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1 IntroductionGroup communication systems [1, 36] are powerful building blocks that facilitate the devel-opment of fault-tolerant distributed applications. Group communication systems provide thenotion of group abstraction, which allows processes to be easily organized in multicast groups.Group communication systems typically integrate two types of services: group membershipand reliable group multicast. The membership service maintains a listing of the currently ac-tive and connected group members and delivers this information to its clients whenever thisinformation changes. The output of the membership service is called a view. Reliable mul-ticast services deliver messages to the current view members. Such communication servicescomplement the membership service.Group communication systems generally provide some variant of virtual synchrony seman-tics. Virtual synchrony semantics synchronize views with regular messages and thus simulatea \benign" world in which message delivery is reliable within the set of connected processes.Many variants of virtual synchrony semantics have been suggested [30, 20, 36, 13, 33, 19, 25].Such semantics are especially useful for constructing fault-tolerant applications that maintainconsistent replicated state of some sort (e.g., [3, 6, 24, 19, 35, 9, 28]).The key aspect of virtual synchrony is the interleaving of message send and delivery eventswith view events. To discuss such interleaving, we associate message send and delivery eventswith views: we say that an event e occurs at a process p in view v if v was the last viewdelivered to p before e. If no such view was delivered before e, then we say that e occurs in adefault initial view vp. A useful property speci�ed by nearly all variants of virtual synchronyis the agreement among all processes moving together from a view v to another view v0 onthe set of messages delivered in v. This property has been called View Synchrony [36, 11].All variants of virtual synchrony specify that every message m be delivered in the sameview v by all processes that deliverm. This provides a simple but strong consistency property.In addition, many variants (e.g. [12, 20, 30, 25, 23, 19, 16, 17]) strengthen this property torequire that the view in which a message is delivered be the same view in which it was sent.This property has been called group awareness [34] and Sending View Delivery [36]. For theremainder of this paper, we use the term group awareness.Group awareness is exploited by applications to minimize the amount of context infor-mation sent with each message and the amount of computation time needed to process amessage. For example, there are cases in which applications only process messages that ar-rive in the view in which they were sent. This is usually the case with state transfer messagessent when new views are delivered (see [4]). By relying on group awareness, such applicationsneed not tag each state transfer message with the view in which it is sent. Group awareness1



is also useful for applications that send vectors of data corresponding to view members. Suchan application can send the vector without annotations, relying on the fact that the ith entryin the vector corresponds to the ith member in the current view (see [20]). Another exampleof the power of group awareness is illustrated in [35] which identi�es a tradeo� betweentotally ordered multicast and group awareness.Group awareness is a costly property. Friedman and van Renesse [20] prove that providinggroup awareness requires that the application be periodically blocked from sending messages,or else other useful properties such as View Synchrony (as described above) and Self-delivery(which requires processes to deliver their own messages) cannot be implemented. Therefore,in order to provide group awareness, most group communication systems block processesfrom sending messages from the time that the need for a view change is recognized until theview is delivered to the application. Such blocking can cause an expensive waste of valuablecomputation and network resources.In this paper, we address this waste of resource using an optimistic approach. We presentOptimistic Virtual Synchrony (OVS), a novel form of group communication that providesthe power of group awareness without the performance penalty of blocking. In OptimisticVirtual Synchrony, each view event is preceded by an optimistic view event, which providesthe application with an estimate of the next view. After this event, applications may op-timistically send messages that will provisionally be delivered in the next view. If someapplication de�ned property about the next view holds, then the messages will be delivered.Otherwise, the messages are rolled back, i.e. they are discarded, and the sending applicationis informed. Thus, the application speci�es the policy for optimistic message delivery, andOVS provides the mechanism for implementing any application-speci�ed policy.We have observed that applications seldom require that the new view be identical tothe optimistic one; typical group aware applications are satis�ed by weaker constraints.Examples of applications that bene�t from OVS appear in Section 3.We built a version of OVS on top of an existing group communication service, Transis [18].In its original form, Transis does not provide group awareness to the processes. However,there is a group aware communication mechanism in Transis which is only used internallyby the Transis servers. We used this mechanism in implementing OVS on top of Transis.As expected, our performance measurements show that introducing optimism signi�cantlyreduces the message delivery latency during view changes. Furthermore, we show that theoverhead induced by OVS is very small. We describe the implementation and present ourperformance measurements in Section 4. 2



