
A Framework for Highly Available Services
Based on Group Communication�

Alan Fekete
fekete@cs.usyd.edu.au

http://www.cs.usyd.edu.au/�fekete

Department of Computer Science F09

University of Sydney 2006, Australia.

Idit Keidar
idish@theory.lcs.mit.edu

http://theory.lcs.mit.edu/�idish

MIT Lab for Computer Science

545 Technology Sq., Cambridge, MA 02143, USA

Abstract

We present a framework for building highly available
services. The framework uses group communication to co-
ordinate a collection of servers. Our framework is config-
urable, in that one can adjust parameters such as the num-
ber of servers and the extent to which they are synchronized.
We analyze the scenarios that can lead to the service avail-
ability being temporarily compromised, and we discuss the
tradeoffs that govern the choice of parameters.

1 Introduction

We present a framework for building a family of highly
available services. The framework is not a service by itself,
but rather a template for implementing a variety of specific
services. The services we consider are stateful: clients in-
teract with the service in sessions; throughout a session, the
service stores changing context information for the client.
For example, in a video-on-demand (VoD) service [2], the
changing context for a session includes the movie a client is
watching and the client’s current location in that movie. In
this paper we do not address updates to the content stored
at the servers, for example, the movies in a VoD service; we
assume a separate mechanism for these.

We use replication to achieve availability: A service is
provided by a collection of servers. The set of servers
may change dynamically due to failures and also when new
servers are brought up to alleviate the load on existing ones.
A client may be migrated from one server to another during
an on-going session; the client is unaware of changes in the
service provider.

�This work was supported by Air Force Aerospace Research (OSR)
contracts F49620-00-1-0097 and F49620-00-1-0327, Nippon Telegraph
and Telephone (NTT) contract MIT9904-12, NSF grants CCR-9909114
and EIA-9901592, the Australian Research Council, and the University of
Sydney Special Studies Program.

Although the service is designed to be highly available,
certain failure patterns can lead to undesirable behaviors
such as temporary loss of service. The risk for such un-
desirable events can be minimized at the cost of additional
resources: increasing the number of servers and the level of
synchronization among them. Each individual highly avail-
able service may have a different policy for balancing these
risks and costs. Our framework provides the mechanism for
implementing various different policies by allowing a ser-
vice builder to configure a number of parameters.

An important contribution of this paper is the risk anal-
ysis we offer for the suggested framework. We find what
patterns of faults risk leaving the service not available to
a client. We examine how the likelihood of such patterns
can be reduced by carefully adjusting some parameters in
the framework, and also the cost tradeoffs implied in such
adjustments. We concentrate on understanding the issues
that should guide the setting of the parameters; once a pol-
icy is chosen, its enforcement could be automated through
techniques such as spawning new servers when needed, as
described in [5], but we do not deal with that in this paper.

Our framework exploits a virtually synchronous group
communication system (GCS) [3, 1, 7] as a building block.
Our starting point for this work was the VoD service of [2],
which exploits group communication in order to have the
service remain available through node and link breakdowns,
including network partitions. The VoD service uses a num-
ber of different groups at three different scales, where some
groups are monitoring and controlling the membership of
others. The success of this approach is evident in the small
size of the code: the VoD server, which provides all the
fault-tolerance logic as well as managing the access and
transmission of the movies, is written in under 2500 lines
of C++ code.

In this paper, we generalize the specific design of [2] to
give an architectural framework for a class of highly avail-
able services. The service of [2] is only one instance of our



framework; the framework allows a wide range of services
to be implemented and a wide range of fault-tolerance pa-
rameters to be configured for implementing different avail-
ability policies.

The rest of this paper is organized as follows: In Sec-
tion 2 we describe our design goals, illustrated by a few
example services that can be built using our framework. In
Section 3 we describe our framework for building highly
available servers. In Section 4 we analyze the availability
of the framework in a variety of circumstances. Section 5
concludes the paper.

