
Multicast Group Communication as a Base for aLoad-Balancing Replicated Data ServiceRoger Khazan1, Alan Fekete2, and Nancy Lynch11 MIT LCS, 545 Technology Square, NE43-365, Cambridge, MA 02139, USA.2 Basser Dept. of CS, Madsen F09, University of Sydney, NSW 2006, Australia.Abstract. We give a rigorous account of an algorithm that providessequentially consistent replicated data on top of the view synchronousgroup communication service previously speci�ed by Fekete, Lynch andShvartsman. The algorithm performs updates at all members of a major-ity view, but rotates the work of queries among the members to equalizethe load. The algorithm is presented and veri�ed using I/O automata.1 IntroductionMulticast group communication services are important building blocks for fault-tolerant applications that require reliable and ordered communication amongmultiple parties. These services manage their clients as collections of dynami-cally changing groups and provide strong intra-group multicast primitives. Toremedy the existing lack of good speci�cations for these services and to facili-tate consensus on what properties these services should exhibit, Fekete, Lynchand Shvartsman recently gave a simple automaton speci�cation VS for a view-synchronous group communication service and demonstrated its power by usingit to support a totally-ordered broadcast application TO [14, 13]. In this paper,we use VS to support a second application: a replicated data service that loadbalances queries and guarantees sequential consistency.The service maintains a data object replicated at a �xed set of servers ina consistent and transparent fashion and enables the clients to update andquery this object. We assume the underlying network is asynchronous, strongly-connected, and subject to processor and communication failures and recoveriesinvolving omission, crashing or delay, but not Byzantine failures. The failuresand recoveries may cause the network or its components to partition and merge.The biggest challenge for the service is to cope with network partitioning whilepreserving correctness and maintaining liveness.We assume that executed updates cannot be undone, which implies thatupdate operations must be processed in the same order everywhere. To avoidinconsistencies, the algorithm allows updates to occur only in primary com-ponents. Following the commonly used de�nition, primary components are de-�ned as those containing a majority (or more generally a quorum) of all servers.Nonempty intersection of any two majorities (quorums) guarantees the existenceof at most one primary at a given time and allows for the necessary
ow of in-formation between consecutive primaries. Our service guarantees processing of

update requests whenever there is a stable primary component, regardless of thepast network perturbations.On the other hand, processing of queries is not restricted to primary compo-nents, and is guaranteed provided the client's component eventually stabilizes.The service uses a round-robin load-balancing strategy to distribute queries toeach server evenly within each component. This strategy makes sense in com-monly occurring situations when queries take approximately the same amountof time, which is signi�cant. Each query is processed with respect to a data statethat is at least as advanced as the last state witnessed by the query's client. Theservice is arranged in such a way that the servers are always able to process theassigned queries, that is they are not blocked by missing update information.Architecturally, the service consists of the servers' layer and the commu-nication layer. The servers' layer is symmetric: all servers run identical state-machines. The communication layer consists of two parts, a group communi-cation service satisfying VS , and a collection of individual channels providingreliable reordering point-to-point communication between all pairs of servers.The servers use the group communication service to disseminate update andquery requests to the members of their groups and rely on the properties of thisservice to enforce the formation of identical sequences of update requests at allservers and to schedule query requests correctly. The point-to-point channels areused to send the results of processed queries directly to the original servers.Related WorkGroup communication. A good overview of the rational and usefulness of groupcommunication services is given in [4]. Examples of implemented group commu-nication services are Isis [5], Transis [10], Totem [25], Newtop [12], Relacs [3]and Horus [27]. Di�erent services di�er in the way they manage groups and inthe speci�c ordering and delivery properties of their multicast primitives. Eventhough there is no consensus on what properties these services should provide,a typical requirement is to deliver messages in total order and within a view.To be most useful, group communication services have to come with precisedescriptions of their behavior. Many speci�cations have been proposed using arange of di�erent formalisms [3, 6, 8, 11, 15, 24, 26]. Fekete, Lynch, and Shvarts-man recently presented the VS speci�cation for a partitionable group commu-nication service. Please refer to [14] for a detailed description and comparison ofVS with other speci�cations.Several papers have since extended the VS speci�cation. Chockler, Huleihel,and Dolev [7] have used the same style to specify a virtually synchronous FIFOgroup communication service and to model an adaptive totally-ordered groupcommunication service. De Prisco, Fekete, Lynch and Shvartsman [9] have pre-sented a speci�cation for group communication service that provides a dynamicnotion of primary view.Replication and Load Balancing. The most popular application of group com-munication services is for maintaining coherent replicated data through apply-ing all operations in the same sequence at all copies. The details of doing this

