
Equational Theories
and

Database Constraints

Starros S. Cosmadakis Paris C. Kanellakis’

Laboratory for Computer Science, MIT

Abstract

We present a novel way to formulate database dependencies as sentences of

first-order logic. using equational statements instead of Horn clauses.

Dependency implication is directly reduced to equational implication. Our

approach is powerful enough to express fUnctiona and inclusion

dcpcndencics. which arc rhe most common database constraints. We

present a new proof procedure for thcsc dcpcndcncies. We use our

equational formulation to derive new upper and lower bounds for the

complexity of their implication problems.

1. Introduction

In order to deal formally with the problems of logical database design and

data processing, database theory mod& data as sea of tables (relarions).

These relations arc required to satisfy integrity constraints (dependencies),

which intend to capture the semantics of a particular application. Various

kinds of dependencies have been proposed in the literature (see [2S,ll] for

reviews of the area). For example, afincriorlal dependency (FD) is a formal

statement of the form EMPLOYEE+SALARY. which intuitively states that

every employee has a unique salary. An inclusion dependency (IND) is a

staremcnt of the form MANAGERQMPLOYEE, which intuitively states that

every manager is an employee (the more general IND

I~~ASAGER.MANACER.S~LARY~~PLOYE&EMPLOYEE-WARY expresses

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permisslon of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1985 ACM 0-89791~lSl-2/85/005/0273 $00.75

also the fact that managers make the same salary as managers as they make

as cmployccs). FD’s and INUs are the mat common database constraints.

A most general formulation of dcpendencics as sentences in first order logic

(namely Horn clauses) was given in 1111. To handle the central

comoutational problem of depcndcncy in@cafion a particular proof

procedure was devclopcd, tie charr (src[25] for its wide applicability).

Proof procedures for gcncral data dcpcndcncies also appear in [26,2,3].The

chase was seen to be a special cast of a classical thcorcm proving technique,

namely resolution 12.3).

Alternative methods for theorem proving have been developed in the

context of equorionol heories. This is a fragment of first order logic which

has attracted a lot of attention because of its wide applicability in areas such

as applicative languages, iriterpreters. bnd data types. See 114) for a survey of

the area.

Given the formulation of database constraints as first order sentences, one

would expect dabbase theory to have been influenced by the developments

in equational theories. However, not only did this never happen, but a

constant effort has been made to minimize the role of equality in data

dependencies (wlrivalued deprnderrcic?r, the most widely studied after FD’s,

do not involve equality). This is even more impressive in view of the fact

that the best algorithm for loJslrJsnm 01 joins a basic computational

problem, was dcrivcd from an effcicnt algorithm for congncence closure

[lo]. and the best algorithm for implication of I-Us [l] can be seen directly

as a special case of an algorithm of 118) for the generulorprobletn inflnirely

presented a&$ebrus.

This paper is a first attempt to rectify this situation. We demonstrate that

there is a close connection between depcndcncics and equational

statements. This strongly suggests the possibility of using the tools of

equational rheories to handle implication of dependencies. We explain our

transformation of IND and FD implication into equational implication in

Section 3 (Theorem 1). This transformation vastly simplifies arguments

about provability of dependencies (compared to arguments using the

273

chase), and enables us to prove a number of results on implication problems

For FD’s and JND’s.

We illustrate our basic approach with an example: An FD A-tB is

transformed into a string equation jr=b. and an JND CDCAB Js

transformed into the equations ai=c, bi=d Now we can easily infer the

equation fi=& fe=fii= bi=d. This corresponds to inferring the FD

C+D. In general, proofs in equational theories have a clean combinatorial

structure, due to the existence ofa simple, intuitive proofsystem [4].

A number of results are known about FD and JND implication. For

IND’s alone and FD’s alone we have fir& ccmrrollabilify, i.e. implication

andfinite implication coincide. While FD implication is decidable in linear

time [l]. IND implication is PSPACE-complete 151. Syntactic restrictions on

the 1ND’s simplify the implication problem: bounded width JND’s [S] and

ryped IND’s [6] have polynomial time implication problems. The problem

bccomcs NP-complete for urychc IND‘s~ [24,9]. ‘fbc combination of FD’s

and IND’s is not finitely controllable [S], or even decidzblc [22. 71. The

combination of FD’s and una~ [ND’s is also not finitely controllable, but

both implication and finite implication can bc dccidcd in polynomial time

[16]. A fundamental difficulty with JNlYs is that the chase dots not

necessarily terminate and cvcn in spxial cases delicate analysis is required

[IS]. A proof proccdurc for Pi) and INI) implication. which diffcn from

the chase is prcscnted in]22]. Using a variant of this procedure, inference

of unary FD’s from typed 1ND’s and ac;tc/ic unary FD’s is shown decidable

in [9]. The chase is guaranteed to terminate if the IND’s arc acyclic. THUS,

acyclic IND’s and FD’s are finitely controllable and in exponential time;

NP-hardness (even if the IND’s arc typed) is shown in IS]). Finally, if all

possible typed IND’s are present we have a variant of the miversul inslance

ussuntp~ior~ [25] known as painvise comistertcy [19].

Our results apply to generalizations of FD’s called coup/et/ FD’s (CFD’s).

These statcmcnts can express the additional fact that two FIX represent the

same Function in the database. Using our central Theorem 1, we can show:

1. Coupled unary FD’s and binary INJYs are dual swtemcnts. This is a

direct consequence of our transformation (Corollary 1.4. Section 3).

2. Completeness of a new proof procedure For CFD’s and IND’s. This

procedure differs from the chase and the Formal system in [22], and treats

CFD’s and IND’s in a symmetric fashion (Theorem 2, Section 3).

3. FD and IND implication is undecidable, even with only two FD’s

(Theorem 3, Section 4).

4. An exponential lower bound for acyclic IND and FD implication. This

considerably improves the NP-hardness lower bounds in [9] (‘Theorem 4,

Section 4).

5. Completeness of a proof procedure for CFD implication from a set of

CFD’s and typed IND’s. This gcneralizcs the result in [9] and shows that the

problem is decidable for acyclic CFJX (Theorem 5, Section 5).

6. implication of unary FJYs in the presence of pairwise consistency is

undecidable. The proof uses a variant of the scmidecision procedure From

Theorem 5 and a rather involved reduction from the word problem for

semigroups (Theorem 6, Section 5).

