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Abstract
We present a novel way to formulate database dependencies as sentences of
first-order logic, using equational statements instead of Horn clauses.
Dependency implication is directly reduced to cquational implication. Our
approach is powerful enough to express functional and inclusion
dependencics, which are the most common database constraints. We
present a new proof procedure for these dependencies. We use our
cquational formulation to derive new upper and lower bounds for the

complexity of their implication problems.

1. Introduction

In order to deal formally with the problems of logical database design and
data processing, database thcory models data as sets of tables {relations).
These relations are required 1o satisfy integrity constraints (dependencies),
which intend to capture the semantics of a particular application. Various
kinds of dependencies have been proposed in the literature (sce [25, 11] for
reviews of the arca). For example, a functional dependency (FD) is a formal
statement of the foorm EMPLOYEE-+SALARY, which intuitively states that
every employee has a unique salary. An inclusion dependency (IND} is a
statement of the form MANAGERCEMPLOYEE, which intuitively states that
every  manager (the IND
MANAGER MANAGER-SALARYC EMPLOYEE EMPLOYEE-SALARY  expresscs

is an employee more  general
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also the fact that managers make the same salary as managers as they make
as cmployees). FD's and IND's are the most comimon database constraints.

A most general formulation of dependencies as sentences in first order logic
(namely Horn clauses) was given in[l1). To handle the central
computational problem of dependency implication a particular proof
procedure was developed, the chase (see [25) for its wide applicability).
Proof procedures for gencral data dependencies also appear in [26, 2, 3).The
chasc was seen to be a special casc of a classical theorem proving technique,

namely resolution [2, 3).

Alternative metheds for theorem proving have been developed in the
context of equational theories. This is a fragment of first order togic which
has attracted a lot of attention because of its wide applicability in areas such
as applicative languages, interpreters. and data types. See {14] for a survey of

the area.

Given the formulation of database constraints as first order sentences, one
would expect database theory to have been influenced by the developments
in equational theories. However, not only did this never happen, but a
constant effort has been made to minimize the role of equality in data
dependencies (muliivalued dependencies, the most widely studied after FD's,
do not involve equality). This is even more impressive in view of the fact
that the best algorithm for losslessness of joins. a basic computational
problem, was derived from an efficicnt aigorithm for congruence closure
[10], and the best algorithm for implication of FD's [1] can be seen directly
as a special case of an algorithm of [18] for the generator problem in finitely

presented algebras.

This paper is a first attempt to rectify this situation. We demonstrate that
there is a close conmnection between dependencies and equational
statements. This strongly suggests the possibility of using the tools of
equational theories to handle impilication of dependencies. We explain our
transformation of IND and D implication inte equational implication in
Scction 3 (Theorem 1). This transforination vastly simplifies arguments
about provability of dependencies (compared to arguments using the



chase), and enables us to prove a number of results on implication problems
for FD's and IND’s.

We illustrate our basic approach with an example: An FD A—B is
transformed into a string equation fa=b and an IND CDCAB is
transformed into the equations ai=c, bi=d Now we can casily infer the
equation jo=d. fe=fai=bi=d. This corresponds to inferring the FD
C—D. In general, proofs in cquational theories have a clean combinatorial

structure, due to the existence of a simple, intuitive proof system [4].

A number of results are known about FDD and IND implication. For
IND's alone and FD's alone we have finite conrrollability, i.e. implication
and finite implication coincide. While FD) implication is decidable in linear
time [1], IND implication is PSPACE-complecte [5). Syntactic restrictions on
the IND's simplify the implication problem: bounded width IND's [5} and
typed IND's [6] have polynomial time implication problems, The problem
becomes NP-complete for aeyclic IND's[24, 9]. The combination of FD's
and IND's is not finitely controllable [S), or even decidable[22, 7). The
combination of FD's and unary IND's is also not finitely controllable, but
both impiication and finite implication can be decided in polynomial time
[16].

necessarily terminate, and cven in spacial cases delicate analysis is required

A fundamental difficulty with INI)'s is that the chase does not

[15]. A proof procedure for FID and IND implication, which differs from

the chase, is presented in [22). Using a variant of this procedure, inference

of unary FD's from typed IND's and acyclic unary FD's is shown decidable
in [9). The chase is guaranteed to terminate if the IND's are acyclic, Thus,
acyclic IND's and F12's are finitely controllable and in exponential time;
NP-hardness (even if the IND's are typed) is shown in [9]). Finally, if all
possible typed IND's are present, we have a variant of the universal instance

assumption [25) known as pairwise consistency [19].

Our results apply to generalizations of FI's called coupled FD's (CFD's).
These statements can express the additional fact that two FI)'s represent the
same function in the database. Using our central Theorem 1, we can show:
1. Coupled unary FD's and binary IND's are dual statements. This is a
direct consequence of our transformation (Corollary 1.4, Section 3).

2. Completeness of a new proof procedure for CFD's and IND's. This
procedure differs from the chase and the formal system in [22], and treats
CFD’s and IND's in a symmetric fashion (Theorem 2, Section 3).

3. FD and IND implication is undecidable, even with only two FD’s
(Theorem 3, Section 4).

4. An exponential lower bound for acyclic IND and FD implication, This
considerably improves the NP-hardness lower bounds in [9] (Theorem 4,
Section 4).

5. Completeness of a proof procedure for CFD implication from a set of
CFD's and typed INI)'s. This generalizes the result in [9] and shows that the
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prablem is decidable for acyclic CFD's (Theorem 5, Section 5).

