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Abstrat

We present a fault-tolerant algorithm for an atomi broadast servie with a dynami set

of partiipants; that is, reliable totally ordered multiast for dynami groups. The algorithm

preserves QoS guarantees. We o�er a detailed theoretial study of the QoS guarantees of our

algorithm under di�erent irumstanes. In partiular, we show that in periods with no failures,

the lateny for the ordered multiast is within a onstant of the lateny of the underlying

network (independently of the number of partiipants). This is an improvement over the lateny

exhibited by previous algorithms. When failures do our, the lateny is linear in the number

of proesses that fail within a bounded time interval, as ditated by a lower bound. Unlike

most group ommuniation systems providing similar servies, in our algorithm proesses an

join and leave without introduing delays in the ommuniation between ative partiipants. A

major hallenge was avoiding ommuniation delays for ative proesses when joins our, while

at the same time preserving onsisteny if failures our near the time of a join.

Keywords: Fault-Tolerant algorithms, Real time, Fault-Tolerant ommuniation, Performane Anal-

ysis, Quality of Servie (QoS).



1 Introdution

Atomi broadast [12, 5℄, allows multiple proesses to send messages, in suh a way that all the

orret proesses deliver all the messages sent or delivered by orret proesses, and in the same

order. An important use of atomi broadast is to implement repliated state mahines [13, 18℄,

whih provide an important paradigm for state-oriented appliations. Muh work has been dedi-

ated to atomi broadast algorithms in di�erent failure models [8℄. Dynami atomi broadast is

an extension of atomi broadast that supports requests by appliation proesses to join or leave

the algorithm, in addition to tolerating proess failures; dynami atomi broadast is often imple-

mented using group ommuniation systems (e.g., [10, 21, 6℄). In this paper we present a novel

dynami atomi broadast (DAB) algorithm that preserves quality of servie (QoS) guarantees.

In the past few years, we have witnessed new appliations that require QoS guarantees from the

network (e.g., [16℄). Some need strit guarantees on available bandwidth, others need a bound on the

lateny a paket an su�er when transmitted over the network. ATM networks [3℄ allow appliations

to reserve QoS parameters suh as bounded lateny, guaranteed bandwidth and bounded loss rate.

The IETF Integrated Servies working group is onerned with adding similar QoS support to the

Internet. The QoS parameters that the new servies will support inlude, among others, bounded

lateny, guaranteed bandwidth reservation and bounds on message loss (see [19℄).

There are appliations that repliate some state with a ertain degree of onsisteny and yet

also require preditable message delays. Suh appliations an bene�t from DAB, as long as it does

not introdue exessive delays. Examples of suh appliations inlude a shared text editor [20℄, a

shared white-board [16℄, and online strategy games [11, 1℄.

Current implementations of appliations suh as those desribed above seldom exploit atomi

broadast. This is beause ahieving atomi broadast requires delaying messages until agreement

upon their order is reahed, and many believe that this delay is too large. For example, in his book

Internetworking Multimedia [7℄, Crowroft writes:

\The requirements of resiliene and salability ditate that total onsisteny of view is

not possible unless mehanisms requiring unaeptable delays are employed."

The idea that onsisteny and preditable delays are mutually exlusive is at the root of design

deisions made in building suh appliations [16, 20℄. Suh appliations usually settle for weak

onsisteny onstraints and run appliation-spei� algorithms to detet and resolve inonsistenies.

In this paper we show that atomi broadast an oexist with guaranteed preditable delays in

some situations, albeit not in all situations. We onsider a network that provides QoS guarantees,

and build on top of it a DAB servie. Unfortunately, no fault tolerant algorithm for atomi

broadast an guarantee a onstant message delay; when proesses fail, the delay is bound to

grow linearly with the number of failures (see Setion 11 for a proof of this lower bound). We

present a fault tolerant DAB algorithm with QoS guarantees that math this lower bound.

We o�er a theoretial study of the QoS guarantees of our algorithm under di�erent irum-

stanes. We show that with our algorithm, ommuniation lateny is within a onstant of the

lateny of the underlying network (independent of the number of partiipants) in periods with no

failures. When proesses do fail, the delay of the algorithm inreases linearly with the number of

time intervals of a given size, x, during whih failures our. If one failure ours, and during the

following time interval of length x no failures our, then the delay is bounded by a onstant. The

message delay an further inrease by f � x only if during eah of the f subsequent time intervals

of length x a new failure ours. In pratie, we do not expet sequenes of failures to our very

often. Thus, the expeted delay of our algorithm is very low, and it is very lose to the delay
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ahieved when no proess fail. This is superior to previous results (see [2℄) whih introdued linear

lateny regardless of the number of failures.

Unlike most group ommuniation systems providing similar servies (e.g., [10, 21, 6℄), in our

algorithm proesses an join and leave without introduing delays to ommuniation between ative

partiipants. It was hallenging to design an algorithm that would avoid ommuniation delay to

ative proesses when joins our without failure, while not ompromising onsisteny if failures

our near the time of a join.

1.1 Related work

Dynami atomi broadast is provided by several group ommuniation systems. Most of these do

not address QoS issues. The only exeption that we are aware of is RTCAST [2℄. RTCAST ahieves

a lateny bound whih is linear in the number of proesses, regardless of the number of failures.

Moreover, the failure model assumed in RTCAST is weaker than the one we assume. There, it is

assumed that if a proess p fails, and a orret proess q reeives, from the network, some message

m sent by q before its failure, then every other orret proess will reeive m as well. In ontrast,

we allow the network to deliver a message from a faulty proess to some orret proess and not

to another. Muh of our algorithm's omplexity is dediated to overoming suh situations.

In an earlier paper [4℄, we have presented a simpler algorithm that does not overome suh

situations, and instead allows orret proesses to deliver di�erent message sequenes in ases of

failures.

1.2 Roadmap

The rest of this paper is organized as follows: Setion 2 presents the model, Setion 3 spei�es the

DAB servie we implement, and Setion 4 desribes our assumptions of the underlying ommuni-

ation network. The following three setions desribe our new DAB algorithm. In Setion 8 we

informally argue that the algorithm is orret (i.e., implements DAB). In Setion 9 we study the

algorithm's QoS guarantees; the Appendix presents a formal orretness proof. In Setion 10 we

explain how the algorithm an be extended to reover from situations in whih the network QoS is

violated. In Setion 11 we prove the lower bound for DAB. Setion 12 onludes the paper.

2 Model

We assume a stati universe P of n proesses, with distint identi�ers in f1; � � � ; ng. Proesses

ommuniate by exhanging multiast messages within amultiast group

1

. Proesses an voluntarily

join and leave the multiast group at any time. Eah join request is assoiated with a unique,

monotonially inreasing inarnation number, so that a proess that joins the group multiple times

uses a larger inarnation number eah time.

Proesses use an underlying network ommuniation servie whih allows for QoS reservation.

Spei�ally, the network allows for reservation of variable bandwidth, spei�ed by the average

transmission rate and the maximum burst that an be sent during a time interval of length �. As

long as messages are sent at the reserved rate, the network guarantees to deliver messages with a

bounded delay, denoted by �. In Setion 4 we speify the underlying network servie interfae and

our assumptions about the network.

1

For simpliity, we assume that a single multiast group exists.

2



The failure model. Proesses an fail by rashing and may later reover. Formally, we model

failures by speial fail ations; we do not model reoveries expliitly, but we allow a previously

failed proess to later perform a join. Crashed proesses lose their volatile memory; however, we

assume that reovered proesses use fresh (larger) inarnation numbers following their reovery and

do not re-use old ones

2

. We do not onsider Byzantine (maliious) failures. When a proess j fails,

messages that j sent during the last � time before its failure may be lost due to the failure. Suh

lost messages may be reeived by some orret proesses and fail to reah others.

Clok synhronization. We assume eah proess i has an internal lok denoted by lok

i

.

We assume that the di�erene between lok

i

and the real time is bounded. We denote by now

the real time that has passed from the beginning of the exeution

3

(thus, eah exeution starts

with now = 0). We assume that there is a onstant � so that the maximum di�erene between

lok

i

and now is bounded by �=2. Thus, for eah proess i: now � �=2 � lok

i

� now + �=2.

This implies that the maximum di�erene between two proesses' internal loks is at most �. We

further assume that eah proess an preisely shedule events aording to its loal lok.

The mathematial framework. We model eah proess as a timed I/O automaton [15℄. An

automaton interats with its environment by two sets of external ations: input ations and output

ations. A trae of an I/O automaton is the sequene of external ations it takes in an exeution.

Exeutions are assumed to be sequential, that is, ations are atomi, and no two ations an our

simultaneously.

3 Dynami Atomi Broadast Servie Spei�ation

We present an algorithm that guarantees gap-free total ordering of messages and also preserves

QoS. The algorithm is implemented by a Dynami Atomi Broadast (DAB) layer that resides

between the appliation and the underlying network, as depited in Figure 1.

i,jdeliver(m)

i
RN(r)

i
leave() mcast(m)

ii
join(r,n) Application

DABjoin-OK()
i

leave-OK()
i

Figure 1: The dynami atomi broadast (DAB) servie interfae.

We now speify the dynami atomi broadast servie. This servie is omposed of the DAB

layer and the underlying network (f. Figure 1). In this setion we use the term proess to refer

to an appliation proess running at a ertain loation. Proesses use the servie to send messages

of a bounded size to the multiast group; the servie delivers messages to all the proesses in the

same order.

3.1 Reservation model

Upon joining the multiast group, a proess reserves the bandwidth required for its ommuniation

with all proess in P , that is, the proess asks the servie to alloate a ertain bandwidth. If

2

This an be ahieved by storing inarnation numbers on disk, or by using loks

3

The real time is used as an abstration for the lateny analysis.
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a proess subsequently wishes to hange its reserved bandwidth, it renegotiates its reservation

parameters aording to its new transmission rate.

Our servie works within the framework of Variable Bit-Rate (VBR) [3℄ ows, whih allows

appliations to send bursty traÆ. In this model, proesses reserve an average transmission rate as

well as a maximum burst size. Typially, the appliation delares its transmission rate in bytes per

seond. For simpliity, we assume that the rate is delared in units of messages per seond. Sine

message size is bounded, these rates orrespond losely.

Message sending is divided into time slots of a �xed length, �. � is the same for all the

proesses and is �xed throughout the exeution. In addition, there exists a onstant C whih is

the number of slots over whih the average sending rate is omputed. The appliation delares two

rate parameters:

1. AppAvgRate { the average message rate per � time. This means that C � AppAvgRate is

the maximum number of messages that may be sent during C �� time.

2. AppMaxBurst { the maximum number of messages that may be sent during � time.

3.2 The servie interfae

The appliation interfae of the servie onsists of the following types of ations:

� join(r; n)

i

is used by proess i to join the multiast group with inarnation number n, and to

reserve QoS. The struture r has two �elds: AppAvgRate and AppMaxBurst, as explained

above. This ation is alled initially, to establish the transmission rate before any messages

are sent.

� join-OK

i

reports to proess i that its latest join was suessful, and i an now start sending

messages.

� leave

i

is used by proess i to leave the multiast group.

� leave-OK

i

reports to proess i that it may safely quit the appliation. The appliation is not

allowed to perform a join between a leave and the orresponding leave-OK.

� RN(r)

i

is used by proess i to renegotiate the QoS reserved from the network. The struture

of r is as in join.

� mast(m)

i

is used by proess i to multiast messagem to the group. We assume that messages

are unique, that is, the same message is not sent more than one. In addition, the message is

of a bounded size.

