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Abstract

We present a fault-tolerant algorithm for an atomic broadcast service with a dynamic set
of participants; that is, reliable totally ordered multicast for dynamic groups. The algorithm
preserves QoS guarantees. We offer a detailed theoretical study of the QoS guarantees of our
algorithm under different circumstances. In particular, we show that in periods with no failures,
the latency for the ordered multicast is within a constant of the latency of the underlying
network (independently of the number of participants). This is an improvement over the latency
exhibited by previous algorithms. When failures do occur, the latency is linear in the number
of processes that fail within a bounded time interval, as dictated by a lower bound. Unlike
most group communication systems providing similar services, in our algorithm processes can
join and leave without introducing delays in the communication between active participants. A
major challenge was avoiding communication delays for active processes when joins occur, while
at the same time preserving consistency if failures occur near the time of a join.

Keywords: Fault-Tolerant algorithms, Real time, Fault-Tolerant communication, Performance Anal-
ysis, Quality of Service (QoS).



1 Introduction

Atomic broadcast [12, 5], allows multiple processes to send messages, in such a way that all the
correct processes deliver all the messages sent or delivered by correct processes, and in the same
order. An important use of atomic broadcast is to implement replicated state machines [13, 18],
which provide an important paradigm for state-oriented applications. Much work has been dedi-
cated to atomic broadcast algorithms in different failure models [8]. Dynamic atomic broadcast is
an extension of atomic broadcast that supports requests by application processes to join or leave
the algorithm, in addition to tolerating process failures; dynamic atomic broadcast is often imple-
mented using group communication systems (e.g., [10, 21, 6]). In this paper we present a novel
dynamic atomic broadcast (DAB) algorithm that preserves quality of service (QoS) guarantees.

In the past few years, we have witnessed new applications that require QoS guarantees from the
network (e.g., [16]). Some need strict guarantees on available bandwidth, others need a bound on the
latency a packet can suffer when transmitted over the network. ATM networks [3] allow applications
to reserve QoS parameters such as bounded latency, guaranteed bandwidth and bounded loss rate.
The IETF Integrated Services working group is concerned with adding similar QoS support to the
Internet. The QoS parameters that the new services will support include, among others, bounded
latency, guaranteed bandwidth reservation and bounds on message loss (see [19]).

There are applications that replicate some state with a certain degree of consistency and yet
also require predictable message delays. Such applications can benefit from DAB, as long as it does
not introduce excessive delays. Examples of such applications include a shared text editor [20], a
shared white-board [16], and online strategy games [11, 1].

Current implementations of applications such as those described above seldom exploit atomic
broadcast. This is because achieving atomic broadcast requires delaying messages until agreement
upon their order is reached, and many believe that this delay is too large. For example, in his book
Internetworking Multimedia [7], Crowcroft writes:

“The requirements of resilience and scalability dictate that total consistency of view is
not possible unless mechanisms requiring unacceptable delays are employed.”

The idea that consistency and predictable delays are mutually exclusive is at the root of design
decisions made in building such applications [16, 20]. Such applications usually settle for weak
consistency constraints and run application-specific algorithms to detect and resolve inconsistencies.

In this paper we show that atomic broadcast can coexist with guaranteed predictable delays in
some situations, albeit not in all situations. We consider a network that provides QoS guarantees,
and build on top of it a DAB service. Unfortunately, no fault tolerant algorithm for atomic
broadcast can guarantee a constant message delay; when processes fail, the delay is bound to
grow linearly with the number of failures (see Section 11 for a proof of this lower bound). We
present a fault tolerant DAB algorithm with QoS guarantees that match this lower bound.

We offer a theoretical study of the QoS guarantees of our algorithm under different circum-
stances. We show that with our algorithm, communication latency is within a constant of the
latency of the underlying network (independent of the number of participants) in periods with no
failures. When processes do fail, the delay of the algorithm increases linearly with the number of
time intervals of a given size, z, during which failures occur. If one failure occurs, and during the
following time interval of length = no failures occur, then the delay is bounded by a constant. The
message delay can further increase by f * z only if during each of the f subsequent time intervals
of length = a new failure occurs. In practice, we do not expect sequences of failures to occur very
often. Thus, the expected delay of our algorithm is very low, and it is very close to the delay



achieved when no process fail. This is superior to previous results (see [2]) which introduced linear
latency regardless of the number of failures.

Unlike most group communication systems providing similar services (e.g., [10, 21, 6]), in our
algorithm processes can join and leave without introducing delays to communication between active
participants. It was challenging to design an algorithm that would avoid communication delay to
active processes when joins occur without failure, while not compromising consistency if failures
occur near the time of a join.

1.1 Related work

Dynamic atomic broadcast is provided by several group communication systems. Most of these do
not address QoS issues. The only exception that we are aware of is RTCAST [2]. RTCAST achieves
a latency bound which is linear in the number of processes, regardless of the number of failures.
Moreover, the failure model assumed in RTCAST is weaker than the one we assume. There, it is
assumed that if a process p fails, and a correct process ¢ receives, from the network, some message
m sent by g before its failure, then every other correct process will receive m as well. In contrast,
we allow the network to deliver a message from a faulty process to some correct process and not
to another. Much of our algorithm’s complexity is dedicated to overcoming such situations.

In an earlier paper [4], we have presented a simpler algorithm that does not overcome such
situations, and instead allows correct processes to deliver different message sequences in cases of
failures.

1.2 Roadmap

The rest of this paper is organized as follows: Section 2 presents the model, Section 3 specifies the
DAB service we implement, and Section 4 describes our assumptions of the underlying communi-
cation network. The following three sections describe our new DAB algorithm. In Section 8 we
informally argue that the algorithm is correct (i.e., implements DAB). In Section 9 we study the
algorithm’s QoS guarantees; the Appendix presents a formal correctness proof. In Section 10 we
explain how the algorithm can be extended to recover from situations in which the network QoS is
violated. In Section 11 we prove the lower bound for DAB. Section 12 concludes the paper.

2 Model

We assume a static universe P of n processes, with distinct identifiers in {1,--- ,n}. Processes
communicate by exchanging multicast messages within a multicast group'. Processes can voluntarily
join and leave the multicast group at any time. Each join request is associated with a unique,
monotonically increasing incarnation number, so that a process that joins the group multiple times
uses a larger incarnation number each time.

Processes use an underlying network communication service which allows for QoS reservation.
Specifically, the network allows for reservation of variable bandwidth, specified by the average
transmission rate and the maximum burst that can be sent during a time interval of length ©. As
long as messages are sent at the reserved rate, the network guarantees to deliver messages with a
bounded delay, denoted by A. In Section 4 we specify the underlying network service interface and
our assumptions about the network.

!For simplicity, we assume that a single multicast group exists.



The failure model. Processes can fail by crashing and may later recover. Formally, we model
failures by special fail actions; we do not model recoveries explicitly, but we allow a previously
failed process to later perform a join. Crashed processes lose their volatile memory; however, we
assume that recovered processes use fresh (larger) incarnation numbers following their recovery and
do not re-use old ones?. We do not consider Byzantine (malicious) failures. When a process j fails,
messages that j sent during the last © time before its failure may be lost due to the failure. Such
lost messages may be received by some correct processes and fail to reach others.

Clock synchronization. We assume each process ¢ has an internal clock denoted by clock;.
We assume that the difference between clock; and the real time is bounded. We denote by now
the real time that has passed from the beginning of the execution® (thus, each execution starts
with now = 0). We assume that there is a constant T' so that the maximum difference between
clock; and now is bounded by I'/2. Thus, for each process i: now —I'/2 < clock; < now + T'/2.
This implies that the maximum difference between two processes’ internal clocks is at most I'. We
further assume that each process can precisely schedule events according to its local clock.

The mathematical framework. We model each process as a timed I/O automaton [15]. An
automaton interacts with its environment by two sets of external actions: input actions and output
actions. A trace of an I/O automaton is the sequence of external actions it takes in an execution.
Executions are assumed to be sequential, that is, actions are atomic, and no two actions can occur
simultaneously.

3 Dynamic Atomic Broadcast Service Specification

We present an algorithm that guarantees gap-free total ordering of messages and also preserves
QoS. The algorithm is implemented by a Dynamic Atomic Broadcast (DAB) layer that resides
between the application and the underlying network, as depicted in Figure 1.

Join(rn) . RN(r) . leave() , Application meast(m),

join-OK() ; leave-OK() ; DAB deliver(m) ij

Figure 1: The dynamic atomic broadcast (DAB) service interface.

We now specify the dynamic atomic broadcast service. This service is composed of the DAB
layer and the underlying network (cf. Figure 1). In this section we use the term process to refer
to an application process running at a certain location. Processes use the service to send messages
of a bounded size to the multicast group; the service delivers messages to all the processes in the
same order.

3.1 Reservation model

Upon joining the multicast group, a process reserves the bandwidth required for its communication
with all process in P, that is, the process asks the service to allocate a certain bandwidth. If

2This can be achieved by storing incarnation numbers on disk, or by using clocks
3The real time is used as an abstraction for the latency analysis.



a process subsequently wishes to change its reserved bandwidth, it renegotiates its reservation
parameters according to its new transmission rate.

Our service works within the framework of Variable Bit-Rate (VBR) [3] flows, which allows
applications to send bursty traffic. In this model, processes reserve an average transmission rate as
well as a maximum burst size. Typically, the application declares its transmission rate in bytes per
second. For simplicity, we assume that the rate is declared in units of messages per second. Since
message size is bounded, these rates correspond closely.

Message sending is divided into time slots of a fixed length, ©. © is the same for all the
processes and is fixed throughout the execution. In addition, there exists a constant C' which is
the number of slots over which the average sending rate is computed. The application declares two
rate parameters:

1. AppAvgRate — the average message rate per © time. This means that C x AppAvgRate is
the maximum number of messages that may be sent during C * © time.

2. AppM azxBurst — the maximum number of messages that may be sent during © time.

3.2 The service interface

The application interface of the service consists of the following types of actions:

e join(r,n); is used by process i to join the multicast group with incarnation number n, and to
reserve QoS. The structure r has two fields: AppAvgRate and AppM axBurst, as explained
above. This action is called initially, to establish the transmission rate before any messages
are sent.

e join-OK; reports to process ¢ that its latest join was successful, and 7 can now start sending
messages.

e Jeave; is used by process i to leave the multicast group.

e leave-OK; reports to process ¢ that it may safely quit the application. The application is not
allowed to perform a join between a leave and the corresponding leave-OK.

e RN(r); is used by process i to renegotiate the QoS reserved from the network. The structure
of r is as in join.

e mcast(m); is used by process i to multicast message m to the group. We assume that messages
are unique, that is, the same message is not sent more than once. In addition, the message is
of a bounded size.

o deliver(m); ; is used to deliver to process i a multicast message m that was previously mul-
ticast by process j.

