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ABSTRACT
Multiple-message broadcast, or k-broadcast, is one of
the fundamental problems in network communication.
In short, there are k packets distributed across the net-
work, each of them has to be delivered to all other nodes.
We consider this task in the model of multi-hop radio
network, in which n nodes interact by transmitting and
receiving messages. A message transmitted at a round
reaches all neighbors of the transmitter at the end of
the same round, but may not be successfully received
by some, or even all, of these neighbors. More specif-
ically, a node receives a message at a round if this is
the only message that has reached this node in this
round. Due to this specific interference-prone nature
of radio networks, many communication tasks become
more challenging and more costly than in other types
of networks, especially in ad-hoc setting in which each
node knows only its own id and linear estimates on the
basic network parameters, such as the number of nodes
n, diameter D and maximum node degree ∆. We de-
sign a new randomized k-broadcast algorithm combin-
ing the best of two worlds: efficient randomized trans-
mission schedules and network coding. We show that
our algorithm accomplishes multi-broadcast in O(log∆)
amortized number of communication rounds per packet,
with high probability. This improves over the best pre-
vious solution of Bar-Yehuda, Israeli and Itai [5], which
guarantees only O(log ∆ log n) of amortized number of
rounds per packet, with high probability.
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1. INTRODUCTION
In this work we study the problem of simultaneous broad-
casting of k packets, distributed arbitrarily across the
network, to all nodes in the underlying radio network.
This problem is called multiple-message broadcast. The
underlying radio network is represented by an undirected
graph G(V,E). Let |V | = n, n ≥ 2, be the number
of nodes in G, D be the network diameter, and ∆ be
the maximum node degree. We assume that every node
knows only its own id and the basic network parameters:
n, ∆ and D.1 Let k, k ≥ 1, be the number of packets
to be delivered to all other nodes in the network; this
parameter is not a priori known to the nodes.2 We de-
note by b the maximum size of a packet, measured in the
number of bits. Since each packet specification includes
at least one ID, we assume that b ≥ log n and the length
of each transmitted message is O(b). We assume that
every node that initially possesses a packet wakes up at
time 0, that is, before the first round. Other nodes wake
up as soon as they receive a message.

Radio network is one of the classic models of wireless
networks. In this setting, n nodes interact with each

1In fact, throughout the paper we use slightly weaker
assumptions that nodes only need to know a polynomial
upper bound on n and ∆, and a linear upper bound on
D.
2We implicitly assume that k is bounded from above by
some polynomial in n, for the sake of simplicity of algo-
rithm design and analysis. If the real number of packets
is larger than some fixed polynomial, nodes locally split
the initially stored packets and apply the solution for
polynomial number of packets separately for each group.



other by transmitting and receiving messages. A mes-
sage transmitted at a round reaches all neighbors of the
transmitter at the end of the same round, but may not
be successfully received by some, or even all, of these
neighbors. More specifically, a node receives a message
at a round if this is the only message that has reached
this node in this round, i.e., exactly one neighbor of this
node has transmitted at the current round. This im-
plies that we do not assume a collision detection mech-
anism hardwired at nodes, in the sense that the system
does not provide a feedback to a node that allows to
distinguishing between the following two cases: none of
the neighbors has transmitted, or at least two neighbors
have transmitted.

Our contribution. In this paper, we propose a multiple-
message broadcast algorithm and show that using this
algorithm, every node receives all k packets by time
O(k log∆ + (D + log n) log n log∆), with high probabil-
ity. Our solution efficiently combines the advantages of
randomized techniques and simple coding in the context
of radio networks. This improves over the best known
result of Bar-Yehuda, Israeli and Itai [5], which guar-
anteed only O(k log n log∆ + (D + n/ log n) log n log∆)
completion time in expectation. In terms of per-packet
amortized complexity, our solution guarantees packet
delivery in amortized number of O(log∆) rounds, with
high probability, which is a substantial improvement
over the previous O(log∆ log n) amortized number of
rounds per packet, in expectation. Our solution could
be efficiently used as a building block of various applica-
tions, including update of routing tables, learning topol-
ogy of the underlying network (in order to benefit from
efficiency of centralized solutions), aggregating functions
in sensor networks, etc. In all these cases, the inherited
average cost per amount of information is only O(log∆),
with high probability.

