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Abstra
t

We present a fault-tolerant algorithm for an atomi
 broad
ast servi
e with a dynami
 set

of parti
ipants; that is, reliable totally ordered multi
ast for dynami
 groups. The algorithm

preserves QoS guarantees. We o�er a detailed theoreti
al study of the QoS guarantees of our

algorithm under di�erent 
ir
umstan
es. In parti
ular, we show that in periods with no failures,

the laten
y for the ordered multi
ast is within a 
onstant of the laten
y of the underlying

network (independently of the number of parti
ipants). This is an improvement over the laten
y

exhibited by previous algorithms. When failures do o

ur, the laten
y is linear in the number

of pro
esses that fail within a bounded time interval, as di
tated by a lower bound. Unlike

most group 
ommuni
ation systems providing similar servi
es, in our algorithm pro
esses 
an

join and leave without introdu
ing delays in the 
ommuni
ation between a
tive parti
ipants. A

major 
hallenge was avoiding 
ommuni
ation delays for a
tive pro
esses when joins o

ur, while

at the same time preserving 
onsisten
y if failures o

ur near the time of a join.
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ysis, Quality of Servi
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1 Introdu
tion

Atomi
 broad
ast [12, 5℄, allows multiple pro
esses to send messages, in su
h a way that all the


orre
t pro
esses deliver all the messages sent or delivered by 
orre
t pro
esses, and in the same

order. An important use of atomi
 broad
ast is to implement repli
ated state ma
hines [13, 18℄,

whi
h provide an important paradigm for state-oriented appli
ations. Mu
h work has been dedi-


ated to atomi
 broad
ast algorithms in di�erent failure models [8℄. Dynami
 atomi
 broad
ast is

an extension of atomi
 broad
ast that supports requests by appli
ation pro
esses to join or leave

the algorithm, in addition to tolerating pro
ess failures; dynami
 atomi
 broad
ast is often imple-

mented using group 
ommuni
ation systems (e.g., [10, 21, 6℄). In this paper we present a novel

dynami
 atomi
 broad
ast (DAB) algorithm that preserves quality of servi
e (QoS) guarantees.

In the past few years, we have witnessed new appli
ations that require QoS guarantees from the

network (e.g., [16℄). Some need stri
t guarantees on available bandwidth, others need a bound on the

laten
y a pa
ket 
an su�er when transmitted over the network. ATM networks [3℄ allow appli
ations

to reserve QoS parameters su
h as bounded laten
y, guaranteed bandwidth and bounded loss rate.

The IETF Integrated Servi
es working group is 
on
erned with adding similar QoS support to the

Internet. The QoS parameters that the new servi
es will support in
lude, among others, bounded

laten
y, guaranteed bandwidth reservation and bounds on message loss (see [19℄).

There are appli
ations that repli
ate some state with a 
ertain degree of 
onsisten
y and yet

also require predi
table message delays. Su
h appli
ations 
an bene�t from DAB, as long as it does

not introdu
e ex
essive delays. Examples of su
h appli
ations in
lude a shared text editor [20℄, a

shared white-board [16℄, and online strategy games [11, 1℄.

Current implementations of appli
ations su
h as those des
ribed above seldom exploit atomi


broad
ast. This is be
ause a
hieving atomi
 broad
ast requires delaying messages until agreement

upon their order is rea
hed, and many believe that this delay is too large. For example, in his book

Internetworking Multimedia [7℄, Crow
roft writes:

\The requirements of resilien
e and s
alability di
tate that total 
onsisten
y of view is

not possible unless me
hanisms requiring una

eptable delays are employed."

The idea that 
onsisten
y and predi
table delays are mutually ex
lusive is at the root of design

de
isions made in building su
h appli
ations [16, 20℄. Su
h appli
ations usually settle for weak


onsisten
y 
onstraints and run appli
ation-spe
i�
 algorithms to dete
t and resolve in
onsisten
ies.

In this paper we show that atomi
 broad
ast 
an 
oexist with guaranteed predi
table delays in

some situations, albeit not in all situations. We 
onsider a network that provides QoS guarantees,

and build on top of it a DAB servi
e. Unfortunately, no fault tolerant algorithm for atomi


broad
ast 
an guarantee a 
onstant message delay; when pro
esses fail, the delay is bound to

grow linearly with the number of failures (see Se
tion 11 for a proof of this lower bound). We

present a fault tolerant DAB algorithm with QoS guarantees that mat
h this lower bound.

We o�er a theoreti
al study of the QoS guarantees of our algorithm under di�erent 
ir
um-

stan
es. We show that with our algorithm, 
ommuni
ation laten
y is within a 
onstant of the

laten
y of the underlying network (independent of the number of parti
ipants) in periods with no

failures. When pro
esses do fail, the delay of the algorithm in
reases linearly with the number of

time intervals of a given size, x, during whi
h failures o

ur. If one failure o

urs, and during the

following time interval of length x no failures o

ur, then the delay is bounded by a 
onstant. The

message delay 
an further in
rease by f � x only if during ea
h of the f subsequent time intervals

of length x a new failure o

urs. In pra
ti
e, we do not expe
t sequen
es of failures to o

ur very

often. Thus, the expe
ted delay of our algorithm is very low, and it is very 
lose to the delay
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a
hieved when no pro
ess fail. This is superior to previous results (see [2℄) whi
h introdu
ed linear

laten
y regardless of the number of failures.

Unlike most group 
ommuni
ation systems providing similar servi
es (e.g., [10, 21, 6℄), in our

algorithm pro
esses 
an join and leave without introdu
ing delays to 
ommuni
ation between a
tive

parti
ipants. It was 
hallenging to design an algorithm that would avoid 
ommuni
ation delay to

a
tive pro
esses when joins o

ur without failure, while not 
ompromising 
onsisten
y if failures

o

ur near the time of a join.

1.1 Related work

Dynami
 atomi
 broad
ast is provided by several group 
ommuni
ation systems. Most of these do

not address QoS issues. The only ex
eption that we are aware of is RTCAST [2℄. RTCAST a
hieves

a laten
y bound whi
h is linear in the number of pro
esses, regardless of the number of failures.

Moreover, the failure model assumed in RTCAST is weaker than the one we assume. There, it is

assumed that if a pro
ess p fails, and a 
orre
t pro
ess q re
eives, from the network, some message

m sent by q before its failure, then every other 
orre
t pro
ess will re
eive m as well. In 
ontrast,

we allow the network to deliver a message from a faulty pro
ess to some 
orre
t pro
ess and not

to another. Mu
h of our algorithm's 
omplexity is dedi
ated to over
oming su
h situations.

In an earlier paper [4℄, we have presented a simpler algorithm that does not over
ome su
h

situations, and instead allows 
orre
t pro
esses to deliver di�erent message sequen
es in 
ases of

failures.

1.2 Roadmap

The rest of this paper is organized as follows: Se
tion 2 presents the model, Se
tion 3 spe
i�es the

DAB servi
e we implement, and Se
tion 4 des
ribes our assumptions of the underlying 
ommuni-


ation network. The following three se
tions des
ribe our new DAB algorithm. In Se
tion 8 we

informally argue that the algorithm is 
orre
t (i.e., implements DAB). In Se
tion 9 we study the

algorithm's QoS guarantees; the Appendix presents a formal 
orre
tness proof. In Se
tion 10 we

explain how the algorithm 
an be extended to re
over from situations in whi
h the network QoS is

violated. In Se
tion 11 we prove the lower bound for DAB. Se
tion 12 
on
ludes the paper.

2 Model

We assume a stati
 universe P of n pro
esses, with distin
t identi�ers in f1; � � � ; ng. Pro
esses


ommuni
ate by ex
hanging multi
ast messages within amulti
ast group

1

. Pro
esses 
an voluntarily

join and leave the multi
ast group at any time. Ea
h join request is asso
iated with a unique,

monotoni
ally in
reasing in
arnation number, so that a pro
ess that joins the group multiple times

uses a larger in
arnation number ea
h time.

Pro
esses use an underlying network 
ommuni
ation servi
e whi
h allows for QoS reservation.

Spe
i�
ally, the network allows for reservation of variable bandwidth, spe
i�ed by the average

transmission rate and the maximum burst that 
an be sent during a time interval of length �. As

long as messages are sent at the reserved rate, the network guarantees to deliver messages with a

bounded delay, denoted by �. In Se
tion 4 we spe
ify the underlying network servi
e interfa
e and

our assumptions about the network.

1

For simpli
ity, we assume that a single multi
ast group exists.
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The failure model. Pro
esses 
an fail by 
rashing and may later re
over. Formally, we model

failures by spe
ial fail a
tions; we do not model re
overies expli
itly, but we allow a previously

failed pro
ess to later perform a join. Crashed pro
esses lose their volatile memory; however, we

assume that re
overed pro
esses use fresh (larger) in
arnation numbers following their re
overy and

do not re-use old ones

2

. We do not 
onsider Byzantine (mali
ious) failures. When a pro
ess j fails,

messages that j sent during the last � time before its failure may be lost due to the failure. Su
h

lost messages may be re
eived by some 
orre
t pro
esses and fail to rea
h others.

Clo
k syn
hronization. We assume ea
h pro
ess i has an internal 
lo
k denoted by 
lo
k

i

.

We assume that the di�eren
e between 
lo
k

i

and the real time is bounded. We denote by now

the real time that has passed from the beginning of the exe
ution

3

(thus, ea
h exe
ution starts

with now = 0). We assume that there is a 
onstant � so that the maximum di�eren
e between


lo
k

i

and now is bounded by �=2. Thus, for ea
h pro
ess i: now � �=2 � 
lo
k

i

� now + �=2.

This implies that the maximum di�eren
e between two pro
esses' internal 
lo
ks is at most �. We

further assume that ea
h pro
ess 
an pre
isely s
hedule events a

ording to its lo
al 
lo
k.

The mathemati
al framework. We model ea
h pro
ess as a timed I/O automaton [15℄. An

automaton intera
ts with its environment by two sets of external a
tions: input a
tions and output

a
tions. A tra
e of an I/O automaton is the sequen
e of external a
tions it takes in an exe
ution.

Exe
utions are assumed to be sequential, that is, a
tions are atomi
, and no two a
tions 
an o

ur

simultaneously.

3 Dynami
 Atomi
 Broad
ast Servi
e Spe
i�
ation

We present an algorithm that guarantees gap-free total ordering of messages and also preserves

QoS. The algorithm is implemented by a Dynami
 Atomi
 Broad
ast (DAB) layer that resides

between the appli
ation and the underlying network, as depi
ted in Figure 1.

i,jdeliver(m)

i
RN(r)

i
leave() mcast(m)

ii
join(r,n) Application

DABjoin-OK()
i

leave-OK()
i

Figure 1: The dynami
 atomi
 broad
ast (DAB) servi
e interfa
e.

We now spe
ify the dynami
 atomi
 broad
ast servi
e. This servi
e is 
omposed of the DAB

layer and the underlying network (
f. Figure 1). In this se
tion we use the term pro
ess to refer

to an appli
ation pro
ess running at a 
ertain lo
ation. Pro
esses use the servi
e to send messages

of a bounded size to the multi
ast group; the servi
e delivers messages to all the pro
esses in the

same order.

3.1 Reservation model

Upon joining the multi
ast group, a pro
ess reserves the bandwidth required for its 
ommuni
ation

with all pro
ess in P , that is, the pro
ess asks the servi
e to allo
ate a 
ertain bandwidth. If

2

This 
an be a
hieved by storing in
arnation numbers on disk, or by using 
lo
ks

3

The real time is used as an abstra
tion for the laten
y analysis.
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a pro
ess subsequently wishes to 
hange its reserved bandwidth, it renegotiates its reservation

parameters a

ording to its new transmission rate.

Our servi
e works within the framework of Variable Bit-Rate (VBR) [3℄ 
ows, whi
h allows

appli
ations to send bursty traÆ
. In this model, pro
esses reserve an average transmission rate as

well as a maximum burst size. Typi
ally, the appli
ation de
lares its transmission rate in bytes per

se
ond. For simpli
ity, we assume that the rate is de
lared in units of messages per se
ond. Sin
e

message size is bounded, these rates 
orrespond 
losely.

Message sending is divided into time slots of a �xed length, �. � is the same for all the

pro
esses and is �xed throughout the exe
ution. In addition, there exists a 
onstant C whi
h is

the number of slots over whi
h the average sending rate is 
omputed. The appli
ation de
lares two

rate parameters:

1. AppAvgRate { the average message rate per � time. This means that C � AppAvgRate is

the maximum number of messages that may be sent during C �� time.

2. AppMaxBurst { the maximum number of messages that may be sent during � time.

3.2 The servi
e interfa
e

The appli
ation interfa
e of the servi
e 
onsists of the following types of a
tions:

� join(r; n)

i

is used by pro
ess i to join the multi
ast group with in
arnation number n, and to

reserve QoS. The stru
ture r has two �elds: AppAvgRate and AppMaxBurst, as explained

above. This a
tion is 
alled initially, to establish the transmission rate before any messages

are sent.

