Multicast Group Communication as a Base for a
Load-Balancing Replicated Data Service

Roger Khazan!, Alan Fekete?, and Nancy Lynch?

L MIT LCS, 545 Technology Square, NE43-365, Cambridge, MA 02139, USA.
2 Basser Dept. of CS, Madsen F09, University of Sydney, NSW 2006, Australia.

Abstract. We give a rigorous account of an algorithm that provides
sequentially consistent replicated data on top of the view synchronous
group communication service previously specified by Fekete, Lynch and
Shvartsman. The algorithm performs updates at all members of a major-
ity view, but rotates the work of queries among the members to equalize
the load. The algorithm is presented and verified using I/O automata.

1 Introduction

Multicast group communication services are important building blocks for fault-
tolerant applications that require reliable and ordered communication among
multiple parties. These services manage their clients as collections of dynami-
cally changing groups and provide strong intra-group multicast primitives. To
remedy the existing lack of good specifications for these services and to facili-
tate consensus on what properties these services should exhibit, Fekete, Lynch
and Shvartsman recently gave a simple automaton specification VS for a view-
synchronous group communication service and demonstrated its power by using
it to support a totally-ordered broadcast application TO [14,13]. In this paper,
we use VS to support a second application: a replicated data service that load
balances queries and guarantees sequential consistency.

The service maintains a data object replicated at a fixed set of servers in
a consistent and transparent fashion and enables the clients to wupdate and
query this object. We assume the underlying network is asynchronous, strongly-
connected, and subject to processor and communication failures and recoveries
involving omission, crashing or delay, but not Byzantine failures. The failures
and recoveries may cause the network or its components to partition and merge.
The biggest challenge for the service is to cope with network partitioning while
preserving correctness and maintaining liveness.

We assume that executed updates cannot be undone, which implies that
update operations must be processed in the same order everywhere. To avoid
inconsistencies, the algorithm allows updates to occur only in primary com-
ponents. Following the commonly used definition, primary components are de-
fined as those containing a majority (or more generally a quorum) of all servers.
Nonempty intersection of any two majorities (quorums) guarantees the existence
of at most one primary at a given time and allows for the necessary flow of in-
formation between consecutive primaries. Qur service guarantees processing of

update requests whenever there is a stable primary component, regardless of the
past network perturbations.

On the other hand, processing of queries is not restricted to primary compo-
nents, and is guaranteed provided the client’s component eventually stabilizes.
The service uses a round-robin load-balancing strategy to distribute queries to
each server evenly within each component. This strategy makes sense in com-
monly occurring situations when queries take approximately the same amount
of time, which is significant. Each query is processed with respect to a data state
that is at least as advanced as the last state witnessed by the query’s client. The
service is arranged in such a way that the servers are always able to process the
assigned queries, that is they are not blocked by missing update information.

Architecturally, the service consists of the servers’ layer and the commu-
nication layer. The servers’ layer is symmetric: all servers run identical state-
machines. The communication layer consists of two parts, a group communi-
cation service satisfying VS, and a collection of individual channels providing
reliable reordering point-to-point communication between all pairs of servers.
The servers use the group communication service to disseminate update and
query requests to the members of their groups and rely on the properties of this
service to enforce the formation of identical sequences of update requests at all
servers and to schedule query requests correctly. The point-to-point channels are
used to send the results of processed queries directly to the original servers.

Related Work

Group communication. A good overview of the rational and usefulness of group
communication services is given in [4]. Examples of implemented group commu-
nication services are Isis [5], Transis [10], Totem [25], Newtop [12], Relacs [3]
and Horus [27]. Different services differ in the way they manage groups and in
the specific ordering and delivery properties of their multicast primitives. Even
though there is no consensus on what properties these services should provide,
a typical requirement is to deliver messages in total order and within a view.

To be most useful, group communication services have to come with precise
descriptions of their behavior. Many specifications have been proposed using a
range of different formalisms [3,6,8,11,15,24,26]. Fekete, Lynch, and Shvarts-
man recently presented the VS specification for a partitionable group commu-
nication service. Please refer to [14] for a detailed description and comparison of
VS with other specifications.

Several papers have since extended the VS specification. Chockler, Huleihel,
and Dolev [7] have used the same style to specify a virtually synchronous FIFO
group communication service and to model an adaptive totally-ordered group
communication service. De Prisco, Fekete, Lynch and Shvartsman [9] have pre-
sented a specification for group communication service that provides a dynamic
notion of primary view.

Replication and Load Balancing. The most popular application of group com-
munication services is for maintaining coherent replicated data through apply-
ing all operations in the same sequence at all copies. The details of doing this

in partitionable systems have been studied by Amir, Dolev, Friedman, Keidar,
Melliar-Smith, Moser, and Vaysburd [18,2,1, 19,16, 17].

In his recent book [4, p. 329], Birman points out that process groups are
ideally suited for fault-tolerant load-balancing. He suggests two styles of load-
balancing algorithms. In the first, more traditional, style, scheduling decisions
are made by clients, and tasks are sent directly to the assigned servers. In the
second style, tasks are multicast to all servers in the group; each server then
applies a deterministic rule to decide on whether to accept each particular task.