2 Design Goals

The type of service that we envision is one where many
clients concurrently access the service, but each individual
client does not need to use the service all the time. For
each client its use of the service is divided into sessions;
the client is connected to the service for the duration of a
session, and then it disconnects until a later time when it
begins a new session. Within a session, the service will send
the client information it requests, in the form of messages
called responses. We do not assume that within a session
the interactions follow a protocol of precisely paired request
and response; it is also possible that a request from the client
leads to a stream of responses.

The state of the service is divided into two separate as-
pects: there is a large amount of information, the content,
that is relevant to multiple clients. Each response the client
receives is part of, or derived from part of, the content. Also,
there is some state information which concerns a particular
session. This session context determines which parts of the
content the client wants to receive in responses, and how
those responses should be sent. The session context can be
altered as a result of requests from the client, and it can also
change to reflect the fact that certain responses have been
sent to the client.

We will focus on services where changes to the content
are infrequent, and where there are not strong consistency
requirements on when clients notice the changes. Thus in
this paper we will not deal at all with changes to the content,
supposing that they happen outside the framework we are
describing. However, changes to the session context happen
frequently. We also suppose that the content is composed
from a number of separate content units, and that each ses-
sion involves access to one content unit only.

The VoD service discussed above provides one exam-
ple that fits our domain of interest. Here each movie is a
separate content unit. A session involves a client watch-
ing one movie. The movie is represented by a sequence of
frames; each frame is sent in a message as one response.
The session context includes indication of the point within
the movie where the client is watching; this can be changed

by control messages from the client (e.g., “skip to the start
of scene 4”), but the location also advances as each frame
is sent to the client. The session context also includes in-
formation on the rate at which the client wants to receive
frames, etc.

A distance-education service has shared state which has
many “learning objects” including lecture notes, anima-
tions, quiz questions etc; these are grouped into topics. One
topic is a content unit for the service. A session involves
a client (“student”) studying a topic, by downloading and
interacting with some of the relevant learning objects. The
learning objects to be viewed are chosen dynamically dur-
ing the lesson, based on both the student’s wishes (e.g., fol-
lowing hyper-links between objects) and on the student’s
performance on quiz questions (e.g., the service may pro-
vide more detailed explanations if the last quiz grade is
low).

A third example is a search service which allows a client
to make successively narrower queries by restricting the
search in one query to within the result set of earlier ones.
A possible query would be “select from the results of query
3 where also publication date is after 1995” or “find the in-
tersection of the results of query 4 with query 7”; in general,
the session context is the list of previous result sets.

We provide a framework for implementing any service
that fits the pattern described above, with unchanging con-
tent and changing session-specific context. The basic de-
sign goal for our framework is that the service should be
available, that is, the service should provide the responses
that clients want. The service should be able to overcome
process and network failures, and should be able to serve
a variable number of clients. The availability requirements
lead to a design where the service is provided by replicated
servers. We therefore assume that each content unit can be
served by several servers, but we do not require that ev-
ery server provide every content unit of the whole service.
Thus, the replication is partial, not total.

A second important design goal is to make the service
as flexible as possible, and at the same time to keep the
client design as simple as possible. For example, the service
should have the flexibility to allow for dynamic changes in
the set of service providers; the client should not be aware
of such changes. Therefore, achieving availability should
not be the client’s responsibility.

When a client makes a request, it should get its response
from one of the servers. It is natural to try to keep the same
server throughout a single session, but this may not always
be possible: the server may crash or may be overloaded.
Therefore, it is clear that in some situations the client may
need to be migrated to another server during an on-going
session. As explained above, such migrations should be ini-
tiated and managed by the service, not by the client.