We say that a message m is sent by a process i when mecast(m); occurs, and that i delivers m
when the dynamic atomic broadcast service at process 7 performs the deliver(m); ; action. We say
that process ¢’s incarnation number is n» at point ¢ in an execution, if n is the incarnation number
in ¢’s latest join; up to t.



3.3 The service guarantees

The service totally orders message deliveries. In other words, there exists some sequence ordering
of all the messages that ever get delivered, such that all processes deliver messages in an order
consistent with this sequence.

Definition 1 Dynamic Atomic Broadcast For each execution of the dynamic atomic broadcast
service, there exists a sequence, S = mq,mao, ..., including every message delivered by some process
in that ezecution ezactly once*, so that the following properties hold:

e Integrity: A message m is only delivered if it was previously sent, and it is delivered at most
once to any particular process.

e FIFO: If a process i sends message m before sending m', and both messages are in S, then m
is before m' in S.

e Ordering: (1) For every process i, and every incarnation number n, the sequence of messages
delivered by i with incarnation number n is a contiguous subsequence of S; (2) if i delivers
message m with incarnation number n, and i delivers message m' with incarnation number
n' where n < n', then m is ordered before m' in S.

e Liveness

1. Joining: If i executes a join; at some point in the execution and does not subsequently
fail or leave, then a join-OK; is eventually executed.

2. Leaving: If i executes a leave; at some point in the execution and does not subsequently

fail, then a leave-OK; is eventually executed.

3. Message Delivery: If a join; occurs at some point t in the execution, and i does not
subsequently fail or leave, then after point t, i delivers a suffiz of S which includes all
the messages that © sends after point t.

Note that the Ordering property implies the following:

e Total Order: If processes i and j both deliver the same two messages m and m’, then they
deliver these messages in the same order.

e Reliability: If processes 7 and 7 both deliver the same two messages m and m/, and if j delivers
both with the same incarnation number n (i.e., a join; does not occur between deliver(m);
and deliver(m');), then j also delivers all the messages that i delivers between m and m/.

In addition to meeting the specification above, our dynamic atomic broadcast service meets QoS
(or timeliness) guarantees, which are defined with four parameters - ¢1, o, t3, and AppLatency, as
follows:

Definition 2 Dynamic Atomic Broadcast QoS(t1, ta, t3, AppLatency)

e Joining: If i executes a join at time t, then if i does not fail or leave, a join-OK; is executed
by t+1;.

o Leaving: If i executes a join at time tg, and a leave at time t > iy, then if i does not fail a
leave-OK; is executed by t + to.

*Note that for a finite execution the sequence is finite; otherwise, it may be finite or infinite.



e Message Delivery and Latency: If a join-OK is executed at i at time t, and i does not
subsequently fail or leave, then for every message m sent at time t' > t + t3 by some process
J (possibly j =1i) that does not fail after sending m, i delivers m by time t' + AppLatency.

The maximum latency of the dynamic atomic broadcast service is denoted AppLatency; this is
the supremum over all executions, all messages m and all processes i of the time since the mcast(m);
action is performed in some execution until m is delivered by all processes that deliver it.

4 The reliable network

In this paper we build DAB over a reliable network, that is, a network that does not lose messages
while no failures occur. In [4] we show how a reliable network can be built over an unreliable network
that guarantees a bounded latency and a bounded loss rate, using a forward error correction (FEC)
algorithm. We do not repeat this algorithm here. Rather, we present the semantics of the reliable
network, and present its QoS guarantees in terms of the QoS of the unreliable network as proven
in [4].

The reliable network interface and semantics. In this section, we use the term process
to refer to an instance of a program that uses the reliable network at a certain location. The
reliable network preserves the FIFO order on messages sent between every pair of processes®. The
network does not duplicate, corrupt, or spontaneously generate messages. In addition, the network
is reliable, that is, all messages sent through the network will reach their destination in the absence
of failures.

The network supports the reservation of VBR traffic lows. In order to join the multicast group,
a process makes a reservation of the bandwidth required for its communication. The interface of
the underlying network consists of the following types of actions:

e The net-reserve(r); action is used by process i to join the multicast group and to reserve QoS
from the network. The structure r has two fields: RelNetAvgRate and RelNetM axBurst,
dual to the respective application QoS parameters described in the previous section. This
action is called initially, to establish the transmission rate before any messages are sent, and
can be subsequently called to renegotiate the QoS reservation.

e The net-leave; action is used by process i to leave the multicast group.

e The net-rel-mcast(m, s); and net-rel-recv(m, s); ; actions are used by process i to reliably
multicast and receive messages from the network.

e The net-flush(s) action is used by process i to tell the network to send all message submitted
via net-rel-mcast(m,s); that it has not yet sent. When net-flush(s); is performed, the
network appends a (L, s) message to sequence of messages sent by i. This message is received
by other processes, in the same way as any other message, via net-rel-recv(m, s); ;.

We say that a process i is alive if the net-reserve(r); action has been performed and 7 has not
subsequently failed or left.

QoS guarantees. The QoS guarantees of the reliable network are presented in terms of those
of the underlying network, as is done in [4]. We therefore begin by stating our assumptions on the
QoS of the unreliable network.

% Although messages sent over the Internet can sometimes arrive out of FIFO order, this is easy to fix using sequence
numbers.



The bandwidth reservation parameters for the underlying network are Net AvgRate and Net M ax Burst,
and the maximum message latency is A. The unreliable network loss rate is bounded as follows [17]:
The application specifies a loss interval, x = k + [, in terms of a number of consecutive messages
from the same sender, and a bound, [, on the number of messages sent in the same interval that the
network can lose. Specifically, a reservation of [ out of k+1[ guarantees that if a process ¢ multicasts
k 4+ [ consecutive messages and does not subsequently fail, then every other live process receives at
least k of these messages. We assume that the quantities k£ and [ are the same for all processes.

In this paper we are only interested in studying cases in which QoS reservation and renegotiation
are successful. Thus, for simplicity, we assume that all reservation requests made by a process are
accepted by the network. Typically, QoS reservation and renegotiation take some time for the
network to process. However, this time does not affect the message latency and for the sake of the
analysis in this paper it is safe to ignore it. Therefore, we assume that once a reservation request
is made, the bandwidth that was requested is immediately available to the reserving process.

The reliable network guarantees that if j is alive from t — A and ¢ is alive from ¢ and i performs
the net-rel-mcast(m, s); at time ¢t and a net-flush; at time t' (' > t) then by t' + A, net-rel-
recv(m, s); will occur.

Denote by 7 the maximum time interval between successive net- flush; actions. The maximum
latency of the reliable network is then A + 7. As we show in [4], the transmission rate param-
eters that need to be reserved from the unreliable network in order to meet the reliable network
requirements depend on k£ and [ as follows:

NetAvgRate = RelNetAvgRate + ([RelNetAvgRate/k] + O/n) x [+ O /m

NetMazBurst = RelNetMazxBurst + [RelNetMazBurst/k] « 1l x ©/n

These bounds illustrate a tradeoff between the overhead needed to achieve the required bandwidth
and the addition to the latency, based on different choices of .

5 General overview of the DAB algorithm

Our DAB algorithm is composed of two parts: an Ordering algorithm and a Dynamic Failure
Manager (DFM). The Ordering algorithm provides the DAB service to the application. It uses the
reliable network to send and receive messages, and uses the DFM to handle failures; the DFM is
used only when failures occur. The interfaces among the different parts of the algorithm are shown
in Figure 2.

In this section, we present an overview of the DAB algorithm and discuss how the two parts
of the algorithm interact. We first explain how the Ordering algorithm uses the DFM. We then
present the DFM interface, requirements and guarantees. We discuss the Ordering algorithm in
more detail in Section 6, and the DFM in Section 7.

The Ordering algorithm. The Ordering algorithm organizes the delivery of messages into
slots. In each slot, it delivers messages from processes that are members of the group at that slot.
When a process joins (leaves), the Ordering algorithm at the same location sends a special “join”
(“leave”) message to the other instances of the Ordering algorithm running at different locations.
Such messages indicate in which slot the process should be added (removed) from the group. In the
absence of failures, such messages are delivered by all processes, so all the processes add (remove)
the process at the same slot.
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Figure 2: The TO service decomposition.

Failures are more complicated to handle. In our failure model, a subset of the messages sent
by a process prior to its crash can reach some live processes while failing to reach others. Thus,
although the Ordering algorithm can detect failures using time-outs, such failures are not detected
at the same point in the message stream by different instances of the Ordering algorithm. However,
all instances of the Ordering algorithm must deliver the same sequence of messages to live processes,
and therefore, the algorithm has to make sure that the live processes agree on the point (or slot)
at which to remove the failing process. This is precisely the role of the DFM: for each process that
fails, the DFM allows the current group members to reach agreement upon the slot at which the
failed process should be removed.

The DFM interface. The Ordering algorithm at each group member 7 uses the m- fail(s,n, j);
action to notify the DFM at ¢ of the slot s in which 4 detected process j’s failure (for j’s incarnation
number 7). This notification invokes an algorithm to agree upon a slot in which j will be removed.
When such agreement is reached, the DFM uses the m-decide(v,n, j); action to notify 4 that j
should be removed at slot v.

The set of processes among which such agreement has to be reached is constantly changing.
Therefore, the DFM must keep track of the set of group members as this group evolves over time.
To this end, the Ordering algorithm reports process joins and leaves to the DFM using the following
actions:

e m-join(l,s,n,i); is used to notify the DFM at i of the fact that the application process at i
wishes to join the atomic broadcast algorithm; this action includes the current slot [, the slot
s in which ¢ will join, and the incarnation number n. Once this action occurs, we refer to s
as joinslot[i].

e m-join(s,n,j); is used to notify the DFM at i of the slot s in which the application process
4 will join the algorithm; n is the incarnation number of j.



e m-leave(n, j); is used to notify the DFM at i that j has left the algorithm.

The DFM requirements. Since different processes may detect the same failure at different
times, different processes may also have different perceptions of the set of group members that have
to participate in agreeing upon a failure. The DFM is able to cope with some uncertainty about
this set, but not with arbitrary uncertainty: In order to function correctly, the DFM requires its
environment to follow certain requirements. A formal specification of these requirements appears
in Appendix A; here, we describe them only informally.