In this paper, we use a round-robin strategy originally suggested by Bir-
man [4, p. 329]. According to this strategy, query requests are sent to the servers
using totally-ordered multicast; the ith request delivered in a group of n servers
is assigned to the server whose rank within this group is (i mod n). This strat-
egy relies on the fact that all servers receive requests in the same order, and
guarantees a uniform distribution of requests among the servers of each group.
We extend this strategy with a fail-over policy that reissues requests when group
membership changes.

Sequential Consistency. There are many different ways in which a collection of
replicas may provide the appearance of a single shared data object. The sem-
inal work in defining these precisely is Lamport’s concept of sequential consis-
tency [21]. A system provides sequential consistency when for every execution
of the system, there is an execution with a single shared object that is indis-
tinguishable to each individual client. A much stronger coherence property is
atomicity, where a universal observer can’t distinguish the execution of the sys-
tem from one with a single shared object. The algorithm of this paper provides
an intermediate condition where the updates are atomic, but queries may see
results that are not as up-to-date as those previously seen by other clients.

Contributions of this paper

This paper presents a new algorithm for providing replicated data on top of
a partitionable group communication system, in which the work of processing
queries is rotated among the group replicas in a round-robin fashion. While the
algorithm is based on previous ideas (the load-balancing processing of queries is
taken from [4] and the update processing relates to [18,2,1,19]) we are unaware
of a previously published account of a way to integrate these. In particular, we
show how queries can be processed in minority partitions, and how to ensure
that the servers always have sufficiently advanced states to process the queries.

Another important advance in this work is that it shows how a verification
can use some of the stronger properties of VS. Previous work [14] verified TO,
an application in which all nodes within a view process messages identically (in
a sense, the T'O application is anonymous, since a node uses its identity only to
generate unique labels). The proof in [14] uses the property of agreed message
sequence, but it does not pay attention to the identical view of membership at
all recipients. In contrast, this paper’s load-balancing algorithm (and thus the
proof) uses the fact that different recipients have the same membership set when
they decide which member will respond to a query.

The rest of the paper is organized as follows. Section 2 introduces basic termi-
nology. Section 3 presents a formal specification for clients’ view of the replicated
service. Section 4 contains an intermediate specification for the service, the pur-
pose of which is to simplify the proof of correctness. Section 5 presents an I/0O
automaton for the server’s state-machine and outlines the proof of correctness.

2 Mathematical Foundations

We use standard and self-explanatory notation on sets, sequences, total func-
tions (—), and partial functions (—). Somewhat non-standard is our use of
disjoint unions (+), which differs from the usual set union (U) in that each ele-
ment is implicitly tagged with what component it comes from. For simplicity, we
use variable name conventions to avoid more formal “injection functions” and
“matching constructs.” Thus, for example, if Update and Query are the respec-
tive types for update and query requests, then type Request = Update + Query
defines a general request type. Furthermore, if req € Request, and u and g are the
established variable conventions for Update and Query types, then “req < u”
and “req = ¢q” are both valid statements.

The modeling is done in the framework of the I/O automaton model of Lynch
and Tuttle [23] (without fairness), also described in Chapter 8 of [22]. An I/O
automaton is a simple state-machine in which the transitions are associated
with named actions, which can be either input, output, or internal. The first
two are externally visible, and the last two are locally controlled. I/O automata
are input-enabled, i.e., they cannot control their input actions. An automaton is
defined by its signature (input, output and internal actions), set of states, set
of start states, and a state-transition relation (a cross-product between states,
actions, and states). An execution fragment is an alternating sequence of states
and actions consistent with the transition relation. An ezecution is an execu-
tion fragment that begins with a start state. The subsequence of an execution
consisting of all the external actions is called a trace. The external behavior is
captured by the set of traces generated by its executions. Execution fragments
can be concatenated. Compatible I/O automata can be composed to yield a
complex system from individual components. The composition identifies actions
with the same name in different component automata. When any component
automata performs a step involving action 7, so do all component automata
that have 7 in their signatures. The hiding operation reclassifies output actions
of an automaton as internal.

Invariants of an automaton are properties that are true in all reachable states
of that automaton. They are usually proved by induction on the length of the
execution sequence. A refinement mapping is a single-valued simulation relation.
To prove that one automaton implements another in the sense of trace inclusion,
it is sufficient to present a refinement mapping from the first to the second. A
function is proved to be a refinement mapping by carrying out a simulation
proof, which usually relies on invariants (see Chapter 8 of [22]).

We describe the transition relation in a precondition-effect style (as in [22]),
which groups together all the transitions that involve each particular type of
action into a single atomic piece of code.

To access components of compound objects we use the dot notation. Thus, if
dbs is a state variable of an automaton, then its instance in a state s is expressed
as s.dbs. Likewise, if view is a state variable of a server p, then its instance in a
state ¢ is expressed as t[p].view or as p.view if ¢ is clear from the discussion.