� deliver(m)

i;j

is used to deliver to proess i a multiast message m that was previously mul-

tiast by proess j.

We say that a message m is sent by a proess i when mast(m)

i

ours, and that i delivers m

when the dynami atomi broadast servie at proess i performs the deliver(m)

i;j

ation. We say

that proess i's inarnation number is n at point t in an exeution, if n is the inarnation number

in i's latest join

i

up to t.
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3.3 The servie guarantees

The servie totally orders message deliveries. In other words, there exists some sequene ordering

of all the messages that ever get delivered, suh that all proesses deliver messages in an order

onsistent with this sequene.

De�nition 1 Dynami Atomi Broadast For eah exeution of the dynami atomi broadast

servie, there exists a sequene, S = m

1

;m

2

; : : : , inluding every message delivered by some proess

in that exeution exatly one

4

, so that the following properties hold:

� Integrity: A message m is only delivered if it was previously sent, and it is delivered at most

one to any partiular proess.

� fifo: If a proess i sends message m before sending m

0

, and both messages are in S, then m

is before m

0

in S.

� Ordering: (1) For every proess i, and every inarnation number n, the sequene of messages

delivered by i with inarnation number n is a ontiguous subsequene of S; (2) if i delivers

message m with inarnation number n, and i delivers message m

0

with inarnation number

n

0

where n < n

0

, then m is ordered before m

0

in S.

� Liveness

1. Joining: If i exeutes a join

i

at some point in the exeution and does not subsequently

fail or leave, then a join-OK

i

is eventually exeuted.

2. Leaving: If i exeutes a leave

i

at some point in the exeution and does not subsequently

fail, then a leave-OK

i

is eventually exeuted.

3. Message Delivery: If a join

i

ours at some point t in the exeution, and i does not

subsequently fail or leave, then after point t, i delivers a suÆx of S whih inludes all

the messages that i sends after point t.

Note that the Ordering property implies the following:

� Total Order: If proesses i and j both deliver the same two messages m and m

0

, then they

deliver these messages in the same order.

� Reliability: If proesses i and j both deliver the same two messages m andm

0

, and if j delivers

both with the same inarnation number n (i.e., a join

j

does not our between deliver(m)

j

and deliver(m

0

)

j

), then j also delivers all the messages that i delivers between m and m

0

.

In addition to meeting the spei�ation above, our dynami atomi broadast servie meets QoS

(or timeliness) guarantees, whih are de�ned with four parameters - t

1

, t

2

, t

3

, and AppLateny, as

follows:

De�nition 2 Dynami Atomi Broadast QoS(t

1

, t

2

, t

3

, AppLateny)

� Joining: If i exeutes a join at time t, then if i does not fail or leave, a join-OK

i

is exeuted

by t+ t

1

.

� Leaving: If i exeutes a join at time t

0

, and a leave at time t > t

0

, then if i does not fail a

leave-OK

i

is exeuted by t+ t

2

.

4

Note that for a �nite exeution the sequene is �nite; otherwise, it may be �nite or in�nite.
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� Message Delivery and Lateny: If a join-OK is exeuted at i at time t, and i does not

subsequently fail or leave, then for every message m sent at time t

0

> t+ t

3

by some proess

j (possibly j = i) that does not fail after sending m, i delivers m by time t

0

+AppLateny.

The maximum lateny of the dynami atomi broadast servie is denoted AppLateny; this is

the supremum over all exeutions, all messages m and all proesses i of the time sine themast(m)

i

ation is performed in some exeution until m is delivered by all proesses that deliver it.

4 The reliable network

In this paper we build DAB over a reliable network, that is, a network that does not lose messages

while no failures our. In [4℄ we show how a reliable network an be built over an unreliable network

that guarantees a bounded lateny and a bounded loss rate, using a forward error orretion (FEC)

algorithm. We do not repeat this algorithm here. Rather, we present the semantis of the reliable

network, and present its QoS guarantees in terms of the QoS of the unreliable network as proven

in [4℄.

The reliable network interfae and semantis. In this setion, we use the term proess

to refer to an instane of a program that uses the reliable network at a ertain loation. The

reliable network preserves the fifo order on messages sent between every pair of proesses

5

. The

network does not dupliate, orrupt, or spontaneously generate messages. In addition, the network

is reliable, that is, all messages sent through the network will reah their destination in the absene

of failures.

The network supports the reservation of VBR traÆ ows. In order to join the multiast group,

a proess makes a reservation of the bandwidth required for its ommuniation. The interfae of

the underlying network onsists of the following types of ations:

� The net-reserve(r)

i

ation is used by proess i to join the multiast group and to reserve QoS

from the network. The struture r has two �elds: RelNetAvgRate and RelNetMaxBurst,

dual to the respetive appliation QoS parameters desribed in the previous setion. This

ation is alled initially, to establish the transmission rate before any messages are sent, and

an be subsequently alled to renegotiate the QoS reservation.

� The net-leave

i

ation is used by proess i to leave the multiast group.

� The net-rel-mast(m; s)

i

and net-rel-rev(m; s)

i;j

ations are used by proess i to reliably

multiast and reeive messages from the network.

� The net-flush(s) ation is used by proess i to tell the network to send all message submitted

via net-rel-mast(m; s)

i

that it has not yet sent. When net-flush(s)

i

is performed, the

network appends a (?; s) message to sequene of messages sent by i. This message is reeived

by other proesses, in the same way as any other message, via net-rel-rev(m; s)

i;j

.

We say that a proess i is alive if the net-reserve(r)

i

ation has been performed and i has not

subsequently failed or left.

QoS guarantees. The QoS guarantees of the reliable network are presented in terms of those

of the underlying network, as is done in [4℄. We therefore begin by stating our assumptions on the

QoS of the unreliable network.

5

Although messages sent over the Internet an sometimes arrive out of fifo order, this is easy to �x using sequene

numbers.
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The bandwidth reservation parameters for the underlying network areNetAvgRate andNetMaxBurst,

and the maximum message lateny is �. The unreliable network loss rate is bounded as follows [17℄:

The appliation spei�es a loss interval, x = k + l, in terms of a number of onseutive messages

from the same sender, and a bound, l, on the number of messages sent in the same interval that the

network an lose. Spei�ally, a reservation of l out of k+ l guarantees that if a proess i multiasts

k+ l onseutive messages and does not subsequently fail, then every other live proess reeives at

least k of these messages. We assume that the quantities k and l are the same for all proesses.

In this paper we are only interested in studying ases in whih QoS reservation and renegotiation

are suessful. Thus, for simpliity, we assume that all reservation requests made by a proess are

aepted by the network. Typially, QoS reservation and renegotiation take some time for the

network to proess. However, this time does not a�et the message lateny and for the sake of the

analysis in this paper it is safe to ignore it. Therefore, we assume that one a reservation request

is made, the bandwidth that was requested is immediately available to the reserving proess.

The reliable network guarantees that if j is alive from t�� and i is alive from t and i performs

the net-rel-mast(m; s)

i

at time t and a net-flush

i

at time t

0

(t

0

> t) then by t

0

+ �, net-rel-

rev(m; s)

j

will our.

Denote by � the maximum time interval between suessive net-flush

i

ations. The maximum

lateny of the reliable network is then � + �. As we show in [4℄, the transmission rate param-

eters that need to be reserved from the unreliable network in order to meet the reliable network

requirements depend on k and l as follows:

NetAvgRate = RelNetAvgRate + (dRelNetAvgRate=ke +�=�) � l +�=�

NetMaxBurst = RelNetMaxBurst+ dRelNetMaxBurst=ke � l ��=�

These bounds illustrate a tradeo� between the overhead needed to ahieve the required bandwidth

and the addition to the lateny, based on di�erent hoies of �.

5 General overview of the DAB algorithm

Our DAB algorithm is omposed of two parts: an Ordering algorithm and a Dynami Failure

Manager (DFM). The Ordering algorithm provides the DAB servie to the appliation. It uses the

reliable network to send and reeive messages, and uses the DFM to handle failures; the DFM is

used only when failures our. The interfaes among the di�erent parts of the algorithm are shown

in Figure 2.

In this setion, we present an overview of the DAB algorithm and disuss how the two parts

of the algorithm interat. We �rst explain how the Ordering algorithm uses the DFM. We then

present the DFM interfae, requirements and guarantees. We disuss the Ordering algorithm in

more detail in Setion 6, and the DFM in Setion 7.

The Ordering algorithm. The Ordering algorithm organizes the delivery of messages into

slots. In eah slot, it delivers messages from proesses that are members of the group at that slot.

When a proess joins (leaves), the Ordering algorithm at the same loation sends a speial \join"

(\leave") message to the other instanes of the Ordering algorithm running at di�erent loations.

Suh messages indiate in whih slot the proess should be added (removed) from the group. In the

absene of failures, suh messages are delivered by all proesses, so all the proesses add (remove)

the proess at the same slot.
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net-leave()
i

i
net-flush(s)

net-rel-mcast(m,s)
i

mcast(m)
i

i
leave()

i,jdeliver(m)

m-leave(s,n,j)
i

fail

i

i

m-join(l,s,n,i)

RN(r)
i

i
join(r,n)

Dynamic Failure ManagerOrdering

net-rel-recv(m,s)
i

Reliable Network

i
m-decide(v,n,j)

i

i
net-reserve(r)

i

m-join(s,n,j)

m-fail(s,n,j)

i

join-OK()
i

i
leave-OK()

Figure 2: The TO servie deomposition.

Failures are more ompliated to handle. In our failure model, a subset of the messages sent

by a proess prior to its rash an reah some live proesses while failing to reah others. Thus,

although the Ordering algorithm an detet failures using time-outs, suh failures are not deteted

at the same point in the message stream by di�erent instanes of the Ordering algorithm. However,

all instanes of the Ordering algorithm must deliver the same sequene of messages to live proesses,

and therefore, the algorithm has to make sure that the live proesses agree on the point (or slot)

at whih to remove the failing proess. This is preisely the role of the DFM: for eah proess that

fails, the DFM allows the urrent group members to reah agreement upon the slot at whih the

failed proess should be removed.

The DFM interfae. The Ordering algorithm at eah group member i uses them-fail(s; n; j)

i

ation to notify the DFM at i of the slot s in whih i deteted proess j's failure (for j's inarnation

number n). This noti�ation invokes an algorithm to agree upon a slot in whih j will be removed.

When suh agreement is reahed, the DFM uses the m-deide(v; n; j)

i

ation to notify i that j

should be removed at slot v.

The set of proesses among whih suh agreement has to be reahed is onstantly hanging.

Therefore, the DFM must keep trak of the set of group members as this group evolves over time.

To this end, the Ordering algorithm reports proess joins and leaves to the DFM using the following

ations:

� m-join(l; s; n; i)

i

is used to notify the DFM at i of the fat that the appliation proess at i

wishes to join the atomi broadast algorithm; this ation inludes the urrent slot l, the slot

s in whih i will join, and the inarnation number n. One this ation ours, we refer to s

as joinslot[i℄.

� m-join(s; n; j)

i

is used to notify the DFM at i of the slot s in whih the appliation proess

j will join the algorithm; n is the inarnation number of j.
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� m-leave(n; j)

i

is used to notify the DFM at i that j has left the algorithm.

The DFM requirements. Sine di�erent proesses may detet the same failure at di�erent

times, di�erent proesses may also have di�erent pereptions of the set of group members that have

to partiipate in agreeing upon a failure. The DFM is able to ope with some unertainty about

this set, but not with arbitrary unertainty: In order to funtion orretly, the DFM requires its

environment to follow ertain requirements. A formal spei�ation of these requirements appears

in Appendix A; here, we desribe them only informally.