There are two major requirements: (1) For a joining process 7, every other live process j (that
has a smaller joinslot value than i) will get a m-join(joinslot[i],n,1); notification before reaching
slot joinslot[i], and i will also get a m-join(s,n,j); notification before slot joinslot[i]. (2) If two
processes j and k suspect that ¢ failed in slots s; and sj respectively, then |s; —s;| < 1. Note that
this requirement does not restrict the difference in the actual detection time of i’s failure by j and
k.

These two requirements are reasonable for a dynamic system in which processes use clocks that
are slightly skewed, and have access to some sort of failure detector. In particular, they are satisfied
by our Ordering algorithm.

The DFM guarantees. Given an environment that meets the requirements above, the DFM
service guarantees that all processes m-decide upon the same value — the slot in which a failed
process should be removed — and that this value is the smallest proposed by any of the processes.
These conditions are needed by the Ordering algorithm to ensure that the decision value does not
require processes to deliver messages that they do not receive or to refrain from delivering messages
they have already delivered. Formally, the DFM service satisfies the following specification:

e Uniform Agreement: If m-decide(v,n,j); and m-decide(v',n,j); are performed then v =

v,

e Validity: If i performs m-decide(v,n,j); then some process k performed m-fail(v,n, j).

e Minimum Value: If m-decide(v,n,j); is performed following the m-fail(s,n,j); action,
then v < s.

e Termination: If the m-fail(s,n,7); action is performed with s > joinSlot[i], and i does not
fail or leave, then m-decide(v,n,j); will be performed.

6 The Ordering algorithm

In this section we present the Ordering algorithm. We describe the general operation of the Ordering
algorithm in Sections 6.1 through 6.4. We present the algorithm formally as a timed I/O automaton
in Figures 3, 4, and 5.

The algorithm divides the time into slots of length ©®. The Ordering algorithm keeps track of
the set of processes that it thinks are active in every slot. Below, we explain how this set changes
when there are joins, leaves and failures.

6.1 Sending and receiving messages

When the application performs the mcast(m); action, the Ordering algorithm adds the slot number
s to the message header and performs net-rel-mcast(m,s). When a slot s ends (that is, © time
has passed from the time s started) the Ordering algorithm performs the net- flush(s) action.



When a message is received via the net-rel-recv action, it is stored in a buffer (per source). The
algorithm delivers messages from these buffers according to slots, and within each slot, according
to the process indices, i.e., it delivers all the messages for this slot sent by process 1, then all the
messages sent by 2, etc.

The algorithm does not deliver messages immediately. Before delivering messages from some
process j for slot s, it waits to receive all the messages for slot s from all the processes it currently
thinks are active, and, in addition, all the messages for slot s 4+ 1 from processes with indices less
than or equal to j. The algorithm identifies the last message sent by j for slot s upon receipt of the
(L, s) message that is added by the network when net- flush(s); is performed. This delay ensures
that all messages delivered by any process will be received by all other active processes, since our
failure model ensures that if a process is active at the end of slot s + 1, all processes receive its
messages for slot s.

6.2 Detecting failures

Processes use timeouts to detect failures. In particular, process ¢ detects that process j has failed
if A 4+ I time after the beginning of slot s according to i’s local clock, 7 has not received j’s last
message for slot s — 1.

The reason this implies that ;7 has failed is as follows: According to our algorithm, a net-flush
occurs every time a slot ends. Also, when the net- flush(s —1); action occurs, at least one message,
(L,s —1), is sent. According to the reliable network guarantees, this (L, s — 1) message reaches i
within real time at most A after the net-flush(s — 1); occurs. Therefore, since the clock skew is
bounded by T, if process 7 waits more than A + I' clock time from the time it begins slot s for a
message from process j for slot s — 1, 7 knows that j has failed.

Thus, 4 detects j’s failure at a real time which is at most A +T'+ © +I' after § had failed. This
maximum time can occur if j fails at the beginning of slot s according to j’s clock, and 5’s clock is
ahead of i’s by T'.

When i detects the failure of j, i performs the m-fail(s—1,n,j) action. The delivery of all mes-
sages (starting with j’s messages for slot s — 1) is delayed until the corresponding m-decide(v, n, j)
action occurs. When an agreement regarding j’s failure is reached (the m-decide(v,n,j) action),
the Ordering process at ¢ resumes the delivery of messages. Process ¢ delivers all of j’s messages
for slots s < v, and denotes j as failed from slot v 4+ 1 onward.

6.3 Joining the algorithm

Processes can join or re-join the algorithm at any time without delaying messages sent by live
processes. Note that to achieve DAB, all the live processes should agree on the slot in which a
joining process is added. This is done by having the Ordering process at the joining location notify
all the other processes of the slot in which it will join. Note that the joining process may fail after
sending this message. Therefore, the joining slot is chosen to be far enough in the future to allow
correct processes to agree on whether or not the joining process will join at this slot.

The joining process. When requesting to join, the application process at ¢ specifies its
transmission rate r and incarnation number n. The Ordering process at ¢ then reserves the rate r
from the network via the net-reserve action. The Ordering algorithm at ¢ computes the current
slot which the algorithm is in as: curSlot; := clock/© (rounded down to an integer).

Before attempting to join the algorithm, process ¢ waits a predefined amount of time on its
local clock until it is sure that all processes have completed any pending agreements for ¢’s previous
failures. We discuss the length of this time interval below. After this period, the algorithm computes
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the slot in which 4 will join the algorithm. This slot is chosen to be s; = curSlot;+((f+3)(A+20)+
I')/© (rounded down to an integer). The Ordering algorithm informs the DFM of this slot using
the m-join(curSlot, s;,n,i); action, and sends a (“join”, i, s;, n) message to all other processes.
When ¢’s slot number reaches s; the Ordering algorithm performs the join-OK action, and the
application can start sending messages.

From the time ¢ wakes up until the ordering process ¢ reaches slot s;, # does not send or
deliver messages. However, from the time ¢ wakes up, it monitors incoming “join” messages from
other processes and responds to them the same way active processes respond to such messages, as
explained below. In addition, from slot s; — 3 onward, 7 examines all incoming messages in order to
determine which processes it will view as active during slot s;. In particular, if 4 does not receive
the last message for slot s; — 3, (L, s; — 3), from some process 7, then i regards j as failed. If ¢ does
receive the last message for slot s; — 3 from j, then ¢ performs an m-join(s; — 3,n,j); action.

If i receives j's last message for slot s; —3 but does not receive all of j's messages for slots s; — 2
and s; — 1, then 7 performs an m-fail(s’,n, j); action where s’ is the last slot in which it received
all of j’s messages. In this case, 7 does not wait for an m-decide(v,n, j); response from the DFM;
1 simply considers j to be failed when 7 begins participating in the algorithm in slot s;. It is safe
to do so, since in this case the decision value will be smaller than s;: since ¢ does not receive all of
4's messages for slot s; — 1, by our failure model, no process can receive all of j's messages for slot
s;. Starting from slot s;, ¢+ behaves in the same way as any active process.

Active processes. Each active process j has a Join array, in which it keeps track of the
slots in which joining processes are to be added. When j receives a (“join”, 4, s;) message, it
compares Join[i] to s;. If Join[i] # s;, j sets Join[i] := s;, informs the DFM of this join using
the m-join(s;,n,i) action, and echoes this message by multicasting it to all other processes. If
Joinli] = s;, it does nothing. When an active process j reaches slot s;, j adds 7 to the list of active
processes; thereafter, it delivers messages from ¢ until ¢ fails or leaves.

The echoing of “join” messages ensures that if a process fails immediately after its join, and
some live process learns of the join, then all live processes learn of the join. The joining slot s; is
selected so that in the presence of at most f failures, enough time remains prior to s; for the echo
mechanism to ensure that either all the live processes learn of the join or none do. If ¢ fails before
s;, this failure is detected and the DFM agrees upon ¢’s failure slot.

The delay for join. After the application process at 4 issues a join, the Ordering process at
location 4 waits 2I"' 4+ 3(A 4+ O) + f(A + T+ 20) before sending a “join” message. The rationale for
this delay is the following: As we show in Section 7, the DFM guarantees that at most T' + 3(A +
O) + (f —1)(A +T' +20) time after the m-fail(s,n — 1,4) action is performed, the corresponding
m-decide(v,n — 1,1); action is performed. Since m-fail(*,*,4) is performed by all processes at
most 2I" + A + © after ¢ has failed, the maximum time between i‘s failure and the time in which
the last m-decide(v, *,1) action is performed is at most: 2" + 3(A + ©) + f(A + T + 20).

6.4 Leaving the algorithm

When the application at process ¢ performs the leave action during slot s, the Ordering algorithm
at i performs the net-rel-mcast(“leave”,s); action, and notifies its DFM. It then waits until two
net-flush; actions are executed (i.e., until the end of slot s + 1 according to i’s clock) and then
performs the net-leave; and leave-OK actions. The delay in notifying the application that it is safe
to leave the algorithm ensures that all processes will receive this “leave” message. When process ¢
is about to deliver a (“leave”, s) message from 7, it does not deliver the message. Instead, i removes
j from its set of active processes, suspends delivery of messages from j (until j is added again),

11



and performs a m-leave(n, 7); action.

