # p) then

It[q] — ts

It[p] — max(lt[p], ts) + 1
append (o, ts ) to ops[q]

INTERNAL dop(q, 0)
pre: mode = normal
g = min{t € myview.set : First(opslt]).ts =
= (min {First(ops[r]).ts : r € myview.set

(V t € myview.set) If[t] > First(ops[q]).ts
(o, ts ) = First(ops[q])

let x and r be s.t.

(x, r ) = o(obj)

eff: remove (o, ts ) from ops[q]
obj «— x
if(p = q) then append (o, r ) to out

OUTPUT respons?)(o, r
pre: (o, r ) is first on out
eff: remove (o, r ) from out

OUTPUT refreshy (set, X)
pre: (set, x ) is first on out
eff: remove (set, x ) from out

OUTPUT gcs.send ( (‘ lt_msd, ts )

pre: block _status # blocked A ts = lt[p]
INPUT gcs.deliverp(q, (*lt_msg, ts )
eff: if (g # p) then

It[q] — ts

«— max(lt[p], ts) + 1

N}

// operations, heartbeats, and state-transfer
// operation replies and refresh information

Output: response p(o, r, Oo R
refresh p(s, x), SetOf(Proc) s,
gcs.send p(m), m € AppMsg

gcs.block _okp()

S x

View myview, initially v

Bool mode € {normal, st }
Bool send _state, initially false
SetOf(Proc) SS, initially
SetOf(Proc ~ x S) StatesV,
SetOf(Proc) States

P}
initially empty
_Await, initially {}

INPUT gcs.blocl?)()

eff: block _status < requested
OUTPUT gcs.blockokp()

pre: block _status = requested

eff: block  _status «+ blocked

INPUT gcs.vievY_-J (v, T)

eff:  //process all operations in the ops queue
while (3 qg) such that
(@ = min{t € myview.set : First(opslt]).ts =
= (min {First(ops[r]).ts : r emyview.set })})
remove first element (o, ts ) from ops[q]
(obj, r ) <« o(obj)
if(c = q) then append (o, r ) to out
end
(V t € myview.set) It[t] ~— 0
myview «— Vv
block _status < unblocked
// state transfer decision:
(mode = normal ? SS «— T :SS « SSNT)
if(v.set = SS) then  //normal mode
append (v.set, obj ) to out
mode < normal
else // state-transfer
State _Await <« v.set; StatesV «— empty
send state «— (p = min(SS))
mode « st

| state transfer } {

OUTPUT gcs.seng( (*stmsg, set, x ))

pre: block _status = unblocked
send _state = true A (set, x ) = (SS, obj )
eff: send _state «— false

INPUT gcs.deliverp(q,
eff. ( V t € set) add

(*stmsg, set, x ))
(t, x ) to StatesV

States _Await <« States _Await - set

if (States _Await = {}) then
obj «— mergeStatesV)
append (myview.set, obj
mode < normal

) to out

Fig. 4. Application end-pointaAbs, of an Interim-Atomic Data Service.



After the operations are processed, application engembers ofSS needs to send the state of its object
point p decides whether or not to enter the state-transfegplica to others. This is because our algorithm maintains
protocol. Variabless is used for keeping track of thea property that after receiving a view, all members of
set of application end-points whose object replicas ags have their object replicas in the same state. The op-
synchronized withp; according to [11]SS is computed timization is important because state-transfer messages
as the intersection of all the transitional sets deliverate typically “costly” due to their large size.
since normal mode. I$S is the same as the membership The state-transfer protocol in Figure 4 follows the
of a new viewv, then everyone in the new view isalgorithm of [11]. Boolean variablgend_state controls
already synchronized angldoes not need to participatewhether end-poinp is the one that has to send its object
in a state-transfer protocol for view; it may resume replica’s state on behalf of the end-points in sgt Set
its normal mode of operation. Otherwisg,enters the StatesV is used for collecting object replicas’ states of
state-transfer protocol (see below). the view members, and states_Await is used for

The following two paragraphs explain why computindeeping track of the list of end-points from whasrhas
SS as the intersection of all the transitional sets delivergibt yet received a state-transfer message.
since normal mode makes sense. Note that end-points keep multicasting their clients’

Consider an app“cation end-poirﬁ that receives operations to one another in the new view, in parallel
ges.viewy(v,T) while in view v—, and assume that with the state-transfer protocol. The only part of the
p’'s mode is normal prior to receiving the new view. Ifalgorithm that is blocked during state-transfer is the
the membership.set of the new view is the same asactual processing of the operations. When state-transfer
transitional set, then all of the members aof enter the completes, the end-point may be able to process a whole
new view directly fromv~ (provided they do entev). bunch of operations collected in theps queues right
The Virtual Synchrony semantics guarantees that theg@ay, by executing a sequencedef actions.
members have received the same sets of messages whilé the state-transfer protocol is interrupted by a deliv-
in view v—, and hence have applied the same operatiofgy of a newview, the end-point, as before, processes
in the same order to their object replicas. Since the sta®@ of the operations in iteps queues according to the
of the object replicas of the membersivere the same total order, and then decides whether to re-start a state-
when they began normal mode in view, their object transfer protocol or to switch back to normal mode.
replicas are the same after receiving vievfrom Gcs

As an alternative, consider a situation in which the

application end-poinp receivesges.view,(v,T) while A proof of the algorithm’s correctness and two theo-
already engaged in state-transfer in view. Even retical performance analysis results are presented in [7,
though all the application end-points may be transgh. 10]. One of the performance results deals with
tioning together fromv™ to v, it may be the case how quickly thelaDs algorithm processes requests and
that these application end-points had inconsistent objefd|ivers responses to its clients. The algorithm is able to
replicas prior to entering view. Since the State-tranSferproceSS a given request as soon as it determines the re-
protocol was interrupted, they did not have a chance §est's position in the totally-ordered sequence of all the
synchronize their object replicas. Thus, it is not sufficiefequests communicated in the current view and as soon
to Slmply consider transitional s&t The intersection of as it receives and processes all the preceding requestsl
the currenBs set andr yields the set of application end-This time depends on the specific algorithm used for
points that a) were synchronized when they switchaghtally ordering requests. In general, the performance of
from normal mode to state-transfer, and b) have beggate-of-the-art total order algorithms, in situations when
synchronized since then. the underlying network is well-behaved, is close to a
State-transfer protocol: The state-transfer protocolsingle message latency.
involves each end-point collecting the states of the objectTo put this result in a larger context, an alternative
replicas of the members of the new view, and thespproach to using Group Communication for building
computing a new state for its replica as a merge of theplicated data services is to use Consensus (e.g., [13],
collected states. After the object replica is updated Wi[h_O])_ In this approach, during normal mode of operation,
the result of the merge, the refresh information is placaHe servers hosting object replicas run Consensus to
on theout queue. The refresh information contains thggree on the order in which to process clients’ requests.
new membership set and the new state of the object. For the data services that provide weaker consistency se-
The Gcssemantics allows us to reduce the number ahantics, such as theps application, using Consensus
messages and the amount of information communicatisdan overkill. Optimized solutions based on Consensus
during the protocol: Only one end-point among theequire two round-trip messages: the original message to

IV. CONCLUSIONS
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