Previous and related work. Algorithmic aspects of
radio communication have been widely studied in the
last two decades. The formal model for multi-hop radio
networks was introduced in the context of broadcasting
by Chlamtac and Kutten [6]. In the early stage, the
research in this area focused on basic communication
primitives, such as already mentioned broadcast [1, 4]
and point-to-point communication [5].

Bar-Yehuda et al. [5] were the first who considered
a multiple-message broadcast in radio networks. They
designed the algorithm accomplishing this task in

O(k log n log∆ + (D + n/ log n) log n log∆)

rounds, in expectation. Khabbazian et al. [16] presented
a modular approach to broadcasting in radio networks,
and devised a multiple-message broadcast algorithm in
this framework working inO((k∆log n+D) log∆) rounds,
with high probability. The best known lower bound for
randomized solutions is Ω(k + log(n/D)), in expecta-
tion [9, 19]. The best known deterministic solutions to

the problem of multiple-message broadcast in ad-hoc ra-
dio networks works in time

O(min{(k + n)n1/2 log3 n, (k + n5/2) log3 n})
[10, 14]. On the other hand, the best known lower
bound for the time complexity of a deterministic solu-
tion is Ω(k + n log n) [9, 10, 12, 15, 17]. A lower bound
Ω(n log n) on the length of broadcast schedule in case
k = n was proved by Gasieniec and Potapov [15], and it
holds for any, even randomized algorithms (though this
result holds under assumption that the nodes cannot
look into the content of the packets).

Bar-Yehuda et al. [4] designed a randomized broad-
cast algorithm and showed that it accomplishes broad-
casting of a single packet inO((D + log n) log∆) rounds,
with high probability. This result was later improved
to O((D + log n) log(min{∆, n/D})) independently by
Kowalski and Pelc [17] and Czumaj and Rytter [13].
The matching lower bound was proved by Kushilevitz
and Mansour [19]. Chlebus et al. [9] considered a re-
lated problem of many-to-many group communication,
in which a subset of awaken nodes needs to exchange
messages. In ad-hoc setting they showed

O((d+ log p) log2 n+ p log p
)

time complexity, with high probability, where p is the
number of awaken nodes and d is the maximum dis-
tance between any two such nodes. Related problems
of point-to-point communication and all-to-all commu-
nication in radio networks were also considered in both
deterministic and randomized setting, c.f., [5, 11, 12,
13].

1.1 Mathematical Preliminaries
In the analysis of our main result we will use the fol-
lowing three facts. The first two lemmas estimate the
probability of concentration of the sum of independent
Bernoulli trials and random variables of geometric distri-
bution, respectively (we will refer to them as Chernoff-
type inequalities). The third lemma estimates the prob-
ability of achieving a full rank by a matrix with ran-
domly chosen binary entries. These results can be eas-
ily derived from other similar results, such as presented
in [2], but for the sake of completeness we attach their
proofs in Appendix A.

Lemma 1. (Chernoff-type bound for the sum of
Bernoulli trials) Let Yq, q = 1, ... be a collection of
independent {0, 1}-valued random variables, each equal
to 1 with probability p > 0. Let d and τ be nonnegative
reals, d ≥ 1. Let r = � 1

p
(3d+ 2τ )�. Then

Pr(

r∑
q=1

Yq < d) ≤ e−τ .

Lemma 2. (Chernoff-type bound for the sum of
geometric random variables) For i = 1, . . . , k, let Xi

be independent geometric random variables with param-
eter pi. Further, we define X =

∑k
i=1 Xi, µ = E[X] =



∑k
i=1 1/pi, and pmin = mini∈[k] pi. For every ε > 0, it

holds that

Pr

(
X ≥ 2µ+

4 ln(1/ε)

pmin

)
≤ ε.

