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Abstract 

We present a novel way to formulate database dependencies as sentences of 

first-order logic. using equational statements instead of Horn clauses. 

Dependency implication is directly reduced to equational implication. Our 

approach is powerful enough to express fUnctiona and inclusion 

dcpcndencics. which arc rhe most common database constraints. We 

present a new proof procedure for thcsc dcpcndcncies. We use our 

equational formulation to derive new upper and lower bounds for the 

complexity of their implication problems. 

1. Introduction 

In order to deal formally with the problems of logical database design and 

data processing, database theory mod& data as sea of tables (relarions). 

These relations arc required to satisfy integrity constraints (dependencies), 

which intend to capture the semantics of a particular application. Various 

kinds of dependencies have been proposed in the literature (see [2S,ll] for 

reviews of the area). For example, afincriorlal dependency (FD) is a formal 

statement of the form EMPLOYEE+SALARY. which intuitively states that 

every employee has a unique salary. An inclusion dependency (IND) is a 

staremcnt of the form MANAGERQMPLOYEE, which intuitively states that 

every manager is an employee (the more general IND 
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also the fact that managers make the same salary as managers as they make 

as cmployccs). FD’s and INUs are the mat common database constraints. 

A most general formulation of dcpendencics as sentences in first order logic 

(namely Horn clauses) was given in 1111. To handle the central 

comoutational problem of depcndcncy in@cafion a particular proof 

procedure was devclopcd, tie charr (src[25] for its wide applicability). 

Proof procedures for gcncral data dcpcndcncies also appear in [26,2,3].The 

chase was seen to be a special cast of a classical thcorcm proving technique, 

namely resolution 12.3). 

Alternative methods for theorem proving have been developed in the 

context of equorionol heories. This is a fragment of first order logic which 

has attracted a lot of attention because of its wide applicability in areas such 

as applicative languages, iriterpreters. bnd data types. See 114) for a survey of 

the area. 

Given the formulation of database constraints as first order sentences, one 

would expect dabbase theory to have been influenced by the developments 

in equational theories. However, not only did this never happen, but a 

constant effort has been made to minimize the role of equality in data 

dependencies (wlrivalued deprnderrcic?r, the most widely studied after FD’s, 

do not involve equality). This is even more impressive in view of the fact 

that the best algorithm for loJslrJsnm 01 joins a basic computational 

problem, was dcrivcd from an effcicnt algorithm for congncence closure 

[lo]. and the best algorithm for implication of I-Us [l] can be seen directly 

as a special case of an algorithm of 118) for the generulorprobletn inflnirely 

presented a&$ebrus. 

This paper is a first attempt to rectify this situation. We demonstrate that 

there is a close connection between depcndcncics and equational 

statements. This strongly suggests the possibility of using the tools of 

equational rheories to handle implication of dependencies. We explain our 

transformation of IND and FD implication into equational implication in 

Section 3 (Theorem 1). This transformation vastly simplifies arguments 

about provability of dependencies (compared to arguments using the 
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chase), and enables us to prove a number of results on implication problems 

For FD’s and JND’s. 

We illustrate our basic approach with an example: An FD A-tB is 

transformed into a string equation jr=b. and an JND CDCAB Js 

transformed into the equations ai=c, bi=d Now we can easily infer the 

equation fi=& fe=fii= bi=d. This corresponds to inferring the FD 

C+D. In general, proofs in equational theories have a clean combinatorial 

structure, due to the existence ofa simple, intuitive proofsystem [4]. 

A number of results are known about FD and JND implication. For 

IND’s alone and FD’s alone we have fir& ccmrrollabilify, i.e. implication 

andfinite implication coincide. While FD implication is decidable in linear 

time [l]. IND implication is PSPACE-complete 151. Syntactic restrictions on 

the 1ND’s simplify the implication problem: bounded width JND’s [S] and 

ryped IND’s [6] have polynomial time implication problems. The problem 

bccomcs NP-complete for urychc IND‘s~ [24,9]. ‘fbc combination of FD’s 

and IND’s is not finitely controllable [S], or even decidzblc [22. 71. The 

combination of FD’s and una~ [ND’s is also not finitely controllable, but 

both implication and finite implication can bc dccidcd in polynomial time 

[16]. A fundamental difficulty with JNlYs is that the chase dots not 

necessarily terminate and cvcn in spxial cases delicate analysis is required 

[IS]. A proof proccdurc for Pi) and INI) implication. which diffcn from 

the chase is prcscnted in ]22]. Using a variant of this procedure, inference 

of unary FD’s from typed 1ND’s and ac;tc/ic unary FD’s is shown decidable 

in [9]. The chase is guaranteed to terminate if the IND’s arc acyclic. THUS, 

acyclic IND’s and FD’s are finitely controllable and in exponential time; 

NP-hardness (even if the IND’s arc typed) is shown in IS]). Finally, if all 

possible typed IND’s are present we have a variant of the miversul inslance 

ussuntp~ior~ [25] known as painvise comistertcy [19]. 

Our results apply to generalizations of FD’s called coup/et/ FD’s (CFD’s). 

These statcmcnts can express the additional fact that two FIX represent the 

same Function in the database. Using our central Theorem 1, we can show: 

1. Coupled unary FD’s and binary INJYs are dual swtemcnts. This is a 

direct consequence of our transformation (Corollary 1.4. Section 3). 

2. Completeness of a new proof procedure For CFD’s and IND’s. This 

procedure differs from the chase and the Formal system in [22], and treats 

CFD’s and IND’s in a symmetric fashion (Theorem 2, Section 3). 

3. FD and IND implication is undecidable, even with only two FD’s 

(Theorem 3, Section 4). 

4. An exponential lower bound for acyclic IND and FD implication. This 

considerably improves the NP-hardness lower bounds in [9] (‘Theorem 4, 

Section 4). 