There are two major requirements: (1) For a joining proess i, every other live proess j (that

has a smaller joinslot value than i) will get a m-join(joinslot[i℄; n; i)

j

noti�ation before reahing

slot joinslot[i℄, and i will also get a m-join(s; n; j)

i

noti�ation before slot joinslot[i℄. (2) If two

proesses j and k suspet that i failed in slots s

j

and s

k

respetively, then js

k

� s

j

j � 1. Note that

this requirement does not restrit the di�erene in the atual detetion time of i's failure by j and

k.

These two requirements are reasonable for a dynami system in whih proesses use loks that

are slightly skewed, and have aess to some sort of failure detetor. In partiular, they are satis�ed

by our Ordering algorithm.

The DFM guarantees. Given an environment that meets the requirements above, the DFM

servie guarantees that all proesses m-deide upon the same value { the slot in whih a failed

proess should be removed { and that this value is the smallest proposed by any of the proesses.

These onditions are needed by the Ordering algorithm to ensure that the deision value does not

require proesses to deliver messages that they do not reeive or to refrain from delivering messages

they have already delivered. Formally, the DFM servie satis�es the following spei�ation:

� Uniform Agreement: If m-deide(v; n; j)

i

and m-deide(v

0

; n; j)

k

are performed then v =

v

0

.

� Validity: If i performs m-deide(v; n; j)

i

then some proess k performed m-fail(v; n; j)

k

.

� Minimum Value: If m-deide(v; n; j)

i

is performed following the m-fail(s; n; j)

i

ation,

then v � s.

� Termination: If the m-fail(s; n; j)

i

ation is performed with s � joinSlot[i℄, and i does not

fail or leave, then m-deide(v; n; j)

i

will be performed.

6 The Ordering algorithm

In this setion we present the Ordering algorithm. We desribe the general operation of the Ordering

algorithm in Setions 6.1 through 6.4. We present the algorithm formally as a timed I/O automaton

in Figures 3, 4, and 5.

The algorithm divides the time into slots of length �. The Ordering algorithm keeps trak of

the set of proesses that it thinks are ative in every slot. Below, we explain how this set hanges

when there are joins, leaves and failures.

6.1 Sending and reeiving messages

When the appliation performs the mast(m)

i

ation, the Ordering algorithm adds the slot number

s to the message header and performs net-rel-mast(m; s). When a slot s ends (that is, � time

has passed from the time s started) the Ordering algorithm performs the net-flush(s) ation.

9



When a message is reeived via the net-rel-rev ation, it is stored in a bu�er (per soure). The

algorithm delivers messages from these bu�ers aording to slots, and within eah slot, aording

to the proess indies, i.e., it delivers all the messages for this slot sent by proess 1, then all the

messages sent by 2, et.

The algorithm does not deliver messages immediately. Before delivering messages from some

proess j for slot s, it waits to reeive all the messages for slot s from all the proesses it urrently

thinks are ative, and, in addition, all the messages for slot s+ 1 from proesses with indies less

than or equal to j. The algorithm identi�es the last message sent by j for slot s upon reeipt of the

(?; s) message that is added by the network when net-flush(s)

j

is performed. This delay ensures

that all messages delivered by any proess will be reeived by all other ative proesses, sine our

failure model ensures that if a proess is ative at the end of slot s + 1, all proesses reeive its

messages for slot s.

6.2 Deteting failures

Proesses use timeouts to detet failures. In partiular, proess i detets that proess j has failed

if � + � time after the beginning of slot s aording to i's loal lok, i has not reeived j's last

message for slot s� 1.

The reason this implies that j has failed is as follows: Aording to our algorithm, a net-flush

ours every time a slot ends. Also, when the net-flush(s�1)

j

ation ours, at least one message,

(?; s� 1), is sent. Aording to the reliable network guarantees, this (?; s� 1) message reahes i

within real time at most � after the net-flush(s� 1)

j

ours. Therefore, sine the lok skew is

bounded by �, if proess i waits more than � + � lok time from the time it begins slot s for a

message from proess j for slot s� 1, i knows that j has failed.

Thus, i detets j's failure at a real time whih is at most �+�+�+� after j had failed. This

maximum time an our if j fails at the beginning of slot s aording to j's lok, and j

0

s lok is

ahead of i's by �.

When i detets the failure of j, i performs the m-fail(s�1; n; j) ation. The delivery of all mes-

sages (starting with j's messages for slot s� 1) is delayed until the orresponding m-deide(v; n; j)

ation ours. When an agreement regarding j's failure is reahed (the m-deide(v; n; j) ation),

the Ordering proess at i resumes the delivery of messages. Proess i delivers all of j's messages

for slots s � v, and denotes j as failed from slot v + 1 onward.

6.3 Joining the algorithm

Proesses an join or re-join the algorithm at any time without delaying messages sent by live

proesses. Note that to ahieve DAB, all the live proesses should agree on the slot in whih a

joining proess is added. This is done by having the Ordering proess at the joining loation notify

all the other proesses of the slot in whih it will join. Note that the joining proess may fail after

sending this message. Therefore, the joining slot is hosen to be far enough in the future to allow

orret proesses to agree on whether or not the joining proess will join at this slot.

The joining proess. When requesting to join, the appliation proess at i spei�es its

transmission rate r and inarnation number n. The Ordering proess at i then reserves the rate r

from the network via the net-reserve ation. The Ordering algorithm at i omputes the urrent

slot whih the algorithm is in as: urSlot

i

:= lok=� (rounded down to an integer).

Before attempting to join the algorithm, proess i waits a prede�ned amount of time on its

loal lok until it is sure that all proesses have ompleted any pending agreements for i's previous

failures. We disuss the length of this time interval below. After this period, the algorithm omputes
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the slot in whih i will join the algorithm. This slot is hosen to be s

i

= urSlot

i

+((f+3)(�+2�)+

�)=� (rounded down to an integer). The Ordering algorithm informs the DFM of this slot using

the m-join(urSlot; s

i

; n; i)

i

ation, and sends a (\join", i, s

i

, n) message to all other proesses.

When i's slot number reahes s

i

the Ordering algorithm performs the join-OK ation, and the

appliation an start sending messages.

From the time i wakes up until the ordering proess i reahes slot s

i

, i does not send or

deliver messages. However, from the time i wakes up, it monitors inoming \join" messages from

other proesses and responds to them the same way ative proesses respond to suh messages, as

explained below. In addition, from slot s

i

�3 onward, i examines all inoming messages in order to

determine whih proesses it will view as ative during slot s

i

. In partiular, if i does not reeive

the last message for slot s

i

� 3, (?; s

i

� 3), from some proess j, then i regards j as failed. If i does

reeive the last message for slot s

i

� 3 from j, then i performs an m-join(s

i

� 3; n; j)

i

ation.

If i reeives j's last message for slot s

i

�3 but does not reeive all of j

0

s messages for slots s

i

�2

and s

i

� 1, then i performs an m-fail(s

0

; n; j)

i

ation where s

0

is the last slot in whih it reeived

all of j's messages. In this ase, i does not wait for an m-deide(v; n; j)

i

response from the DFM;

i simply onsiders j to be failed when i begins partiipating in the algorithm in slot s

i

. It is safe

to do so, sine in this ase the deision value will be smaller than s

i

: sine i does not reeive all of

j

0

s messages for slot s

i

� 1, by our failure model, no proess an reeive all of j

0

s messages for slot

s

i

. Starting from slot s

i

, i behaves in the same way as any ative proess.

Ative proesses. Eah ative proess j has a Join array, in whih it keeps trak of the

slots in whih joining proesses are to be added. When j reeives a (\join", i; s

i

) message, it

ompares Join[i℄ to s

i

. If Join[i℄ 6= s

i

, j sets Join[i℄ := s

i

, informs the DFM of this join using

the m-join(s

i

; n; i) ation, and ehoes this message by multiasting it to all other proesses. If

Join[i℄ = s

i

, it does nothing. When an ative proess j reahes slot s

i

, j adds i to the list of ative

proesses; thereafter, it delivers messages from i until i fails or leaves.

The ehoing of \join" messages ensures that if a proess fails immediately after its join, and

some live proess learns of the join, then all live proesses learn of the join. The joining slot s

i

is

seleted so that in the presene of at most f failures, enough time remains prior to s

i

for the eho

mehanism to ensure that either all the live proesses learn of the join or none do. If i fails before

s

i

, this failure is deteted and the DFM agrees upon i's failure slot.

The delay for join. After the appliation proess at i issues a join, the Ordering proess at

loation i waits 2�+3(�+�)+ f(�+�+2�) before sending a \join" message. The rationale for

this delay is the following: As we show in Setion 7, the DFM guarantees that at most � + 3(� +

�)+ (f � 1)(�+�+2�) time after the m-fail(s; n� 1; i)

k

ation is performed, the orresponding

m-deide(v; n � 1; i)

k

ation is performed. Sine m-fail(�; �; i) is performed by all proesses at

most 2� + � +� after i has failed, the maximum time between i`s failure and the time in whih

the last m-deide(v; �; i) ation is performed is at most: 2� + 3(� +�) + f(� + � + 2�).

6.4 Leaving the algorithm

When the appliation at proess i performs the leave ation during slot s, the Ordering algorithm

at i performs the net-rel-mast(\leave",s)

i

ation, and noti�es its DFM. It then waits until two

net-flush

i

ations are exeuted (i.e., until the end of slot s + 1 aording to i's lok) and then

performs the net-leave

i

and leave-OK ations. The delay in notifying the appliation that it is safe

to leave the algorithm ensures that all proesses will reeive this \leave" message. When proess i

is about to deliver a (\leave"; s) message from j, it does not deliver the message. Instead, i removes

j from its set of ative proesses, suspends delivery of messages from j (until j is added again),
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and performs a m-leave(n; j)

i

ation.