6. Implication of unary FI)'s in the presence of pairwise consistency is
undecidable. The proof uses a variant of the semidecision procedure from
Theorem 5 and a rather involved reduction from the word problem for

semigroups (Theorem 6, Section 5).

For finite implication we cannot use the full power of our equational
technique. However, we can show: ’
7. The fmplication problem for acyclic FD's in the presence of pairwise
consistency is finitcly controllable (and thus our transformation is also
meaningful in the finite case). This does not follow from Theorem 5; an
entirely different proof technique has to be developed (Theorem 7, Section

8. A weaker version of our transformation can handle finite implication of
FD's and unary IND’s. The proof uses the formal system of [16] (Theorem
8, Scction 6).

2. Definitions

2.1. Equational Theories
Let M be a set of symbols and ARITY a function from M to the
nonnegative intcgers N, The set of finite strings over M is M*. Partition M

into two sets:

G = {g€M| ARITY(2)=0} the generators,
O:= {#€M| ARITY(8)>0 } the operaiors.

Definition: 9{M), the set of rerms over M, is the smallest subset of M*

such that,

1) every gin G is a term,
2)if T Ty, aT€ terms and 8 is in O with ARITY(8)=m, then
01'1.‘.1' ' IS 8 term.

A subterm of 7 is a substring of 7, which is also a term. Let V={xx,x,....}
be a set of variables. Then the set of terms over operators O and generators
GUV will be denoted by 9% (M). For terms 7,,...7, in 9% (M) we can
define the substitution @={ ("i""’i) | 1€i<k } to be a function from
T*H(M) to TH(M). We use p(r) or wlxy/7y..x /7] for the result of
replacing all occurences of variables X, in term by term 7, (1Ki<k), where
these changes are made simultancously.

Definition: A binary relation = on FM) or 9%(M) is a congruence

provided that,

1) = is an equivalence relation,
2) if ARITY(#)=m and fi:'fi'(lSiSm) then 011...1‘“:01'{...1'"“.

An equation ¢ is a string of the form += 1, where 7,7 ‘are in I+ (M). We
use the symbol E for a set of equations. We will be dealing with models for
scts of equations, i.e., algebras. We consider each equation e as a sentence
of first-order predicate calculus (with cquality). where all the variables from

V arc universally quantified.



Definition: An algebra A=(A,F) is a pair, where A is a nonempty set and
Faset of functions. Each fin Fis a function from A™ 1o A, for somenin ¥
which we call the type(f).

Examples: (a) A semigroup (A {+}) is an algebra with one associative
binary operator, i.e, forall x,y,zin 4 (x+y)+z=x+(y+2). An example of
a semigroup is the algebra of the sct of functions from N to X, together with
the composition operation. In semigroups we use ab instead of a-+b and
w.),0.8. omit parentheses,

(b) A, is an algebra with A=TM). For cach 8 in O we definc a function
in F with type(@)= ARITY(#); here wc use the same symbol for the syntactic
object # and its interpretation. The function  maps terins Ty, from
(M) to the term 07,7, (e O(ry,r )= 01]...-:m). We will refer to "M
as the free algebra on M. From this example it is clear that we can without
ambiguity use both 071.,.1-m and 0(11..,..1“,) to denote the same term,

{c)Let =~ be a congruence on FAM). Condition 2) of the congruence
definition guarantees that the operations in O are well-defined on
==-equivalence {or congruence) classes.
algebra AMY/= with domain {[r] | = in TM), [] is the ~-congruence

class of 7} and with functions corresponding to O's operators.

Thus we can form a quotient

(d) Similar observations with (b) and (¢) can be made for the set of terms
T+ (M).

Implication: Let e be an cquation and A an algebra. A satisfies e, or is a
model for e, if e becomes true when its aperators and nonvariable
generators are interpreted as the functions of A and its variables take any
values in A's domain. The class of all algebras which are models for a set of
equations E is called a varicty or an equational class. We say that E implies
e (Ek=c¢) if equation e is true in every model of E.

Definition: An equational theory is a sct of equalities E (of terms over
G (M)), closed under implication.

We write Eb-c. if there exists a finite proof of ¢ starting from E and using
only the following five rules:
=T,
Srom =1, deduce =T
Jrom T,=71,and 7,57y deduce ="
Srom 7 =1 (1 Li<m) deduce Or .1 =877 (ARITY(8)=m),
Sfrom 1, =1, deduce (p(f])= qa(rz) (@ is any substitution).

Proposition 1: [d] Fi=r=7"iff EFr=11

Let T' be a sct of equations over terms in (M) (ie., containing no
vanables). Consider the equational theory consisting of all 7=+, such that,
FE=7=1" By Proposition 1 this theory induccs a congruence = pon AM),

where r=rr' iff Tkr=1", From cxample (c) above we sec that this
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congrucnce naturally defines an algebra 9M)/=.. If T is a finite set
M)/ = . isknown as a finitely presented algebra {18},

2.2, Relational Database Theory

Let QU be a finite sct of artributes and & a countably infinite set of values,
such that UNF=@. A relation scheme is an object R{U), where R is the
name of the relation scheme and UCAL. A tuple t over U is a function from
U to 9. Let A, be an attribute in U and 2, a value, where 1<i<|U}; if
t{Ailzai then we represent tuple tover U as 3jay. 3y We represent the
restriction of tuple t on attributes A,..A_of U as {A,..A o A relationr
over U (named R) is a (possibly infinite) nonempty sct of tuples over U, A
database scheme D is a finite set of relation schemes {R,[U,]....R q[U q]} and
a database d= {rl,...,rq} associates each relation scheme Ri[Ui] in d with a
relation r; over U, A dawbasc is finite if all of its rclations are finite. A
database can be visualized as a set of tables. one for cach relation, whose
headers are the relation schemes (each column headed by an atiribute), and

whose rows are the tuples.