For finite implication we cannot USC the Full power of our equational

technique. However, we can show:

7. The implication problem for acyclic FDs in the presence of pairwise

consistency is finitely controllable (and thus our transformation is also

meaningful in the finite case). This does not follow From Theorem 5; an

cntircly different proof technique has to be developed (Theorem 7, Section

8. A wca.kcr version of our transformation can handle Fmite implication of

FD’s and unary IND’s. The proof uses the formal system of [la] (Theorem

8, Section 6).

2. Definitions

2.1. Equational Theories

Let M be a set of symbols and nktn a function from .M to the

nonnegative intcgen .K The set of finite strings over M is M*. Partition M

in to two sets:
G = {gEMI ARITY(~)=O} the genemrors,
o:= {@EMI ARITY(d)>o} the opcrutor&

Definition: qM). the set of rens over M, is the smallest subset of MS

such that,
1) every g in G is a term,
2)ifr
81

l,...,rm are terms and 8 is in 0 with ARIlY(e)= m, then
l”.~m is a term.

A submn of r is a substring of r, which is also a term. Let V = (x.x~,x~...}

be a set of variables. Then the set of terms over operators 0 and generators

GUV will be denoted by e(M). For terms rl,,..,rk in “rc(M) we can

define the substitution v=((xi++> 1 l<i<k } to be a Function from

“SC(M) to p(M). We use (P(T) or T~x~/T~....x~/T~] for the result of

replacing all occurences of variables xi in term T by term Ti (1 <ijk). where

these changes are made simultaneously.

Definition: A binary relation Z on V(M) or p(M) is a congruence

provided that,
1) =: is an equivalence relation,
2) ifARlTY(@=m and ~~Z~;(lli<m) then ~‘T,...T~%+‘T;...T,;~.

An equaliotl e iS a string Of the form T=T,' Where r,?‘are in S+(M). We

USC the symbol E for a set of equations. We will bc dealing with models for

sets of equations, i.e., algebras. We consider each equation e as a sentence

of first-order predicate calculus (with cqualitg). whcrc all the variables from

V arc un.iversally qumrijied.

274

Definition: An algebra A=(A.F) is a pair, where A is a noncmpty set and

Fa set of functions. Each/in Fis a function from A” to A, for time n L I

which we call the fypev).

Examples: (a) A sernigroup (A,{ +]) is an algebra witb one associative

binary operator, i.e., for all x,y,z in A (x t y)+z=x t (y t 2). An example of

a semigroup is the algebra of the set of functions from N to X together with

the composition operation. In semigroups we USC ab instead of a+b and

w.l.0.g. omit parentheses.

(b) A, is an algebra with A= 3fM). For each 6 in 0 WC define a function 8

in F with /~~~(I~)=ARITY(B); here WC USC the same symbol for the syntactic

object 8 and its interpretation, The function 8 maps terms T~,..,,T, From

9(M) to the term @T!...T,. (i.e., #(TV,..., T,)= ~T~...TJ. We will refer to AhJ

as the free a&bra on M. From this example it is clear that WC can without

ambiguity use both 8~ ,... tm and F?(T, ,,,., m 7) to denote the same term,

(c)Let ZZ be a congruence on LJfM). Condition 2) of the congruence

definition guarantees that the operations in 0 are w&defined on

Z-equivalence (or congruence) classes. ‘Thus we can form a quofienr

algebra V(M)/= with domain {[T] 1 7 in CJ1M). [T] is the ZZ-congnrence

class of 2) and with functions corresponding to o’s operators.

(d) Similar observations with (b) and (c) can be made for the set of terms

T%Q.

Implication: Let e be an equation and A an algebra. A satisfies e, or is a

model for e, if e becomes true when its opcraton and nonvariable

generators are interpreted as: the funcrions of A and its variables tic cmy

values in A‘s domain. The class of all algcbns which are models for a set of

equations E is called a varicfy or an equafiorral class. We say that E implies

e (PC) ircquation e is true in every model of I!.

Definition: An equo/ional /henv is a set of equalities E (of terms over

p(M)). closed under hplicah.

We wriic Et-c. if lhcrc exists a finite proof of c starting from E and using

only the iollowing five rules:

T=T,

jiornT,=T2deducc~2=?1,

Jhl r 1 = 72 and 72 = T, deduce T~=T 3
/ram 7, =~;(I~i~m)dedure8~t...7,=87~...7~(ARITY(8)=m),

fiorn rt = 72 deduce ~(7,)= (~(7~) (9, is any substitution).

Let r bc a set of equations over tcnns in 41fM) (i.e.. containing no

\ XlihkS). Conndcr rhc equational tbcory consisting of all 7 z T; such that,

l%7= 7,. 1~) I’roposilion I Lhis theory inducts a congruence =,. on bJtM),

uhcrc 7 = ,.7’ iff I%7 = 7’. From example (c) above we set that this

congruence naturally defines an algebra “JfM)/=r. If r is a finite set

T(M)/=r is known as a~~ife~presen/edu~gebrgebraIlsl.

2.2. Rclationnl Database Theory

Let 91 bc a finite set of attributes and 3 a countably infinite set of values,

such that Wl9 = 0. A relariorl schenre is an object R(U]. where R is the

name of the relation scheme and UC%. A luple t over U is a function from

U to ‘3. Let Ai be an attribute in U and ai a value. where l<i<lUl; if

ffAJ=ai then WC rcprcsent tuple t over U as alaz..alvl. We represent the

restriction of tuple t on attributes $...A, of U as qA1...A,,]. A relorion r

over U (named R) is a (possibly infinite) nonempty set of tuples over U. A

dafabase sehej,le D is a finite set of relation schemes {R#J,]....,RJU,I} and

a datnhase d = (rt,..., q r } associates each relation scheme Ri[Ui] in d with a

relation ri over U,. A database is finite if all of its relations are finite. A

database can be visualized as a set of tables. one for each relation. whose

hcadcrs are the relation schemes (each column headed by an attribute), and

whose rows are the tuples.

The logical constraints. which dctcrminc the set of legal databases, are

catlcd da/u&se dependencies. We will be examining two very common types

of dcpcndencies.

CFD (R:AI...An-+A. S:B1,....B,+B) is a coupledfinclional dependency.