Ordering

i

(Algorithm for proess i)

Signature

Input:

join(r; n)

i

, m a struture with two integer �elds

RN(r)

i

, m a struture with two integer �elds

leave()

i

,

mast(m)

i

, m 2M

net-rel-rev(m;s)

i;j

, m 2M , s integer

m-deide(v; n; j)

i

v; n integers, j 2 I

Output:

join-OK()

i

leave-OK()

i

net-flush(s)

i

s integer

net-rel-mast(m;s)

i

m 2M , s integer

deliver(m)

i;j

, m 2M

net-reserve(r)

i

m a struture with two integer �elds

net-leave()

i

m-join(s; l; n; i)

i

s; l; n integers

m-join(s; n; j)

i

s; n integers, j 2 I

m-leave(n; j)

i

n integer, j 2 I

m-fail(s; n; j)

i

s; n integers, j 2 I

Time-passing:

v(t); t 2 R

+

Internal:

send-join

end-deliver

failure-detetor

skip-failed

proess-leave

end-revSlot

wait-start

State

For all j, Rqueue(j), a fifo queue of messages, initially empty

Squeue;mQueue, fifo queue of messages, initially empty

urrent, an integer initially 1, // urrent proess to reeive from

myJoin, an integer initially 1

finished unbounded array of reals, initially 1 in all plaes // the time i �nished sendingSlot s

Join; in array of size n of integers, initially 0 in all plaes

maxDeliver array of size n of integers, initially -1 in all plaes

Sfailed array of size n of integers, initially 1 in all plaes

Failed a group of proess indies, initially empty

sendingSlot; revSlot, integers initially 1,

rate, pair of integers initially ?

hangeRate; P leave;Nleave, boolean initially FALSE

lSlot integer, initially 0

state 2 fidle; preJoin; preAtiveg initially idle

lok 2 R

�0

; initially 0

last 2 R

+

[ f1g, initially 1

Figure 3: The Ordering automaton for proess i: signature and variables.
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Transitions

Input join(r; n)

i

E�: last = lok + �+ 3(� +�)

(f � 1)(� + � + 2�)

state = preJoin

rate = r

in[i℄ = n

Internal send-join

Pre: state = preJoin

lok = last

E�: hangeRate = TRUE

myJoin = (lok + (f + 3)(� + 2�) + �)=�

add (\join",i; myJoin; in[i℄) to Squeue

add (\join",i; myJoin) to mQueue

revSlot = myJoin

for all j

maxDeliver[j℄ = myJoin� 4

sendingSlot = dlok=�e

last = (sendingSlot+ 1)�

state = preAtive

Output join-OK()

i

Pre: sendingSlot = myJoin

E�:

Input leave()

i

E�: P leave = TRUE

add (\leave",sendingSlot) to Squeue

lSlot = sendingSlot+ 2

Output net-leave()

i

Pre: P leave = TRUE

lSlot � sendingSlot

E�: NLeave = TRUE

Output leave-OK()

i

Pre: Nleave = TRUE

E�:

Input RN(m)

i

E�: rate = r

hangeRate = TRUE

Output net-reserve(r)

i

Pre: lok = last

hangeRate = TRUE

r = rate

E�: hangeRate = FALSE

Output m-join(s; l; n; i)

i

Pre: (\join",i; l) is �rst on mQueue

in[i℄ = n

s = sendingSlot

E�: disard �rst element of mQueue

Output m-join(s; n; j)

i

Pre: (\join",j; s) is �rst on mQueue

in[j℄ = n

E�: disard �rst element of mQueue

Output m-leave(n; j)

i

Pre: (\leave",j; s) is �rst on mQueue

in[j℄ = n

E�: disard �rst element of mQueue

Output m-fail(s; n; j)

i

Pre: (\fail",j; s) is �rst on mQueue

in[j℄ = n

E�: disard �rst element of mQueue

Input m-deide(v; n; j)

i

E�: maxDeliver[j℄ = v

Sfailed[j℄ = v + 1

Figure 4: The Ordering algorithm automaton for proess i: transition de�nitions part 1.
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Transitions

Input mast(m)

i

E�: add m to Squeue

Output net-rel-mast(m;s)

i

Pre: (m) is �rst on Squeue

s = sendingSlot

E�: disard �rst element of Squeue(j)

Internal wait-start

Pre: state = preAtive

sendingSlot < myJoin

lok = last

E�: finished[sendingSlot℄ = lok

last := lok +�

sendingSlot++

Output net-flush(s)

i

Pre: sendingSlot � myJoin

s = sendingSlot

lok = last

hangeRate = FALSE

Squeue is empty

E�: last := lok +�

finished[sendingSlot℄ = lok

sendingSlot++

Input net-rel-rev(m;s)

i;j

E�: if (m = (\join",j; s; n)) then

if (Join[j℄ 6= s) then

Join[j℄ := s

in[j℄ := n

add (\join"; j; s) to Squeue

add (\join",j; s) to mQueue

elseif (s � myJoin) then

add (m) to Rqueue(j)

elseif (s = myJoin� 3 && m =?) then

add (\join",j; s) to mQueue

in[j℄ = m:in

if (s � myJoin� 2 && m =?) then

maxDeliver[j℄ + +

Output deliver(m)

i;j

Pre: urrent > 0

j = urrent

maxDeliver[j℄ � revSlot

(m) is �rst on Rqueue(j)

m 6=? && m 6= \leave"

E�: disard �rst element of Rqueue(j)

Internal proess-leave

Pre: urrent > 0

j = urrent

maxDeliver[j℄ � revSlot

(m) is �rst on Rqueue(j)

m = \leave"

E�: Failed := Failed [ j

add (\leave",j) to mQueue

disard all elements of Rqueue(j)

urrent = urrent+ 1 mod (n + 1)

Internal end-deliver

Pre: urrent > 0

j = urrent

maxDeliver[j℄ � revSlot

? is �rst on Rqueue(j)

E�: disard �rst element of Rqueue(j)

urrent := (urrent+ 1) mod (n + 1)

Internal end-revSlot

Pre: urrent = 0

E�: urrent := 1

revSlot++

for all j s.t. Join[j℄ = revSlot f

Failed := Failed n fjg

Sfailed[j℄ =1

g

for all j s.t. Sfailed � revSlot

Failed := Failed [ fjg

Internal failure-detetor

Pre: lok � finished[maxDeliver[j℄ + 2℄ + �+ �

E�: add (\fail",j; (maxDeliver[j℄ + 1)) to mQueue

if (maxDeliver[j℄ + 1 < myJoin� 1) then

Failed := Failed [ j

Internal skip-failed

Pre: urrent 2 Failed

E�: urrent := (urrent+ 1) mod (n + 1)

TimePassage v(t)

hoose p � 0

Pre: now + t� �=2 � lok + p � now + t+ �=2

lok + p � last

E�: now := now + t

lok := lok + p

Figure 5: The Ordering algorithm automaton for proess i: transition de�nitions part 2.
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7 Construting the DFM

The DFM's task is to deide upon the slot in whih a failed proess should be removed from

the algorithm. The DFM is omposed of three algorithms: the Dynami Manager (DM) whih

interats with the DFM's environment; the First Round algorithm; and a Consensus module whih

is implemented by any standard uniform onsensus algorithm for the fail-stop model. Figure 6

depits the interation between the DFM and its environment, as well as its deomposition.

m-join(s,n,j)
i

m-leave(n,j)
i

m-fail(s,n,j)
i

p-fail(v,W)
i,n,j

h-fail(v)
i,n,j i

m-decide(v,n,j)

First Round (n,j)

Consensus (n,j) c-decide(v)

i,n,j

i,n,j

i,n,j
skip(k)

in-cons(v,G)

Dynamic Manager

i
m-join(l,s,n,i)

fail
i

Environment 

Figure 6: The DFM deomposition and interfae; the dashed retangle surrounds the DFM servie.

The three omponents of the DFM. We now explain the roles of the three omponents

of the DFM, and the interation among them. The DM at loation i uses m-join

i

and m-leave

i

inputs from its environment (the Ordering algorithm) in order to keep trak of the set of proesses

that are ative at eah point in the exeution. Whenever a proess failure is reported (via m-

fail(s; n; j)

i

), the DM invokes an instane of the First Round and an instane of Consensus (both

are parameterized by n and j). Consensus is used in order to reah agreement on the slot in whih

j will be removed; it is invoked after the First Round as we now explain.

The diÆulty with using a standard uniform onsensus algorithm is that although suh algo-

rithms an tolerate failures, they annot ope with proesses joining an in-progress exeution of

the algorithm. When the Consensus module is invoked, it must be informed of a set of proesses,

G, that will partiipate in this invoation of Consensus unless they fail. We now explain how the

DM and First Round overome this diÆulty.

The DM traks joins and leaves in order to be able to suggest an initial estimate, W , of the

set of proesses that will partiipate in eah invoation of Consensus unless they fail. This set

inludes the proesses that join before or at the slot following the slot in whih the failure was

deteted. However, sine instanes of the DM running at di�erent loations an detet the same

failure as happening at di�erent slots (otherwise there would be no need for Consensus), they an

have di�erent values for W . For example, if some proess i

1

fails, and its failure is deteted as

happening in slot 7 by proess i

2

, the same failure an be deteted as happening in slot 6 by

proess i

3

. If a fourth proess, i

4

joins the algorithm at slot 8, proess i

2

inludes i

4

in W (sine

from i

2

's point of view, i

4

ould have deteted i

1

's failure as happening in slot 8, in whih ase i

4
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would have to partiipate in the Consensus), whereas proess i

3

does not.

One purpose of the First Round is to eliminate suh unertainties, and to provide the Consensus

module at the loal proess with a set of proesses, G, that will partiipate in this invoation

of Consensus unless they fail. In order to overome suh unertainties, proesses like i

4

in the

example above have a speial role in the First Round, they help proesses that like i

2

expet them

to partiipate in the First Round (to avoid bloking), but they do not subsequently partiipate in

the Consensus algorithm (i.e., they are not inluded in G). The First Round therefore has two

types of input ations: p-fail for partiipants, and h-fail for helping proesses.

A seond purpose of the First Round is to modify the input value for Consensus in order to

have the deision value meet the Minimum Value guarantee of the DFM. The output of the First

Round is the input for Consensus.

Both the First Round and the Consensus need to detet failures in order to avoid waiting for

messages from a failed proess. They do not implement suh failure detetion internally. Instead,

the DM noti�es in-progress exeutions of these algorithms of a failure (or leave) of a proess k via

the skip(k) ation.

The Dynami Manager.

The DM algorithm is presented as an I/O automaton in Figure 7. We now desribe its operation.

The DM uses m-join and m-leave ations to keep trak of the ative proesses, as well as of the

slot, joinSlot[j℄, in whih eah proess j joins.

When m-fail(s; n; j)

i

ours, the DM at proess i ompares joinSlot[i℄ with s and ats as

follows: If s � joinSlot[i℄, then it performs p-fail(s;W )

i

, where W is the set of all proesses k

that i thinks are ative, and for whih joinSlot[k℄ is less than or equal to s+ 1. If s < joinSlot[i℄,

then the DM at i performs the h-fail(s)

i

ation.

Whenever an m-fail(�; �; k) or an m-leave(�; k) ation is performed, the DM performs the

skip(k) for all ongoing onsensus and First Round algorithms. When the onsensus algorithm

reahes an agreement, it noti�es the DM using the deide ation. The DM, in turn, noti�es its

environment of this deision using the m-deide ation.

The following lemma (proven in the Appendix) disusses the relationship between the input

sets of di�erent proesses that perform the p-fail ation. It is used to prove the orretness of the

DFM.

Lemma 7.1 Let P [n; j℄ be the set of proesses i that perform p-fail(s

i

;W

i

)

i;n;j

. For all i 2 P [n; j℄:

1. m-fail(�; �)

i;n;j

is performed exatly one.

2. If k 2 P [n; j℄ and k 62 W

i

, then k either fails or leaves after performing the p-fail(s

k

;W

k

)

k;n;j

ation, and before i performs the p-fail(s

i

;W

i

)

i;n;j

ation.

3. For all k 2W

i

, either k performs p-fail(s

k

;W

k

)

k;n;j

or h-fail(s

k

)

k;n;j

, or skip(k)

i

ours, or i

fails or leaves.
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DynamiManager

i

(Algorithm for proess i)

Signature

Input:

m-join(l; s; n; i)

i

l; s; n integers

m-join(s; n; j)

i

s; n integers, j 2 I

m-leave(n; i)

i

n integer

m-leave(n; j)

i

n integer, j 2 I

m-fail(s; n; j)

i

s; n integers, j 2 I

-deide(s; n; j)

i

s; n integers, j 2 I

Output:

deide(s; n; j)

i

s; n integers, j 2 I

skip(k)

i;n;j

k 2 I

p-fail(v;W )

i;n;j

v integer, W � I

h-fail(v)

i;n;j

v integer

Internal:

State

joinSlot array of size N of integers, initially 0 in all plaes

status, array of size N �N , eah element is 2 finative; ativeg initially inative in all plaes.

newCons; urCons a set of pairs (n; j) where n is an integer and j 2 I initially empty // The set of pending and

urrent onsensus algorithms respetively.

res a set of triplets (v; n; j) where v; n are integers and j 2 I, initially empty

onsQueue an unbounded two dimensional array, eah element in this array is a queue, initially empty in all plaes

part; help an unbounded two dimensional arrays of booleans, initially FALSE in all plaes.

