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Abstrat

This paper presents a formal tehnique for inremental onstrution of system spei�ations, algo-

rithm desriptions, and simulation proofs showing that algorithms meet their spei�ations.

The tehnique for building spei�ations and algorithms inrementally allows a hild spei�a-

tion or algorithm to inherit from its parent by two forms of inremental modi�ation: (a) signature

extension, where new ations are added to the parent, and (b) speialization (subtyping), where

the hild's behavior is a speialization (restrition) of the parent's behavior. The ombination of

signature extension and speialization provides a powerful and expressive inremental modi�ation

mehanism for introduing new types of behavior without overriding behavior of the parent; this

mehanism orresponds to the sublassing for extension form of inheritane.

In the ase when inremental modi�ations are applied to both a parent spei�ation S and a

parent algorithm A, the tehnique allows a simulation proof showing that the hild algorithm A

0

implements the hild spei�ation S

0

to be onstruted inrementally by extending a simulation

proof that algorithm A implements spei�ation S. The new proof involves reasoning about the

modi�ations only, without repeating the reasoning done in the original simulation proof.

The paper presents the tehnique mathematially, in terms of automata. The tehnique has

been used to model and verify a omplex middleware system; the methodology and results of that

experiment are summarized in this paper.

General term: Veri�ation. Categories and subjet desriptors: F.3.1 Speifying and Veri-

fying and Reasoning about Programs; D.2.1 Requirements/Spei�ations: Methodologies - objet-

oriented. Additional keywords and phrases: inheritane by speialization and sublassing for

extension, simulation proofs, re�nements, inremental proof tehniques, proof reuse.
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1 Introdution

Formal modeling and validation of software systems is a major hallenge, beause of their

size and omplexity. Among the fators that ould inrease widespread usage of formal

methods is improved ost-e�etiveness and salability (see [17, 19℄). Current software engi-

neering pratie addresses diÆulties of building omplex systems by the use of inremental

development tehniques based on an objet-oriented approah. We believe that suessful

e�orts in system modeling and validation will also require inremental tehniques, whih will

enable reuse of models and proofs.

In this paper we provide a framework for reuse of proofs analogous and omplementary

to the reuse provided by objet-oriented software engineering methodologies. Spei�ally,

we present a formal tehnique for inrementally onstruting safety spei�ations (require-

ments), abstrat algorithm desriptions, and simulation proofs that algorithms meet their

spei�ations. Simulation proofs are one of the most important tehniques for proving prop-

erties of omplex systems; suh proofs exhibit a simulation relation (also known as abstra-

tion or re�nement) between a formal desription of a system (algorithm) and its spei�a-

tion [2, 33, 23, 31℄. These two formal desriptions are stated using the same notation. The

distintion between the \spei�ation" and the \algorithm" for a system is based only on the

intention of using the former as the high-level model and the latter as the low-level model

of the system. In general, our tehnique applies to modeling and veri�ation at any level of

abstration.

The formalism presented in this paper has evolved with our experiene in the ontext of

a large-sale modeling and validation projet: we have suessfully used this tehnique for

modeling and validating a omplex group ommuniation system [25℄ that is implemented

in C++, and that interats with two other servies developed by di�erent teams. We have

modeled both the spei�ation and the algorithm of this system inrementally, at eah step

strengthening the model with additional onstraints. Reuse of models and proofs was essen-

tial in order to make this task feasible. For example, it has allowed us to avoid repeating

the �ve-page long orretness proof of the algorithm that provides the basi semantis when

proving the orretness of the algorithm that extends the �rst algorithm with more sophisti-

ated semantis. The orretness proof of the most sophistiated algorithm, by omparison,

was only two and a half pages long. We desribe our experiene with that projet as well as

the methodology that evolved from it in Setion 6.

Our approah to the reuse of spei�ations and algorithms through inheritane uses

inremental modi�ation to derive a new omponent (spei�ation or algorithm), alled

hild , from an existing omponent alled parent . Spei�ally, we present two onstrutions

for modifying existing omponents:

1. We allow the hild to speialize the parent by reusing its state in a read-only fashion, by

adding new state omponents (whih are allowed to be modi�ed), and by onstraining

the set of behaviors of the parent. This orresponds to the subtyping view of inheri-

tane [7℄. We will show that any observable behavior of the hild is subsumed (see [1℄)

by the possible behaviors of the parent, making our speialization analogous to substi-

tution inheritane [7℄. In partiular, the hild an be used anywhere the parent an be

used.
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2. A hild an also be derived from a parent by means of signature extension. In this ase

the state of the parent is unhanged, but the hild may inlude new ations not found

in the parent and new parameters to ations that exist at the parent. When suh new

ations and parameters are hidden, then any behavior of the hild is exatly as some

behavior of the parent.

The ombination of signature extension and speialization provides a powerful mehanism

for inrementally onstruting spei�ations and algorithms; this ombination orresponds

to the sublassing for extension form of inheritane [7℄.

Consider the following example. The parent de�nes an unordered point-to-point messag-

ing servie with the send(msg) and rev(msg) interfae. Speialization an be used to extend

the parent to preserve �fo ordering, by restriting rev(msg) ations to deliver messages only

aording to the sending order. Sublassing for extension an be used to augment the mes-

saging servie with an aknowledgment mehanism: The parent's signature an be extended

with ak(msg) ations, and then the parent an be speialized to handle aknowledgments by

allowing an ak(msg) ation to our only after the orresponding message was reeived by

the reipient. The speialization and sublassing for extension onstruts an be applied at

both the spei�ation level and the algorithm level in a way that preserves the relationship

between the spei�ation and the algorithm.

The main tehnial hallenge addressed in this paper is the provision of a formal frame-

work for the reuse of simulation proofs, espeially for the speialization onstrut. Consider

the example in Figure 1: Let S be a spei�ation, and A an abstrat algorithm desription.

Assume that we have proven that A implements S using a simulation relation R

p

. Assume

further that we speialize the spei�ation S, yielding a new hild spei�ation S

0

. At the

same time, we speialize the algorithm A to onstrut an algorithm A

0

whih supports the

additional semantis required by S

0

.

S

A

S’

A’

simulation

simulation

Rp

Rc ?

inheritance

inheritance

Figure 1: Algorithm A simulates spei�ation S with R

p

. Can R

p

be reused for building a

simulation R



from a hild A

0

of A to a hild S

0

of S?

When proving that A

0

implements S

0

, we would like to rely on the fat that we have

already proven that A implements S, and to avoid the need to repeat the same reasoning.

We would like to reason only about the new features introdued by S

0

and A

0

. The proof reuse

theorem provides the means for inrementally building simulation proofs in this manner.

Simulation proofs lend themselves naturally to be supported by interative theorem

provers. Suh proofs typially break down into many simple ases based on di�erent a-
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tions. These an be heked by hand or with the help of interative theorem provers. Our

inremental simulation proofs break down in a similar fashion.

The formalism desribed in this paper is presented in the ontext of the I/O automa-

ton model [31, 32℄, but it is more general than that partiular model. We believe that the

essene of our approah is appliable to any state-transition formal model, suh as TLA [28℄,

UNITY [34℄, and Proess Algebra [22, 33℄. I/O automata have been widely used to model

omplex systems and reason about them [18, 12, 8, 5, 21℄. An important feature of the I/O au-

tomaton model is its strong support of omposition, whih allows an automaton representing

a omplex system to be onstruted by omposing automata representing individual system

omponents. For example, Hikey et al. [21℄ used the ompositional approah for modeling

and veri�ation of ertain modules in Ensemble [16℄, a large-sale, modularly strutured,

group ommuniation system. Composition and inheritane are two omplementary means

for modular system design.

Inheritane, as a means for modular system design, has been a subjet of extensive re-

searh for deades. Many researhers employed formal methods to de�ne various inheritane

onstruts and study their properties [1, 5, 10, 11, 20, 24, 29, 30, 35, 39, 37, 38, 4, 34, 15℄.

Our distinguishing ontribution is a provision of a formal framework that allows simulation

proofs to be onstruted inrementally when inheritane is applied at two levels: spei�-

ation and algorithm. Thus, we extend the appliability of inheritane from the realm of

inremental system design to the realm of inremental system veri�ation.