� join-OK

i

reports to pro
ess i that its latest join was su

essful, and i 
an now start sending

messages.

� leave

i

is used by pro
ess i to leave the multi
ast group.

� leave-OK

i

reports to pro
ess i that it may safely quit the appli
ation. The appli
ation is not

allowed to perform a join between a leave and the 
orresponding leave-OK.

� RN(r)

i

is used by pro
ess i to renegotiate the QoS reserved from the network. The stru
ture

of r is as in join.

� m
ast(m)

i

is used by pro
ess i to multi
ast messagem to the group. We assume that messages

are unique, that is, the same message is not sent more than on
e. In addition, the message is

of a bounded size.

� deliver(m)

i;j

is used to deliver to pro
ess i a multi
ast message m that was previously mul-

ti
ast by pro
ess j.

We say that a message m is sent by a pro
ess i when m
ast(m)

i

o

urs, and that i delivers m

when the dynami
 atomi
 broad
ast servi
e at pro
ess i performs the deliver(m)

i;j

a
tion. We say

that pro
ess i's in
arnation number is n at point t in an exe
ution, if n is the in
arnation number

in i's latest join

i

up to t.
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3.3 The servi
e guarantees

The servi
e totally orders message deliveries. In other words, there exists some sequen
e ordering

of all the messages that ever get delivered, su
h that all pro
esses deliver messages in an order


onsistent with this sequen
e.

De�nition 1 Dynami
 Atomi
 Broad
ast For ea
h exe
ution of the dynami
 atomi
 broad
ast

servi
e, there exists a sequen
e, S = m

1

;m

2

; : : : , in
luding every message delivered by some pro
ess

in that exe
ution exa
tly on
e

4

, so that the following properties hold:

� Integrity: A message m is only delivered if it was previously sent, and it is delivered at most

on
e to any parti
ular pro
ess.

� fifo: If a pro
ess i sends message m before sending m

0

, and both messages are in S, then m

is before m

0

in S.

� Ordering: (1) For every pro
ess i, and every in
arnation number n, the sequen
e of messages

delivered by i with in
arnation number n is a 
ontiguous subsequen
e of S; (2) if i delivers

message m with in
arnation number n, and i delivers message m

0

with in
arnation number

n

0

where n < n

0

, then m is ordered before m

0

in S.

� Liveness

1. Joining: If i exe
utes a join

i

at some point in the exe
ution and does not subsequently

fail or leave, then a join-OK

i

is eventually exe
uted.

2. Leaving: If i exe
utes a leave

i

at some point in the exe
ution and does not subsequently

fail, then a leave-OK

i

is eventually exe
uted.

3. Message Delivery: If a join

i

o

urs at some point t in the exe
ution, and i does not

subsequently fail or leave, then after point t, i delivers a suÆx of S whi
h in
ludes all

the messages that i sends after point t.

Note that the Ordering property implies the following:

� Total Order: If pro
esses i and j both deliver the same two messages m and m

0

, then they

deliver these messages in the same order.

� Reliability: If pro
esses i and j both deliver the same two messages m andm

0

, and if j delivers

both with the same in
arnation number n (i.e., a join

j

does not o

ur between deliver(m)

j

and deliver(m

0

)

j

), then j also delivers all the messages that i delivers between m and m

0

.

In addition to meeting the spe
i�
ation above, our dynami
 atomi
 broad
ast servi
e meets QoS

(or timeliness) guarantees, whi
h are de�ned with four parameters - t

1

, t

2

, t

3

, and AppLaten
y, as

follows:

De�nition 2 Dynami
 Atomi
 Broad
ast QoS(t

1

, t

2

, t

3

, AppLaten
y)

� Joining: If i exe
utes a join at time t, then if i does not fail or leave, a join-OK

i

is exe
uted

by t+ t

1

.

� Leaving: If i exe
utes a join at time t

0

, and a leave at time t > t

0

, then if i does not fail a

leave-OK

i

is exe
uted by t+ t

2

.

4

Note that for a �nite exe
ution the sequen
e is �nite; otherwise, it may be �nite or in�nite.
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� Message Delivery and Laten
y: If a join-OK is exe
uted at i at time t, and i does not

subsequently fail or leave, then for every message m sent at time t

0

> t+ t

3

by some pro
ess

j (possibly j = i) that does not fail after sending m, i delivers m by time t

0

+AppLaten
y.

The maximum laten
y of the dynami
 atomi
 broad
ast servi
e is denoted AppLaten
y; this is

the supremum over all exe
utions, all messages m and all pro
esses i of the time sin
e them
ast(m)

i

a
tion is performed in some exe
ution until m is delivered by all pro
esses that deliver it.

4 The reliable network

In this paper we build DAB over a reliable network, that is, a network that does not lose messages

while no failures o

ur. In [4℄ we show how a reliable network 
an be built over an unreliable network

that guarantees a bounded laten
y and a bounded loss rate, using a forward error 
orre
tion (FEC)

algorithm. We do not repeat this algorithm here. Rather, we present the semanti
s of the reliable

network, and present its QoS guarantees in terms of the QoS of the unreliable network as proven

in [4℄.

The reliable network interfa
e and semanti
s. In this se
tion, we use the term pro
ess

to refer to an instan
e of a program that uses the reliable network at a 
ertain lo
ation. The

reliable network preserves the fifo order on messages sent between every pair of pro
esses

5

. The

network does not dupli
ate, 
orrupt, or spontaneously generate messages. In addition, the network

is reliable, that is, all messages sent through the network will rea
h their destination in the absen
e

of failures.

The network supports the reservation of VBR traÆ
 
ows. In order to join the multi
ast group,

a pro
ess makes a reservation of the bandwidth required for its 
ommuni
ation. The interfa
e of

the underlying network 
onsists of the following types of a
tions:

� The net-reserve(r)

i

a
tion is used by pro
ess i to join the multi
ast group and to reserve QoS

from the network. The stru
ture r has two �elds: RelNetAvgRate and RelNetMaxBurst,

dual to the respe
tive appli
ation QoS parameters des
ribed in the previous se
tion. This

a
tion is 
alled initially, to establish the transmission rate before any messages are sent, and


an be subsequently 
alled to renegotiate the QoS reservation.

� The net-leave

i

a
tion is used by pro
ess i to leave the multi
ast group.

� The net-rel-m
ast(m; s)

i

and net-rel-re
v(m; s)

i;j

a
tions are used by pro
ess i to reliably

multi
ast and re
eive messages from the network.

� The net-flush(s) a
tion is used by pro
ess i to tell the network to send all message submitted

via net-rel-m
ast(m; s)

i

that it has not yet sent. When net-flush(s)

i

is performed, the

network appends a (?; s) message to sequen
e of messages sent by i. This message is re
eived

by other pro
esses, in the same way as any other message, via net-rel-re
v(m; s)

i;j

.

We say that a pro
ess i is alive if the net-reserve(r)

i

a
tion has been performed and i has not

subsequently failed or left.

QoS guarantees. The QoS guarantees of the reliable network are presented in terms of those

of the underlying network, as is done in [4℄. We therefore begin by stating our assumptions on the

QoS of the unreliable network.

5

Although messages sent over the Internet 
an sometimes arrive out of fifo order, this is easy to �x using sequen
e

numbers.
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The bandwidth reservation parameters for the underlying network areNetAvgRate andNetMaxBurst,

and the maximum message laten
y is �. The unreliable network loss rate is bounded as follows [17℄:

The appli
ation spe
i�es a loss interval, x = k + l, in terms of a number of 
onse
utive messages

from the same sender, and a bound, l, on the number of messages sent in the same interval that the

network 
an lose. Spe
i�
ally, a reservation of l out of k+ l guarantees that if a pro
ess i multi
asts

k+ l 
onse
utive messages and does not subsequently fail, then every other live pro
ess re
eives at

least k of these messages. We assume that the quantities k and l are the same for all pro
esses.

In this paper we are only interested in studying 
ases in whi
h QoS reservation and renegotiation

are su

essful. Thus, for simpli
ity, we assume that all reservation requests made by a pro
ess are

a

epted by the network. Typi
ally, QoS reservation and renegotiation take some time for the

network to pro
ess. However, this time does not a�e
t the message laten
y and for the sake of the

analysis in this paper it is safe to ignore it. Therefore, we assume that on
e a reservation request

is made, the bandwidth that was requested is immediately available to the reserving pro
ess.

The reliable network guarantees that if j is alive from t�� and i is alive from t and i performs

the net-rel-m
ast(m; s)

i

at time t and a net-flush

i

at time t

0

(t

0

> t) then by t

0

+ �, net-rel-

re
v(m; s)

j

will o

ur.

Denote by � the maximum time interval between su

essive net-flush

i

a
tions. The maximum

laten
y of the reliable network is then � + �. As we show in [4℄, the transmission rate param-

eters that need to be reserved from the unreliable network in order to meet the reliable network

requirements depend on k and l as follows:

NetAvgRate = RelNetAvgRate + (dRelNetAvgRate=ke +�=�) � l +�=�

NetMaxBurst = RelNetMaxBurst+ dRelNetMaxBurst=ke � l ��=�

These bounds illustrate a tradeo� between the overhead needed to a
hieve the required bandwidth

and the addition to the laten
y, based on di�erent 
hoi
es of �.

5 General overview of the DAB algorithm

Our DAB algorithm is 
omposed of two parts: an Ordering algorithm and a Dynami
 Failure

Manager (DFM). The Ordering algorithm provides the DAB servi
e to the appli
ation. It uses the

reliable network to send and re
eive messages, and uses the DFM to handle failures; the DFM is

used only when failures o

ur. The interfa
es among the di�erent parts of the algorithm are shown

in Figure 2.

In this se
tion, we present an overview of the DAB algorithm and dis
uss how the two parts

of the algorithm intera
t. We �rst explain how the Ordering algorithm uses the DFM. We then

present the DFM interfa
e, requirements and guarantees. We dis
uss the Ordering algorithm in

more detail in Se
tion 6, and the DFM in Se
tion 7.

The Ordering algorithm. The Ordering algorithm organizes the delivery of messages into

slots. In ea
h slot, it delivers messages from pro
esses that are members of the group at that slot.

When a pro
ess joins (leaves), the Ordering algorithm at the same lo
ation sends a spe
ial \join"

(\leave") message to the other instan
es of the Ordering algorithm running at di�erent lo
ations.

Su
h messages indi
ate in whi
h slot the pro
ess should be added (removed) from the group. In the

absen
e of failures, su
h messages are delivered by all pro
esses, so all the pro
esses add (remove)

the pro
ess at the same slot.

7



net-leave()
i

i
net-flush(s)

net-rel-mcast(m,s)
i

mcast(m)
i

i
leave()

i,jdeliver(m)

m-leave(s,n,j)
i

fail

i

i

m-join(l,s,n,i)

RN(r)
i

i
join(r,n)

Dynamic Failure ManagerOrdering

net-rel-recv(m,s)
i

Reliable Network

i
m-decide(v,n,j)

i

i
net-reserve(r)

i

m-join(s,n,j)

m-fail(s,n,j)

i

join-OK()
i

i
leave-OK()

Figure 2: The TO servi
e de
omposition.

Failures are more 
ompli
ated to handle. In our failure model, a subset of the messages sent

by a pro
ess prior to its 
rash 
an rea
h some live pro
esses while failing to rea
h others. Thus,

although the Ordering algorithm 
an dete
t failures using time-outs, su
h failures are not dete
ted

at the same point in the message stream by di�erent instan
es of the Ordering algorithm. However,

all instan
es of the Ordering algorithm must deliver the same sequen
e of messages to live pro
esses,

and therefore, the algorithm has to make sure that the live pro
esses agree on the point (or slot)

at whi
h to remove the failing pro
ess. This is pre
isely the role of the DFM: for ea
h pro
ess that

fails, the DFM allows the 
urrent group members to rea
h agreement upon the slot at whi
h the

failed pro
ess should be removed.

The DFM interfa
e. The Ordering algorithm at ea
h group member i uses them-fail(s; n; j)

i

a
tion to notify the DFM at i of the slot s in whi
h i dete
ted pro
ess j's failure (for j's in
arnation

number n). This noti�
ation invokes an algorithm to agree upon a slot in whi
h j will be removed.

When su
h agreement is rea
hed, the DFM uses the m-de
ide(v; n; j)

i

a
tion to notify i that j

should be removed at slot v.

The set of pro
esses among whi
h su
h agreement has to be rea
hed is 
onstantly 
hanging.

Therefore, the DFM must keep tra
k of the set of group members as this group evolves over time.

To this end, the Ordering algorithm reports pro
ess joins and leaves to the DFM using the following

a
tions:

� m-join(l; s; n; i)

i

is used to notify the DFM at i of the fa
t that the appli
ation pro
ess at i

wishes to join the atomi
 broad
ast algorithm; this a
tion in
ludes the 
urrent slot l, the slot

s in whi
h i will join, and the in
arnation number n. On
e this a
tion o

urs, we refer to s

as joinslot[i℄.