Lemma 3. (Rank of a random binary matrix)
Let l and w be positive integers. Suppose l ≥ 2(w+2)+
8 ln( 1

ε
). Let A = (ai,j) be a (l × w)-binary-matrix with

elements independently and identically distributed as:

Pr(ai,j = 0) = Pr(ai,j = 1) =
1

2
.

Then, A has full rank with probability at least 1− ε.

We will often use term with high probability (or w.h.p.
for short) to denote probability 1−n−c, for a sufficiently
large constant c > 1.

2. MULTIPLE-MESSAGE BROADCAST
ALGORITHM

Our proposed multiple-message broadcast algorithm con-
sists of the following consecutive stages:

Stage 1: Leader election:
In this stage, among the nodes that have at least
one packet, the node with the highest ID is selected
as a leader.3 This stage will take

O((D + log n) log n log∆)

rounds. By the end of this stage a leader is elected,
w.h.p.

Stage 2: Construction of distributed BFS:
In this stage, a BFS tree with the leader as the root
is constructed. The stage consists of D phases of
O(log n log∆) rounds each. By the end of each
phase d, where 1 ≤ d ≤ D, every node at distance
d from the root determines its parent in the tree
as well as its distance to the root, w.h.p.

Stage 3: Packet collection:
In each phase of this stage nodes estimate the total
number of packets (i.e., k) and unicast their pack-
ets to the root (along the BFS path) with some
random delays. Recall that Stage 2 guarantees
that each node knows its parent in the BFS path to
the root. We show that in O(k + (D + log n) log n)
rounds, the root collects all k packets, w.h.p.

Stage 4: Packet dissemination:
Recall that in the beginning of this stage, the root
has all the packets, w.h.p. In this stage, the root
broadcasts all k packets in time

O(k log∆ +D log n log∆)

using network coding.
3The reason we choose a leader from the nodes who have
at least one packet is to avoid waking up other nodes if
not necessary. Note however that some nodes with no
packet can be involved in the next stages of the protocol
to relay messages if necessary.

In the remainder of this section we describe the de-
tails of each stage of our algorithm.

2.1 Stage 1: Leader election
We say a multiple-access channel has capability of col-
lision detection if devices using that channel can dis-
tinguish the case of no transmission from the case of
multi-transmissions (i.e., transmission of more than one
neighbor). Bar-Yehuda et al. [3] showed how to emulate
one round of an algorithm specified for a multiple-access
channel with capability of collision detection on a multi-
hop radio network without collision detection, w.h.p.
Using this emulation, a deterministic binary search algo-
rithm based on collision detection can be used to select
a node with maximum ID (c.f., [17]). The binary search
algorithm requires log n rounds when run on a multiple-
access channel with collision detection. Combining this
algorithm with the emulation protocol from [3], and us-
ing union bound with respect to low probability of un-
successful emulation of a single round on a multiple-
access channel, we obtain the following result.

Fact 1. There is a randomized algorithm electing a
leader in O((D + log n) log n log∆) rounds in any n-
node network with diameter at most D, with high prob-
ability.

2.2 Stage 2: Construction of distributed BFS
We use the algorithm proposed in [4]. It proceeds in
D phases, each consisting of O(log n log∆) rounds. At
each phase d, 0 ≤ d ≤ D−1, only nodes with distance d
from the leader (the root of the constructed BFS tree)
participate in transmitting BFS construction messages.
Each construction message includes the ID of the trans-
mitter and its distance to the leader. At each phase, the
set of participating nodes use the Decay algorithm [4] to
transmit its construction message. If a node receives a
construction message for the first time, it selects the
sender of this message as its parent in the BFS tree and
sets its distance equal to the distance of its parent plus
one.

Theorem 1. [4] The distributed BFS algorithm ter-
minates in O(D log n log∆) rounds, and at the end each
node knows its parent in the constructed BFS tree and
its distance to the root, w.h.p.

2.3 Stage 3: Packet collection
The objective of this stage is to collect all the packets at
the leader selected in Stage 1. Recall that the leader is
also a root of the BFS tree. This stage is partitioned
into phases, and each phase is further split into two
epochs called grabbing epoch and alarming epoch, re-
spectively. Inside epochs, two different subroutines are
used: GRAB and ALARM; they will be described in
detail later.

