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Abstra
t

This paper presents a formal te
hnique for in
remental 
onstru
tion of system spe
i�
ations, algo-

rithm des
riptions, and simulation proofs showing that algorithms meet their spe
i�
ations.

The te
hnique for building spe
i�
ations and algorithms in
rementally allows a 
hild spe
i�
a-

tion or algorithm to inherit from its parent by two forms of in
remental modi�
ation: (a) signature

extension, where new a
tions are added to the parent, and (b) spe
ialization (subtyping), where

the 
hild's behavior is a spe
ialization (restri
tion) of the parent's behavior. The 
ombination of

signature extension and spe
ialization provides a powerful and expressive in
remental modi�
ation

me
hanism for introdu
ing new types of behavior without overriding behavior of the parent; this

me
hanism 
orresponds to the sub
lassing for extension form of inheritan
e.

In the 
ase when in
remental modi�
ations are applied to both a parent spe
i�
ation S and a

parent algorithm A, the te
hnique allows a simulation proof showing that the 
hild algorithm A

0

implements the 
hild spe
i�
ation S

0

to be 
onstru
ted in
rementally by extending a simulation

proof that algorithm A implements spe
i�
ation S. The new proof involves reasoning about the

modi�
ations only, without repeating the reasoning done in the original simulation proof.

The paper presents the te
hnique mathemati
ally, in terms of automata. The te
hnique has

been used to model and verify a 
omplex middleware system; the methodology and results of that

experiment are summarized in this paper.

General term: Veri�
ation. Categories and subje
t des
riptors: F.3.1 Spe
ifying and Veri-

fying and Reasoning about Programs; D.2.1 Requirements/Spe
i�
ations: Methodologies - obje
t-

oriented. Additional keywords and phrases: inheritan
e by spe
ialization and sub
lassing for

extension, simulation proofs, re�nements, in
remental proof te
hniques, proof reuse.
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1 Introdu
tion

Formal modeling and validation of software systems is a major 
hallenge, be
ause of their

size and 
omplexity. Among the fa
tors that 
ould in
rease widespread usage of formal

methods is improved 
ost-e�e
tiveness and s
alability (see [17, 19℄). Current software engi-

neering pra
ti
e addresses diÆ
ulties of building 
omplex systems by the use of in
remental

development te
hniques based on an obje
t-oriented approa
h. We believe that su

essful

e�orts in system modeling and validation will also require in
remental te
hniques, whi
h will

enable reuse of models and proofs.

In this paper we provide a framework for reuse of proofs analogous and 
omplementary

to the reuse provided by obje
t-oriented software engineering methodologies. Spe
i�
ally,

we present a formal te
hnique for in
rementally 
onstru
ting safety spe
i�
ations (require-

ments), abstra
t algorithm des
riptions, and simulation proofs that algorithms meet their

spe
i�
ations. Simulation proofs are one of the most important te
hniques for proving prop-

erties of 
omplex systems; su
h proofs exhibit a simulation relation (also known as abstra
-

tion or re�nement) between a formal des
ription of a system (algorithm) and its spe
i�
a-

tion [2, 33, 23, 31℄. These two formal des
riptions are stated using the same notation. The

distin
tion between the \spe
i�
ation" and the \algorithm" for a system is based only on the

intention of using the former as the high-level model and the latter as the low-level model

of the system. In general, our te
hnique applies to modeling and veri�
ation at any level of

abstra
tion.

The formalism presented in this paper has evolved with our experien
e in the 
ontext of

a large-s
ale modeling and validation proje
t: we have su

essfully used this te
hnique for

modeling and validating a 
omplex group 
ommuni
ation system [25℄ that is implemented

in C++, and that intera
ts with two other servi
es developed by di�erent teams. We have

modeled both the spe
i�
ation and the algorithm of this system in
rementally, at ea
h step

strengthening the model with additional 
onstraints. Reuse of models and proofs was essen-

tial in order to make this task feasible. For example, it has allowed us to avoid repeating

the �ve-page long 
orre
tness proof of the algorithm that provides the basi
 semanti
s when

proving the 
orre
tness of the algorithm that extends the �rst algorithm with more sophisti-


ated semanti
s. The 
orre
tness proof of the most sophisti
ated algorithm, by 
omparison,

was only two and a half pages long. We des
ribe our experien
e with that proje
t as well as

the methodology that evolved from it in Se
tion 6.

Our approa
h to the reuse of spe
i�
ations and algorithms through inheritan
e uses

in
remental modi�
ation to derive a new 
omponent (spe
i�
ation or algorithm), 
alled


hild , from an existing 
omponent 
alled parent . Spe
i�
ally, we present two 
onstru
tions

for modifying existing 
omponents:

1. We allow the 
hild to spe
ialize the parent by reusing its state in a read-only fashion, by

adding new state 
omponents (whi
h are allowed to be modi�ed), and by 
onstraining

the set of behaviors of the parent. This 
orresponds to the subtyping view of inheri-

tan
e [7℄. We will show that any observable behavior of the 
hild is subsumed (see [1℄)

by the possible behaviors of the parent, making our spe
ialization analogous to substi-

tution inheritan
e [7℄. In parti
ular, the 
hild 
an be used anywhere the parent 
an be

used.
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2. A 
hild 
an also be derived from a parent by means of signature extension. In this 
ase

the state of the parent is un
hanged, but the 
hild may in
lude new a
tions not found

in the parent and new parameters to a
tions that exist at the parent. When su
h new

a
tions and parameters are hidden, then any behavior of the 
hild is exa
tly as some

behavior of the parent.

The 
ombination of signature extension and spe
ialization provides a powerful me
hanism

for in
rementally 
onstru
ting spe
i�
ations and algorithms; this 
ombination 
orresponds

to the sub
lassing for extension form of inheritan
e [7℄.

Consider the following example. The parent de�nes an unordered point-to-point messag-

ing servi
e with the send(msg) and re
v(msg) interfa
e. Spe
ialization 
an be used to extend

the parent to preserve �fo ordering, by restri
ting re
v(msg) a
tions to deliver messages only

a

ording to the sending order. Sub
lassing for extension 
an be used to augment the mes-

saging servi
e with an a
knowledgment me
hanism: The parent's signature 
an be extended

with a
k(msg) a
tions, and then the parent 
an be spe
ialized to handle a
knowledgments by

allowing an a
k(msg) a
tion to o

ur only after the 
orresponding message was re
eived by

the re
ipient. The spe
ialization and sub
lassing for extension 
onstru
ts 
an be applied at

both the spe
i�
ation level and the algorithm level in a way that preserves the relationship

between the spe
i�
ation and the algorithm.

The main te
hni
al 
hallenge addressed in this paper is the provision of a formal frame-

work for the reuse of simulation proofs, espe
ially for the spe
ialization 
onstru
t. Consider

the example in Figure 1: Let S be a spe
i�
ation, and A an abstra
t algorithm des
ription.

Assume that we have proven that A implements S using a simulation relation R

p

. Assume

further that we spe
ialize the spe
i�
ation S, yielding a new 
hild spe
i�
ation S

0

. At the

same time, we spe
ialize the algorithm A to 
onstru
t an algorithm A

0

whi
h supports the

additional semanti
s required by S

0

.

S

A

S’

A’

simulation

simulation

Rp

Rc ?

inheritance

inheritance

Figure 1: Algorithm A simulates spe
i�
ation S with R

p

. Can R

p

be reused for building a

simulation R




from a 
hild A

0

of A to a 
hild S

0

of S?

When proving that A

0

implements S

0

, we would like to rely on the fa
t that we have

already proven that A implements S, and to avoid the need to repeat the same reasoning.

We would like to reason only about the new features introdu
ed by S

0

and A

0

. The proof reuse

theorem provides the means for in
rementally building simulation proofs in this manner.

Simulation proofs lend themselves naturally to be supported by intera
tive theorem

provers. Su
h proofs typi
ally break down into many simple 
ases based on di�erent a
-

3



tions. These 
an be 
he
ked by hand or with the help of intera
tive theorem provers. Our

in
remental simulation proofs break down in a similar fashion.

The formalism des
ribed in this paper is presented in the 
ontext of the I/O automa-

ton model [31, 32℄, but it is more general than that parti
ular model. We believe that the

essen
e of our approa
h is appli
able to any state-transition formal model, su
h as TLA [28℄,

UNITY [34℄, and Pro
ess Algebra [22, 33℄. I/O automata have been widely used to model


omplex systems and reason about them [18, 12, 8, 5, 21℄. An important feature of the I/O au-

tomaton model is its strong support of 
omposition, whi
h allows an automaton representing

a 
omplex system to be 
onstru
ted by 
omposing automata representing individual system


omponents. For example, Hi
key et al. [21℄ used the 
ompositional approa
h for modeling

and veri�
ation of 
ertain modules in Ensemble [16℄, a large-s
ale, modularly stru
tured,

group 
ommuni
ation system. Composition and inheritan
e are two 
omplementary means

for modular system design.

Inheritan
e, as a means for modular system design, has been a subje
t of extensive re-

sear
h for de
ades. Many resear
hers employed formal methods to de�ne various inheritan
e


onstru
ts and study their properties [1, 5, 10, 11, 20, 24, 29, 30, 35, 39, 37, 38, 4, 34, 15℄.

Our distinguishing 
ontribution is a provision of a formal framework that allows simulation

proofs to be 
onstru
ted in
rementally when inheritan
e is applied at two levels: spe
i�-


ation and algorithm. Thus, we extend the appli
ability of inheritan
e from the realm of

in
remental system design to the realm of in
remental system veri�
ation.