1.1 Evaluating Optimistic Virtual SynchronyOptimism does not provide additional capabilities for the application programmer. Rather,optimism allows processes to make progress in situations where they would otherwise beforced to block. The utility of optimism can be measured in three ways:1. By illustrating applications that can make reasonable progress under optimism duringperiods in which they would otherwise be forced to block. In Section 3, we provideexamples of applications that bene�t from the optimism provided by OVS.2. By demonstrating that the additional overhead associated with supporting the opti-mistic execution is not too great. In Section 4 we measure this by comparing theimplementation of OVS on top of Transis with the non-optimistic version of Transis.3. By demonstrating that the actions performed optimistically are rolled back infrequentlyenough that the cost of rolling back actions is masked by the gain from optimism. WithOVS, the frequency at which optimistic messages will be dropped depends on twofactors: the environment and the application-speci�ed policy. An optimistic messageis dropped only if new changes of connectivity occur in the environment while a viewchange is taking place, and these changes are not allowed by the application-de�nedpolicy. Modeling the frequency of changes in the environment is not in the scope of thispaper. However, we note that since OVS allows the application to specify the messageconstraint, the fraction of optimistic messages that are dropped is highly applicationdependent. In fact, in Section 3 we show that there are examples of applications thatnever drop optimistic messages.Furthermore, the cost of rolling back the messages is very small, as these messagesare sent when the available bandwidth would otherwise not be utilized, and they aremerely dropped. In Section 4 we show that a very small amount of computation isneeded to determine if an optimistic message is to be delivered or not. Therefore, thecost of rolling back is easily masked by the gain from optimism.2 The Optimistic Virtual Synchrony ProgrammingModelGroup communication services interact with their applications via an interface consisting ofat least three types of events: send, receive, and view. A send event is sent by the applicationto the group communication service to send a message. A receive event is sent by the groupcommunication service to the application to deliver the message. A view event is sent by the3



group communication service to notify the application that the view is changing. A view isa pair, consisting of a set of processes and a unique identi�er.Group aware group communication services require applications to refrain from sendingmessages while view changes are taking place. To this end, block and ush events are addedto this interface. The group aware service sends a block event to the application to inform itthat a view change is under way. The application responds with a ush event, acknowledgingthe block event. The ush event must follow all of the messages sent by the application inthe current view. The application then refrains from sending messages until it receives anew view from the group communication service. Such services use the blocking mechanismto ensure group awareness, i.e., that every message is delivered in the view in which it wassent (see [20, 25]).With OVS, the block event is replaced by an optimistic view event, optView which con-tains a set of members. This set is an estimate of what the set of members in the next viewwill be. Group membership algorithms (e.g., [26, 5]) can usually provide an optimistic viewwhich is accurate unless further changes in the system connectivity occur during the viewchange. When the application receives the optView event, it sends a ush event and entersoptimistic mode. In this mode, the application still receives messages that were sent in theview that it is leaving, but at the same time, the application may optimistically send mes-sages to be provisionally delivered in the next view. The messages sent in optimistic modeare called optimistic messages. When the group communication service delivers a new viewto the application, the application returns to normal mode and sends a viewAck event to thegroup communication service to denote the end of the optimistic mode. In the normal mode,the application sends regular messages to be delivered in the same view. This program owis depicted in Figure 1.
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Figure 1: Process modes in Optimistic Virtual Synchrony.When the new view is delivered, the group communication service checks whether the4