In the grabbing epoch, nodes with at least one packet
to be delivered, unicast all their packets to the root along



the BFS path using sub-routine GRAB. In the alarming
epoch, the nodes that have not received an acknowledg-
ment for at least one of their packets, execute procedure
ALARM.

Since k, the total number of the packets, is not known
in advance. Therefore, the nodes estimate it, starting
with value (D + log n) log n set up in the beginning of
the first phase. If a node receives an alarm message in
a phase, it doubles its estimate of k in the beginning of
the next phase. The collection stage is finished at the
end of a phase in which no alarm message is received.

2.3.1 Two main sub-routines
We define two sub-routines, which are executed in the
grabbing and alarming epochs of each phase.

Sub-routine GRAB. Before specifying sub-routine GRAB,
we first present its main building block — procedure
One Shot Partial Gather (OSPG for short) — parame-
terized by x. In OSPG(x) each node that has at least
one packet to be sent (except the root), chooses a ran-
dom number between 1 and 6x for each of its packets.
If the number assigned to a packet is r, then at round
r of the grabbing epoch, the node starts unicasting the
message towards the root along the BFS path; more
precisely, in each step of the unicast a node that has
received the packet in the previous round from its child,
transmits it with the information that it is addressed
to its parent (recall that after Stage 2, there is a BFS
tree such that each node knows its parent in this tree,
w.h.p.). If two or more packets stored at a node are as-
signed the same number, the node unicasts only one of
them, selected arbitrarily. This part of procedure takes
6x+D rounds.

After round 6x + D, the root unicasts acknowledg-
ments for packets received in the current epoch, one
after another, with delay of 3 to ensures that they do
not collide with each other while being forwarded along
their BFS paths. Each intermediate node along the path
forwards an acknowledgment to the child node in the
BFS tree from which it has received the corresponding
packet in the grabbing epoch. This will last at most
3 · (6x+D) +D rounds because the maximum distance
to the root is D, and the root can collect at most 6x+D
packets in that epoch (more precisely, all of them ar-
rived during the first 6x +D rounds of the epoch, each
in a different round). Therefore, we bound the length of
procedure OSPG(x) by (6x+D)+(3 · (6x+D) +D) =
24x+ 5D rounds.

Note that some of the packets propagated towards
the root in the first part of procedure OSPG(x) may get
lost somewhere in the path to the root due to a collision,
as we do not implement any mechanism to recover from
collisions during procedure OSPG(x).

However, if a packet is successfully delivered to the
root, the corresponding acknowledgement will be prop-

agated backwards without any collision, and thus every
successfully received packet at the root will also be ac-
knowledged at the originator of the packet. We will
also show later in this section that the root will receive
at least half of all packets with high probability if x is
large enough. See the proof of Lemma 4 for details. Fur-
ther, we define a procedure Multi Shot Partial Gather
(MSPG(x, z) for short), which works similar toOSPG(x),
with the exception that every packet selects z rounds
(instead of one) from [1, 6x] and a copy of the packet is
propagated in each of the selected rounds.

Using procedures OSPG and MSPG, we define sub-
routine GRAB(x), in which OSPG(y) is called several
times for specific values of y and followed by one execu-
tion of MSPG according to the sequence:

OSPG(x),OSPG
(x
2

)
, . . . ,OSPG

( x

2i

)
, . . . ,

OSPG (c log n) ,MSPG (c2 log2 n, c log n)
for a sufficiently large constant c. Sub-routine GRAB
is used in the grabbing epoch of each phase. Note that
if procedure OSPG(y), for any y, guarantees that at
least half of the remaining y packets will be collected
by the root w.h.p., as we stressed above, then the re-
sulting sub-routine GRAB(x) should reduce the num-
ber of non-collected packets first to at most c log n, and
then to 0, w.h.p. The latter reduction is based on the
fact that each copy of a packet has a constant proba-
bility to be sent by its source in a unique round (and
thus to be delivered to the root without a collision),
and hence, every packet is delivered w.h.p., by Cher-
noff bound for sufficiently large c. Note that the length
of sub-routine GRAB(x) is bounded by (24x + 5D) +
(12x+5D)+ . . .+(24c log n+5D)+(24c2 log2 n+5D) =
O(x+D log x+ log2 n

)
.