Roadmap

The rest of the paper is organized as follows: Se
tion 2 reviews and exempli�es the I/O

automaton model and the simulation proof te
hnique; the examples of subsequent se
tions

are built upon the ones presented in Se
tion 2. In Se
tion 3, we formally de�ne the spe-


ialization 
onstru
t and investigate its properties. Then, in Se
tion 4, we present a general

theorem that enables in
remental veri�
ation of systems that are modeled and spe
i�ed in-


rementally using the spe
ialization 
onstru
t. This theorem provides the foundation for

in
remental 
onstru
tion of simulation proofs, and is the key 
ontribution of this paper.

In Se
tion 5, we extend the theory of in
remental modeling and proof 
onstru
tion to the

sub
lassing for extension form of inheritan
e: we give a formal de�nition of the signature

extension 
onstru
t and show how it 
an be used in 
onjun
tion with the spe
ialization 
on-

stru
t to a
hieve sub
lassing for extension; we then extend the proof-reuse theory presented

in Se
tion 4 to this situation.

The paper employs a simple running example to illustrate the use of the presented for-

malism. Se
tion 6 illustrates the utility of this formalism by des
ribing its use in a large-s
ale

modeling and veri�
ation proje
t. In Se
tion 7 we dis
uss the modeling methodology that

we have used with our formalism in the 
ontext of the same proje
t.

Se
tion 8 
ompares our results with related work. Se
tion 9 
on
ludes the paper.
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2 Ba
kground: I/O Automata and Simulation Proofs

This se
tion presents ba
kground on the I/O automaton model, based on [31℄, Ch. 8. In

this model, a system 
omponent is des
ribed as a state-ma
hine, 
alled an I/O automaton.

The transitions of the automaton are asso
iated with named a
tions, 
lassi�ed as input,

output and internal. Input and output a
tions model the 
omponent's intera
tion with

other 
omponents, while internal a
tions are externally unobservable. Note that an a
tion


an be either an input or an output, but not both; a fun
tion 
all that returns a value 
an

be modeled using two a
tions { an input and an output.

Formally, an I/O automaton A 
onsists of: a signature sig(A), 
onsisting of input, output,

and internal a
tions; a set of states states(A); a set of start states start(A); and a state-

transition relation trans(A) | a subset of states(A) � sig(A) � states(A). An a
tion is

external if it is not internal; the part of an automaton's signature 
onsisting of its external

a
tions is 
alled the automaton's external signature. Complex automata 
an be 
onstru
ted

by 
omposing smaller automata that intera
t via their input and output a
tions.

An a
tion � is said to be enabled in a state s if the automaton has a transition of the form

(s, �, s

0

); input a
tions are enabled in every state. An exe
ution fragment of an automaton

A is an alternating sequen
e of states and a
tions su
h that every su

essive triple of this

sequen
e is an allowable transition; an empty step (s, �, s) is also an exe
ution fragment. An

exe
ution is an exe
ution fragment that begins with a start state. The tra
e of an exe
ution

� of A, denoted by tra
e(�), is a subsequen
e of � 
onsisting of all the external a
tions in �.

We denote the set of exe
utions of A by exe
s(A), and the set of tra
es of A by tra
es(A).

When reasoning about an automaton, we are only interested in its externally-observable

behavior as re
e
ted in its tra
es.

I/O automata are 
onveniently presented using the pre
ondition-e�e
t style. In this style,

typed state variables with initial values spe
ify the set of states and the start states. Tran-

sitions are grouped by a
tion name, and are spe
i�ed using a pre: blo
k with pre
onditions

(guards) on the states in whi
h the a
tion is enabled and an eff: blo
k whi
h spe
i�es how

the pre-state is modi�ed. The e�e
t is exe
uted atomi
ally to yield the post-state.

Example 2.1 Figure 2 presents an I/O automaton, UpSeq, that prints nonde
reasing se-

quen
es of integers. The automaton is expressed in the pre
ondition-e�e
t notation. The

signature of UpSeq 
onsists of output a
tions of the type print(x), where x is an integer.

The state of UpSeq 
onsists of a single integer variable, last, initialized to an arbitrary

value. The transitions of UpSeq spe
ify that a
tion print(x), with a given x, is enabled in

every state in whi
h x � last, as enfor
ed by the pre: statement; on
e print(x) o

urs, the

automaton moves into a state in whi
h last = x, as spe
i�ed by the eff: statement.

The following is a sample in�nite exe
ution of UpSeq, where square bra
kets represent

states of UpSeq, that is, values of last:

[3℄; print(5); [5℄; print(11); [11℄; print(11); [11℄; print(14); [14℄; : : :

The tra
e of this exe
ution is \print(5); print(11); print(11); print(14); : : :." In general,

the set of tra
es of UpSeq is the set of all possible sequen
es printing nonde
reasing integers,

both �nite and in�nite.
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automaton UpSeq

Signature: Output print(x), x 2 Integer

State: last 2 Integer, initially arbitrary

Transitions: OUTPUT print(x)

pre: x � last

eff: last  x

Figure 2: Automaton UpSeq printing a nonde
reasing sequen
e of integers.

A 
ommon way to spe
ify whi
h tra
es a system is allowed to exhibit is to de�ne an

abstra
t, high-level I/O automaton that generates the allowed set of tra
es. If every tra
e

of the automaton modeling the system is also a tra
e of the spe
i�
ation automaton, then

the system always does what is allowed by its spe
i�
ation. In this 
ase, we say that the

system automaton satis�es, or implements, the spe
i�
ation automaton. By way of an

example, regard automaton UpSeq of Example 2.1 to be a spe
i�
ation for the sequen
es

of nonde
reasing integers. In order for some automaton to satisfy this spe
i�
ation, any

possible tra
e of this automaton has to be a tra
e of UpSeq. In the following example we

present su
h an automaton.

Example 2.2 Figure 3 
ontains an automaton, FibSeq, that prints, as its sole in�nite tra
e,

the suÆx of the Fibona

i sequen
e that begins with \1; 2; :::". The Fibona

i sequen
e is an

in�nite sequen
e that begins with 0 and 1, and in whi
h every further element is equal to the

sum of the two pre
eding elements.

automaton FibSeq

Signature: Output print(x), x 2 Integer

State: n 2 Integer, initially 0

m 2 Integer, initially 1

Transitions: OUTPUT print(x)

pre: x = n + m

eff: n  m

m  x

Figure 3: Automaton FibSeq printing the Fibona

i sequen
e.

The signature of the FibSeq automaton is the same as that of UpSeq. The state of FibSeq


onsists of two integer variables, n and m, initialized to 0 and 1, respe
tively. The transitions

of FibSeq spe
ify that a
tion print(x) is enabled in every state in whi
h x is equal to the

sum of n and m, and that, on
e print(x) o

urs, the automaton moves into a state in whi
h

n has the value that m has in the pre-state, and m has the value of x. Thus, FibSeq uses n

6



and m to store the last two elements printed and to 
ompute from them the next element to

be printed. The tra
es generated by FibSeq are the in�nite sequen
e of Fibona

i numbers,

\print(1); print(2); print(3); print(5); print(8); print(13); : : : " and all of its pre�xes.

Every tra
e of FibSeq is 
learly a tra
e of UpSeq. Therefore, automaton FibSeq satis�es,

or implements, automaton UpSeq. But how 
an we prove this formally?

A 
ommon te
hnique for establishing that the set of tra
es of one automaton is in
luded

in the set of tra
es of another is to exhibit a so-
alled simulation relation (also known as

an abstra
tion relation) that relates the states of the two automata and to prove that this

relation satis�es 
ertain 
onditions [2, 33, 23, 31℄, as de�ned below:

De�nition 2.1 Let A and S be two automata with the same external signature. A relation

R � states(A) � states(S) is a simulation from A to S if it satis�es the following two


onditions:

1. If t is any initial state of A, then there is an initial state s of S su
h that s 2 R(t),

where we use notation R(t) as an abbreviation for fs : (t; s) 2 Rg.

2. If t and s 2 R(t) are rea
hable states of A and S respe
tively, and if (t; �; t

0

) is a step

of A, then there exists an exe
ution fragment of S from s to some s

0

2 R(t

0

), having the

same tra
e as step (t; �; t

0

). The latter 
ondition means that the only external a
tion

in the exe
ution fragment is �.

The two 
onditions above guarantee that whatever steps A exe
utes, there is always a

way for S to produ
e the same tra
e. The following theorem (from [31℄, Ch. 8) expresses this

property formally:

Theorem 2.1 If A and S are two automata with the same external signature and if R is a

simulation from A to S then tra
es(A) � tra
es(S).

Any �nite tra
e in
lusion 
an be shown by using simulation relations, possibly after

adding a spe
ial kind of variables, 
alled \prophe
y variables" [2, 36℄.

In some 
ases, a simulation relation is a
tually a fun
tion from states of the implemen-

tation automaton to the states of the spe
i�
ation automaton. In this 
ase it is 
alled a

simulation mapping (also known as abstra
tion fun
tion or re�nement). If R is a simula-

tion fun
tion and t is a state of the implementation automaton, we use R(t) to denote the


orresponding state of the spe
i�
ation automaton.

Example 2.3 We illustrate the simulation te
hnique by presenting a simulation fun
tion R

from FibSeq to UpSeq. R maps a state t of FibSeq to the state s of UpSeq with s:last =

t:m, where s:last denotes an instan
e of variable last in state s, and t:m denotes m in state

t. We now argue that R satis�es De�nition 2.1:

1. In the initial state t

0

of FibSeq, t

0

:m = 1; therefore R(t

0

):last = 1, whi
h is a valid

initial state of UpSeq.
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2. Consider a step (t; print(x); t

0

) of FibSeq. We 
laim that (R(t); print(x); R(t

0

)) is a

legal step of UpSeq.