The logical constraints. which determine the set of legal databases, are
called database dependencies. We will be examining two very common types

of dependencies.

CFD(R:A 1A —A S: BI »---~B,,"’ B) is a coupled functional dependency.
Relations r.s (named R.S respectively). satisfy this CFD if,
for tuples t), 4, in 7, 4{A,.A 1= GIA A Jimplies LA]= LIA] and
for tuples t}, ty in 5, t,[B,...B )= t,{B,...B, ] implics t,[B]=1,[B] and
fortuplest, inr, t,in s, tllAl...A J=4IB,..B Jimplics t [A]= L(B}.

IfR=S,A=B A =B,...
Ifn=1, i.e., single attribute left hand sides, then we have a binary functional
dependency (b-FD). If for an FD we also have n=1 then we call the
dependency a unary functional dependency (u-FDJ). Note that every u-FD is
both a b-FD and an FD. For an FD we usually employ the less redundant
notation R:A;..A_—A.

A= B we have a functional dependency (FD).

IND S:D]...Dng:Cl...Cm is an inclusion dependency. Relations s,
(named SR respectively) satisfy this IND if, for each tuple t in s, there is a
twple ¢, in r with 4[C]=D}] for 1<i<m. If m=2 we have a binary
inclusion dependency (b-1D) and if m=1 a unary inclusion dependency (u-
ID). Note that u-1D’s are in fact special cases of b-IDs, since S:DlgR:C1
has the same meaning with $:D,D,CR:C,C,.

Equality of two columns headed by attributes A. -B in a relation named R
can be expressed as a speciat case of IND's or CFD's: either use a CFD,
such as (R:A—A, R:A—B). or use an INI), such as R:ABCR:AA. These
dependencies are particularly itlustrative of our analysis; we will use A=B

to denote them.




Database Notation: We use a graph notation to represent an input
database scheme D and set of dependencics £ (input schema). We construct
a labeled directed graph G:: {see Figure 1), which has exactly one node aﬂ
for cach aurbute A, of ecach relation scheme Rj. Let
i=R2:D1...Dm§R1:C1...C n be an IND in 2. Then Gz contains m black
ares (cn,du),....(c . | o) each arc labeled by the name i of the IND. Let
f=(R;:A..A —Ay Ry:B..B ~B)) be a CFD in Z. Then G contains
two groups of n red arcs (311""01)""'(%1""01) and (bu,bm)....,(bnl,bm): each
group is labeled by the name f of the CFD and each group’s arcs are

ordered from 1 to n as listed above.

We also consider the following directed graphs l2 and Fy: Iy has one
node for each rclation scheme name in D and arc (R.S) if and only if Gz
contains some black arc (RA,SB). Fy has one node for each attribute in D
and arc (A,B) if and only if Gz contains some red arc (RA,RB). We now
define special syntactic forms of input schemata:

Acyclic IND’s: 1 is acyclic.

Acyclic CFD's: F. £ is acyclic.

Typed IND's: The black arcs of G are al! of the form (RA,SA) for relation
names R, S and attribute A,

Typed IND’s are between occurences of the same atiribute names in
different relation schemes, If we assume that all possible typed IND's are in
the input schema, (i.e., with some abuse of notation R:UNU'CS:UNUfor
all R[U}S{U} in database scheme D), then we have pairwise consistency
PC(D).

Implication: We say that Z implics ¢ (ZV=¢) if, whenever a database d
over scheme D satisfies Z, it also satisfies 0. If we restrict oursclves to finite
databases we have Ik, o. Clearly if ZF=0 (implication) then 2=, o
(finite implication), but the converse is not always true. Deciding
implication of dependencies is a central problem in database theory. Since
dependencies are sentences in first-order predicate calculus with equality,
we have proof procedures for the implication problem (we denote proofs as
Zk-g). A proof procedure is sound if when Zk=o then Zk=g; and
complete if it is sound and when Zk=¢ then Zl—o, (similarly for finite
implication). The standard complete proof procedure for database
dependencies is the chase. The appropriate chase rules for our analysis are
described in [15].

3. Database Constraints as Equations

Let = be a set of CFD's and IND's over a database scheme D and o a
CFD or IND. We will ransform Z into two sets of cquations EE and Sz.
We will show that Zk=¢ iff EjF=E, iff B k=€ . for some sets of cquations
E,8, whose form depends on T and g. We assume that D only contains
one relation scheme; this simplifies notation, and there is no loss of

generality.
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Transformation:; From the dependenciés in X construct the following sets
of symbols,

M,={{,| for each CFD with n attribute lef-hand sides include
one operator f, of ARITY n},

M, ={i| for cach IND include one operator i, of ARITY 1},
M, = {a‘x| for each attribute A, include one operator a

of ARITY 1},

M, = {akl for each aturibute Ay include one generator “t}'

Now let M =MUMUM UM, and V={x.x1.x2,...} be a set of variables,
T+t M f) @@+ (Mi)) are the scts of terms constructed using operators in M‘r
(M) and generators in V.