� m-join(s; n; j)

i

is used to notify the DFM at i of the slot s in whi
h the appli
ation pro
ess

j will join the algorithm; n is the in
arnation number of j.

8



� m-leave(n; j)

i

is used to notify the DFM at i that j has left the algorithm.

The DFM requirements. Sin
e di�erent pro
esses may dete
t the same failure at di�erent

times, di�erent pro
esses may also have di�erent per
eptions of the set of group members that have

to parti
ipate in agreeing upon a failure. The DFM is able to 
ope with some un
ertainty about

this set, but not with arbitrary un
ertainty: In order to fun
tion 
orre
tly, the DFM requires its

environment to follow 
ertain requirements. A formal spe
i�
ation of these requirements appears

in Appendix A; here, we des
ribe them only informally.

There are two major requirements: (1) For a joining pro
ess i, every other live pro
ess j (that

has a smaller joinslot value than i) will get a m-join(joinslot[i℄; n; i)

j

noti�
ation before rea
hing

slot joinslot[i℄, and i will also get a m-join(s; n; j)

i

noti�
ation before slot joinslot[i℄. (2) If two

pro
esses j and k suspe
t that i failed in slots s

j

and s

k

respe
tively, then js

k

� s

j

j � 1. Note that

this requirement does not restri
t the di�eren
e in the a
tual dete
tion time of i's failure by j and

k.

These two requirements are reasonable for a dynami
 system in whi
h pro
esses use 
lo
ks that

are slightly skewed, and have a

ess to some sort of failure dete
tor. In parti
ular, they are satis�ed

by our Ordering algorithm.

The DFM guarantees. Given an environment that meets the requirements above, the DFM

servi
e guarantees that all pro
esses m-de
ide upon the same value { the slot in whi
h a failed

pro
ess should be removed { and that this value is the smallest proposed by any of the pro
esses.

These 
onditions are needed by the Ordering algorithm to ensure that the de
ision value does not

require pro
esses to deliver messages that they do not re
eive or to refrain from delivering messages

they have already delivered. Formally, the DFM servi
e satis�es the following spe
i�
ation:

� Uniform Agreement: If m-de
ide(v; n; j)

i

and m-de
ide(v

0

; n; j)

k

are performed then v =

v

0

.

� Validity: If i performs m-de
ide(v; n; j)

i

then some pro
ess k performed m-fail(v; n; j)

k

.

� Minimum Value: If m-de
ide(v; n; j)

i

is performed following the m-fail(s; n; j)

i

a
tion,

then v � s.

� Termination: If the m-fail(s; n; j)

i

a
tion is performed with s � joinSlot[i℄, and i does not

fail or leave, then m-de
ide(v; n; j)

i

will be performed.

6 The Ordering algorithm

In this se
tion we present the Ordering algorithm. We des
ribe the general operation of the Ordering

algorithm in Se
tions 6.1 through 6.4. We present the algorithm formally as a timed I/O automaton

in Figures 3, 4, and 5.

The algorithm divides the time into slots of length �. The Ordering algorithm keeps tra
k of

the set of pro
esses that it thinks are a
tive in every slot. Below, we explain how this set 
hanges

when there are joins, leaves and failures.

6.1 Sending and re
eiving messages

When the appli
ation performs the m
ast(m)

i

a
tion, the Ordering algorithm adds the slot number

s to the message header and performs net-rel-m
ast(m; s). When a slot s ends (that is, � time

has passed from the time s started) the Ordering algorithm performs the net-flush(s) a
tion.
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When a message is re
eived via the net-rel-re
v a
tion, it is stored in a bu�er (per sour
e). The

algorithm delivers messages from these bu�ers a

ording to slots, and within ea
h slot, a

ording

to the pro
ess indi
es, i.e., it delivers all the messages for this slot sent by pro
ess 1, then all the

messages sent by 2, et
.

The algorithm does not deliver messages immediately. Before delivering messages from some

pro
ess j for slot s, it waits to re
eive all the messages for slot s from all the pro
esses it 
urrently

thinks are a
tive, and, in addition, all the messages for slot s+ 1 from pro
esses with indi
es less

than or equal to j. The algorithm identi�es the last message sent by j for slot s upon re
eipt of the

(?; s) message that is added by the network when net-flush(s)

j

is performed. This delay ensures

that all messages delivered by any pro
ess will be re
eived by all other a
tive pro
esses, sin
e our

failure model ensures that if a pro
ess is a
tive at the end of slot s + 1, all pro
esses re
eive its

messages for slot s.

6.2 Dete
ting failures

Pro
esses use timeouts to dete
t failures. In parti
ular, pro
ess i dete
ts that pro
ess j has failed

if � + � time after the beginning of slot s a

ording to i's lo
al 
lo
k, i has not re
eived j's last

message for slot s� 1.

The reason this implies that j has failed is as follows: A

ording to our algorithm, a net-flush

o

urs every time a slot ends. Also, when the net-flush(s�1)

j

a
tion o

urs, at least one message,

(?; s� 1), is sent. A

ording to the reliable network guarantees, this (?; s� 1) message rea
hes i

within real time at most � after the net-flush(s� 1)

j

o

urs. Therefore, sin
e the 
lo
k skew is

bounded by �, if pro
ess i waits more than � + � 
lo
k time from the time it begins slot s for a

message from pro
ess j for slot s� 1, i knows that j has failed.

Thus, i dete
ts j's failure at a real time whi
h is at most �+�+�+� after j had failed. This

maximum time 
an o

ur if j fails at the beginning of slot s a

ording to j's 
lo
k, and j

0

s 
lo
k is

ahead of i's by �.

When i dete
ts the failure of j, i performs the m-fail(s�1; n; j) a
tion. The delivery of all mes-

sages (starting with j's messages for slot s� 1) is delayed until the 
orresponding m-de
ide(v; n; j)

a
tion o

urs. When an agreement regarding j's failure is rea
hed (the m-de
ide(v; n; j) a
tion),

the Ordering pro
ess at i resumes the delivery of messages. Pro
ess i delivers all of j's messages

for slots s � v, and denotes j as failed from slot v + 1 onward.

6.3 Joining the algorithm

Pro
esses 
an join or re-join the algorithm at any time without delaying messages sent by live

pro
esses. Note that to a
hieve DAB, all the live pro
esses should agree on the slot in whi
h a

joining pro
ess is added. This is done by having the Ordering pro
ess at the joining lo
ation notify

all the other pro
esses of the slot in whi
h it will join. Note that the joining pro
ess may fail after

sending this message. Therefore, the joining slot is 
hosen to be far enough in the future to allow


orre
t pro
esses to agree on whether or not the joining pro
ess will join at this slot.

The joining pro
ess. When requesting to join, the appli
ation pro
ess at i spe
i�es its

transmission rate r and in
arnation number n. The Ordering pro
ess at i then reserves the rate r

from the network via the net-reserve a
tion. The Ordering algorithm at i 
omputes the 
urrent

slot whi
h the algorithm is in as: 
urSlot

i

:= 
lo
k=� (rounded down to an integer).

Before attempting to join the algorithm, pro
ess i waits a prede�ned amount of time on its

lo
al 
lo
k until it is sure that all pro
esses have 
ompleted any pending agreements for i's previous

failures. We dis
uss the length of this time interval below. After this period, the algorithm 
omputes
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the slot in whi
h i will join the algorithm. This slot is 
hosen to be s

i

= 
urSlot

i

+((f+3)(�+2�)+

�)=� (rounded down to an integer). The Ordering algorithm informs the DFM of this slot using

the m-join(
urSlot; s

i

; n; i)

i

a
tion, and sends a (\join", i, s

i

, n) message to all other pro
esses.

When i's slot number rea
hes s

i

the Ordering algorithm performs the join-OK a
tion, and the

appli
ation 
an start sending messages.

From the time i wakes up until the ordering pro
ess i rea
hes slot s

i

, i does not send or

deliver messages. However, from the time i wakes up, it monitors in
oming \join" messages from

other pro
esses and responds to them the same way a
tive pro
esses respond to su
h messages, as

explained below. In addition, from slot s

i

�3 onward, i examines all in
oming messages in order to

determine whi
h pro
esses it will view as a
tive during slot s

i

. In parti
ular, if i does not re
eive

the last message for slot s

i

� 3, (?; s

i

� 3), from some pro
ess j, then i regards j as failed. If i does

re
eive the last message for slot s

i

� 3 from j, then i performs an m-join(s

i

� 3; n; j)

i

a
tion.

If i re
eives j's last message for slot s

i

�3 but does not re
eive all of j

0

s messages for slots s

i

�2

and s

i

� 1, then i performs an m-fail(s

0

; n; j)

i

a
tion where s

0

is the last slot in whi
h it re
eived

all of j's messages. In this 
ase, i does not wait for an m-de
ide(v; n; j)

i

response from the DFM;

i simply 
onsiders j to be failed when i begins parti
ipating in the algorithm in slot s

i

. It is safe

to do so, sin
e in this 
ase the de
ision value will be smaller than s

i

: sin
e i does not re
eive all of

j

0

s messages for slot s

i

� 1, by our failure model, no pro
ess 
an re
eive all of j

0

s messages for slot

s

i

. Starting from slot s

i

, i behaves in the same way as any a
tive pro
ess.

A
tive pro
esses. Ea
h a
tive pro
ess j has a Join array, in whi
h it keeps tra
k of the

slots in whi
h joining pro
esses are to be added. When j re
eives a (\join", i; s

i

) message, it


ompares Join[i℄ to s

i

. If Join[i℄ 6= s

i

, j sets Join[i℄ := s

i

, informs the DFM of this join using

the m-join(s

i

; n; i) a
tion, and e
hoes this message by multi
asting it to all other pro
esses. If

Join[i℄ = s

i

, it does nothing. When an a
tive pro
ess j rea
hes slot s

i

, j adds i to the list of a
tive

pro
esses; thereafter, it delivers messages from i until i fails or leaves.

The e
hoing of \join" messages ensures that if a pro
ess fails immediately after its join, and

some live pro
ess learns of the join, then all live pro
esses learn of the join. The joining slot s

i

is

sele
ted so that in the presen
e of at most f failures, enough time remains prior to s

i

for the e
ho

me
hanism to ensure that either all the live pro
esses learn of the join or none do. If i fails before

s

i

, this failure is dete
ted and the DFM agrees upon i's failure slot.

The delay for join. After the appli
ation pro
ess at i issues a join, the Ordering pro
ess at

lo
ation i waits 2�+3(�+�)+ f(�+�+2�) before sending a \join" message. The rationale for

this delay is the following: As we show in Se
tion 7, the DFM guarantees that at most � + 3(� +

�)+ (f � 1)(�+�+2�) time after the m-fail(s; n� 1; i)

k

a
tion is performed, the 
orresponding

m-de
ide(v; n � 1; i)

k

a
tion is performed. Sin
e m-fail(�; �; i) is performed by all pro
esses at

most 2� + � +� after i has failed, the maximum time between i`s failure and the time in whi
h

the last m-de
ide(v; �; i) a
tion is performed is at most: 2� + 3(� +�) + f(� + � + 2�).

6.4 Leaving the algorithm

When the appli
ation at pro
ess i performs the leave a
tion during slot s, the Ordering algorithm

at i performs the net-rel-m
ast(\leave",s)

i

a
tion, and noti�es its DFM. It then waits until two

net-flush

i

a
tions are exe
uted (i.e., until the end of slot s + 1 a

ording to i's 
lo
k) and then

performs the net-leave

i

and leave-OK a
tions. The delay in notifying the appli
ation that it is safe

to leave the algorithm ensures that all pro
esses will re
eive this \leave" message. When pro
ess i

is about to deliver a (\leave"; s) message from j, it does not deliver the message. Instead, i removes

j from its set of a
tive pro
esses, suspends delivery of messages from j (until j is added again),
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and performs a m-leave(n; j)

i

a
tion.