Roadmap

The rest of the paper is organized as follows: Setion 2 reviews and exempli�es the I/O

automaton model and the simulation proof tehnique; the examples of subsequent setions

are built upon the ones presented in Setion 2. In Setion 3, we formally de�ne the spe-

ialization onstrut and investigate its properties. Then, in Setion 4, we present a general

theorem that enables inremental veri�ation of systems that are modeled and spei�ed in-

rementally using the speialization onstrut. This theorem provides the foundation for

inremental onstrution of simulation proofs, and is the key ontribution of this paper.

In Setion 5, we extend the theory of inremental modeling and proof onstrution to the

sublassing for extension form of inheritane: we give a formal de�nition of the signature

extension onstrut and show how it an be used in onjuntion with the speialization on-

strut to ahieve sublassing for extension; we then extend the proof-reuse theory presented

in Setion 4 to this situation.

The paper employs a simple running example to illustrate the use of the presented for-

malism. Setion 6 illustrates the utility of this formalism by desribing its use in a large-sale

modeling and veri�ation projet. In Setion 7 we disuss the modeling methodology that

we have used with our formalism in the ontext of the same projet.

Setion 8 ompares our results with related work. Setion 9 onludes the paper.
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2 Bakground: I/O Automata and Simulation Proofs

This setion presents bakground on the I/O automaton model, based on [31℄, Ch. 8. In

this model, a system omponent is desribed as a state-mahine, alled an I/O automaton.

The transitions of the automaton are assoiated with named ations, lassi�ed as input,

output and internal. Input and output ations model the omponent's interation with

other omponents, while internal ations are externally unobservable. Note that an ation

an be either an input or an output, but not both; a funtion all that returns a value an

be modeled using two ations { an input and an output.

Formally, an I/O automaton A onsists of: a signature sig(A), onsisting of input, output,

and internal ations; a set of states states(A); a set of start states start(A); and a state-

transition relation trans(A) | a subset of states(A) � sig(A) � states(A). An ation is

external if it is not internal; the part of an automaton's signature onsisting of its external

ations is alled the automaton's external signature. Complex automata an be onstruted

by omposing smaller automata that interat via their input and output ations.

An ation � is said to be enabled in a state s if the automaton has a transition of the form

(s, �, s

0

); input ations are enabled in every state. An exeution fragment of an automaton

A is an alternating sequene of states and ations suh that every suessive triple of this

sequene is an allowable transition; an empty step (s, �, s) is also an exeution fragment. An

exeution is an exeution fragment that begins with a start state. The trae of an exeution

� of A, denoted by trae(�), is a subsequene of � onsisting of all the external ations in �.

We denote the set of exeutions of A by exes(A), and the set of traes of A by traes(A).

When reasoning about an automaton, we are only interested in its externally-observable

behavior as reeted in its traes.

I/O automata are onveniently presented using the preondition-e�et style. In this style,

typed state variables with initial values speify the set of states and the start states. Tran-

sitions are grouped by ation name, and are spei�ed using a pre: blok with preonditions

(guards) on the states in whih the ation is enabled and an eff: blok whih spei�es how

the pre-state is modi�ed. The e�et is exeuted atomially to yield the post-state.

Example 2.1 Figure 2 presents an I/O automaton, UpSeq, that prints nondereasing se-

quenes of integers. The automaton is expressed in the preondition-e�et notation. The

signature of UpSeq onsists of output ations of the type print(x), where x is an integer.

The state of UpSeq onsists of a single integer variable, last, initialized to an arbitrary

value. The transitions of UpSeq speify that ation print(x), with a given x, is enabled in

every state in whih x � last, as enfored by the pre: statement; one print(x) ours, the

automaton moves into a state in whih last = x, as spei�ed by the eff: statement.

The following is a sample in�nite exeution of UpSeq, where square brakets represent

states of UpSeq, that is, values of last:

[3℄; print(5); [5℄; print(11); [11℄; print(11); [11℄; print(14); [14℄; : : :

The trae of this exeution is \print(5); print(11); print(11); print(14); : : :." In general,

the set of traes of UpSeq is the set of all possible sequenes printing nondereasing integers,

both �nite and in�nite.

5



automaton UpSeq

Signature: Output print(x), x 2 Integer

State: last 2 Integer, initially arbitrary

Transitions: OUTPUT print(x)

pre: x � last

eff: last  x

Figure 2: Automaton UpSeq printing a nondereasing sequene of integers.

A ommon way to speify whih traes a system is allowed to exhibit is to de�ne an

abstrat, high-level I/O automaton that generates the allowed set of traes. If every trae

of the automaton modeling the system is also a trae of the spei�ation automaton, then

the system always does what is allowed by its spei�ation. In this ase, we say that the

system automaton satis�es, or implements, the spei�ation automaton. By way of an

example, regard automaton UpSeq of Example 2.1 to be a spei�ation for the sequenes

of nondereasing integers. In order for some automaton to satisfy this spei�ation, any

possible trae of this automaton has to be a trae of UpSeq. In the following example we

present suh an automaton.

Example 2.2 Figure 3 ontains an automaton, FibSeq, that prints, as its sole in�nite trae,

the suÆx of the Fibonai sequene that begins with \1; 2; :::". The Fibonai sequene is an

in�nite sequene that begins with 0 and 1, and in whih every further element is equal to the

sum of the two preeding elements.

automaton FibSeq

Signature: Output print(x), x 2 Integer

State: n 2 Integer, initially 0

m 2 Integer, initially 1

Transitions: OUTPUT print(x)

pre: x = n + m

eff: n  m

m  x

Figure 3: Automaton FibSeq printing the Fibonai sequene.

The signature of the FibSeq automaton is the same as that of UpSeq. The state of FibSeq

onsists of two integer variables, n and m, initialized to 0 and 1, respetively. The transitions

of FibSeq speify that ation print(x) is enabled in every state in whih x is equal to the

sum of n and m, and that, one print(x) ours, the automaton moves into a state in whih

n has the value that m has in the pre-state, and m has the value of x. Thus, FibSeq uses n
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and m to store the last two elements printed and to ompute from them the next element to

be printed. The traes generated by FibSeq are the in�nite sequene of Fibonai numbers,

\print(1); print(2); print(3); print(5); print(8); print(13); : : : " and all of its pre�xes.

Every trae of FibSeq is learly a trae of UpSeq. Therefore, automaton FibSeq satis�es,

or implements, automaton UpSeq. But how an we prove this formally?

A ommon tehnique for establishing that the set of traes of one automaton is inluded

in the set of traes of another is to exhibit a so-alled simulation relation (also known as

an abstration relation) that relates the states of the two automata and to prove that this

relation satis�es ertain onditions [2, 33, 23, 31℄, as de�ned below:

De�nition 2.1 Let A and S be two automata with the same external signature. A relation

R � states(A) � states(S) is a simulation from A to S if it satis�es the following two

onditions:

1. If t is any initial state of A, then there is an initial state s of S suh that s 2 R(t),

where we use notation R(t) as an abbreviation for fs : (t; s) 2 Rg.

2. If t and s 2 R(t) are reahable states of A and S respetively, and if (t; �; t

0

) is a step

of A, then there exists an exeution fragment of S from s to some s

0

2 R(t

0

), having the

same trae as step (t; �; t

0

). The latter ondition means that the only external ation

in the exeution fragment is �.

The two onditions above guarantee that whatever steps A exeutes, there is always a

way for S to produe the same trae. The following theorem (from [31℄, Ch. 8) expresses this

property formally:

Theorem 2.1 If A and S are two automata with the same external signature and if R is a

simulation from A to S then traes(A) � traes(S).

Any �nite trae inlusion an be shown by using simulation relations, possibly after

adding a speial kind of variables, alled \prophey variables" [2, 36℄.

In some ases, a simulation relation is atually a funtion from states of the implemen-

tation automaton to the states of the spei�ation automaton. In this ase it is alled a

simulation mapping (also known as abstration funtion or re�nement). If R is a simula-

tion funtion and t is a state of the implementation automaton, we use R(t) to denote the

orresponding state of the spei�ation automaton.

Example 2.3 We illustrate the simulation tehnique by presenting a simulation funtion R

from FibSeq to UpSeq. R maps a state t of FibSeq to the state s of UpSeq with s:last =

t:m, where s:last denotes an instane of variable last in state s, and t:m denotes m in state

t. We now argue that R satis�es De�nition 2.1:

1. In the initial state t

0

of FibSeq, t

0

:m = 1; therefore R(t

0

):last = 1, whih is a valid

initial state of UpSeq.
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2. Consider a step (t; print(x); t

0

) of FibSeq. We laim that (R(t); print(x); R(t

0

)) is a

legal step of UpSeq.