Sub-routine ALARM. The second subroutine we use
is called ALARM, and is executed in the alarming
epoch of each phase. Each node that has at least one
non-acknowledged packet, initializes a broadcast in or-
der to distribute an alarm message (a single bit 1). The
purpose of this broadcast is to inform all other nodes
that the collection has not been completed. The BGI
broadcast protocol from [4] is used in order to deliver
an alarm message, consisting of a single bit 1, to all
nodes in the network. Note that the original BGI pro-
tocol was analyzed in [4] in the scenario with exactly
one source node, while in our alarming epoch there may
be many nodes which want to initialize the process of
sending the alarm message (i.e., many sources). The
progress is made based on a specific procedure Decay,
which guarantees that if a node has at least one neighbor
who already got the source message, gets the message
in O(log∆) rounds with constant probability. In our
case we have possibly many sources but still one mes-
sage, therefore a simple transformation from the original
graph with many alarm sources into the same graph with
additional node connected to all sources justifies that the
process of broadcasting alarm message in the original



graph is not longer than the process of broadcasting a
single message from the unique source in the latter graph
of n+ 1 nodes and diameter at most D + 1. Therefore,
the BGI algorithm guarantees that each node receives an
alarm message, if any, within asymptotically the same
number of rounds O((D + log n) log∆) as in the classi-
cal setting with n+1 nodes and diameter D+1, w.h.p.
Therefore, the number of rounds available in the alarm
epoch of every phase is set to O((D + log n) log∆).

2.3.2 Analysis of Stage 3
Lemma 4. If x ≥ k, the root receives all the packets

using GRAB(x) within designated time of

O(x+D log x+ log2 n
)

rounds, w.h.p.

Proof. We have already estimated the length of sub-
routine GRAB right after describing it above. It remains
to prove that if x ≥ k then the root collects all packets
w.h.p.

Assume x ≥ k. First we argue that procedureOSPG(y)
assures that at least half of the packets are collected by
the root w.h.p. when their number is at most y, for
c log n ≤ y ≤ x. Indeed, the probability that a packet
is assigned a unique starting round within procedure
OSPG(y) is at least (1 − 1/(6y))y−1 ≥ 1/2 + 1/4, and
since these events are independent, by the classical Cher-
noff bound yields that at least half of these events hold
with probability at least 1− exp(−y(1/4)2/3), which is
w.h.p. as y ≥ c log n and c is chosen to be sufficiently
large. It follows, by the union bound, that after execut-
ing

OSPG(x), . . . ,OSPG
( x

2i

)
, . . . ,OSPG (c log n)

where c is a sufficiently large constant, the number of
non-collected packets reduces to at most (c/2) log n. Here
we use the fact that if a packet has been successfully de-
livered to the root during the execution of someOSPG(y),
the originating node is informed about it and it will
never attempt to transfer this packet in the subsequent
executions. We argue that MSPG(c2 log2 n, c log n) as-
sures that each copy of a packet is received by the root
with constant probability, by the argument similar to
the one in the analysis of procedure OSPG and by the
fact that there are at most c2 log2 n packet copies in to-
tal. Therefore, at least one of the copies of any given
packet will be received by the root w.h.p., by the fact
that each packet has c log n copies. Hence, by the union
bound, all packets are successfully collected by the root
at the end of sub-routine GRAB(x), w.h.p.

Lemma 5. The collection stage finishes when all the
packets are collected by the leader. This process takes
O(k + (D + log n) log n) rounds, w.h.p.

Proof. First note that once we run a phase for esti-
mate y of k such that y/2 < k ≤ y, we are guaranteed

that all packets are collected at the leader and then suc-
cessfully acknowledged, and thus no alarm message is
launched and all nodes terminate, w.h.p.