Ordering

i

(Algorithm for pro
ess i)

Signature

Input:

join(r; n)

i

, m a stru
ture with two integer �elds

RN(r)

i

, m a stru
ture with two integer �elds

leave()

i

,

m
ast(m)

i

, m 2M

net-rel-re
v(m;s)

i;j

, m 2M , s integer

m-de
ide(v; n; j)

i

v; n integers, j 2 I

Output:

join-OK()

i

leave-OK()

i

net-flush(s)

i

s integer

net-rel-m
ast(m;s)

i

m 2M , s integer

deliver(m)

i;j

, m 2M

net-reserve(r)

i

m a stru
ture with two integer �elds

net-leave()

i

m-join(s; l; n; i)

i

s; l; n integers

m-join(s; n; j)

i

s; n integers, j 2 I

m-leave(n; j)

i

n integer, j 2 I

m-fail(s; n; j)

i

s; n integers, j 2 I

Time-passing:

v(t); t 2 R

+

Internal:

send-join

end-deliver

failure-dete
tor

skip-failed

pro
ess-leave

end-re
vSlot

wait-start

State

For all j, Rqueue(j), a fifo queue of messages, initially empty

Squeue;mQueue, fifo queue of messages, initially empty


urrent, an integer initially 1, // 
urrent pro
ess to re
eive from

myJoin, an integer initially 1

finished unbounded array of reals, initially 1 in all pla
es // the time i �nished sendingSlot s

Join; in
 array of size n of integers, initially 0 in all pla
es

maxDeliver array of size n of integers, initially -1 in all pla
es

Sfailed array of size n of integers, initially 1 in all pla
es

Failed a group of pro
ess indi
es, initially empty

sendingSlot; re
vSlot, integers initially 1,

rate, pair of integers initially ?


hangeRate; P leave;Nleave, boolean initially FALSE

lSlot integer, initially 0

state 2 fidle; preJoin; preA
tiveg initially idle


lo
k 2 R

�0

; initially 0

last 2 R

+

[ f1g, initially 1

Figure 3: The Ordering automaton for pro
ess i: signature and variables.
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Transitions

Input join(r; n)

i

E�: last = 
lo
k + �+ 3(� +�)

(f � 1)(� + � + 2�)

state = preJoin

rate = r

in
[i℄ = n

Internal send-join

Pre: state = preJoin


lo
k = last

E�: 
hangeRate = TRUE

myJoin = (
lo
k + (f + 3)(� + 2�) + �)=�

add (\join",i; myJoin; in
[i℄) to Squeue

add (\join",i; myJoin) to mQueue

re
vSlot = myJoin

for all j

maxDeliver[j℄ = myJoin� 4

sendingSlot = d
lo
k=�e

last = (sendingSlot+ 1)�

state = preA
tive

Output join-OK()

i

Pre: sendingSlot = myJoin

E�:

Input leave()

i

E�: P leave = TRUE

add (\leave",sendingSlot) to Squeue

lSlot = sendingSlot+ 2

Output net-leave()

i

Pre: P leave = TRUE

lSlot � sendingSlot

E�: NLeave = TRUE

Output leave-OK()

i

Pre: Nleave = TRUE

E�:

Input RN(m)

i

E�: rate = r


hangeRate = TRUE

Output net-reserve(r)

i

Pre: 
lo
k = last


hangeRate = TRUE

r = rate

E�: 
hangeRate = FALSE

Output m-join(s; l; n; i)

i

Pre: (\join",i; l) is �rst on mQueue

in
[i℄ = n

s = sendingSlot

E�: dis
ard �rst element of mQueue

Output m-join(s; n; j)

i

Pre: (\join",j; s) is �rst on mQueue

in
[j℄ = n

E�: dis
ard �rst element of mQueue

Output m-leave(n; j)

i

Pre: (\leave",j; s) is �rst on mQueue

in
[j℄ = n

E�: dis
ard �rst element of mQueue

Output m-fail(s; n; j)

i

Pre: (\fail",j; s) is �rst on mQueue

in
[j℄ = n

E�: dis
ard �rst element of mQueue

Input m-de
ide(v; n; j)

i

E�: maxDeliver[j℄ = v

Sfailed[j℄ = v + 1

Figure 4: The Ordering algorithm automaton for pro
ess i: transition de�nitions part 1.
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Transitions

Input m
ast(m)

i

E�: add m to Squeue

Output net-rel-m
ast(m;s)

i

Pre: (m) is �rst on Squeue

s = sendingSlot

E�: dis
ard �rst element of Squeue(j)

Internal wait-start

Pre: state = preA
tive

sendingSlot < myJoin


lo
k = last

E�: finished[sendingSlot℄ = 
lo
k

last := 
lo
k +�

sendingSlot++

Output net-flush(s)

i

Pre: sendingSlot � myJoin

s = sendingSlot


lo
k = last


hangeRate = FALSE

Squeue is empty

E�: last := 
lo
k +�

finished[sendingSlot℄ = 
lo
k

sendingSlot++

Input net-rel-re
v(m;s)

i;j

E�: if (m = (\join",j; s; n)) then

if (Join[j℄ 6= s) then

Join[j℄ := s

in
[j℄ := n

add (\join"; j; s) to Squeue

add (\join",j; s) to mQueue

elseif (s � myJoin) then

add (m) to Rqueue(j)

elseif (s = myJoin� 3 && m =?) then

add (\join",j; s) to mQueue

in
[j℄ = m:in


if (s � myJoin� 2 && m =?) then

maxDeliver[j℄ + +

Output deliver(m)

i;j

Pre: 
urrent > 0

j = 
urrent

maxDeliver[j℄ � re
vSlot

(m) is �rst on Rqueue(j)

m 6=? && m 6= \leave"

E�: dis
ard �rst element of Rqueue(j)

Internal pro
ess-leave

Pre: 
urrent > 0

j = 
urrent

maxDeliver[j℄ � re
vSlot

(m) is �rst on Rqueue(j)

m = \leave"

E�: Failed := Failed [ j

add (\leave",j) to mQueue

dis
ard all elements of Rqueue(j)


urrent = 
urrent+ 1 mod (n + 1)

Internal end-deliver

Pre: 
urrent > 0

j = 
urrent

maxDeliver[j℄ � re
vSlot

? is �rst on Rqueue(j)

E�: dis
ard �rst element of Rqueue(j)


urrent := (
urrent+ 1) mod (n + 1)

Internal end-re
vSlot

Pre: 
urrent = 0

E�: 
urrent := 1

re
vSlot++

for all j s.t. Join[j℄ = re
vSlot f

Failed := Failed n fjg

Sfailed[j℄ =1

g

for all j s.t. Sfailed � re
vSlot

Failed := Failed [ fjg

Internal failure-dete
tor

Pre: 
lo
k � finished[maxDeliver[j℄ + 2℄ + �+ �

E�: add (\fail",j; (maxDeliver[j℄ + 1)) to mQueue

if (maxDeliver[j℄ + 1 < myJoin� 1) then

Failed := Failed [ j

Internal skip-failed

Pre: 
urrent 2 Failed

E�: 
urrent := (
urrent+ 1) mod (n + 1)

TimePassage v(t)


hoose p � 0

Pre: now + t� �=2 � 
lo
k + p � now + t+ �=2


lo
k + p � last

E�: now := now + t


lo
k := 
lo
k + p

Figure 5: The Ordering algorithm automaton for pro
ess i: transition de�nitions part 2.
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7 Constru
ting the DFM

The DFM's task is to de
ide upon the slot in whi
h a failed pro
ess should be removed from

the algorithm. The DFM is 
omposed of three algorithms: the Dynami
 Manager (DM) whi
h

intera
ts with the DFM's environment; the First Round algorithm; and a Consensus module whi
h

is implemented by any standard uniform 
onsensus algorithm for the fail-stop model. Figure 6

depi
ts the intera
tion between the DFM and its environment, as well as its de
omposition.

m-join(s,n,j)
i

m-leave(n,j)
i

m-fail(s,n,j)
i

p-fail(v,W)
i,n,j

h-fail(v)
i,n,j i

m-decide(v,n,j)

First Round (n,j)

Consensus (n,j) c-decide(v)

i,n,j

i,n,j

i,n,j
skip(k)

in-cons(v,G)

Dynamic Manager

i
m-join(l,s,n,i)

fail
i

Environment 

Figure 6: The DFM de
omposition and interfa
e; the dashed re
tangle surrounds the DFM servi
e.

The three 
omponents of the DFM. We now explain the roles of the three 
omponents

of the DFM, and the intera
tion among them. The DM at lo
ation i uses m-join

i

and m-leave

i

inputs from its environment (the Ordering algorithm) in order to keep tra
k of the set of pro
esses

that are a
tive at ea
h point in the exe
ution. Whenever a pro
ess failure is reported (via m-

fail(s; n; j)

i

), the DM invokes an instan
e of the First Round and an instan
e of Consensus (both

are parameterized by n and j). Consensus is used in order to rea
h agreement on the slot in whi
h

j will be removed; it is invoked after the First Round as we now explain.

The diÆ
ulty with using a standard uniform 
onsensus algorithm is that although su
h algo-

rithms 
an tolerate failures, they 
annot 
ope with pro
esses joining an in-progress exe
ution of

the algorithm. When the Consensus module is invoked, it must be informed of a set of pro
esses,

G, that will parti
ipate in this invo
ation of Consensus unless they fail. We now explain how the

DM and First Round over
ome this diÆ
ulty.

The DM tra
ks joins and leaves in order to be able to suggest an initial estimate, W , of the

set of pro
esses that will parti
ipate in ea
h invo
ation of Consensus unless they fail. This set

in
ludes the pro
esses that join before or at the slot following the slot in whi
h the failure was

dete
ted. However, sin
e instan
es of the DM running at di�erent lo
ations 
an dete
t the same

failure as happening at di�erent slots (otherwise there would be no need for Consensus), they 
an

have di�erent values for W . For example, if some pro
ess i

1

fails, and its failure is dete
ted as

happening in slot 7 by pro
ess i

2

, the same failure 
an be dete
ted as happening in slot 6 by

pro
ess i

3

. If a fourth pro
ess, i

4

joins the algorithm at slot 8, pro
ess i

2

in
ludes i

4

in W (sin
e

from i

2

's point of view, i

4


ould have dete
ted i

1

's failure as happening in slot 8, in whi
h 
ase i

4
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would have to parti
ipate in the Consensus), whereas pro
ess i

3

does not.

One purpose of the First Round is to eliminate su
h un
ertainties, and to provide the Consensus

module at the lo
al pro
ess with a set of pro
esses, G, that will parti
ipate in this invo
ation

of Consensus unless they fail. In order to over
ome su
h un
ertainties, pro
esses like i

4

in the

example above have a spe
ial role in the First Round, they help pro
esses that like i

2

expe
t them

to parti
ipate in the First Round (to avoid blo
king), but they do not subsequently parti
ipate in

the Consensus algorithm (i.e., they are not in
luded in G). The First Round therefore has two

types of input a
tions: p-fail for parti
ipants, and h-fail for helping pro
esses.

A se
ond purpose of the First Round is to modify the input value for Consensus in order to

have the de
ision value meet the Minimum Value guarantee of the DFM. The output of the First

Round is the input for Consensus.

Both the First Round and the Consensus need to dete
t failures in order to avoid waiting for

messages from a failed pro
ess. They do not implement su
h failure dete
tion internally. Instead,

the DM noti�es in-progress exe
utions of these algorithms of a failure (or leave) of a pro
ess k via

the skip(k) a
tion.

The Dynami
 Manager.

The DM algorithm is presented as an I/O automaton in Figure 7. We now des
ribe its operation.

The DM uses m-join and m-leave a
tions to keep tra
k of the a
tive pro
esses, as well as of the

slot, joinSlot[j℄, in whi
h ea
h pro
ess j joins.

When m-fail(s; n; j)

i

o

urs, the DM at pro
ess i 
ompares joinSlot[i℄ with s and a
ts as

follows: If s � joinSlot[i℄, then it performs p-fail(s;W )

i

, where W is the set of all pro
esses k

that i thinks are a
tive, and for whi
h joinSlot[k℄ is less than or equal to s+ 1. If s < joinSlot[i℄,

then the DM at i performs the h-fail(s)

i

a
tion.

Whenever an m-fail(�; �; k) or an m-leave(�; k) a
tion is performed, the DM performs the

skip(k) for all ongoing 
onsensus and First Round algorithms. When the 
onsensus algorithm

rea
hes an agreement, it noti�es the DM using the de
ide a
tion. The DM, in turn, noti�es its

environment of this de
ision using the m-de
ide a
tion.

The following lemma (proven in the Appendix) dis
usses the relationship between the input

sets of di�erent pro
esses that perform the p-fail a
tion. It is used to prove the 
orre
tness of the

DFM.

Lemma 7.1 Let P [n; j℄ be the set of pro
esses i that perform p-fail(s

i

;W

i

)

i;n;j

. For all i 2 P [n; j℄:

1. m-fail(�; �)

i;n;j

is performed exa
tly on
e.

2. If k 2 P [n; j℄ and k 62 W

i

, then k either fails or leaves after performing the p-fail(s

k

;W

k

)

k;n;j

a
tion, and before i performs the p-fail(s

i

;W

i

)

i;n;j

a
tion.