in partitionable systems have been studied by Amir, Dolev, Friedman, Keidar,Melliar-Smith, Moser, and Vaysburd [18, 2, 1, 19, 16, 17].In his recent book [4, p. 329], Birman points out that process groups areideally suited for fault-tolerant load-balancing. He suggests two styles of load-balancing algorithms. In the �rst, more traditional, style, scheduling decisionsare made by clients, and tasks are sent directly to the assigned servers. In thesecond style, tasks are multicast to all servers in the group; each server thenapplies a deterministic rule to decide on whether to accept each particular task.In this paper, we use a round-robin strategy originally suggested by Bir-man [4, p. 329]. According to this strategy, query requests are sent to the serversusing totally-ordered multicast; the ith request delivered in a group of n serversis assigned to the server whose rank within this group is (i mod n). This strat-egy relies on the fact that all servers receive requests in the same order, andguarantees a uniform distribution of requests among the servers of each group.We extend this strategy with a fail-over policy that reissues requests when groupmembership changes.Sequential Consistency. There are many di�erent ways in which a collection ofreplicas may provide the appearance of a single shared data object. The sem-inal work in de�ning these precisely is Lamport's concept of sequential consis-tency [21]. A system provides sequential consistency when for every executionof the system, there is an execution with a single shared object that is indis-tinguishable to each individual client. A much stronger coherence property isatomicity, where a universal observer can't distinguish the execution of the sys-tem from one with a single shared object. The algorithm of this paper providesan intermediate condition where the updates are atomic, but queries may seeresults that are not as up-to-date as those previously seen by other clients.Contributions of this paperThis paper presents a new algorithm for providing replicated data on top ofa partitionable group communication system, in which the work of processingqueries is rotated among the group replicas in a round-robin fashion. While thealgorithm is based on previous ideas (the load-balancing processing of queries istaken from [4] and the update processing relates to [18, 2, 1, 19]) we are unawareof a previously published account of a way to integrate these. In particular, weshow how queries can be processed in minority partitions, and how to ensurethat the servers always have su�ciently advanced states to process the queries.Another important advance in this work is that it shows how a veri�cationcan use some of the stronger properties of VS . Previous work [14] veri�ed TO ,an application in which all nodes within a view process messages identically (ina sense, the TO application is anonymous, since a node uses its identity only togenerate unique labels). The proof in [14] uses the property of agreed messagesequence, but it does not pay attention to the identical view of membership atall recipients. In contrast, this paper's load-balancing algorithm (and thus theproof) uses the fact that di�erent recipients have the same membership set whenthey decide which member will respond to a query.

The rest of the paper is organized as follows. Section 2 introduces basic termi-nology. Section 3 presents a formal speci�cation for clients' view of the replicatedservice. Section 4 contains an intermediate speci�cation for the service, the pur-pose of which is to simplify the proof of correctness. Section 5 presents an I/Oautomaton for the server's state-machine and outlines the proof of correctness.2 Mathematical FoundationsWe use standard and self-explanatory notation on sets, sequences, total func-tions (!), and partial functions (,!). Somewhat non-standard is our use ofdisjoint unions (+), which di�ers from the usual set union ([) in that each ele-ment is implicitly tagged with what component it comes from. For simplicity, weuse variable name conventions to avoid more formal \injection functions" and\matching constructs." Thus, for example, if Update and Query are the respec-tive types for update and query requests, then type Request = Update +Queryde�nes a general request type. Furthermore, if req 2 Request , and u and q are theestablished variable conventions for Update and Query types, then \req u"and \req = q" are both valid statements.The modeling is done in the framework of the I/O automaton model of Lynchand Tuttle [23] (without fairness), also described in Chapter 8 of [22]. An I/Oautomaton is a simple state-machine in which the transitions are associatedwith named actions, which can be either input, output, or internal. The �rsttwo are externally visible, and the last two are locally controlled. I/O automataare input-enabled, i.e., they cannot control their input actions. An automaton isde�ned by its signature (input, output and internal actions), set of states, setof start states, and a state-transition relation (a cross-product between states,actions, and states). An execution fragment is an alternating sequence of statesand actions consistent with the transition relation. An execution is an execu-tion fragment that begins with a start state. The subsequence of an executionconsisting of all the external actions is called a trace. The external behavior iscaptured by the set of traces generated by its executions. Execution fragmentscan be concatenated. Compatible I/O automata can be composed to yield acomplex system from individual components. The composition identi�es actionswith the same name in di�erent component automata. When any componentautomata performs a step involving action �, so do all component automatathat have � in their signatures. The hiding operation reclassi�es output actionsof an automaton as internal.Invariants of an automaton are properties that are true in all reachable statesof that automaton. They are usually proved by induction on the length of theexecution sequence. A re�nement mapping is a single-valued simulation relation.To prove that one automaton implements another in the sense of trace inclusion,it is su�cient to present a re�nement mapping from the �rst to the second. Afunction is proved to be a re�nement mapping by carrying out a simulationproof, which usually relies on invariants (see Chapter 8 of [22]).We describe the transition relation in a precondition-e�ect style (as in [22]),which groups together all the transitions that involve each particular type ofaction into a single atomic piece of code.