5. Completeness of a proof procedure for CFD implication from a set of 

CFD’s and typed IND’s. This gcneralizcs the result in [9] and shows that the 

problem is decidable for acyclic CFJX (Theorem 5, Section 5). 

6. implication of unary FJYs in the presence of pairwise consistency is 

undecidable. The proof uses a variant of the scmidecision procedure From 

Theorem 5 and a rather involved reduction from the word problem for 

semigroups (Theorem 6, Section 5). 

For finite implication we cannot USC the Full power of our equational 

technique. However, we can show: 

7. The implication problem for acyclic FDs in the presence of pairwise 

consistency is finitely controllable (and thus our transformation is also 

meaningful in the finite case). This does not follow From Theorem 5; an 

cntircly different proof technique has to be developed (Theorem 7, Section 

8. A wca.kcr version of our transformation can handle Fmite implication of 

FD’s and unary IND’s. The proof uses the formal system of [la] (Theorem 

8, Section 6). 

2. Definitions 

2.1. Equational Theories 

Let M be a set of symbols and nktn a function from .M to the 

nonnegative intcgen .K The set of finite strings over M is M*. Partition M 

in to two sets: 
G = {gEMI ARITY(~)=O} the genemrors, 
o:= {@EMI ARITY(d)>o} the opcrutor& 

Definition: qM). the set of rens over M, is the smallest subset of MS 

such that, 
1) every g in G is a term, 
2)ifr 
81 

l,...,rm are terms and 8 is in 0 with ARIlY(e)= m, then 
l”.~m is a term. 

A submn of r is a substring of r, which is also a term. Let V = (x.x~,x~...} 

be a set of variables. Then the set of terms over operators 0 and generators 

GUV will be denoted by e(M). For terms rl,,..,rk in “rc(M) we can 

define the substitution v=( (xi++> 1 l<i<k } to be a Function from 

“SC(M) to p(M). We use (P(T) or T~x~/T~....x~/T~] for the result of 

replacing all occurences of variables xi in term T by term Ti (1 <ijk). where 

these changes are made simultaneously. 

Definition: A binary relation Z on V(M) or p(M) is a congruence 

provided that, 
1) =: is an equivalence relation, 
2) ifARlTY(@=m and ~~Z~;(lli<m) then ~‘T,...T~%+‘T;...T,;~. 

An equaliotl e iS a string Of the form T=T,' Where r,?‘are in S+(M). We 

USC the symbol E for a set of equations. We will bc dealing with models for 

sets of equations, i.e., algebras. We consider each equation e as a sentence 

of first-order predicate calculus (with cqualitg). whcrc all the variables from 

V arc un.iversally qumrijied. 
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Definition: An algebra A=(A.F) is a pair, where A is a noncmpty set and 

Fa set of functions. Each/in Fis a function from A” to A, for time n L I 

which we call the fypev). 

Examples: (a) A sernigroup (A,{ + ]) is an algebra witb one associative 

binary operator, i.e., for all x,y,z in A (x t y)+z=x t (y t 2). An example of 

a semigroup is the algebra of the set of functions from N to X together with 

the composition operation. In semigroups we USC ab instead of a+b and 

w.l.0.g. omit parentheses. 

(b) A, is an algebra with A= 3fM). For each 6 in 0 WC define a function 8 

in F with /~~~(I~)=ARITY(B); here WC USC the same symbol for the syntactic 

object 8 and its interpretation, The function 8 maps terms T~,..,,T, From 

9(M) to the term @T!...T,. (i.e., #(TV,..., T,)= ~T~...TJ. We will refer to AhJ 

as the free a&bra on M. From this example it is clear that WC can without 

ambiguity use both 8~ ,... tm and F?(T, ,,,., m 7 ) to denote the same term, 

(c)Let ZZ be a congruence on LJfM). Condition 2) of the congruence 

definition guarantees that the operations in 0 are w&defined on 

Z-equivalence (or congruence) classes. ‘Thus we can form a quofienr 

algebra V(M)/= with domain {[T] 1 7 in CJ1M). [T] is the ZZ-congnrence 

class of 2) and with functions corresponding to o’s operators. 

(d) Similar observations with (b) and (c) can be made for the set of terms 

T%Q. 

Implication: Let e be an equation and A an algebra. A satisfies e, or is a 

model for e, if e becomes true when its opcraton and nonvariable 

generators are interpreted as: the funcrions of A and its variables tic cmy 

values in A‘s domain. The class of all algcbns which are models for a set of 

equations E is called a varicfy or an equafiorral class. We say that E implies 

e (PC) ircquation e is true in every model of I!. 

Definition: An equo/ional /henv is a set of equalities E (of terms over 

p(M)). closed under hplicah. 

We wriic Et-c. if lhcrc exists a finite proof of c starting from E and using 

only the iollowing five rules: 

T=T, 

jiornT,=T2deducc~2=?1, 

Jhl r 1 = 72 and 72 = T, deduce T~=T 3 
/ram 7, =~;(I~i~m)dedure8~t...7,=87~...7~(ARITY(8)=m), 

fiorn rt = 72 deduce ~(7,)= (~(7~) (9, is any substitution). 

Let r bc a set of equations over tcnns in 41fM) (i.e.. containing no 

\ XlihkS). Conndcr rhc equational tbcory consisting of all 7 z T; such that, 

l%7= 7,. 1~) I’roposilion I Lhis theory inducts a congruence =,. on bJtM), 

uhcrc 7 = ,.7’ iff I%7 = 7’. From example (c) above we set that this 

congruence naturally defines an algebra “JfM)/=r. If r is a finite set 

T(M)/=r is known as a~~ife~presen/edu~gebrgebraIlsl. 