3 Service Specification S

In this section, we formally specify our replicated data service by giving a cen-
tralized I/O automaton S that defines its allowed behavior. The complete infor-
mation on basic and derived types, along with a convention for variable usage,
is given in Figure 1. The automaton S appears in Figure 2.

Fig.1 Type information

Var Type Description

c C Finite set of client IDs. (c.proc refers to the server of c).

db DB Database type with a distinguished initial value dbg.

a Answer Answer type for queries. Answers for updates are {ok}.

u Update : DB — DB Updates are functions from database states to database states.
q Query : DB — Answer Queries are functions from database states to answers.

r Request = Update + Query Request is a disjoint union of Update and Query types.

2 Output = Answer + {ok} Owutput is a disjoint union of Answer and {ok} types.

The interface between the service and its blocking clients is typical of a
client-server architecture: Clients’ requests are delivered to S via input actions
of the form request(r)., representing the submission of request r by a client ¢; S
replies to its clients via actions of the form reply(o)., representing the delivery
of output value o to a client c.

If our service were to satisfy atomicity (i.e., behave as a non-replicated ser-
vice), then specification S would include a state variable db of type DB and
would apply update and query requests to the latest value of this variable. In
the replicated system, this would imply that processing of query requests would
have to be restricted to the primary components of the network.

In order to eliminate this restriction and thus increase the availability of the
service, we give a slightly weaker specification, which does not require queries to
be processed with respect to the latest value of db, only with respect to the value
that is at least as advanced as the last one witnessed by the queries’ client. For
this purpose, S maintains a history dbs of database states and keeps an index
last(c) to the latest state seen by each client c.

Even though our service is not atomic, it still appears to each particular
client as a non-replicated one, and thus, satisfies sequential consistency. Note
that, since the atomicity has been relaxed only for queries, the service is actually
stronger than the weakest one allowed by sequential consistency.

The assumption that clients block (i.e., do not submit any new requests until
they get replies for their current ones) cannot be expressed within automaton S
because, as an I/O automaton, it is input-enabled. To express this assumption
formally, we close S by composing it with the automaton Env = [[.c(C.),
where each C. models a nondeterministic blocking client ¢ (see Figure 3); Real
blocking clients can be shown to implement this automaton. In the closed au-
tomaton S, the request actions are forced to alternate with the reply actions,

Fig. 2 Specification S

Signature:

Input: Internal:

request(r).,r € Request,c € C update(c, u), c € C,u € Update
Output: query(c,q,l),c € C,q € Query,l € N'

reply(0)c, 0 € Output,c € C

State:

dbs € SEQO DB, initially dbg. Sequence of database states. Indexing from 0 to |dbs| — 1.

map € C — (Request + Output), initially L. Buffer for the clients’ pending requests or replies.
last € C — N, initially {* — 0}. Index of the last db state witnessed by id.

Transitions:
request(r). reply(0)c
Eff: map(c) < r Pre: map(c) = o
Eff: map(c) « L
update(c, u) query(c, ¢, [)
Pre: uw = map(c) Pre: ¢ = map(c)
Eff: dbs < dbs + u(dbs[|dbs| — 1]) last(c) < 1 < |dbs| — 1
map(c) < ok Eff: map(c) < q(dbs[l])
last(c) < |dbs| — 1 last(c) « 1

which models the assumed behavior. In the rest of the paper, we consider the
closed versions of the presented automata, denoting them with a bar (e.g., S).

Fig. 3 Client Specification C,

Signature:
Input: Output:
reply(0)c, 0 € Output request(r).,r € Request

State: busy € Bool, initially false. Status flag. Keeps track of whether there is a pending request.

Transitions:
request (7). reply(0).
Pre: busy = false Eff: busy < false

Eff: busy < true

4 Intermediate Specification D

Action update of specification S accomplishes two logical tasks: It updates the
centralized database, and it sets client-specific variables, map(c) and last(c), to
their new values. In a distributed setting, these two tasks are generally accom-
plished by two separate transitions. To simplify the refinement mapping between
the implementation and the specification, we introduce an intermediate layer D
(see Figure 4), in which these tasks are separated. D is formed by splitting

Fig. 4 Intermediate Specification D

Signature: Same as in S, with the addition of an internal action service(c),c € C.

State: Same as in S, with the addition of a state variable delay € C — N, initially L.
Transitions: Same as in S, except update is modified and service is defined.
update(c, u) service(c)
Pre: u = map(c) Pre: ¢ € dom(delay)
¢ & dom(delay) Eff: map(c) « ok
Eff: dbs < dbs + u(dbs[|dbs| — 1]) last(c) < delay(c)
delay(c) < |dbs| — 1 delay(c) < L

each update action of S into two, update and service. The first one extends

dbs with a new database state, but instead of setting map(c) to “ok” and last(c)
to its new value as in S, it saves this value (i.e., the index to the most recent
database state witnessed by ¢) in delay buffer. The second action sets map(c)
to “ok” and uses information stored in delay to set last(c) to its value.