To access components of compound objects we use the dot notation. Thus, ifdbs is a state variable of an automaton, then its instance in a state s is expressedas s:dbs . Likewise, if view is a state variable of a server p, then its instance in astate t is expressed as t[p]:view or as p:view if t is clear from the discussion.3 Service Speci�cation SIn this section, we formally specify our replicated data service by giving a cen-tralized I/O automaton S that de�nes its allowed behavior. The complete infor-mation on basic and derived types, along with a convention for variable usage,is given in Figure 1. The automaton S appears in Figure 2.Fig. 1 Type informationVar Type Descriptionc C Finite set of client IDs. (c:proc refers to the server of c).db DB Database type with a distinguished initial value db0.a Answer Answer type for queries. Answers for updates are fokg.u Update : DB ! DB Updates are functions from database states to database states.q Query : DB ! Answer Queries are functions from database states to answers.r Request = Update +Query Request is a disjoint union of Update and Query types.o Output = Answer + fokg Output is a disjoint union of Answer and fokg types.The interface between the service and its blocking clients is typical of aclient-server architecture: Clients' requests are delivered to S via input actionsof the form request(r)c, representing the submission of request r by a client c; Sreplies to its clients via actions of the form reply(o)c, representing the deliveryof output value o to a client c.If our service were to satisfy atomicity (i.e., behave as a non-replicated ser-vice), then speci�cation S would include a state variable db of type DB andwould apply update and query requests to the latest value of this variable. Inthe replicated system, this would imply that processing of query requests wouldhave to be restricted to the primary components of the network.In order to eliminate this restriction and thus increase the availability of theservice, we give a slightly weaker speci�cation, which does not require queries tobe processed with respect to the latest value of db, only with respect to the valuethat is at least as advanced as the last one witnessed by the queries' client. Forthis purpose, S maintains a history dbs of database states and keeps an indexlast(c) to the latest state seen by each client c.Even though our service is not atomic, it still appears to each particularclient as a non-replicated one, and thus, satis�es sequential consistency. Notethat, since the atomicity has been relaxed only for queries, the service is actuallystronger than the weakest one allowed by sequential consistency.The assumption that clients block (i.e., do not submit any new requests untilthey get replies for their current ones) cannot be expressed within automaton Sbecause, as an I/O automaton, it is input-enabled. To express this assumptionformally, we close S by composing it with the automaton Env = Qc2C(Cc),where each Cc models a nondeterministic blocking client c (see Figure 3); Realblocking clients can be shown to implement this automaton. In the closed au-tomaton S, the request actions are forced to alternate with the reply actions,

Fig. 2 Speci�cation SSignature:Input:request(r)c; r 2 Request; c 2 COutput:reply(o)c; o 2 Output; c 2 C Internal:update(c; u); c 2 C; u 2 Updatequery(c; q; l); c 2 C; q 2 Query; l 2 NState:dbs 2 SEQ0 DB, initially db0. Sequence of database states. Indexing from 0 to jdbsj � 1.map 2 C ,! (Request +Output), initially ?. Bu�er for the clients' pending requests or replies.last 2 C ! N , initially f� ! 0g. Index of the last db state witnessed by id.Transitions:request(r)cE�: map(c) r reply(o)cPre: map(c) = oE�: map(c) ?update(c; u)Pre: u = map(c)E�: dbs dbs + u(dbs[jdbsj � 1])map(c) oklast(c) jdbsj � 1 query(c; q; l)Pre: q = map(c)last(c) � l � jdbsj � 1E�: map(c) q(dbs[l])last(c) lwhich models the assumed behavior. In the rest of the paper, we consider theclosed versions of the presented automata, denoting them with a bar (e.g., S).Fig. 3 Client Speci�cation CcSignature:Input:reply(o)c; o 2 Output Output:request(r)c; r 2 RequestState: busy 2 Bool, initially false. Status
ag. Keeps track of whether there is a pending request.Transitions:request(r)cPre: busy = falseE�: busy true reply(o)cE�: busy false4 Intermediate Speci�cation DAction update of speci�cation S accomplishes two logical tasks: It updates thecentralized database, and it sets client-speci�c variables, map(c) and last(c), totheir new values. In a distributed setting, these two tasks are generally accom-plished by two separate transitions. To simplify the re�nement mapping betweenthe implementation and the speci�cation, we introduce an intermediate layer D(see Figure 4), in which these tasks are separated. D is formed by splittingFig. 4 Intermediate Speci�cation DSignature: Same as in S, with the addition of an internal action service(c); c 2 C.State: Same as in S, with the addition of a state variable delay 2 C ,! N , initially ?.Transitions: Same as in S, except update is modi�ed and service is de�ned.update(c; u)Pre: u = map(c)c 62 dom(delay)E�: dbs dbs + u(dbs[jdbsj � 1])delay(c) jdbsj � 1 service(c)Pre: c 2 dom(delay)E�: map(c) oklast(c) delay(c)delay(c) ?each update action of S into two, update and service. The �rst one extends