2.2. Rclationnl Database Theory 

Let 91 bc a finite set of attributes and 3 a countably infinite set of values, 

such that Wl9 = 0. A relariorl schenre is an object R(U]. where R is the 

name of the relation scheme and UC%. A luple t over U is a function from 

U to ‘3. Let Ai be an attribute in U and ai a value. where l<i<lUl; if 

ffAJ=ai then WC rcprcsent tuple t over U as alaz..alvl. We represent the 

restriction of tuple t on attributes $...A, of U as qA1...A,,]. A relorion r 

over U (named R) is a (possibly infinite) nonempty set of tuples over U. A 

dafabase sehej,le D is a finite set of relation schemes {R#J,]....,RJU,I} and 

a datnhase d = ( rt,..., q r } associates each relation scheme Ri[Ui] in d with a 

relation ri over U,. A database is finite if all of its relations are finite. A 

database can be visualized as a set of tables. one for each relation. whose 

hcadcrs are the relation schemes (each column headed by an attribute), and 

whose rows are the tuples. 

The logical constraints. which dctcrminc the set of legal databases, are 

catlcd da/u&se dependencies. We will be examining two very common types 

of dcpcndencies. 

CFD (R:AI...An-+A. S:B1,....B,+B) is a coupledfinclional dependency. 

Relations rs (named R.S respectively). satisfy this CFD if, 

for tuples t,, t2 in r, t1[A1...Anl=t2fA,...A11] implies $[A]= $[A] and 

for tuples tt, t2 in s, t,[B ,.,. II ]= t,(B,...B,] implies tJB]= tz[B] and n 

for tuplcs tt in r. t2 in s. tJAt...AJ= tJBt...R,j implies t,[A]= t.JB]. 

IfR=S.A=B,A,=B,...., A, = Bn we have a fincrional dependency (FD). 

If n= 1, i.e., single attribute left hand sides, then we have a binaryfirndional 

dependency (b-FD). If for an FD we also have n=l then we call the 

dependency a unaryfincfional dependency (u-FD). Note that every u-FD is 

both a b-FD and an FD. For an FD we usually employ the less redundant 

notation R:At...A,+A. 

IND S:D,...D,&R:CI...C,,, is an kclusion dependency. Relations gr 

(named S,H respectively) satisfy this IND if, for each tuple t in s. there is a 

tuplc t1 in r with tJC,l=t[DJ for I<ilm, If m=2 we have a binary 

inclusion dependency (b-ID) and if m= 1 a unary inchion dependency (u- 

ID). Note that u-ID’s are in fact special cases of b4D’s. since S:D,CR:C1 

has the same meaning with S:D,D&R:C& 

Equality of two columns headed by attributes A. .B in a relation named R 

can bc cxpresscd as a special case of IND’s or CFD’s: either use a CFD, 

such as (R:A-A. R:A--rR). or use an IND, such as R:ABER:AA. These 

depcndcncics arc panicularly illustrative of our analysis; we will use AsB 

to denote them. 



Database Notation: We use a graph notation to represent an input 

database scheme D and set of dcpendencics 1: (inpur &emu). We construct 

a labeled directed graph G, (see Figure I), which has exactly one node ati 

for each attribute Ai of each rel.ation scheme R,. Let 

i= Rz:D1...D,CR1:C1.C, be an IND in L. Then G, contains m black 

arcs (c~~d,2j,...,(c,,,dm2): each arc labeled by the name i of the IND. Let 

f=(R,:A,...A,,-+A,, R~B,...B,--+Bo) be a CFD in X. Then G, contains 

two groups of n redarcs (a,,,a,$ . . . . . (an,,aol) (and @,,.b,,) .,.., (bnl’bOl); each 

group is labeled by the name f of the CFD and each group’s arcs are 

ordered from 1 to n as listed above. 

We also consider rhe fallowing directed graphs 1, and Fx:; I, has one 

node for each relation scheme name in D and arc (R,S) if and only if G, 

contains some black arc (RA,SB). F, has one node for each attribute in D 

and arc (A,B) if and only if G, contains some red arc (RA.RB). We now 

define special syntactic forms of input schemata: 

Acyclic IA’D’s: I, is acyclic. 

ACJ~C CFD 3: Fz is acyclic. 

Typed WD’s: The black arc?, of G, are all of the form (RA,SA) for relation 

names R, S and attribute A. 

Typed INIX are between occurences of the same attribute names in 

different relation schemes. If we assume that all possible typed IND’s are in 

the input schema, (i.e., with some abuse of notation R:UfKl’CS:UnU’for 

all R[U].S[U’] in database scheme D), then we have painvise corrsis&my 

WW. 

Implication: We say that L implies o (XI=o) if, whcnevcr a database d 

over scheme D satisfies Z, it also satisfies u. If we restrict ourselves to finite 

databases we have C!=r,,,o. Clearly if CC-o (implicoliorr) then Zb,,a 

@i/e i~,&z~ion). but the converse is not always ~uc. Deciding 

implication of dependencies is a central problem in database Theory. Since 

dependencies are sentences in first-order predicate calculus with equality, 

we have proofprocedures For the implication problem (we denote proofs as 

Xl-o). A proof procedure is sound if rwhen Xt-u then ZCa; and 

complete if it is sound and when ZCu then Xl-u, (similarly for finite 

implication). The standard complete proof procedure for database 

dependencies is the chase. ‘Ibe appropriate chase rules for our analysis are 

described in [15]. 

3. Database Constraiuts as Equations 

Let Z be a set of CFD’s and IND’s over a database scheme D and u a 

CFD or IND. We will vansform P into two sezs of equations E, and 6, 

We will show that Zl=so iff E,CE, iff S,CS,, for some sc(s of equations 

E,.S, whose form depends on ): and u. We assume that D only contains 

one relation scheme: this simplifies notation, and rhcre is r,o loss of 

generality. 

Transformation: From the dependencia in Z construct the following sets 
of symbols, 

My= {f,l for each CFD with n attribute left-hand sides include 
one operator fk of ARllY n), 
Mi = {j,J for each IND include one operator i, of ARm 1). 

Ma= {akI for each attribute A, include one operator 4 
of ARlTY 11, 
Ma = (e,l for each attribute Ak include one generator at). 