(a) We show that, in state R(t) of UpSeq, print(x) is enabled, that is, that its pre-

ondition, x � R(t):last, is satis�ed. The fat that (t; print(x); t

0

) is a step

of FibSeq implies that the preondition, x = t:n + t:m, holds in state t. Sine

R(t):last is equal to t:m by de�nition of R, x = t:n + R(t):last. Therefore, x �

R(t):last, sine t:n � 0, as stated in the following invariant:

Invariant 2.1 In every reahable state t of FibSeq, t:n � 0 and t:m � 0.

Proof: The proposition is true in the initial state t

0

, sine t

0

:n = 0 and t

0

:m

= 1. The proposition is true in state t

0

, after a step (t; print(x); t

0

) of FibSeq,

assuming it is true in state t, sine t

0

:n = t:m � 0 and t

0

:m = t:n + t:m � 0.

(b) After print(x) ours in state R(t), the value of last in the resulting post-state

s

0

is x (see Figure 2). In state t

0

, the value of m is also x (see Figure 3). Hene,

by de�nition of R, s

0

= R(t

0

).

Therefore, R is a simulation mapping from FibSeq to UpSeq, and, as implied by Theorem 2.1,

FibSeq satis�es UpSeq.

3 Speialization

We now present the speialization onstrut for reating a hild automaton by speializing

the parent automaton. This onstrut aptures the notion of subtyping [7℄. In the next

setion, we present the main tehnial ontribution of this paper: a theorem that allows

one to onstrut a simulation proof from a speialization of an algorithm to a speialization

of its spei�ation by extending the original simulation proof from the algorithm to its

spei�ation.

The speialization onstrut de�ned below operates on a parent automaton, and aepts

three additional parameters: a state extension { the new state omponents, an initial state

extension { the initial values of the new state omponents, and a transition restrition spe-

ifying how the hild speializes the parent's transitions.

De�nition 3.1 (Speialization) Let A be an automaton; N be any set of states, alled

a state extension; N

0

be a non-empty subset of N, alled an initial state extension; and

TR � (states(A) � N) � sig(A) � N be a relation, alled a transition restrition.

Then speialize(A)(N; N

0

; TR) de�nes the following automaton A

0

:

� sig(A

0

) = sig(A);

� states(A

0

) = states(A) � N;

� start(A

0

) = start(A) � N

0

;

� trans(A

0

) = f(ht

p

; t

n

i; �; ht

0

p

; t

0

n

i) : (t

p

; �; t

0

p

) 2 trans(A) ^ (ht

p

; t

n

i; �; t

0

n

) 2 TR g,

where ht

p

; t

n

i denotes a state in states(A

0

).
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Notation 3.2 If A

0

= speialize(A)(N; N

0

; TR) we use the following notation: Given t 2

states(A

0

), we write tj

p

to denote its parent omponent and tj

n

to denote its new omponent.

If � is an exeution fragment of A

0

, then �j

p

and �j

n

denote sequenes obtained by replaing

eah state t in � with tj

p

and tj

n

, respetively.

In the preondition-e�et notation, a transition restrition (TR) an be spei�ed for eah

ation � by (a) additional preonditions that a hild plaes on �, and (b) additional e�ets

that speify how the new state omponents are modi�ed as a result of a hild taking a step

involving �. Note that these additional e�ets an rely on but annot modify the parent's

state omponents. The additional preonditions work in onjuntion with the preonditions

plaed on � by the parent automaton, and the additional e�ets are exeuted before the

parent's e�ets; thus, when the additional e�ets read parent state omponents, they observe

their pre-state values. The transition restrition expressed in this style is the union of the

following two sets:

� All triples of the form (t; �; tj

n

) for whih � is not mentioned in the ode for A

0

, that

is, for whih A

0

does not restrit transitions involving �. Note that the post-state tj

n

is the same as the new state omponent of the pre-state t.

� All triples (t; �; t

0

n

) for whih state t satis�es the new preonditions on � plaed by A

0

,

and state t

0

n

is the result of applying �'s new e�ets to t.

Example 3.1 Figure 4 below illustrates the use of the speialization onstrut. It presents

preondition-e�et ode for automaton ASeq, whih speializes automaton UpSeq of Fig-

ure 2 on page 6 to print only aelerating sequenes, that is, sequenes in whih the dif-

ferenes between onseutive elements are nondereasing (in addition to the sequene itself

being nondereasing).

automaton ASeq speializes UpSeq

State Extension: diff 2 Integer, initially arbitrary

Transitions Restrition:

OUTPUT print(x)

new pre: x - last � diff

new eff: diff  x - last

Figure 4: Automaton ASeq printing aelerating sequenes of integers.

ASeq extends the state of UpSeq with a new integer variable diff having an arbitrary

initial value. This variable is used for storing the di�erene between the last pair of elements

printed. The new preondition plaed on print(x) states that x � last has to be greater

than or equal to diff; it works in onjuntion with the preondition, x � last, of print(x)

in UpSeq. The new e�et updates diff to be the urrent di�erene, x � last; it ours

before the e�et that updates last in UpSeq.
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As a result of the new preondition and e�et, transitions of UpSeq are restrited to only

those in whih diff is non-dereasing. Thus, the sample trae of UpSeq given in Example 2.1

is not a trae of ASeq beause (11 � 11) 6� (11 � 5), while that in Example 2.2 is.

Our speialization onstrut is de�ned so that any behavior of a hild is allowed by its

parent. Theorem 3.1 below states this property formally: it says that (1) every exeution �

of a speialization A

0

of an automaton A is also an exeution of A when the state extension

of A

0

is projeted out from �; and (2) every trae of A

0

is a trae of A.

Theorem 3.1 If A

0

is a speialization of automaton A, then:

1. � 2 exes(A

0

) ) �j

p

2 exes(A).

2. � 2 traes(A

0

) ) � 2 traes(A).

Proof 3.1:

1. Let � be an exeution of A

0

, whih, by de�nition of exeution, means that � begins

in some initial state t

0

and that every step (t

i

; �; t

i+1

) in � is a transition of A

0

. By

De�nition 3.1, t

0

j

p

is an initial state of A and, for every step (t

i

; �; t

i+1

) in �, the triple

(t

i

j

p

; �; t

i+1

j

p

) is a transition of A. From this it follows that the sequene obtained by

replaing eah state t in � with tj

p

is an exeution of A. Sine this sequene is �j

p

, we

onlude that �j

p

is an exeution of A.

2. Follows from Part 1 and the fat that sig(A

0

) = sig(A).

As a onsequene of part 2 of Theorem 3.1, we have the following orollary:

Corollary 3.2 If automaton A satis�es automaton S in terms of trae inlusion, then a

speialization A

0

of automaton A also satis�es S in terms of trae inlusion.

Moreover, given a simulation relation R

p

from A to S, the same relation is a simulation

from A

0

to S, exept for the obvious projetion of the states of A

0

onto the states of A.

Corollary 3.3 If relation R

p

is a simulation from A to S, and A

0

is a speialization of A, then

relation R

0

p

= f(t; s) : t 2 states(A

0

) ^ (tj

p

; s) 2 R

p

g is a simulation from A

0

to S.

Many similar inheritane onstruts, suh as, for example, [29, 30, 11, 4℄ and superposition

of [34℄, were de�ned and proven to satisfy properties similar to those of Theorem 3.1 and

Corollary 3.2. However, these properties are not enough to address the situation illustrated in

Figure 1, where we are interested in reusing and extending a proof that automaton A satis�es

automaton S in order to prove that a speialization A

0

of A satis�es a speialization S

0

of S.

Indeed, from Theorem 3.1 and Corollary 3.2, we know only that traes(S

0

) � traes(S)

and that traes(A

0

) � traes(A) � traes(S); the solid arrows in Figure 1 orrespond to

these trae inlusions. But, we do not know whether traes(A

0

) � traes(S

0

); this is what

we would like to be able to show without having to repeat the reasoning used in showing that

traes(A) � traes(S). In the next setion, we address this question by developing a general

theorem that failitates reuse of simulation proofs at the parent level for the onstrution

of simulation proofs at the hild level. The theorem pinpoints exatly whih parts of the

hild-level proof follow from the parent-level proof (these are the parts reused), and whih

do not, and therefore still need to be done in order to omplete the proof.
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4 Inremental Proofs

We now present the main tehnial ontribution of this paper | a general theorem that

lays the foundation for inremental proof onstrution. Consider the situation illustrated

in Figure 1, where A

0

and S

0

are speializations of automata A and S respetively. Given

a simulation relation R

p

from A to S, Theorem 4.1 below states onditions for reusing and

extending R

p

to a simulation relation R



from A

0

to S

0

. Relation R



has to relate every initial

state of A

0

to some initial state extension of S

0

, and it has to satisfy a step ondition similar

to the one in De�nition 2.1, but only involving the transition restrition relation of S

0

.