Lemma 1 The following function DS() is a refinement from D to S with respect
to reachable states of D and S.

DS(d:D)—S =
s.dbs ¢ d.dbs
s.map <« overlay(d.map, {{c, ok) | c € dom(d.delay)})
s.last < overlay(d.last,d.delay)
s.busy, < d.busy, forallceC

Transitions of D simulate transitions of S with the same actions, except for those
that involve service; these simulate empty transitions. Given this correspon-
dence, the mapping and the proof are straightforward. The lemma implies that
D implements S in the sense of trace inclusion. Later, we prove the same result
about implementation 7' and specification D, which by transitivity of the “im-
plements” relation implies that T implements S in the sense of trace inclusion.

5 Implementation T

The figure below depicts the major components of the system and their interac-
tions. Set P represents the set of servers. Each server p € P runs an identical
state-machine V.StoD), and serves the clients whose c.proc = p.

request (r)c,, Toply(r)ey rsqusst(r)c;] reply(?‘)ci’ roquest (r)c, reply(r)e, request(r)cg reply(?‘)ca
4

(VStoD,) (V StoD,)

A 4 4 4 4 4 4 A

gpend (m)p gprov(m)g,p safe(m)q,p newvieu(v)p, gpsnd(m)q gprev(m)p, qsafe(m)p q newview(v)q

(Vs)

(PTP)

The I/O automaton T for the service implementation is a composition of the
servers’ layer I = [[. p(VStoD)) with the group-communication service spec-
ification VS [14, see Appendix A] and a collection PT'P of reliable reordering
point-to-point channels between any pair of servers [22, pages 460-461], with all
the output actions of this composition hidden, except for the servers’ replies.

T= hideout([x VS x PTP) — {reply(o).} (I x VS x PTP).

L Given f,g: X = Y, overlay(f,g) is as g over dom(g) and as f elsewhere.

5.1 The Server’s State-Machine VStoD,

The additional type and variable-name convention information appears in Fig-
ure 5. The I/O code for the VStoD, state machine is given in Figures 6 and 7.

Fig. 5 Additional Type Declaration

Var Type Description

Q C P(P) Fixed set of quorums. For any Q € Q and Q' € Q, QNQ" # 0.
g (G, <@g»90) Totally-ordered set of view ids with the smallest element.
v V =G x P(P) An element of this set is called a view. Fields: id and set.
© X =G x (C x Update)* x N Expertise information for exchange process. Fields: zl, us, su.
m M = C x Update+ Messages sent via VS: Either update requests, query requests,

C x Query x N + X or expertise information for exchange process.
pkt Pkt = C X Answer X N x G Packets sent via PTP. (N is index of the witnessed db state.)

The activity of the server’s state-machine can be either normal, marked by
mode being normal, or recovery, marked by mode being either expertise_broadcast
or expertise_collection. Normal activity is associated with the server’s participa-
tion in already established view, while recovery activity — in a newly forming
one. We also distinguish whether or not the server is a member of a primary view,
which is defined as that whose members comprise a quorum (view.set € Q).

Fig. 6 Implementation (VStoD,) : Signature and State Variables

Signature:
Input: Output:
request(r).,” € Request,c € C,c.proc=1p reply(0)c, 0 € Output,c € C,c.proc =p
gprev(m),r ,,m € M,p' € P gpsnd(m),, m € M
safe(im)p ,,m € M,p’ € P ptpsnd(pkt), ,r, pkt € Pkt,p' € P
newview(v)p,v € V Internal:
ptprev(pkt),, ,, pkt € Pkt,p’ € P update(c,u), ¢ € C,u € Update
query(c, ¢, 1), ¢ € C,u € Update
State:
db € DB, initially dbg. Local replica. Next state depends on current and action.

map € C\(c.prgc=p) — Request + Output, Buffer that maps clients to their requests or replies.
initially L.

pending € P(C|(c.proc=p)), initially 0. Set of clients whose requests are being processed.
last € Cl(c.proc=p) = N, Index of the last db state seen by each client.
initially Ol(c.pv‘oc:p) — 0.
updates € (C x Update)™, initially []. Sequence of updates. Indexing from 1. Fields: ¢ and u.
last_update € N, initially 0. Index of the last executed element in updates.
safe_to_update € N, initially 0. Index of the last “safe to update” element in updates.
queries € C — (Query + Answer) X N, Query requests or answers, paired with their last(c).
initially L.
query_counter € N, initially 0. Number of queries received within current view.
view € V, initially Vo = (go, P). Current view of p. Fields: id and set.
mode € {normal, expertise_broadcast, Modes of operation. The last two are for recovery.
expertise_collection}, initially normal.
expertise_level € G, initially go. The highest primary view id that p knows of.
expertise_maz € X, initially (go,[],0). Cumulative expertise collected during recovery.
expert_counter! € N, initially 0. Number of expertise messages received so far.
expert_counter2 € N, initially 0. Number of expertise messages received so far as safe.