optimistic messages should be delivered in the new view or not. This is checked by applyingan application-provided predicate, MessageCondition, to each optimistic message. If thepredicate is evaluated to true, the message is delivered. Otherwise, the message is discardedat all locations except for the sender. The sender is informed of any non-delivered optimisticmessages via the discardedMessages event.The parameters of theMessageCondition predicate include the set of members of the newview and the optimistic view in which the message was sent, as well as the message for whichthe condition is being checked. Group communication services that supplement views withinformation regarding previous views of other members, (e.g., [15, 10], or the transitionalview/set of [30, 4, 36, 25]) can provide this information as a parameter to the predicate aswell. Examples of MessageCondition predicates are discussed in Section 3 below.Note that, in particular, in order to evaluate the MessageCondition predicate, each pro-cess needs to learn of every other view members' optimistic views. This does not requireadditional messages to be sent, but rather the optimistic view can be piggy-backed on themessages necessary for the agreement on the next view. The OVS group communicationservice can provide the optimistic view information to any application that is interested init. We give an example of such an application in Section 3.4.3 Example Applications of Optimistic Virtual SynchronyIn this section we present several di�erent applications that bene�t from Optimistic VirtualSynchrony. These applications are meant to be illustrative of the power of OVS, but are byno means exhaustive. Another example of an application that exploits OVS is the Bancomatresource allocation algorithm of [35] (see [34] for details). In addition to these examples,OVS can be used by applications that do not require group awareness (e.g., [14, 3, 9]) byalways evaluating the MessageCondition predicate to true.3.1 Primary ViewsApplications that maintain globally consistent shared state (for example, [21, 24, 6, 19,28, 32, 22, 27, 2]) usually avoid inconsistencies by allowing only members of one view (theprimary view) to update the shared state at a given time. Di�erent primary views can bede�ned for di�erent replicated objects. Such applications use group awareness: messagesthat update an object are sent only in this object's primary view, whereas query messagesare sent in all views.Consider, for example, an application in which each object has a designated master5



site such that the object is updated only in a view containing that site. The optimisticMessageCondition predicate for such an application might be:boolean MessageCondition( set newView, optView, char *m )return ( m.type = query _ masterCopyOf(m.object) 2 newView )Likewise, if there is no designated master site, then the predicate can check if the new viewcontains a majority (or quorum) of m.object's copies. When a message is rolled back, thesender stores the request until the view changes to a primary one.Note that the format of a message m can be used in the MessageCondition predicatealthough the OVS service does not know this format. This is one bene�t of the applicationspecifying the predicate.3.2 State TransferTypical applications of group communication services, (e.g., [4, 35, 23, 21, 4, 2, 24, 6, 28, 37]),engage in state transfer whenever a new view is delivered. State transfer messages are usuallyutilized only if they are fresh, i.e., they pertain to the current view. Therefore, applicationsthat send state transfer messages usually require group awareness, or impose group awarenessby tagging each state transfer message with the view in which it was sent and discardingmessages pertaining to old views (see [4]).Note that state transfer messages cannot be sent optimistically for all applications. Whilethe application is in optimistic mode, messages from the previous view may arrive. If sucha message can cause the application to change its state, then a state transfer message sentoptimistically before the message arrives will not reect the updated state. However, weidentify two cases in which state transfer messages may be sent optimistically:1. When the application state is too large to be sent in a single message, for example,when a replica is being added in a replicated �le (or database) server (e.g., [24, 21, 6, 2]).Using OVS, the application can begin to send the state while in optimistic mode, andsend only the last part of the state (reecting the latest changes) when the new viewis delivered.2. When the application state changes only following view changes. For example, in aservice that uses dynamic voting to determine the primary view [37], when a new viewis delivered all of the applications exchange information about past primary views anduse the state transfer messages to determine the state of the current view. This statedoes not undergo further changes during the same view. Thus, the state can be sentin optimistic mode. 6



Note that the applications identi�ed above do not need any guarantees about the ensuingview for the state transfer message to be correct. Thus, the MessageCondition predicate forstate transfer messages is always evaluated to true. The only guarantee needed is a freshdelivery property: that the message will be delivered in the next view, not in some viewfurther in the future. This points out one of the strengths of OVS: group awareness asspeci�ed in [20, 30, 19, 23, 16, 17, 25] and provided by group communication services suchas [12, 7, 20] provides a much more costly abstraction than is needed for this application.On the other hand, group communication services such as [18] that are not group aware donot provide this fresh delivery property.3.3 Waiting for State Transfer to CompleteMany applications that exchange state transfer messages when a new view is delivered(e.g., [21, 24, 6, 19, 28, 2]) refrain from sending messages until all state transfer messagesare received. Thus such applications extend the blocking period imposed by a group awareservice until the state transfer is complete. However, many applications need not engage instate transfer upon receipt of every new view. Several group communication services pro-vide applications with a set of processes that are known to have retained agreement on thesequence of delivered views. Such a set is called the transitional view/set in [30, 4, 36, 25].If the transitional set is a superset of the new view, then such applications need not engagein state transfer (see [4, 36]).Such applications can bene�t from OVS by sending messages optimistically, and deliv-ering these messages only if the new view is a subset of the transitional set, i.e., if no statetransfer is necessary. The MessageCondition predicate for such an application might be:boolean MessageCondition( set newView, optView, char *m, set transitional )return ( newView � transitional )If the optimistic assumption is false and state transfer is needed, the messages sent opti-mistically will be rolled back, and the application can re-send the information after the statetransfer has been completed.3.4 Data VectorsGroup awareness is useful for applications that send vectors of data corresponding to pro-cesses: group awareness allows such applications to send the vector without annotations,relying on the fact that the ith entry in the vector corresponds to the ith member in the7