(a) We show that, in state R(t) of UpSeq, print(x) is enabled, that is, that its pre-


ondition, x � R(t):last, is satis�ed. The fa
t that (t; print(x); t

0

) is a step

of FibSeq implies that the pre
ondition, x = t:n + t:m, holds in state t. Sin
e

R(t):last is equal to t:m by de�nition of R, x = t:n + R(t):last. Therefore, x �

R(t):last, sin
e t:n � 0, as stated in the following invariant:

Invariant 2.1 In every rea
hable state t of FibSeq, t:n � 0 and t:m � 0.

Proof: The proposition is true in the initial state t

0

, sin
e t

0

:n = 0 and t

0

:m

= 1. The proposition is true in state t

0

, after a step (t; print(x); t

0

) of FibSeq,

assuming it is true in state t, sin
e t

0

:n = t:m � 0 and t

0

:m = t:n + t:m � 0.

(b) After print(x) o

urs in state R(t), the value of last in the resulting post-state

s

0

is x (see Figure 2). In state t

0

, the value of m is also x (see Figure 3). Hen
e,

by de�nition of R, s

0

= R(t

0

).

Therefore, R is a simulation mapping from FibSeq to UpSeq, and, as implied by Theorem 2.1,

FibSeq satis�es UpSeq.

3 Spe
ialization

We now present the spe
ialization 
onstru
t for 
reating a 
hild automaton by spe
ializing

the parent automaton. This 
onstru
t 
aptures the notion of subtyping [7℄. In the next

se
tion, we present the main te
hni
al 
ontribution of this paper: a theorem that allows

one to 
onstru
t a simulation proof from a spe
ialization of an algorithm to a spe
ialization

of its spe
i�
ation by extending the original simulation proof from the algorithm to its

spe
i�
ation.

The spe
ialization 
onstru
t de�ned below operates on a parent automaton, and a

epts

three additional parameters: a state extension { the new state 
omponents, an initial state

extension { the initial values of the new state 
omponents, and a transition restri
tion spe
-

ifying how the 
hild spe
ializes the parent's transitions.

De�nition 3.1 (Spe
ialization) Let A be an automaton; N be any set of states, 
alled

a state extension; N

0

be a non-empty subset of N, 
alled an initial state extension; and

TR � (states(A) � N) � sig(A) � N be a relation, 
alled a transition restri
tion.

Then spe
ialize(A)(N; N

0

; TR) de�nes the following automaton A

0

:

� sig(A

0

) = sig(A);

� states(A

0

) = states(A) � N;

� start(A

0

) = start(A) � N

0

;

� trans(A

0

) = f(ht

p

; t

n

i; �; ht

0

p

; t

0

n

i) : (t

p

; �; t

0

p

) 2 trans(A) ^ (ht

p

; t

n

i; �; t

0

n

) 2 TR g,

where ht

p

; t

n

i denotes a state in states(A

0

).
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Notation 3.2 If A

0

= spe
ialize(A)(N; N

0

; TR) we use the following notation: Given t 2

states(A

0

), we write tj

p

to denote its parent 
omponent and tj

n

to denote its new 
omponent.

If � is an exe
ution fragment of A

0

, then �j

p

and �j

n

denote sequen
es obtained by repla
ing

ea
h state t in � with tj

p

and tj

n

, respe
tively.

In the pre
ondition-e�e
t notation, a transition restri
tion (TR) 
an be spe
i�ed for ea
h

a
tion � by (a) additional pre
onditions that a 
hild pla
es on �, and (b) additional e�e
ts

that spe
ify how the new state 
omponents are modi�ed as a result of a 
hild taking a step

involving �. Note that these additional e�e
ts 
an rely on but 
annot modify the parent's

state 
omponents. The additional pre
onditions work in 
onjun
tion with the pre
onditions

pla
ed on � by the parent automaton, and the additional e�e
ts are exe
uted before the

parent's e�e
ts; thus, when the additional e�e
ts read parent state 
omponents, they observe

their pre-state values. The transition restri
tion expressed in this style is the union of the

following two sets:

� All triples of the form (t; �; tj

n

) for whi
h � is not mentioned in the 
ode for A

0

, that

is, for whi
h A

0

does not restri
t transitions involving �. Note that the post-state tj

n

is the same as the new state 
omponent of the pre-state t.

� All triples (t; �; t

0

n

) for whi
h state t satis�es the new pre
onditions on � pla
ed by A

0

,

and state t

0

n

is the result of applying �'s new e�e
ts to t.

Example 3.1 Figure 4 below illustrates the use of the spe
ialization 
onstru
t. It presents

pre
ondition-e�e
t 
ode for automaton A

Seq, whi
h spe
ializes automaton UpSeq of Fig-

ure 2 on page 6 to print only a

elerating sequen
es, that is, sequen
es in whi
h the dif-

feren
es between 
onse
utive elements are nonde
reasing (in addition to the sequen
e itself

being nonde
reasing).

automaton A

Seq spe
ializes UpSeq

State Extension: diff 2 Integer, initially arbitrary

Transitions Restri
tion:

OUTPUT print(x)

new pre: x - last � diff

new eff: diff  x - last

Figure 4: Automaton A

Seq printing a

elerating sequen
es of integers.

A

Seq extends the state of UpSeq with a new integer variable diff having an arbitrary

initial value. This variable is used for storing the di�eren
e between the last pair of elements

printed. The new pre
ondition pla
ed on print(x) states that x � last has to be greater

than or equal to diff; it works in 
onjun
tion with the pre
ondition, x � last, of print(x)

in UpSeq. The new e�e
t updates diff to be the 
urrent di�eren
e, x � last; it o

urs

before the e�e
t that updates last in UpSeq.
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As a result of the new pre
ondition and e�e
t, transitions of UpSeq are restri
ted to only

those in whi
h diff is non-de
reasing. Thus, the sample tra
e of UpSeq given in Example 2.1

is not a tra
e of A

Seq be
ause (11 � 11) 6� (11 � 5), while that in Example 2.2 is.

Our spe
ialization 
onstru
t is de�ned so that any behavior of a 
hild is allowed by its

parent. Theorem 3.1 below states this property formally: it says that (1) every exe
ution �

of a spe
ialization A

0

of an automaton A is also an exe
ution of A when the state extension

of A

0

is proje
ted out from �; and (2) every tra
e of A

0

is a tra
e of A.

Theorem 3.1 If A

0

is a spe
ialization of automaton A, then:

1. � 2 exe
s(A

0

) ) �j

p

2 exe
s(A).

2. � 2 tra
es(A

0

) ) � 2 tra
es(A).

Proof 3.1:

1. Let � be an exe
ution of A

0

, whi
h, by de�nition of exe
ution, means that � begins

in some initial state t

0

and that every step (t

i

; �; t

i+1

) in � is a transition of A

0

. By

De�nition 3.1, t

0

j

p

is an initial state of A and, for every step (t

i

; �; t

i+1

) in �, the triple

(t

i

j

p

; �; t

i+1

j

p

) is a transition of A. From this it follows that the sequen
e obtained by

repla
ing ea
h state t in � with tj

p

is an exe
ution of A. Sin
e this sequen
e is �j

p

, we


on
lude that �j

p

is an exe
ution of A.

2. Follows from Part 1 and the fa
t that sig(A

0

) = sig(A).

As a 
onsequen
e of part 2 of Theorem 3.1, we have the following 
orollary:

Corollary 3.2 If automaton A satis�es automaton S in terms of tra
e in
lusion, then a

spe
ialization A

0

of automaton A also satis�es S in terms of tra
e in
lusion.

Moreover, given a simulation relation R

p

from A to S, the same relation is a simulation

from A

0

to S, ex
ept for the obvious proje
tion of the states of A

0

onto the states of A.

Corollary 3.3 If relation R

p

is a simulation from A to S, and A

0

is a spe
ialization of A, then

relation R

0

p

= f(t; s) : t 2 states(A

0

) ^ (tj

p

; s) 2 R

p

g is a simulation from A

0

to S.

Many similar inheritan
e 
onstru
ts, su
h as, for example, [29, 30, 11, 4℄ and superposition

of [34℄, were de�ned and proven to satisfy properties similar to those of Theorem 3.1 and

Corollary 3.2. However, these properties are not enough to address the situation illustrated in

Figure 1, where we are interested in reusing and extending a proof that automaton A satis�es

automaton S in order to prove that a spe
ialization A

0

of A satis�es a spe
ialization S

0

of S.

Indeed, from Theorem 3.1 and Corollary 3.2, we know only that tra
es(S

0

) � tra
es(S)

and that tra
es(A

0

) � tra
es(A) � tra
es(S); the solid arrows in Figure 1 
orrespond to

these tra
e in
lusions. But, we do not know whether tra
es(A

0

) � tra
es(S

0

); this is what

we would like to be able to show without having to repeat the reasoning used in showing that

tra
es(A) � tra
es(S). In the next se
tion, we address this question by developing a general

theorem that fa
ilitates reuse of simulation proofs at the parent level for the 
onstru
tion

of simulation proofs at the 
hild level. The theorem pinpoints exa
tly whi
h parts of the


hild-level proof follow from the parent-level proof (these are the parts reused), and whi
h

do not, and therefore still need to be done in order to 
omplete the proof.
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4 In
remental Proofs

We now present the main te
hni
al 
ontribution of this paper | a general theorem that

lays the foundation for in
remental proof 
onstru
tion. Consider the situation illustrated

in Figure 1, where A

0

and S

0

are spe
ializations of automata A and S respe
tively. Given

a simulation relation R

p

from A to S, Theorem 4.1 below states 
onditions for reusing and

extending R

p

to a simulation relation R




from A

0

to S

0

. Relation R




has to relate every initial

state of A

0

to some initial state extension of S

0

, and it has to satisfy a step 
ondition similar

to the one in De�nition 2.1, but only involving the transition restri
tion relation of S

0

.