Theorem 4.1 Let automaton A

0

be a speialization of automaton A. Let automaton S

0

be a

speialization of automaton S, suh that S

0

= speialize(S)(N; N

0

; TR). Assume that A and

S have the same external signatures and that A implements S via a simulation relation R

p

.

A relation R



� states(A

0

) � states(S

0

), de�ned in terms of relation R

p

and a new

relation R

n

� states(A

0

) � N as f(t; s) : (tj

p

; sj

p

) 2 R

p

^ (t; sj

n

) 2 R

n

g; is a simulation

from A

0

to S

0

if R



satis�es the following two onditions:

1. For every t 2 start(A

0

), there exists a state sj

n

2 R

n

(t) suh that sj

n

2 N

0

.

2. If t is a reahable state of A

0

, s is a reahable state of S

0

suh that sj

p

2 R

p

(tj

p

) and sj

n

2 R

n

(t), and (t; �; t

0

) is a step of A

0

, then there exists a �nite sequene � of alternating

states and ations of S

0

, beginning from s and ending at some state s

0

, and satisfying

the following onditions:

1

(a) �j

p

is an exeution fragment of S.

(b) For every step (s

i

; �; s

i+1

) in �, (s

i

; �; s

i+1

j

n

) 2 TR.

() s

0

j

p

2 R

p

(t

0

j

p

).

(d) s

0

j

n

2 R

n

(t

0

).

(e) � has the same trae as (t; �; t

0

).

The theorem follows from Corollary 3.3 and Lemma 4.2 below. Reall that Corollary 3.3

de�nes a simulation relation R

0

p

from A

0

to S in terms of the simulation relation R

p

from A

to S (see Figure 5). The lemma onsiders how to onstrut a simulation relation R



from A

0

to S

0

from the simulation relation R

0

p

. This is a speial ase of Theorem 4.1, when A

0

is the

same as A. The statement of this lemma is almost idential to that of Theorem 4.1; the only

di�erene is that, in Theorem 4.1, state t of states(A

0

) is projeted onto its parent's state

in order to be used in the simulation relation R

p

. The lemma is stated in terms of A

0

and R

0

p

in order to math the notation in Theorem 4.1.

Lemma 4.2 Let S and A

0

be automata with the same external signatures, and let relation R

0

p

be a simulation from A

0

to S. Let S

0

= speialize(S)(N; N

0

; TR). A relation R



� states(A

0

)

� states(S

0

), de�ned in terms of relation R

0

p

and a new relation R

n

� states(A

0

) � N as

f(t; s) : (t; sj

p

) 2 R

0

p

^(t; sj

n

) 2 R

n

g; is a simulation from A

0

to S

0

if R



satis�es the following

two onditions:

1

Note that we do not require � to be an exeution fragment of S

0

.
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Figure 5: Intermediate step: Reusing R

0

p

for building R



.

1. For every t 2 start(A

0

), there exists a state sj

n

2 R

n

(t) suh that sj

n

2 N

0

.

2. If t is a reahable state of A

0

, s is a reahable state of S

0

suh that sj

p

2 R

0

p

(t) and sj

n

2 R

n

(t), and (t; �; t

0

) is a step of A

0

, then there exists a �nite sequene � of alternating

states and ations of S

0

, beginning from s and ending at some state s

0

, and satisfying

the following onditions:

(a) �j

p

is an exeution fragment of S.

(b) For every step (s

i

; �; s

i+1

) in �, (s

i

; �; s

i+1

j

n

) 2 TR.

() s

0

j

p

2 R

0

p

(t

0

).

(d) s

0

j

n

2 R

n

(t

0

).

(e) � has the same trae as (t; �; t

0

).

Proof 4.2: We show that R



satis�es the two onditions of De�nition 2.1:

1. Consider an initial state t of A

0

. By the fat that R

0

p

is a simulation, there must exist

a state sj

p

2 R

0

p

(t) suh that sj

p

2 start(S). By ondition 1 of the lemma, there must

exist a state sj

n

2 R

n

(t) suh that sj

n

2 N

0

. Consider state s = hsj

p

; sj

n

i. State s is

in R



(t) by de�nition. Also, by De�nition 3.1, start(S

0

) = start(S) � N

0

; therefore,

s = hsj

p

; sj

n

i 2 start(S) � N

0

= start(S

0

).

2. First, notie that the de�nitions of state s and relation R



imply that s 2 R



(t); also,

notie that onditions 2 and 2d imply that s

0

2 R



(t

0

).

Next, we show that � is an exeution fragment of S

0

with the right trae. Indeed,

every step of � is onsistent with trans(S) (by 2a) and is onsistent with TR (by 2b).

Therefore, by de�nition of trans(S

0

) (De�nition 3.1), every step of � is onsistent with

trans(S

0

). In other words, � is an exeution fragment of S

0

that starts with state in

R



(t), ends with state in R



(t

0

), and has the same trae as (t; �; t

0

) (by 2e).

We are now ready to prove Theorem 4.1:

Proof 4.1: Theorem 4.1 follows immediately from Lemma 4.2 applied to automata A

0

, S, and

S

0

, with a simulation relation R

0

p

from A

0

to S being f(t; s) : t 2 states(A

0

) ^ (tj

p

; s) 2 R

p

g,

as proved in Corollary 3.3. Eah of the onditions in this theorem implies the orresponding

ondition in the lemma.
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In pratie, Theorem 4.1 (or Lemma 4.2) would be exploited as follows: The simulation

proof between the parent automata already provides a orresponding exeution fragment of

the parent spei�ation for every step of the parent algorithm. It is typially the ase that

the same exeution fragment, padded with new state variables, orresponds to the same step

at the hild algorithm. Thus, onditions 2a, 2, and 2e of Lemma 4.2 hold for this fragment.

The only onditions that have to be veri�ed are 2b, and 2d, that is, that every step of this

exeution fragment is onsistent with the transition restrition TR plaed on S by S

0

and that

the values of the new state variables of S

0

in the �nal state of this exeution are related to

the post-state of the hild algorithm. The veri�ation of these two onditions may depend

on some of the invariant assertions that were unovered during the parent proof.

To exemplify how Theorem 4.1 and Lemma 4.2 would be exploited in pratie, we use

Lemma 4.2 to prove that FibSeq satis�es ASeq, a speialization of UpSeq. Automata

UpSeq, FibSeq, and ASeq are simple enough to keep the example tratable, but they are

arguably too simple to demonstrate the full utility of inremental proof onstrution. In

Setion 6 we desribe how this framework was exploited in the design of a omplex group

ommuniation servie.

Example 4.1 Reall that in Example 2.3 we presented a simulation mapping R from the

states of FibSeq to the states of UpSeq. To onstrut a simulation mapping R

0

from FibSeq

to ASeq, we extend R with the following mapping R

n

that maps eah state t of FibSeq to

the state extension s of ASeq suh that

s:diff =

�

t:m� t:n if t:n 6= 0

0 otherwise

In order to prove that R

0

is a simulation mapping we have to prove that it satis�es eah

of the onditions of Lemma 4.2.

Condition 1 is satis�ed beause, if t is the initial state of FibSeq, R

n

(t):diff = 0 is a

valid initial value for the state extension of ASeq.

For Condition 2, the ation orrespondene is the same as in the simulation of UpSeq

by FibSeq: a step of ASeq involving print(x) is simulated whenever FibSeq takes a step

involving print(x). Conditions 2a, 2, and 2e are implied by the fat that R is a simulation

relation from FibSeq to UpSeq; these were proven in Example 2.3. Thus, we only need to

prove onditions 2b and 2d. Condition 2b requires the new preondition, x � last � diff,

to be satis�ed in state R

0

(t), provided the parent's preondition, x = n + m, holds in state t.

Condition 2d requires the R

n

mapping to be preserved in the post-transition states of FibSeq

and ASeq; namely, the value of the new state variable diff in the post-transition state

of ASeq has to be the same as that of R

n

(t

0

):diff. Proving that these two onditions are

satis�ed involves reasoning only about how ASeq speializes UpSeq.