Relations rs (named R.S respectively). satisfy this CFD if,

for tuples t,, t2 in r, t1[A1...Anl=t2fA,...A11] implies $[A]= $[A] and

for tuples tt, t2 in s, t,[B ,.,. II]= t,(B,...B,] implies tJB]= tz[B] and n

for tuplcs tt in r. t2 in s. tJAt...AJ= tJBt...R,j implies t,[A]= t.JB].

IfR=S.A=B,A,=B,...., A, = Bn we have a fincrional dependency (FD).

If n= 1, i.e., single attribute left hand sides, then we have a binaryfirndional

dependency (b-FD). If for an FD we also have n=l then we call the

dependency a unaryfincfional dependency (u-FD). Note that every u-FD is

both a b-FD and an FD. For an FD we usually employ the less redundant

notation R:At...A,+A.

IND S:D,...D,&R:CI...C,,, is an kclusion dependency. Relations gr

(named S,H respectively) satisfy this IND if, for each tuple t in s. there is a

tuplc t1 in r with tJC,l=t[DJ for I<ilm, If m=2 we have a binary

inclusion dependency (b-ID) and if m= 1 a unary inchion dependency (u-

ID). Note that u-ID’s are in fact special cases of b4D’s. since S:D,CR:C1

has the same meaning with S:D,D&R:C&

Equality of two columns headed by attributes A. .B in a relation named R

can bc cxpresscd as a special case of IND’s or CFD’s: either use a CFD,

such as (R:A-A. R:A--rR). or use an IND, such as R:ABER:AA. These

depcndcncics arc panicularly illustrative of our analysis; we will use AsB

to denote them.

Database Notation: We use a graph notation to represent an input

database scheme D and set of dcpendencics 1: (inpur &emu). We construct

a labeled directed graph G, (see Figure I), which has exactly one node ati

for each attribute Ai of each rel.ation scheme R,. Let

i= Rz:D1...D,CR1:C1.C, be an IND in L. Then G, contains m black

arcs (c~~d,2j,...,(c,,,dm2): each arc labeled by the name i of the IND. Let

f=(R,:A,...A,,-+A,, R~B,...B,--+Bo) be a CFD in X. Then G, contains

two groups of n redarcs (a,,,a,$ (an,,aol) (and @,,.b,,) .,.., (bnl’bOl); each

group is labeled by the name f of the CFD and each group’s arcs are

ordered from 1 to n as listed above.

We also consider rhe fallowing directed graphs 1, and Fx:; I, has one

node for each relation scheme name in D and arc (R,S) if and only if G,

contains some black arc (RA,SB). F, has one node for each attribute in D

and arc (A,B) if and only if G, contains some red arc (RA.RB). We now

define special syntactic forms of input schemata:

Acyclic IA’D’s: I, is acyclic.

ACJ~C CFD 3: Fz is acyclic.

Typed WD’s: The black arc?, of G, are all of the form (RA,SA) for relation

names R, S and attribute A.

Typed INIX are between occurences of the same attribute names in

different relation schemes. If we assume that all possible typed IND’s are in

the input schema, (i.e., with some abuse of notation R:UfKl’CS:UnU’for

all R[U].S[U’] in database scheme D), then we have painvise corrsis&my

WW.

Implication: We say that L implies o (XI=o) if, whcnevcr a database d

over scheme D satisfies Z, it also satisfies u. If we restrict ourselves to finite

databases we have C!=r,,,o. Clearly if CC-o (implicoliorr) then Zb,,a

@i/e i~,&z~ion). but the converse is not always ~uc. Deciding

implication of dependencies is a central problem in database Theory. Since

dependencies are sentences in first-order predicate calculus with equality,

we have proofprocedures For the implication problem (we denote proofs as

Xl-o). A proof procedure is sound if rwhen Xt-u then ZCa; and

complete if it is sound and when ZCu then Xl-u, (similarly for finite

implication). The standard complete proof procedure for database

dependencies is the chase. ‘Ibe appropriate chase rules for our analysis are

described in [15].

3. Database Constraiuts as Equations

Let Z be a set of CFD’s and IND’s over a database scheme D and u a

CFD or IND. We will vansform P into two sezs of equations E, and 6,

We will show that Zl=so iff E,CE, iff S,CS,, for some sc(s of equations

E,.S, whose form depends on): and u. We assume that D only contains

one relation scheme: this simplifies notation, and rhcre is r,o loss of

generality.

Transformation: From the dependencia in Z construct the following sets
of symbols,

My= {f,l for each CFD with n attribute left-hand sides include
one operator fk of ARllY n),
Mi = {j,J for each IND include one operator i, of ARm 1).

Ma= {akI for each attribute A, include one operator 4
of ARlTY 11,
Ma = (e,l for each attribute Ak include one generator at).

Now let M= MCJMiUMslJMa and V={x,xPx2,J be a set of variables.

p(M,) (p(Mi)) are the sets of terms constructed using operators in M,

(Mi) and generators in V.

The set E, consists of the following equations (presented both in string and

parenthesized notation):

1) two equations for each a,=(AI...An--+A, B,...B,-+B): fka,x...anx=ax
and fkblx...bnx= bx,

(or f,Jal(xL.,an(xN= a(x) and f&b,(x),...,b,(x))= b(x)):
2) m equations for each uk=BY.B,,&A1..A,: a$,x=b,x and . . . and
a&x = b,,,x,

(or al(ik(x))=‘bl(x) and ..- and a&(x))= b,(x)).

Tne set 6, consists of the following equations:

3) two equations for each ut=(A1...AD-+A, B,...Bn+B): ftal”‘aa=a and

fJ$.-@,=B,
(or f&a1 ,..., an)= a and f&9, ,..., fin)=/3):

4) m equations for each uk=B1...B,&A1...A,: ital=& and .., and

$pm=Bm*
(or ik(a,)=B, and . . . and i&J=&,),

5) for each pair of symbols fp in M, and ip in M, the equation

f&xl...igxn =iqfpxl,..xn (ARrrY(fJ=n),

(or fP(ip(xl) ,..., iP(xn))=ig(fp(xl ,..., x,))).

The transformation is illustrated in Figure 2. Note that in 6, only

equations 5) contain variables. Equations 5) are comnrukzriviry conditions

between f and i operators. We now present Theorem 1. which is central to

our analysis.

Theorem 1: In each of the following three cases, (i)7(ii),(iii)an equivalent

P Case:

i)Zb=AzB
ii)E+x:=bx

iii) 6, I= u :=@.