Let us examine what potential problems can arise when a

2



server fails and the client is migrated to another one. First,
a request may be lost, in which case a corresponding re-
sponse will fail to arrive. Next, assume that a response does
arrive. Note that because we have treated the content as
static, each response contains a correct subset of the content
(i.e., a response can never be incorrect). It may, however, be
a duplicate. Also, an unwanted response may arrive because
the service has been sending responses based on out-of-date
context (e.g., a VoD service may have lost the context up-
date where a client asked to jump to a new location, and
then continue to send frames from the previous location).

We can therefore see the following availability design
goals:

� First, there ought to be exactly one server at a time that
is sending responses for a particular session.

� Also, the server that is responding should have a ses-
sion context that is up-to-date, reflecting all requests
from the client during this session and all previous re-
sponses.

3 The Solution

We suggest a framework for highly available services.
In our framework, a service is provided by a collection of
servers, each capable of serving some of the content units
of the service, but not necessarily all of them. The set of
servers may change dynamically due to failures and also
when new servers are brought up to alleviate the load on ex-
isting ones. Clients using the service are generally unaware
of such changes.

The framework provides the mechanism for meeting the
availability design goals of the previous section under a va-
riety of circumstances. When instantiating the framework
to build an actual service, one has to define the availabil-
ity policy; that is, to what extent would the design goals be
met under different circumstances, and at what expense. We
therefore present the framework with several configurable
parameters. In the next section, we study the tradeoffs in-
volved in different choices for parameter values.

3.1 Meeting the design goals

Let us examine the design goals of the previous section.
First, at a given time, we try to have a single server serve
each client session in-progress. We call this server the pri-
mary server for the session. There can be a single primary
server when there are available servers that can communi-
cate with the client, and when the network is stable enough
to allow these servers to agree among them which one of
them will be primary�.

�If the network is asynchronous, then it can prevent such agreement [4].
However, while the network is fairly stable, and process failures can be

The primary server of an on-going session may have to
change, either due to a crash, or preemptively for load bal-
ancing purposes. If the server crashes in the midst of a ses-
sion, client context information may be lost. Information
loss may lead to loss of service, or to missing, duplicate, or
irrelevant responses. Replicating context information may
minimize loss, but may also be costly.

Consider, for example, the VoD service. If the primary
server crashes in the midst of sending a video stream to a
client, a new primary server will take-over and serve the
client. To this end, the new primary server needs to know
of the session’s existence. In order to send the client the
correct video frames, the server also needs to know which
frames the previous primary had sent before crashing. It
could know the exact location in the stream where the server
had failed by listening to all the communication between
the primary and the client. However, since the video stream
has a high bandwidth, this would result in significant load.
Instead, the primary can periodically update other servers
about its location in the movie. This way, these servers’
client context information would not perfectly up-to-date,
but also not too far off. In the VoD service of [2], such up-
dates are sent every half a second. Thus, upon migration,
a new primary may send half a second of duplicate video
frames to the client and the server may be unaware of con-
text updates (e.g., requests to skip to a different part of the
movie) sent by the client in the last half a second.

In general, there is a tradeoff between the cost of keeping
up-to-date context information, and the improved availabil-
ity such information allows for. To balance these param-
eters, our framework keeps context information with three
levels of freshness. The primary server of a session always
has the most up-to-date context information for the session,
reflecting exactly the responses that were sent by the pri-
mary to the client, and all the context updates received from
the client. The primary server periodically propagates con-
text updates to a group of servers providing the same con-
tent unit. These servers maintain a replicated data structure
called the unit database. The unit database keeps track of
the sessions that exist for a particular content unit, the allo-
cation of servers to these sessions, and session context infor-
mation as periodically propagated by each primary. We use
properties of GCS to ensure that the unit databases are con-
sistent. The number of servers which contain replicas of the
content, and the period between propagation messages, are
both configurable. The freshness of the context information
in the unit database is mainly determined by the frequency
of the periodic updates.

At an intermediate scale, we introduce the notion of
backup servers. Any number of backup servers per session
are chosen among the servers that have replicas of the con-
tent unit. In addition to the periodic updates from the pri-

consistently detected, such agreement can be reached.