current view. This reduces the amount of context information sent with each message andthe amount of computation time for processing messages (see [20]).Using OVS, such applications may also send optimistic messages containing data withoutannotations while they are in the optimistic mode. When the view is delivered, the applica-tion may request the OVS service for the optimistic views of all of the view members. Thesecan be used to create conversion tables which convert an index in each sender's optimisticview to a corresponding index in the new view, and to remove entries in the vector whichcorrespond to members that are not in the new view. The MessageCondition predicate inthis case is always evaluated to true.This technique induces some processing overhead, but only on the processing of optimisticmessages. In normal mode, the application can continue to bene�t from group awarenesswith no additional overhead.3.5 Causal MulticastAn example of an application that sends vectors of data corresponding to processes is animplementation of causal multicast [29] using vector clocks. Causal multicast ensures thatby the time a process p receives a multicast message m sent by a process q, p has alsoreceived all of the messages that q received before sending m. A vector clock is a vector ofintegers, indexed by the set of processes in the system. The value of the vector clock of pfor some process q represents the sequence number of the last message multicast by q that phas received. When a message m is multicast by a process q, m includes a copy of the vectorclock at q. If p receives m from q and the vector clock value in m for some other process sis greater than the vector clock value of p for s, then p knows that there is a message from sthat causally precedes m that p has not yet received and p cannot deliver m yet (see [29]).This technique is used for implementing causal group multicast in the ISIS and Horusgroup communication systems. In a group based programming environment, the overheadassociated with causal multicast can be greatly reduced. In each view, view members receivemessages only from other members of the same view. Therefore, if the processes in thenew view agree on the messages received before the view change, then only the vector clockvalues for the processes in the view need to be included in further messages. A group awareenvironment nicely supports this implementation.As explained in Section 3.4 above, using OVS the application can continue to send vectorswithout annotations while in the optimistic mode. However, in order to preserve causality,the vector has to include indices corresponding to all the members of the view. Therefore,optimistic messages sent with a partial vector that does not include all of the members of8



the new view should be discarded.This implementation of causal multicast was a main inuence on the design of the WeakVirtual Synchrony (WVS) programming model of Horus [20]. When a view change is takingplace, WVS provides applications with suggested views and guarantees that the ensuing viewwill be an ordered superset of the suggested view. Processes may send messages during thesuggested view, and these messages will be delivered in the ensuing view (see Section 5).Friedman and van Renesse exploit Weak Virtual Synchrony for causal vectors as follows: insuggested views, processes send vectors which include entries for all of the members of thesuggested view. When the message is delivered in the ensuing view, the entries in the vectorpertaining to processes that left the view are �ltered out. OVS can be used in the samemanner: processes can send vectors vectors which include entries for all of the members ofthe optimistic view. If the ensuing view is indeed a superset of the optimistic view, themessages can be processed as with Weak Virtual Synchrony. Otherwise, they should berolled back. The message condition is as follows:boolean MessageCondition( set newView, optView, char *m )return ( newView / optView 6= f g )When a message is rolled back, the sender re-sends the information with the appropriatevector clock. We further compare WVS with OVS in Section 5.4 Implementation and Performance ResultsWe have implemented Optimistic Virtual Synchrony on top of the Transis group communi-cation service [18]. We chose Transis because it has two di�erent modes of group commu-nication: it provides the application processes with non-blocking delivery which does notprovide group aware semantics, and it internally uses blocking delivery which does providegroup aware semantics. We had two goals for this implementation:1. To understand what extra support would be needed to provide OVS on top of anexisting group aware group communication service.2. To compare the performance of OVS with that of a group aware group communicationservice as well as with the performance of a non-group aware one. By implement-ing OVS on top of the two versions of Transis, we could better ensure that such acomparison be fair.In Section 4.1 we describe how we met the �rst goal. The second goal is discussed inSection 4.2. 9