CFD Case:

i) Z I= (A1”.An’A, BI...Bn+B)

ii) E, I= T[xl/alx....,x,/asxj=ax and ~[x~/b~x,...,x~i$xl= bx, for some 7

hf?MJ
iii) 6, I= r[xl/nl,..., x,/u,]=o and 7~~#3~x,4l,]=& for some T in

@&It>.

276

IND Case:

i)L ti B,...B&A,...A,
ii) 4 I= al~=blx and ,.. and an,r=b,x. for some T in p(M$

iii) 8,l= ~(x/oJ=& and ,.. and r[xla,]=fl,. for some r in~((M,).

Proof Sketch: WC use E, (ST) to denote the set of equations

corresponding to term r in (ii),(iii).

(ii)*(i) Suppose E,l=E, and let relation r satisfy Z: we will show that r

satisfies u. Relation r is, by definition, nonempty and its entries can be

w.1.o.g. positive integers. Number its tuples 1.2,... etc., (it could contain a

countably infinite number of tuples). Dcfinc A(.):&N, such that, if x is

the number of a tuple in r. then A(x) is the entry in tuple x at attribute A,

else A(x) is 0, (N are the nonnegative integers). If f is the CFD

(D,...D,+D, C,...C,-+C) in Z define F(...):ti+X such that. if x is the

number of a tuple ln r, then F(Dl(x),...,Dx(x))= D(x) and

F(Cl(x).....C,(x))=C(x), else F is 0. This is a well defined function since r

satisfies f. If i is the IND D,...D,CC,...Ck in Z detinc l(.):N+N, such that

if x is the number of a tuple in t and x’ is the number of the first tuple in t

where tx[D1...Dt]= tx.[C,...C,], then l(x)= x’, else I(x) is 0. This is also a well

defined function since r satisfies i. We have constructed an algebra with

domain Xand functions A(.) ,... $F(...) I(.) ,..., which, as is easy to verify, is a

model for E,. Let [I bc an IND. By intcrprcting each symbol in I as an I(.),

we see that when x is a tuplc number T(X) is another tuple number. Since

E$=E+ we must have Ai(Bi(x) l<i<m, which means that r satisfies u.

The case of a CFD is similar.

(iii)*(n) Suppose B,C6, and let Jb be a model of E,: we will show

that J% satisfies E,. From Ab we will construct a model A(&) for g,. The

algebra a(~%) will have domain all functions from J% to J&, ie., &-+A.

In A(d) the interpretation of (I will be the function a(x), which 1s the

interpretaiion of a(.) in J%. The interpretation of i(.) will be the function

Ah.h(i(x)), where i(x) is the interpretation of i(.) in Jb (this is a function

from Jb-+AL to A-+&). The interpretation of g...) will be the function

Xhl...hn.Ahl(x) ,..., h,(x)). where Xx1 ,..., xn) is the interprctadon of t&J in Jib

(this is a function from (W-Q%)” to &+A). It is straightforward to

check that equations 3).4) hold ln A(&), because J% is a mode1 for E,

Also equations 5) hold in A(A): For example. if n= 1 the interpretation of

f(i(h)) in A(n) is J(h(i(x)), which is also the interpretation of i(F(h)) (h is

any element of Jtb+Jb). Thus A(&) is a model for SF Since 6,CBT,

A(&) satisfies %+ and it easily follows that J% sat&s E,.

(i)*(iii) By induction on the number of steps of a chase proof of u from

2. I

An alternative proof procedure for IND’s and FD’s only is given in [22].

We cdn show that each of the rules in [22] can be simulated using the

equational reasoning of Proposition 1 (this provides an alternate proof of
the (i)+iii) step for the FD and IND case). Let US illustrate it with an

example: From A-B and CDCAB the pullback rule of 1221 derives C+D.
ln equational language fa =j$ ia =7. is = S and fix=ifx i@~

fy=fia=ifa=i/3=8.

Corollary 1.1: Let P be a set of FD’s aud u an FD. The implication

problem XCu is equivalcut to a generator problem for afrnireiy presenred

a!gebra [18].

ProoT: 6, is now a finite set of equations with no variables. If =: is the

congruence induced by E$ on 3(M) then CJ1M)/=: is a finitely presented

algebra. The equational implication in Thcorcm 1 is known, in this case, as

a generator problem for the finitely presented algebra V(M)/zZ. I

Using Corollary 1.1. one can obscrvc that the linear time algorithm of

[I] for FD inference can bc derived in a straightforward way From tbc

algorithm of [lS] for the generator problem.

Corollary 1.2 Let E be a set of CFD’s. The implication problem

Zl=A=B is a uni/onn wordproblernfira/inirelypresentedalgebra[18]. I

Semigroup Tnnsformation: Let I: be a set of 1ND’s and b-FD’s.

Produce the set of symbols MS from M as follows: for each fk(.) in Mfadd

one generator fk in MS; for each it(.) in Mi add one generator i, in M,; for

each a,(.> in Ma add one generator ax in Ms; add one binary operator + in

: consists of the associative axiom for + and the following word (string)

equations (we omit + and parentheses):

1) two equations for each b-FD ak=(A1-+A. B1-lB): ftal=a and fkb,=b

2) m equations for each IND ut=B1...B,&A1...Am: arik=bl and ,.. and

a&=b,.

Corollary 1.3: Let I: be a set of b-FD’s and IND’s

Zi=AmBiffEgC a=b

Xt(A,-+A, B,+B) iff EJ= wal = a and wb, = b. for some string w in M:

Z~B,...B,&A,...A,,, iff E&= arw=bt and ,.. and a,w=bm, for some

string w in M:. I

Note that the first case is an instance of the unijbwn nard problem fir

semigroups. The other two cases are known as Qunifica/ion problems 1141.

By the symmetry in Corollary 1.3, we have

Corollary 1.4 Duality: Let): be a set of b-FD’s and b-ID’s, and u a b-FD

or b-ID. Transform every b-FD (A-B, C-+D) into the b-ID BDCAC, and

every b-ID BDGAC into the b-FD (A-+B. C-+D). If this transformation

changes Z into Z’and u into a’, then E:l=ru iff Zl=u’, 1.

277

A similar duality theorem for u”FD’s, u-ID’s and I=,, follows from the

m&SiS in (161. In (22j it is shown that implication (f=) is undecidable for

u-Fus and b-lD’s. By Corollary 1,4, it is unclccidable for b-FlYs and IJ-

ID’.% ?%s was also Clear from the form of the undecidability reduction used

~JI 1221. One might imagine formal statements, such as an m-FD

(At-+f+,A,,,-+R,) as duals for INDs H1...B,&~l...~,. Here the duality

would hold in the equational theory. but thcsc sta:cmcnts for m>2 have no
natural meaning in database theory.