We now prove that onditions 2b and 2d hold. Consider a step (t; print(x); t

0

) of FibSeq;

it implies that x = t:n + t:m, and that t

0

:n = t:m and t

0

:m = t:n + t:m.

� Condition 2b: We have to show that the orresponding print(x) step of ASeq is en-

abled in state R

0

(t), that is, that x � R

0

(t):last � R

0

(t):diff. By using the simulation

mapping, we derive: x � R

0

(t):last = x � R(t):last = x � t:m = t:n + t:m � t:m

13



= t:n. If t:n = 0 (as in the initial state of FibSeq), then, by de�nition of R

0

and R

n

,

R

0

(t):diff = R

n

(t):diff = 0, and we are done. Otherwise, if t:n 6= 0, then R

0

(t):diff

= R

n

(t):diff = t:m � t:n, and it remains to show that t:n � t:m � t:n. Invariant 4.2

below establishes this fat by relying on the following auxiliary invariant:

Invariant 4.1 In every reahable state t of FibSeq, t:m � t:n.

Proof: The proposition is true in the initial state t

0

, sine t

0

:n = 0 and t

0

:m = 1.

The proposition is true in state t

0

, after a step (t; print(x); t

0

) of FibSeq, sine t:n

� 0 (Invariant 2.1), and hene t

0

:m = t:n + t:m � t:m = t

0

:n.

Invariant 4.2 In every reahable state t of FibSeq, t:n � t:m � t:n, if t:n 6= 0.

Proof: The proposition is vauously true in the initial state t

0

, sine t

0

:n = 0. The

proposition is true in state t

0

, after a step (t; print(x); t

0

) of FibSeq, sine t:m � t:n

(Invariant 4.1), and therefore t

0

:n = t:m � t:n = t

0

:m � t:m = t

0

:m � t

0

:n.

� Condition 2d: Aording to the ode, the post-transition value of diff is x � R

0

(t):last

= t:n = t

0

:m � t:m = t

0

:m � t

0

:n. If t

0

:n 6= 0, then t

0

:m � t

0

:n = R

n

(t

0

):diff, and we

are done. Otherwise, if t

0

:n = 0, R

n

(t

0

):diff = 0 by de�nition, and the post-transition

value of diff is also 0, sine 0 = t

0

:n = t:m � t:n � 0 (Invariants 2.1 and 4.1).

Notie that, in verifying onditions 2b and 2d in Example 4.1, we relied on Invariant 2.1,

whih was stated and proven during the simulation proof from FibSeq to UpSeq. In general,

knowing the invariant assertions that have been unovered during the parent's proof an be

helpful in extending that proof to the hildren.

5 Sublassing for Extension

In this setion, we extend the theory of inremental modeling and proof onstrution to

a new modi�ation onstrut, alled speialized extension; the onstrut is formulated in

De�nition 5.2 and the extended proof-reuse theorem appears as Theorem 5.4. This onstrut

orresponds to the sublassing for extension form of inheritane [7℄, whih is similar to

speialization in that a hild annot override its parent's behavior, but it is more powerful

than speialization in that a hild an introdue new types of behavior through new ations,

nonexistent in the parent.

We de�ne a speialized extension of an automaton by �rst extending the parent automa-

ton with new ations using a new onstrut, alled signature extension, and then applying

speialization of Setion 3. The new ations introdued by signature extension are enabled

in every state and do not modify the state; the subsequent speialization operation gives

meaning to these new ations by restriting transitions involving the new ations, and, pos-

sibly, those involving parent's ations as well. The resulting automaton an interat with

its environment through both the parent's ations and the new ones. Beause new ations

14



(even after being speialized) do not a�et the parent's state, any trae of the hild is in-

distinguishable from a trae of the parent when new ations are projeted out from the

trae.

2

The signature extension onstrut, formulated in De�nition 5.1, reates a new automaton

by adding new ations to an existing automaton. The new automaton has an extended

signature, but the same states and start states as the original automaton; the new state-

transition relation is the same as the one in the original automaton, exept that it inludes

additional transitions that relate every state to itself via new ations (i.e., new ations are

enabled in every state, but do not modify the state); suh transitions are alled \stuttering"

steps by Lamport [28℄.

In addition, the signature extension onstrut allows the new automaton to rename some

or all of the original automaton's ations. The renaming is spei�ed by a signature-mapping

funtion that maps ations in the new signature to their ounterparts in the parent signature.

The funtion is allowed to be many-to-one, whih means that the same ation of the parent

may be renamed into several ations of the hild; this is useful beause it allows a hild

to add new parameters to its parent's ations, and beause instanes of the same parent's

ation an be speialized di�erently under di�erent names. The signature-mapping is onto,

that is, every parent ation has at least one orresponding ation at the hild. The funtion

is de�ned only for ations inherited from the parent (renamed or not); it is unde�ned for

new ations introdued by the signature extension. If � is suh a new ation and f is a

signature-mapping, we write f(�) = ? to denote the fat that � is not in the domain of

de�nition of f; ? is a assumed to be di�erent from any ation name.

De�nition 5.1 (Signature Extension) Let A be an automaton, and X be some signature.

Let f be a partial funtion, alled a signature-mapping, from X to sig(A) suh that f

is onto and preserves the lassi�ation of ations as \input", \output", and \internal"; the

latter means that, if f(�) is de�ned, it is of the same lassi�ation as �.

3

Then, extend(A)(X; f) is de�ned to be the following automaton A

0

:

� sig(A

0

) = X,

� states(A

0

) = states(A),

� start(A

0

) = start(A), and

� trans(A

0

) = f(t; �; t

0

) 2 states(A

0

)� sig(A

0

)� states(A

0

) :

((f(�) = ?) ^ (t = t

0

)) _ ((f(�) 2 sig(A)) ^ ((t; f(�); t

0

) 2 trans(A)))g.

We say that A

0

is the signature extension of A with signature-mapping f if A

0

is suh that

A

0

= extend(A)(sig(A

0

); f) for some signature-mapping f from sig(A

0

) to sig(A).

Having de�ned the signature extension onstrut, we now ombine it with speialization

to yield speialized extensions of automata.

2

Notie that this is stronger than behavioral subtyping of Liskov and Wing [30, 29℄, in whih a trae of

a hild is required to be indistinguishable from a trae of its parent only when the trae does not ontain

ations introdued by the hild (see Setion 8).

3

Signature-mapping is similar to strong orrespondene of [41℄.
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De�nition 5.2 (Speialized Extension) Automaton A

0

is alled a speialized extension

of an automaton A if A

0

is a speialization of a signature extension of A.

In preondition-e�et notation, we express a speialized extension A

0

of an automaton A by

writing \A

0

modifies A" and then speifying the signature extension and the speialization

parts of A

0

. The signature extension part ontains the new ations labeled with a keyword

new, and the renamed ations labeled with their original names in sig(A), aording to the

signature-mapping; for example, if the signature mapping maps � of A

0

to � of A, we write

\� modi�es �". We omit speifying the ations of sig(A

0

) that are inherited from A without

renaming. The speialization part ontains the state extension and the transition restrition

spei�ations, as desribed in Setion 3 on page 9.

We now exemplify how the signature extension onstrut an be used in onjuntion with

the speialization onstrut to reate speialized extensions.

Example 5.1 Figure 6 presents automaton FibSeq+ that modi�es automaton FibSeq to

print eah element of the Fibonai sequene together with its sequene number. The signature-

mapping spei�ed by the Signature Extension lause maps ations print(i; x) where i 2

Integer to ations print(x) of FibSeq. Thus, for example, ations print(8; 43) and

print(23; 43) of FibSeq+ are among those ations mapped to the print(43) ation of

FibSeq. Then, the speialization onstrut adds a new state variable, last i, that keeps

trak of the sequene number of the last Fibonai element printed; it also adds a new pre-

ondition and a new e�et to the print(i; x) ation to maintain i and last i properly.

automaton FibSeq+ modifies FibSeq

Signature Extension: Output print(i, x), i 2 Integer modi�es FibSeq.print(x)

New State: last i 2 Integer, initially 0

Transition Restrition:

OUTPUT print(i, x)

new pre: i = last i + 1

new eff: last i  i

Figure 6: Automaton FibSeq+ speifying enumerated Fibonai sequenes.