3



mary, the backup servers listen to context update messages
from the client, but not to the responses of the primary. This
mechanism eliminates the risk of losing client requests upon
migration to a backup, but not the risk of sending duplicate
responses. In a setting, like VoD, where client requests are
fewer and smaller than server responses, this policy does
not significantly load the backup servers or the clients. The
client uses the GCS to send its context update messages to
a group containing the primary and backup servers. This
group is expected to be small (typically consisting of up to
three servers), and thanks to the use of GCS, the client need
not be aware of the current membership of this group. Our
design uses properties of GCS to guarantee that client con-
text updates are at least as current as information in the unit
database. The number of backup servers per session is con-
figurable.

3.2 Using group communication

The solution exploits a partitionable virtually syn-
chronous GCS as a building block. The GCS includes
a membership service, which provides each server with a
view of the network topology. If a process is a member
of several groups, its failure or separation from the others
is reflected consistently in new views for these groups. At
times when the network situation is stable, views are pre-
cise (see [7]). The GCS also carries multicast messages
addressed to groups; it supports reliable delivery, totally
ordered in each group, with causal order preserved across
groups. Delivery is virtually synchronous, that is, when
members move together from one view to another, they all
receive the same messages in the earlier view. The GCS
supports open groups, that is, a process does not need to be
a member of a multicast group in order to send a message
to that group.

The service creates three kinds of multicast groups:

Service group consists of all the servers. This group serves
as a point of contact for clients to connect to the ser-
vice. We assume that all clients have a priori knowl-
edge of this group’s name.

Content group (one for each content unit) consists of
those servers that store a replica of the specific content
unit, for example, the servers that hold a specific movie
in the VoD service. All content groups are subsets of
the service group, and these groups may overlap.

Session group (one for each currently connected session)
a subset of the content group consisting of the primary
server and a number of backup servers.

The set of servers participating in each of these groups
may change at any time. The service and content groups
may change due to server failures and also as new servers

are brought up to alleviate the load on existing servers. A
session group may change, either due to a server crash, or
for load balancing purposes. A client is not aware of such
changes, as it uses use the abstract group to communicate
with whichever servers are currently in this group. This
group layout generalizes the approach of [2], where simi-
lar groups are created, but with session groups consisting of
a single server – that is, there are no backup servers.

3.3 Client interactions with groups

When a client wishes to use the service, it sends a mes-
sage to the service group. When this message is received,
the servers send to the client the list of available content
units, and the content group name for each of them. The
client chooses a content group from this list, and sends a
start-session message to it.

In response to the start-session request, one of the
servers in the content group selects itself to be the primary
server for this client, and a number of other servers select
themselves to be backup servers. We discuss the selection
process below. The selected servers (primary and backups)
join a new group, which will be the session group for this
client. The group name is computed deterministically by
each of the servers. The primary server then notifies the
client of the session group name.

Once the session has started, the client does not deal with
either the service group or the content group. The client
sends all of its requests to the session group. Only the pri-
mary server sends responses to the client, and these are sent
in point-to-point messages.

3.4 Managing the groups

When a start-session message from a new client is re-
ceived in the content group, each server that receives it adds
the client to the unit database, and applies a deterministic
function to the unit database in order to select lightly-loaded
primary and backup servers for this client. Thanks to total
message ordering, the function is evaluated over identical
databases at the different servers, and all the servers choose
the same primary and backup servers. The selected servers
join the session group.

Whenever the membership of the content group changes
as a result of a server crash or join, the members receive a
new view from the GCS. Upon receiving the new view, the
servers evenly re-distribute the clients among them.