We will now describe a proof procedure for CFD and IND implication,

using the special structure of the equational theories from lheorem 1.

The Proof Procedure C: Given a set Z of CFD’s and IND’s construct

their graphical representation G, dcfincd in !;ection 2.2. Each attribute

name in Z is associated with one ofthe nodes ofG,

Rules Apply some finite sequence of the graph manipulation rules l,2,3

and 4 of F&are 3 on G,. Rules 1 and 2 introduce new unnamed no&~.

Rules 3 and 4 identify two existing nodes; the node resulting from IhiS

identification is associated with the union of the two sets of attribute names,

that were associated with each of the identified nodes. Note that rules 1,2

w.1.o.g. need be applied at most once to every left-hand side configuration.

Let G be tbe resulting graph, Associate a unique new name with every

unnamed node in G. The black part of G now naturally represents a set of

IND’s X, and the red part a set of CFD’s 2,

We say that El-,a when:

D is AzB and A,!% are associated with the same node;

o is a CFD and o can be proved from X:F by chase (for CFD’s only, the

chase is an efficient decision procedure):

o is an IND B1”.B&A1’..A,,, and there are m black directed paths in x,, all

with Ihe same sequence of labels, path i starting at Ai and ending at Bi

Theorem 2: Zto iff Ll-.Gu,

Proof Sketch: WC outline the proof for u being AsB.

(c): Rules 3.4 are obviously sound. Rules 1 and 2 arc sound in the sense of

the arrribure infroduc/ion rule of 1221, which we illustrate as rule 5 of Figure

3.

(a): We assume that we cannot prove u, and construct a model for 6x in

which a*@; then by Theorem 1 Z does not imply u. If u is not provable.

then there is a (possibly infinite) graph G which reprcscnts Z. is closed

under the rules, and in which the names A and B correspond to different

nodes. We add one special node I to G. The labels of G arc symbols

correspondicg to INDs (i symbols) or CFDs (f symbols) of Z. The groupsof

red arcs labeled with an f are also ordcrcd. If n node in GU{.L} has no

outgoing arc labeled with some i. add one going to 1. If an n-tuple of

nodes dots not have a group of n arcs leaving it labeled by f (of ARITY n)

and ordered 1 to n, add such a group going to .I.. ‘The resulting graph

represents fimccions interpreting the operators and generators in 6,: This is

because closure with tespect to rules 3 and 4 and the padding of G we

performed, guairantecs functionality. The node A (6) is the interpretation of

a (8). Now closure with rcspcct to rules 1 and 2 guarantees the

commutativity conditions of 6,, and the fact that G represents E guarantees

equations 3),4) of 6,. Thu; there is a model of 6, in which a+& I

4. Computations as Inferences

It has been known, since at least Post’s proof of the unsolvability of the

word problem for Ihue systems (23.201, that arbitrary computations can be

simulated by inferences in semigroups. By our Corollary 1.3. one can

therefore simulate computations by inferences of IND’s and unay FD’s,

and thus obtain lower bounds on the complexity of the implication problem

for IND’s and CFD’s.

We frrst describe our machine model: A derenninisric rwo-sruck machine

M is a S-tuple (Q,n,q,.h,J), where Q is a finite set of slates, n is a finite

set of symbols (Qn ll = 0). q,EQ is the srarr stare, hEQ is the huh me,

and 6 is the laonsirion funcrion. Each move of M falls into one of the

following two types:

1,6(q,a)=(p,PoP+: This means that, if M is in state q and aEil is
the top symbol of STACKI, then on the next step M goes to state
p and pops STACK1

2.6(q)= (~,PusI~,(@)): If M is in state q. then on the next step M
goes lo state p andpushesflElI on ST.4CKl

of course, analogous instructions can manipulate STACK2

An insranruneous desrriprion (ID) of M is a string xl...xnqym...yl. where

qEQ, xi.yicll: &he string x1.,.x, is the contents of STACK1 (the top symbol is

x,): the string y,...yt is the Contents Of STACK2 (the top symbol is y,). The

relation wl*,M~Z (ID w1 yie/ds ID wz via one step of M) is defined in the

standard way [20, 131; *h is the rrflexive, fransi/ive closureof eM

Let us now define a set S of wordequurions (over generators QUn) which

capture the computation of M:

1. If G(q,a)::(p.POP1). then aq=p is in S.
If 8(q.a)=(p.PoPJ, then qa =p is in S.

2. If 6(q)=(p.PUSII,(p)). then q=/3p is in S.
If 6(q)=(p,PL’sIt,~)),then q=pfi is in S. *

We write u = sv iff Stu = v. By a standard argument, based on the fact that

M is dermninisric [23,20], we have

Lemma 1: q,=+&h iff q,=Sh. I

‘ro prove our first lower bound, we transform S into another set of

equations ‘r which looks like the sets obtained (as in Corollary 1.3) from

IND’s and u-FD’s. T‘he set of generators is now

273

QU{A,,B.,fn) aEfI}U{i, I aEfI}UIj,l eES).

1. Ifqa =p is in S, then qia =p is in T.

2. If aq=p is in S, then T contains the equations q=A&
f,.4,=Bo, Bie=p, wherceisaq=p.

Lmna 2: &=sh iff q,,=-$.

Proof Sketch: Observe that if aq=p is in S then &q=,F because

f,q=.rfaAJ,=TB&=,p. 1

Theorem 3: The implication problem for IND’s and two u-FD’s is

undecidable.

Proof Sketch: Given a deterministic two-stack machine M, it is

undecidable if qpane&h, even if IllI= (21,131. By Lemmas 1 and 2,

9 =n*$h iffq,=yh, and by Corollary 1.3, qsI,,=fi iff Ll=Qm~H,

where Z is the set of IND’s and FD’s which gives rise to ‘r. But now observe

that Z only contains FD’s of the form Ao--+Bo, aEn, and thus since

III\ = 2, P only contains two unary FD’s. I

Lindecidability of the implication problem for IND’s and FD’s has

already been proved [22,7]. By way of comparison, these reductions use

arbitrarily many b-11)‘s and u-FD’s, while our reduction uses arbitrarily

many IND’s and only two u-FD’s. To prove our second lower bound, we

consider computations of a deterministic two-stack machine M where one

of the two stacks has hounded size. Let us write w,*bw2 iff ID wt follows

from ID w1 by a computation of M during which STACKS contains at most k

symbols.