Now let M= MCJMiUMslJMa and V={x,xPx2,J be a set of variables. 

p(M,) (p(Mi)) are the sets of terms constructed using operators in M, 

(Mi) and generators in V. 

The set E, consists of the following equations (presented both in string and 

parenthesized notation): 

1) two equations for each a,=(AI...An--+A, B,...B,-+B): fka,x...anx=ax 
and fkblx...bnx= bx, 

(or f,Jal(xL.,an(xN= a(x) and f&b,(x),...,b,(x))= b(x) ): 
2) m equations for each uk=BY.B,,&A1..A,: a$,x=b,x and . . . and 
a&x = b,,,x, 

(or al(ik(x))=‘bl(x) and ..- and a&(x))= b,(x)). 

Tne set 6, consists of the following equations: 

3) two equations for each ut=(A1...AD-+A, B,...Bn+B): ftal”‘aa=a and 

fJ$.-@,=B, 
(or f&a1 ,..., an)= a and f&9, ,..., fin)=/3 ): 

4) m equations for each uk=B1...B,&A1...A,: ital=& and .., and 

$pm=Bm* 
(or ik(a,)=B, and . . . and i&J=&,), 

5) for each pair of symbols fp in M, and ip in M, the equation 

f&xl...igxn =iqfpxl,..xn (ARrrY(fJ=n), 

(or fP(ip(xl) ,..., iP(xn))=ig(fp(xl ,..., x,))). 

The transformation is illustrated in Figure 2. Note that in 6, only 

equations 5) contain variables. Equations 5) are comnrukzriviry conditions 

between f and i operators. We now present Theorem 1. which is central to 

our analysis. 

Theorem 1: In each of the following three cases, (i)7(ii),(iii)an equivalent 

P Case: 

i)Zb=AzB 
ii)E+x:=bx 

iii) 6, I= u :=@. 

CFD Case: 

i) Z I= (A1”.An’A, BI...Bn+B) 

ii) E, I= T[xl/alx....,x,/asxj=ax and ~[x~/b~x,...,x~i$xl= bx, for some 7 

hf?MJ 
iii) 6, I= r[xl/nl,..., x,/u,]=o and 7~~#3~x,4l,]=& for some T in 

@&It>. 
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IND Case: 

i)L ti B,...B&A,...A, 
ii) 4 I= al~=blx and ,.. and an,r=b,x. for some T in p(M$ 

iii) 8,l= ~(x/oJ=& and ,.. and r[xla,]=fl,. for some r in~((M,). 

Proof Sketch: WC use E, (ST) to denote the set of equations 

corresponding to term r in (ii),(iii). 

(ii)*(i) Suppose E,l=E, and let relation r satisfy Z: we will show that r 

satisfies u. Relation r is, by definition, nonempty and its entries can be 

w.1.o.g. positive integers. Number its tuples 1.2,... etc., (it could contain a 

countably infinite number of tuples). Dcfinc A(.):&N, such that, if x is 

the number of a tuple in r. then A(x) is the entry in tuple x at attribute A, 

else A(x) is 0, (N are the nonnegative integers). If f is the CFD 

(D,...D,+D, C,...C,-+C) in Z define F(...):ti+X such that. if x is the 

number of a tuple ln r, then F(Dl(x),...,Dx(x))= D(x) and 

F(Cl(x).....C,(x))=C(x), else F is 0. This is a well defined function since r 

satisfies f. If i is the IND D,...D,CC,...Ck in Z detinc l(.):N+N, such that 

if x is the number of a tuple in t and x’ is the number of the first tuple in t 

where tx[D1...Dt]= tx.[C,...C,], then l(x)= x’, else I(x) is 0. This is also a well 

defined function since r satisfies i. We have constructed an algebra with 

domain Xand functions A(.) ,... $F(...) . . . . . I(.) ,..., which, as is easy to verify, is a 

model for E,. Let [I bc an IND. By intcrprcting each symbol in I as an I(.), 

we see that when x is a tuplc number T(X) is another tuple number. Since 

E$=E+ we must have Ai( Bi(x) l<i<m, which means that r satisfies u. 

The case of a CFD is similar. 

(iii)*(n) Suppose B,C6, and let Jb be a model of E,: we will show 

that J% satisfies E,. From Ab we will construct a model A(&) for g,. The 

algebra a(~%) will have domain all functions from J% to J&, ie., &-+A. 

In A(d) the interpretation of (I will be the function a(x), which 1s the 

interpretaiion of a(.) in J%. The interpretation of i(.) will be the function 

Ah.h(i(x)), where i(x) is the interpretation of i(.) in Jb (this is a function 

from Jb-+AL to A-+&). The interpretation of g...) will be the function 

Xhl...hn.Ahl(x) ,..., h,(x)). where Xx1 ,..., xn) is the interprctadon of t&J in Jib 

(this is a function from (W-Q%)” to &+A). It is straightforward to 

check that equations 3).4) hold ln A(&), because J% is a mode1 for E, 

Also equations 5) hold in A(A): For example. if n= 1 the interpretation of 

f(i(h)) in A(n) is J(h(i(x)), which is also the interpretation of i(F(h)) (h is 

any element of Jtb+Jb). Thus A(&) is a model for SF Since 6,CBT, 

A(&) satisfies %+ and it easily follows that J% sat&s E,. 

(i)*(iii) By induction on the number of steps of a chase proof of u from 

2. I 

An alternative proof procedure for IND’s and FD’s only is given in [22]. 

We cdn show that each of the rules in [22] can be simulated using the 

equational reasoning of Proposition 1 (this provides an alternate proof of 
the (i)+iii) step for the FD and IND case). Let US illustrate it with an 

example: From A-B and CDCAB the pullback rule of 1221 derives C+D. 
ln equational language fa =j$ ia =7. is = S and fix=ifx i@~ 

fy=fia=ifa=i/3=8. 

Corollary 1.1: Let P be a set of FD’s aud u an FD. The implication 

problem XCu is equivalcut to a generator problem for afrnireiy presenred 

a!gebra [18]. 