The set Eg consists of the following equations (presented both in string and
parenthesized notation):

1) two equations for each ak=(A1...An—oA, Br..Bn--oB): flalx...anx=ax
and t‘kblx...b X= bx,

(or fk(al(x).....a n(x)): a(x)and fk(bl(x),...,bn(x))= b(x) ):

2) m equations for each oszl...B CA

nSA-An 3ix=bx and .. and

amikx=bmx.

(ora (i (x)= by(x)and ... and am(ik(x))= bm(x) ).

The set 8 consists of the following equations:

3) two equations for cach ck=(A1...An—+A, B ...Bn-oB): fk"’r"“f“ and

£,8:-B,=8B,

(or f(ay,..a,)=a and £ (B,...8 )=B );

4) m equations for each o= Bl...BmgAl...Am: i@ =B, and .. and

oy =B,

(or i]‘(ml)=481 and .. andi(a )= B.)

5) for each pair of symbols fp in M, and iq in Mi the equation
fpiqx]...i X = i quxl...xn (ARITY( p)=“)’

(or fp( j q(xl),...,x q(x n)) =i q(f p(xl,....xn)) ).

The transformation is illustratcd in Figure 2. Note that in 8 only ‘
equations 5) contain variables. Equations S) are commutativity conditions
between f and i operators. We now present Theorem 1, which is central to
our analysis.

Theorem 1: Ir. each of the following three cases, (i), (ii),(iii) are equivalent,
= Case;

iyZhk= A=B

ii) E): k= ax:=bx

iif) 8 = a=4.
CFD Case:

D2 (Ap.A ~A BB —B)

ii) Eg = lx,/2)x,u.% /2 x]=ax and 7[x,/b X,...x o/0ox]=bx, for some 7
in I+ (M)

iif) Sz = 7["1/01-----",,/0 n]=a: and 1[x1/ﬂl....,xn/ﬂn]= B. for some 7 in
7+ (M.



IND Case:
)Zw=B.B CA..A,
ii) Ey F= a,7=bxand ...and a_ r=b_x, for some r in “J‘*(Mi)
iii) 8 k= 7[x/a;]= B, and ... and rfx/a_}= B, for some 7 in M)

Proof Sketch: We use E, (ST) to denote the set of equations
(ii)=>(i) Supposc Ezt=ET. and let relation r satisfy Z; we will show that r
satisfies ¢. Relation r is, by definition, nonempty and its entries can be
w.l.0.g. positive integers. Number its tuples 1,2,... etc., (it could contain a
countably infinite number of tuples). Define A(.): N— N, such that, if x is
the number of a tuple in r, then A(x) is the entry in tuple x at attribute A,
else A(x) is 0, (N are the nonncgative integers). If f is the CFD
(D,..D,~D, C,..C,~C) in I definc F(.):N—X, such that, if x is the
number of a tple in r, then F(D(x)..D(x))=D(x) and
F(Cl(x),....Ck(x))=C(x), else F is 0. This is a well defined function since r
satisfies f. Ifiis the IND D,..D,CC,..C, in Z definc 1(.): N— X, such that,
if x is the number of a tuple in r and x” is the number of the first tuple in r
where [x[Dl'"Dk]= tx,[Cl...Ck], then 1(x)=x", else I(x) is 0. This is also a well
defined function since r satisfies i. We have constructed an algebra with
domain X and functions A(),....F(...).....I(.)...., which, as is casy to verify, is a
model for Ez' Let o be an IND. By interpreting each symbol in r as an I(.),
we sce that when x is a tuple number #(x) is another tuple number. Since
E:!=ET, we must have Ai("): Bi(x) 1<i<m, which means that r satisfies g.
The case of a CFD is similar,

(iii}=>(it) Suppose Szl=8,, and let M be a model of Eg: we will show

that b satisfies E7. From A we will construct a modcl A(M) for Sz' The
algebra A(Ab) will have domain all functions from b to Ab, i.c., Ab— b,
In A(Ab) the interpretation of & will be the function a(x), which is the
interpretation of a(.) in Ab. The interpretation of i(.) will be the function
Ah.h(#x)), where Ax) is the interpretation of i(.) in Jb (this is a function
from Mo— M to Mb—M). The interpretation of fl...) will be the function
)\h1...hn.ﬂh1(x),...,hn(x)), where _ﬂxl,...,xn) is the interpretation of f{...) in Ab
(this is a function from (M— )" to M—M). It is straightforward to
check that equations 3),4) hold in A(Ab), because Ab is a model for Es.
Also equations 5) hold in A(Ab): For example, if n=1 the interpretation of
fli(h)) in A(M) is £h(£x)}, which is also the interpretation of i(Rh)) (h is
any ¢lement of A— M), Thus A(A) is a model for Sz. Since s,_i=sf.
A(M) satisfies 8. and it easily follows that b satisfics ET.

(i)=(iii) By induction on the number of steps of a chase proof of ¢ from
P |

An aliernative proof procedure for IND's and FD's only is given in [22),
We can show that each of the rules in[22] can be simulated using the

equational reasoning of Proposition 1 (this provides an alternate proof of
the (iy==(iti) step for the FD and IND case). Let us illustrate it with an
example: From A—B and CDCAB the pullback rule of [22] derives C—D,
In cquational language fa=8, ia=y, if=8 and fix=ifx imply
fy=fia=ifa=if=8.

Corollary 1.1: Let Z be a set of FD's and o an FD. The implication
problem Zk=¢ is equivalent to a generator problem for a finitely presented
algebra [18).