R an unbounded two dimensional array, eah element of this array is a subset of I, initially empty in all plaes

V an unbounded two dimensional array, eah element of this array is an integer

Transitions

Input m-join(l; s; n; i)

i

E�: status[i℄[i℄ := ative

joinSlot[i℄ := s

Input m-join(s; n; j)

i

, j 6= i

E�: status[i℄[j℄ := ative

joinSlot[j℄ := s

Input m-leave(n; i)

i

E�: exit

Input m-leave(n; j)

i

, j 6= i

E�: status[i℄[j℄ := inative

for all (n

0

; j

0

) 2 urCons

add skip(j) to onsQueue[n

0

℄[j

0

℄

Output skip(k)

i;n;j

Pre: skip(k) is �rst on onsQueue[n℄[j℄

E�: disard �rst element of onsQueue[n℄[j℄

Input -deide(v; n; j)

i

E�: urCons = urCons n (n; j)

res = res [ (v; n; j)

Output deide(v; n; j)

i

Pre: (v; n; j) 2 res

E�: res = res n (v; n; j)

Input m-fail(s; n; j)

i

, j 6= i

E�: status[i℄[j℄ := inative

for all (n

0

; j

0

) 2 urCons

add skip(j) to onsQueue[n

0

℄[j

0

℄

for all k s.t. (joinSlot[k℄ � s+ 1

&& status[i℄[k℄ = ative)

R[n℄[j℄ = R[n℄[j℄ [ k

V [n℄[j℄ = s

if (s � joinSlot[i℄) then

part[n℄[j℄ = TRUE

newCons = newCons [ (n; j)

else

help[n℄[j℄ = TRUE

Output p-fail(v;W )

i;n;j

Pre: (n; j) 2 newCons

W = R[n℄[j℄

v = V [n℄[j℄

part[n℄[j℄ = TRUE

E�: part[n℄[j℄ = FALSE

newCons = newCons n (n; j)

urCons = urCons [ (n; j)

Output h-fail(v)

i;n;j

Pre: v = V [n℄[j℄

help[n℄[j℄ = TRUE

E�: help[n℄[j℄ = FALSE

Figure 7: The Dynami manager algorithm
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The First Round algorithm. We desribe the operation of the �rst round algorithm. The

algorithm is presented as an I/O automaton in Figure 8. The First Round algorithm is invoked

every time a proess is deteted as failed, by one of two ations: h-fail or p-fail. When the

algorithm is initiated by h-fail(v)

i

, the DFM at loation i multiasts a (\help",v) message to all

proesses and terminates. If it is initiated by p-fail(v;W )

i

, it multiasts a \�rst round" message

ontaining v and W and waits for messages from every other proess in W .

When the First Round at i reeives messages from all proesses k 2 W for whih no skip(k)

ation was performed, it performs inCons(v;G), where v is the lowest value in any of the reeived

messages (inluding i's initial value), and G is the set of proesses that a \�rst round" message

was reeived from, inluding i. The inCons

i

ations is performed no sooner than �+� time after

i sends its First Round message. This ensures that the message it sent had reahed all proesses

before the uniform onsensus is triggered.

In the Appendix, we prove formally that the First Round ahieves its two purposes (eliminating

unertainties in the partiipants group and Minimum Value). In addition, we prove that ombined

with the DM it guarantees termination.

Thus, all the proesses that do not fail or leave start the onsensus algorithm. In addition, all

the proesses in eah proess' set G partiipate in this invoation of Consensus unless they leave or

fail, and all the proesses that partiipate are in eah proess's set G. Thus, any standard uniform

onsensus algorithm an be used, and the ombined servie ahieves the DFM guarantees, as we

now argue.

Corretness and lateny. We prove that the DFM meets its spei�ation (stated in Se-

tion 5). In addition, we present lemmas that establish its lateny bounds. The formal proofs may

be found in the Appendix.

Theorem 1 The DFM ahieves the following guarantees:

1. Uniform Agreement.

2. Validity.

3. Minimum Value.

4. Termination.

Proof: 1. As shown above, the First round algorithm ahieves the spe of any onsensus algo-

rithm, and thus the uniform agreement is guaranteed by ombining this property of the �rst round

algorithm with the uniform agreement guarantee of the onsensus algorithm.

2. From the validity of the onsensus algorithm we know that the output of suh a onsensus must

be the input of one of the proesses that partiipated in it. But inputs to the onsensus algorithm

an only ome from proesses that performed the m-fail(s; �; �) ation or from messages from suh

proesses in whih the value in the message is s. Thus, if i performs the m-deide(v; n; j)

i

ation,

there must be some proess k that performed the m-fail(v; n; j)

k

ation.

3. Combining the validity ondition of the onsensus algorithm with the Minimum Value guarantee

of the First round algorithm guarantees the minimum value requirement (note that only proesses

k suh that k 2 C[n; j℄ an perform the m-deide(v; n; j)

k

ation aording to the DFM algorithm).

4. By ombining the termination guarantee of the First round with the termination guarantee of

any onsensus algorithm the termination guarantee of the DFM is proved.

We now analyze the time it takes from when a m-fail(s; n; j)

i

ation is performed until the

orrespondingm-deide(v; n; j)

i

is performed. Note that this is exatly the time it takes to perform

the First round and Consensus algorithm sine when anm-fail ation ours the DFM starts a First
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round algorithm, and when the onsensus algorithm terminates the m-deide ation is performed.

The following lemma disusses this time as a funtion of the number of proesses f that an fail

during the exeution of the First round and Consensus algorithms.

Lemma 7.2 If f proesses fail during the exeution of the First round and Consensus algorithms,

then the algorithm takes at most:

� +�+ 3(� +�) + f(� + � + 2�)

We now move to prove the seond time guarantee of the DFM in the following lemma.

Lemma 7.3 If m-fail(s; n; j)

i

is performed at time t

0

, and starting at time t > t

0

no m-fail

ation was performed by any proess for 3(� + 2� + �) time, m-deide(v; n; j)

i

will be performed

by t+ 3(� + 2�+ �).
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FirstRound

i

Signature

Input:

p-fail(v;W )

i;n;j

v integer, W � I

h-fail(v)

i;n;j

v integer

skip(k)

i;n;j

k 2 I

Output:

inCons(v; G)

i;n;j

v integer, W � I

Internal:

send(v; str)

i;k;n;j

v an integer

reeive(v; str)

k;i;n;j

v an integer

State

S;C a set of proesses indies, initially empty.

mode 2 fidle; ativeg initially idle

urV al integer

for eah j 2 I queue(j), a queue of messages initially empty.

Transitions

Input p-fail(v;W )

i;n;j

E�: S =W

C =W

for all j 2 I

add (v;\part") to queue(j)

mode = ative

Input h-fail(v)

i;n;j

E�: for all j 2 I

add (v;\help") to queue(j)

Input skip(k)

i;n;j

E�: if(mode = ative) then

S = S n k

C = C n k

Output inCons(v; G)

i;n;j

Pre: mode = ative

S is empty

v = urV al

G = C

E�: mode = idle

Internal send(v; str)

i;k;n;j

Pre: (v; str) is �rst on queue(k)

E�: disard �rst element of queue(k)

Internal reeive(v; str)

k;i;n;j

Pre:

E�: if(urV al > v) then

urV al = v

S = S n k

if(str = \help") then

C = C n k

Figure 8: The First round algorithm
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8 Corretness

This setion has two parts. We �rst give an informal proof showing that our algorithm ahieves

our servie spei�ation. Next we briey show how the Ordering algorithm ahieves the DFM

environment requirements. The full details of the proofs appear in the Appendix.

Ahieving the servie spei�ation First, we need the following lemma that shows that all

ative proesses add a joining proess j in the same slot.

Lemma 8.1 If some proess i that is ative at slot s adds j in that slot, then all ative proesses

add j at slot s.

In addition, we also use the following lemma:

Lemma 8.2 If a m-deide(v; n; j) ation ourred following a m-fail(s; n; j) ation then 0 � (v�

s) � 1, and this bound is tight.

We are now ready to prove that our algorithm ahieves the servie spei�ation. We �rst desribe

the ordering of S. We order S in the following way - For every message m that was delivered by

some proess, the triplet (m

s

;m

i

;m

p

) onsists of the slot m

s

in whih m has been sent, the sender

proess index (m

i

) and the plae of m within the messages i sent for slot s (m

p

). We order all

messages using these triplets (that is, m

1

is ordered before m

2

if m

1

s

< m

2

s

, and if m

1

s

= m

2

s

we

ompare m

1

i

and m

2

i

and so on). Note that this is a omplete ordering on the messages.

Integrity is trivially satis�ed from our assumption that the network does not dupliate, orrupt

or spontaneously generate messages. The �fo of two messages m and m

0

sent by the same proess

is guaranteed from the way we onstrut S.

When no proess fails, messages are delivered in eah slot aording to proess indies by all

proesses. When a proess leaves all proesses stop delivering its messages after the last message

it sent before the \leave" message. As shown above, when a proess i joins, all proesses add i in

the same slot. Thus, all proesses order the delivery exatly as in S. Sine there are no proess

failures, using the reliable network guarantees that all proesses reeive all messages sent, and so

eah proess delivers a ontiguous subsequene of S. Sine S is ordered by the slot number, and

eah time a proess joins the slot number from whih it starts delivering messages (joinSlot

i

)

inreases, it must be that any message m, i delivers while i has inarnation number n, is ordered

ahead in S of any message i delivered while i had inarnation number n

0

where n

0

< n.

When a proess j fails, then using the DFM all proesses agree on the slot S

D

in whih j failed.

It follows from the DFM guarantees that S

D

� s

i

for all proesses i that performedm-fail(s

i

; n; j)

i

.

Thus, all orret proesses have reeived all of j's messages up to S

D

, and no proess had delivered

messages from j for slots greater than S

D

(this results from Lemma 8.2 and the one slot delay we

enfore on message delivery). Sine messages are still delivered in eah proess aording to their

order in S, the total ordering is guaranteed.

The Joining and Leaving liveness requirements are guaranteed sine our algorithm performs the

join-OK a �xed time after the join ation is performed, and the same thing holds for leave and

leave-OK.

As for Message Delivery and Lateny, If m is sent by some proess j more than � time after the

join-OK

i

was performed, m must have a slot number greater than or equal to joinSlot

i

sine the

lok skew between all proesses is at most �. Thus, if i and j do not fail m will be delivered by

i, beause i delivers all messages it reeives with slot number greater or equal to joinSlot

i

(exept

for some of the messages from faulty proesses). The maximal lateny is also guaranteed, and we

disuss it in Setion 9.
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Ahieving the DFM requirements The two DFM requirements are ahieved by the Ordering

algorithm. First, using Lemma 8.1 we know that when j joins, all ative proesses are aware of

this join before they reah joinSlot

j

. In addition, aording to our joining algorithm, j knows of

all ative proesses when it reahes joinSlot

j

, sine j monitors messages prior to its atual join.

As for the seond requirement, our failure model guarantees that if j fails there will be at most

one slot di�erene between the the last message i reeived from j and the last message k reeived

from j. Thus, i and k will detet j's failure in at most one slot di�erene.