Processing of query requests is handled by actions of the type gpsnd(c, ¢,1),,
gpI‘CV(C, q, l)P’ sP query(c; q, l)pa ptpsnd(c; a, l; g)IhP" a‘nd pth‘CV(C, a, l; g)p’J"
The fact that servers of the same view receive query requests in the same order
guarantees that the scheduling function of gprev(c,q,1), , distributes query
requests uniformly among the servers of one view.

Fig. 7 Implementation VStoD,: Transitions

Transitions:
request(r). reply(0)c
Eff: map(c) < r Pre: map(c) = o

Eff: map(c) + L

gpsnd(c, ¢, [)p

Pre: mode = normal gpsnd(c, u)p
g = map(c) A ¢ & pending Pre: mode = normal N view.set € Q
I = last(c) uw = map(c) A ¢ & pending
Eff: pending < pending U c Eff: pending < pending U c
gprev(c, g, 1), , gprev(c,u),r ,
Eff: query-counter <— query-counter + 1 Eff: updates < updates + (c, u)
if (rank(p, view.set) = sate(c,u),s ,

then ZZZ:%;EE’CU)”&Q‘;H;C{ |view.set|) Eff: safe_to_update < safe_to_update + 1
update(c, u)
Pre: last_update < safe_to_update
(¢, u) = updates[last_update + 1]
Eff: last_-update < last-update + 1

query(c, g, [)
Pre: (g, l) € queries(c)
last_update > 1
Eff: queries(c) < (q(db), last_update)

db < u(db)
ptpsnd(c, a,l,9), ./ if (c.proc = p) then
Pre: ¢ € dom(queries) A c.proc =p' pending < pending — c
(a, I) € queries(c) map(c) < ok
g9 = view.id last(c) < last_update

Eff: queries(c) < L
gprcv(w)p/,p

ptprev(c, a, i, g)pl,p Eff: expertise_maz < max y (expertise_mazx, x)
Eff: if (9 = view.id /_C~P7"OC = P) then expert_counterl < expert_counterl + 1
pending < pending — c if (expert_counterl = |view.set|) then
map(c) < a expertise_level < expertise-max.xl
last(c) <1 updates < expertise_mazx.us

safe_-to_update < expertise-max.su
if (view.set € Q) then
expertise_level < view.id

newview(v)p
. queries < L; query_counter <— 0
pending < pending — {c | (3q . (c, ¢) € map)}
safe_to_update < max (safe_to_update,
max{last(c) | c € C A c.proc = p}) safe(z),/ ,

expertise_maz <— expertise_maz Eff: expert_counter2 < expert_-counter2 + 1
expert_counterl < 0; expert_counter2 < 0 if (ezpert_counter2 = |view.set|) then

mode < expertise_broadcast if (view.set € Q) then

view < v safe_to_update < |expertise_maz.us|

pending < pending —
{c|c € pending N
¢ ¢ updates|[(last_update + 1) ..
safe_to_update].c}

gpsnd(x)p
Pre: mode = expertise_broadcast
x = (expertise_level, updates, safe_to_update)

Eff: mode < expertise_collection
mode < normal

Servicing of each query by a background thread query(c,q,!), is allowed
only when the current state of the local database is at least as advanced as the
last state witnessed by its client. This condition is captured by last_update > [.
The non-trivial part of this protocol is that the service actually guarantees that
the servers always have the sufficiently advanced database states to be able to
service the queries that are assigned to them.

When a server learns of its new view, it executes a simple query-related
recovery procedure, in which it moves its own pending queries for reprocessing
and erases any information pertaining to the queries of others.

Processing of update requests is handled by actions of the type gpsnd(c, u),,
gprev(c, u)y p, safe(c,u)y p, and update(c,u). Each server maintains a se-
quence updates of update requests, the purpose of which is to enforce the order in
which updates are applied to the local database replica. The sequence is extended
each time an update request is delivered via a gprcv action. The sequence has two

distinguished prefixes updates[l..safe_to_update] and updates[l..last_update],
called safe and done, that mark respectively those update requests that are
safe to execute and those that have already been executed. The safe prefix is
extended to cover a certain update request on updates sequence when the server
learns that the request has been delivered to all other members of that server’s
view.? The service guarantees that at all times safe and done prefixes of all
servers are consistent (i.e., given any two, one is a prefix of another). Since done
prefixes mark those update requests that have been applied to database replica,
this property implies mutual consistency of database replicas.

When a server learns of its new view, it starts a recovery activity that
is handled by actions of the type newview(v),, gpsnd(x),, gprcv(z)y p, and
safe(x), p. The query-related part of this activity was described above. For
the update-related part, the server has to collaborate with others on ensuring
that the states of all the servers of this view are consistent with their and other
servers’ past execution histories and are suitable for their subsequent normal
activity.

For this purpose, each server has to be able to tell how advanced its state is
compared to those of others. The most important criterion is the latest primary
view of which the server knows. This knowledge may have come directly from
personal participation in that view, or indirectly from another server. The server
keeps track of this information in its state variable ezpertise_level. Two other
criteria are the server’s updates sequence and its safe prefix. The values of these
three variables comprise the server’s expertise.