Theorem 4.1 Let automaton A

0

be a spe
ialization of automaton A. Let automaton S

0

be a

spe
ialization of automaton S, su
h that S

0

= spe
ialize(S)(N; N

0

; TR). Assume that A and

S have the same external signatures and that A implements S via a simulation relation R

p

.

A relation R




� states(A

0

) � states(S

0

), de�ned in terms of relation R

p

and a new

relation R

n

� states(A

0

) � N as f(t; s) : (tj

p

; sj

p

) 2 R

p

^ (t; sj

n

) 2 R

n

g; is a simulation

from A

0

to S

0

if R




satis�es the following two 
onditions:

1. For every t 2 start(A

0

), there exists a state sj

n

2 R

n

(t) su
h that sj

n

2 N

0

.

2. If t is a rea
hable state of A

0

, s is a rea
hable state of S

0

su
h that sj

p

2 R

p

(tj

p

) and sj

n

2 R

n

(t), and (t; �; t

0

) is a step of A

0

, then there exists a �nite sequen
e � of alternating

states and a
tions of S

0

, beginning from s and ending at some state s

0

, and satisfying

the following 
onditions:

1

(a) �j

p

is an exe
ution fragment of S.

(b) For every step (s

i

; �; s

i+1

) in �, (s

i

; �; s

i+1

j

n

) 2 TR.

(
) s

0

j

p

2 R

p

(t

0

j

p

).

(d) s

0

j

n

2 R

n

(t

0

).

(e) � has the same tra
e as (t; �; t

0

).

The theorem follows from Corollary 3.3 and Lemma 4.2 below. Re
all that Corollary 3.3

de�nes a simulation relation R

0

p

from A

0

to S in terms of the simulation relation R

p

from A

to S (see Figure 5). The lemma 
onsiders how to 
onstru
t a simulation relation R




from A

0

to S

0

from the simulation relation R

0

p

. This is a spe
ial 
ase of Theorem 4.1, when A

0

is the

same as A. The statement of this lemma is almost identi
al to that of Theorem 4.1; the only

di�eren
e is that, in Theorem 4.1, state t of states(A

0

) is proje
ted onto its parent's state

in order to be used in the simulation relation R

p

. The lemma is stated in terms of A

0

and R

0

p

in order to mat
h the notation in Theorem 4.1.

Lemma 4.2 Let S and A

0

be automata with the same external signatures, and let relation R

0

p

be a simulation from A

0

to S. Let S

0

= spe
ialize(S)(N; N

0

; TR). A relation R




� states(A

0

)

� states(S

0

), de�ned in terms of relation R

0

p

and a new relation R

n

� states(A

0

) � N as

f(t; s) : (t; sj

p

) 2 R

0

p

^(t; sj

n

) 2 R

n

g; is a simulation from A

0

to S

0

if R




satis�es the following

two 
onditions:

1

Note that we do not require � to be an exe
ution fragment of S

0

.
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Figure 5: Intermediate step: Reusing R

0

p

for building R




.

1. For every t 2 start(A

0

), there exists a state sj

n

2 R

n

(t) su
h that sj

n

2 N

0

.

2. If t is a rea
hable state of A

0

, s is a rea
hable state of S

0

su
h that sj

p

2 R

0

p

(t) and sj

n

2 R

n

(t), and (t; �; t

0

) is a step of A

0

, then there exists a �nite sequen
e � of alternating

states and a
tions of S

0

, beginning from s and ending at some state s

0

, and satisfying

the following 
onditions:

(a) �j

p

is an exe
ution fragment of S.

(b) For every step (s

i

; �; s

i+1

) in �, (s

i

; �; s

i+1

j

n

) 2 TR.

(
) s

0

j

p

2 R

0

p

(t

0

).

(d) s

0

j

n

2 R

n

(t

0

).

(e) � has the same tra
e as (t; �; t

0

).

Proof 4.2: We show that R




satis�es the two 
onditions of De�nition 2.1:

1. Consider an initial state t of A

0

. By the fa
t that R

0

p

is a simulation, there must exist

a state sj

p

2 R

0

p

(t) su
h that sj

p

2 start(S). By 
ondition 1 of the lemma, there must

exist a state sj

n

2 R

n

(t) su
h that sj

n

2 N

0

. Consider state s = hsj

p

; sj

n

i. State s is

in R




(t) by de�nition. Also, by De�nition 3.1, start(S

0

) = start(S) � N

0

; therefore,

s = hsj

p

; sj

n

i 2 start(S) � N

0

= start(S

0

).

2. First, noti
e that the de�nitions of state s and relation R




imply that s 2 R




(t); also,

noti
e that 
onditions 2
 and 2d imply that s

0

2 R




(t

0

).

Next, we show that � is an exe
ution fragment of S

0

with the right tra
e. Indeed,

every step of � is 
onsistent with trans(S) (by 2a) and is 
onsistent with TR (by 2b).

Therefore, by de�nition of trans(S

0

) (De�nition 3.1), every step of � is 
onsistent with

trans(S

0

). In other words, � is an exe
ution fragment of S

0

that starts with state in

R




(t), ends with state in R




(t

0

), and has the same tra
e as (t; �; t

0

) (by 2e).

We are now ready to prove Theorem 4.1:

Proof 4.1: Theorem 4.1 follows immediately from Lemma 4.2 applied to automata A

0

, S, and

S

0

, with a simulation relation R

0

p

from A

0

to S being f(t; s) : t 2 states(A

0

) ^ (tj

p

; s) 2 R

p

g,

as proved in Corollary 3.3. Ea
h of the 
onditions in this theorem implies the 
orresponding


ondition in the lemma.
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In pra
ti
e, Theorem 4.1 (or Lemma 4.2) would be exploited as follows: The simulation

proof between the parent automata already provides a 
orresponding exe
ution fragment of

the parent spe
i�
ation for every step of the parent algorithm. It is typi
ally the 
ase that

the same exe
ution fragment, padded with new state variables, 
orresponds to the same step

at the 
hild algorithm. Thus, 
onditions 2a, 2
, and 2e of Lemma 4.2 hold for this fragment.

The only 
onditions that have to be veri�ed are 2b, and 2d, that is, that every step of this

exe
ution fragment is 
onsistent with the transition restri
tion TR pla
ed on S by S

0

and that

the values of the new state variables of S

0

in the �nal state of this exe
ution are related to

the post-state of the 
hild algorithm. The veri�
ation of these two 
onditions may depend

on some of the invariant assertions that were un
overed during the parent proof.

To exemplify how Theorem 4.1 and Lemma 4.2 would be exploited in pra
ti
e, we use

Lemma 4.2 to prove that FibSeq satis�es A

Seq, a spe
ialization of UpSeq. Automata

UpSeq, FibSeq, and A

Seq are simple enough to keep the example tra
table, but they are

arguably too simple to demonstrate the full utility of in
remental proof 
onstru
tion. In

Se
tion 6 we des
ribe how this framework was exploited in the design of a 
omplex group


ommuni
ation servi
e.

Example 4.1 Re
all that in Example 2.3 we presented a simulation mapping R from the

states of FibSeq to the states of UpSeq. To 
onstru
t a simulation mapping R

0

from FibSeq

to A

Seq, we extend R with the following mapping R

n

that maps ea
h state t of FibSeq to

the state extension s of A

Seq su
h that

s:diff =

�

t:m� t:n if t:n 6= 0

0 otherwise

In order to prove that R

0

is a simulation mapping we have to prove that it satis�es ea
h

of the 
onditions of Lemma 4.2.

Condition 1 is satis�ed be
ause, if t is the initial state of FibSeq, R

n

(t):diff = 0 is a

valid initial value for the state extension of A

Seq.

For Condition 2, the a
tion 
orresponden
e is the same as in the simulation of UpSeq

by FibSeq: a step of A

Seq involving print(x) is simulated whenever FibSeq takes a step

involving print(x). Conditions 2a, 2
, and 2e are implied by the fa
t that R is a simulation

relation from FibSeq to UpSeq; these were proven in Example 2.3. Thus, we only need to

prove 
onditions 2b and 2d. Condition 2b requires the new pre
ondition, x � last � diff,

to be satis�ed in state R

0

(t), provided the parent's pre
ondition, x = n + m, holds in state t.

Condition 2d requires the R

n

mapping to be preserved in the post-transition states of FibSeq

and A

Seq; namely, the value of the new state variable diff in the post-transition state

of A

Seq has to be the same as that of R

n

(t

0

):diff. Proving that these two 
onditions are

satis�ed involves reasoning only about how A

Seq spe
ializes UpSeq.

We now prove that 
onditions 2b and 2d hold. Consider a step (t; print(x); t

0

) of FibSeq;

it implies that x = t:n + t:m, and that t

0

:n = t:m and t

0

:m = t:n + t:m.