ProoT: 6, is now a finite set of equations with no variables. If =: is the 

congruence induced by E$ on 3(M) then CJ1M)/=: is a finitely presented 

algebra. The equational implication in Thcorcm 1 is known, in this case, as 

a generator problem for the finitely presented algebra V(M)/zZ. I 

Using Corollary 1.1. one can obscrvc that the linear time algorithm of 

[I] for FD inference can bc derived in a straightforward way From tbc 

algorithm of [lS] for the generator problem. 

Corollary 1.2 Let E be a set of CFD’s. The implication problem 

Zl=A=B is a uni/onn wordproblernfira/inirelypresentedalgebra[18]. I 

Semigroup Tnnsformation: Let I: be a set of 1ND’s and b-FD’s. 

Produce the set of symbols MS from M as follows: for each fk(.) in Mfadd 

one generator fk in MS; for each it(.) in Mi add one generator i, in M,; for 

each a,(.> in Ma add one generator ax in Ms; add one binary operator + in 

: consists of the associative axiom for + and the following word (string) 

equations (we omit + and parentheses): 

1) two equations for each b-FD ak=(A1-+A. B1-lB): ftal=a and fkb,=b 

2) m equations for each IND ut=B1...B,&A1...Am: arik=bl and ,.. and 

a&=b,. 

Corollary 1.3: Let I: be a set of b-FD’s and IND’s 

Zi=AmBiffEgC a=b 

Xt(A,-+A, B,+B) iff EJ= wal = a and wb, = b. for some string w in M: 

Z~B,...B,&A,...A,,, iff E&= arw=bt and ,.. and a,w=bm, for some 

string w in M:. I 

Note that the first case is an instance of the unijbwn nard problem fir 

semigroups. The other two cases are known as Qunifica/ion problems 1141. 

By the symmetry in Corollary 1.3, we have 

Corollary 1.4 Duality: Let ): be a set of b-FD’s and b-ID’s, and u a b-FD 

or b-ID. Transform every b-FD (A-B, C-+D) into the b-ID BDCAC, and 

every b-ID BDGAC into the b-FD (A-+B. C-+D). If this transformation 

changes Z into Z’and u into a’, then E:l=ru iff Zl=u’, 1. 
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A similar duality theorem for u”FD’s, u-ID’s and I=,, follows from the 

m&SiS in (161. In (22j it is shown that implication (f=) is undecidable for 

u-Fus and b-lD’s. By Corollary 1,4, it is unclccidable for b-FlYs and IJ- 

ID’.% ?%s was also Clear from the form of the undecidability reduction used 

~JI 1221. One might imagine formal statements, such as an m-FD 

(At-+f+,A,,,-+R,) as duals for INDs H1...B,&~l...~,. Here the duality 

would hold in the equational theory. but thcsc sta:cmcnts for m>2 have no 
natural meaning in database theory. 

We will now describe a proof procedure for CFD and IND implication, 

using the special structure of the equational theories from lheorem 1. 

The Proof Procedure C: Given a set Z of CFD’s and IND’s construct 

their graphical representation G, dcfincd in !;ection 2.2. Each attribute 

name in Z is associated with one ofthe nodes ofG, 

Rules Apply some finite sequence of the graph manipulation rules l,2,3 

and 4 of F&are 3 on G,. Rules 1 and 2 introduce new unnamed no&~. 

Rules 3 and 4 identify two existing nodes; the node resulting from IhiS 

identification is associated with the union of the two sets of attribute names, 

that were associated with each of the identified nodes. Note that rules 1,2 

w.1.o.g. need be applied at most once to every left-hand side configuration. 

Let G be tbe resulting graph, Associate a unique new name with every 

unnamed node in G. The black part of G now naturally represents a set of 

IND’s X, and the red part a set of CFD’s 2, 

We say that El-,a when: 

D is AzB and A,!% are associated with the same node; 

o is a CFD and o can be proved from X:F by chase (for CFD’s only, the 

chase is an efficient decision procedure): 

o is an IND B1”.B&A1’..A,,, and there are m black directed paths in x,, all 

with Ihe same sequence of labels, path i starting at Ai and ending at Bi 

Theorem 2: Zto iff Ll-.Gu, 

Proof Sketch: WC outline the proof for u being AsB. 

(c): Rules 3.4 are obviously sound. Rules 1 and 2 arc sound in the sense of 

the arrribure infroduc/ion rule of 1221, which we illustrate as rule 5 of Figure 

3. 

(a): We assume that we cannot prove u, and construct a model for 6x in 

which a*@; then by Theorem 1 Z does not imply u. If u is not provable. 

then there is a (possibly infinite) graph G which reprcscnts Z. is closed 

under the rules, and in which the names A and B correspond to different 

nodes. We add one special node I to G. The labels of G arc symbols 

correspondicg to INDs (i symbols) or CFDs (f symbols) of Z. The groupsof 

red arcs labeled with an f are also ordcrcd. If n node in GU{.L} has no 

outgoing arc labeled with some i. add one going to 1. If an n-tuple of 

nodes dots not have a group of n arcs leaving it labeled by f (of ARITY n) 

and ordered 1 to n, add such a group going to .I.. ‘The resulting graph 

represents fimccions interpreting the operators and generators in 6,: This is 

because closure with tespect to rules 3 and 4 and the padding of G we 

performed, guairantecs functionality. The node A (6) is the interpretation of 

a (8). Now closure with rcspcct to rules 1 and 2 guarantees the 

commutativity conditions of 6,, and the fact that G represents E guarantees 

equations 3),4) of 6,. Thu; there is a model of 6, in which a+& I 

4. Computations as Inferences 

It has been known, since at least Post’s proof of the unsolvability of the 

word problem for Ihue systems (23.201, that arbitrary computations can be 

simulated by inferences in semigroups. By our Corollary 1.3. one can 

therefore simulate computations by inferences of IND’s and unay FD’s, 

and thus obtain lower bounds on the complexity of the implication problem 

for IND’s and CFD’s. 