Ordering; (Algorithm for process 1)

Signature

Input: Time-passing:
join(r,n);, m a structure with two integer fields v(t),t € RT
RN(r);, m a structure with two integer fields Internal:
leave()i, send-join
mcast(m);, m € M end-deliver
net-rel-recv(m, s)i j, m € M, s integer failure-detector
m-decide(v,n, j); v,n integers, j € I skip-failed

Output: process-leave
join-OK (); end-recvSlot
leave-OK (); wait-start

net-flush(s); s integer

net-rel-mcast(m, s); m € M , s integer
deliver(m); j, m € M

net-reserve(r); m a structure with two integer fields
net-leave();

m-join(s,l,n,i); s,1,n integers

m-join(s,n,j); s,n integers, j € I

m-leave(n, j); n integer, j € I

m-fail(s,n,j); s,n integers, j € T

State

For all j, Rqueue(j), a FIFO queue of messages, initially empty

Squeue, mQueue, FIFO queue of messages, initially empty

current, an integer initially 1, // current process to receive from
my.Join, an integer initially co

finished unbounded array of reals, initially co in all places // the time 4 finished sendingSlot s
Join, inc array of size n of integers, initially 0 in all places

max Deliver array of size n of integers, initially -1 in all places

Sfailed array of size n of integers, initially co in all places

Failed a group of process indices, initially empty

sendingSlot, recvSlot, integers initially 1,

rate, pair of integers initially L

changeRate, Pleave, Nleave, boolean initially FALSE

[Slot integer, initially 0

state € {idle,preJoin, pre Active} initially idle

clock € RZ°, initially 0

last € RT U {co}, initially oo

Figure 3: The Ordering automaton for process 4: signature and variables.
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Transitions
Input join(r,n);
Eff: last = clock + T + 3(A + ©)
(f—-1D(A+T+20)
state = preJoin
rate =r
incfil =n

Internal send-join

Pre: state = preJoin
clock = last
changeRate = TRUE
myJoin = (clock + (f +3)(A+20)+T')/0
add (“join”,i, myJoin,inc[i]) to Squeue
add (“join” i, myJoin) to mQueue
recvSlot = myJoin
for all j

maz Deliver[j] = myJoin — 4
sendingSlot = [clock /O]
last = (sendingSlot + 1)©
state = preActive

Eff:

Output join-OK();
Pre: sendingSlot = myJoin
Eff:

Input leave();
Eff: Pleave = TRUE
add (“leave”,sendingSlot) to Squeue
[Slot = sendingSlot + 2

Output net-leave();
Pre: Pleave = TRUE
[Slot > sendingSlot
Eff: NLeave = TRUE

Output leave-OK();
Pre: Nleave = TRUE
Eff:

Figure 4: The Ordering algorithm automaton for process i: transition definitions part 1.
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Input RN(m);
Eff: rate=r
changeRate = TRUE

Output net-reserve(r);

Pre: clock = last
changeRate = TRUE
r = rate

Eff: changeRate = FALSE

Output m-join(s,l,n,1);
Pre: (“join” i, 1) is first on mQueue
incfi] =n
s = sendingSlot
Eff: discard first element of mQueue

Output m-join(s,n,j);
Pre: (“join”,j, s) is first on mQueue
inc[jl=n
Eff: discard first element of mQueue

Output m-leave(n,j);
Pre: (“leave”,j, s) is first on mQueue
inc[j] =n
Eff: discard first element of mQueue

Output m-fail(s,n,j);
Pre: (“fail”,j, s) is first on mQueue
inc[jl=n
Eff: discard first element of mQueue

Input m-decide(v,n, j):
Eff: mazDeliver[j] = v
Sfailed[jl=v+1



Transitions
Input mcast(m);
Eff: add m to Squeue

Output net-rel-mcast(m, s);
Pre: (m) is first on Squeue
s = sendingSlot
Eff: discard first element of Squeue(j)

Internal wazit-start
Pre: state = preActive
sendingSlot < myJoin
clock = last
Eff: finished[sendingSlot] = clock
last := clock + ©
sendingSlot + +

Output net-flush(s);

Pre: sendingSlot > myJoin
s = sendingSlot
clock = last
changeRate = FALSE
Squeue is empty

Eff: last := clock + ©
finished[sendingSlot] = clock
sendingSlot + +

Input net-rel-recv(m, s); ;
Eff: if (m = (“join”,j, s,n)) then
if (Join[j] # s) then
Join[j] := s
inc[j] :=n

add (“join”, j, s) to Squeue
add (“join”,j, s) to mQueue

elseif (s > myJoin) then
add (m) to Rqueue(y)

elseif (s = myJoin — 3 && m =1) then

add (“join”,j, 5) to mQueue
inc[j] = m.inc

if (s > myJoin — 2 && m =_1) then

maz Deliver[j] + +

Output deliver(m);,;
Pre: current > 0
7 = current
max Deliver[j] > recvSlot
(m) is first on Rqueue(j)
m #1 && m # “leave”
Eff: discard first element of Rqueue(j)

Internal process-leave

Pre: current >0
] = current
maz Deliver[j] > recvSlot
(m) is first on Rqueue(j)
m = “leave”

Eff: Failed := FailedU j
add (“leave”,j) to mQueue
discard all elements of Rqueue(7)
current = current + 1 mod (n + 1)

Internal end-deliver
Pre: current > 0
J = current
mazx Deliver[j] > recvSlot
L is first on Rqueue(y)
Eff: discard first element of Rqueue(j)
current := (current + 1) mod (n + 1)

Internal end-recvSlot
Pre: current =0
Eff: current :=1
recvSlot + +
for all j s.t. Join[j] = recvSlot {
Failed := Failed \ {j}
Sfailed[j] = oo

for all j s.t. Sfailed > recvSlot
Failed := Failed U {5}

Internal failure-detector
Pre: clock > finished[maxDeliver[j] + 2]+ A +T
Eff: add (“fail”,j, (maxDeliver[j] + 1)) to mQueue
if (mazDeliver[j] + 1 < myJoin — 1) then
Failed := Failed U j

Internal skip-failed
Pre: current € Failed
Eff: current := (current + 1) mod (n + 1)

TimePassage v(t)
choose p>10
Pre: now+t—T/2 < clock +p < now+t+1/2
clock +p < last
Eff: now :=now +t
clock := clock +p

Figure 5: The Ordering algorithm automaton for process #: transition definitions part 2.
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7 Constructing the DFM

The DFM’s task is to decide upon the slot in which a failed process should be removed from
the algorithm. The DFM is composed of three algorithms: the Dynamic Manager (DM) which
interacts with the DFM’s environment; the First Round algorithm; and a Consensus module which
is implemented by any standard uniform consensus algorithm for the fail-stop model. Figure 6
depicts the interaction between the DFM and its environment, as well as its decomposition.

faill.

'
m-join(l,s,n, i)i m—join(s,n,j)l. Environment m-leave(n,j)i m-fail(s,n,j)l.

©

kip(k), . Dynamic Manager  p/ail(v.W), . hfail(v), . m-decide(v,lgyj)

First Round (n,j) in-cons(v,G) nj

Consensus (n,j) c-decide(v), 0

Figure 6: The DFM decomposition and interface; the dashed rectangle surrounds the DFM service.

The three components of the DFM. We now explain the roles of the three components
of the DFM, and the interaction among them. The DM at location 7 uses m-join; and m-leave;
inputs from its environment (the Ordering algorithm) in order to keep track of the set of processes
that are active at each point in the execution. Whenever a process failure is reported (via m-
fail(s,n,j);), the DM invokes an instance of the First Round and an instance of Consensus (both
are parameterized by n and 7). Consensus is used in order to reach agreement on the slot in which
j will be removed; it is invoked after the First Round as we now explain.

The difficulty with using a standard uniform consensus algorithm is that although such algo-
rithms can tolerate failures, they cannot cope with processes joining an in-progress execution of
the algorithm. When the Consensus module is invoked, it must be informed of a set of processes,
G, that will participate in this invocation of Consensus unless they fail. We now explain how the
DM and First Round overcome this difficulty.

The DM tracks joins and leaves in order to be able to suggest an initial estimate, W, of the
set of processes that will participate in each invocation of Consensus unless they fail. This set
includes the processes that join before or at the slot following the slot in which the failure was
detected. However, since instances of the DM running at different locations can detect the same
failure as happening at different slots (otherwise there would be no need for Consensus), they can
have different values for W. For example, if some process ¢; fails, and its failure is detected as
happening in slot 7 by process is, the same failure can be detected as happening in slot 6 by
process i3. If a fourth process, i4 joins the algorithm at slot 8, process iy includes i4 in W (since
from i5’s point of view, i4 could have detected i;’s failure as happening in slot 8, in which case iq4
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would have to participate in the Consensus), whereas process i3 does not.

One purpose of the First Round is to eliminate such uncertainties, and to provide the Consensus
module at the local process with a set of processes, GG, that will participate in this invocation
of Consensus unless they fail. In order to overcome such uncertainties, processes like 74 in the
example above have a special role in the First Round, they help processes that like io expect them
to participate in the First Round (to avoid blocking), but they do not subsequently participate in
the Consensus algorithm (i.e., they are not included in G). The First Round therefore has two
types of input actions: p-fail for participants, and h-fail for helping processes.

A second purpose of the First Round is to modify the input value for Consensus in order to
have the decision value meet the Minimum Value guarantee of the DFM. The output of the First
Round is the input for Consensus.

Both the First Round and the Consensus need to detect failures in order to avoid waiting for
messages from a failed process. They do not implement such failure detection internally. Instead,
the DM notifies in-progress executions of these algorithms of a failure (or leave) of a process k via
the skip(k) action.

The Dynamic Manager.

The DM algorithm is presented as an I/O automaton in Figure 7. We now describe its operation.
The DM uses m-join and m-leave actions to keep track of the active processes, as well as of the
slot, joinSlot[j], in which each process j joins.

When m-fail(s,n,j); occurs, the DM at process ¢ compares joinSlot[i] with s and acts as
follows: If s > joinSlot[i], then it performs p-fail(s, W);, where W is the set of all processes k
that ¢ thinks are active, and for which joinSlot[k] is less than or equal to s + 1. If s < joinSlot[i],
then the DM at 7 performs the h-fail(s); action.

Whenever an m-fail(*,*, k) or an m-leave(*, k) action is performed, the DM performs the
skip(k) for all ongoing consensus and First Round algorithms. When the consensus algorithm
reaches an agreement, it notifies the DM using the decide action. The DM, in turn, notifies its
environment of this decision using the m-decide action.

The following lemma (proven in the Appendix) discusses the relationship between the input
sets of different processes that perform the p-fail action. It is used to prove the correctness of the
DFM.

Lemma 7.1 Let P[n,j] be the set of processes i that perform p-fail(s', W*); ;. For alli € P[n,j]:
1. m-fail(x,*);p ; is performed ezactly once.

2. If k € P[n,j) and k € W, then k either fails or leaves after performing the p-fail(s*, Wk)k:,n,j
action, and before i performs the p-fail(s', W*); . ; action.