Therefore it remains to estimate the number of rounds
needed to reach the end of phase with such estimate y
of the number of packets k. Each phase of the collection
stage in which the estimate of k is set to x lasts

O(x+D log x+ log2 n
)
+O((D + log n) log∆)

= O(x+ (D + log n) log n) ,

as x ≤ k and k is polynomial in n. Since our ini-
tial estimate of x is (D + log n) log n, and each phase
it doubles, in order to reach the end of the phase with
estimate y on k we need∑

{i:(D+logn) log n≤2i≤k}
O
(
2i + (D + logn) log n

)

rounds. Note that each of the formulas under the sum is
upper bounded by O(2i). Therefore we get the final for-
mula O(k + (D + log n) log n) on the number of rounds
in Stage 3 of the algorithm, which holds w.h.p.

2.4 Stage 4: Packet dissemination
At the end of the collection stage, the root will have all
k packets, with high probability. In the dissemination
stage, the root broadcasts all the packets using the fol-
lowing algorithm. Let g = � k

�logn� � be a positive integer.

The dissemination stage is grouped into g+ 3D phases,
each consisting of O(log n log∆) rounds. The root di-
vides packets into g groups each with �log n� packets
(one of the groups may have less than �log n� packets
if �log n� does not divide k). Recall that b is the upper
bound on the size of a packet, measured in the number
of bits, and that b ≥ log n. Let F be a finite field of
size 2b. Note that every packet/message of size at most
b bits can be regarded as a number in F, and XORing
messages of size at most b is equivalent of adding their
corresponding numbers in F.

Following we describe a sub-routine called
FORWARD, which is based on the Decay procedure
from [4]. FORWARD is used in each phase of dissem-
ination stage by the set of nodes at some distance d,
where 1 ≤ d ≤ D − 1, from the root to forward a set of
at most �log n� messages to the nodes at distance d+1.

FORWARD:
The sub-routine runs for O(log n) epochs,
each consisting of �log∆� rounds. A set T
of nodes, where |T | ≥ 1, participates. Let R
be a non-empty set of nodes such that each
node in R has at least one and at most ∆
neighbors in T . Let M be a non-empty set of
packets such that |M| ≤ �log(n)�, and each
packet in M has at least �log n� and at most
b bits. Suppose every node in T knows all the
messages in M. Similar to the Decay algo-
rithm [4], in each round s = 1, ..., �log(∆)� of



every epoch, every node in T transmits with
probability ps = 1

2
, 1
4
, . . . , 1

2�log(∆)� . Every
time a node decides to transmit, it gener-
ates a new message from the set of messages
M and transmits the new message. To gen-
erate the message, the node independently
chooses each message from M with proba-
bility 1

2
and adds their corresponding num-

bers in F, where F is a finite field (of size
2b) known by all the nodes in T ∪R. It then
transmits the sum (which has b bits) together
with a header of size �log(n)� bits indicat-
ing the set of selected messages in M. Note
that since every message in M has at least
�log(n)� bits, the size of the new message is
at most twice the size of any message in M.

The sub-routineFORWARD lasts exactly one phase
of the dissemination stage. To explain how FORWARD
is used to disseminate messages, let us first consider a
special case where k ≤ �log n� (i.e., g = 1). In this case,
in the first phase of the dissemination stage, the root
transmits all the packets to its one-hop neighbors, one-
by-one in k rounds. Since k ≤ �log n�, by the end of
the first phase all the nodes with distance one from the
root will receive all k packets. In the second phase of
the dissemination stage, the set of nodes at distance one
uses sub-routine FORWARD to forward all k packets
to the set of nodes at distance two from the root. Note
that each node with distance two has at least one and at
most ∆ neighbors with distance one. Therefore, as we
will shortly prove in Lemma 6, all the nodes at distance
two will receive all k messages by the end of the second
phase, w.h.p. Similarly, in phase d, 3 ≤ d ≤ D−1, nodes
at distance d− 1 use sub-routine FORWARD to send
all k messages to the nodes at distance d. Therefore,
after D phases, all the nodes in the network will receive
all messages, with high probability.