Definition 1 The cumulative expertise, max y (X), of a set or a sequence, X,
of expertise elements is defined as the following triple

max y (X) = <max<G{az.wl |z € X},
max< {z.us | (r € X) A (z.2l € max<G{az.xl |z e X}},
maxc, {z.su |z € X}).

% Some of the optimistic protocols, such as [16,17], execute requests as soon as they
are delivered by a total order multicast (ABCAST of Horus), but may result in
inconsistent replicas, in which case they have to undo actions and roll the replicas’
states back. On the other hand, pessimistic protocols, which implement strict mutual
conststency among replicas, require additional information before they are able to
execute a delivered request. The pessimistic version in [17] allows for a request to be
executed only when a server collects a majority of acknowledgments, which have to
be multicast by each server once it receives the request. Amir, Dolev, Melliar-Smith,
and Moser in [1,2] eliminate the need for end-to-end acknowledgments by using
total order multicast with safe delivery, i.e., a message delivered to one member is
guaranteed to be delivered to any other member of the same view provided it does
not crash. As pointed out in [14, 13], “A simple 'coordinated attack’ argument (as in
Chapter 5 of [22]) shows that in a partitionable system, this notion of safe delivery
is incompatible with having all recipients in exactly the same view as the sender.”
As a result, protocols based on this multicast primitive are more complicated than
those based on VS, which separates message delivery and safe notification events.

As a first step, the server’s collaboration with others during recovery activity
aims at advancing everyone’s expertise to the highest one known to them — their
cumulative expertise (see Def. 1). Notice that adopting cumulative expertise
of other servers can not cause inconsistency among replicas. The first step is
completed with a delivery of the last expertise message via action gprev(z)y p.

Advancing the server’s expertise achieves two purposes. First, it ensures the
propagation of update requests to previously inaccessible replicas. Second, it
ensures the future ability of servers to process the queries assigned to them.

In addition to advancing their expertise, the servers of primary views have
to ensure their ability to process new update requests once they resume their
normal activity, which subsumes that they have to start normal activity with
identical updates sequences, the entire content of which is safe and contains as
prefixes the safe prefixes of all other servers in the system. For this purpose,
once the server of a primary view learns that all expertise messages have been
delivered to all servers of this view, it extends its safe prefix to cover the entire
updates sequence adopted during the exchange process.

The resultant safe prefix acts as a new base that all servers of the future
primary views will contain in their updates sequences. Attainment of this be-
havior depends on the intersection property of primary views and the fact that
subsequent primary views have higher identifiers.

The established base works as a divider: partially processed update requests
that are not included in the base will never find a way to a safe prefix unless they
are resubmitted by their original servers. Therefore, once a server of a primary
view establishes the base, it moves all pending update requests that are not in
this base back for reprocessing. After this step, the server may resume its normal
activity, which enables it to process new update and query requests.

5.2 Refinement Mapping from T to D

Automaton D has five types of actions. Actions of the types request(r). and
reply(o). are simulated when T takes the corresponding actions. Actions of
the type query(c) are simulated when 7' executes ptprcv(c,a,l,g),p, Wwith
g = p.view.id. The last two types, update(c) and service(c), are both simu-
lated under certain conditions when T executes update(c,u),. We define actions
update(c,u), of T as leading when t[p].last_update = max,{t[p].last_update},
and as native when c.proc = p. Actions that are just leading simulate update(c),
that are just native simulate service(c), that are both leading and native sim-
ulate “update(c),service(c)”, and that are neither simulate empty transitions.

Transitions of T with any other actions simulate empty transitions of D.

Lemma 2 The following function is a refinement from T to D with respect to
reachable states of T and D.3

3If s is “f1, fo,...,fn” with each fi : A — A, and if a € A, then scan(s) =
=“fi,(f20 f1),--.,(fno...0 fo0 f1)” and map(s,a) =“f1(a), f2(a),. .., fala)”.

TD(t:T)— D=

let t.done = t[p].updates[l..t[p].last_update], where p € P is any such that
t[p]-last_update = max,c p{t[p].last_update}

dbs <+ dbo + map (scan(t.done), dby)

map < U,ep t[p].map

last < U,ep t[p].last

delay < {(t.doneli].c, i) |1 < i < |t.done| A t[t.doneli].c.proc].last_update < i}

busy, < t.busy, forall ceC

An invariant will show that sequences of processed requests at different
servers are consistent. In particular, all sequences which have maximum length
are the same. t.done is a derived variable that denotes the longest sequence
of update requests processed in the system. This sequence corresponds to all
modifications done to the database of D, which explains the way TD(t).dbs is
defined. Domain of TD(t).delay consists of ids of update requests that have been
processed somewhere (i.e., in t.done) but not at their native locations (i.e., the
last_update at their native locations have not yet surpassed these update re-
quests). With each ¢ in this domain we associate its position in sequence t.done.
This position corresponds to the last database state witnessed by client ¢, which
explains the way d.delay is defined.