Proof: 82 is now a finite set of equations with no variables. If =% is the
congruence induced by 84 on M) then IIM)/= is a finitely presented
algebra. The equational implication in Theorem 1 is known, in this case, as

a generator problem for the finitely presented algebra J(M)/=2. 3

Using Corollary 1.1, one can observe that the lincar time algorithm of
[1] for FD inference can be derived in a straightforward way from the
algorithm of [18] for the generator problem.

Corollary 1.2: Let Z be a set of CFD's.
Zk=A=B is a uniform word problem for a finitely presented algebra (18] 8

The implication problem

Let T be a set of IND's and b-FD's.
Produce the set of symbols Ms from M as follows: for each fk(.) in Mf add

Semigroup Transformation:

one generator fk inM o for each ik(.) in Mi add one generator ik in Ms; for
each ak(.) in M‘l add one generator a in Ms; add one binary operator + in
M,

Es consists of the asscciative axiom for + and the following word (string)
equations (we omit + and parentheses):

1) two equations for cach b-FD Uk‘_'(A A Bl—+ B): fkal=a and fkb1=b
2) m cquations for cach IND 0= Bl...B mgAl...A o alix=b1 and ... and

ai, =bm.

Corollary 1.3: Let X be a set of b-FD’s and IND's
ZF=A=8B iffES|== a=b
2I=(Al—oA, B,.—B) itTEsr= wa;=a and wb1=b, for some string w in Ms‘
El=B1...Bm(_ZAl...Am iff Egk= aw=b, and ... and amw=bm. for some
string w in Ms'. ]

Note that the first casc is an instance of the uniform word problem for
semigroups. The other two cases are known as Eg-unification problems [14].

By the symmetry in Corollary 1.3, we have

Corollary 1.4 Duality: Let Z be a set of b-FD's and b-ID’s, and ¢ a b-FD
or b-ID. Transform every b-FD (A—B, C—D} into the b-ID BDCAC, and
every b-ID BDCAC into the b-FD (A-+B, C—D). If this transformation
changes Zinto X'and o into o, then Zk20 iff Zk=¢", B,
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A similar duality theorem for u-FD's, u-ID's and k= g fOllows from the
analysis in [16]. In [22] it is shown that implication (=) is undecidable for
wFD’s and b-1D’s. By Corollary 1.4, it is undecidable for b-FI's and u-
ID's. This was also clear from the form of the undecidability reduction used
in{22). One might imagine formal statements, such as an m-FD
(Al" Bl,....Am—oB m) as duals for INDs Bl...BmgAl...A o Here the duality
would hold in the equational theory, but these staiements for md2 have no
natural meaning in database theory.

We will now describe a proof procedure for CFD and IND implication,
using the special structure of the equational theories from Theorem 1.

The Proof Procedure G: Given a set Z of CFD's and IND’s construct
their graphical represcntation G defined in Section 2.2. Each attribute
name in Z is associated with one of the nodes of Gy
Rules: Apply some finite sequence of the graph manipulation rules 1,2,3
and 4 of Figure 3 on Gz' Rules 1 and 2 introduce new unnamed nodes.
Rules 3 and 4 identify two existing nodes; the node rcsulting from this
identification is associated with the union of the two sets of attribute names,
that were associated with each of the identified nodes. Note that rules 1,2
w.L.o.g. need be applied at most once to every lefi-hand side configuration.
Let G be the resulting graph. Associate a unique new name with every
unnamed node in G. The black part of G now naturally represents a sct of
IND's I and the red part a set of CFD’s EF

We say that Z— 0 when:
o is A=B and A,B are associated with the same node;
o is a CFD and ¢ can be proved from }ZF by chase (for CFD's only, the
chasc is an efficient decision procedure);
oisan IND Bl...B mgAl...Am and there are m black dirccted paths in 2, all
with the same sequence of labels, path i starting at A, and ending at B,

Theorem 2: k=0 iff Zl—-Ga.

Proof Sketch: We outline the proof for o being A=B.

(=): Rules 3,4 are obviously sound. Rules 1 and 2 are sound in the sens2 of
the atiribute introduction rule of [22}, which we illustrate as rule 5 of Figure
3

(=) We assume that we cannot prove o, and construct a model for S: in
which a®8; then by Theorem 1 X does not imply ¢. If ¢ is not provable,
then there is a (possibly infinite) graph G which represents Z, is closed
under the rules, and in which the names A and B correspond to different
nodes. We add one special node L to G. The labels of G are symbols
corresponding to INDs (i symbols) or CFDs (f symbols) of Z. The groups of
red arcs labeled with an f are also ordered. 1f a node in GU{L} has no
outgoing arc labcled with some i, add one going to .L. If an n-tuple of
nodes docs not have a group of n arcs lcaving it labeled by f (of ARITY n)

and ordered 1 to n, add such a group going to L. The resulting graph
represents functions interpreting the operators and generators in 8. This is
because closure with respect to rules 3 and 4 and the padding of G we
performed, guarantees functionality. The node A (B) is the interpretation of
a (B).
commutativity conditions of Sz. and the fact that G represents Z guarantees
cquations 3).,4) of & . Thus there is 2 model of Sz in which a*8. §

Now closure with respect to rules 1 and 2 guarantees the

4. Computations as Inferences

It has been known, since at least Post’s proof of the unsolvability of the
word problem for Thue systems {23, 20), that arbitrary computations can be
simulated by infercnces in semigroups. By our Corollary’ 1.3, one can
therefore simulate computations by inferences of INIYs and unary FD's,
and thus obtain lower bounds on the complexity of the implication problem
for IND's and CFD'’s.