Let S be the SCL of word equations described before: this time we

transform S into a set ? of equations which can be obrained (as in

Corollary 1.3) from acyclic IND’s and u-FD’s. The set of gcncrators now is

Q”U...UQk U {A,,B.,f, I aEn} U {ioJn I aEll,m=l,..., k)

UIj,,, 1 cfS,m=O ,..., k}. whercQm={qmjqEQ},m=O ,..., k.

l.Ifqcr=pisinS,thcnqm+li~m+l=pmisinTk,m=O ,.,., k-l.

2. If aq=p is in S, then T’ contains the equations qm=AQam,
f,,“‘, = Da. B‘&,, =pm, m=O ,..., k, where c is aq=p.

It is not hard to see that Tk can be taken to rcprcsent a set Lk of acyclic

IND’s and u-FD’s: the relation names would be K[A=B=] aEfl], R”[Q”],

m=O.....k. It is also easy to see the following

LCIIUU~ 3: qmn*$h iff qL,zTk ho. iff ZkC R”: Qom=Ho. I

Theorem 4: lhcrc are constants c&O such that, given a set I: of acyclic

IND’s and CFD’s and an IND (CFD) u, ZCu can be decided in time c:

but not in time cf nn@n.

Proof Sketch: Since the IND’s in Z are acyclic, the chose gives us a

decision procedure. running in exponential time.

To prove the lower bound, Ict L be any language in DTIME(d”), d>O. Wc

will show that L is polynomial-time rcducibte to the implication problem

For acyclic IND’s and II-FD’s.

Let M be a dctcnninistic n-AuxiliaryPushdownAutomaton accepting L 1131.

GiVCn Sving x. we construct a dctcnninistic two+stack machine MI which

first puts X on SLACK2 and then simulates M. This simulation is done as

Follows: if M is in state q, its auxiliary storage contains aI...aoaw (a is the

symbol scanned) and its stack contains up Cp is the top symbol), then the

ID of MI is u/lalg.,.a’,p qaw; it is not hard to see how Mx can simulate a

move of M. Thus, M accepts x iff Mx halts and STACKS always contains at

most 1x1 symbols, i.e. xEL iffq,, *z h. Note also that 1M.J is 0(1x1).

Now let $1 be the set of acyclic IN& and u-FD’s corresponding to Mx.

Using Lemma 3, xEL iff Xl%= R”: Qk,=H’. To complete the proof,

observe that Clnl can be computed from x in polynomial time, and that IX’“ll

is O(lMxl 1x1 loglx(), i.e. O(lx~zlogjxl). I

5. An Application to TIped IND’s
We show how the tools developed in Section 3 can be applied to the

particular case of inferring a CFD from CFD’s and typed IND’s. We first

give a formal system for implication, similar in spirit to the formal system of

lheorcm 2. The semi-decision procedure thus obtained becomes a decision

procedure if the CFD’s are q&c, generalizing a result of 191 about acyclic

unary I-X%. On the other hand, by analyzing derivations we can show that

the general problem is urrdetVdub/e. even if only unary FD’s and all possible

typed IND’s arc given.

Let E: be a given set of CFD’s and typed IND’s over database scheme

D= {Rk[Uk]: k= l.....q], U,C’?t. We reprcscnt attribute AEU, b, a node

% A CFD (R,: AB+C, Rj: A’B’-+C’) in E is represented as shown in

Figure 4a by introducing nodes fakb,. faibi (we use a different fimction

symbol f for each given CFD). directed arcs (ak,fakbk), (ai,Fajb> labeled 1

and (b,.fa,b,), (bjfap;’ labeled 2, and undircctcd arcs <fa,b,,c,>, <fajbjcj>.

The undircctcd arcs are the only modification to our graph notation of

Section 2.2. Their purpose is to represent the cqualitics fakbk=ck, fai%;=c;.

A typed IND Rk:ABGRj:AB in Z is represented (see Figure 4a) by

introducing dircctcd arcs (ai,ak), (brbk) lab&d i (we use a different label for

each given 1ND).

Let H, be the mixed grirph obtained from Z as described above. b
Rcpcatcdly apply NkS ‘l’(rruusihi/~~), E,-; (quo/i/y), I,, (iutroduc/ion) (see

Figure 4b) on H,. in some arbitrary fixed order, until no more NkS are

applicable. AS was the case with Rules 1.2 in Theorem 2, the introduction

rules need only be applied once for each left-hand side configuration,

279

Let H=(N,,A,,G) be the mixed graph obtained this way (NH is a set of

nodes, AH is a set of labeled directed arcs on NH, and G is a set of

undirected arcs on NH): notice that each node of H is labeled F(a,...,b),

where F is a term over the function symbols and a....,b are nodes

representing attributes. F(a,...,b) is a shorthand for F[x+a,...Q].

Moreover, every subterm of’F(a....,b) appears as a node of H. The graph H

fully captures implication of CFD’s from Z:

Theorem 5: Zl= (R,: A...R-+C, Rj: A’...R’-+C’) iff there are sodes

F(a,....,b& F(aj,,..,b? of H such that <F(+ ,..., b,),c,>El$

<F(aj:,...,b&%ZG.

Proof: Omitted. See [8]. I

If Z consists of acyclic CFD’s and typed IND’s it is easy to see that the

graph H is,%&. and in particular its size is exponmtiul in the size of S. We

thus obtain an exponential time upper bound; whcthcr it can be improved

is an open question.

Corollary 5.1: Inferring a CFD from acyclic CFD’s and typed IND’s is

decidable in exponential time. I

WC can also show that inferring a CFD from (gcncral) CFD’s and typed

IND’s is undecidable, even if the set of IlNlYs is restricted to be PC(D)

(pairwise consistency) and all CFD’s are unary FD’s. Let 2 be a set of

u-FD’s. Note that if a database d over 13 satisfies PC(D), then Ri:X-rY

holds in relation ri iff Rj:X+Y holds in rj, whcrc R.JU,l, Rj{U.j both contain

attributes X and Y. For this reason WC can suppress relation names from

F-m

Let F, be a directed graph with a node A for each attribute A and an arc

(X,Y) for each FD X+Y in Z. For each attribute A. let T* bc the following

(possibly infinite) dircctcd tree:

the set of nodes PACAS1* is the set of all parhs in F, which start at A

(denoted as sequences of nodes);

the set ofarcs is ((pX,pXY) 1 pEu*, pXEP,, X-+YEZ}.