4.1 Implementing Optimistic Virtual Synchrony in TransisThe Transis group communication service is structured around a group of servers. The Tran-sis servers communicate with each other using reliable fifo links. When the need for a viewchange is recognized by some server, this server sends synchronization messages to the otherservers to denote the end of the current view. If a server receives a synchronization messagewithout having detected the need for a view change itself, it treats the synchronization mes-sage as a detection and also engages in the view change algorithm. Each server refrains fromsending new messages after sending the synchronization message and until the new view isdelivered. Thus, group awareness is supported among the Transis servers.With OVS, optimistic messages can be sent during this time period. The synchronizationmessages together with the fifo order guarantee that when an optimistic message reaches aTransis server, this server is either also in the optimistic mode for the same view, or in thesubsequent regular view, as illustrated in Figure 2.
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OptView v'QFigure 2: Possible arrival times of optimistic messages at Transis servers.In order to implement OVS in Transis, we added code in the following places:1. When the need for a view change is recognized by a Transis server. An optView is sentto the application processes. Once an application responds with a ush, it enters opti-mistic mode (see Figure 1 above). The mode of the application (optimistic or normal)is saved in the OVS process.2. When a message is sent by a process. If the sending application is in optimistic modethen the message is marked as optimistic before sending it to the members of theoptimistic view.3. When a message is received by a process (including loop-back receipt of a message byits sender). If the message is not marked as optimistic, it is not handled by OVS codebut is rather passed to the regular Transis code as usual. Otherwise, there are twocases handled di�erently in OVS: 10



(a) If a view change is under way, then the optimistic message is enqueued in a bu�erfor optimistic messages, and its receipt is masked from the Transis code.(b) If a view change is not under way, then, as explained above, the optimistic messagemust have been sent during the optimistic mode preceding the current view. Inthis case, the MessageCondition is applied to the message in order to determinewhether the message should be delivered or not.4. When a new view is delivered to a process by Transis. Each message in the optimisticmessage bu�er is checked to see if the sender is a member of the new view, and then theMessageCondition for the message is checked. Depending on the result, the message iseither delivered or dropped, and the process is noti�ed via a discardedMessages eventthat a message that it sent will not be delivered.In addition, if the new view contains members which are not members of the opti-mistic view, then the optimistic messages will not have been sent to these new viewmembers. These messages are forwarded to the new members. However, a selectivesending mechanism does not exist in Transis. Instead, we used the Transis retrans-mission mechanism which re-sends the message to the entire view. Those that hadnot previously received the message would therefore receive it, and those that hadpreviously received it simply ignore it.When the application responds with a viewAck, its mode is changed to normal in theOVS code.4.2 Performance MeasurementsIn this section we describe the measured performance of OVS implemented on top of Transis.The tests described below were run on three Sun UltraSparc 5/10s, each of which was runningat 333 Megahertz. All three machines were running SunOS version 5.6. The three machineswere connected via 100MBit/sec Ethernet. The machines were not being used by any otherusers during these tests. In each test, no fewer than 40,000 messages were sent. All messagesin the tests were about 1 kilobyte long, a batch of 15 messages was sent every 15 milliseconds.Each test was repeated at least three times to ensure that the results were not spurious.We sought to measure two di�erent aspects of OVS. The �rst measurement was of theoverhead associated with processing of messages in OVS. The second measurement wasa comparison of the average time to deliver messages after a view change in OVS versusthe average time to deliver messages after a view change in Transis. We describe the twomeasurements in greater detail below. 11