In general, when g ≥ 1, the above process is done
for each group of messages. To avoid collision between
transmissions associated with different groups of mes-
sages, the dissemination of each group starts 3 phases
after the start of the dissemination of the previous group
of messages.

We first prove a desired property of sub-routine
FORWARD, and then conclude the analysis of Stage 4.

Lemma 6. Using FORWARD, all nodes in R will
receive all the messages in M, with high probability.

Proof. Let u be any node in R. In each epoch, u
receives a message from one of its neighbors in T with a
constant probability, as guaranteed by procedure De-
cay [4]. Therefore, after O(log n) epochs, it will re-
ceive O(log n) messages, w.h.p., by Chernoff bound, c.f.,
Lemma 1.

We show that u can use the set of received messages

to extract the set of packets in M. Each received mes-
sage is a linear combination of packets in M with inde-
pendent random binary coefficients, each taking value 0
(or 1) with probability 1

2
. To extract packets inM, node

u requires to solve a set of O(log n) linear equations. In
other words, node u can extract all the packets in M
if the corresponding binary matrix of linear equations
has a full rank. Let M be the matrix corresponding to
the set of linear equations. The elements of M are inde-
pendent random binary numbers, each equal to 0 with
probability 1

2
. Further, the matrix M has at most log n

columns (i.e., the number of packets in M) and O(log n)
rows (i.e., the number of rounds in which messages have
been sent during the current FORWARD execution),
with high probability. Then, by Lemma 3, M has full
rank, with high probability, and consequently the set of
linear equations is solvable, w.h.p.

Lemma 7. The root successfully broadcast all k pack-
ets stored at it in the beginning of Stage 4 during

O(D log n log∆ + k log∆)

rounds of that stage, w.h.p.

Proof. The proof is by induction on the distance
from the root. The first phase of the stage takes k rounds
and guarantees that each node of distance 1 from the
root receives all k packets. Suppose that by the end
phase d, for 1 ≤ d ≤ D−1, each node of distance at most
d from the root has received all k packets. Lemma 6
applied to the execution of sub-routine FORWARD in
phase d + 1 guarantees that all k packets are received
by any node of distance d + 1 from the root, and thus
being a neighbor of at least one and at most ∆ nodes
of distance d from the root, during phase d + 1. All D
inductive steps hold with high probability, therefore we
conclude that all k packets are successfully delivered to
all nodes within D phases of Stage 4 w.h.p.

The whole dissemination process takes D+3g phases,
which consists of

(D + 3g) · O(log n log∆) = O(D log n log∆ + k log∆)

rounds.

2.5 Final analysis of multi-broadcast algo-
rithm

Combining Fact 1 and Theorem 1 with Lemmas 5 and 7,
we obtain the following result.

Theorem 2. The multi-broadcast algorithm success-
fully broadcast all k packets stored in the system, for any
k > 0, in O(k log∆ + (D + log n) log n log∆) rounds,
with high probability.

3. CONCLUSIONS AND OPEN PROBLEMS
In this work we showed how to efficiently combine ran-
domization techniques with network coding to obtain



better multiple-message broadcast algorithm for radio
networks. An interesting open question is whether a
similar approach could improve design and analysis of
efficient protocols in other models of wireless networks,
such that geometric graphs, bounded-growth graphs or
Signal-to-Interference-and-Noise-Ratio (SINR). In more
practical scenario, packets appear at nodes dynamically;
a challenging direction would be to adapt “static” solu-
tions to various communication problems to such more
dynamic setting.
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APPENDIX
A. PROOFS FROM SECTION 1.1
Proof of Lemma 1: Let µ = rp. Using Chernoff, we
get:

Pr(

r∑
q=1

Yq < d) ≤ exp

(
−1

2

(µ− d)2

µ

)
. (1)

Note that the function f(x) = exp(− (x−d)2

2x
) is non-

increasing in x for d ≤ x. Also, since d ≥ 1, we have

d ≤ 3d+2τ−p = (
1

p
(3d+2τ )−1)p ≤ �1

p
(3d+2τ )�p = rp = µ.