3. For all k 2W

i

, either k performs p-fail(s

k

;W

k

)

k;n;j

or h-fail(s

k

)

k;n;j

, or skip(k)

i

o

urs, or i

fails or leaves.
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Dynami
Manager

i

(Algorithm for pro
ess i)

Signature

Input:

m-join(l; s; n; i)

i

l; s; n integers

m-join(s; n; j)

i

s; n integers, j 2 I

m-leave(n; i)

i

n integer

m-leave(n; j)

i

n integer, j 2 I

m-fail(s; n; j)

i

s; n integers, j 2 I


-de
ide(s; n; j)

i

s; n integers, j 2 I

Output:

de
ide(s; n; j)

i

s; n integers, j 2 I

skip(k)

i;n;j

k 2 I

p-fail(v;W )

i;n;j

v integer, W � I

h-fail(v)

i;n;j

v integer

Internal:

State

joinSlot array of size N of integers, initially 0 in all pla
es

status, array of size N �N , ea
h element is 2 fina
tive; a
tiveg initially ina
tive in all pla
es.

newCons; 
urCons a set of pairs (n; j) where n is an integer and j 2 I initially empty // The set of pending and


urrent 
onsensus algorithms respe
tively.

res a set of triplets (v; n; j) where v; n are integers and j 2 I, initially empty


onsQueue an unbounded two dimensional array, ea
h element in this array is a queue, initially empty in all pla
es

part; help an unbounded two dimensional arrays of booleans, initially FALSE in all pla
es.

R an unbounded two dimensional array, ea
h element of this array is a subset of I, initially empty in all pla
es

V an unbounded two dimensional array, ea
h element of this array is an integer

Transitions

Input m-join(l; s; n; i)

i

E�: status[i℄[i℄ := a
tive

joinSlot[i℄ := s

Input m-join(s; n; j)

i

, j 6= i

E�: status[i℄[j℄ := a
tive

joinSlot[j℄ := s

Input m-leave(n; i)

i

E�: exit

Input m-leave(n; j)

i

, j 6= i

E�: status[i℄[j℄ := ina
tive

for all (n

0

; j

0

) 2 
urCons

add skip(j) to 
onsQueue[n

0

℄[j

0

℄

Output skip(k)

i;n;j

Pre: skip(k) is �rst on 
onsQueue[n℄[j℄

E�: dis
ard �rst element of 
onsQueue[n℄[j℄

Input 
-de
ide(v; n; j)

i

E�: 
urCons = 
urCons n (n; j)

res = res [ (v; n; j)

Output de
ide(v; n; j)

i

Pre: (v; n; j) 2 res

E�: res = res n (v; n; j)

Input m-fail(s; n; j)

i

, j 6= i

E�: status[i℄[j℄ := ina
tive

for all (n

0

; j

0

) 2 
urCons

add skip(j) to 
onsQueue[n

0

℄[j

0

℄

for all k s.t. (joinSlot[k℄ � s+ 1

&& status[i℄[k℄ = a
tive)

R[n℄[j℄ = R[n℄[j℄ [ k

V [n℄[j℄ = s

if (s � joinSlot[i℄) then

part[n℄[j℄ = TRUE

newCons = newCons [ (n; j)

else

help[n℄[j℄ = TRUE

Output p-fail(v;W )

i;n;j

Pre: (n; j) 2 newCons

W = R[n℄[j℄

v = V [n℄[j℄

part[n℄[j℄ = TRUE

E�: part[n℄[j℄ = FALSE

newCons = newCons n (n; j)


urCons = 
urCons [ (n; j)

Output h-fail(v)

i;n;j

Pre: v = V [n℄[j℄

help[n℄[j℄ = TRUE

E�: help[n℄[j℄ = FALSE

Figure 7: The Dynami
 manager algorithm
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The First Round algorithm. We des
ribe the operation of the �rst round algorithm. The

algorithm is presented as an I/O automaton in Figure 8. The First Round algorithm is invoked

every time a pro
ess is dete
ted as failed, by one of two a
tions: h-fail or p-fail. When the

algorithm is initiated by h-fail(v)

i

, the DFM at lo
ation i multi
asts a (\help",v) message to all

pro
esses and terminates. If it is initiated by p-fail(v;W )

i

, it multi
asts a \�rst round" message


ontaining v and W and waits for messages from every other pro
ess in W .

When the First Round at i re
eives messages from all pro
esses k 2 W for whi
h no skip(k)

a
tion was performed, it performs inCons(v;G), where v is the lowest value in any of the re
eived

messages (in
luding i's initial value), and G is the set of pro
esses that a \�rst round" message

was re
eived from, in
luding i. The inCons

i

a
tions is performed no sooner than �+� time after

i sends its First Round message. This ensures that the message it sent had rea
hed all pro
esses

before the uniform 
onsensus is triggered.

In the Appendix, we prove formally that the First Round a
hieves its two purposes (eliminating

un
ertainties in the parti
ipants group and Minimum Value). In addition, we prove that 
ombined

with the DM it guarantees termination.

Thus, all the pro
esses that do not fail or leave start the 
onsensus algorithm. In addition, all

the pro
esses in ea
h pro
ess' set G parti
ipate in this invo
ation of Consensus unless they leave or

fail, and all the pro
esses that parti
ipate are in ea
h pro
ess's set G. Thus, any standard uniform


onsensus algorithm 
an be used, and the 
ombined servi
e a
hieves the DFM guarantees, as we

now argue.

Corre
tness and laten
y. We prove that the DFM meets its spe
i�
ation (stated in Se
-

tion 5). In addition, we present lemmas that establish its laten
y bounds. The formal proofs may

be found in the Appendix.

Theorem 1 The DFM a
hieves the following guarantees:

1. Uniform Agreement.

2. Validity.

3. Minimum Value.

4. Termination.

Proof: 1. As shown above, the First round algorithm a
hieves the spe
 of any 
onsensus algo-

rithm, and thus the uniform agreement is guaranteed by 
ombining this property of the �rst round

algorithm with the uniform agreement guarantee of the 
onsensus algorithm.

2. From the validity of the 
onsensus algorithm we know that the output of su
h a 
onsensus must

be the input of one of the pro
esses that parti
ipated in it. But inputs to the 
onsensus algorithm


an only 
ome from pro
esses that performed the m-fail(s; �; �) a
tion or from messages from su
h

pro
esses in whi
h the value in the message is s. Thus, if i performs the m-de
ide(v; n; j)

i

a
tion,

there must be some pro
ess k that performed the m-fail(v; n; j)

k

a
tion.

3. Combining the validity 
ondition of the 
onsensus algorithm with the Minimum Value guarantee

of the First round algorithm guarantees the minimum value requirement (note that only pro
esses

k su
h that k 2 C[n; j℄ 
an perform the m-de
ide(v; n; j)

k

a
tion a

ording to the DFM algorithm).

4. By 
ombining the termination guarantee of the First round with the termination guarantee of

any 
onsensus algorithm the termination guarantee of the DFM is proved.

We now analyze the time it takes from when a m-fail(s; n; j)

i

a
tion is performed until the


orrespondingm-de
ide(v; n; j)

i

is performed. Note that this is exa
tly the time it takes to perform

the First round and Consensus algorithm sin
e when anm-fail a
tion o

urs the DFM starts a First
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round algorithm, and when the 
onsensus algorithm terminates the m-de
ide a
tion is performed.

The following lemma dis
usses this time as a fun
tion of the number of pro
esses f that 
an fail

during the exe
ution of the First round and Consensus algorithms.

Lemma 7.2 If f pro
esses fail during the exe
ution of the First round and Consensus algorithms,

then the algorithm takes at most:

� +�+ 3(� +�) + f(� + � + 2�)

We now move to prove the se
ond time guarantee of the DFM in the following lemma.

Lemma 7.3 If m-fail(s; n; j)

i

is performed at time t

0

, and starting at time t > t

0

no m-fail

a
tion was performed by any pro
ess for 3(� + 2� + �) time, m-de
ide(v; n; j)

i

will be performed

by t+ 3(� + 2�+ �).
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FirstRound

i

Signature

Input:

p-fail(v;W )

i;n;j

v integer, W � I

h-fail(v)

i;n;j

v integer

skip(k)

i;n;j

k 2 I

Output:

inCons(v; G)

i;n;j

v integer, W � I

Internal:

send(v; str)

i;k;n;j

v an integer

re
eive(v; str)

k;i;n;j

v an integer

State

S;C a set of pro
esses indi
es, initially empty.

mode 2 fidle; a
tiveg initially idle


urV al integer

for ea
h j 2 I queue(j), a queue of messages initially empty.

Transitions

Input p-fail(v;W )

i;n;j

E�: S =W

C =W

for all j 2 I

add (v;\part") to queue(j)

mode = a
tive

Input h-fail(v)

i;n;j

E�: for all j 2 I

add (v;\help") to queue(j)

Input skip(k)

i;n;j

E�: if(mode = a
tive) then

S = S n k

C = C n k

Output inCons(v; G)

i;n;j

Pre: mode = a
tive

S is empty

v = 
urV al

G = C

E�: mode = idle

Internal send(v; str)

i;k;n;j

Pre: (v; str) is �rst on queue(k)

E�: dis
ard �rst element of queue(k)

Internal re
eive(v; str)

k;i;n;j

Pre:

E�: if(
urV al > v) then


urV al = v

S = S n k

if(str = \help") then

C = C n k

Figure 8: The First round algorithm
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8 Corre
tness

This se
tion has two parts. We �rst give an informal proof showing that our algorithm a
hieves

our servi
e spe
i�
ation. Next we brie
y show how the Ordering algorithm a
hieves the DFM

environment requirements. The full details of the proofs appear in the Appendix.

A
hieving the servi
e spe
i�
ation First, we need the following lemma that shows that all

a
tive pro
esses add a joining pro
ess j in the same slot.

Lemma 8.1 If some pro
ess i that is a
tive at slot s adds j in that slot, then all a
tive pro
esses

add j at slot s.

In addition, we also use the following lemma:

Lemma 8.2 If a m-de
ide(v; n; j) a
tion o

urred following a m-fail(s; n; j) a
tion then 0 � (v�

s) � 1, and this bound is tight.

We are now ready to prove that our algorithm a
hieves the servi
e spe
i�
ation. We �rst des
ribe

the ordering of S. We order S in the following way - For every message m that was delivered by

some pro
ess, the triplet (m

s

;m

i

;m

p

) 
onsists of the slot m

s

in whi
h m has been sent, the sender

pro
ess index (m

i

) and the pla
e of m within the messages i sent for slot s (m

p

). We order all

messages using these triplets (that is, m

1

is ordered before m

2

if m

1

s

< m

2

s

, and if m

1

s

= m

2

s

we


ompare m

1

i

and m

2

i

and so on). Note that this is a 
omplete ordering on the messages.

Integrity is trivially satis�ed from our assumption that the network does not dupli
ate, 
orrupt

or spontaneously generate messages. The �fo of two messages m and m

0

sent by the same pro
ess

is guaranteed from the way we 
onstru
t S.

When no pro
ess fails, messages are delivered in ea
h slot a

ording to pro
ess indi
es by all

pro
esses. When a pro
ess leaves all pro
esses stop delivering its messages after the last message

it sent before the \leave" message. As shown above, when a pro
ess i joins, all pro
esses add i in

the same slot. Thus, all pro
esses order the delivery exa
tly as in S. Sin
e there are no pro
ess

failures, using the reliable network guarantees that all pro
esses re
eive all messages sent, and so

ea
h pro
ess delivers a 
ontiguous subsequen
e of S. Sin
e S is ordered by the slot number, and

ea
h time a pro
ess joins the slot number from whi
h it starts delivering messages (joinSlot

i

)

in
reases, it must be that any message m, i delivers while i has in
arnation number n, is ordered

ahead in S of any message i delivered while i had in
arnation number n

0

where n

0

< n.

When a pro
ess j fails, then using the DFM all pro
esses agree on the slot S

D

in whi
h j failed.

It follows from the DFM guarantees that S

D

� s

i

for all pro
esses i that performedm-fail(s

i

; n; j)

i

.

Thus, all 
orre
t pro
esses have re
eived all of j's messages up to S

D

, and no pro
ess had delivered

messages from j for slots greater than S

D

(this results from Lemma 8.2 and the one slot delay we

enfor
e on message delivery). Sin
e messages are still delivered in ea
h pro
ess a

ording to their

order in S, the total ordering is guaranteed.

The Joining and Leaving liveness requirements are guaranteed sin
e our algorithm performs the

join-OK a �xed time after the join a
tion is performed, and the same thing holds for leave and

leave-OK.

As for Message Delivery and Laten
y, If m is sent by some pro
ess j more than � time after the

join-OK

i

was performed, m must have a slot number greater than or equal to joinSlot

i

sin
e the


lo
k skew between all pro
esses is at most �. Thus, if i and j do not fail m will be delivered by

i, be
ause i delivers all messages it re
eives with slot number greater or equal to joinSlot

i

(ex
ept

for some of the messages from faulty pro
esses). The maximal laten
y is also guaranteed, and we

dis
uss it in Se
tion 9.
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A
hieving the DFM requirements The two DFM requirements are a
hieved by the Ordering

algorithm. First, using Lemma 8.1 we know that when j joins, all a
tive pro
esses are aware of

this join before they rea
h joinSlot

j

. In addition, a

ording to our joining algorithm, j knows of

all a
tive pro
esses when it rea
hes joinSlot

j

, sin
e j monitors messages prior to its a
tual join.