Notie that any exeution � of FibSeq+ is an exeution of FibSeq when the newly added

state variable, last i, is projeted out from every state in � and when every ation in � is

renamed aording to the spei�ed signature-mapping. Theorem 5.2 below formalizes this

property in general. It follows from Theorem 3.1, whih is a similar exeution-inlusion

property of speialization. This is beause, modulo the signature-mapping, a signature

extension of an automaton and the automaton itself have exatly the same exeutions and

traes; we prove this result in Lemma 5.1 below.

Notation 5.3 Let A

0

be a signature extension of A with a signature-mapping f.
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If � is a sequene of alternating states and ations of A

0

, then f(�) denotes the sequene

obtained by replaing eah ation � in � with f(�), and then ollapsing every triple of the

form (t;?; t) to t. Triples of the form (t;?; t

0

) where t

0

6= t are not ollapsed; suh triples

are possible beause � is not neessarily an exeution sequene of A

0

.

Likewise, if � is a sequene of external ations of A

0

, then f(�) denotes a sequene obtained

by replaing eah ation � in � with f(�), and then removing all the ourrenes of ?.

Lemma 5.1 Let automaton A

0

be a signature extension of A with a signature-mapping f.

Let � be a sequene of alternating states and ations of A

0

and let � be a sequene of

external ations of A

0

. Then:

1. � 2 exes(A

0

) , f(�) 2 exes(A).

2. � 2 traes(A

0

) , f(�) 2 traes(A).

Proof 5.1: The proof follows from De�nition 5.1 and Notation 5.3.

1. ): Let � be an exeution of A

0

. By de�nition of exeution, � begins in some initial state

t

0

, and every step (t

i

; �; t

i+1

) in � is a transition of A

0

. From this and De�nition 5.1,

t

0

is an initial state of A, and, for every step (t

i

; �; t

i+1

) in �, either (t

i

; f(�); t

i+1

) is

a step of A when f(�) 2 sig(A), or t

i

= t

i+1

when f(�) = ?.

Therefore, by de�nition of exeution, the sequene obtained by replaing every step

(t

i

; �; t

i+1

) in � with either (t

i

; f(�); t

i+1

) when f(�) 2 sig(A), or t

i

when f(�) = ?

is an exeution of A. Sine this sequene is f(�), we onlude that f(�) 2 exes(A).

(: Let � be a sequene of alternating states and ations of A

0

suh that f(�) 2 exes(A).

This means that � begins with some initial state t

0

of A, and that, for every triple

(t

i

; �; t

i+1

) of elements in �, either (t

i

; f(�); t

i+1

) is a step of A when f(�) 2 sig(A),

or t

i

= t

i+1

when f(�) = ?. From this assumption and De�nition 5.1, it follows

that t

0

is an initial state of A

0

and that every triple (t

i

; �; t

i+1

) of elements in � is a

transition of A

0

. Thus, � 2 exes(A

0

).

2. Follows from part 1 and the fat that f preserves the lassi�ation of ations as \input",

\output", and \internal".

Theorem 5.2 If A

0

is a speialized extension of A with a signature-mapping f, then

1. � 2 exes(A

0

) ) f(�j

p

) 2 exes(A).

2. � 2 traes(A

0

) ) f(�) 2 traes(A).

Proof 5.2: Follows immediately from Theorem 3.1 and Lemma 5.1

Sine signature extension does not modify the original automata beyond simple renaming

of ations, we would expet it to have minimal e�et on the proof-reuse theorems (Theo-

rem 4.1 and Lemma 4.2) of Setion 4 when those theorems are used in verifying speialized

extensions of automata. We prove this intuition orret in Theorem 5.4 below; this theorem

is an adaptation of Theorem 4.1 for the ase when hild automata are speialized extensions

of their parents. The theorem follows from Theorem 4.1 and the following lemma, whih es-

tablishes that a simulation relation between two automata is preserved when these automata

are signature-extended:
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Lemma 5.3 Let A

0

be the signature extension of A with a signature-mapping f. Let S

0

be the

signature extension of S with a signature-mapping g. Assume that A has the same external

signature as S and that there is a simulation relation R from A to S. Assume further that A

0

has the same external signature as S

0

, and that, for every external ation � 2 sig(A

0

), g(�)

= f(�). Then, R is a simulation relation from A

0

to S

0

.

Proof 5.3: Follows straightforwardly from De�nitions 2.1 and 5.1.

The only di�erene between the statements of Theorem 5.4 below and Theorem 4.1 is

that here, whenever hild's ations are used in the ontext of the parent automaton (as in

Condition 2a), they are translated via the signature-mapping to the orresponding ations

of the parent.

Theorem 5.4 Let automaton A

0

be a speialized extension of A with a signature-mapping

f. Let automaton S

0

be a speialized extension of S with a signature-mapping g, suh that

S

0

= speialize(extend(S)(G; g))(N; N

0

; TR). Assume that A and S have the same external

signatures and that A implements S via a simulation relation R

p

. Assume further that A

0

and

S

0

have the same external signatures, and that, for every external ation � 2 A

0

, g(�) = f(�).

A relation R



� states(A

0

) � states(S

0

), de�ned in terms of relation R

p

and a new

relation R

n

� states(A

0

) � N as f(t; s) : (tj

p

; sj

p

) 2 R

p

^ (t; sj

n

) 2 R

n

g; is a simulation

from A

0

to S

0

if R



satis�es the following two onditions:

1. For every t 2 start(A

0

), there exists a state sj

n

2 R

n

(t) suh that sj

n

2 N

0

.

2. If t is a reahable state of A

0

, s is a reahable state of S

0

suh that sj

p

2 R

p

(tj

p

) and sj

n

2 R

n

(t), and (t; �; t

0

) is a step of A

0

, then there exists a �nite sequene � of alternating

states and ations of S

0

, beginning from s and ending at some state s

0

, and satisfying

the following onditions:

(a) g(�j

p

) is an exeution fragment of S.

(b) For every step (s

i

; �; s

i+1

) in �, (s

i

; �; s

i+1

j

n

) 2 TR.

() s

0

j

p

2 R

p

(t

0

j

p

).

(d) s

0

j

n

2 R

n

(t

0

).

(e) � has the same trae as (t; �; t

0

).

Proof 5.4: Follows straightforwardly as a orollary from Theorem 4.1 and Lemma 5.3.

Theorem 5.4 an be used in pratie in the same way as Theorem 4.1 and Lemma 4.2

(see the disussion after the proof of Theorem 4.1 on page 12): Transitions involving new

ations introdued by signature extension are de�ned entirely by the speialization ode and,

therefore, involve reasoning about this ode alone. Transitions involving parent's ations,

whih are possibly renamed by the hild, depend on the ode of both the parent and the

hild. Even when ations are renamed, the task of proving that the simulation relation

holds for suh transitions typially allows one to rely on the simulation proof of the parent

automata to dedue onditions 2a, 2, and 2e, and requires veri�ation of onditions 1, 2b,

and 2d only.
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6 Pratial Experiene With Inremental Modeling

The tehnique presented in this paper has evolved as part of our experiene designing and

modeling a omplex group ommuniation servie [25℄. In this setion we desribe our

experiene in that projet, and how the framework presented in this paper was exploited. We

use the example to illustrate irumstanes under whih the inheritane-based tehnique of

this paper an be useful. In the next setion we desribe an interesting modeling methodology

that has evolved with our experiene in that projet.

6.1 Group ommuniation: bakground

Group ommuniation servies [6, 9℄ are powerful middleware systems that failitate the de-

velopment of fault-tolerant distributed appliations. These servies provide a notion of group

abstration, whih allows appliation proesses to easily organize themselves into multiast

groups. Appliation proesses an ommuniate with the members of a group by addressing

messages to the group.

Group ommuniation systems typially provide reliable multiast and group member-

ship servies. The task of the membership servie is to maintain a listing of the urrently

ative and onneted proesses and to deliver this information to the appliation whenever

it hanges. The output of the membership servie is alled a view. The reliable multiast

servies deliver messages to the urrent view members.

Group ommuniation systems are omplex software systems, and their behavior desrip-

tions are orrespondingly intriate. Suh intriate behavior is often desribed as a olletion

of properties that the servie guarantees (for a survey of suh properties, see [9℄).