dbs with a new database state, but instead of setting map(c) to \ok" and last(c)to its new value as in S, it saves this value (i.e., the index to the most recentdatabase state witnessed by c) in delay bu�er. The second action sets map(c)to \ok" and uses information stored in delay to set last(c) to its value.Lemma 1 The following function DS() is a re�nement from D to S with respectto reachable states of D and S.1DS(d : D)! S =s:dbs d:dbss:map overlay(d:map ; fhc; oki j c 2 dom(d:delay)g)s:last overlay(d:last ; d:delay)s:busyc d:busyc for all c 2 CTransitions of D simulate transitions of S with the same actions, except for thosethat involve service; these simulate empty transitions. Given this correspon-dence, the mapping and the proof are straightforward. The lemma implies thatD implements S in the sense of trace inclusion. Later, we prove the same resultabout implementation T and speci�cation D, which by transitivity of the \im-plements" relation implies that T implements S in the sense of trace inclusion.5 Implementation TThe �gure below depicts the major components of the system and their interac-tions. Set P represents the set of servers. Each server p 2 P runs an identicalstate-machine VStoDp and serves the clients whose c:proc = p.
gprcv(m)q;prequest(r)c0p reply(r)c0qrequest(r)c0qrequest(r)cq

V SPTP
V StoDp V StoDqrequest(r)cpgpsnd(m)p reply(r)cqreply(r)cp newview(v)psafe(m)q;p safe(m)p;qgprcv(m)p;qgpsnd(m)qreply(r)c0p newview(v)q

The I/O automaton T for the service implementation is a composition of theservers' layer I = Qp2P (VStoDp) with the group-communication service spec-i�cation VS [14, see Appendix A] and a collection PTP of reliable reorderingpoint-to-point channels between any pair of servers [22, pages 460-461], with allthe output actions of this composition hidden, except for the servers' replies.T = hideout(I �VS � PTP)� freply(o)cg�I �VS � PTP �:1 Given f; g : X ,! Y , overlay(f; g) is as g over dom(g) and as f elsewhere.

5.1 The Server's State-Machine VStoDpThe additional type and variable-name convention information appears in Fig-ure 5. The I/O code for the VStoDp state machine is given in Figures 6 and 7.Fig. 5 Additional Type DeclarationVar Type DescriptionQ � P(P) Fixed set of quorums. For any Q 2 Q and Q0 2 Q, Q \Q0 6= ;.g hG;<G; g0i Totally-ordered set of view ids with the smallest element.v V = G� P(P) An element of this set is called a view. Fields: id and set.x X = G� (C �Update)� �N Expertise information for exchange process. Fields: xl, us, su.m M = C �Update+ Messages sent via VS : Either update requests, query requests,C �Query �N +X or expertise information for exchange process.pkt Pkt = C �Answer �N �G Packets sent via PTP . (N is index of the witnessed db state.)The activity of the server's state-machine can be either normal, marked bymode being normal , or recovery, marked bymode being either expertise broadcastor expertise collection . Normal activity is associated with the server's participa-tion in already established view, while recovery activity | in a newly formingone. We also distinguish whether or not the server is a member of a primary view,which is de�ned as that whose members comprise a quorum (view :set 2 Q).Fig. 6 Implementation (VStoDp) : Signature and State VariablesSignature:Input:request(r)c; r 2 Request; c 2 C; c:proc = pgprcv(m)p0;p;m 2 M ; p0 2 Psafe(m)p0;p;m 2 M ; p0 2 Pnewview(v)p; v 2 Vptprcv(pkt)p0;p; pkt 2 Pkt; p0 2 P Output:reply(o)c; o 2 Output; c 2 C; c:proc = pgpsnd(m)p;m 2 Mptpsnd(pkt)p;p0 ; pkt 2 Pkt; p0 2 PInternal:update(c; u); c 2 C; u 2 Updatequery(c; q; l); c 2 C; u 2 UpdateState:db 2 DB, initially db0. Local replica. Next state depends on current and action.map 2 Cj(c:proc=p) ,! Request +Output , Bu�er that maps clients to their requests or replies.initially ?.pending 2 P(Cj(c:proc=p)), initially ;. Set of clients whose requests are being processed.last 2 Cj(c:proc=p) ! N , Index of the last db state seen by each client.initially Cj(c:proc=p) ! 0.updates 2 (C �Update)�, initially []. Sequence of updates. Indexing from 1. Fields: c and u.last update 2 N , initially 0. Index of the last executed element in updates.safe to update 2 N , initially 0. Index of the last \safe to update" element in updates.queries 2 C ,! (Query +Answer)�N , Query requests or answers, paired with their last(c).initially ?.query counter 2 N , initially 0. Number of queries received within current view.view 2 V , initially V0 = hg0; Pi. Current view of p. Fields: id and set.mode 2 fnormal; expertise broadcast; Modes of operation. The last two are for recovery.expertise collectiong, initially normal.expertise level 2 G, initially g0. The highest primary view id that p knows of.expertise max 2 X , initially hg0; []; 0i. Cumulative expertise collected during recovery.expert counter1 2 N , initially 0. Number of expertise messages received so far.expert counter2 2 N , initially 0. Number of expertise messages received so far as safe.Processing of query requests is handled by actions of the type gpsnd(c; q; l)p,gprcv(c; q; l)p0;p, query(c; q; l)p, ptpsnd(c; a; l ; g)p;p0 , and ptprcv(c; a; l ; g)p0;p.The fact that servers of the same view receive query requests in the same orderguarantees that the scheduling function of gprcv(c; q; l)p0;p distributes queryrequests uniformly among the servers of one view.