As for the se
ond requirement, our failure model guarantees that if j fails there will be at most

one slot di�eren
e between the the last message i re
eived from j and the last message k re
eived

from j. Thus, i and k will dete
t j's failure in at most one slot di�eren
e.

9 QoS guarantees

If no pro
ess fails, then the maximum delay 
aused by this algorithm is the following:

Lemma 9.1 If no pro
ess fails during the exe
ution of the algorithm then

AppLaten
y = �+ �+ 2�

Proof: Assume that pro
ess i sends a message m in slot s, and the delivery of m is delayed until

a message m

0

from another pro
ess, j, will be re
eived. Sin
e message delivery is done per slot, m

0

must be a message from j for slot at most s+ 1 (only messages sent for slots s

0

� s+ 1 
an delay

the delivery of m). Sin
e the di�eren
e between the two pro
esses' internal 
lo
k is at most �, we

know that i sent m at most �+2� time before j sent its last message for s+1. Sin
e j's messages

for slot s + 1 arrives at all the pro
esses at most � time after j ends slot s + 1, all the pro
esses

re
eive m

0

at most � time after j ended slot s+ 1. Thus, after at most �+�+ 2� time from the

time i sent m, it will be enabled for delivery by all pro
esses.

We now turn to analyze the e�e
t of pro
ess failures on message delivery time. The following

lemma dis
usses the maximum delay 
aused by a the algorithm as a fun
tion of the number of

pro
esses that fail during the exe
ution of the algorithm.

Lemma 9.2 Denote by f � 1 the number of pro
esses that fail between a m-fail(s; n; j)

i

and a

m-de
ide(v; n; j)

i

a
tions, then

AppLaten
y = 4�+ 3� +�+ 3(� +�) + (f � 1)(� + � + 2�)

Proof: If s

j

is the slot j failed in, then the the failure of j 
an delay the delivery of messages that

where sent at slot s

j

� 2 and up. This is so be
ause all pro
esses saw js messages for slot s

j

� 2

and thus delivered all messages for slot s

j

� 3. However, it 
ould be that some pro
ess did not

re
eive all of js messages for slot s

j

� 1, delaying the delivery of all messages sent for slot s

j

� 2

from pro
esses with indi
es k � j.

As explained in Se
tion 6.2, at most � + � + � + � after the �rst pro
ess started slot s

j

,

all pro
esses dete
t that j failed, and perform the m-fail(s; n; j) a
tion. A

ording to the DFM

guarantees, at most �+�+3(�+�)+(f�1)(�+�+2�) time after a m-fail(s; n; j)

i

is performed,

the 
orresponding m-de
ide(v; n; j)

i

is performed. Thus the total time the algorithm 
an delay a

message is:

2�+�+�+�+�+�+�+3(�+�)+(f�1)(�+�+2�) = 4�+3�+�+3(�+�)+(f�1)(�+�+2�).
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Note that although the maximum delay time s
ales with the total number of pro
esses that 
an

fail, in pra
ti
e we would not expe
t this delay to o

ur. The maximum delay will o

ur only if at

least one pro
ess will fail every �+�+ � time. Su
h s
heduling of pro
ess failures is very rare in

pra
ti
e, and so the expe
ted maximum delay of our algorithm is mu
h smaller than the one we

just des
ribed. The following lemma dis
usses the laten
y su�ered by a message m for whi
h no

pro
esses fails during a 
ertain time before and after it is sent.

Lemma 9.3 If message m is sent by i at time t, and no pro
ess fails between

t� (� +�+ 2� + 3(� + 2�+ �)) and t+ (�+ 2�+ �), then all pro
esses deliver m by

t+�+ 2�+ �.

Proof: A

ording to our algorithm (Se
tion 6.2), if a pro
ess k fails, i will perform the m-

fail(�; �; k)

i

a
tion at most � + �+ 2� after ks failure. Sin
e no pro
ess failed between t� (� +

� + 2� + 3(� + 2� + �)) and t, we know that no m-fail a
tion was performed by i between

t� (3(�+2�+�) and t. A

ording to the DFM guarantees, if m-fail(s; n; j)

i

is performed at time

t

0

, and starting at time t

0

> t

0

no m-fail a
tion was performed by any pro
ess for 3(� + 2� + �)

time, all pro
esses will perform the m-de
ide a
tion by t

0

+3(�+ 2�+�). Sin
e no m-fail a
tion

was performed by any pro
ess between t� (3(�+2�+�) and t, a 
orresponding m-de
ide(�; �; j)

k

a
tion was performed at all pro
esses for any pro
ess j for whi
h a m-fail(�; �; j)

k

was performed.

Thus, when m was sent all messages that where delayed until a de
ision regarding a pro
ess failure

was made, have been delivered.

A

ording to our reliable network guarantees m will be re
eived by all pro
esses at most � time

after it was sent. Assume m was sent for slot s. Then, after re
eiving m all pro
esses must re
eive

all messages for slot s+ 1 in order to deliver m. Sin
e m was sent for slot s, at most 2� + � time

after m was sent, all pro
esses �nished slot s + 1, and sin
e no pro
ess has failed between t and

t+�+ 2�+ � all these messages (for slot s+ 1) will arrive at all pro
esses at most � time after

they where sent. So m will be delivered by all pro
esses at most at time t+�+ 2� + �.

Reserved rates. The messages our ordering algorithm adds over the messages sent by the

appli
ation are the messages added by the reliable network layer and messages added by the DFM.

The DFM sends at most one message every slot (all of the DFM messages are aggregated and are

sent on
e a slot). In addition, our algorithm issues a net-flush every � time, thus � of Se
tion 4

is set to �. We thus get the following upper bounds on the average and maximum rates used by

our algorithm:

NetAvgRate = AppAvgRate+ 1 + (d(AppAvgRate + 1)=ke + 1) � l

NetMaxBurst = AppMaxBurst+ 1 + (d(AppMaxBurst+ 1)=ke) � l

10 When the network QoS guarantees are violated

So far, we assumed that the QoS guarantees provided by the network (namely, bounded delay and

bounded message loss) are deterministi
. However, some networks only provide probabilisti
 QoS

guarantees. In su
h networks, there may be periods of time during whi
h the QoS guarantees are

violated. Although our algorithm 
annot guarantee atomi
 broad
ast while the QoS guarantees

are violated, it is important for the algorithm to be able to re
over from su
h violation. In other

words, a 
ertain time after the QoS guarantees are restored, the algorithm should again be able
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to provide the DAB servi
e. In addition, it would be desirable to inform the appli
ation when

a violation of DAB semanti
s o

urs, and when the 
orre
t semanti
s are resumed (following the

failure awareness approa
h of [9℄).

We now dis
uss how QoS violations 
an a�e
t our algorithm, and how the algorithm 
an be

modi�ed in order to re
over from them. We dis
uss these ideas informally, a more 
areful study of

these ideas remains for future work.

Violation of QoS guarantees may lead one 
orre
t pro
ess, i, to dete
t a se
ond 
orre
t pro
ess,

j, as faulty (either due to message delay or due to loss). Pro
ess i will then invoke the DFM to

agree upon j's failure slot. In order to re
over from this situation, we modify the algorithm to

have j fail itself when it gets a 
onsensus or a �rst round message related to its own failure. The

algorithm at j will then notify the appli
ation of the failure, and the appli
ation would have to

re-attempt to join (a similar approa
h was taken in [2℄).

Not every 
ase of ex
essive message loss must lead to in
orre
t failure dete
tion. In other 
ases,

the loss 
an be dete
ted when the reliable network delivers messages with gaps. In su
h 
ases, the

appli
ation 
an be informed of the fa
t that loss o

urred. Our algorithm, without modi�
ation,

re
overs from su
h situations.

The loss or delay of a \join" message may lead to a pro
ess joining before all the other pro
esses

know of the join. To re
over from this situation, we modify the algorithm to have pro
esses monitor

all in
oming messages. If pro
ess j sees a message from pro
ess i when j thinks that i is not a
tive,

j adds i to the list of a
tive pro
esses and delivers messages from i from now on. It also informs

the appli
ation of the potential loss of messages. On
e the network QoS guarantees are restored,

all su
h message will arrive at j, and DAB semanti
s will be resumed.

The loss of a DFM message (
onsensus or �rst round) may lead to blo
king. To over
ome this,

we have pro
esses periodi
ally re-send their latest DFM message. On
e the network guarantees are

restored, these messages will rea
h their destinations.

11 A lower bound for DAB with pro
ess failures

The following theorem shows that in the model studied in this paper, any algorithm implementing

DAB (see De�nition 1 in Se
tion 3) 
an guarantee, at best, a laten
y bound whi
h is proportional

to the number of failures it 
an tolerate.

Theorem 2 A Dynami
 Atomi
 Broad
ast (DAB) algorithm that 
an tolerate f pro
ess failures


annot guarantee a laten
y bound smaller than (f + 1)�.

Proof: Assume that a DAB algorithm A 
an tolerate f pro
ess failures and guarantees a laten
y

bound of Æ. We now show that Æ � (f + 1)�. As shown in [12℄, the pro
esses may use A to solve

the Consensus problem by sending their initial values as their �rst message and agreeing upon the

value in the �rst delivered message. By our assumption on A, this message is delivered at most Æ

time after the algorithm is initiated, and thus, Consensus is solved in Æ time.

Sin
e f+1 rounds is a well known lower bound for syn
hronous Consensus tolerating f stopping

failures (see [14℄, Ch. 6.7), and from our assumption that messages 
an be delayed up to � time

by the network, we 
on
lude that the algorithm 
annot guarantee that Consensus be solved in less

than (f + 1)� time, and hen
e Æ � (f + 1)�.
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12 Con
lusions

We have designed a Dynami
 Atomi
 Broad
ast (DAB) algorithm that preserves QoS guarantees.

We have 
ondu
ted a detailed theoreti
al study of the QoS guarantees of our algorithm under

di�erent 
ir
umstan
es. In parti
ular, we have shown that in periods with no failures, the laten
y for

the ordered multi
ast is within a 
onstant of the laten
y of the underlying network (independently

of the number of parti
ipants). This is an improvement over the laten
y exhibited by previous

algorithms (e.g., [2℄). When failures do o

ur, the laten
y is linear in the number of pro
esses that

fail within a bounded time interval, as di
tated by a lower bound.

We have dis
ussed possible ways of extending our algorithm to re
over from situations in whi
h

the network QoS is violated. Future work will further develop these ideas, and present a 
areful

study of the time it takes the algorithm to re
over from su
h situations.

Our algorithm uses a Dynami
 Failure Manager to a
hieve atomi
 semanti
s in the presen
e

of failures: the DFM rea
hes 
onsensus regarding the point at whi
h ea
h failed pro
ess should

be removed from the algorithm. A
hieving su
h 
onsensus is diÆ
ult be
ause of the dynami


model: Pro
esses 
an join and leave the algorithm at any time. Furthermore, di�erent pro
esses


an dete
t the same failure while having di�erent per
eptions of the set of pro
esses parti
ipating

in the algorithm. The DFM servi
e resembles virtually syn
hronous group membership; its use by

the DAB servi
e resembles the use of group membership in totally ordered group 
ommuni
ation

servi
es

6

. However, unlike most group 
ommuni
ation systems providing similar servi
es, (e.g., [10,

21, 6℄), using our DFM pro
esses 
an join and leave the algorithm without introdu
ing delays to

the 
ommuni
ation among a
tive pro
esses. We believe that our DFM may be useful for additional

appli
ations, beyond DAB. Future work will explore this possibility.
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We now present a formal 
orre
tness proof of our servi
e. We begin in Se
tion A by presenting

a formal spe
i�
ation of the DFM environment. In Se
tion B we then show that given a DFM

meeting the DFM guarantee presented in Se
tion 5, the Ordering algorithm provides the DAB

servi
e spe
i�
ation of Se
tion 3. We also show that the Ordering algorithm meets the DFM

environment spe
i�
ation of Se
tion A. Finally, in Se
tion C we show that the DFM meets its

spe
i�
ation.

A DFM environment spe
i�
ation

The DFM environment spe
i�
ation is 
omposed of two parts, safety and liveness. The safety

requirements are presented as an automaton in Figure 9.

We now explain brie
y ea
h of the pre
onditions in the environment spe
i�
ation. A pre
ondi-

tion for the m-join(l; s; n; i)

i

a
tion should guarantee that when i joins, all pro
esses k have enough

time to perform the m-join(s; n; i)

k

before they rea
h slot s. Thus, we require that s will be bigger

than the 
urrent slot of all a
tive pro
esses. We also require that all pro
esses know that i was not

a
tive prior to performing the m-join a
tion.

Them-join(s; n; j)

i

pre
onditions should guarantee that if i is about to be joined when s arrives,

i will add j before i rea
hes slot s (that is, i performs this a
tion when slot[i℄ < s).

The m-leave a
tion pre
onditions guarantee that a pro
ess will not be reported as left unless it

a
tually left. In addition, a pro
ess 
an be reported to leave only if it has been seen as a
tive prior

to this report.