� Condition 2b: We have to show that the 
orresponding print(x) step of A

Seq is en-

abled in state R

0

(t), that is, that x � R

0

(t):last � R

0

(t):diff. By using the simulation

mapping, we derive: x � R

0

(t):last = x � R(t):last = x � t:m = t:n + t:m � t:m

13



= t:n. If t:n = 0 (as in the initial state of FibSeq), then, by de�nition of R

0

and R

n

,

R

0

(t):diff = R

n

(t):diff = 0, and we are done. Otherwise, if t:n 6= 0, then R

0

(t):diff

= R

n

(t):diff = t:m � t:n, and it remains to show that t:n � t:m � t:n. Invariant 4.2

below establishes this fa
t by relying on the following auxiliary invariant:

Invariant 4.1 In every rea
hable state t of FibSeq, t:m � t:n.

Proof: The proposition is true in the initial state t

0

, sin
e t

0

:n = 0 and t

0

:m = 1.

The proposition is true in state t

0

, after a step (t; print(x); t

0

) of FibSeq, sin
e t:n

� 0 (Invariant 2.1), and hen
e t

0

:m = t:n + t:m � t:m = t

0

:n.

Invariant 4.2 In every rea
hable state t of FibSeq, t:n � t:m � t:n, if t:n 6= 0.

Proof: The proposition is va
uously true in the initial state t

0

, sin
e t

0

:n = 0. The

proposition is true in state t

0

, after a step (t; print(x); t

0

) of FibSeq, sin
e t:m � t:n

(Invariant 4.1), and therefore t

0

:n = t:m � t:n = t

0

:m � t:m = t

0

:m � t

0

:n.

� Condition 2d: A

ording to the 
ode, the post-transition value of diff is x � R

0

(t):last

= t:n = t

0

:m � t:m = t

0

:m � t

0

:n. If t

0

:n 6= 0, then t

0

:m � t

0

:n = R

n

(t

0

):diff, and we

are done. Otherwise, if t

0

:n = 0, R

n

(t

0

):diff = 0 by de�nition, and the post-transition

value of diff is also 0, sin
e 0 = t

0

:n = t:m � t:n � 0 (Invariants 2.1 and 4.1).

Noti
e that, in verifying 
onditions 2b and 2d in Example 4.1, we relied on Invariant 2.1,

whi
h was stated and proven during the simulation proof from FibSeq to UpSeq. In general,

knowing the invariant assertions that have been un
overed during the parent's proof 
an be

helpful in extending that proof to the 
hildren.

5 Sub
lassing for Extension

In this se
tion, we extend the theory of in
remental modeling and proof 
onstru
tion to

a new modi�
ation 
onstru
t, 
alled spe
ialized extension; the 
onstru
t is formulated in

De�nition 5.2 and the extended proof-reuse theorem appears as Theorem 5.4. This 
onstru
t


orresponds to the sub
lassing for extension form of inheritan
e [7℄, whi
h is similar to

spe
ialization in that a 
hild 
annot override its parent's behavior, but it is more powerful

than spe
ialization in that a 
hild 
an introdu
e new types of behavior through new a
tions,

nonexistent in the parent.

We de�ne a spe
ialized extension of an automaton by �rst extending the parent automa-

ton with new a
tions using a new 
onstru
t, 
alled signature extension, and then applying

spe
ialization of Se
tion 3. The new a
tions introdu
ed by signature extension are enabled

in every state and do not modify the state; the subsequent spe
ialization operation gives

meaning to these new a
tions by restri
ting transitions involving the new a
tions, and, pos-

sibly, those involving parent's a
tions as well. The resulting automaton 
an intera
t with

its environment through both the parent's a
tions and the new ones. Be
ause new a
tions
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(even after being spe
ialized) do not a�e
t the parent's state, any tra
e of the 
hild is in-

distinguishable from a tra
e of the parent when new a
tions are proje
ted out from the

tra
e.

2

The signature extension 
onstru
t, formulated in De�nition 5.1, 
reates a new automaton

by adding new a
tions to an existing automaton. The new automaton has an extended

signature, but the same states and start states as the original automaton; the new state-

transition relation is the same as the one in the original automaton, ex
ept that it in
ludes

additional transitions that relate every state to itself via new a
tions (i.e., new a
tions are

enabled in every state, but do not modify the state); su
h transitions are 
alled \stuttering"

steps by Lamport [28℄.

In addition, the signature extension 
onstru
t allows the new automaton to rename some

or all of the original automaton's a
tions. The renaming is spe
i�ed by a signature-mapping

fun
tion that maps a
tions in the new signature to their 
ounterparts in the parent signature.

The fun
tion is allowed to be many-to-one, whi
h means that the same a
tion of the parent

may be renamed into several a
tions of the 
hild; this is useful be
ause it allows a 
hild

to add new parameters to its parent's a
tions, and be
ause instan
es of the same parent's

a
tion 
an be spe
ialized di�erently under di�erent names. The signature-mapping is onto,

that is, every parent a
tion has at least one 
orresponding a
tion at the 
hild. The fun
tion

is de�ned only for a
tions inherited from the parent (renamed or not); it is unde�ned for

new a
tions introdu
ed by the signature extension. If � is su
h a new a
tion and f is a

signature-mapping, we write f(�) = ? to denote the fa
t that � is not in the domain of

de�nition of f; ? is a assumed to be di�erent from any a
tion name.

De�nition 5.1 (Signature Extension) Let A be an automaton, and X be some signature.

Let f be a partial fun
tion, 
alled a signature-mapping, from X to sig(A) su
h that f

is onto and preserves the 
lassi�
ation of a
tions as \input", \output", and \internal"; the

latter means that, if f(�) is de�ned, it is of the same 
lassi�
ation as �.

3

Then, extend(A)(X; f) is de�ned to be the following automaton A

0

:

� sig(A

0

) = X,

� states(A

0

) = states(A),

� start(A

0

) = start(A), and

� trans(A

0

) = f(t; �; t

0

) 2 states(A

0

)� sig(A

0

)� states(A

0

) :

((f(�) = ?) ^ (t = t

0

)) _ ((f(�) 2 sig(A)) ^ ((t; f(�); t

0

) 2 trans(A)))g.

We say that A

0

is the signature extension of A with signature-mapping f if A

0

is su
h that

A

0

= extend(A)(sig(A

0

); f) for some signature-mapping f from sig(A

0

) to sig(A).

Having de�ned the signature extension 
onstru
t, we now 
ombine it with spe
ialization

to yield spe
ialized extensions of automata.

2

Noti
e that this is stronger than behavioral subtyping of Liskov and Wing [30, 29℄, in whi
h a tra
e of

a 
hild is required to be indistinguishable from a tra
e of its parent only when the tra
e does not 
ontain

a
tions introdu
ed by the 
hild (see Se
tion 8).

3

Signature-mapping is similar to strong 
orresponden
e of [41℄.
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De�nition 5.2 (Spe
ialized Extension) Automaton A

0

is 
alled a spe
ialized extension

of an automaton A if A

0

is a spe
ialization of a signature extension of A.

In pre
ondition-e�e
t notation, we express a spe
ialized extension A

0

of an automaton A by

writing \A

0

modifies A" and then spe
ifying the signature extension and the spe
ialization

parts of A

0

. The signature extension part 
ontains the new a
tions labeled with a keyword

new, and the renamed a
tions labeled with their original names in sig(A), a

ording to the

signature-mapping; for example, if the signature mapping maps � of A

0

to � of A, we write

\� modi�es �". We omit spe
ifying the a
tions of sig(A

0

) that are inherited from A without

renaming. The spe
ialization part 
ontains the state extension and the transition restri
tion

spe
i�
ations, as des
ribed in Se
tion 3 on page 9.

We now exemplify how the signature extension 
onstru
t 
an be used in 
onjun
tion with

the spe
ialization 
onstru
t to 
reate spe
ialized extensions.

Example 5.1 Figure 6 presents automaton FibSeq+ that modi�es automaton FibSeq to

print ea
h element of the Fibona

i sequen
e together with its sequen
e number. The signature-

mapping spe
i�ed by the Signature Extension 
lause maps a
tions print(i; x) where i 2

Integer to a
tions print(x) of FibSeq. Thus, for example, a
tions print(8; 43) and

print(23; 43) of FibSeq+ are among those a
tions mapped to the print(43) a
tion of

FibSeq. Then, the spe
ialization 
onstru
t adds a new state variable, last i, that keeps

tra
k of the sequen
e number of the last Fibona

i element printed; it also adds a new pre-


ondition and a new e�e
t to the print(i; x) a
tion to maintain i and last i properly.

automaton FibSeq+ modifies FibSeq

Signature Extension: Output print(i, x), i 2 Integer modi�es FibSeq.print(x)

New State: last i 2 Integer, initially 0

Transition Restri
tion:

OUTPUT print(i, x)

new pre: i = last i + 1

new eff: last i  i

Figure 6: Automaton FibSeq+ spe
ifying enumerated Fibona

i sequen
es.

Noti
e that any exe
ution � of FibSeq+ is an exe
ution of FibSeq when the newly added

state variable, last i, is proje
ted out from every state in � and when every a
tion in � is

renamed a

ording to the spe
i�ed signature-mapping. Theorem 5.2 below formalizes this

property in general. It follows from Theorem 3.1, whi
h is a similar exe
ution-in
lusion

property of spe
ialization. This is be
ause, modulo the signature-mapping, a signature

extension of an automaton and the automaton itself have exa
tly the same exe
utions and

tra
es; we prove this result in Lemma 5.1 below.