3. For all k € W?, either k performs p-fail (s*, Wk)km,j or h—fail(sk)km,j, or skip(k); occurs, or i
fails or leaves.
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DynamicManager; (Algorithm for process i)

Signature

Input:
m-join(l, s,n,4); 1, s,n integers
m-join(s,n,j); s,n integers, j € I
m-leave(n,i); n integer
m-leave(n,j); n integer, j € T
m-fail(s,n,j); s,n integers, j € T
c-decide(s,n,j); s,n integers, j € I

Output:
decide(s,n, j); s,n integers, j € I
skip(k)in,j k €1
p-fail(v,W)in,; v integer, W C I
h-fail(v);n,; v integer

Internal:

State

joinSlot array of size N of integers, initially 0 in all places
status, array of size N x N, each element is € {inactive, active} initially inactive in all places.
newCons, curCons a set of pairs (n,j) where n is an integer and j € I initially empty // The set of pending and

current consensus algorithms respectively.

res a set of triplets (v,n,j) where v, n are integers and j € I, initially empty
consQueue an unbounded two dimensional array, each element in this array is a queue, initially empty in all places

part, help an unbounded two dimensional arrays of booleans, initially FALSE in all places.
R an unbounded two dimensional array, each element of this array is a subset of I, initially empty in all places
V' an unbounded two dimensional array, each element of this array is an integer

Transitions
Input m-join(l, s,n,4);
Eff: status[i][i] := active
joinSlot[i] := s

Input m-join(s,n,j)i, j £ i
Eff: status[i][j] := active
joinSlot[j] := s

Input m-leave(n,i);
Eff: exit

Input m-leave(n,j)i, j # i
Eff: status[i][j] := inactive
for all (n',j') € curCons
add skip(j) to consQueue[n'][j']

Output skip(k)in,;
Pre: skip(k) is first on consQueue[n][j
Eff: discard first element of consQueue[n][j]

Input c-decide(v,n, j);
Eff: curCons = curCons \ (n,j)
res =resU (v, n, j)

Output decide(v,n, j);
Pre: (v,n,j) € res
Eff: res =res\ (v,n,j)

Input m-fail(s,n,j)i, j #i
Eff: status[i][j] := inactive
for all (n',j") € curCons
add skip(j) to consQueue[n'][j']
for all k s.t. (joinSlot[k] < s+1
&& statusli][k] = active)
R[n][j] = R[n][j]U k
Vin][j] = s
if (s > joinSlot[i]) then
part[n][j] = TRUE
newCons = newCons U (n, j)
else
help[n][j] = TRUE

Output p-fail(v, W) n,;

Pre: (n,j) € newCons
W = R[n][j]
v = Vin][j]
part[n][j] = TRUE

Eff: part[n][j] = FALSE
newCons = newCons \ (n,j)
curCons = curCons U (n, j)

Output h-fail(v)in,;
Pre: v = V[n][j]
help[n][j] = TRUE
Eff: help[n][j] = FALSE

Figure 7: The Dynamic manager algorithm



The First Round algorithm. We describe the operation of the first round algorithm. The
algorithm is presented as an I/O automaton in Figure 8. The First Round algorithm is invoked
every time a process is detected as failed, by one of two actions: h-fail or p-fail. When the
algorithm is initiated by h-fail(v);, the DFM at location i multicasts a (“help”,v) message to all
processes and terminates. If it is initiated by p-fail(v, W);, it multicasts a “first round” message
containing v and W and waits for messages from every other process in W.

When the First Round at i receives messages from all processes k& € W for which no skip(k)
action was performed, it performs inCons(v, G), where v is the lowest value in any of the received
messages (including #’s initial value), and G is the set of processes that a “first round” message
was received from, including ¢. The inCons; actions is performed no sooner than A + O time after
1 sends its First Round message. This ensures that the message it sent had reached all processes
before the uniform consensus is triggered.

In the Appendix, we prove formally that the First Round achieves its two purposes (eliminating
uncertainties in the participants group and Minimum Value). In addition, we prove that combined
with the DM it guarantees termination.

Thus, all the processes that do not fail or leave start the consensus algorithm. In addition, all
the processes in each process’ set G participate in this invocation of Consensus unless they leave or
fail, and all the processes that participate are in each process’s set G. Thus, any standard uniform
consensus algorithm can be used, and the combined service achieves the DFM guarantees, as we
now argue.

Correctness and latency. We prove that the DFM meets its specification (stated in Sec-
tion 5). In addition, we present lemmas that establish its latency bounds. The formal proofs may
be found in the Appendix.

Theorem 1 The DFM achieves the following guarantees:
1. Uniform Agreement.

2. Validity.

3. Minimum Value.

4. Termination.

Proof: 1. As shown above, the First round algorithm achieves the spec of any consensus algo-
rithm, and thus the uniform agreement is guaranteed by combining this property of the first round
algorithm with the uniform agreement guarantee of the consensus algorithm.

2. From the validity of the consensus algorithm we know that the output of such a consensus must
be the input of one of the processes that participated in it. But inputs to the consensus algorithm
can only come from processes that performed the m-fail(s, *, %) action or from messages from such
processes in which the value in the message is s. Thus, if ¢ performs the m-decide(v,n, j); action,
there must be some process k that performed the m-fail(v,n, j); action.

3. Combining the validity condition of the consensus algorithm with the Minimum Value guarantee
of the First round algorithm guarantees the minimum value requirement (note that only processes
k such that k € Cln, j] can perform the m-decide(v,n, j)i action according to the DFM algorithm).
4. By combining the termination guarantee of the First round with the termination guarantee of
any consensus algorithm the termination guarantee of the DFM is proved.

|

We now analyze the time it takes from when a m-fail(s,n,j); action is performed until the

corresponding m-decide(v,n, j); is performed. Note that this is exactly the time it takes to perform
the First round and Consensus algorithm since when an m- fail action occurs the DFM starts a First
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round algorithm, and when the consensus algorithm terminates the m-decide action is performed.
The following lemma, discusses this time as a function of the number of processes f that can fail
during the execution of the First round and Consensus algorithms.

Lemma 7.2 If f processes fail during the ezecution of the First round and Consensus algorithms,
then the algorithm takes at most:

T'+0+3(A+0)+ f(A+T +20)
We now move to prove the second time guarantee of the DFM in the following lemma.

Lemma 7.3 If m-fail(s,n,j); is performed at time ty, and starting at time t > to no m-fail
action was performed by any process for 3(A + 20 +T') time, m-decide(v,n, j); will be performed
byt +3(A+20+T).
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First Round;

Signature
Input:
p-fail(v,W)in,; v integer, W C I
h-fail(v); n,; v integer
Skip(k‘)i,n,]‘ kel
Output:
inCons(v,@)in,; v integer, W C I
Internal:
send(v, str); kn,; v an integer
receive(v, Str),in,; v an integer

State

S, C a set of processes indices, initially empty.

mode € {idle,active} initially idle

curVal integer

for each j € I queue(j), a queue of messages initially empty.

Transitions
Input p-fail(v,W);n,;
Eff: S=W
c=Ww
forall jerI
add (v,“part”) to queue(j)
mode = active

Input h-fail(v)in,;
Eff: forall jelI
add (v,“help”) to queue(y)

Input skip(k)in,;
Eff: if(mode = active) then
S=85\k
C=C\k

Output inCons(v,G)in,j
Pre: mode = active

S is empty
v = curVal
G=C

Eff: mode = idle

Internal send(v, str); k.n,;
Pre: (v, str) is first on queue(k)
Eff: discard first element of queue(k)

Internal receive(v, str)k,n,j
Pre:
Eff: if(curVal > v) then
curVal =v

S=S\k
if(str = “help”) then
C=C\k

Figure 8: The First round algorithm
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8 Correctness

This section has two parts. We first give an informal proof showing that our algorithm achieves
our service specification. Next we briefly show how the Ordering algorithm achieves the DFM
environment requirements. The full details of the proofs appear in the Appendix.

Achieving the service specification First, we need the following lemma that shows that all
active processes add a joining process j in the same slot.

Lemma 8.1 If some process i that is active at slot s adds j in that slot, then all active processes
add j at slot s.

In addition, we also use the following lemma.

Lemma 8.2 If a m-decide(v,n,j) action occurred following a m-fail(s,n,j) action then 0 < (v —
s) <1, and this bound is tight.

We are now ready to prove that our algorithm achieves the service specification. We first describe
the ordering of S. We order § in the following way - For every message m that was delivered by
some process, the triplet (mg, m;, m,) consists of the slot m, in which m has been sent, the sender
process index (m;) and the place of m within the messages ¢ sent for slot s (m,). We order all
messages using these triplets (that is, m! is ordered before m? if m! < m2, and if m. = m? we
compare m} and m? and so on). Note that this is a complete ordering on the messages.

Integrity is trivially satisfied from our assumption that the network does not duplicate, corrupt
or spontaneously generate messages. The fifo of two messages m and m' sent by the same process
is guaranteed from the way we construct S.

When no process fails, messages are delivered in each slot according to process indices by all
processes. When a process leaves all processes stop delivering its messages after the last message
it sent before the “leave” message. As shown above, when a process i joins, all processes add ¢ in
the same slot. Thus, all processes order the delivery exactly as in §. Since there are no process
failures, using the reliable network guarantees that all processes receive all messages sent, and so
each process delivers a contiguous subsequence of §. Since § is ordered by the slot number, and
each time a process joins the slot number from which it starts delivering messages (joinSlot;)
increases, it must be that any message m, ¢ delivers while ¢ has incarnation number n, is ordered
ahead in S of any message 7 delivered while 7 had incarnation number n’ where n’ < n.

When a process j fails, then using the DFM all processes agree on the slot Sp in which j failed.
It follows from the DFM guarantees that Sp < s; for all processes 7 that performed m-fail(s;,n,7);.
Thus, all correct processes have received all of j’s messages up to Sp, and no process had delivered
messages from j for slots greater than Sp (this results from Lemma 8.2 and the one slot delay we
enforce on message delivery). Since messages are still delivered in each process according to their
order in S, the total ordering is guaranteed.

The Joining and Leaving liveness requirements are guaranteed since our algorithm performs the
join-OK a fixed time after the join action is performed, and the same thing holds for leave and
leave-OK.

As for Message Delivery and Latency, If m is sent by some process j more than I' time after the
join-OK; was performed, m must have a slot number greater than or equal to joinSlot; since the
clock skew between all processes is at most I'. Thus, if 7 and j do not fail m will be delivered by
i, because i delivers all messages it receives with slot number greater or equal to joinSlot; (except
for some of the messages from faulty processes). The maximal latency is also guaranteed, and we
discuss it in Section 9.
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Achieving the DFM requirements The two DFM requirements are achieved by the Ordering
algorithm. First, using Lemma 8.1 we know that when j joins, all active processes are aware of
this join before they reach joinSlot;. In addition, according to our joining algorithm, j knows of
all active processes when it reaches joinSlot;, since 7 monitors messages prior to its actual join.

As for the second requirement, our failure model guarantees that if j fails there will be at most
one slot difference between the the last message ¢ received from j and the last message k received
from j. Thus, ¢ and k will detect j’s failure in at most one slot difference.