We frrst describe our machine model: A derenninisric rwo-sruck machine 

M is a S-tuple (Q,n,q,.h,J), where Q is a finite set of slates, n is a finite 

set of symbols (Qn ll = 0). q,EQ is the srarr stare, hEQ is the huh me, 

and 6 is the laonsirion funcrion. Each move of M falls into one of the 

following two types: 

1,6(q,a)=(p,PoP+: This means that, if M is in state q and aEil is 
the top symbol of STACKI, then on the next step M goes to state 
p and pops STACK1 

2.6(q)= (~,PusI~,(@)): If M is in state q. then on the next step M 
goes lo state p andpushesflElI on ST.4CKl 

of course, analogous instructions can manipulate STACK2 

An insranruneous desrriprion (ID) of M is a string xl...xnqym...yl. where 

qEQ, xi.yicll: &he string x1.,.x, is the contents of STACK1 (the top symbol is 

x,): the string y,...yt is the Contents Of STACK2 (the top symbol is y,). The 

relation wl*,M~Z (ID w1 yie/ds ID wz via one step of M) is defined in the 

standard way [20, 131; *h is the rrflexive, fransi/ive closureof eM 

Let us now define a set S of wordequurions (over generators QUn) which 

capture the computation of M: 

1. If G(q,a)::(p.POP1). then aq=p is in S. 
If 8(q.a)=(p.PoPJ, then qa =p is in S. 

2. If 6(q)=(p.PUSII,(p)). then q=/3p is in S. 
If 6(q)=(p,PL’sIt,~)),then q=pfi is in S. * 

We write u = sv iff Stu = v. By a standard argument, based on the fact that 

M is dermninisric [23,20], we have 

Lemma 1: q,=+&h iff q,=Sh. I 

‘ro prove our first lower bound, we transform S into another set of 

equations ‘r which looks like the sets obtained (as in Corollary 1.3) from 

IND’s and u-FD’s. T‘he set of generators is now 
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QU{A,,B.,fn ) aEfI}U{i, I aEfI}UIj,l eES). 

1. Ifqa =p is in S, then qia =p is in T. 

2. If aq=p is in S, then T contains the equations q=A& 
f,.4,=Bo, Bie=p, wherceisaq=p. 

Lmna 2: &=sh iff q,,=-$. 

Proof Sketch: Observe that if aq=p is in S then &q=,F because 

f,q=.rfaAJ,=TB&=,p. 1 

Theorem 3: The implication problem for IND’s and two u-FD’s is 

undecidable. 

Proof Sketch: Given a deterministic two-stack machine M, it is 

undecidable if qpane&h, even if IllI= (21,131. By Lemmas 1 and 2, 

9 =n*$h iffq,=yh, and by Corollary 1.3, qsI,,=fi iff Ll=Qm~H, 

where Z is the set of IND’s and FD’s which gives rise to ‘r. But now observe 

that Z only contains FD’s of the form Ao--+Bo, aEn, and thus since 

III\ = 2, P only contains two unary FD’s. I 

Lindecidability of the implication problem for IND’s and FD’s has 

already been proved [22,7]. By way of comparison, these reductions use 

arbitrarily many b-11)‘s and u-FD’s, while our reduction uses arbitrarily 

many IND’s and only two u-FD’s. To prove our second lower bound, we 

consider computations of a deterministic two-stack machine M where one 

of the two stacks has hounded size. Let us write w,*bw2 iff ID wt follows 

from ID w1 by a computation of M during which STACKS contains at most k 

symbols. 

Let S be the SCL of word equations described before: this time we 

transform S into a set ? of equations which can be obrained (as in 

Corollary 1.3) from acyclic IND’s and u-FD’s. The set of gcncrators now is 

Q”U...UQk U {A,,B.,f, I aEn} U {ioJn I aEll,m=l,..., k) 

UIj,,, 1 cfS,m=O ,..., k}. whercQm={qmjqEQ},m=O ,..., k. 

l.Ifqcr=pisinS,thcnqm+li~m+l=pmisinTk,m=O ,.,., k-l. 

2. If aq=p is in S, then T’ contains the equations qm=AQam, 
f,,“‘, = Da. B‘&,, =pm, m=O ,..., k, where c is aq=p. 

It is not hard to see that Tk can be taken to rcprcsent a set Lk of acyclic 

IND’s and u-FD’s: the relation names would be K[A=B= ] aEfl], R”[Q”], 

m=O.....k. It is also easy to see the following 

LCIIUU~ 3: qmn*$h iff qL,zTk ho. iff ZkC R”: Qom=Ho. I 

Theorem 4: lhcrc are constants c&O such that, given a set I: of acyclic 

IND’s and CFD’s and an IND (CFD) u, ZCu can be decided in time c: 

but not in time cf nn@n. 

Proof Sketch: Since the IND’s in Z are acyclic, the chose gives us a 

decision procedure. running in exponential time. 

To prove the lower bound, Ict L be any language in DTIME(d”), d>O. Wc 

will show that L is polynomial-time rcducibte to the implication problem 

For acyclic IND’s and II-FD’s. 

Let M be a dctcnninistic n-AuxiliaryPushdownAutomaton accepting L 1131. 

GiVCn Sving x. we construct a dctcnninistic two+stack machine MI which 

first puts X on SLACK2 and then simulates M. This simulation is done as 

Follows: if M is in state q, its auxiliary storage contains aI...aoaw (a is the 

symbol scanned) and its stack contains up Cp is the top symbol), then the 

ID of MI is u/lalg.,.a’,p qaw; it is not hard to see how Mx can simulate a 

move of M. Thus, M accepts x iff Mx halts and STACKS always contains at 

most 1x1 symbols, i.e. xEL iffq,, *z h. Note also that 1M.J is 0(1x1). 