Notation 5.3 Let A

0

be a signature extension of A with a signature-mapping f.
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If � is a sequen
e of alternating states and a
tions of A

0

, then f(�) denotes the sequen
e

obtained by repla
ing ea
h a
tion � in � with f(�), and then 
ollapsing every triple of the

form (t;?; t) to t. Triples of the form (t;?; t

0

) where t

0

6= t are not 
ollapsed; su
h triples

are possible be
ause � is not ne
essarily an exe
ution sequen
e of A

0

.

Likewise, if � is a sequen
e of external a
tions of A

0

, then f(�) denotes a sequen
e obtained

by repla
ing ea
h a
tion � in � with f(�), and then removing all the o

urren
es of ?.

Lemma 5.1 Let automaton A

0

be a signature extension of A with a signature-mapping f.

Let � be a sequen
e of alternating states and a
tions of A

0

and let � be a sequen
e of

external a
tions of A

0

. Then:

1. � 2 exe
s(A

0

) , f(�) 2 exe
s(A).

2. � 2 tra
es(A

0

) , f(�) 2 tra
es(A).

Proof 5.1: The proof follows from De�nition 5.1 and Notation 5.3.

1. ): Let � be an exe
ution of A

0

. By de�nition of exe
ution, � begins in some initial state

t

0

, and every step (t

i

; �; t

i+1

) in � is a transition of A

0

. From this and De�nition 5.1,

t

0

is an initial state of A, and, for every step (t

i

; �; t

i+1

) in �, either (t

i

; f(�); t

i+1

) is

a step of A when f(�) 2 sig(A), or t

i

= t

i+1

when f(�) = ?.

Therefore, by de�nition of exe
ution, the sequen
e obtained by repla
ing every step

(t

i

; �; t

i+1

) in � with either (t

i

; f(�); t

i+1

) when f(�) 2 sig(A), or t

i

when f(�) = ?

is an exe
ution of A. Sin
e this sequen
e is f(�), we 
on
lude that f(�) 2 exe
s(A).

(: Let � be a sequen
e of alternating states and a
tions of A

0

su
h that f(�) 2 exe
s(A).

This means that � begins with some initial state t

0

of A, and that, for every triple

(t

i

; �; t

i+1

) of elements in �, either (t

i

; f(�); t

i+1

) is a step of A when f(�) 2 sig(A),

or t

i

= t

i+1

when f(�) = ?. From this assumption and De�nition 5.1, it follows

that t

0

is an initial state of A

0

and that every triple (t

i

; �; t

i+1

) of elements in � is a

transition of A

0

. Thus, � 2 exe
s(A

0

).

2. Follows from part 1 and the fa
t that f preserves the 
lassi�
ation of a
tions as \input",

\output", and \internal".

Theorem 5.2 If A

0

is a spe
ialized extension of A with a signature-mapping f, then

1. � 2 exe
s(A

0

) ) f(�j

p

) 2 exe
s(A).

2. � 2 tra
es(A

0

) ) f(�) 2 tra
es(A).

Proof 5.2: Follows immediately from Theorem 3.1 and Lemma 5.1

Sin
e signature extension does not modify the original automata beyond simple renaming

of a
tions, we would expe
t it to have minimal e�e
t on the proof-reuse theorems (Theo-

rem 4.1 and Lemma 4.2) of Se
tion 4 when those theorems are used in verifying spe
ialized

extensions of automata. We prove this intuition 
orre
t in Theorem 5.4 below; this theorem

is an adaptation of Theorem 4.1 for the 
ase when 
hild automata are spe
ialized extensions

of their parents. The theorem follows from Theorem 4.1 and the following lemma, whi
h es-

tablishes that a simulation relation between two automata is preserved when these automata

are signature-extended:
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Lemma 5.3 Let A

0

be the signature extension of A with a signature-mapping f. Let S

0

be the

signature extension of S with a signature-mapping g. Assume that A has the same external

signature as S and that there is a simulation relation R from A to S. Assume further that A

0

has the same external signature as S

0

, and that, for every external a
tion � 2 sig(A

0

), g(�)

= f(�). Then, R is a simulation relation from A

0

to S

0

.

Proof 5.3: Follows straightforwardly from De�nitions 2.1 and 5.1.

The only di�eren
e between the statements of Theorem 5.4 below and Theorem 4.1 is

that here, whenever 
hild's a
tions are used in the 
ontext of the parent automaton (as in

Condition 2a), they are translated via the signature-mapping to the 
orresponding a
tions

of the parent.

Theorem 5.4 Let automaton A

0

be a spe
ialized extension of A with a signature-mapping

f. Let automaton S

0

be a spe
ialized extension of S with a signature-mapping g, su
h that

S

0

= spe
ialize(extend(S)(G; g))(N; N

0

; TR). Assume that A and S have the same external

signatures and that A implements S via a simulation relation R

p

. Assume further that A

0

and

S

0

have the same external signatures, and that, for every external a
tion � 2 A

0

, g(�) = f(�).

A relation R




� states(A

0

) � states(S

0

), de�ned in terms of relation R

p

and a new

relation R

n

� states(A

0

) � N as f(t; s) : (tj

p

; sj

p

) 2 R

p

^ (t; sj

n

) 2 R

n

g; is a simulation

from A

0

to S

0

if R




satis�es the following two 
onditions:

1. For every t 2 start(A

0

), there exists a state sj

n

2 R

n

(t) su
h that sj

n

2 N

0

.

2. If t is a rea
hable state of A

0

, s is a rea
hable state of S

0

su
h that sj

p

2 R

p

(tj

p

) and sj

n

2 R

n

(t), and (t; �; t

0

) is a step of A

0

, then there exists a �nite sequen
e � of alternating

states and a
tions of S

0

, beginning from s and ending at some state s

0

, and satisfying

the following 
onditions:

(a) g(�j

p

) is an exe
ution fragment of S.

(b) For every step (s

i

; �; s

i+1

) in �, (s

i

; �; s

i+1

j

n

) 2 TR.

(
) s

0

j

p

2 R

p

(t

0

j

p

).

(d) s

0

j

n

2 R

n

(t

0

).

(e) � has the same tra
e as (t; �; t

0

).

Proof 5.4: Follows straightforwardly as a 
orollary from Theorem 4.1 and Lemma 5.3.

Theorem 5.4 
an be used in pra
ti
e in the same way as Theorem 4.1 and Lemma 4.2

(see the dis
ussion after the proof of Theorem 4.1 on page 12): Transitions involving new

a
tions introdu
ed by signature extension are de�ned entirely by the spe
ialization 
ode and,

therefore, involve reasoning about this 
ode alone. Transitions involving parent's a
tions,

whi
h are possibly renamed by the 
hild, depend on the 
ode of both the parent and the


hild. Even when a
tions are renamed, the task of proving that the simulation relation

holds for su
h transitions typi
ally allows one to rely on the simulation proof of the parent

automata to dedu
e 
onditions 2a, 2
, and 2e, and requires veri�
ation of 
onditions 1, 2b,

and 2d only.
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6 Pra
ti
al Experien
e With In
remental Modeling

The te
hnique presented in this paper has evolved as part of our experien
e designing and

modeling a 
omplex group 
ommuni
ation servi
e [25℄. In this se
tion we des
ribe our

experien
e in that proje
t, and how the framework presented in this paper was exploited. We

use the example to illustrate 
ir
umstan
es under whi
h the inheritan
e-based te
hnique of

this paper 
an be useful. In the next se
tion we des
ribe an interesting modeling methodology

that has evolved with our experien
e in that proje
t.

6.1 Group 
ommuni
ation: ba
kground

Group 
ommuni
ation servi
es [6, 9℄ are powerful middleware systems that fa
ilitate the de-

velopment of fault-tolerant distributed appli
ations. These servi
es provide a notion of group

abstra
tion, whi
h allows appli
ation pro
esses to easily organize themselves into multi
ast

groups. Appli
ation pro
esses 
an 
ommuni
ate with the members of a group by addressing

messages to the group.

Group 
ommuni
ation systems typi
ally provide reliable multi
ast and group member-

ship servi
es. The task of the membership servi
e is to maintain a listing of the 
urrently

a
tive and 
onne
ted pro
esses and to deliver this information to the appli
ation whenever

it 
hanges. The output of the membership servi
e is 
alled a view. The reliable multi
ast

servi
es deliver messages to the 
urrent view members.

Group 
ommuni
ation systems are 
omplex software systems, and their behavior des
rip-

tions are 
orrespondingly intri
ate. Su
h intri
ate behavior is often des
ribed as a 
olle
tion

of properties that the servi
e guarantees (for a survey of su
h properties, see [9℄).

6.2 In
remental modeling of group 
ommuni
ation

In [25℄ we presented a formal design for a novel group 
ommuni
ation servi
e targeted for

wide-area networks. The proje
t in
luded a spe
i�
ation of the servi
e semanti
s, a model

of the implementation, and an assertional 
orre
tness proof showing that the model satis�es

the spe
i�
ation. The implementation used two auxiliary servi
es: group membership and

reliable multi
ast. We gave high-level abstra
t models of the behavior of these two servi
es

as I/O automata. We gave a low-level I/O automaton modeling the algorithm exe
uted by

the end-points of the servi
e in di�erent lo
ations. The model of the implementation was

then a 
omposition of a 
olle
tion of end-point automata (one for ea
h end-point running the

servi
e) with the two high-level auxiliary servi
e automata. The proof exhibited a simulation

relation from the implementation model to the spe
i�
ation, whi
h was also given as an I/O

automaton.