6.2 Inremental modeling of group ommuniation

In [25℄ we presented a formal design for a novel group ommuniation servie targeted for

wide-area networks. The projet inluded a spei�ation of the servie semantis, a model

of the implementation, and an assertional orretness proof showing that the model satis�es

the spei�ation. The implementation used two auxiliary servies: group membership and

reliable multiast. We gave high-level abstrat models of the behavior of these two servies

as I/O automata. We gave a low-level I/O automaton modeling the algorithm exeuted by

the end-points of the servie in di�erent loations. The model of the implementation was

then a omposition of a olletion of end-point automata (one for eah end-point running the

servie) with the two high-level auxiliary servie automata. The proof exhibited a simulation

relation from the implementation model to the spei�ation, whih was also given as an I/O

automaton.

The new algorithm run by the end-points of the servie has been implemented in C++,

using roughly 9,000 lines of ode [40℄, inluding ode for thread and soket maintenane,

auxiliary lasses for data strutures maintenane, header �les, in-program doumentation,

et. The auxiliary membership servie [27℄ was developed by another development team

using roughly 20,000 lines of C++ ode, and the reliable multiast servie was implemented

by a third team [3℄ using roughly 4,000 lines of C++ ode. The I/O automaton model of
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the end-point algorithm required a total of approximately 120 lines of I/O automaton ode,

modeling �fteen di�erent ations and using approximately ten data strutures

4

.

Modeling and validating a system of this sale and intriay was a major hallenge.

Although formal approahes were previously used to speify group ommuniation systems

and to verify their appliations, (see [8, 12, 21℄), algorithms implementing the atual systems

were not previously formally modeled or assertionally veri�ed.

In order to manage the omplexity of the projet, we found a need to employ an objet-

oriented approah that would allow for reuse of models and proofs. Therefore, in [25℄, we used

the I/O automaton formalism enrihed with the inheritane-based inremental modi�ation

onstruts presented in this paper to speify the safety properties of our servie and to model

the algorithm. We then exploited the proof reuse theorem when verifying the algorithm.

We spei�ed, modeled, and veri�ed our servie in four steps; eah step dealt with a

ertain group ommuniation property. These four properties are typially de�ned using

four separate logi formulas, for example, in [9℄. Therefore, by speifying the properties

inrementally, we have made it easier to relate our abstrat spei�ation automaton to

existing group ommuniation spei�ations. It was also important to model the algorithms

implementing eah of these properties one step at a time to redue the omplexity of the

design and veri�ation and to make it lear whih algorithm implements whih property.

We started with a simple servie, fifo, that provides reliable fifo multiast within

group membership views. The spei�ation of the fifo servie took about 15 lines of I/O

automaton ode and onsisted of three parameterized ations and three state variables, some

of whih were two-dimensional arrays. We modeled the end-point algorithm using roughly

50 lines of I/O automaton ode; the ode inluded eleven parameterized ations and seven

state variables, some of whih were arrays. The veri�ation part presented a simulation

proof showing that the omposition of all the fifo end-point automata and the high-level

automata speifying the auxiliary servies implements the fifo spei�ation. The proof

took about �ve pages, inluded seven major invariants, and used the tehnique of history

variables [2℄.

As a seond step, we used speialized extension to modify the fifo spei�ation and

algorithm to inlude an additional property, alled vs. This property synhronizes view

delivery and message delivery events in an exeution. It requires that end-points that move

together from one view to another (i.e., remain onneted) deliver the same set of messages

in the former view.

The extension of the fifo spei�ation introdued a new internal ation and a new array

variable to speify the appropriate synhronizations of view delivery and message delivery

events. The extension then onstrained the view delivery ations to our exatly at the

times when the spei�ed synhronizations held; the onstraint was expressed in terms of

both parent and new variables. The extension of the spei�ation took about ten lines of

ode; it relied on and reused the parent spei�ation of how messages, views, and ommon

data strutures are handled.

4

I/O automaton ode is rather ompat and therefore an I/O automaton model of a system is generally

muh shorter than the atual C++ ode of the system. This is due to the fat that I/O ode is at a higher

level of abstration, it does not inlude ode for sheduling of ations, maintenane of threads, sokets, or

data strutures, garbage olletion, header �les, et.
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The extension of the fifo end-point algorithm introdued a distributed synhronization

protool enforing the vs property. The protool involved four new ations and four new

variables, some of whih were arrays. It relied on the parent algorithm handling ommon

events and data strutures, suh as message bu�ers and indies. In addition, the extension

of the end-point algorithm modi�ed four of the parent's ations. In partiular, it onstrained

the view delivery and message delivery ations to respet the omputed synhronizations.

The onstraints were expressed in terms of both parent and new variables. The veri�ation

exploited Theorem 5.4. The simulation proof foused solely on the vs property and took

about two pages; no arguments from the �ve page parent-level proof needed to be repeated.

As a third step, we enrihed our servie with an additional property, alled ts, whih

augments eah view delivery with speial information alled a transitional set [9℄. We spe-

i�ed this property using a stand-alone automaton, (i.e., without using inheritane), using

about �fteen lines of ode, two parameterized ations, and two array variables. The vs

end-point algorithm was already omputing the transitional set information as a by-produt

of implementing the vs property. We used the signature extension onstrut to modify the

signature of the view delivery ation to inlude the transitional set as an additional parame-

ter. We then exhibited a simulation proof, showing that the modi�ed algorithm satis�es the

ts spei�ation. This proof foused solely on the ts property, it took two and a half pages,

inluded three major invariants, and used the tehnique of prophey variables [2℄.

Finally, we used speialized extension to modify the vs spei�ation and algorithm to

inlude the fourth property, alled self. This property requires that appliation proesses

reeive their own messages before moving to the next view. self is another example of a

synhronization property, whih restrits possible ation interleaving. The extension of the

spei�ation added a single onstraint to the parent's view delivery ation; the onstraint

was in terms of the parent's variables. The extension of the end-point algorithm was about

�fteen lines of ode and involved a synhronization with the end-point's lient. Again, we

exploited Theorem 5.4 in verifying that the �nal algorithm satis�es the �nal spei�ation.

The �nal step of the simulation proof foused solely on the self property; it took two and

a half pages and inluded three major invariants.

Group ommuniation systems are partiularly amenable to inremental modeling and

veri�ation using our formalism beause suh systems involve a number of separate prop-

erties, eah onstraining or synhronizing the deliveries of messages and views. Given an

algorithm (a spei�ation) for one suh property, an algorithm (a spei�ation) that adds

a seond property enfores additional synhronization onstraints. The hild an reuse the

handling of ommon events and data strutures by the parent and introdue only the ma-

hinery required to provide the new property; the mahinery an rely on both new and

parent data strutures. In order to provide the property, the hild an establish the required

synhronization, for example, using new ations, and then enfore it by adding new preon-

ditions to the ommon ations. For example in [25℄, the algorithm that implemented the vs

property established the synhronization by introduing a new protool and then enfored

the synhronization by requiring the protool to omplete before the view and message de-

livery events ould exeute. In summary, we believe that our inheritane-based formalism

is partiularly useful for modeling and verifying systems whose spei�ations onsist of a

number of di�erent properties that onstrain the same ations.
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6.3 The bene�ts of inremental modeling and veri�ation

Using the inheritane-based tehnique, we were able to present a omplex algorithm step by

step. This way, it was easy to see whih part of the algorithm orresponds to whih property

of the spei�ation. Correspondingly, the proof was broken up into piees of manageable

size. Moreover, eah piee of the proof was foused on proving a spei� property. This

piee only needed to onsider the part of the ode that implements that property; disussing

other piees of the ode would have distrated attention from what is being proven.

Previous projets that modeled large-sale omplex systems using I/O automata relied on

omposition; omplex algorithms were expressed by multiple manageable parts that jointly

ompose the algorithm (see, for example, [21℄). In the ontext of our projet, however, om-

position ould not have been used in lieu of inheritane, for two reasons: Firstly, omposition

does not allow di�erent omponents to share the same data strutures. In ontrast, all the

parts of our algorithm share ommon data strutures suh as message bu�ers. Using om-

position, we would have had to dupliate these data strutures as well as the book-keeping

logi assoiated with them. This would make the algorithm models more umbersome.

The seond and more important reason is that omposition does not allow for proof

reuse, sine it does not guarantee that one omponent does not violate the guarantees of

the other. Consider our projet, for example. Had we omposed a fifo multiast servie

that meets the fifo spei�ation with a vs servie that synhronizes messages with views,

we would have had no guarantee that the ombined servie preserves the fifo order. In

order to prove that the omposition indeed satis�es the fifo spei�ation, we would have

to prove (1) that the fifo servie orders messages in this order; and (2) that the vs servie

does not hange message order in a way that would violate the property. When introduing

a third omponent, (for example, self), we would, one again, have to prove that the new

omponent does not violate the fifo order. This repetition of reasoning is preisely what

our inheritane-based tehnique allows us to avoid.