Fig. 7 Implementation VStoDp: TransitionsTransitions:request(r)cE�: map(c) rgpsnd(c; q; l)pPre: mode = normalq = map(c) ^ c 62 pendingl = last(c)E�: pending pending [cgprcv(c; q; l)p0;pE�: query counter query counter + 1if (rank(p; view:set) =query counter mod jview:setj)then queries(c) hq; liquery(c; q; l)Pre: hq; li 2 queries(c)last update � lE�: queries(c) hq(db); last updateiptpsnd(c; a; l; g)p;p0Pre: c 2 dom(queries) ^ c:proc = p0ha; li 2 queries(c)g = view :idE�: queries(c) ?ptprcv(c; a; l; g)p0;pE�: if (g = view:id ^ c:proc = p) thenpending pending � cmap(c) alast(c) lnewview(v)pE�: queries ?; query counter 0pending pending � fc j (9 q : hc; qi 2 map)gsafe to update max �safe to update;maxflast(c) j c 2 C ^ c:proc = pg�expertise max expertise max0expert counter1 0; expert counter2 0mode expertise broadcastview vgpsnd(x)pPre: mode = expertise broadcastx = hexpertise level;updates; safe to updateiE�: mode expertise collection

reply(o)cPre: map(c) = oE�: map(c) ?gpsnd(c; u)pPre: mode = normal ^ view:set 2 Qu = map(c) ^ c 62 pendingE�: pending pending [cgprcv(c; u)p0;pE�: updates updates + hc; uisafe(c; u)p0;pE�: safe to update safe to update + 1update(c; u)Pre: last update < safe to updatehc; ui = updates[last update + 1]E�: last update last update + 1db u(db)if (c:proc = p) thenpending pending � cmap(c) oklast(c) last updategprcv(x)p0;pE�: expertise max maxX (expertise max ; x)expert counter1 expert counter1 + 1if (expert counter1 = jview:setj) thenexpertise level expertise max :xlupdates expertise max :ussafe to update expertise max :suif (view:set 2 Q) thenexpertise level view :idsafe(x)p0;pE�: expert counter2 expert counter2 + 1if (expert counter2 = jview:setj) thenif (view:set 2 Q) thensafe to update jexpertise max :usjpending pending �fc j c 2 pending ^c 62 updates[(last update + 1) : :safe to update]:cgmode normalServicing of each query by a background thread query(c; q; l)p is allowedonly when the current state of the local database is at least as advanced as thelast state witnessed by its client. This condition is captured by last update � l .The non-trivial part of this protocol is that the service actually guarantees thatthe servers always have the su�ciently advanced database states to be able toservice the queries that are assigned to them.When a server learns of its new view, it executes a simple query-relatedrecovery procedure, in which it moves its own pending queries for reprocessingand erases any information pertaining to the queries of others.Processing of update requests is handled by actions of the type gpsnd(c; u)p,gprcv(c; u)p0;p, safe(c; u)p0;p, and update(c; u). Each server maintains a se-quence updates of update requests, the purpose of which is to enforce the order inwhich updates are applied to the local database replica. The sequence is extendedeach time an update request is delivered via a gprcv action. The sequence has two

distinguished pre�xes updates [1::safe to update] and updates [1::last update],called safe and done, that mark respectively those update requests that aresafe to execute and those that have already been executed. The safe pre�x isextended to cover a certain update request on updates sequence when the serverlearns that the request has been delivered to all other members of that server'sview.2 The service guarantees that at all times safe and done pre�xes of allservers are consistent (i.e., given any two, one is a pre�x of another). Since donepre�xes mark those update requests that have been applied to database replica,this property implies mutual consistency of database replicas.When a server learns of its new view, it starts a recovery activity thatis handled by actions of the type newview(v)p, gpsnd(x)p, gprcv(x)p0 ;p, andsafe(x)p0 ;p. The query-related part of this activity was described above. Forthe update-related part, the server has to collaborate with others on ensuringthat the states of all the servers of this view are consistent with their and otherservers' past execution histories and are suitable for their subsequent normalactivity.For this purpose, each server has to be able to tell how advanced its state iscompared to those of others. The most important criterion is the latest primaryview of which the server knows. This knowledge may have come directly frompersonal participation in that view, or indirectly from another server. The serverkeeps track of this information in its state variable expertise level . Two othercriteria are the server's updates sequence and its safe pre�x. The values of thesethree variables comprise the server's expertise.De�nition 1 The cumulative expertise, maxX (X), of a set or a sequence, X,of expertise elements is de�ned as the following triplemaxX (X) =
max<Gfx:xl j x 2 Xg;max<jjfx:us j (x 2 X) ^ (x:xl 2 max<Gfx:xl j x 2 Xg)g;max<N fx:su j x 2 Xg�:2 Some of the optimistic protocols, such as [16, 17], execute requests as soon as theyare delivered by a total order multicast (ABCAST of Horus), but may result ininconsistent replicas, in which case they have to undo actions and roll the replicas'states back. On the other hand, pessimistic protocols, which implement strict mutualconsistency among replicas, require additional information before they are able toexecute a delivered request. The pessimistic version in [17] allows for a request to beexecuted only when a server collects a majority of acknowledgments, which have tobe multicast by each server once it receives the request. Amir, Dolev, Melliar-Smith,and Moser in [1, 2] eliminate the need for end-to-end acknowledgments by usingtotal order multicast with safe delivery, i.e., a message delivered to one member isguaranteed to be delivered to any other member of the same view provided it doesnot crash. As pointed out in [14, 13], \A simple 'coordinated attack' argument (as inChapter 5 of [22]) shows that in a partitionable system, this notion of safe deliveryis incompatible with having all recipients in exactly the same view as the sender."As a result, protocols based on this multicast primitive are more complicated thanthose based on VS , which separates message delivery and safe noti�cation events.