9 QoS guarantees

If no process fails, then the maximum delay caused by this algorithm is the following;:

Lemma 9.1 If no process fails during the execution of the algorithm then
AppLatency = A +T + 20

Proof: Assume that process i sends a message m in slot s, and the delivery of m is delayed until
a message m’ from another process, 7, will be received. Since message delivery is done per slot, m’
must be a message from j for slot at most s + 1 (only messages sent for slots s’ < s+ 1 can delay
the delivery of m). Since the difference between the two processes’ internal clock is at most I, we
know that ¢ sent m at most I' + 20 time before j sent its last message for s+ 1. Since j’s messages
for slot s 4+ 1 arrives at all the processes at most A time after j ends slot s + 1, all the processes
receive m’ at most A time after j ended slot s + 1. Thus, after at most A +T" 4+ 20 time from the
time 4 sent m, it will be enabled for delivery by all processes. [ |

We now turn to analyze the effect of process failures on message delivery time. The following
lemma discusses the maximum delay caused by a the algorithm as a function of the number of
processes that fail during the execution of the algorithm.

Lemma 9.2 Denote by f — 1 the number of processes that fail between a m-fail(s,n,j); and a
m-decide(v,n, j); actions, then

AppLatency =40 +3I' + A+ 3(A+0) + (f —1)(A+T +20)

Proof: If s; is the slot j failed in, then the the failure of j can delay the delivery of messages that
where sent at slot s; — 2 and up. This is so because all processes saw js messages for slot s; — 2
and thus delivered all messages for slot s; — 3. However, it could be that some process did not
receive all of js messages for slot s; — 1, delaying the delivery of all messages sent for slot s; — 2
from processes with indices k > j.

As explained in Section 6.2, at most I' + © + A + I' after the first process started slot sj,
all processes detect that j failed, and perform the m-fail(s,n,j) action. According to the DFM
guarantees, at most '+ ©4+3(A+0)+(f —1)(A+I'420) time after a m- fail(s,n, j); is performed,
the corresponding m-decide(v,n,j); is performed. Thus the total time the algorithm can delay a
message is:
204T+O0+A+T+T+0+3(0+A)+(f—1)(A+T+20) = 404+3T+A+3(A+0)+(f—1)(A+T'+20).
|
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Note that although the maximum delay time scales with the total number of processes that can
fail, in practice we would not expect this delay to occur. The maximum delay will occur only if at
least one process will fail every A + © + I' time. Such scheduling of process failures is very rare in
practice, and so the expected maximum delay of our algorithm is much smaller than the one we
just described. The following lemma discusses the latency suffered by a message m for which no
processes fails during a certain time before and after it is sent.

Lemma 9.3 If message m is sent by i at time t, and no process fails between
t—(A+O0+2'+3(A+20+T1)) and t + (A +20 +T), then all processes deliver m by
t+A+20+T.

Proof: According to our algorithm (Section 6.2), if a process k fails, ¢ will perform the m-
fail(x, %, k); action at most A + © + 2I" after ks failure. Since no process failed between ¢ — (A +
© + 2" + 3(A 4+ 20 +1T')) and ¢, we know that no m-fail action was performed by i between
t—(3(A4+20+T') and t. According to the DFM guarantees, if m-fail(s,n,7); is performed at time
to, and starting at time t' > ¢y no m-fail action was performed by any process for 3(A + 20 +T)
time, all processes will perform the m-decide action by ' + 3(A 4 20 +T'). Since no m-fail action
was performed by any process between ¢ — (3(A+20 +1T') and ¢, a corresponding m-decide(x, x, j)
action was performed at all processes for any process j for which a m-fail(x, *, j)r was performed.
Thus, when m was sent all messages that where delayed until a decision regarding a process failure
was made, have been delivered.

According to our reliable network guarantees m will be received by all processes at most A time
after it was sent. Assume m was sent for slot s. Then, after receiving m all processes must receive
all messages for slot s + 1 in order to deliver m. Since m was sent for slot s, at most 20 + I' time
after m was sent, all processes finished slot s 4+ 1, and since no process has failed between ¢ and
t+ A+ 20 + T all these messages (for slot s+ 1) will arrive at all processes at most A time after
they where sent. So m will be delivered by all processes at most at time ¢t + A + 20 +T'. [

Reserved rates. The messages our ordering algorithm adds over the messages sent by the
application are the messages added by the reliable network layer and messages added by the DFM.
The DFM sends at most one message every slot (all of the DFM messages are aggregated and are
sent once a slot). In addition, our algorithm issues a net-flush every © time, thus = of Section 4
is set to ®. We thus get the following upper bounds on the average and maximum rates used by
our algorithm:

NetAvgRate = AppAvgRate + 1 + ([ (AppAvgRate + 1) /k] + 1) =1
NetMazBurst = AppMaxBurst + 1 + ([(AppMaxBurst + 1) /k]) 1

10 When the network QoS guarantees are violated

So far, we assumed that the QoS guarantees provided by the network (namely, bounded delay and
bounded message loss) are deterministic. However, some networks only provide probabilistic QoS
guarantees. In such networks, there may be periods of time during which the QoS guarantees are
violated. Although our algorithm cannot guarantee atomic broadcast while the QoS guarantees
are violated, it is important for the algorithm to be able to recover from such violation. In other
words, a certain time after the QoS guarantees are restored, the algorithm should again be able
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to provide the DAB service. In addition, it would be desirable to inform the application when
a violation of DAB semantics occurs, and when the correct semantics are resumed (following the
failure awareness approach of [9]).

We now discuss how QoS violations can affect our algorithm, and how the algorithm can be
modified in order to recover from them. We discuss these ideas informally, a more careful study of
these ideas remains for future work.

Violation of QoS guarantees may lead one correct process, %, to detect a second correct process,
7, as faulty (either due to message delay or due to loss). Process i will then invoke the DFM to
agree upon j’s failure slot. In order to recover from this situation, we modify the algorithm to
have j fail itself when it gets a consensus or a first round message related to its own failure. The
algorithm at j will then notify the application of the failure, and the application would have to
re-attempt to join (a similar approach was taken in [2]).

Not every case of excessive message loss must lead to incorrect failure detection. In other cases,
the loss can be detected when the reliable network delivers messages with gaps. In such cases, the
application can be informed of the fact that loss occurred. Our algorithm, without modification,
recovers from such situations.

The loss or delay of a “join” message may lead to a process joining before all the other processes
know of the join. To recover from this situation, we modify the algorithm to have processes monitor
all incoming messages. If process j sees a message from process ¢ when j thinks that ¢ is not active,
j adds 7 to the list of active processes and delivers messages from ¢ from now on. It also informs
the application of the potential loss of messages. Once the network QoS guarantees are restored,
all such message will arrive at j, and DAB semantics will be resumed.

The loss of a DFM message (consensus or first round) may lead to blocking. To overcome this,
we have processes periodically re-send their latest DFM message. Once the network guarantees are
restored, these messages will reach their destinations.

11 A lower bound for DAB with process failures

The following theorem shows that in the model studied in this paper, any algorithm implementing
DAB (see Definition 1 in Section 3) can guarantee, at best, a latency bound which is proportional
to the number of failures it can tolerate.

Theorem 2 A Dynamic Atomic Broadcast (DAB) algorithm that can tolerate f process failures
cannot guarantee a latency bound smaller than (f + 1)A.

Proof: Assume that a DAB algorithm A can tolerate f process failures and guarantees a latency
bound of §. We now show that 6 > (f + 1)A. As shown in [12], the processes may use A to solve
the Consensus problem by sending their initial values as their first message and agreeing upon the
value in the first delivered message. By our assumption on A, this message is delivered at most §
time after the algorithm is initiated, and thus, Consensus is solved in § time.

Since f+1 rounds is a well known lower bound for synchronous Consensus tolerating f stopping
failures (see [14], Ch. 6.7), and from our assumption that messages can be delayed up to A time
by the network, we conclude that the algorithm cannot guarantee that Consensus be solved in less
than (f + 1)A time, and hence 6 > (f + 1)A. |
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12 Conclusions

We have designed a Dynamic Atomic Broadcast (DAB) algorithm that preserves QoS guarantees.
We have conducted a detailed theoretical study of the QoS guarantees of our algorithm under
different circumstances. In particular, we have shown that in periods with no failures, the latency for
the ordered multicast is within a constant of the latency of the underlying network (independently
of the number of participants). This is an improvement over the latency exhibited by previous
algorithms (e.g., [2]). When failures do occur, the latency is linear in the number of processes that
fail within a bounded time interval, as dictated by a lower bound.

We have discussed possible ways of extending our algorithm to recover from situations in which
the network QoS is violated. Future work will further develop these ideas, and present a careful
study of the time it takes the algorithm to recover from such situations.

Our algorithm uses a Dynamic Failure Manager to achieve atomic semantics in the presence
of failures: the DFM reaches consensus regarding the point at which each failed process should
be removed from the algorithm. Achieving such consensus is difficult because of the dynamic
model: Processes can join and leave the algorithm at any time. Furthermore, different processes
can detect the same failure while having different perceptions of the set of processes participating
in the algorithm. The DFM service resembles virtually synchronous group membership; its use by
the DAB service resembles the use of group membership in totally ordered group communication
services®. However, unlike most group communication systems providing similar services, (e.g., [10,
21, 6]), using our DFM processes can join and leave the algorithm without introducing delays to
the communication among active processes. We believe that our DFM may be useful for additional
applications, beyond DAB. Future work will explore this possibility.
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We now present a formal correctness proof of our service. We begin in Section A by presenting
a formal specification of the DFM environment. In Section B we then show that given a DFM
meeting the DFM guarantee presented in Section 5, the Ordering algorithm provides the DAB
service specification of Section 3. We also show that the Ordering algorithm meets the DFM
environment specification of Section A. Finally, in Section C we show that the DFM meets its
specification.

A DFM environment specification

The DFM environment specification is composed of two parts, safety and liveness. The safety
requirements are presented as an automaton in Figure 9.

We now explain briefly each of the preconditions in the environment specification. A precondi-
tion for the m-join(l, s,n,4); action should guarantee that when 7 joins, all processes k have enough
time to perform the m-join(s,n,i); before they reach slot s. Thus, we require that s will be bigger
than the current slot of all active processes. We also require that all processes know that 7 was not
active prior to performing the m-join action.

The m-join(s,n, j); preconditions should guarantee that if 7 is about to be joined when s arrives,
i will add j before i reaches slot s (that is, 7 performs this action when slot[i] < s).