Now let $1 be the set of acyclic IN& and u-FD’s corresponding to Mx. 

Using Lemma 3, xEL iff Xl%= R”: Qk,=H’. To complete the proof, 

observe that Clnl can be computed from x in polynomial time, and that IX’“ll 

is O(lMxl 1x1 loglx(), i.e. O(lx~zlogjxl). I 

5. An Application to TIped IND’s 
We show how the tools developed in Section 3 can be applied to the 

particular case of inferring a CFD from CFD’s and typed IND’s. We first 

give a formal system for implication, similar in spirit to the formal system of 

lheorcm 2. The semi-decision procedure thus obtained becomes a decision 

procedure if the CFD’s are q&c, generalizing a result of 191 about acyclic 

unary I-X%. On the other hand, by analyzing derivations we can show that 

the general problem is urrdetVdub/e. even if only unary FD’s and all possible 

typed IND’s arc given. 

Let E: be a given set of CFD’s and typed IND’s over database scheme 

D= {Rk[Uk]: k= l.....q], U,C’?t. We reprcscnt attribute AEU, b, a node 

% A CFD (R,: AB+C, Rj: A’B’-+C’) in E is represented as shown in 

Figure 4a by introducing nodes fakb,. faibi (we use a different fimction 

symbol f for each given CFD). directed arcs (ak,fakbk), (ai,Fajb> labeled 1 

and (b,.fa,b,), (bjfap;’ labeled 2, and undircctcd arcs <fa,b,,c,>, <fajbjcj>. 

The undircctcd arcs are the only modification to our graph notation of 

Section 2.2. Their purpose is to represent the cqualitics fakbk=ck, fai%;=c;. 

A typed IND Rk:ABGRj:AB in Z is represented (see Figure 4a) by 

introducing dircctcd arcs (ai,ak), (brbk) lab&d i (we use a different label for 

each given 1ND). 

Let H, be the mixed grirph obtained from Z as described above. b 
Rcpcatcdly apply NkS ‘l’(rruusihi/~~), E,-; (quo/i/y), I,, (iutroduc/ion) (see 

Figure 4b) on H,. in some arbitrary fixed order, until no more NkS are 

applicable. AS was the case with Rules 1.2 in Theorem 2, the introduction 

rules need only be applied once for each left-hand side configuration, 
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Let H=(N,,A,,G) be the mixed graph obtained this way (NH is a set of 

nodes, AH is a set of labeled directed arcs on NH, and G is a set of 

undirected arcs on NH): notice that each node of H is labeled F(a,...,b), 

where F is a term over the function symbols and a....,b are nodes 

representing attributes. F(a,...,b) is a shorthand for F[x+a,...Q]. 

Moreover, every subterm of’F(a....,b) appears as a node of H. The graph H 

fully captures implication of CFD’s from Z: 

Theorem 5: Zl= (R,: A...R-+C, Rj: A’...R’-+C’) iff there are sodes 

F(a,....,b& F(aj,,..,b? of H such that <F(+ ,..., b,),c,>El$ 

<F(aj:,...,b&%ZG. 

Proof: Omitted. See [8]. I 

If Z consists of acyclic CFD’s and typed IND’s it is easy to see that the 

graph H is,%&. and in particular its size is exponmtiul in the size of S. We 

thus obtain an exponential time upper bound; whcthcr it can be improved 

is an open question. 

Corollary 5.1: Inferring a CFD from acyclic CFD’s and typed IND’s is 

decidable in exponential time. I 

WC can also show that inferring a CFD from (gcncral) CFD’s and typed 

IND’s is undecidable, even if the set of IlNlYs is restricted to be PC(D) 

(pairwise consistency) and all CFD’s are unary FD’s. Let 2 be a set of 

u-FD’s. Note that if a database d over 13 satisfies PC(D), then Ri:X-rY 

holds in relation ri iff Rj:X+Y holds in rj, whcrc R.JU,l, Rj{U.j both contain 

attributes X and Y. For this reason WC can suppress relation names from 

F-m 

Let F, be a directed graph with a node A for each attribute A and an arc 

(X,Y) for each FD X+Y in Z. For each attribute A. let T* bc the following 

(possibly infinite) dircctcd tree: 

the set of nodes PACAS1* is the set of all parhs in F, which start at A 

(denoted as sequences of nodes); 

the set ofarcs is ((pX,pXY) 1 pEu*, pXEP,, X-+YEZ}. 

Let P= UAfcuP,; define E to be the smallest set of undircctcd arcs on P 

which contains <p,p> for all pEP and <XY.y> for all X-tYEZ, and is 

closed under the following rules: 

1. Propagation: If <pX,qX>EF, then <pXY,qXY>EE for all 
X-*YEZ. 

2. Pseudo-Transitivity: If <pl,pz>, <p2,p3) arc in E, p.EP,,, and 
there is a relation scheme in D whb:h contains X,&,X,! then 
<p,p,> is in E. 

Example: Figz? 5 has an example where D={RJAYX], R,[yXB], 

R,[AXB]}, and Z={A-tY, Y+B, X+B). 

It is not difficult to see that the structure defined above is essentially a 
succinc: reprlescntation of the graph H of Theorem 5, and thus it captures 

implication of u-FD’s: 

Lemma 4: PC(D)ULt=X+Y iff <p.Y>EE for some pCPK I 

Example: In the case depicted in Figure 5. PC(D)UZCA+B. 

Theorem 6: The problem of u.FD implication in the presence of pahwise 

consistency is undecidable. 