9 QoS guarantees

If no proess fails, then the maximum delay aused by this algorithm is the following:

Lemma 9.1 If no proess fails during the exeution of the algorithm then

AppLateny = �+ �+ 2�

Proof: Assume that proess i sends a message m in slot s, and the delivery of m is delayed until

a message m

0

from another proess, j, will be reeived. Sine message delivery is done per slot, m

0

must be a message from j for slot at most s+ 1 (only messages sent for slots s

0

� s+ 1 an delay

the delivery of m). Sine the di�erene between the two proesses' internal lok is at most �, we

know that i sent m at most �+2� time before j sent its last message for s+1. Sine j's messages

for slot s + 1 arrives at all the proesses at most � time after j ends slot s + 1, all the proesses

reeive m

0

at most � time after j ended slot s+ 1. Thus, after at most �+�+ 2� time from the

time i sent m, it will be enabled for delivery by all proesses.

We now turn to analyze the e�et of proess failures on message delivery time. The following

lemma disusses the maximum delay aused by a the algorithm as a funtion of the number of

proesses that fail during the exeution of the algorithm.

Lemma 9.2 Denote by f � 1 the number of proesses that fail between a m-fail(s; n; j)

i

and a

m-deide(v; n; j)

i

ations, then

AppLateny = 4�+ 3� +�+ 3(� +�) + (f � 1)(� + � + 2�)

Proof: If s

j

is the slot j failed in, then the the failure of j an delay the delivery of messages that

where sent at slot s

j

� 2 and up. This is so beause all proesses saw js messages for slot s

j

� 2

and thus delivered all messages for slot s

j

� 3. However, it ould be that some proess did not

reeive all of js messages for slot s

j

� 1, delaying the delivery of all messages sent for slot s

j

� 2

from proesses with indies k � j.

As explained in Setion 6.2, at most � + � + � + � after the �rst proess started slot s

j

,

all proesses detet that j failed, and perform the m-fail(s; n; j) ation. Aording to the DFM

guarantees, at most �+�+3(�+�)+(f�1)(�+�+2�) time after a m-fail(s; n; j)

i

is performed,

the orresponding m-deide(v; n; j)

i

is performed. Thus the total time the algorithm an delay a

message is:

2�+�+�+�+�+�+�+3(�+�)+(f�1)(�+�+2�) = 4�+3�+�+3(�+�)+(f�1)(�+�+2�).
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Note that although the maximum delay time sales with the total number of proesses that an

fail, in pratie we would not expet this delay to our. The maximum delay will our only if at

least one proess will fail every �+�+ � time. Suh sheduling of proess failures is very rare in

pratie, and so the expeted maximum delay of our algorithm is muh smaller than the one we

just desribed. The following lemma disusses the lateny su�ered by a message m for whih no

proesses fails during a ertain time before and after it is sent.

Lemma 9.3 If message m is sent by i at time t, and no proess fails between

t� (� +�+ 2� + 3(� + 2�+ �)) and t+ (�+ 2�+ �), then all proesses deliver m by

t+�+ 2�+ �.

Proof: Aording to our algorithm (Setion 6.2), if a proess k fails, i will perform the m-

fail(�; �; k)

i

ation at most � + �+ 2� after ks failure. Sine no proess failed between t� (� +

� + 2� + 3(� + 2� + �)) and t, we know that no m-fail ation was performed by i between

t� (3(�+2�+�) and t. Aording to the DFM guarantees, if m-fail(s; n; j)

i

is performed at time

t

0

, and starting at time t

0

> t

0

no m-fail ation was performed by any proess for 3(� + 2� + �)

time, all proesses will perform the m-deide ation by t

0

+3(�+ 2�+�). Sine no m-fail ation

was performed by any proess between t� (3(�+2�+�) and t, a orresponding m-deide(�; �; j)

k

ation was performed at all proesses for any proess j for whih a m-fail(�; �; j)

k

was performed.

Thus, when m was sent all messages that where delayed until a deision regarding a proess failure

was made, have been delivered.

Aording to our reliable network guarantees m will be reeived by all proesses at most � time

after it was sent. Assume m was sent for slot s. Then, after reeiving m all proesses must reeive

all messages for slot s+ 1 in order to deliver m. Sine m was sent for slot s, at most 2� + � time

after m was sent, all proesses �nished slot s + 1, and sine no proess has failed between t and

t+�+ 2�+ � all these messages (for slot s+ 1) will arrive at all proesses at most � time after

they where sent. So m will be delivered by all proesses at most at time t+�+ 2� + �.

Reserved rates. The messages our ordering algorithm adds over the messages sent by the

appliation are the messages added by the reliable network layer and messages added by the DFM.

The DFM sends at most one message every slot (all of the DFM messages are aggregated and are

sent one a slot). In addition, our algorithm issues a net-flush every � time, thus � of Setion 4

is set to �. We thus get the following upper bounds on the average and maximum rates used by

our algorithm:

NetAvgRate = AppAvgRate+ 1 + (d(AppAvgRate + 1)=ke + 1) � l

NetMaxBurst = AppMaxBurst+ 1 + (d(AppMaxBurst+ 1)=ke) � l

10 When the network QoS guarantees are violated

So far, we assumed that the QoS guarantees provided by the network (namely, bounded delay and

bounded message loss) are deterministi. However, some networks only provide probabilisti QoS

guarantees. In suh networks, there may be periods of time during whih the QoS guarantees are

violated. Although our algorithm annot guarantee atomi broadast while the QoS guarantees

are violated, it is important for the algorithm to be able to reover from suh violation. In other

words, a ertain time after the QoS guarantees are restored, the algorithm should again be able
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to provide the DAB servie. In addition, it would be desirable to inform the appliation when

a violation of DAB semantis ours, and when the orret semantis are resumed (following the

failure awareness approah of [9℄).

We now disuss how QoS violations an a�et our algorithm, and how the algorithm an be

modi�ed in order to reover from them. We disuss these ideas informally, a more areful study of

these ideas remains for future work.

Violation of QoS guarantees may lead one orret proess, i, to detet a seond orret proess,

j, as faulty (either due to message delay or due to loss). Proess i will then invoke the DFM to

agree upon j's failure slot. In order to reover from this situation, we modify the algorithm to

have j fail itself when it gets a onsensus or a �rst round message related to its own failure. The

algorithm at j will then notify the appliation of the failure, and the appliation would have to

re-attempt to join (a similar approah was taken in [2℄).

Not every ase of exessive message loss must lead to inorret failure detetion. In other ases,

the loss an be deteted when the reliable network delivers messages with gaps. In suh ases, the

appliation an be informed of the fat that loss ourred. Our algorithm, without modi�ation,

reovers from suh situations.

The loss or delay of a \join" message may lead to a proess joining before all the other proesses

know of the join. To reover from this situation, we modify the algorithm to have proesses monitor

all inoming messages. If proess j sees a message from proess i when j thinks that i is not ative,

j adds i to the list of ative proesses and delivers messages from i from now on. It also informs

the appliation of the potential loss of messages. One the network QoS guarantees are restored,

all suh message will arrive at j, and DAB semantis will be resumed.

The loss of a DFM message (onsensus or �rst round) may lead to bloking. To overome this,

we have proesses periodially re-send their latest DFM message. One the network guarantees are

restored, these messages will reah their destinations.

11 A lower bound for DAB with proess failures

The following theorem shows that in the model studied in this paper, any algorithm implementing

DAB (see De�nition 1 in Setion 3) an guarantee, at best, a lateny bound whih is proportional

to the number of failures it an tolerate.

Theorem 2 A Dynami Atomi Broadast (DAB) algorithm that an tolerate f proess failures

annot guarantee a lateny bound smaller than (f + 1)�.

Proof: Assume that a DAB algorithm A an tolerate f proess failures and guarantees a lateny

bound of Æ. We now show that Æ � (f + 1)�. As shown in [12℄, the proesses may use A to solve

the Consensus problem by sending their initial values as their �rst message and agreeing upon the

value in the �rst delivered message. By our assumption on A, this message is delivered at most Æ

time after the algorithm is initiated, and thus, Consensus is solved in Æ time.

Sine f+1 rounds is a well known lower bound for synhronous Consensus tolerating f stopping

failures (see [14℄, Ch. 6.7), and from our assumption that messages an be delayed up to � time

by the network, we onlude that the algorithm annot guarantee that Consensus be solved in less

than (f + 1)� time, and hene Æ � (f + 1)�.
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12 Conlusions

We have designed a Dynami Atomi Broadast (DAB) algorithm that preserves QoS guarantees.

We have onduted a detailed theoretial study of the QoS guarantees of our algorithm under

di�erent irumstanes. In partiular, we have shown that in periods with no failures, the lateny for

the ordered multiast is within a onstant of the lateny of the underlying network (independently

of the number of partiipants). This is an improvement over the lateny exhibited by previous

algorithms (e.g., [2℄). When failures do our, the lateny is linear in the number of proesses that

fail within a bounded time interval, as ditated by a lower bound.

We have disussed possible ways of extending our algorithm to reover from situations in whih

the network QoS is violated. Future work will further develop these ideas, and present a areful

study of the time it takes the algorithm to reover from suh situations.

Our algorithm uses a Dynami Failure Manager to ahieve atomi semantis in the presene

of failures: the DFM reahes onsensus regarding the point at whih eah failed proess should

be removed from the algorithm. Ahieving suh onsensus is diÆult beause of the dynami

model: Proesses an join and leave the algorithm at any time. Furthermore, di�erent proesses

an detet the same failure while having di�erent pereptions of the set of proesses partiipating

in the algorithm. The DFM servie resembles virtually synhronous group membership; its use by

the DAB servie resembles the use of group membership in totally ordered group ommuniation

servies

6

. However, unlike most group ommuniation systems providing similar servies, (e.g., [10,

21, 6℄), using our DFM proesses an join and leave the algorithm without introduing delays to

the ommuniation among ative proesses. We believe that our DFM may be useful for additional

appliations, beyond DAB. Future work will explore this possibility.
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We now present a formal orretness proof of our servie. We begin in Setion A by presenting

a formal spei�ation of the DFM environment. In Setion B we then show that given a DFM

meeting the DFM guarantee presented in Setion 5, the Ordering algorithm provides the DAB

servie spei�ation of Setion 3. We also show that the Ordering algorithm meets the DFM

environment spei�ation of Setion A. Finally, in Setion C we show that the DFM meets its

spei�ation.

A DFM environment spei�ation

The DFM environment spei�ation is omposed of two parts, safety and liveness. The safety

requirements are presented as an automaton in Figure 9.

We now explain briey eah of the preonditions in the environment spei�ation. A preondi-

tion for the m-join(l; s; n; i)

i

ation should guarantee that when i joins, all proesses k have enough

time to perform the m-join(s; n; i)

k

before they reah slot s. Thus, we require that s will be bigger

than the urrent slot of all ative proesses. We also require that all proesses know that i was not

ative prior to performing the m-join ation.

Them-join(s; n; j)

i

preonditions should guarantee that if i is about to be joined when s arrives,

i will add j before i reahes slot s (that is, i performs this ation when slot[i℄ < s).

The m-leave ation preonditions guarantee that a proess will not be reported as left unless it

atually left. In addition, a proess an be reported to leave only if it has been seen as ative prior

to this report.

The m-fail ation preondition guarantees that a proess will not be reported as fail unless

it atually failed. In addition, the preondition limits the di�erene (in slots) between the slots

in whih di�erent proesses detet the failure of proess j. This ahieves the seond intuitive

requirement stated in Setion 5.