Fig. 8 Invariants used in the proof that T'D() is a refinement mapping (Lemma 2)

I 1 For each server p € P, p.last_update < p.safe_to_update < |p.updates|.

I 2 For any two servers p1 and p2 € P, if the lengths of their done prefizes are the same, then
their done prefizes are the same:

p1-last_update = p2.last_update = pi1.updates[l..pi.last_update] = p2.updates[l..p2.last_update].

I 3 Any update request that is safe somewhere but has not been executed at its native loca-
tion is still reflected in its native map and pending buffers: If (c, v) = p.updates[i] and
c.proc.last_update < i < p.safe_to_update, then (c, u) € c.proc.map and ¢ € c.proc.pending.

I 4 At most one unexecuted update request per each client can appear at that client’s server: For
any client ¢ € C, there exists at most one indexr i € N such that i > c.proc.last_update and
¢ = c.proc.updates[i].c.

I 5 For all PTP packets (c,a,l,g) on a in-transit, , channel, it follows that c.proc = p.
Moreover, if p.view.id = g then

(a) ¢ € dom(p.map) A p.map(c) € Query (d) 1 > p.last(c)

(b) ¢ € p.pending (e) I < maxg{p.last_update}

(¢) a = p.map(c)(compose(p.updates[1..1])(dbo))

The proof of Lemma 2 is straightforward given the five top-level invariants in
Figure 8. To prove these invariants assertionally we have developed an interesting
approach [20]: One of the fundamental invariants states that safe prefixes of
updates sequences at all servers are consistent. To prove this fact, it is not enough
to have properties only about safe prefixes — we need invariants that deal also
with unsafe portions of updates sequences (because the latter become the former
during an execution). Invariants that relate safe prefixes and updates sequences
of different servers depend on the servers’ expertise_level, which may have come

to a server directly from the participation in a primary view, or indirectly from
someone else. In our proof, we have invented a derived function A’ that expresses
recursively the highest expertise achieved by each server in each view in terms
of servers’ expertise in earlier views. In a sense, it presents the law according
to which the replication part of the algorithm operates. The recursive nature of
this function makes proofs by induction easy: proving an inductive step involves
unwinding only one recursive step of the derived function X

6 Future Work

This paper has dealt with safety properties; future work will consider perfor-
mance and fault-tolerance properties, stated conditionally to hold in periods of
good behavior of the underlying network. In particular, we are planning to com-
pare the response time of this algorithm with others which share query load
differently, for example based on recent run-time load reports which are dissem-
inated by multicast.

Other possible extensions to this work involve determining primary views
dynamically, using a service such as the one in [9], and integrating the unicast
message communication into the group communication layer.

References

1. Y. Amir. Replication using Group Communication over a Partitioned Network.
PhD thesis, The Hebrew University of Jerusalem, Israel, 1995.

2. Y. Amir, D. Dolev, P. Melliar-Smith, and L. Moser. Robust and efficient replication
using group communication. Technical Report 94-20, The Hebrew University of
Jerusalem, Israel, 1994.

3. O. Babaoglu, R. Davoli, L. Giachini, and P. Sabattini. The inherent cost of strong-
partial view-synchronous communication. LNCS, 972:72-86, 1995.

4. K. P. Birman. Building Secure and Reliable Network Applications. Manning Pub-
lications Co., Greenwich, CT, 1996.

5. K. P. Birman and R. van Renesse, editors. Reliable Distributed Computing with
the Isis Toolkit. IEEE Computer Society Press, 1994.

6. T.D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the impossibility
of group membership. In Proceedings of the 15th Annual ACM Symposium on
Principles of Distributed Computing, pages 322-330, New York, USA, May 1996.

7. G. V. Chockler, N. Huleihel, and D. Dolev. An adaptive totally ordered multi-
cast protocol that tolerates partitions. In Proceedings of the 17h Annual ACM
Symposium on Principles of Distributed Computing, pages 237—-246, 1998.

8. F. Cristian. Group, majority, and strict agreement in timed asynchronous dis-
tributed systems. In Proceedings of the Twenty-Sizth International Symposium on
Fault-Tolerant Computing, pages 178-189, Washington, June 25-27, 1996. IEEE.

9. R. De Prisco, A. Fekete, N. Lynch, and A. Shvartsman. A dynamic view-oriented
group communication service. In Proceedings of the 17h Annual ACM Symposium
on Principles of Distributed Computing, pages 227-236, 1998.

10. D. Dolev and D. Malki. The Transis approach to high availability cluster commu-
nication. Communications of the ACM, 39(4):64-70, Apr. 1996.

11. D. Dolev, D. Malki, and R. Strong. A framework for partitionable membership
service. Technical Report TR94-6, Department of Computer Science, Hebrew Uni-
versity, 1994.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

P. D. Ezhilchelvan, R. A. Macédo, and S. K. Shrivastava. Newtop: A fault-tolerant
group communication protocol. In Proceedings of the 15th International Conference
on Distributed Computing Systems (ICDCS’95), pages 296-306, Los Alamitos, CA,
USA, May 30 —June 2, 1995. IEEE Computer Society Press.