As a �rst step, the server's collaboration with others during recovery activityaims at advancing everyone's expertise to the highest one known to them | theircumulative expertise (see Def. 1). Notice that adopting cumulative expertiseof other servers can not cause inconsistency among replicas. The �rst step iscompleted with a delivery of the last expertise message via action gprcv(x)p0 ;p.Advancing the server's expertise achieves two purposes. First, it ensures thepropagation of update requests to previously inaccessible replicas. Second, itensures the future ability of servers to process the queries assigned to them.In addition to advancing their expertise, the servers of primary views haveto ensure their ability to process new update requests once they resume theirnormal activity, which subsumes that they have to start normal activity withidentical updates sequences, the entire content of which is safe and contains aspre�xes the safe pre�xes of all other servers in the system. For this purpose,once the server of a primary view learns that all expertise messages have beendelivered to all servers of this view, it extends its safe pre�x to cover the entireupdates sequence adopted during the exchange process.The resultant safe pre�x acts as a new base that all servers of the futureprimary views will contain in their updates sequences. Attainment of this be-havior depends on the intersection property of primary views and the fact thatsubsequent primary views have higher identi�ers.The established base works as a divider: partially processed update requeststhat are not included in the base will never �nd a way to a safe pre�x unless theyare resubmitted by their original servers. Therefore, once a server of a primaryview establishes the base, it moves all pending update requests that are not inthis base back for reprocessing. After this step, the server may resume its normalactivity, which enables it to process new update and query requests.5.2 Re�nement Mapping from T to DAutomaton D has �ve types of actions. Actions of the types request(r)c andreply(o)c are simulated when T takes the corresponding actions. Actions ofthe type query(c) are simulated when T executes ptprcv(c; a; l ; g)p0;p withg = p:view :id . The last two types, update(c) and service(c), are both simu-lated under certain conditions when T executes update(c; u)p. We de�ne actionsupdate(c; u)p of T as leading when t[p]:last update = max}ft[}]:last updateg,and as native when c:proc = p. Actions that are just leading simulate update(c),that are just native simulate service(c), that are both leading and native sim-ulate \update(c),service(c)", and that are neither simulate empty transitions.Transitions of T with any other actions simulate empty transitions of D.Lemma 2 The following function is a re�nement from T to D with respect toreachable states of T and D.33 If s is \f1; f2; : : : ; fn" with each fi : A ! A, and if a 2 A, then scan(s) == \f1; (f2 � f1); : : : ; (fn � : : : � f2 � f1)" and map(s; a) =\f1(a); f2(a); : : : ; fn(a)".