The m-fail a
tion pre
ondition guarantees that a pro
ess will not be reported as fail unless

it a
tually failed. In addition, the pre
ondition limits the di�eren
e (in slots) between the slots

in whi
h di�erent pro
esses dete
t the failure of pro
ess j. This a
hieves the se
ond intuitive

requirement stated in Se
tion 5.

The pre
onditions for the in
-slot a
tion guarantees that when i a
tually joins, all pro
esses

that where supposed to join before i know of is joining, and i knows of them. This a
hieves the

�rst intuitive requirement of Se
tion 5.

The DFM liveness requirements are:

Liveness:

� For all pro
esses k su
h that status[k℄[k℄ is a
tive when the fail

j

a
tion is performed for j

with in
arnation number n, and joinSlot[k℄ � failSlot[j℄ + 2, k either m-fail(�; n; j)

k

, or

fail

k

or m-leave(�; in
[k℄; k)

k

is performed.

� All pro
esses that have status[i℄[k℄ = a
tive when k performs the m-leave(n; k)

k

a
tion, will

set status[i℄[k℄ to ina
tive.

The �rst liveness item guarantees that if a pro
ess k was a
tive when a pro
ess j failed, and k was

about to join the algorithm or have already joined, k will either report the failure of j or will fail or

leave itself. The se
ond guarantees that when an a
tive pro
ess j leaves, all other a
tive pro
esses

will note that fa
t.
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DFMEnv

Signature

Input:

fail

i

m-de
ide(v; n; j)

i

Output:

m-join(l; s; n; i)

i

l; s; n integers

m-join(s; n; j)

i

j 6= i, s; n integers, j 2 I

m-leave(n; j)

i

n integer, j 2 I

m-fail(s; n; j)

i

s; n integers, j 2 I

Internal:

in
-slot()

i

State

slot array of size N of integers, initially 0 in all pla
es // slot[i℄ is the 
urrent slot i is in.

joinSlot array of size N of integers, initially 0 in all pla
es // joinSlot[i℄ holds the last slot in whi
h i joined (l).

failSlot array of size N of integers, initially 0 in all pla
es // failSlot[i℄ is the last slot in whi
h i failed.

in
 array of size N of integers, initially 0 in all pla
es // in
[i℄ holds is 
urrent in
arnation number (n) as determined

by the m-join(�; l; n; i)

i

a
tion.

status, array of size N �N , ea
h element is 2 fina
tive; a
tiveg initially ina
tive in all pla
es. // status[i℄[k℄ is the

status i sees for k.

Leave; Failed arrays of size N of booleans, initially FALSE in all pla
es. // Leave[i℄ is TRUE if i is ina
tive, and

the last leave or fail a
tion i performed was a m-leave(�; i)

i

. Failed[i℄ is the same for failures.

Transitions

Output m-join(l; s; n; i)

i

Pre: n = in
[i℄ + 1

l > slot[i℄

for all k 2 I f

s > slot[k℄ + 2

status[k℄[i℄ = ina
tive

g

s > l+ 2

E�: status[i℄[i℄ := a
tive

slot[i℄ := l

joinSlot[i℄ := s

Failed[i℄ := FALSE

Leave[i℄ := FALSE

in
[i℄ = n

Output m-join(s; n; j)

i

, j 6= i

Pre: status[i℄[j℄ = ina
tive

n = in
[j℄

s � joinSlot[j℄

if(s > joinSlot[i℄ � 2) then

slot[i℄ < s

E�: status[i℄[j℄ := a
tive

Internal in
-slot()

i

Pre: if(slot[i℄ = joinSlot[i℄ � 1) then

for all k s.t.(joinSlot[k℄ � joinSlot[i℄

&& status[k℄[k℄ = a
tive) f

status[i℄[k℄ = a
tive

status[k℄[i℄ = a
tive

g

E�: slot[i℄ = slot[i℄ + 1

Output m-leave(n; i)

i

Pre: status[i℄[i℄ = a
tive

n = in
[i℄

E�: for all j 2 I

status[i℄[j℄ = ina
tive

Leave[i℄ = TRUE

Output m-leave(n; j)

i

, j 6= i

Pre: status[i℄[j℄ = a
tive

n = in
[j℄

Leave[i℄ = TRUE

E�: status[i℄[j℄ := ina
tive

Input fail

i

E�: if (status[i℄[i℄ = a
tive) then

Failed[i℄ = TRUE

failSlot[i℄ = slot[i℄

for all j 2 I

status[i℄[j℄ = ina
tive

Output m-fail(s; n; j)

i

, j 6= i

Pre: status[i℄[j℄ = a
tive

Failed[j℄ = TRUE

n = in
[j℄

s < slot[i℄

s � joinSlot[i℄ � 2

failSlot[j℄ � 1 � s � failSlot[j℄

E�: status[i℄[j℄ := ina
tive

Input m-de
ide(v; n; j)

i

E�: none

Figure 9: The environment spe
i�
ation automaton
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B Corre
tness proof of the DAB servi
e

In this se
tion we give the formal proofs for the two parts of Se
tion 8.

B.1 A
hieving the servi
e spe


Lemma B.1 If some pro
ess i that is a
tive at slot s adds j in that slot, then all a
tive pro
esses

add j at slot s.

Proof: If i adds j at slot s then it must be that in some slot prior to s i re
eived a join message

for j for slot s. If i re
eived the message from j, then i re
eived it at most � time after it was sent,

and e
hoed it at most � after that. Sin
e i is a
tive when s starts, and sin
e j 
hooses an s that

starts ((f + 3)(� + �) + �) time after it sends the join message, all pro
esses must have re
eived

is join message for j before starting to re
eive message for s, and so all pro
esses will also add j at

slot s.

If i did not re
eive the message dire
tly from j, it means that at least one pro
ess k had re
eived js

original join message, and e
hoed it. Using an indu
tive argument it is easy to see that if i re
eived

the join message for j only after x(� + �) time from the time j sent it, then it must be that at

least x� 1 pro
esses have failed (in
luding j). This is so be
ause for ea
h � +� time after j sent

its join message, at least one pro
esses had e
hoed it, otherwise i would not have re
eived it at all.

On the other hand, sin
e i did not re
eive the join message prior to x(�+�) time after it was sent,

all pro
esses that sent the join message before (x � 1)(� + �) time must have failed. Sin
e the

number of pro
esses that 
an fail is at most f , x � f +1. So i had re
eived js join message at most

(f + 1)(�+�) time after j sent its original join message. Sin
e i e
hoed the join message at most

� time after it re
eived it, all pro
esses must have re
eived the join message at most (f+2)(�+�)

time after it was sent. This happens at least (� +�) time before all pro
esses start slot s, and so

when s starts all a
tive pro
esses add j.

Lemma B.2 If a m-de
ide(v; n; j) a
tion o

urred following a m-fail(s; n; j) a
tion then 0 �

(v � s) � 1, and this bound is tight.

Proof: The fa
t that 0 � (v�s) 
omes from the minimum value guarantee in the failure manager

spe
. As for the other side of the inequality, sin
e the di�eren
e between the dete
tion of a pro
esses

failure is at most one slot, all a
tions m-fail(s

0

; n; j)

k

performed by another pro
ess k must have

s

0

+1 � s, and so, from the validity requirement it must be that v+1 � s, and so 0 � (v� s) � 1.

Theorem 3 Our TO algorithm a
hieves the following requirements:

� Integrity

� Ordering

� Joining

� Leaving

� Message Delivery and Laten
y

This requirements are fully spe
i�ed in De�nition 1 in Se
tion 3.
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Proof: We prove this theorem by proving that ea
h of the items above is guaranteed by our

algorithm.

� Integrity: This is trivially satis�ed from our assumption that the network does not dupli
ate,


orrupt or spontaneously generate messages.

� Ordering: When no pro
ess fails, messages are delivered in ea
h slot a

ording to pro
ess

indi
es by all pro
esses. When a pro
ess leaves all pro
esses stop delivering its messages after

the last message it sent before the \leave" message. As shown above, when a pro
ess i joins,

all pro
esses add i in the same slot. Thus, all pro
esses order the delivery exa
tly as in S.

Sin
e there are no pro
ess failures, using the reliable network guarantees that all pro
esses

re
eive all messages sent, and so ea
h pro
ess delivers a 
ontiguous subsequen
e of S. Sin
e

S is ordered by the slot number, and ea
h time a pro
ess joins its slot number in
reases, it

must be that any message m, i delivers while i has in
arnation number n, is ordered ahead

in S of any message i delivered while i had in
arnation number n

0

where n

0

< n.

When a pro
ess j fails, then using the DFM all 
orre
t pro
esses will have the same value,

S

D

, as their de
ision value. Given S

D

, we know that all 
orre
t pro
esses have re
eived all

of js messages for slot S

D

(this 
omes from the minimum value guarantee of the DFM). In

addition, no pro
ess had delivered js messages for slot S

D

+ 1 (be
ause for every pro
ess

i, s

i

� 1 � S

D

, from lemma 8.2, and a

ording to the algorithm a pro
ess does not deliver

messages for slot s� 1 until it re
eives all messages for slot s). So all pro
esses a
t the same

when the DFM rea
hes a de
ision, delivering js messages up to slot s, and skipping j for slot

s+1 on. Sin
e messages are still delivered in ea
h pro
ess a

ording to their order in S, and

all pro
esses a
t in the same way for js failure, the total ordering is guaranteed.

� Joining: A

ording to our algorithm (Se
tion 6.3), if i performs a join at time t, and i does

not fail or leave, a join-OK

i

will be performed at time t + t

1

where t

1

= 2� + 3(� + �) +

f(� + � + 2�) + (f + 3)(� + 2�) + �) .

� Leaving: A

ording to our algorithm (Se
tion 6.4), at most 2� time after a leave is performed,

the 
orresponding leave-OK

i

is exe
uted. Thus setting t

2

= 2� guarantees this 
ondition.

� Message Delivery and Laten
y: If m is sent by some pro
ess j after time t+�, m must have

a slot number bigger or equal to joinSlot

i

sin
e the 
lo
k skew between all pro
esses is at

most �. Thus, if i and j do not fail m will be delivered by i, be
ause i delivers all messages it

re
eives with slot number greater or equal to joinSlo

i

(ex
ept for some of the messages from

faulty pro
esses), and a

ording to the reliable network guarantees m will be re
eived by i.

So setting t

3

= � guarantees that m will be delivered. As for the maximal laten
y, we prove

in Lemma 9.2, that the maximal laten
y of any message delivered in our algorithm is:

AppLaten
y = 4�+ 3� +�+ 3(� +�) + (f � 1)(� + � + 2�)

B.2 Implementing the DFM environment spe
i�
ation

We show that for ea
h of the a
tions in the DFM environment spe
, and ea
h of the liveness re-

quirements of that spe
, the Ordering algorithm a
hieves its pre
onditions.
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in
-slot() - The fa
t that all a
tive pro
esses add i in slot joinSlot

i

is proved in Lemma 8.1.

The requirement that i knows of all a
tive pro
esses that have a join slot less than joinSlot

i

is

guaranteed by the following observation. For pro
ess j that is a
tive, and did not send a join

message from the time i woke up, it must be that j has already joined the algorithm (sin
e j sent

its join message before i woke up, i will not even send its join message before j a
tually joins) and

so a

ording to the join algorithm (Se
tion 6.3), i must have added j to the list of a
tive pro
esses

and so must have performed the m-join a
tion for j. For a pro
ess j that sent its join message

after i woke up, if joinSlot

j

� joinSlot

i

i must have re
eived this join message before joinSlot

i

(Lemma 8.1) and so i informed the DFM of j

0

s join.

m-join(s,l,n,i) - The requirement that all pro
esses view i as ina
tive when i performs this a
tion

is guaranteed by the fa
t that i does not perform this a
tion until i is sure that all 
onsensus

algorithms that were performed to de
ide on its failure have 
on
luded (Se
tion 6.3).

m-join(s,n,j) - The requirement that i has the right in
arnation number for j is guaranteed be-


ause i uses the number that appears in js join message or in the header of one of js messages.

Sin
e i only adds j after j sends a join message or after seeing a message from j we know that

s � joinSlot[j℄ (j only sends messages for slots s

0

� joinSlot[j℄). If joinSlot[j℄ > joinSlot[i℄ � 2,

then the fa
t that i adds j before i rea
hes joinSlot

j

is guaranteed by Lemma 8.1.

m-leave(n,j),fail - This is trivial.

m-fail(s,n,j) - Sin
e we use a failure dete
tor (Se
tion 6.2) we are guaranteed that this a
tion will

only be performed if j a
tually failed. The fa
t that s < slot[i℄ is again guaranteed by our failure

dete
tor sin
e it waits more than � time before it de
lares a pro
ess as failed. The fa
t that all

pro
esses report a failure slot within 1 of ea
h other is guaranteed by our failure model (Se
tion 2).