If the content group membership change notification re-
flects server failures only, then virtual synchrony semantics
allow the servers to immediately reach a consistent decision
as to which clients each server will serve without exchang-
ing additional information; virtual synchrony guarantees
that all the servers have received the same set of messages

4



before the membership change notification (see [7]), thus,
all the servers in the group have identical unit databases at
the point when they get the view. Each surviving server
in the content group applies a deterministic function to the
unit database in order to select primary and backup servers
for the clients of the failed servers. The function is cho-
sen so that the new primary assigned will be the former pri-
mary if possible, or one of the former backups, if the former
primary has failed but some former backup remains in the
group. The ability to re-distribute the clients immediately
without first exchanging messages allows servers to quickly
take over failed servers’ clients.

If a content group change reflects the joining of new
servers (and possibly failures as well), then all the servers
first exchange information about clients, and then use the
exchanged information to decide which clients each of them
will serve. The allocation is done deterministically based on
the combined information, in such a way as to balance the
load fairly. For migrated clients, the old primary sends up-
to-date context information to the new primary.

Changes in the session group membership are performed
as follows: First, any new primary and backup servers that
were not previously in the session group join it. Then the
members that should leave the session group do so. Now
the primary server begins sending responses to the client,
and also it begins propagating the session status at the ap-
propriate times.

4 Analysis of Fault-Tolerance

We now examine the framework that was presented in
Section 3, to see how well it meets the design goals articu-
lated in Section 2. In particular, we want to see which fail-
ure patterns might lead to clients which not getting the re-
sponses they want. We will examine the tradeoffs involved
in different settings of the configurable aspects of the sys-
tem framework.

The first design goal is that a given client should re-
ceive information from exactly one server at any time. As
explained in Section 3, the group communication service
ensures that, in times of stability in the underlying com-
munication layer, all members of a session group have the
same information about the group membership; thanks to
the total order and virtual synchrony, all have identical unit
databases. Thus, when the members independently apply
the deterministic function to decide which member will be
the primary server for the session, exactly one member will
elect itself as the primary, and respond to the client. Thus
the scenarios which can lead to a client not having a unique
primary server are the following:

� The group communication membership service might
give different views of the membership to different

servers, during periods when a view change has begun
but is not completing properly. This can only occur
while the underlying transmission system is not stable.

� Every server which can provide this content may have
either crashed or disconnected from the client. Clearly
availability is impossible in a scenario such as this.
The probability of this scenario can be reduced by in-
creasing the degree of replication.

� The session group may have partitioned, with at least
two partitions each seeing the given client as con-
nected to it. This can only happen while the underlying
transmission system is not transitive: that is there are
servers which can’t communicate with one another, but
can both communicate with the client. This is very un-
likely in a LAN environment, but it does occur some-
times in WANs.

The second important design goal for an available ser-
vice is that the primary server have an up-to-date context.
The context depends on both the messages sent by the
client, and on knowledge of which responses have been sent
to the client. We investigate these aspects separately, since
they have different impacts. If a primary has missed a con-
text update from the client, then it may send responses that
are completely unrelated to the clients current wishes. On
the other hand, ignorance about which responses have been
sent is less serious, leading at worst to duplicate responses.

A context message sent by the client may be not known
to its current primary in case the message was sent before
this primary was a member of the session group, and the in-
formation in it was not yet propagated to the content group.
For this to happen, all the previous members of the session
group must have failed (or disconnected from the client) ei-
ther before receiving the context message or before propa-
gating it to the content group.

As for server responses, there can be uncertainly about
those responses that might have been sent in the interval
between the last context propagation and the crash of the
primary server�. For these uncertain responses, there is a
clear choice for the new primary that takes over a client: it
can either transmit the response (risking the client seeing
a duplicate if in fact the response had been sent before by
the previous primary), or it can not transmit (risking that
the client never sees the response). The choice is applica-
tion specific. For example, for MPEG-encoded video, one
would favor duplicate delivery for full image (I) frames over
the risk of losing them, but would risk missing some incre-
mental (P or B) frames.

�Recall that, unlike context updates caused by messages from the client,
information about responses sent is not known to the backup servers in
the session group, since we use point-to-point communication from the
primary to the client.