TD(t : T)! D =let t:done = t[}]:updates [1::t[}]:last update], where } 2 P is any such thatt[}]:last update = maxp2P ft[p]:last updategdbs db0 +map (scan(t:done); db0)map Sp2P t[p]:maplast Sp2P t[p]:lastdelay fht:done [i]:c; ii j 1 � i � jt:done j ^ t[t:done [i]:c:proc]:last update < igbusyc t:busyc for all c 2 CAn invariant will show that sequences of processed requests at di�erentservers are consistent. In particular, all sequences which have maximum lengthare the same. t:done is a derived variable that denotes the longest sequenceof update requests processed in the system. This sequence corresponds to allmodi�cations done to the database of D, which explains the way TD(t):dbs isde�ned. Domain of TD(t):delay consists of ids of update requests that have beenprocessed somewhere (i.e., in t:done) but not at their native locations (i.e., thelast update at their native locations have not yet surpassed these update re-quests). With each c in this domain we associate its position in sequence t:done .This position corresponds to the last database state witnessed by client c, whichexplains the way d:delay is de�ned.Fig. 8 Invariants used in the proof that TD() is a re�nement mapping (Lemma 2)I 1 For each server p 2 P , p:last update � p:safe to update � jp:updatesj.I 2 For any two servers p1 and p2 2 P , if the lengths of their done pre�xes are the same, thentheir done pre�xes are the same:p1:last update = p2:last update) p1:updates[1::p1:last update] = p2:updates[1::p2:last update]:I 3 Any update request that is safe somewhere but has not been executed at its native loca-tion is still re
ected in its native map and pending bu�ers: If hc; ui = p:updates[i] andc:proc:last update < i � p:safe to update, then hc; ui 2 c:proc:map and c 2 c:proc:pending.I 4 At most one unexecuted update request per each client can appear at that client's server: Forany client c 2 C, there exists at most one index i 2 N such that i > c:proc:last update andc = c:proc:updates[i]:c.I 5 For all PTP packets hc; a; l; gi on a in-transitp0;p channel, it follows that c:proc = p.Moreover, if p:view:id = g then(a) c 2 dom(p:map) ^ p:map(c) 2 Query (d) l � p:last(c)(b) c 2 p:pending (e) l � max}f}:last updateg(c) a = p:map(c)(compose(p:updates[1::l])(db0))The proof of Lemma 2 is straightforward given the �ve top-level invariants inFigure 8. To prove these invariants assertionally we have developed an interestingapproach [20]: One of the fundamental invariants states that safe pre�xes ofupdates sequences at all servers are consistent. To prove this fact, it is not enoughto have properties only about safe pre�xes | we need invariants that deal alsowith unsafe portions of updates sequences (because the latter become the formerduring an execution). Invariants that relate safe pre�xes and updates sequencesof di�erent servers depend on the servers' expertise level , which may have come

to a server directly from the participation in a primary view, or indirectly fromsomeone else. In our proof, we have invented a derived function X that expressesrecursively the highest expertise achieved by each server in each view in termsof servers' expertise in earlier views. In a sense, it presents the law accordingto which the replication part of the algorithm operates. The recursive nature ofthis function makes proofs by induction easy: proving an inductive step involvesunwinding only one recursive step of the derived function X .6 Future WorkThis paper has dealt with safety properties; future work will consider perfor-mance and fault-tolerance properties, stated conditionally to hold in periods ofgood behavior of the underlying network. In particular, we are planning to com-pare the response time of this algorithm with others which share query loaddi�erently, for example based on recent run-time load reports which are dissem-inated by multicast.Other possible extensions to this work involve determining primary viewsdynamically, using a service such as the one in [9], and integrating the unicastmessage communication into the group communication layer.References1. Y. Amir. Replication using Group Communication over a Partitioned Network.PhD thesis, The Hebrew University of Jerusalem, Israel, 1995.2. Y. Amir, D. Dolev, P. Melliar-Smith, and L. Moser. Robust and e�cient replicationusing group communication. Technical Report 94-20, The Hebrew University ofJerusalem, Israel, 1994.3. O. Babaoglu, R. Davoli, L. Giachini, and P. Sabattini. The inherent cost of strong-partial view-synchronous communication. LNCS, 972:72{86, 1995.4. K. P. Birman. Building Secure and Reliable Network Applications. Manning Pub-lications Co., Greenwich, CT, 1996.5. K. P. Birman and R. van Renesse, editors. Reliable Distributed Computing withthe Isis Toolkit. IEEE Computer Society Press, 1994.6. T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the impossibilityof group membership. In Proceedings of the 15th Annual ACM Symposium onPrinciples of Distributed Computing, pages 322{330, New York, USA, May 1996.7. G. V. Chockler, N. Huleihel, and D. Dolev. An adaptive totally ordered multi-cast protocol that tolerates partitions. In Proceedings of the 17h Annual ACMSymposium on Principles of Distributed Computing, pages 237{246, 1998.8. F. Cristian. Group, majority, and strict agreement in timed asynchronous dis-tributed systems. In Proceedings of the Twenty-Sixth International Symposium onFault-Tolerant Computing, pages 178{189, Washington, June 25{27, 1996. IEEE.9. R. De Prisco, A. Fekete, N. Lynch, and A. Shvartsman. A dynamic view-orientedgroup communication service. In Proceedings of the 17h Annual ACM Symposiumon Principles of Distributed Computing, pages 227{236, 1998.10. D. Dolev and D. Malki. The Transis approach to high availability cluster commu-nication. Communications of the ACM, 39(4):64{70, Apr. 1996.11. D. Dolev, D. Malki, and R. Strong. A framework for partitionable membershipservice. Technical Report TR94-6, Department of Computer Science, Hebrew Uni-versity, 1994.