The two liveness 
onditions are also guaranteed by our Ordering algorithm. If status[k℄[k℄ was

a
tive when the j failed, and joinSlot[k℄ � failSlot[j℄ + 2, then a

ording to Se
tion 6.3, k would

try to re
eive js messages for slot failSlot[j℄. Thus, if j does not fail or leave k will noti
e js failure

and so it will perform the m-fail(�; n; j)

k

a
tion.

If status[i℄[k℄ was a
tive when k performs the m-leave(n; k)

k

a
tion, i will either re
eive ks leave

message and thus will perform the m-leave(n; k) a
tion, or i will not re
eive this message in whi
h


ase i would suspe
t that k failed and so it will perform the m-fail(�; n; k)

i

a
tion, again setting

status[i℄[k℄ = ina
tive. The only other possibility is that i will fail or leave before it will noti
e ks

message or failure. However, in this 
ase, a

ording to the automaton spe
i�
ation status[i℄[k℄ is

automati
ally set to ina
tive.

C Corre
tness of the DFM

In this se
tion we prove all the lemmas that where presented in Se
tion 7.

C.1 The Dynami
 manager algorithm

Lemma C.1 For all pro
esses i, if the p-fail(s

i

;W

i

)

i;n;j

a
tion is performed then:

1. The m-fail(�; n; j)

i

a
tion 
annot be performed twi
e by the same pro
ess i.

2. If k 2 P [n; j℄ and k 62W

i

, k failed or left after performing the p-fail(�; �)

k;n;j

a
tion, and before

i performed the p-fail(�; �)

i;n;j

a
tion.

3. For all k 2 W

i

, k either performs the p-fail(v

0

;W

0

)

k;n;j

a
tion or the h-fail(v

0

)

k;n;j

a
tion or

status[i℄[k℄ be
omes ina
tive.
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Proof: 1. As 
an be seen (from the spe
) performing the m-fail(�; n; j)

i

a
tion results in setting

status[i℄[j℄ = ina
tive. A pre
ondition of the m-fail(�; n; j)

i

a
tion is that status[i℄[j℄ = a
tive.

Thus, status[i℄[j℄ should 
hange to a
tive between two 
onse
utive m-fail(�; n; j)

i

a
tions, and this


ould only be done in the m-join(�; �; j)

i

a
tion. When i performs the m-fail(�; n; j)

i

a
tion we

have status[j℄[j℄ = ina
tive with in
[j℄ = n sin
e i 
an only perform this a
tion when Failed[j℄ =

TRUE (meaning that the last a
tion performed for j was the fail

j

a
tion), and so in order to

set status[i℄[j℄ to a
tive again, j must perform the join(�; �; j)

j

a
tion after i performs the �rst

m-fail(�; n; j)

i

a
tion. However, when j performs the join(�; �; j)

j

a
tion, j must set in
[j℄ = n+1

a

ording to the spe
, and sin
e a pre
ondition of the m-fail(�; n

0

; j)

i

a
tion is that n

0

= in
[j℄, i


annot perform the m-fail(�; n; j)

i

a
tion again (sin
e in
[j℄ > n from now on).

2. Assume for 
ontradi
tion that k did not fail after performing the p-fail(�; �)

k;n;j

a
tion.

If status[i℄[k℄ was a
tive when i performed the p-fail(s

i

;W

i

)

i;n;j

a
tion, then sin
e k 62 W

i

it

means that joinSlot[k℄ � s

i

+2, and sin
e s

i

� failSlot[j℄� 1 we 
an 
on
lude that joinSlot[k℄ �

failSlot[j℄ + 1. Sin
e k did not fail or leave after performing the p-fail(s

k

; �)

k;n;j

a
tion, this must

be less or equal to the joinSlot[k℄ that k had when performing the m-fail(s

k

; n; j)

k

a
tion (sin
e

a

ording to part 1 of this lemma the m-fail(�; n; j)

k

a
tion 
an only be performed on
e). We now

arrive at a 
ontradi
tion sin
e for this joinSlot[k℄ value we have joinSlot[k℄ � failSlot[j℄+1 > s

k

,

but a

ording to the m-fail a
tion, in order to perform the p-fail(�; �)

k;n;j

a
tion k must have

s

k

� joinSlot[k℄. So in this 
ase it must be that k failed or left after performing the p-fail(�; �)

k;n;j

a
tion.

Assume status[i℄[k℄ was ina
tive when i performed the p-fail(s

i

;W

i

)

i;n;j

a
tion, and k did fail

or left after performing the p-fail(s

k

; �)

k;n;j

a
tion. Then it must be that when k performed the

p-fail(s

k

; �)

k;n;j

a
tion it had slot[k℄ > s

k

� joinSlot[k℄. So k must have performed the in
-slot()

k

a
tion that sets slot[k℄ = joinSlot[k℄. A pre
ondition of su
h an a
tion is that for all a
tive pro
esses

m with joinSlot[m℄ � joinSlot[k℄, status[m℄[k℄ = a
tive. It is easy to see that imust have been one

of these pro
esses when this a
tion took pla
e, otherwise i 
ould not have had status[i℄[k℄ = ina
tive

sin
e k did not fail or leave after this a
tion. So it must be that status[i℄[k℄ was set to a
tive after

i performed the p-fail(s

i

;W

i

)

i;n;j

a
tion. However, sin
e joinSlot[k℄ � failSlot[j℄ we know that

when i performed the p-fail(s

i

;W

i

)

i;n;j

a
tion i had slot[i℄ � s

i

+ 1 � failSlot[j℄ � joinSlot[k℄,

and this 
ontradi
ts the fa
t that i joined k after performing this a
tion sin
e the pre
ondition for

joining a pro
ess (in the m-join(s; n; k)

i

a
tion) is that slot[i℄ < s and sin
e s � joinSlot[j℄ this

implies that slot[i℄ < joinSlot[j℄ when i performed the m-join a
tion. Thus it must be that k failed

or left after performing the p-fail a
tion, and sin
e status[i℄[k℄ was ina
tive when i performed the

p-fail a
tion, this must have been before i performed the p-fail a
tion.

3. If k 2 W

i

then s

i

� joinSlot[k℄ � 1, and so failSlot[j℄ � s

i

� joinSlot[k℄ � 1. Sin
e s

k

+ 1 �

failedSlot[j℄, we have s

k

+ 1 � joinSlot[k℄ � 1 ! s

k

� joinSlot[k℄ � 2. If status[k℄[k℄ was a
tive

when fail

j

o

urred then a

ording to the liveness guarantee of the environment spe
i�
ation k

will either perform the m-fail(s

k

; n; j)

k

a
tion or will fail or leave (whi
h will result in setting

status[i℄[k℄ to ina
tive a

ording to the liveness guarantees). If k performs the m-fail(s

k

; n; j)

k

a
tion k will either perform the h-fail(�)

k;n;j

or the p-fail(�; �)

k;n;j

a
tions.

If status[k℄[k℄ was ina
tive when the fail

j

a
tion o

urred, then it must be that k did not rejoin

the algorithm before i performed the m-fail(�; n; j)

i

a
tion. This is so be
ause in order to rejoin,

k must set joinSlot[k℄ > failSlot[j℄ + 2. However, sin
e k 2 W

i

it must be that joinSlot[k℄ �

s

i

+1 � failSlot[j℄+ 1 and so k 
ould not have rejoined the algorithm after j has failed. Note that

k 
annot rejoin the algorithm before i sets status[i℄[k℄ to ina
tive a

ording to the m-join(�; �; k)

k

pre
ondition. Thus, status[k℄[k℄ was ina
tive when i performed the m-fail(�; �; j)

i

a
tion, and so

i will set status[i℄[k℄ to ina
tive at some point a

ording to the liveness guarantees.
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C.2 The First Round algorithm

Lemma C.2 If i 2 P [n; j℄ then the 
ombined servi
e guarantees the following with respe
t to F

n;j

:

1. Termination.

2. C[n; j℄ � G

i

, and if k 2 G

i

and k 62 C[n; j℄ then k failed or left after performing the p-

fail(�; �)

k;n;j

a
tion.

3. For all pro
esses k 2 C[n; j℄, l

k

� u

i

.

Proof: 1. In order to terminate F

n;j

i has to perform the inCons(�; �)

i;n;j

a
tion. In order

to perform this a
tion i needs to re
eive messages from all pro
esses in W

i

or wait until they

failed or left. However, a

ording to lemma 7.1 part 3 all su
h pro
esses will either perform the

h-fail(�)

�;n;j

or p-fail(�; �)

�;n;j

a
tions, resulting in sending a message to i or will fail or leave.

Thus, all pro
esses that i waits for will either send a message or fail or leave and termination is

guaranteed.

2. If k 2 C[n; j℄ then k 2 P [n; j℄ a

ording to the 
onstru
tion of C[n; j℄ and in addition, k did not

fail before �nishing the �rst round algorithm. If k 62 W

i

we know that k had failed or left before

i performed the p-fail(�; �)

i;n;j

a
tion (lemma 7.1 part 2), and thus k 62 C[n; j℄ sin
e in order to

�nish the �rst round k needs to re
eive a message from i (sin
e i 2 P [n; j℄ and did not fail or left

so i 2 W

k

). But sin
e k failed or left before i sent any message, k did not �nish the �rst round

algorithm.

So if k 2 C[n; j℄ it must be that k 2W

i

and sin
e k 2 C[n; j℄ we know that ks message for the �rst

round have rea
hed i, and so a

ording to the re
eive a
tion e�e
t, k 2 G

i

(sin
e k must have sent

a \part" message sin
e k 2 C[n; j℄).

If k 2 G

i

and k 62 C[n; j℄ then it must be that k started F

n;j

, and that k 2 P [n; j℄ (otherwise i

would not add it to G

i

, sin
e k would send a \help" message). Sin
e k 62 C[n; j℄ we know that k

must have failed or left (sin
e a

ording to part 1 of this lemma, if this is not the 
ase k would

have �nished F

n;j

).

3. If i 2 C[n; j℄ it must be that for all pro
esses k su
h that k 2 C[n; j℄, i 2 G

k

a

ording to part

2 of this lemma. But this means that k re
eived is message for F

n;j

, and thus a

ording to the

re
eive(v)

k;i;n;j

a
tion e�e
t, l

k

� u

i

.

C.3 Time analysis

Lemma C.3 If f pro
esses fail during the exe
ution of the First round and Consensus algorithms,

then the algorithm takes at most:

� +�+ 3(� +�) + f(� + � + 2�)

Proof: If two pro
esses i and j parti
ipate in the First round algorithm, then the di�eren
e be-

tween the time i started the algorithm and the time j started the algorithm is at at most � + �.

This is so be
ause both start the algorithm when the failure of k is dete
ted. If i dete
ts the failure

of k in slot s, j would dete
t it at most in slot s+1, and sin
e the 
lo
k skew is at most � the total

di�eren
e is at most � + �.

Assume j is the last pro
ess to start the First round algorithm. Then the First round ends at all

pro
esses at most 2�+�+� time after it started at j. This is so be
ause if no pro
ess fails, then

all First round messages are sent at most � after j started the algorithm, and arrive at most �

time after that at all pro
esses, �nishing the �rst round. If the First round message from pro
ess p

would not arrive at pro
ess i �+� time after j dete
ted ks failure, it means that p has failed, and

this failure will be dete
ted by all pro
esses at most �+�+� time after p have failed, whi
h is at
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most 2�+�+� time after j started the First round algorithm. Thus, 2� +�+� time after the

last pro
ess dete
ted ks failure all pro
esses would be able to �nish the First round (either re
eiving

all messages sent for this round, or dete
ting pro
esses from whi
h no messages where re
eived as

failed).

The same analysis shows that this is the 
ase for all rounds in the Consensus algorithm too. If

a pro
ess fails during a round then it will take at most 2�+�+� time to 
on
lude the round by

all other pro
esses. Thus, if f pro
esses fail during the exe
ution of the algorithm we need at most

three more rounds in addition to the f rounds in order to rea
h de
ision (the �rst round and at

most two rounds at the end). In these three rounds no pro
ess fails, so they take at most � + �

time ea
h. Thus the algorithm takes at most: � + � + 3(� +�) + f(� + � + 2�).

Lemma C.4 If m-fail(s; n; j)

i

is performed at time t

0

, and starting at time t > t

0

no m-fail

a
tion was performed by any pro
ess for 3(� + 2� + �) time, m-de
ide(v; n; j)

i

will be performed

by t+ 3(� + 2�+ �).

Proof: A

ording to the previous lemma, the First round algorithm takes at most �+2�+� time

to �nish by all pro
esses, and so does any of the 
onsensus rounds. Thus, sin
e no pro
ess performs

a m-fail a
tion from time t for 3(�+2�+�) time, all pro
esses will be able to �nish at least two


onse
utive 
onsensus rounds without reporting any failure. However, if all pro
esses see the same

set of pro
esses for two 
onse
utive rounds, the 
onsensus algorithm ends at all pro
esses. So by

t+3(�+2�+�), the 
onsensus algorithm for j will end, and i will perform the m-de
ide(v; n; j)

i

a
tion.
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