The m-leave action preconditions guarantee that a process will not be reported as left unless it
actually left. In addition, a process can be reported to leave only if it has been seen as active prior
to this report.

The m-fail action precondition guarantees that a process will not be reported as fail unless
it actually failed. In addition, the precondition limits the difference (in slots) between the slots
in which different processes detect the failure of process j. This achieves the second intuitive
requirement stated in Section 5.

The preconditions for the inc-slot action guarantees that when ¢ actually joins, all processes
that where supposed to join before 7 know of is joining, and ¢ knows of them. This achieves the
first intuitive requirement of Section 5.

The DFM liveness requirements are:

Liveness:

e For all processes k such that status[k][k] is active when the fail; action is performed for j
with incarnation number n, and joinSlot[k] < failSlot[j] + 2, k either m-fail(*,n,j)i, or
faily or m-leave(x,inclk], k) is performed.

e All processes that have status[i|[k] = active when k performs the m-leave(n, k) action, will
set statusli][k] to inactive.

The first liveness item guarantees that if a process k was active when a process j failed, and k was
about to join the algorithm or have already joined, k will either report the failure of 5 or will fail or
leave itself. The second guarantees that when an active process j leaves, all other active processes
will note that fact.
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DFM Env

Signature
Input:
fail;
m-decide(v,n, j):
Output:
m-join(l,s,n,i); I, s,n integers
m-join(s,n,j)i j # i, s,n integers, j € I
m-leave(n,j); n integer, j € T
m-fail(s,n,j); s,n integers, j € T
Internal:
inc-slot();

State

slot array of size N of integers, initially 0 in all places // slot[i] is the current slot i is in.

joinSlot array of size N of integers, initially 0 in all places // joinSlot[i] holds the last slot in which ¢ joined (1).

failSlot array of size N of integers, initially 0 in all places // failSlot[i] is the last slot in which 4 failed.

inc array of size N of integers, initially 0 in all places // inc[i] holds is current incarnation number (n) as determined
by the m-join(*,l,n,); action.

status, array of size N = N, each element is € {inactive, active} initially inactive in all places. // status[i][k] is the
status ¢ sees for k.

Leave, Failed arrays of size N of booleans, initially FALSE in all places. // Leave[i] is TRUE if ¢ is inactive, and
the last leave or fail action ¢ performed was a m-leave(x,);. Failed[i] is the same for failures.

Transitions
Output m-join(l, s, n,i);
Pre: n = inc[i] + 1

Output m-leave(n,i);
Pre: status[i][i] = active

1 > slot[i] n = incfi
forall k € I { Eff: foralljeI
s > slot[k] + 2 status[i][j] = inactive
status[k][i] = inactive Leave[il = TRUE
}
s>1+2 Output m-leave(n,j)i, j # 1
Eff: status[i][i] := active Pre: status[i][j] = active
slot[i] :=1 n = inc[j]
joinSlot[i] := s Leave[i] = TRUE
Failed[i] := FALSE Eff: status[i][j] := inactive
Leaveli] := FALSE
incli] = n Input fail;

Eff: if (status[i][i] = active) then

Output m-join(s,n,j)i, j # i
Pre: status[i][j] = inactive
n = inclj]
s > joinSlot[j]
if(s > joinSlot[i] — 2) then
slot[i] < s
Eff: status[i][j] := active

Internal inc-slot();
Pre: if(slot[i] = joinSlot[i] — 1) then

for all k s.t.(joinSlot[k] < joinSlot[i]
&& statuslk][k] = active) {

status[i][k] = active
status[k][i] = active

Eff: slot[i] = slot[i] + 1

Failed]i] = TRUE
failSlot[i] = sloti]
forall jeIrI

status[i][j] = inactive

Output m-fail(s,n,j)i, j #1
Pre: status[i][j] = active
Failed[j] = TRUE
n = inc[j]
s < slot[i]
s > joinSlot[i] — 2
failSlot[j] — 1 < s < failSlot[j]
Eff: status[i][j] := inactive

Input m-decide(v,n, j);
Eff: none

Figure 9: The environment specification automaton



B Correctness proof of the DAB service

In this section we give the formal proofs for the two parts of Section 8.

B.1 Achieving the service spec

Lemma B.1 If some process © that is active at slot s adds j in that slot, then all active processes
add j at slot s.

Proof: Ifi adds j at slot s then it must be that in some slot prior to s ¢ received a join message
for j for slot s. If ¢ received the message from j, then i received it at most A time after it was sent,
and echoed it at most © after that. Since ¢ is active when s starts, and since j chooses an s that
starts ((f + 3)(A + ©) +I') time after it sends the join message, all processes must have received
1s join message for j before starting to receive message for s, and so all processes will also add j at
slot s.

If 4 did not receive the message directly from j, it means that at least one process k£ had received js
original join message, and echoed it. Using an inductive argument it is easy to see that if 4 received
the join message for j only after z(A + ©) time from the time j sent it, then it must be that at
least & — 1 processes have failed (including 7). This is so because for each A + O time after j sent
its join message, at least one processes had echoed it, otherwise ¢+ would not have received it at all.
On the other hand, since i did not receive the join message prior to (A + ©) time after it was sent,
all processes that sent the join message before (z — 1)(A 4 O) time must have failed. Since the
number of processes that can fail is at most f, x < f+4 1. So ¢ had received js join message at most
(f +1)(A + ©) time after j sent its original join message. Since 7 echoed the join message at most
© time after it received it, all processes must have received the join message at most (f +2)(A +0)
time after it was sent. This happens at least (A + ©) time before all processes start slot s, and so
when s starts all active processes add j. [ |

Lemma B.2 If a m-decide(v,n,j) action occurred following a m-fail(s,n,j) action then 0 <
(v —8) <1, and this bound is tight.

Proof: The fact that 0 > (v —s) comes from the minimum value guarantee in the failure manager
spec. As for the other side of the inequality, since the difference between the detection of a processes
failure is at most one slot, all actions m-fail(s’,n,j), performed by another process k¥ must have
s'+1 > s, and so, from the validity requirement it must be that v +1 > s, and so 0 < (v —s) < 1.
|

Theorem 3 Our TO algorithm achieves the following requirements:
o Integrity

e Ordering

Joining

Leaving

Message Delivery and Latency

This requirements are fully specified in Definition 1 in Section 3.
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Proof: We prove this theorem by proving that each of the items above is guaranteed by our
algorithm.

o Integrity: This is trivially satisfied from our assumption that the network does not duplicate,
corrupt or spontaneously generate messages.

e Ordering: When no process fails, messages are delivered in each slot according to process

indices by all processes. When a process leaves all processes stop delivering its messages after
the last message it sent before the “leave” message. As shown above, when a process i joins,
all processes add ¢ in the same slot. Thus, all processes order the delivery exactly as in S.
Since there are no process failures, using the reliable network guarantees that all processes
receive all messages sent, and so each process delivers a contiguous subsequence of . Since
S is ordered by the slot number, and each time a process joins its slot number increases, it
must be that any message m, i delivers while 4 has incarnation number n, is ordered ahead
in S of any message 7 delivered while 7 had incarnation number n’ where n' < n.
When a process j fails, then using the DFM all correct processes will have the same value,
Sp, as their decision value. Given Sp, we know that all correct processes have received all
of js messages for slot Sp (this comes from the minimum value guarantee of the DFM). In
addition, no process had delivered js messages for slot Sp + 1 (because for every process
i, s — 1 < Sp, from lemma 8.2, and according to the algorithm a process does not deliver
messages for slot s — 1 until it receives all messages for slot s). So all processes act the same
when the DFM reaches a decision, delivering js messages up to slot s, and skipping j for slot
s+ 1 on. Since messages are still delivered in each process according to their order in S, and
all processes act in the same way for js failure, the total ordering is guaranteed.

e Joining: According to our algorithm (Section 6.3), if i performs a join at time ¢, and 7 does
not fail or leave, a join-OK; will be performed at time ¢ + ¢; where t; = 2" + 3(A + ©) +
FA+T+20)+ (f+3)(A+20)+T) .

e Leaving: According to our algorithm (Section 6.4), at most 20 time after a leave is performed,
the corresponding leave-OK; is executed. Thus setting to = 20 guarantees this condition.

e Message Delivery and Latency: If m is sent by some process j after time £+ ©, m must have
a slot number bigger or equal to joinSlot; since the clock skew between all processes is at
most ©. Thus, if 7 and 5 do not fail m will be delivered by i, because ¢ delivers all messages it
receives with slot number greater or equal to joinSlo; (except for some of the messages from
faulty processes), and according to the reliable network guarantees m will be received by 1.
So setting t3 = © guarantees that m will be delivered. As for the maximal latency, we prove
in Lemma 9.2, that the maximal latency of any message delivered in our algorithm is:

AppLatency =40 +3I' + A+ 3(A+0)+ (f — 1)(A+T +20)

B.2 Implementing the DFM environment specification

We show that for each of the actions in the DFM environment spec, and each of the liveness re-
quirements of that spec, the Ordering algorithm achieves its preconditions.
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inc-slot() - The fact that all active processes add ¢ in slot joinSlot; is proved in Lemma 8.1.
The requirement that ¢ knows of all active processes that have a join slot less than joinSlot; is
guaranteed by the following observation. For process j that is active, and did not send a join
message from the time i woke up, it must be that j has already joined the algorithm (since j sent
its join message before i woke up, ¢ will not even send its join message before j actually joins) and
so according to the join algorithm (Section 6.3), ¢ must have added j to the list of active processes
and so must have performed the m-join action for j. For a process j that sent its join message
after ¢ woke up, if joinSlot; < joinSlot; i must have received this join message before joinSlot;
(Lemma 8.1) and so 7 informed the DFM of j's join.
m-join(s,l,n,i) - The requirement that all processes view i as inactive when i performs this action
is guaranteed by the fact that ¢ does not perform this action until ¢ is sure that all consensus
algorithms that were performed to decide on its failure have concluded (Section 6.3).
m-join(s,n,j) - The requirement that 7 has the right incarnation number for j is guaranteed be-
cause ¢ uses the number that appears in js join message or in the header of one of js messages.
Since ¢ only adds j after j sends a join message or after seeing a message from j we know that
s > joinSlot[j] (j only sends messages for slots s’ > joinSlot[j]). If joinSlot[j] > joinSlot[i] — 2,
then the fact that 7 adds j before ¢ reaches joinSlot; is guaranteed by Lemma 8.1.
m-leave(n,j),fail - This is trivial.
m-fail(s,n,j) - Since we use a failure detector (Section 6.2) we are guaranteed that this action will
only be performed if j actually failed. The fact that s < slot[i] is again guaranteed by our failure
detector since it waits more than © time before it declares a process as failed. The fact that all
processes report a failure slot within 1 of each other is guaranteed by our failure model (Section 2).