Let P= UAfcuP,; define E to be the smallest set of undircctcd arcs on P

which contains <p,p> for all pEP and <XY.y> for all X-tYEZ, and is

closed under the following rules:

1. Propagation: If <pX,qX>EF, then <pXY,qXY>EE for all
X-*YEZ.

2. Pseudo-Transitivity: If <pl,pz>, <p2,p3) arc in E, p.EP,,, and
there is a relation scheme in D whb:h contains X,&,X,! then
<p,p,> is in E.

Example: Figz? 5 has an example where D={RJAYX], R,[yXB],

R,[AXB]}, and Z={A-tY, Y+B, X+B).

It is not difficult to see that the structure defined above is essentially a
succinc: reprlescntation of the graph H of Theorem 5, and thus it captures

implication of u-FD’s:

Lemma 4: PC(D)ULt=X+Y iff <p.Y>EE for some pCPK I

Example: In the case depicted in Figure 5. PC(D)UZCA+B.

Theorem 6: The problem of u.FD implication in the presence of pahwise

consistency is undecidable.

Proof: Omitted. See [8]. I

6. Equational Theories and Finite Implication
We now examine to what extent the tools we developed can handle jinifc

implicarion of database constraints. Ideally. we would like to be able to

replace i= by C,,, throughout Theorem 1. However. our proof does not

work anymore: To be sure, the same arguments can show that (iii)*(ii)

and (ii)*(i) in the finite case (the constructions given map finite

counterexamples to finite countcrcxamples); on the ather hand the

argument for (i)*(iii) hinges on tic existence of a complete formal system

for implication (namely the chase), and such a formal system cannot exist

for finite implication 122.71. Incidentally, the same sy,lloctic nature of the

proofs of Thcorcms 3 and 6 prevents us from proving undccidability of

finite implication. The weaker proofs of [22.7], because of their semantic

nature, can easily bc done for the finite case,

Thus, we have to contend ourselves with partial results about restricted

cases. First. by the discussion above one can see that C can be replaced by

Cnn in Thcorcm 1 if we have a finirely confrollable class of CFD’s and

IND’s. i.e. a class where l=:s,, is the same as I=, An easy example of such a

class is provided by CFD’s and acyclic [ND’s, because the chase in this case

constructs a finire counkv~xamplc if the implication does not hold (thus,

Theorem 4 also holds for the finite case). Another such class is given in the

following

Theorem ‘7: The implication problem for acyclic FD’s under pairwise

consistency is finitely controllable.

Proof Sketch: We will only consider unary rFD’s for simplicity. Let L

consist of unary FD’s; we will show that if PC(D)UE does not imply X-rY,

then there is a jinire pairwise consistent database d which satisfies Z but

violates X-rY. We use the notation of Lemma 4. Define d as follows:

For each atlributc AC% the domain of A. 41,, consists of all firdons f:

P,-+{O.l) such that, if <p,q>EE. p.q in PA, then f(p)=qq).

Let U,=A,...A, a tuple f*,...f* (f,.E’S,,) is in relation rI when: for any p

in P,. q in P, with <p.q>EE. f,~p)=‘r,(qj(X,YCOJ.

2c3

Since P is acyclic. each P, is finite, and thus d is finite. It is not hard to

reason Ihal d satisfies the I-D’s in Z (by the definition of the set E). We also

claim that d is pairwisc consistent: Ihc key fact is that. if XY...I. is any

subset of Ui. then the tuplcs t[XY...Z] in ri are exactly the tuplcs fXfy...fi for

which f,,(p)= f&q) whenever <p,q>EE (A,BEU,). Finally, if<p.Y> is not in

E for any p in P, (Lemma 4). then one can verify thar d violates X&Y. 1

Obsenc that the construction given above provides us with an alternative

proof of the “only-if’ direction of Lemma 4 (the countcrexample obtained

is, in general, uncounruble).

If l=dn is different from C, we might still be able to handle the finite case

if rhere is a complete formal system for finite implication. A class with this

property is FD’s with unary IND’s [15]: The formal system consists of

standard rules for FD’s and IND’s [24,5] and of the following cycle rules:

from Ao-4A1 and A,aA, and...and AkoI+At and A,3Ao

deriveA1-*Ao andA2>Al and...a~ldAk-+Akvl andA& (k odd).

However, it turns out that we cannot rcplacc C by tan in Theorem 1.

but have to scttlc for something weaker. 1.~1 P be a set of Flys and U-ID’S,

u an FD (u-ID); Xl=tg,o can bc charactcrizcd as follows (V stands for an

infinitary disjunction of equations).

Theorem 8 (u is an FD): In each of the following two cases, (i),(ii).(iii) are

equivalent:

FD Case:

i) ZC,, A,...A”+A.

ii) E,Cfin V,~~f7[xl/alx,...,xn/anx]=ax.

iii) gxtfin VT~qfr(xl/al xn/un]=a.

u-ID Case:

i) ZC fin BC A.

ii) E,l=:,, V,c% aT=bx.

iii) 6,t,n VT~~J:[x/a]=&
f

Proof Sketch: The implications (iii)*(ii), (ii)a(i) can be proved by the

same argument as in ‘lheorcm 1. We show @*(iii) by induction on the

Icngth m of a proof of (J from 2. The basis case (m =0) is obvious. For the

induction step, we only check the cycle rule corresponding to k=l (Ihe

argument generalizes to arbitrary k). We write T(a) as a shorthand for

7(x/a].

By induction on m, if 1 is a finite model of Q,, then A MisfiFS dad=+

T(Ul)=~g, for some @,, TEq, We arc ready to apply the m+ 1 step of

he derivation, which will be the cycle rule step for k = 1. Consider now IhC
set K={p’$) : kZO} (p’ is p composed with itself k times): if a,,EK.

then A satisfies pk(al)= a0 for some k, and pkEq, This term pk gives us

Be proof for the m -+ 1st step. If such a term did not exist. then let r be the

least intcgcr such that $(aI)=$(a,), for some s>r>l (K is finite since A is

R&c): by commucltivity. f(fhlN=pr~~(al))= P’(aJ= p”(pboN=
=pr-l(al), and similarly T(p’(U$)= psl(al). But thismeans

p’-‘(11J=p*‘(a,). which contradicts the choice of r. For r=l we get a

similar contradiction. I

Finally, observe that if the FD’s are also unary, we have (by analogy ta

Corollary 1.3) thejnire s un$cafion problem.