The new algorithm run by the end-points of the servi
e has been implemented in C++,

using roughly 9,000 lines of 
ode [40℄, in
luding 
ode for thread and so
ket maintenan
e,

auxiliary 
lasses for data stru
tures maintenan
e, header �les, in-program do
umentation,

et
. The auxiliary membership servi
e [27℄ was developed by another development team

using roughly 20,000 lines of C++ 
ode, and the reliable multi
ast servi
e was implemented

by a third team [3℄ using roughly 4,000 lines of C++ 
ode. The I/O automaton model of
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the end-point algorithm required a total of approximately 120 lines of I/O automaton 
ode,

modeling �fteen di�erent a
tions and using approximately ten data stru
tures

4

.

Modeling and validating a system of this s
ale and intri
a
y was a major 
hallenge.

Although formal approa
hes were previously used to spe
ify group 
ommuni
ation systems

and to verify their appli
ations, (see [8, 12, 21℄), algorithms implementing the a
tual systems

were not previously formally modeled or assertionally veri�ed.

In order to manage the 
omplexity of the proje
t, we found a need to employ an obje
t-

oriented approa
h that would allow for reuse of models and proofs. Therefore, in [25℄, we used

the I/O automaton formalism enri
hed with the inheritan
e-based in
remental modi�
ation


onstru
ts presented in this paper to spe
ify the safety properties of our servi
e and to model

the algorithm. We then exploited the proof reuse theorem when verifying the algorithm.

We spe
i�ed, modeled, and veri�ed our servi
e in four steps; ea
h step dealt with a


ertain group 
ommuni
ation property. These four properties are typi
ally de�ned using

four separate logi
 formulas, for example, in [9℄. Therefore, by spe
ifying the properties

in
rementally, we have made it easier to relate our abstra
t spe
i�
ation automaton to

existing group 
ommuni
ation spe
i�
ations. It was also important to model the algorithms

implementing ea
h of these properties one step at a time to redu
e the 
omplexity of the

design and veri�
ation and to make it 
lear whi
h algorithm implements whi
h property.

We started with a simple servi
e, fifo, that provides reliable fifo multi
ast within

group membership views. The spe
i�
ation of the fifo servi
e took about 15 lines of I/O

automaton 
ode and 
onsisted of three parameterized a
tions and three state variables, some

of whi
h were two-dimensional arrays. We modeled the end-point algorithm using roughly

50 lines of I/O automaton 
ode; the 
ode in
luded eleven parameterized a
tions and seven

state variables, some of whi
h were arrays. The veri�
ation part presented a simulation

proof showing that the 
omposition of all the fifo end-point automata and the high-level

automata spe
ifying the auxiliary servi
es implements the fifo spe
i�
ation. The proof

took about �ve pages, in
luded seven major invariants, and used the te
hnique of history

variables [2℄.

As a se
ond step, we used spe
ialized extension to modify the fifo spe
i�
ation and

algorithm to in
lude an additional property, 
alled vs. This property syn
hronizes view

delivery and message delivery events in an exe
ution. It requires that end-points that move

together from one view to another (i.e., remain 
onne
ted) deliver the same set of messages

in the former view.

The extension of the fifo spe
i�
ation introdu
ed a new internal a
tion and a new array

variable to spe
ify the appropriate syn
hronizations of view delivery and message delivery

events. The extension then 
onstrained the view delivery a
tions to o

ur exa
tly at the

times when the spe
i�ed syn
hronizations held; the 
onstraint was expressed in terms of

both parent and new variables. The extension of the spe
i�
ation took about ten lines of


ode; it relied on and reused the parent spe
i�
ation of how messages, views, and 
ommon

data stru
tures are handled.

4

I/O automaton 
ode is rather 
ompa
t and therefore an I/O automaton model of a system is generally

mu
h shorter than the a
tual C++ 
ode of the system. This is due to the fa
t that I/O 
ode is at a higher

level of abstra
tion, it does not in
lude 
ode for s
heduling of a
tions, maintenan
e of threads, so
kets, or

data stru
tures, garbage 
olle
tion, header �les, et
.
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The extension of the fifo end-point algorithm introdu
ed a distributed syn
hronization

proto
ol enfor
ing the vs property. The proto
ol involved four new a
tions and four new

variables, some of whi
h were arrays. It relied on the parent algorithm handling 
ommon

events and data stru
tures, su
h as message bu�ers and indi
es. In addition, the extension

of the end-point algorithm modi�ed four of the parent's a
tions. In parti
ular, it 
onstrained

the view delivery and message delivery a
tions to respe
t the 
omputed syn
hronizations.

The 
onstraints were expressed in terms of both parent and new variables. The veri�
ation

exploited Theorem 5.4. The simulation proof fo
used solely on the vs property and took

about two pages; no arguments from the �ve page parent-level proof needed to be repeated.

As a third step, we enri
hed our servi
e with an additional property, 
alled ts, whi
h

augments ea
h view delivery with spe
ial information 
alled a transitional set [9℄. We spe
-

i�ed this property using a stand-alone automaton, (i.e., without using inheritan
e), using

about �fteen lines of 
ode, two parameterized a
tions, and two array variables. The vs

end-point algorithm was already 
omputing the transitional set information as a by-produ
t

of implementing the vs property. We used the signature extension 
onstru
t to modify the

signature of the view delivery a
tion to in
lude the transitional set as an additional parame-

ter. We then exhibited a simulation proof, showing that the modi�ed algorithm satis�es the

ts spe
i�
ation. This proof fo
used solely on the ts property, it took two and a half pages,

in
luded three major invariants, and used the te
hnique of prophe
y variables [2℄.

Finally, we used spe
ialized extension to modify the vs spe
i�
ation and algorithm to

in
lude the fourth property, 
alled self. This property requires that appli
ation pro
esses

re
eive their own messages before moving to the next view. self is another example of a

syn
hronization property, whi
h restri
ts possible a
tion interleaving. The extension of the

spe
i�
ation added a single 
onstraint to the parent's view delivery a
tion; the 
onstraint

was in terms of the parent's variables. The extension of the end-point algorithm was about

�fteen lines of 
ode and involved a syn
hronization with the end-point's 
lient. Again, we

exploited Theorem 5.4 in verifying that the �nal algorithm satis�es the �nal spe
i�
ation.

The �nal step of the simulation proof fo
used solely on the self property; it took two and

a half pages and in
luded three major invariants.

Group 
ommuni
ation systems are parti
ularly amenable to in
remental modeling and

veri�
ation using our formalism be
ause su
h systems involve a number of separate prop-

erties, ea
h 
onstraining or syn
hronizing the deliveries of messages and views. Given an

algorithm (a spe
i�
ation) for one su
h property, an algorithm (a spe
i�
ation) that adds

a se
ond property enfor
es additional syn
hronization 
onstraints. The 
hild 
an reuse the

handling of 
ommon events and data stru
tures by the parent and introdu
e only the ma-


hinery required to provide the new property; the ma
hinery 
an rely on both new and

parent data stru
tures. In order to provide the property, the 
hild 
an establish the required

syn
hronization, for example, using new a
tions, and then enfor
e it by adding new pre
on-

ditions to the 
ommon a
tions. For example in [25℄, the algorithm that implemented the vs

property established the syn
hronization by introdu
ing a new proto
ol and then enfor
ed

the syn
hronization by requiring the proto
ol to 
omplete before the view and message de-

livery events 
ould exe
ute. In summary, we believe that our inheritan
e-based formalism

is parti
ularly useful for modeling and verifying systems whose spe
i�
ations 
onsist of a

number of di�erent properties that 
onstrain the same a
tions.
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6.3 The bene�ts of in
remental modeling and veri�
ation

Using the inheritan
e-based te
hnique, we were able to present a 
omplex algorithm step by

step. This way, it was easy to see whi
h part of the algorithm 
orresponds to whi
h property

of the spe
i�
ation. Correspondingly, the proof was broken up into pie
es of manageable

size. Moreover, ea
h pie
e of the proof was fo
used on proving a spe
i�
 property. This

pie
e only needed to 
onsider the part of the 
ode that implements that property; dis
ussing

other pie
es of the 
ode would have distra
ted attention from what is being proven.

Previous proje
ts that modeled large-s
ale 
omplex systems using I/O automata relied on


omposition; 
omplex algorithms were expressed by multiple manageable parts that jointly


ompose the algorithm (see, for example, [21℄). In the 
ontext of our proje
t, however, 
om-

position 
ould not have been used in lieu of inheritan
e, for two reasons: Firstly, 
omposition

does not allow di�erent 
omponents to share the same data stru
tures. In 
ontrast, all the

parts of our algorithm share 
ommon data stru
tures su
h as message bu�ers. Using 
om-

position, we would have had to dupli
ate these data stru
tures as well as the book-keeping

logi
 asso
iated with them. This would make the algorithm models more 
umbersome.

The se
ond and more important reason is that 
omposition does not allow for proof

reuse, sin
e it does not guarantee that one 
omponent does not violate the guarantees of

the other. Consider our proje
t, for example. Had we 
omposed a fifo multi
ast servi
e

that meets the fifo spe
i�
ation with a vs servi
e that syn
hronizes messages with views,

we would have had no guarantee that the 
ombined servi
e preserves the fifo order. In

order to prove that the 
omposition indeed satis�es the fifo spe
i�
ation, we would have

to prove (1) that the fifo servi
e orders messages in this order; and (2) that the vs servi
e

does not 
hange message order in a way that would violate the property. When introdu
ing

a third 
omponent, (for example, self), we would, on
e again, have to prove that the new


omponent does not violate the fifo order. This repetition of reasoning is pre
isely what

our inheritan
e-based te
hnique allows us to avoid.