The preonditions for the in-slot ation guarantees that when i atually joins, all proesses

that where supposed to join before i know of is joining, and i knows of them. This ahieves the

�rst intuitive requirement of Setion 5.

The DFM liveness requirements are:

Liveness:

� For all proesses k suh that status[k℄[k℄ is ative when the fail

j

ation is performed for j

with inarnation number n, and joinSlot[k℄ � failSlot[j℄ + 2, k either m-fail(�; n; j)

k

, or

fail

k

or m-leave(�; in[k℄; k)

k

is performed.

� All proesses that have status[i℄[k℄ = ative when k performs the m-leave(n; k)

k

ation, will

set status[i℄[k℄ to inative.

The �rst liveness item guarantees that if a proess k was ative when a proess j failed, and k was

about to join the algorithm or have already joined, k will either report the failure of j or will fail or

leave itself. The seond guarantees that when an ative proess j leaves, all other ative proesses

will note that fat.
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DFMEnv

Signature

Input:

fail

i

m-deide(v; n; j)

i

Output:

m-join(l; s; n; i)

i

l; s; n integers

m-join(s; n; j)

i

j 6= i, s; n integers, j 2 I

m-leave(n; j)

i

n integer, j 2 I

m-fail(s; n; j)

i

s; n integers, j 2 I

Internal:

in-slot()

i

State

slot array of size N of integers, initially 0 in all plaes // slot[i℄ is the urrent slot i is in.

joinSlot array of size N of integers, initially 0 in all plaes // joinSlot[i℄ holds the last slot in whih i joined (l).

failSlot array of size N of integers, initially 0 in all plaes // failSlot[i℄ is the last slot in whih i failed.

in array of size N of integers, initially 0 in all plaes // in[i℄ holds is urrent inarnation number (n) as determined

by the m-join(�; l; n; i)

i

ation.

status, array of size N �N , eah element is 2 finative; ativeg initially inative in all plaes. // status[i℄[k℄ is the

status i sees for k.

Leave; Failed arrays of size N of booleans, initially FALSE in all plaes. // Leave[i℄ is TRUE if i is inative, and

the last leave or fail ation i performed was a m-leave(�; i)

i

. Failed[i℄ is the same for failures.

Transitions

Output m-join(l; s; n; i)

i

Pre: n = in[i℄ + 1

l > slot[i℄

for all k 2 I f

s > slot[k℄ + 2

status[k℄[i℄ = inative

g

s > l+ 2

E�: status[i℄[i℄ := ative

slot[i℄ := l

joinSlot[i℄ := s

Failed[i℄ := FALSE

Leave[i℄ := FALSE

in[i℄ = n

Output m-join(s; n; j)

i

, j 6= i

Pre: status[i℄[j℄ = inative

n = in[j℄

s � joinSlot[j℄

if(s > joinSlot[i℄ � 2) then

slot[i℄ < s

E�: status[i℄[j℄ := ative

Internal in-slot()

i

Pre: if(slot[i℄ = joinSlot[i℄ � 1) then

for all k s.t.(joinSlot[k℄ � joinSlot[i℄

&& status[k℄[k℄ = ative) f

status[i℄[k℄ = ative

status[k℄[i℄ = ative

g

E�: slot[i℄ = slot[i℄ + 1

Output m-leave(n; i)

i

Pre: status[i℄[i℄ = ative

n = in[i℄

E�: for all j 2 I

status[i℄[j℄ = inative

Leave[i℄ = TRUE

Output m-leave(n; j)

i

, j 6= i

Pre: status[i℄[j℄ = ative

n = in[j℄

Leave[i℄ = TRUE

E�: status[i℄[j℄ := inative

Input fail

i

E�: if (status[i℄[i℄ = ative) then

Failed[i℄ = TRUE

failSlot[i℄ = slot[i℄

for all j 2 I

status[i℄[j℄ = inative

Output m-fail(s; n; j)

i

, j 6= i

Pre: status[i℄[j℄ = ative

Failed[j℄ = TRUE

n = in[j℄

s < slot[i℄

s � joinSlot[i℄ � 2

failSlot[j℄ � 1 � s � failSlot[j℄

E�: status[i℄[j℄ := inative

Input m-deide(v; n; j)

i

E�: none

Figure 9: The environment spei�ation automaton
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B Corretness proof of the DAB servie

In this setion we give the formal proofs for the two parts of Setion 8.

B.1 Ahieving the servie spe

Lemma B.1 If some proess i that is ative at slot s adds j in that slot, then all ative proesses

add j at slot s.

Proof: If i adds j at slot s then it must be that in some slot prior to s i reeived a join message

for j for slot s. If i reeived the message from j, then i reeived it at most � time after it was sent,

and ehoed it at most � after that. Sine i is ative when s starts, and sine j hooses an s that

starts ((f + 3)(� + �) + �) time after it sends the join message, all proesses must have reeived

is join message for j before starting to reeive message for s, and so all proesses will also add j at

slot s.

If i did not reeive the message diretly from j, it means that at least one proess k had reeived js

original join message, and ehoed it. Using an indutive argument it is easy to see that if i reeived

the join message for j only after x(� + �) time from the time j sent it, then it must be that at

least x� 1 proesses have failed (inluding j). This is so beause for eah � +� time after j sent

its join message, at least one proesses had ehoed it, otherwise i would not have reeived it at all.

On the other hand, sine i did not reeive the join message prior to x(�+�) time after it was sent,

all proesses that sent the join message before (x � 1)(� + �) time must have failed. Sine the

number of proesses that an fail is at most f , x � f +1. So i had reeived js join message at most

(f + 1)(�+�) time after j sent its original join message. Sine i ehoed the join message at most

� time after it reeived it, all proesses must have reeived the join message at most (f+2)(�+�)

time after it was sent. This happens at least (� +�) time before all proesses start slot s, and so

when s starts all ative proesses add j.

Lemma B.2 If a m-deide(v; n; j) ation ourred following a m-fail(s; n; j) ation then 0 �

(v � s) � 1, and this bound is tight.

Proof: The fat that 0 � (v�s) omes from the minimum value guarantee in the failure manager

spe. As for the other side of the inequality, sine the di�erene between the detetion of a proesses

failure is at most one slot, all ations m-fail(s

0

; n; j)

k

performed by another proess k must have

s

0

+1 � s, and so, from the validity requirement it must be that v+1 � s, and so 0 � (v� s) � 1.

Theorem 3 Our TO algorithm ahieves the following requirements:

� Integrity

� Ordering

� Joining

� Leaving

� Message Delivery and Lateny

This requirements are fully spei�ed in De�nition 1 in Setion 3.
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Proof: We prove this theorem by proving that eah of the items above is guaranteed by our

algorithm.

� Integrity: This is trivially satis�ed from our assumption that the network does not dupliate,

orrupt or spontaneously generate messages.

� Ordering: When no proess fails, messages are delivered in eah slot aording to proess

indies by all proesses. When a proess leaves all proesses stop delivering its messages after

the last message it sent before the \leave" message. As shown above, when a proess i joins,

all proesses add i in the same slot. Thus, all proesses order the delivery exatly as in S.

Sine there are no proess failures, using the reliable network guarantees that all proesses

reeive all messages sent, and so eah proess delivers a ontiguous subsequene of S. Sine

S is ordered by the slot number, and eah time a proess joins its slot number inreases, it

must be that any message m, i delivers while i has inarnation number n, is ordered ahead

in S of any message i delivered while i had inarnation number n

0

where n

0

< n.

When a proess j fails, then using the DFM all orret proesses will have the same value,

S

D

, as their deision value. Given S

D

, we know that all orret proesses have reeived all

of js messages for slot S

D

(this omes from the minimum value guarantee of the DFM). In

addition, no proess had delivered js messages for slot S

D

+ 1 (beause for every proess

i, s

i

� 1 � S

D

, from lemma 8.2, and aording to the algorithm a proess does not deliver

messages for slot s� 1 until it reeives all messages for slot s). So all proesses at the same

when the DFM reahes a deision, delivering js messages up to slot s, and skipping j for slot

s+1 on. Sine messages are still delivered in eah proess aording to their order in S, and

all proesses at in the same way for js failure, the total ordering is guaranteed.

� Joining: Aording to our algorithm (Setion 6.3), if i performs a join at time t, and i does

not fail or leave, a join-OK

i

will be performed at time t + t

1

where t

1

= 2� + 3(� + �) +

f(� + � + 2�) + (f + 3)(� + 2�) + �) .

� Leaving: Aording to our algorithm (Setion 6.4), at most 2� time after a leave is performed,

the orresponding leave-OK

i

is exeuted. Thus setting t

2

= 2� guarantees this ondition.

� Message Delivery and Lateny: If m is sent by some proess j after time t+�, m must have

a slot number bigger or equal to joinSlot

i

sine the lok skew between all proesses is at

most �. Thus, if i and j do not fail m will be delivered by i, beause i delivers all messages it

reeives with slot number greater or equal to joinSlo

i

(exept for some of the messages from

faulty proesses), and aording to the reliable network guarantees m will be reeived by i.

So setting t

3

= � guarantees that m will be delivered. As for the maximal lateny, we prove

in Lemma 9.2, that the maximal lateny of any message delivered in our algorithm is:

AppLateny = 4�+ 3� +�+ 3(� +�) + (f � 1)(� + � + 2�)

B.2 Implementing the DFM environment spei�ation

We show that for eah of the ations in the DFM environment spe, and eah of the liveness re-

quirements of that spe, the Ordering algorithm ahieves its preonditions.
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in-slot() - The fat that all ative proesses add i in slot joinSlot

i

is proved in Lemma 8.1.

The requirement that i knows of all ative proesses that have a join slot less than joinSlot

i

is

guaranteed by the following observation. For proess j that is ative, and did not send a join

message from the time i woke up, it must be that j has already joined the algorithm (sine j sent

its join message before i woke up, i will not even send its join message before j atually joins) and

so aording to the join algorithm (Setion 6.3), i must have added j to the list of ative proesses

and so must have performed the m-join ation for j. For a proess j that sent its join message

after i woke up, if joinSlot

j

� joinSlot

i

i must have reeived this join message before joinSlot

i

(Lemma 8.1) and so i informed the DFM of j

0

s join.

m-join(s,l,n,i) - The requirement that all proesses view i as inative when i performs this ation

is guaranteed by the fat that i does not perform this ation until i is sure that all onsensus

algorithms that were performed to deide on its failure have onluded (Setion 6.3).

m-join(s,n,j) - The requirement that i has the right inarnation number for j is guaranteed be-

ause i uses the number that appears in js join message or in the header of one of js messages.

Sine i only adds j after j sends a join message or after seeing a message from j we know that

s � joinSlot[j℄ (j only sends messages for slots s

0

� joinSlot[j℄). If joinSlot[j℄ > joinSlot[i℄ � 2,

then the fat that i adds j before i reahes joinSlot

j

is guaranteed by Lemma 8.1.

m-leave(n,j),fail - This is trivial.

m-fail(s,n,j) - Sine we use a failure detetor (Setion 6.2) we are guaranteed that this ation will

only be performed if j atually failed. The fat that s < slot[i℄ is again guaranteed by our failure

detetor sine it waits more than � time before it delares a proess as failed. The fat that all

proesses report a failure slot within 1 of eah other is guaranteed by our failure model (Setion 2).

The two liveness onditions are also guaranteed by our Ordering algorithm. If status[k℄[k℄ was

ative when the j failed, and joinSlot[k℄ � failSlot[j℄ + 2, then aording to Setion 6.3, k would

try to reeive js messages for slot failSlot[j℄. Thus, if j does not fail or leave k will notie js failure

and so it will perform the m-fail(�; n; j)

k

ation.