We first describe our machine model: A deterministic two-siack machine
M is a 5-tuple (Q.IT,q,,, ..h,8), where Q is a finite set of states, IT is a finite
set of symbols (QNT=1), q , €Q is the starr state, h€Q is the hall state,
and § is the transition function. Each move of M falls into one of the
following two types:

1. 8(q.a)=(p.PoP,): This means that, if M is in state q and a €11 is
the top symbol of STACK, then on the next step M goes to state
p and pops STACK,.

2. 8(q)=(p,PusH,(B)): If M is in state q. then on the next step M
goes to state p and pushes BETT on STACK,.

Of course, analogous instructions can manipulate STACK,.

An instantaneous description (ID) of M is a string X)X QYY) where
4€Q, xi.yien: the string x,...x_ is the contents of STACK, (the top symbol is
X n): the string YY1 is the contents of STACK, (the top symbol is y m). The
relation W =W, (ID W yields 1D L via one step of M) is defined in the

standard way 20, 13}, = ;4 is the reflexive, transitive closure of =
Let us now define a set S of word equations (over gencrators QUIT) which
capture the computation of M:
1.1 8(q.a)==(p.pOP ), then aq=pisin S.
1f 8(q.a)=(p,poP,), then qa=p isin S.
2. 1£ 8(q)=(p.psn,(B)), then g=PBp isin S.
1£ 8(q)=(p.PLSH,(B8)), then q=pB isin S.
We write u=cv iff SE=u =v. By a standard argument, based on the fact that
M is determinisiic [23, 20), we have

Lemma 1: g =y iff Qgun =sh- 1

To prove our first lower bound, we transform S into another set of
equations T which 1poks like the sets obtained (as in Corollary 1.3) from
IND’s and u-FD's, The sct of generators is now
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QU{A,B_f, | a€MU{, | a €U, | e€S}.
1. Ifqa=pisin§, then gi =pis inT.

2.1f aq=p is in S, then T contains the equations q=A cje.
faAu=Ba. B j.=P. where e is aq=p.

Lemma 2. qm=sh iff qmn=Th'

Proof Sketch: Observe that if ag=p is in S then faq=.rp. because
faq='l'faAaje=Tije=Tp' !

Theorem 3; The implication problem for IND's and two u-FD's is

undecidable.

Proof Sketch: Given a deterministic two-stack machine M, it is
undecidable if q_,,=>yh, even if [Tj=2[21,13} By Lemmas 1 and 2,
gy rl=:,‘;1h iff q slan=Th' and by Corollary 1.3, q slan=Th iff 2=Q mEH,
where T is the set of IND's and FD's which gives rise to T. But now observe
that £ only contains FD's of the form Aa"'Ba- a€Il, and thus since

IMT}=2, Z only contains two unary FD's. 1

Undecidability of the implication problem for IND's and FD's has
already been proved [22,7]. By way of comparison, these reductions use
arbitrarily many b-ID's and u-FD's, while our reduction uses arbitrarily
many IND's and only two u-FD's. To prove our second lower bound, we
consider computations of a deterministic two-stack machine M where one
of the two stacks has bounded size. Let us write wl==']"ww2 iff 1D w, follows
from ID w; by a computation of M during which STACK, contains at most k

symbols.

Let S be the sct of word equations described before; this time we
ransform S into a set T of equations which can be obtained (as in
Corollary 1.3) from acyclic IND’s and u-FD's. The set of generators now is
QU..UQ* U {A, B, f, | «€MU {i, . | «€TL, m=1,..k}

Ufj, | €S, m=0,..k}, where Q"={q"™ | g€Q}, m=0,...k.
L.Ifqa=pisin S, then q"““liﬂ.m+ ,=p"isin T, m=0,., k-1.

2.1If aq=p is in S, then T¥ contains the equations q™=A e
f A,=B,. B“jem=pm, m=0,..k, wherc ¢ is aq=p.

a

It is not hard to sec that TX can be taken to represent a set sk of acyclic
IND's and u-FI)'s: the relation names would be R[A_B_ | a€11], R™(Q™),

m=0,...k. It is also casy to see the following
Lemma 3 q_, =5 iff g =q«n®iff st=R%: QY =HC 8

Theorem 4: There are constants c,,c,>0 such that, given a set Z of acyclic
INDY's and CFD's and an IND (CFD) g, Zk=¢ can be decided in time c'l’
but not in time cz‘/ n/logn,

Proof Sketch: Since the IND's in T are acyclic, the chase gives us a
decision procedure, running in exponential time.
To prove the lower bound, let L be any language in DTIME(d"), d>0. We
will show that L is polynomial-time reducible to the implication problem
for acyclic IND's and u-FD's.
Let M be a deterministic n-AuxiliaryPushdownAutomaton accepting L [13].
Given string x, we construct a deterministic two-stack machine M‘ which

first puts x on SYACK, and then simulates M. This simulation is done as

follows: if M is in state q, its auxiliary storage contains aj..a aw (a is the
symbol scanncd) and its stack contains uf (8 is the top symbol), then the
IDof M, is “ﬁ"l.p"""n paaw; it is not hard to see how M_ can simulate a
move of M. Thus, M accepts x iff Mx halts and STACK, always contains at
most [x| symbols, ie. x€L iffq =¥ h. Note also that [M, is O({x]).