The two liveness conditions are also guaranteed by our Ordering algorithm. If status[k|[k] was

active when the j failed, and joinSlot[k] < failSlot[j] + 2, then according to Section 6.3, & would
try to receive js messages for slot failSlot[j]. Thus, if j does not fail or leave k will notice js failure
and so it will perform the m-fail(x,n,7); action.
If status[i][k] was active when k performs the m-leave(n, k); action, ¢ will either receive ks leave
message and thus will perform the m-leave(n, k) action, or i will not receive this message in which
case i would suspect that k failed and so it will perform the m-fail(*,n,k); action, again setting
status|i][k] = inactive. The only other possibility is that ¢ will fail or leave before it will notice ks
message or failure. However, in this case, according to the automaton specification status|i][k] is
automatically set to inactive.

C Correctness of the DFM

In this section we prove all the lemmas that where presented in Section 7.

C.1 The Dynamic manager algorithm

Lemma C.1 For all processes i, if the p-fail(s', Wi)z‘,n,j action is performed then:

1. The m-fail(x,n,7); action cannot be performed twice by the same process i.

2. Ifk € Pln,j] and k € W*, k failed or left after performing the p-fail (x, *)k,n,; action, and before
i performed the p-fail(x,%);p ; action.

8. For all k € W', k either performs the p-fail(v', W')n; action or the h-fail(v')g; action or
status|i][k] becomes inactive.
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Proof: 1. Ascan be seen (from the spec) performing the m-fail(,n,7); action results in setting
status[i|[j] = inactive. A precondition of the m-fail(*,n,j); action is that status[i][j] = active.
Thus, status[i][j] should change to active between two consecutive m- fail(x,n, j); actions, and this
could only be done in the m-join(x, %, j); action. When ¢ performs the m-fail(x,n, j); action we
have status[j][j] = inactive with inc[j] = n since i can only perform this action when Failed[j] =
TRUE (meaning that the last action performed for j was the fail; action), and so in order to
set status[i][j] to active again, j must perform the join(x,x,j); action after ¢ performs the first
m-fail(x,n, j); action. However, when j performs the join(x, , j); action, j must set incj] = n+1
according to the spec, and since a precondition of the m-fail(x,n’, j); action is that n' = inc[j], i
cannot perform the m-fail(,n,j); action again (since inc[j|] > n from now on).

2. Assume for contradiction that % did not fail after performing the p-fail(*,*); 5 ; action.

If statusli][k] was active when i performed the p-fail(s',W');, ; action, then since k ¢ W' it
means that joinSlot[k] > s* 4+ 2, and since s' > failSlot[j] — 1 we can conclude that joinSlot[k] >
failSlot[j] + 1. Since k did not fail or leave after performing the p-fail(s¥, ¥)j., ; action, this must
be less or equal to the joinSlot[k] that k& had when performing the m-fail(s*,n,5); action (since
according to part 1 of this lemma the m-fail(x,n, j); action can only be performed once). We now
arrive at a contradiction since for this joinSlot[k] value we have joinSlot[k] > failSlot[j]+1 > s*,
but according to the m-fail action, in order to perform the p-fail(*,*);  ; action k& must have
sk < joinSlot[k]. So in this case it must be that & failed or left after performing the p- fail (*, )k m.j
action.

Assume status[i][k] was inactive when i performed the p-fail(s’, W'); , ; action, and k did fail
or left after performing the p-fail(s¥,*)g, ; action. Then it must be that when k performed the
p-fail(s¥, %) ; action it had slot[k] > s* > joinSlot[k]. So k must have performed the inc-slot()y
action that sets slot[k] = joinSlot[k]. A precondition of such an action is that for all active processes
m with joinSlot[m] < joinSlot[k], status[m|[k] = active. It is easy to see that ¢ must have been one
of these processes when this action took place, otherwise i could not have had status[i][k] = inactive
since k£ did not fail or leave after this action. So it must be that status[i][k] was set to active after
i performed the p-fail(s’, W?);, ; action. However, since joinSlot[k] < failSlot[j] we know that
when i performed the p-fail(s', W?);, ; action i had slot[i] > s' + 1 > failSlot[j] > joinSlot[k],
and this contradicts the fact that ¢ joined k after performing this action since the precondition for
joining a process (in the m-join(s,n,k); action) is that slot[i] < s and since s < joinSlot[j] this
implies that slot[i] < joinSlot[j] when i performed the m-join action. Thus it must be that k failed
or left after performing the p-fail action, and since status|i][k] was inactive when i performed the
p-fail action, this must have been before ¢ performed the p-fa:l action.

3. If k € W' then s' > joinSlot[k] — 1, and so failSlot[j] > s* > joinSlot[k] — 1. Since s* +1 >
failedSlot[j], we have s* + 1 > joinSlot[k] — 1 — s* > joinSlot[k] — 2. If status[k][k] was active
when fail; occurred then according to the liveness guarantee of the environment specification &
will either perform the m-fail(s*,n, ), action or will fail or leave (which will result in setting
status[i][k] to inactive according to the liveness guarantees). If k performs the m-fail(s*, n, )
action k will either perform the h-fail(*)g 5 ; or the p-fail(x, %), ; actions.

If status[k][k] was inactive when the fail; action occurred, then it must be that k£ did not rejoin
the algorithm before i performed the m-fail(x,n,j); action. This is so because in order to rejoin,
k must set joinSlot[k] > failSlot[j] + 2. However, since k& € W' it must be that joinSlot[k] <
s'+1 < failSlot[j] + 1 and so k could not have rejoined the algorithm after j has failed. Note that
k cannot rejoin the algorithm before i sets status[i][k] to inactive according to the m-join(x, x, k)
precondition. Thus, status[k|[k] was inactive when i performed the m-fail(x,*,7); action, and so
i will set status[i][k] to inactive at some point according to the liveness guarantees. ]
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C.2 The First Round algorithm

Lemma C.2 Ifi € Pln,j] then the combined service guarantees the following with respect to F™J :
1. Termination.

2. Cln,j] C G, and if k € G* and k & C[n,j] then k failed or left after performing the p-
fail(*,%)gn,; action.

3. For all processes k € Cln, j], I¥ < u.

Proof: 1. In order to terminate F™’ i has to perform the inCons(*,*);, ; action. In order
to perform this action i needs to receive messages from all processes in W’ or wait until they
failed or left. However, according to lemma 7.1 part 3 all such processes will either perform the
h-fail(x)spn,; or p-fail(x,%).p ; actions, resulting in sending a message to ¢ or will fail or leave.
Thus, all processes that ¢ waits for will either send a message or fail or leave and termination is
guaranteed.

2. If k € C[n,j] then k € P[n, j] according to the construction of C[n, j] and in addition, £ did not
fail before finishing the first round algorithm. If & ¢ W* we know that & had failed or left before
i performed the p-fail(*,*);, ; action (lemma 7.1 part 2), and thus & ¢ C|n, j] since in order to
finish the first round & needs to receive a message from i (since i € P[n, j] and did not fail or left
so i € WF). But since k failed or left before 7 sent any message, k did not finish the first round
algorithm.

So if k € C[n, 4] it must be that & € W* and since k € C[n, j] we know that ks message for the first
round have reached i, and so according to the receive action effect, k € G* (since k must have sent
a “part” message since k € Cln, j]).

If k € G* and k € C[n, j] then it must be that k started F™7, and that k € P[n,j] (otherwise i
would not add it to G?, since k& would send a “help” message). Since k ¢ C[n, j] we know that k
must have failed or left (since according to part 1 of this lemma, if this is not the case k would
have finished F™7).

3. If i € C[n, 4] it must be that for all processes k such that k& € C[n, 7], i € G* according to part
2 of this lemma. But this means that k received is message for F™/, and thus according to the
receive(v)y,in,; action effect, Ik <yl [

C.3 Time analysis

Lemma C.3 If f processes fail during the execution of the First round and Consensus algorithms,
then the algorithm takes at most:

I'+0+3(A+0)+ f(A+T +20)

Proof: If two processes ¢ and j participate in the First round algorithm, then the difference be-
tween the time 7 started the algorithm and the time j started the algorithm is at at most © + T'.
This is so because both start the algorithm when the failure of k is detected. If ¢+ detects the failure
of k in slot s, j would detect it at most in slot s+ 1, and since the clock skew is at most I" the total
difference is at most © + I

Assume j is the last process to start the First round algorithm. Then the First round ends at all
processes at most 20 + A + T time after it started at j. This is so because if no process fails, then
all First round messages are sent at most © after j started the algorithm, and arrive at most A
time after that at all processes, finishing the first round. If the First round message from process p
would not arrive at process i © + A time after j detected ks failure, it means that p has failed, and
this failure will be detected by all processes at most © + A + I' time after p have failed, which is at
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most 20 + A 4+ T" time after j started the First round algorithm. Thus, 20 + A +T' time after the
last process detected ks failure all processes would be able to finish the First round (either receiving

all messages sent for this round, or detecting processes from which no messages where received as
failed).

The same analysis shows that this is the case for all rounds in the Consensus algorithm too. If
a process fails during a round then it will take at most 20 + A + I' time to conclude the round by
all other processes. Thus, if f processes fail during the execution of the algorithm we need at most
three more rounds in addition to the f rounds in order to reach decision (the first round and at
most two rounds at the end). In these three rounds no process fails, so they take at most A + ©
time each. Thus the algorithm takes at most: ©® + I' + 3(© + A) + f(A + T + 20). ]

Lemma C.4 If m-fail(s,n,j); is performed at time ty, and starting at time t > ty no m-fail
action was performed by any process for 3(A + 20 +T') time, m-decide(v,n, j); will be performed
byt+3(A+20+T).

Proof: According to the previous lemma, the First round algorithm takes at most A+20+T" time
to finish by all processes, and so does any of the consensus rounds. Thus, since no process performs
a m-fail action from time ¢ for 3(A 4 20 +TI') time, all processes will be able to finish at least two
consecutive consensus rounds without reporting any failure. However, if all processes see the same
set of processes for two consecutive rounds, the consensus algorithm ends at all processes. So by
t+3(A+20 +T), the consensus algorithm for j will end, and ¢ will perform the m-decide(v, n, j);
action. [ |
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