12. P. D. Ezhilchelvan, R. A. Macêdo, and S. K. Shrivastava. Newtop: A fault-tolerantgroup communication protocol. In Proceedings of the 15th International Conferenceon Distributed Computing Systems (ICDCS'95), pages 296{306, Los Alamitos, CA,USA, May 30 {June 2, 1995. IEEE Computer Society Press.13. A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partionable groupcommunication service. Extended version, http://theory.lcs.mit.edu/tds.14. A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partionable groupcommunication service. In Proceedings of the Sixteenth Annual ACM Symposiumon Principles of Distributed Computing, pages 53{62, Santa Barbara, California,Aug. 21{24, 1997.15. R. Friedman and R. van Renesse. Strong and weak virtual synchrony in Horus.Technical Report TR95-1537, Cornell University, Computer Science Department,Aug. 24, 1995.16. R. Friedman and A. Vaysburd. Implementing replicated state machines over par-titionable networks. Technical Report TR96-1581, Cornell University, ComputerScience, Apr. 17, 1996.17. R. Friedman and A. Vaysburd. High-performance replicated distributed objectsin partitionable environments. Technical Report TR97-1639, Cornell University,Computer Science, July 16, 1997.18. I. Keidar. A highly available paradigm for consistent object replication. Master'sthesis, Institute of Computer Science, The Hebrew University of Jerusalem, Israel,1994.19. I. Keidar and D. Dolev. E�cient message ordering in dynamic networks. In Proceed-ings of the 15th Annual ACM Symposium on Principles of Distributed Computing,pages 68{76, New York, USA, May 1996.20. R. I. Khazan. Group communication as a base for a load-balancing replicateddata service. Master's thesis, Department of Electrical Engineering and ComputerScience, Massachusetts Institute of Technology, Cambridge, MA 02139, May 1998.21. L. Lamport. How to make a multiprocessor computer that correctly executesmultiprocess programs. IEEE Transactions on Computers, C-28(9):690{691, 1979.22. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann series in data manage-ment systems. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, 1996.23. N. A. Lynch and M. R. Tuttle. An introduction to input/output automata.CWI Quarterly, 2(3):219{246, 1989. Also available as MIT Technical MemoMIT/LCS/TM-373.24. L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended vir-tual synchrony. In Proceedings of the 14th International Conference on DistributedComputing Systems, pages 56{65, Los Alamitos, CA, USA, June 1994. IEEE Com-puter Society Press.25. L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Ling-ley-Papadopoulos. Totem: A fault-tolerant multicast group communication system.Communications of the ACM, 39(4):54{63, Apr. 1996.26. A. M. Ricciardi, A. Schiper, and K. P. Birman. Understanding partitions andthe \no partition" assumption. Technical Report TR93-1355, Cornell University,Computer Science Department, June 1993.27. R. van Renesse, K. P. Birman, and S. Ma�eis. Horus: A
exible group communi-cation system. Communications of the ACM, 39(4):76{83, Apr. 1996.

A The VS Speci�cationThe VS speci�cation of [14, 13] is reprinted in Figure 9. M denotes a messagealphabet and hG;<G; g0i is a totally-ordered set of view identi�ers with aninitial view identi�er. An element of the set V = G� P(P) is called a view. Ifv is a view, we write v:id and v:set to denote its components.Fig. 9 VS-machineSignature:Input:gpsnd(m)p, m 2 M , p 2 POutput:gprcv(m)p;q hidden g, m 2 M , p; q 2 P , g 2 Gsafe(m)p;q hidden v, m 2 M , p; q 2 P , v 2 viewsnewview(v)p, v 2 views, p 2 P , p 2 v:set Internal:createview(v), v 2 viewsvs-order(m;p; g), m 2M , p 2 P , g 2 GState:created � V , initially fhg0; P igfor each p 2 P :current viewid[p] 2 G, initially g0for each g 2 G:queue[g], a �nite sequence of M � P ,initially empty for each p 2 P , g 2 G:pending[p; g], a �nite sequence of M ,initially emptynext[p; g] 2 N>0, initially 1next safe[p; g] 2 N>0, initially 1Transitions:createview(v)Pre: v:id > max(g : 9S; hg; Si 2 created)E�: created created [fvgnewview(v)pPre: v 2 createdv:id > current viewid[p]E�: current viewid[p] v:idgpsnd(m)pE�: append m to pending[p; current viewid[p]]vs-order(m;p; g)Pre: m is head of pending[p; g]E�: remove head of pending[p; g]append hm;pi to queue[g]
gprcv(m)p;q; hidden gPre: g = current viewid[q]queue[g](next[q; g]) = hm;piE�: next[q; g] next[q; g] + 1safe(m)p;q; hidden g, SPre: g = current viewid[q]hg; Si 2 createdqueue[g](next safe[q; g]) = hm;pifor all r 2 S:next[r; g] > next safe[q; g]E�: next safe[q; g] next safe[q; g] + 1VS speci�es a partitionable service in which, at any moment of time, everyclient has precise knowledge of its current view. VS does not require clientsto learn about every view of which they are members, nor does it place anyconsistency restrictions on the membership of concurrent views held by di�erentclients. Its only view-related requirement is that views are presented to eachclient according to the total order on view identi�ers. VS provides a multicastservice that imposes a total order on messages submitted within each view, anddelivers them according to this order, with no omissions, and strictly within aview. In other words, the sequence of messages received by each client while in acertain view is a pre�x of the total order on messages associated with that view.Separately from the multicast service, VS provides a \safe" noti�cation once amessage has been delivered to all members of the view.