7. Conclusions and Open Problems

We have demonstrated a close relationship between implicatian of

equations and implication of database constraints, WC used this relationship

to derive better bounds for the implication of FD’s and IND’s, which are

the most common database dependencies,

An interesting practical question is how well conventional theorem

proving systems perform on database dcpcndency questions 117,121. Some

lficorctical questions also remain unresolved. For the common case of FD’s

and typed INUs, thcrc is a considerable gap between the exponential upper

bounds (for acyclic IND’s and Fl ys, and for typed {ND’s and acyclic FD’s)

and the NP-hardness lower bound of[9]. The undecidability of finite

implication for FD’s in the presence of pairwise consistency is open, as well

as the linite controllability of acyclic FD’s and (general) typed IND’s.

References

1. Bccri. C. and Bernstein, P.A. “Computational Problems Related to the
Design of Normal Form Relational Schcmas”. AC&f Transaclions an
Database .Sy~lmrrs 4,l (March 1979). 30-59..

2. Bccri, C. and Vardi. M.Y. “Formal Systems for Tuple and Equality
Gcncrating Dcpendencics”. SIAM Journal of Cotnpuring 13,1 (February
1984). 76-98. .

3. Bceri, C. and Vardi. M.Y. “A Proof Procedure for Data Dependencies”.
Jowla/ offhe Association for Computing Machinery 3/,4 (October 1984).
718-741..

4. Birkhoff, G. “On the Structure of Abstract Algebras”. Proceedings of
the Cambridge Philosophical Society 31, (1935).

5. Casanova, MA.. Fagin. R. and Papadimitriou. C.H. “inclusion
Dcpcndcncics and’l’hcir Interaction witi Functional Dependencies”.
Journal ofcomputer artd .S~SETI Sciences 24 1 (February 1984), 29-59..

6. Casanova, V. and Vidal, V.M.P. “Towards a Sound View Integration
hlcthodology”. Proceedings of the 2”d ACM Symposium on Principles of
Dalabase Syslems (1983).

7. Chandra. AK. and Vardi. M.Y. The Implication Problem for
Functional and Inclusion Dependencies is Undecidable. IBM Tech. Rep.
KC 9980.. ,1983.

8. Cnsmadakis, S.S. Equarional Tlreories arm Database Cotrsrrainrs. Ph.D.
Ih., Massachusetts Institute of Technology, 1985.

9. Cosmndakis. S.S. and Kanellakis, PC. “Functional and Inclusion
Dcpcndencies: A Graph Thcorctic Approach”. frocecdiugs ofrhc fl ACM
Symposium on Principles of Database Sysrems (April 1984). 24-37.

2&l

10. Downey, P.J.. Sethi. R. and Tarjan. R.E. “Variations on the Common
Subexpression Problem”. Journal of ihe Associarion for Cornpuling
Machinery 27,4 (October 1980), 758.771..

11. Fagin, R. “Horn Clauses and Database Dependencies”. .fournof ofrhc
ACM 29‘4 (October 1982), 952-985..

12. Forgaard, R. and Guttag. J.V. “REVE: A l’erm Rewriting System
Generator with Failure Resistant Knuth-Bendnx”. Proceedings o/an NSF
Workshop on fhe Rewrire Rule Laborurov (ApriI 1984). 5-31.

13. Hopcrofr, J.E. and Ulhnan, J.D.. Introduction /o Aulomaka Theory,
Languages andCompura!ion Addison-Weslc:, Publishing Company, Inc., ,
1979.

14. Huet, G. and Oppen, D. Equations and Rewrite Rules: a Survey. In
Formal Languages: Perspecfives artdopen Problems, , Eds.. Academic Press.
,198O.

15. Johnson, D.S. and Klug, A. “Testing Containment ofConjunctive
Queries Under Functional and inclusion Dcpcndencics”. Journal of
Computer and System Sciences 28,l (February 1984). 167-189. .

16. Kancllakis. PC., Cosmadakis, S.S. and Vardi. M.Y. “Unary Inclusion
Dependencies Have Polynomial Time Inference Problems”. Proceedings of
rhe ISfh Annual ACM Symposium on Theory o]‘Compuring (1983).

17. Knuth, DE and Bendix, P.R. , Volume : Simple Word Problems in
Universal Algebras. In Cotrtpuratiortal Problems in Abstract Algebra, , Eds.,
Pergamon. Oxford, 1970, ch! .

18. Kozen. D, “Complexity of Finitely Presented Algebras”. Proceedings
of the Ninlh Annual A&U Symposium on Theoty ofCompu!ing ACM
S&ACT (May 1977). .

19. Laver. K., Mendelzon, A-0. and Graham, M.H. “Functional
Dependencies on Cyclic Database Schemes”. Pmce&rgr ACM SIGMOD
(1983).

20. Lewis. HR. and Papadimitriou, C.H.. Elements ojrhe Theory of
Contpulalion. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981, .

21. Minsky, M.L. “Recursive Unsolvability of Post’s Problem of “Tag” and
Other Topics in the Theory of Turing Machines”. Annals o/Ma~hema~ics
71,3 (1961). .

22. Mitchell, J.C. “The Implication Problem for Func:tional and Inclusion
Dependencies”. Information undConlrolS6,3 (March 1983), 154-173. .

23. EL. Post “Recursive Unsolvability of a Problem of Thue”. Journal of
Symbolic Ifigic 13. (1947).

24. Sciore, E “Inclusion Dependencies and the Universal Instance”.
Proceedings oj’lhc pd ACM Symposium on Principles of Database Sysrems (
1983).

25. Ullman. J.D.. Princtples ofDatubase Systems. Computer Science Press,
Inc., ,1983.

26. Yannakakis, M. and Papadimitriou C.H. “Algebraic Dependencies”. /.
Compu~. Systems Sci. 21,l (August 1982), 2-41. .

l 24 red

202

z: -

M: - M) :

M.: L

fax = bx

JC% =A*

CL-ix :cx

bix zdx

j’a’x I& = c’x

RULE 1

i i

283

E2
X z x 2

X i