If status[i℄[k℄ was ative when k performs the m-leave(n; k)

k

ation, i will either reeive ks leave

message and thus will perform the m-leave(n; k) ation, or i will not reeive this message in whih

ase i would suspet that k failed and so it will perform the m-fail(�; n; k)

i

ation, again setting

status[i℄[k℄ = inative. The only other possibility is that i will fail or leave before it will notie ks

message or failure. However, in this ase, aording to the automaton spei�ation status[i℄[k℄ is

automatially set to inative.

C Corretness of the DFM

In this setion we prove all the lemmas that where presented in Setion 7.

C.1 The Dynami manager algorithm

Lemma C.1 For all proesses i, if the p-fail(s

i

;W

i

)

i;n;j

ation is performed then:

1. The m-fail(�; n; j)

i

ation annot be performed twie by the same proess i.

2. If k 2 P [n; j℄ and k 62W

i

, k failed or left after performing the p-fail(�; �)

k;n;j

ation, and before

i performed the p-fail(�; �)

i;n;j

ation.

3. For all k 2 W

i

, k either performs the p-fail(v

0

;W

0

)

k;n;j

ation or the h-fail(v

0

)

k;n;j

ation or

status[i℄[k℄ beomes inative.
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Proof: 1. As an be seen (from the spe) performing the m-fail(�; n; j)

i

ation results in setting

status[i℄[j℄ = inative. A preondition of the m-fail(�; n; j)

i

ation is that status[i℄[j℄ = ative.

Thus, status[i℄[j℄ should hange to ative between two onseutive m-fail(�; n; j)

i

ations, and this

ould only be done in the m-join(�; �; j)

i

ation. When i performs the m-fail(�; n; j)

i

ation we

have status[j℄[j℄ = inative with in[j℄ = n sine i an only perform this ation when Failed[j℄ =

TRUE (meaning that the last ation performed for j was the fail

j

ation), and so in order to

set status[i℄[j℄ to ative again, j must perform the join(�; �; j)

j

ation after i performs the �rst

m-fail(�; n; j)

i

ation. However, when j performs the join(�; �; j)

j

ation, j must set in[j℄ = n+1

aording to the spe, and sine a preondition of the m-fail(�; n

0

; j)

i

ation is that n

0

= in[j℄, i

annot perform the m-fail(�; n; j)

i

ation again (sine in[j℄ > n from now on).

2. Assume for ontradition that k did not fail after performing the p-fail(�; �)

k;n;j

ation.

If status[i℄[k℄ was ative when i performed the p-fail(s

i

;W

i

)

i;n;j

ation, then sine k 62 W

i

it

means that joinSlot[k℄ � s

i

+2, and sine s

i

� failSlot[j℄� 1 we an onlude that joinSlot[k℄ �

failSlot[j℄ + 1. Sine k did not fail or leave after performing the p-fail(s

k

; �)

k;n;j

ation, this must

be less or equal to the joinSlot[k℄ that k had when performing the m-fail(s

k

; n; j)

k

ation (sine

aording to part 1 of this lemma the m-fail(�; n; j)

k

ation an only be performed one). We now

arrive at a ontradition sine for this joinSlot[k℄ value we have joinSlot[k℄ � failSlot[j℄+1 > s

k

,

but aording to the m-fail ation, in order to perform the p-fail(�; �)

k;n;j

ation k must have

s

k

� joinSlot[k℄. So in this ase it must be that k failed or left after performing the p-fail(�; �)

k;n;j

ation.

Assume status[i℄[k℄ was inative when i performed the p-fail(s

i

;W

i

)

i;n;j

ation, and k did fail

or left after performing the p-fail(s

k

; �)

k;n;j

ation. Then it must be that when k performed the

p-fail(s

k

; �)

k;n;j

ation it had slot[k℄ > s

k

� joinSlot[k℄. So k must have performed the in-slot()

k

ation that sets slot[k℄ = joinSlot[k℄. A preondition of suh an ation is that for all ative proesses

m with joinSlot[m℄ � joinSlot[k℄, status[m℄[k℄ = ative. It is easy to see that imust have been one

of these proesses when this ation took plae, otherwise i ould not have had status[i℄[k℄ = inative

sine k did not fail or leave after this ation. So it must be that status[i℄[k℄ was set to ative after

i performed the p-fail(s

i

;W

i

)

i;n;j

ation. However, sine joinSlot[k℄ � failSlot[j℄ we know that

when i performed the p-fail(s

i

;W

i

)

i;n;j

ation i had slot[i℄ � s

i

+ 1 � failSlot[j℄ � joinSlot[k℄,

and this ontradits the fat that i joined k after performing this ation sine the preondition for

joining a proess (in the m-join(s; n; k)

i

ation) is that slot[i℄ < s and sine s � joinSlot[j℄ this

implies that slot[i℄ < joinSlot[j℄ when i performed the m-join ation. Thus it must be that k failed

or left after performing the p-fail ation, and sine status[i℄[k℄ was inative when i performed the

p-fail ation, this must have been before i performed the p-fail ation.

3. If k 2 W

i

then s

i

� joinSlot[k℄ � 1, and so failSlot[j℄ � s

i

� joinSlot[k℄ � 1. Sine s

k

+ 1 �

failedSlot[j℄, we have s

k

+ 1 � joinSlot[k℄ � 1 ! s

k

� joinSlot[k℄ � 2. If status[k℄[k℄ was ative

when fail

j

ourred then aording to the liveness guarantee of the environment spei�ation k

will either perform the m-fail(s

k

; n; j)

k

ation or will fail or leave (whih will result in setting

status[i℄[k℄ to inative aording to the liveness guarantees). If k performs the m-fail(s

k

; n; j)

k

ation k will either perform the h-fail(�)

k;n;j

or the p-fail(�; �)

k;n;j

ations.

If status[k℄[k℄ was inative when the fail

j

ation ourred, then it must be that k did not rejoin

the algorithm before i performed the m-fail(�; n; j)

i

ation. This is so beause in order to rejoin,

k must set joinSlot[k℄ > failSlot[j℄ + 2. However, sine k 2 W

i

it must be that joinSlot[k℄ �

s

i

+1 � failSlot[j℄+ 1 and so k ould not have rejoined the algorithm after j has failed. Note that

k annot rejoin the algorithm before i sets status[i℄[k℄ to inative aording to the m-join(�; �; k)

k

preondition. Thus, status[k℄[k℄ was inative when i performed the m-fail(�; �; j)

i

ation, and so

i will set status[i℄[k℄ to inative at some point aording to the liveness guarantees.
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C.2 The First Round algorithm

Lemma C.2 If i 2 P [n; j℄ then the ombined servie guarantees the following with respet to F

n;j

:

1. Termination.

2. C[n; j℄ � G

i

, and if k 2 G

i

and k 62 C[n; j℄ then k failed or left after performing the p-

fail(�; �)

k;n;j

ation.

3. For all proesses k 2 C[n; j℄, l

k

� u

i

.

Proof: 1. In order to terminate F

n;j

i has to perform the inCons(�; �)

i;n;j

ation. In order

to perform this ation i needs to reeive messages from all proesses in W

i

or wait until they

failed or left. However, aording to lemma 7.1 part 3 all suh proesses will either perform the

h-fail(�)

�;n;j

or p-fail(�; �)

�;n;j

ations, resulting in sending a message to i or will fail or leave.

Thus, all proesses that i waits for will either send a message or fail or leave and termination is

guaranteed.

2. If k 2 C[n; j℄ then k 2 P [n; j℄ aording to the onstrution of C[n; j℄ and in addition, k did not

fail before �nishing the �rst round algorithm. If k 62 W

i

we know that k had failed or left before

i performed the p-fail(�; �)

i;n;j

ation (lemma 7.1 part 2), and thus k 62 C[n; j℄ sine in order to

�nish the �rst round k needs to reeive a message from i (sine i 2 P [n; j℄ and did not fail or left

so i 2 W

k

). But sine k failed or left before i sent any message, k did not �nish the �rst round

algorithm.

So if k 2 C[n; j℄ it must be that k 2W

i

and sine k 2 C[n; j℄ we know that ks message for the �rst

round have reahed i, and so aording to the reeive ation e�et, k 2 G

i

(sine k must have sent

a \part" message sine k 2 C[n; j℄).

If k 2 G

i

and k 62 C[n; j℄ then it must be that k started F

n;j

, and that k 2 P [n; j℄ (otherwise i

would not add it to G

i

, sine k would send a \help" message). Sine k 62 C[n; j℄ we know that k

must have failed or left (sine aording to part 1 of this lemma, if this is not the ase k would

have �nished F

n;j

).

3. If i 2 C[n; j℄ it must be that for all proesses k suh that k 2 C[n; j℄, i 2 G

k

aording to part

2 of this lemma. But this means that k reeived is message for F

n;j

, and thus aording to the

reeive(v)

k;i;n;j

ation e�et, l

k

� u

i

.

C.3 Time analysis

Lemma C.3 If f proesses fail during the exeution of the First round and Consensus algorithms,

then the algorithm takes at most:

� +�+ 3(� +�) + f(� + � + 2�)

Proof: If two proesses i and j partiipate in the First round algorithm, then the di�erene be-

tween the time i started the algorithm and the time j started the algorithm is at at most � + �.

This is so beause both start the algorithm when the failure of k is deteted. If i detets the failure

of k in slot s, j would detet it at most in slot s+1, and sine the lok skew is at most � the total

di�erene is at most � + �.

Assume j is the last proess to start the First round algorithm. Then the First round ends at all

proesses at most 2�+�+� time after it started at j. This is so beause if no proess fails, then

all First round messages are sent at most � after j started the algorithm, and arrive at most �

time after that at all proesses, �nishing the �rst round. If the First round message from proess p

would not arrive at proess i �+� time after j deteted ks failure, it means that p has failed, and

this failure will be deteted by all proesses at most �+�+� time after p have failed, whih is at
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most 2�+�+� time after j started the First round algorithm. Thus, 2� +�+� time after the

last proess deteted ks failure all proesses would be able to �nish the First round (either reeiving

all messages sent for this round, or deteting proesses from whih no messages where reeived as

failed).

The same analysis shows that this is the ase for all rounds in the Consensus algorithm too. If

a proess fails during a round then it will take at most 2�+�+� time to onlude the round by

all other proesses. Thus, if f proesses fail during the exeution of the algorithm we need at most

three more rounds in addition to the f rounds in order to reah deision (the �rst round and at

most two rounds at the end). In these three rounds no proess fails, so they take at most � + �

time eah. Thus the algorithm takes at most: � + � + 3(� +�) + f(� + � + 2�).

Lemma C.4 If m-fail(s; n; j)

i

is performed at time t

0

, and starting at time t > t

0

no m-fail

ation was performed by any proess for 3(� + 2� + �) time, m-deide(v; n; j)

i

will be performed

by t+ 3(� + 2�+ �).

Proof: Aording to the previous lemma, the First round algorithm takes at most �+2�+� time

to �nish by all proesses, and so does any of the onsensus rounds. Thus, sine no proess performs

a m-fail ation from time t for 3(�+2�+�) time, all proesses will be able to �nish at least two

onseutive onsensus rounds without reporting any failure. However, if all proesses see the same

set of proesses for two onseutive rounds, the onsensus algorithm ends at all proesses. So by

t+3(�+2�+�), the onsensus algorithm for j will end, and i will perform the m-deide(v; n; j)

i

ation.
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