7 Dis
ussion of Modeling Methodology

Our notion of inheritan
e allows a 
hild to see the parent's internal variables, but not to write

to them. In this respe
t, the parent's internal variables and a
tions 
an be seen as prote
ted

variables, but with additional restri
tions. Spe
i�
ally, spe
ialization does not allow 
hildren

to 
hange state variables of their parents.

In some situations, however, one may see a need for a 
hild to modify a parent's vari-

able. We have en
ountered su
h situations when we modeled the algorithms in [25℄, as

des
ribed in the previous se
tion. We dealt with this 
ase by introdu
ing a 
ertain level

of non-determinism at the parent, thereby allowing the 
hild to resolve (spe
ialize) this

nondeterminism later.

For example, the algorithm that implemented the se
ond spe
i�
ation des
ribed above

sometimes needed to forward messages to other pro
esses, although su
h forwarding was not

needed at the parent. The forwarded messages would have to be stored at the same bu�ers as

other messages. However, these message bu�ers were variables of the parent, so the 
hild was

not allowed to modify them. We solved this diÆ
ulty by 
hanging the parent automaton to
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have a forwarding a
tion whi
h forwards arbitrary messages to other pro
esses. The parent

stores in
oming forwarded messages in the appropriate message bu�ers, in a manner that

preserves the 
oheren
e of its data stru
tures. The 
hild then sets the poli
y for restri
ting

the arbitrary message forwarding a

ording to its algorithm. Using this methodology allowed

us to bene�t from proof reuse, without 
ompli
ating the proofs.

We liken this methodology to the use of abstra
t methods or pure virtual methods in

obje
t-oriented methodology, sin
e the non-determinism is left at the parent as a \hook"

for prospe
tive 
hildren to spe
ify any forwarding poli
y they might need. Thus, the parent

spe
i�es the poli
y and the integrity 
onstraints for modifying its variables. The a
tual

me
hanism is implemented by the 
hild while abiding to the parent's 
onstraints; the 
hild

of 
ourse 
an also re�ne the poli
y and the integrity 
onstraints.

8 Related work

The works that most 
losely relate to ours are those of Soundarajan and Fridella [37, 38℄

and Stata and Guttag [39℄. Unlike our formalisms, both of these works are restri
ted to the


ontext of sequential programming and do not en
ompass rea
tive 
omponents.

Like us, Soundarajan and Fridella [37, 38℄ have re
ognized that in
remental reasoning

is important in exploiting the full potential of inheritan
e. They present a spe
i�
ation

notation and a veri�
ation pro
edure geared towards su
h in
remental reasoning. However,

they 
onsider a more general type of inheritan
e | one that allows a 
hild to override

behavior of the parent. As a result, the proof-reuse result they obtain is mu
h weaker and

less stru
tured than ours. In parti
ular, reasoning reuse applies only when the simulation

fun
tion (abstra
tion fun
tion, in their 
ase) between 
hild automata is identi
al to that

between parent automata, and only to those a
tions that are inherited from the parent

without any modi�
ation. In 
ontrast, our framework applies to all types of a
tions, in
luding

those whi
h are modi�ed by the 
hild.

Stata and Guttag [39℄ have also re
ognized the need for proof-reuse in a manner similar to

that suggested in this paper. They suggest a framework for de�ning programming guidelines

and supplement this framework with informal rules that may be used to fa
ilitate reasoning

about 
orre
tness of a sub
lass given the 
orre
tness of the super
lass is known. However,

they only addressed informal reasoning and did not provide the mathemati
al foundation

for formal proofs.

Numerous other resear
h proje
ts, for example [1, 5, 10, 11, 20, 24, 29, 30, 35, 4, 34, 15℄,

have dealt formally with inheritan
e and its semanti
s. In parti
ular, many proje
ts, su
h

as [29, 30, 11, 4, 34℄, fo
us on de�ning inheritan
e 
onstru
ts in ways that either automati
ally

imply or simplify the task of proving that a 
hild behaves indistinguishably from its parent,

in other words, that the 
hild satis�es its parent's spe
i�
ation. However, no other work

that we are aware of allows for reuse of a parent-level simulation proof when showing that a


hild satis�es (simulates) its own spe
i�
ation.

To be fair, we note that it is not immediately obvious how to adapt our in
remental

veri�
ation ideas to the notions of inheritan
e in obje
t-oriented programming languages.

The denotational semanti
s of inheritan
e in these languages is more 
omplex than what we


onsider in this paper; for example, it in
ludes re
ursion. However, we also feel that the
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essen
e of our approa
h is general enough to be appli
able to other state-transition formal

models, su
h as TLA [28℄, UNITY [34℄, and Pro
ess Algebra [22, 33℄.

We note also that, while our de�nition of sub
lassing for extension is similar to behavioral

subtyping of Liskov and Wing [29, 30℄, it is not identi
al: Behavioral subtyping requires only

that a 
hild behave indistinguishably from its parent when the 
hild is used in the 
ontext of

the parent, that is, when the exe
ution of the 
hild 
ontains only the parent's a
tions, and

none of the a
tions introdu
ed by the 
hild. Sub
lassing for extension enfor
es a stronger

property: any tra
e (exe
ution) of the 
hild, even one that has a
tions introdu
ed by the


hild, is indistinguishable from a parent's tra
e when all su
h new a
tions (and new state

variables) are proje
ted out.

9 Con
lusions

In this paper, we have presented an inheritan
e-based formalism for modeling and verifying

systems in
rementally.

The formalism de�nes two inheritan
e 
onstru
ts that 
an be used to model a modi�ed

version of an abstra
t model of a system by spe
ifying how the modi�
ation is di�erent from

the original. Using these 
onstru
ts, one 
an model (spe
ify) a 
omplex system in
rementally,

by starting from a basi
 model (spe
i�
ation) and then, at ea
h step, adding support for

new properties of the system.

For simpli
ity, the paper has des
ribed the formalism in terms of two levels of abstra
tion:

\spe
i�
ation" and \algorithm"; but in general, the formalism is 
omplementary to the

te
hnique of using su

essive re�nement. It 
an be applied for modeling systems at any

relevant level of abstra
tion, from the lowest level 
orresponding to software 
ode, to the

highest one 
orresponding to the most abstra
t system spe
i�
ation.

A distinguishing feature of our formalism is its support for in
remental veri�
ation, whi
h


ompliments in
remental modeling. The formalism provides fundamental theorems (4.1

and 5.4) that state formally how a simulation proof of one abstra
t model of a system

satisfying another 
an be reused and extended to a simulation proof for the modi�ed ver-

sions of these models. This allows one, not only to model and spe
ify a 
omplex system

in
rementally, but also to verify in
rementally that the model satis�es its spe
i�
ation.

The formalism, and in parti
ular its in
remental veri�
ation 
omponent, was motivated

by and re�ned during a proje
t designing and modeling a 
omplex middleware system [25℄.

The ability to model and verify the system in
rementally was 
riti
al in making the proje
t

tra
table and in making it 
lear whi
h part of the algorithm implemented whi
h property.

As Se
tion 6.3 explains, standard 
ompositional te
hniques would have not been suÆ
ient.

As explained in Se
tion 6 on page 21, the inheritan
e-based formalism was parti
ularly

useful in the 
ontext of that proje
t be
ause the modeled middleware system involved a

number of separate properties, ea
h 
onstraining or syn
hronizing 
ommon events. We

believe that the formalism would be useful for modeling and verifying other systems that

in
lude di�erent properties 
onstraining the same a
tions.

The formalism des
ribed in this paper has been presented using the I/O automaton

model | the same model that we used to model the 
omplex middleware system. The

I/O automaton model has been used extensively for modeling and reasoning about 
omplex
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distributed systems and has been developed into a programming and modeling language,


alled IOA [13, 14℄. As one of our future proje
ts, we plan to fa
ilitate the in
orporation

of our inheritan
e-based approa
h into the IOA tool-set, thereby enri
hing its modeling and

reasoning fa
ilities.

The I/O automaton model has been a 
onvenient model in whi
h to express our for-

malism. The essen
e of the approa
h, however, is general enough to be appli
able to other

state-transition formal models, su
h as TLA [28℄, UNITY [34℄, and Pro
ess Algebra [22, 33℄,

or, in other words, to any formal model that supports simulation proofs. One interesting

dire
tion for future resear
h is to enri
h the standard formal modeling languages with a

version of our formalism.

The formalism presented in this paper allows modeling of systems using two standard

and important types of inheritan
e: spe
ialization and sub
lassing for extension. In our

future work, we are planning to expand the formalism, in
luding its in
remental veri�
ation

aspe
t, to support other types of inheritan
e.

Of parti
ular importan
e is a 
onstru
t that would allow modi�
ations that override a

system's behavior. In general, one would expe
t little, if any, proof reuse possible for su
h

a 
onstru
t, sin
e modi�
ations done to a system may invalidate whatever reasoning has

been done about it. Nevertheless, useful approa
hes to 
ir
umventing this impasse 
ould

rely on limiting the types of the modi�
ations allowed by the 
onstru
t and on requiring the

modi�
ations to preserve 
ertain invariants.

The formalism presented here is an important step toward s
alable and 
ost-e�e
tive

formal methods and toward pra
ti
al software design methodologies that, in addition to fa-


ilitating reuse of 
ode, also fa
ilitate reuse of reasoning. In general, any extensions to the

formalism that we make in the future will be motivated and guided by our work on designing

and modeling 
omplex distributed systems. This approa
h will ensure that, like the formal-

ism presented in this paper, these extensions will have important, pra
ti
al impli
ations.
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