5



Combining the observations above, we see that there is
an interplay between the configurable factors of the fre-
quency of propagation of the unit database information
among the content group, and the number of members in
each session group. The probability of losing context up-
dates sent by the client is the chance of every session group
member failing or separating from the client during the pe-
riod between propagations. Thus this probability decreases
as either the propagation frequency or the size of the ses-
sion group rise. However, increasing either of these factors
places more work on each server. Whenever client database
information is propagated, each server in the content group
must process it; when the session groups become larger,
each server is a backup in more groups, and must therefore
receive more client requests (however, the work is merely
receiving and recording the request; only the primary re-
sponds).

5 Conclusions

We have presented a framework for building highly
available services which are characterized by unchanging
server contents, and changing context relating to each sep-
arate session. The framework is based on replication of the
content among a group of servers. The context informa-
tion is also replicated, but in three different levels of syn-
chronization: The primary server has accurate information.
The backups have somewhat dated information about which
responses the primary sent, but accurate knowledge of the
context updates sent by the client. The rest of the replicas
have somewhat dated knowledge of the context. GCS is
used for messages from the client to the service, so that the
client can ignore issues of changes to the set of servers, and
hand-over when a server fails, or when load is redistributed.
GCS is also used to propagate information about the context
from the primary to other servers. The key configurable pa-
rameters in our framework are the number of servers at each
level of synchronization, and the frequency with which the
primary propagates context to the other servers.

The framework of this paper is a generalization of the de-
sign used in the VoD service of [2]. Our description main-
tains the essential character of the earlier VoD design, with
process groups at three scales. This paper extends the [2]
work by making the configurable aspects explicit, and by
introducing backup servers within the session group (giving
an intermediate level of context synchronization between
the up-to-date primary and the content group which receives
propagated context from the primary).

Furthermore, we have analyzed the framework, to show
which patterns of faults can leave the service not available to
a client. We have shown where different properties of GCS
are needed in the design, to allow consistent decisions. We
have examined the impact of the configurable parameters

on the chance of losing availability, and we have explained
the tradeoffs between availability and performance.

Future work may integrate into the design some dynamic
changes of the parameters, and automatic invocation of new
servers using the techniques of [5]. Thus the user might
express a desired service quality in terms of a chance of
losing a context update, and the system could then adjust
the needed number of backups in each session group.

Another extension worth pursuing is to integrate into the
design a mechanism for consistently updating the state that
is shared between clients, using the well-known replicated
state machine technique [6].

References

[1] ACM. Commun. ACM 39(4), special issue on Group Commu-
nications Systems, April 1996.

[2] T. Anker, D. Dolev, and I. Keidar. Fault tolerant video-on-
demand services. In 19th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 244–252, June
1999.

[3] K. Birman. Building Secure and Reliable Network Applica-
tions. Manning, 1996.

[4] M. Fischer, N. Lynch, and M. Paterson. Impossibility of dis-
tributed consensus with one faulty process. J. ACM, 32:374–
382, April 1985.

[5] S. Mishra and G. Pang. Design and implementation of an
availability management service. In 19th International Con-
ference on Distributed Computing Systems (ICDCS) Work-
shop on Middleware, pages 128–133, June 1999.

[6] F. B. Schneider. Implementing fault tolerant services using
the state machine approach: A tutorial. ACM Comput. Surv.,
22(4):299–319, December 1990.

[7] R. Vitenberg, I. Keidar, G. V. Chockler, and D. Dolev. Group
Communication Specifications: A Comprehensive Study.
Technical Report CS99-31, Institute of Computer Science,
Hebrew University, Jerusalem, Israel, September 1999. Also
Technical Report MIT-LCS-TR-790, Massachusetts Institute
of Technology, Laboratory for Computer Science and Techni-
cal Report CS0964, Computer Science Department, the Tech-
nion, Haifa, Israel.

6