7 Disussion of Modeling Methodology

Our notion of inheritane allows a hild to see the parent's internal variables, but not to write

to them. In this respet, the parent's internal variables and ations an be seen as proteted

variables, but with additional restritions. Spei�ally, speialization does not allow hildren

to hange state variables of their parents.

In some situations, however, one may see a need for a hild to modify a parent's vari-

able. We have enountered suh situations when we modeled the algorithms in [25℄, as

desribed in the previous setion. We dealt with this ase by introduing a ertain level

of non-determinism at the parent, thereby allowing the hild to resolve (speialize) this

nondeterminism later.

For example, the algorithm that implemented the seond spei�ation desribed above

sometimes needed to forward messages to other proesses, although suh forwarding was not

needed at the parent. The forwarded messages would have to be stored at the same bu�ers as

other messages. However, these message bu�ers were variables of the parent, so the hild was

not allowed to modify them. We solved this diÆulty by hanging the parent automaton to
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have a forwarding ation whih forwards arbitrary messages to other proesses. The parent

stores inoming forwarded messages in the appropriate message bu�ers, in a manner that

preserves the oherene of its data strutures. The hild then sets the poliy for restriting

the arbitrary message forwarding aording to its algorithm. Using this methodology allowed

us to bene�t from proof reuse, without ompliating the proofs.

We liken this methodology to the use of abstrat methods or pure virtual methods in

objet-oriented methodology, sine the non-determinism is left at the parent as a \hook"

for prospetive hildren to speify any forwarding poliy they might need. Thus, the parent

spei�es the poliy and the integrity onstraints for modifying its variables. The atual

mehanism is implemented by the hild while abiding to the parent's onstraints; the hild

of ourse an also re�ne the poliy and the integrity onstraints.

8 Related work

The works that most losely relate to ours are those of Soundarajan and Fridella [37, 38℄

and Stata and Guttag [39℄. Unlike our formalisms, both of these works are restrited to the

ontext of sequential programming and do not enompass reative omponents.

Like us, Soundarajan and Fridella [37, 38℄ have reognized that inremental reasoning

is important in exploiting the full potential of inheritane. They present a spei�ation

notation and a veri�ation proedure geared towards suh inremental reasoning. However,

they onsider a more general type of inheritane | one that allows a hild to override

behavior of the parent. As a result, the proof-reuse result they obtain is muh weaker and

less strutured than ours. In partiular, reasoning reuse applies only when the simulation

funtion (abstration funtion, in their ase) between hild automata is idential to that

between parent automata, and only to those ations that are inherited from the parent

without any modi�ation. In ontrast, our framework applies to all types of ations, inluding

those whih are modi�ed by the hild.

Stata and Guttag [39℄ have also reognized the need for proof-reuse in a manner similar to

that suggested in this paper. They suggest a framework for de�ning programming guidelines

and supplement this framework with informal rules that may be used to failitate reasoning

about orretness of a sublass given the orretness of the superlass is known. However,

they only addressed informal reasoning and did not provide the mathematial foundation

for formal proofs.

Numerous other researh projets, for example [1, 5, 10, 11, 20, 24, 29, 30, 35, 4, 34, 15℄,

have dealt formally with inheritane and its semantis. In partiular, many projets, suh

as [29, 30, 11, 4, 34℄, fous on de�ning inheritane onstruts in ways that either automatially

imply or simplify the task of proving that a hild behaves indistinguishably from its parent,

in other words, that the hild satis�es its parent's spei�ation. However, no other work

that we are aware of allows for reuse of a parent-level simulation proof when showing that a

hild satis�es (simulates) its own spei�ation.

To be fair, we note that it is not immediately obvious how to adapt our inremental

veri�ation ideas to the notions of inheritane in objet-oriented programming languages.

The denotational semantis of inheritane in these languages is more omplex than what we

onsider in this paper; for example, it inludes reursion. However, we also feel that the
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essene of our approah is general enough to be appliable to other state-transition formal

models, suh as TLA [28℄, UNITY [34℄, and Proess Algebra [22, 33℄.

We note also that, while our de�nition of sublassing for extension is similar to behavioral

subtyping of Liskov and Wing [29, 30℄, it is not idential: Behavioral subtyping requires only

that a hild behave indistinguishably from its parent when the hild is used in the ontext of

the parent, that is, when the exeution of the hild ontains only the parent's ations, and

none of the ations introdued by the hild. Sublassing for extension enfores a stronger

property: any trae (exeution) of the hild, even one that has ations introdued by the

hild, is indistinguishable from a parent's trae when all suh new ations (and new state

variables) are projeted out.

9 Conlusions

In this paper, we have presented an inheritane-based formalism for modeling and verifying

systems inrementally.

The formalism de�nes two inheritane onstruts that an be used to model a modi�ed

version of an abstrat model of a system by speifying how the modi�ation is di�erent from

the original. Using these onstruts, one an model (speify) a omplex system inrementally,

by starting from a basi model (spei�ation) and then, at eah step, adding support for

new properties of the system.

For simpliity, the paper has desribed the formalism in terms of two levels of abstration:

\spei�ation" and \algorithm"; but in general, the formalism is omplementary to the

tehnique of using suessive re�nement. It an be applied for modeling systems at any

relevant level of abstration, from the lowest level orresponding to software ode, to the

highest one orresponding to the most abstrat system spei�ation.

A distinguishing feature of our formalism is its support for inremental veri�ation, whih

ompliments inremental modeling. The formalism provides fundamental theorems (4.1

and 5.4) that state formally how a simulation proof of one abstrat model of a system

satisfying another an be reused and extended to a simulation proof for the modi�ed ver-

sions of these models. This allows one, not only to model and speify a omplex system

inrementally, but also to verify inrementally that the model satis�es its spei�ation.

The formalism, and in partiular its inremental veri�ation omponent, was motivated

by and re�ned during a projet designing and modeling a omplex middleware system [25℄.

The ability to model and verify the system inrementally was ritial in making the projet

tratable and in making it lear whih part of the algorithm implemented whih property.

As Setion 6.3 explains, standard ompositional tehniques would have not been suÆient.

As explained in Setion 6 on page 21, the inheritane-based formalism was partiularly

useful in the ontext of that projet beause the modeled middleware system involved a

number of separate properties, eah onstraining or synhronizing ommon events. We

believe that the formalism would be useful for modeling and verifying other systems that

inlude di�erent properties onstraining the same ations.

The formalism desribed in this paper has been presented using the I/O automaton

model | the same model that we used to model the omplex middleware system. The

I/O automaton model has been used extensively for modeling and reasoning about omplex
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distributed systems and has been developed into a programming and modeling language,

alled IOA [13, 14℄. As one of our future projets, we plan to failitate the inorporation

of our inheritane-based approah into the IOA tool-set, thereby enrihing its modeling and

reasoning failities.

The I/O automaton model has been a onvenient model in whih to express our for-

malism. The essene of the approah, however, is general enough to be appliable to other

state-transition formal models, suh as TLA [28℄, UNITY [34℄, and Proess Algebra [22, 33℄,

or, in other words, to any formal model that supports simulation proofs. One interesting

diretion for future researh is to enrih the standard formal modeling languages with a

version of our formalism.

The formalism presented in this paper allows modeling of systems using two standard

and important types of inheritane: speialization and sublassing for extension. In our

future work, we are planning to expand the formalism, inluding its inremental veri�ation

aspet, to support other types of inheritane.

Of partiular importane is a onstrut that would allow modi�ations that override a

system's behavior. In general, one would expet little, if any, proof reuse possible for suh

a onstrut, sine modi�ations done to a system may invalidate whatever reasoning has

been done about it. Nevertheless, useful approahes to irumventing this impasse ould

rely on limiting the types of the modi�ations allowed by the onstrut and on requiring the

modi�ations to preserve ertain invariants.

The formalism presented here is an important step toward salable and ost-e�etive

formal methods and toward pratial software design methodologies that, in addition to fa-

ilitating reuse of ode, also failitate reuse of reasoning. In general, any extensions to the

formalism that we make in the future will be motivated and guided by our work on designing

and modeling omplex distributed systems. This approah will ensure that, like the formal-

ism presented in this paper, these extensions will have important, pratial impliations.
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