Now Iet T be the set of acyclic INDx‘s and u-FD's corresponding to Mx'
Using Lemma 3, x€L iff M= RO an nEHo. To complete the proof,
observe that Z*! can be computed from x in polynomial time, and that IZNI
is O(M | |x| loglx{), i.c. O(lxiogix). §

5. An Application to Typed IND’s

We show how the tools developed in Scction 3 can be applied to the
particular case of inferring a CFD) from CFD's and typed IND's, We first
give a formal system for implication, similar in spirit to the formal system of
Theorem 2. The semi-decision procedure thus obtained becomes a decision
procedure if the CFID's are acyclic, generalizing a result of [9] about acyclic
unary FID)'s. On the other hand, by analyzing derivations we can show that
the gencral problem is undecidable, even if only unary FD's and ail possible
typed IND’s are given,

Let Z be a given set of CFD’s and typed IND's over database scheme
D={R[U,]: k=1...q}, U ,CU. We represent atribute A€U, by a node
a. A CFD (Rk: AB—C, Rj: A'B’—=C’) in I is represented as shown in
Figure 4a by introducing nodes fakbk. fajbj‘ (we usc a different function
symbol f for each given CFD), directed arcs (a,,fa,b,). (aj',fajbj') labeled 1
and {b.fa,b,), (bj'.faj'bj') labeled 2, and undirected arcs <fa,b,.c, >, (faj'bj'.cj).
The undirccted arcs are the only modification 0 our graph notation of
Section 2.2. Their purpose is to represent the cqualitics fa b, =c;, faj'b’.'=cj'.
A typed IND Rk:ABgRj:AB in Z is represented (see Figure 4a) by
introducing directed arcs (aj,ak). (bj.bk) labeled i (we use a different label for
each given IND).

Let Hy be the mixed graph obtained from Z as described above.
Repeatedly apply rules Tltransitivity), E,  (equality), 1, , (introduction) (see

Figure 4b) on H}_.. in some arbitrary fixed order, until no more rules are

applicable. As was the case with Rules 1,2 in Theorem 2, the introduction

rules need only be applied once for each lefi-hand side configuration.
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Let H=(NH‘AH‘EH) be the mixed graph obtained this way (NH is a set of
nodes, Ay, is a set of labeled directed arcs on N, and Ey is a set of
undirected arcs on NH): notice that cach node of H is labeled F(a,...b),
where F is a term over the function symbols and a,..b are nodes
representing  attributes. F(a,..b) is a shorthand for F[xlla....,xn/b].
Moreover, every subterm of F(a,....b) appears as a node of H. The graph H
fully captures implication of CFD's from X;

Theorem 5;: Zk= (Ry: AB=C, Rj: A’..B"—C"} iff there are rodes
F(a,....b,), F(aj',....bj') of H <F(ak""'bk)'°k>€EH'
(F(aj',...,bj'),cj‘>€EH.

such  that

Proof: Omitted. Sce [3]. B

If 2 consists of acyclic CFD's and typed IND's it is casy to scc that the
graph H is sinite, and in particular its size is exponential in the size of S. We
thus obtain an exponential time upper bound; whether it can be improved

is an open question,

Corollary 5.1: Inferring a CFD from acyclic CFD's and typed IND's is
decidable in exponential time, §

We can also show that inferring a CFD from (gencral) CFD's and typed
IND's is undecidable, even if the set of IND’s is restricted to be PC(D)
(pairwise consistency) and all CFD's are unary FD's. Let X be a set of
u-FD's, Note that if a dawbase d over D satisfies PC(D), then Ri:X-—rY
holds in relation I iff Rj:X-oY holds in 5 where Ri[Ui], Rj{Uj] both contain
attributes X and Y. For this reason we can suppress relation names from
FD's.

Let Fz be a directed graph with a node A for each attribute A and an arc
(X.Y) for each FD X—Y in Z. For each attribute A, let T  be the following
(possibly infinite) directed tree:
the set of nodes PA(_;A‘M‘ is the sct of all paths in Fy which start at A

(denoted as sequences of nodes);
the set of arcs is {(pX,pXY) | p€U*, pXEP N X-YET)

LetP=U AG‘{LP > define E to be the smallest set of undirected arcs on P
which contains <p,p> for all p€P and <XY,Y> for all X-—»Y€Z, and is

closed under the following rules:

1. Propagation; If <pX,qX>€E, then <pXYqXY>EE for all
X—~YEZ.

2. Pseudo-Transitivity: If <pppy. <p,py> arc in E, pAEPxi. and
there is a relation scheme in D which contains xlxz,x}: then
<p,pyisinE.

Exampie: Figuwe 5 has an example where D={R [AYX], R,[YXB],
R,[AXB}}, and Z2={A—Y, Y—B, X—B}.

It is not difficult to see that the structure defined above is essentially a
succinct representation of the graph H of Theorem §, and thus it captures

implication of u-FD’s:
Lemma 4: PC(D)UZkE=X Y iff ¢p,Y>€E for some pEP,.. §
Example: In the case depicted in Figure 5, PC(D)U Zk=A—B.

Theorem 6: The problem of u-FD implication in the presence of pairwise

consistency is undecidable.

Proof: Omitted, See [8].