Therefore,

exp

(
−1

2

(µ− d)2

µ

)
≤ exp

(
−1

2

(3d+ 2τ − p− d)2

3d+ 2τ − p

)

= exp

(
−1

2

(2d+ 2τ − p)2

3d+ 2τ − p

)
≤ exp (−τ ) .

Proof of Lemma 2: We prove the claim by using a
Chernoff-type argument. For every γ > 0 and every
t ≥ 0, we have

Pr(X ≥ t) = Pr
(
eγX ≥ eγt

)
≤ E

[
eγX

]
eγt

=

∏k
i=1 E

[
eγXi

]
eγt

,

(2)
where the inequality follows by applying Markov’s in-
equality. Let first derive a bound on E[eγXi ]. Assume
that γ = pmin/4 ≤ 1/4, yielding eγ − 1 ≤ pmin/3. For
all i ∈ [k], we get

E

[
eγXi

]
=

∞∑
s=1

pi(1− pi)
s−1eγs

=
pie

γ

1− (1− pi)eγ

(1+x≤ex)

≤ e
eγ−1

pie
γ−(eγ−1)

(eγ−1≤ pmin
3

)

≤ e
pmin

3pie
γ−pmin

(eγ>1)

≤ e
pmin
2pi .

Plugging this into (2), we obtain

Pr(X ≥ t) ≤ e
pmin

2
·∑k

i=1
1
pi

− γt
= e

pmin
2

·(µ− t
2 ).

The lemma now follows by using t = 2µ+4 ln(1/ε)/pmin.

Proof of Lemma 3: Let V be the set of all binary
vectors of size w. Consider the following game with
possibly infinite number of rounds: At each round of
the game a vector is randomly and uniformly selected
from V . The game terminates if w linearly independent

vectors are collected. For i = 1, 2, . . . , w, let Yi be a
random variable equal to the round number at which i
linearly independent vectors are collected for the first
time. Let us define X1 = Y1, and Xi = Yi − Yi−1 for
every 2 ≤ i ≤ w. A set of i, i ≥ 1, linearly independent
vectors, span a vector space of dimension i and size 2i.
The probability that a uniformly selected vector from

S avoid this space is (1 − 2i

2w
). Thus, for any positive

integer x, and any integer i, 1 ≤ i ≤ w − 1, we get

Pr(Xi+1 = x) = Pr(Yi+1 − Yi = x)

=
∞∑

y=1

Pr(Yi+1 = x+ y|Yi = y)Pr(Yi = y)

=
∞∑

y=1

(
2i

2w

)x−1(
1− 2i

2w

)
Pr(Yi = y)

=

(
2i

2w

)x−1 (
1− 2i

2w

) ∞∑
y=1

Pr(Yi = y)

=

(
2i

2w

)x−1 (
1− 2i

2w

)
(3)

Also,

Pr(X1 = x) = Pr(Y1 = x) = (
1

2w
)x−1(1− 1

2w
) (4)

Thus, by (3) and (4), X1, . . . , Xw are geometric random

variables with parameters pi = 1− 2i−1

2w
, 1 ≤ i ≤ w. By

Lemma 2, we get

Pr

(
w∑

i=1

Xi ≥ 2µ+
4 ln(1/ε)

pmin

)
≤ ε,

where pmin = 1− 2w−1

2w
= 1

2
and

µ =
w∑

i=1

1

1− 2i−1

2w

≤ w + 2.

Thus,

Pr(
w∑

i=1

Xi ≥ l) ≤ ε,

hence

Pr(Yw ≥ l) = Pr

((
Y1 +

w∑
i=2

(Yi − Yi−1)

)
≥ l

)
≤ ε

= Pr

(
w∑

i=1

Xi ≥ l

)

≤ ε.

(5)

Note that each row of matrix A is a uniformly selected
vector from V . Matrix A has full rank if it has w linearly
independent rows. Thus, by (5), the probability that A
has full rank is at least 1− ε.