A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partionable group
communication service. Extended version, http://theory.lcs.mit.edu/tds.

A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partionable group
communication service. In Proceedings of the Sizteenth Annual ACM Symposium
on Principles of Distributed Computing, pages 53—62, Santa Barbara, California,
Aug. 21-24, 1997.

R. Friedman and R. van Renesse. Strong and weak virtual synchrony in Horus.
Technical Report TR95-1537, Cornell University, Computer Science Department,
Aug. 24, 1995.

R. Friedman and A. Vaysburd. Implementing replicated state machines over par-
titionable networks. Technical Report TR96-1581, Cornell University, Computer
Science, Apr. 17, 1996.

R. Friedman and A. Vaysburd. High-performance replicated distributed objects
in partitionable environments. Technical Report TR97-1639, Cornell University,
Computer Science, July 16, 1997.

I. Keidar. A highly available paradigm for consistent object replication. Master’s
thesis, Institute of Computer Science, The Hebrew University of Jerusalem, Israel,
1994.

I. Keidar and D. Dolev. Efficient message ordering in dynamic networks. In Proceed-
ings of the 15th Annual ACM Symposium on Principles of Distributed Computing,
pages 68-76, New York, USA, May 1996.

R. I. Khazan. Group communication as a base for a load-balancing replicated
data service. Master’s thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139, May 1998.
L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers, C-28(9):690—-691, 1979.
N. A. Lynch. Distributed Algorithms. Morgan Kaufmann series in data manage-
ment systems. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, 1996.
N. A. Lynch and M. R. Tuttle. An introduction to input/output automata.
CWI Quarterly, 2(3):219-246, 1989. Also available as MIT Technical Memo
MIT/LCS/TM-373.

L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended vir-
tual synchrony. In Proceedings of the 14th International Conference on Distributed
Computing Systems, pages 56—65, Los Alamitos, CA, USA, June 1994. IEEE Com-
puter Society Press.

L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Ling-
ley-Papadopoulos. Totem: A fault-tolerant multicast group communication system.
Communications of the ACM, 39(4):54-63, Apr. 1996.

A. M. Ricciardi, A. Schiper, and K. P. Birman. Understanding partitions and
the “no partition” assumption. Technical Report TR93-1355, Cornell University,
Computer Science Department, June 1993.

R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible group communi-
cation system. Communications of the ACM, 39(4):76-83, Apr. 1996.

A The VS Specification

The VS specification of [14,13] is reprinted in Figure 9. M denotes a message
alphabet and (G, <(;,g0) is a totally-ordered set of view identifiers with an
initial view identifier. An element of the set V = G x P(P) is called a view. If
v is a view, we write v.id and v.set to denote its components.

Fig.9 VS-machine

Signature:

Input: Internal:

gpsnd(m),, m € M, p € P createview(v), v € views

Output: vs-order(m,p,g), m € M, p€ P, g € G

gprcv(m)p,q hidden g, m € M, p,g € P, g € G
safe(m)p,q hiddenv, m € M, p,q € P, v € views
newview(v),, v € views, p € P, p € v.set

State:
created C V, initially {(go, P)} for each p € P, g € G:
for each p € P: pending[p, g], a finite sequence of M,
current_viewid[p] € G, initially go initially empty
for each g € G: next[p, g] € N>, initially 1
queue[g], a finite sequence of M x P, next_safelp, g] € N>°, initially 1
initially empty
Transitions:
createview(v) gprcv(m)p, ¢, hidden g
Pre: v.id > maxz(g : 35, (g, S) € created) Pre: g = current_viewid[q]
Eff: created < created U {v} queue([g](next(q, g]) = (m, p)
newview(v), Eff: next[q, g] < next[q,g] + 1
Pre: v € created safe(m)p,q, hidden g, S
v.id > current_viewid[p] Pre: g = current_viewid[q]
Eff: current_viewid[p] < v.id (g,8) € created
gpsnd(m), ' o g&egﬁ[i](enesﬂft-safe{m gl) = (m, p)
Eff: append m to pending[p, current_viewid[p]] neat[r, g > neat_safelq, gl
vs-order(m, p, g) Eff: next_safe[q, g] < next_safe[q,g] +1

Pre: m is head of pending[p, g]
Eff: remove head of pending[p, g]
append (m,p) to queuelg]

VS specifies a partitionable service in which, at any moment of time, every
client has precise knowledge of its current view. VS does not require clients
to learn about every view of which they are members, nor does it place any
consistency restrictions on the membership of concurrent views held by different
clients. Its only view-related requirement is that views are presented to each
client according to the total order on view identifiers. VIS provides a multicast
service that imposes a total order on messages submitted within each view, and
delivers them according to this order, with no omissions, and strictly within a
view. In other words, the sequence of messages received by each client while in a
certain view is a prefix of the total order on messages associated with that view.
Separately from the multicast service, VS provides a “safe” notification once a
message has been delivered to all members of the view.