4.2.1 The overhead of OVSThe life-cycle of a message in Transis can be roughly described as consisting of three stages:pre-send processing, wire time and pre-delivery processing. When a message is sent by anapplication process in Transis, the Transis process associated with the sender performs somepre-send processing (e.g., marshaling of header information) before sending it on the commu-nication stratum or handing it o� to its own reception handler. When a message is receivedby a Transis server, pre-delivery processing (e.g., demarshaling, ensuring that it meets de-livery semantics) is performed. When this processing has been completed, the message canbe delivered to the application process.As expected, our measurements show that the wire time is the most signi�cant componentin the message life-cycle. This is illustrated in Figure 3 (a): The average pre-send processingtime was consistently around 90 microseconds for all of the tests we ran. The average wiretime was around 1000 microseconds, and the average pre-delivery processing time on theserver side was consistently around 40 microseconds for all of the tests.The main performance gain of using OVS instead of a group aware group communi-cation service is the masking of the pre-send processing time and wire time for optimisticmessages. This results from messages being sent during the time that a group aware groupcommunication service would block. In our experiments, we wanted to demonstrate thatthis performance gain is signi�cantly larger than any overhead induced by OVS in the pre-delivery processing time1. We compared the pre-delivery processing time of OVS to that ofregular messages in Transis. The results are shown in Figure 3 (b).When measuring the pre-delivery processing time of OVS, we distinguish between twocases: (1) the new view contains only members that were in the optimistic view, hence nomessage retransmission (or forwarding) is needed; and (2) the new view does contain newmembers and retransmission is needed. In the latter case the pre-delivery processing time islarger since it includes the time required to retransmit the message. We measured the pre-delivery processing time both at the sender side and at the receiver side. As expected, whenno retransmissions were needed the processing time was only slightly larger with OVS: around50 microseconds at the sender side and around 60 at the receiver. When retransmissionsare necessary, the sender side pre-delivery processing time grows to almost 125 microsecondsper message, and the receiver side grows to slightly over 70 microseconds per message.Retransmissions slow down the sender which has to engage in retransmitting them; they also1During the pre-send processing, OVS only adds one bit of information to the message header denotingthat it is an optimistic one, therefore, the overhead OVS induces on the pre-send processing time is negligible,and the overhead of using OVS a�ects mainly the pre-delivery processing time.12
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(b) Transis and OVS pre-delivery processing times.Figure 3: Transis processing times.slow down the receiver since in Transis messages are retransmitted to all of the processes,and therefore the receiver receives duplicates of these messages.All in all, we observe that the overhead induced by OVS is smaller by an order of mag-nitude that the performance gain from masking the pre-send processing and the wire times.To further understand the overhead associated with the optimistic message processing,we divided the pre-delivery processing into time spent evaluating the message conditionand time spent iterating over the optimistic message bu�er and handling the messages. InFigure 4 we show this breakdown. In all cases, about 8 microseconds per message are spent inthe message condition evaluation. We experimented with several simple message conditions,and there was no measured di�erence. The remaining di�erence between the pre-deliveryprocessing of optimistic and non-optimistic messages, which is quite small on the server sideand a bit larger on the receiver side, can be attributed to overhead in iterating over thebu�er and changing the �elds of the message where necessary. In the case of retransmission,most of the overhead on the sender side is in the actual retransmission of the message.4.2.2 Latency of optimistic messagesThe direct bene�t of Optimistic Virtual Synchrony over a group aware group communicationservice is that OVS allows messages to be sent during the view change while still provid-ing group aware semantics. Transis normally provides applications with non-group awaresemantics, which allows applications to send messages during view changes. In this case themessages are bu�ered by the Transis server at the sender side during the view change, as13
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2. a group aware version of Transis;3. Optimistic Virtual Synchrony without the need for retransmission; and4. Optimistic Virtual Synchrony with the need for retransmission.
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Figure 5: f(p; k) for sender delivery (in logarithmic scale).Figure 5 shows the measured f(p; k) in logarithmic scale for these four communicationmodes for one of the tests. Since p is the sender in these tests, this graph shows the functionfor the local delivery of messages and is not a�ected by the communication latency. Thereceiver side for this test showed similar behavior, as did the other tests that were run. Dueto the scale of these measurements relative to the di�erences in the values, the three modesother than the group aware version of Transis cannot be seen separately. For further details,see [34].We observe that although OVS can provide an application with group awareness, it stillallows for communication speeds comparable to the non-group aware mode of Transis, andsigni�cantly superior to those of the group aware version of Transis.For completeness, we also compared the average time to deliver messages outside of viewchanges in Transis with the average time to deliver non-optimistic messages in the version15