6. Equational Theories and Finite Implication

We now examine to what extent the tools we developed can handle finire
implication of database constraints. 1deally, we would like to be able to
replace = by '=rm throughout Theorem 1. However, our proof does not
work anymore: To be sure, the same arguments can show that (fif)=>(ii)
and (ii}=>(i) in the finite case (the constructions given map finite
counterexamples to finite counterexamples); on the other hand, the
argument for (i)=>(iii) hinges on the existence of a complete formal system

for implication (namcly the chase), and such a formal system cannot exist

for finite implication (22, 7]. Incidentally, the same syniactic nature of the
proofs of Theorems 3 and 6 prevents us from proving undecidability of
finite implication. The weaker proofs of [22, 7}, because of their semantic

nature, can casily be done for the finite case,

Thus, we have to contend ourselves with partial results about restricted
cases. First, by the discussion above one can sce that = can be replaced by
'=fln
IND’s, i.c. a class where = 5in 1S the same as b=, An casy example of such a

in Theorem 1 if we have a finitely controllable class of CFD's and

class is provided by CFD)'s and acyclic IND’s, because the chase in this case
constructs a finite counterexample if the implication does not hold (thus,
Theorem 4 also holds for the finite case). Another such class is given in the

following

Theorem T: The implication problem for acyctic FI)’s under pairwise

consistency is finitely controllable.

Froof Sketch: We will only consider unary FD's for simplicity. Let
consist of unary FD's; we will show that if PC(D)UZ does not imply X—Y,
then there is a finite pairwise consistent database d which satisfies X but
violates X—Y. We usc the notation of Lemma 4. Define d as follows:

For cach attribute A€ the domain of A, 9 > Consists of all functions f.
P, —+{0.1} such that, if ¢p,g>€E, pq in P '+ then flp) =fq).

Let Ui=Al"'As‘ a tuple f Almf"s (f AjG‘J Aj) is in relation r, when: for any p
inPy.q in Py with <p.@€E, f(p)= fY(q) (X.YEUi).
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Since Z is acyclic, cach P, is finite, and thus d is finite, It is not hard to
reason that d satisfics the FD's in Z (by the definition of the set F), We also
claim that d is pairwise consistent: The key fact is that, if XY..Z is any
subset of U, then the wples XY ..Z} in 1, are exactly the wples ffo...fZ for
which f Wp)= fB(q) whenever <p.q>€E (A,BEUi). Finally, if <p.Y> is not in
Eforanypin P, {Lemma 4), then one can verify that d violates X—~Y. |

Observe that the construction given above provides us with an alternative
proof of the “only-if* direction of Lemma 4 (the counterexample obtained

is, in general, uncountable).

If =g is different from k=, we might still be able to handle the finite case
if there is a complete formal system for finite implication. A class with this
property is FD's with unary IND's[15): The formal system consists of
standard rules for FD’s and IND's [24, 5] and of the following cycle rules:

fromAy=sA, and A\ DA, and..and A, _1—A, and A2A)
derive A|— Ay and A\ DA and..and A=A, and AgDA, (k odd).

However, it turns out that we cannot replace = by k= in in Theorem 1,
but have to sctle for something weaker. Let X be a set of FD's and u-1D’s,
o an FD (u-ID) Zhﬁna can be characierized as follows (V stands for an

infinitary disjunction of equations).

Theorem 8 (o is an FD): In cach of the following two cases, (i),(ii).(iii) are
equivalent:
FD Case:
)2, ALLA —A
i) EgFen Vvec_-rr'r[xllalx,....xn/anx]:ax.
i) 6yb= erg-r tlx /.. fa = a.

u-ID Case:
i) Zk= g BCA.
i) EyF=g, ¥, eq a7=b.
iit) 62l=ﬁn erg; T[x/a]=p.

Proof Sketch: The implications (iii)==>(ii), (ii)}=>(i) can be proved by the
same argument as in [heorem 1. We show (i)=>(iii) by induction on the
tength m of a proof of o from Z. The basis case (m =0} is obvious. For the
induction step, we only check the cycle rule corresponding to k=1 (the
argument gencralizes to arbitrary k). We write 7(a) as a shorthand for
1[x/al.

By induction on m, if A is a finite model of 84, then A satisfies plag)=ay,
(a))=ay, for some p€T,, 7€T. We are ready to apply the m+1 step of
the derivation, which will be the cycle rule step for k:=1. Consider now the
set K={pk(al) : k>0 (" is p composed with itself k times): if a.€K,
then A satisfies pk(ul)z a, for some k, and pkéfl',. This term pk gives us
the proof for the m++1st step. If such a term did not exist, then fetrbe the

least integer such that p’(al)=p5(a x), for some $>1>1 (K is finite since A is
finite): by commutativity, r(p’(al)):p’(f(al))z p'(a0)=p'_l(p(ao))=
=p"!(a)). and similarly r(p(a ))= p* X(a,). But this means
p'“)(a1)=p"’"(al), which contradicts the choice of r. For r=1 we get a
similar contradiction. i

Finally, observe that if the FD's are also unary, we have (by analogy to
Corollary 1.3) the finite Eg unification problem,

7. Conclusions and Open Problems

We have demonstrated a close relationship between implication of
cquations and implication of database constraints, We used this relationship
to derive better bounds for the impfication of FD's and IND's, which are
the most common database dependencies.

An interesting practical question is how well conventional theorem
proving systems perform on database dependency questions [17, 12), Some
theorctical questions also remain unresolved. For the common case of FD's
and typed IND)'s, there is a considerable gap between the exponential upper
bounds (for acyclic IND's and FI)'s, and for typed IND's and acyclic FD’s)
and the NP-hardness lower bound of[9). The undecidability of finite
implication for FD's in the presence of pairwise consistency is open, as well
as the finite controliability of acyclic FD's and (general) typed IND’s.
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