Proof: Omitted. See [8]. I 

6. Equational Theories and Finite Implication 
We now examine to what extent the tools we developed can handle jinifc 

implicarion of database constraints. Ideally. we would like to be able to 

replace i= by C,,, throughout Theorem 1. However. our proof does not 

work anymore: To be sure, the same arguments can show that (iii)*(ii) 

and (ii)*(i) in the finite case (the constructions given map finite 

counterexamples to finite countcrcxamples); on the ather hand the 

argument for (i)*(iii) hinges on tic existence of a complete formal system 

for implication (namely the chase), and such a formal system cannot exist 

for finite implication 122.71. Incidentally, the same sy,lloctic nature of the 

proofs of Thcorcms 3 and 6 prevents us from proving undccidability of 

finite implication. The weaker proofs of [22.7], because of their semantic 

nature, can easily bc done for the finite case, 

Thus, we have to contend ourselves with partial results about restricted 

cases. First. by the discussion above one can see that C can be replaced by 

Cnn in Thcorcm 1 if we have a finirely confrollable class of CFD’s and 

IND’s. i.e. a class where l=:s,, is the same as I=, An easy example of such a 

class is provided by CFD’s and acyclic [ND’s, because the chase in this case 

constructs a finire counkv~xamplc if the implication does not hold (thus, 

Theorem 4 also holds for the finite case). Another such class is given in the 

following 

Theorem ‘7: The implication problem for acyclic FD’s under pairwise 

consistency is finitely controllable. 

Proof Sketch: We will only consider unary rFD’s for simplicity. Let L 

consist of unary FD’s; we will show that if PC(D)UE does not imply X-rY, 

then there is a jinire pairwise consistent database d which satisfies Z but 

violates X-rY. We use the notation of Lemma 4. Define d as follows: 

For each atlributc AC% the domain of A. 41,, consists of all firdons f: 

P,-+{O.l) such that, if <p,q>EE. p.q in PA, then f(p)=qq). 

Let U,=A,...A, a tuple f*,...f* (f,.E’S,,) is in relation rI when: for any p 

in P,. q in P, with <p.q>EE. f,~p)=‘r,(qj(X,YCOJ. 

2c3 



Since P is acyclic. each P, is finite, and thus d is finite. It is not hard to 

reason Ihal d satisfies the I-D’s in Z (by the definition of the set E). We also 

claim that d is pairwisc consistent: Ihc key fact is that. if XY...I. is any 

subset of Ui. then the tuplcs t[XY...Z] in ri are exactly the tuplcs fXfy...fi for 

which f,,(p)= f&q) whenever <p,q>EE (A,BEU,). Finally, if<p.Y> is not in 

E for any p in P, (Lemma 4). then one can verify thar d violates X&Y. 1 

Obsenc that the construction given above provides us with an alternative 

proof of the “only-if’ direction of Lemma 4 (the countcrexample obtained 

is, in general, uncounruble). 

If l=dn is different from C, we might still be able to handle the finite case 

if rhere is a complete formal system for finite implication. A class with this 

property is FD’s with unary IND’s [15]: The formal system consists of 

standard rules for FD’s and IND’s [24,5] and of the following cycle rules: 

from Ao-4A1 and A,aA, and...and AkoI+At and A,3Ao 

deriveA1-*Ao andA2>Al and...a~ldAk-+Akvl andA& (k odd). 

However, it turns out that we cannot rcplacc C by tan in Theorem 1. 

but have to scttlc for something weaker. 1.~1 P be a set of Flys and U-ID’S, 

u an FD (u-ID); Xl=tg,o can bc charactcrizcd as follows (V stands for an 

infinitary disjunction of equations). 

Theorem 8 (u is an FD): In each of the following two cases, (i),(ii).(iii) are 

equivalent: 

FD Case: 

i) ZC,, A,...A”+A. 

ii) E,Cfin V,~~f7[xl/alx,...,xn/anx]=ax. 

iii) gxtfin VT~qfr(xl/al . . . . . xn/un]=a. 

u-ID Case: 

i) ZC fin BC A. 

ii) E,l=:,, V,c% aT=bx. 

iii) 6,t,n VT~~J:[x/a]=& 
f 

Proof Sketch: The implications (iii)*(ii), (ii)a(i) can be proved by the 

same argument as in ‘lheorcm 1. We show @*(iii) by induction on the 

Icngth m of a proof of (J from 2. The basis case (m =0) is obvious. For the 

induction step, we only check the cycle rule corresponding to k=l (Ihe 

argument generalizes to arbitrary k). We write T(a) as a shorthand for 

7(x/a]. 

By induction on m, if 1 is a finite model of Q,, then A MisfiFS dad=+ 

T(Ul)=~g, for some @,, TEq, We arc ready to apply the m+ 1 step of 

he derivation, which will be the cycle rule step for k = 1. Consider now IhC 
set K={p’$) : kZO} (p’ is p composed with itself k times): if a,,EK. 

then A satisfies pk(al)= a0 for some k, and pkEq, This term pk gives us 

Be proof for the m -+ 1st step. If such a term did not exist. then let r be the 

least intcgcr such that $(aI)=$(a,), for some s>r>l (K is finite since A is 

R&c): by commucltivity. f(fhlN=pr~~(al))= P’(aJ= p”(pboN= 
=pr-l(al), and similarly T(p’(U$)= psl(al). But thismeans 

p’-‘(11J=p*‘(a,). which contradicts the choice of r. For r=l we get a 

similar contradiction. I 

Finally, observe that if the FD’s are also unary, we have (by analogy ta 

Corollary 1.3) thejnire s un$cafion problem. 

7. Conclusions and Open Problems 

We have demonstrated a close relationship between implicatian of 

equations and implication of database constraints, WC used this relationship 

to derive better bounds for the implication of FD’s and IND’s, which are 

the most common database dependencies, 

An interesting practical question is how well conventional theorem 

proving systems perform on database dcpcndency questions 117,121. Some 

lficorctical questions also remain unresolved. For the common case of FD’s 

and typed INUs, thcrc is a considerable gap between the exponential upper 

bounds (for acyclic IND’s and Fl ys, and for typed {ND’s and acyclic FD’s) 

and the NP-hardness lower bound of[9]. The undecidability of finite 

implication for FD’s in the presence of pairwise consistency is open, as well 

as the linite controllability of acyclic FD’s and (general) typed IND’s. 
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