of Transis which supports OVS. As expected, these times were equal, i.e., OVS induces nodelay on the delivery of non-optimistic messages.5 Related WorkWe are not the �rst to consider the use of optimism to support group communication.In [31], optimistic assumptions are made about the order in which messages are received inorder to quickly provide total ordering on the message delivery. In our approach, optimisticassumptions are made about the view, in order to allow message sending during periods ofinstability. The optimism of [31] is orthogonal to our use, and the two approaches could becombined.Optimistic Virtual Synchrony allows applications to send messages during periods inwhich group aware group communication systems block. Two other (non-optimistic) ap-proaches to eliminate the blocking imposed by group aware group communication serviceshave been suggested: light-weight groups and Weak Virtual Synchrony.Light-weight groups are used in systems that are built around a small number of serversthat provide group communication services to numerous application clients (for exampleTransis [18] and Spread [8]). In these systems, client membership is implemented as a light-weight layer that communicates with a heavy-weight group aware layer asynchronously usinga fifo bu�er. The asynchrony may cause messages to arrive in later views than the ones inwhich they were sent. However, since the asynchronous bu�er preserves the order of receiveand view events, messages are delivered in the same view at all destinations. The semanticsprovided by light-weight group membership services, which are not group aware, are tooweak for many applications as illustrated in Section 3 above.In order to eliminate the need for blocking while still providing support for a certain typeof group aware applications, Friedman and van Renesse [20] introduce the Weak VirtualSynchrony (WVS) programming model. In WVS, every view v is preceded by at least onesuggested view event. The membership of the suggested view is guaranteed to be an orderedsuperset of v. Group awareness is replaced by the weaker requirement that every messagesent in the suggested view is delivered in the next regular view. This allows processes tosend messages while the view change is taking place. The processes that use WVS maintaintranslation tables that map process ranks in the suggested view to process ranks in thenew view. Thus, although messages are no longer guaranteed to be delivered in the view inwhich they were sent, an application may still send vectors of data corresponding to processeswithout annotations. 16



One shortcoming of WVS is that it is useful only for group aware applications that aresatis�ed with knowledge of a superset of the actual view, and does not su�ce for other groupaware applications that have di�erent requirements about the ensuing view (see examples inSection 3 above). In contrast, OVS provides applications with the exibility to determine thepolicy as to what the ensuing view must be for the messages to be processed. In particular,applications designed to work with WVS can exploit OVS by requiring the ensuing view tobe a subset or the optimistic view (see Section 3.4 above).A second shortcoming of the WVS model is that once a suggested view is delivered, newprocesses are not allowed to join the next regular view. If a new process joins while a viewchange is taking place, a protocol implementing WVS is forced to deliver an obsolete view,and then immediately start a new view change to add the joiner. Furthermore, WVS requiresprocesses that continue together to the same new view to deliver each other's suggested views.Therefore, if two connected processes deliver conicting suggested views, then they are forcedto deliver views excluding each other before they can deliver a common view again. Thisimposes severe limitations on the membership service's choice of the next view and forcesthe membership service to deliver obsolete views. In contrast, OVS does not impose anylimitations on the membership service's choice of the next view, hence OVS does not requirethe membership service to deliver obsolete views. We believe that obsolete views should beavoided since they cause extra overhead for applications to process and increase networkcongestion by withholding information from applications that might allow them to avoidsending messages that will be discarded (see [26]).6 ConclusionsWe have presented Optimistic Virtual Synchrony, a novel form of group communicationwhich provides the power of group awareness without the execution penalty of blocking.Optimistic Virtual Synchrony provides applications with the exibility to determine thepolicy (message condition) as to when optimistic messages should be delivered and whenthey should be discarded (rolled back). We have described several di�erent applications thatcan bene�t from OVS. Our examples illustrate how di�erent applications can use OVS withdi�erent message conditions. In particular, we have observed that applications seldom requirethat the new view be identical to the optimistic one; typical group aware applications arein fact satis�ed by weaker constraints. We believe that the exibility to specify the messagecondition is important, as it gives applications �ne-grain control over the speci�c semanticsthey require, and does not impose costs for enforcing any semantics that they do not require.17
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