RIGHTS

Kenneth J Goldman
Panis C Kanellakis!

Abstract

ISIS 15 an experimental system for graphically
manipulating a database The system 1s based on
a simply specified high-level semantic data model
It demonstrates the capabilities of a workstation
environment by integrating three aspects of data-
base programming 1n one graphical setting
Namely, 1t permits database construction and
modification, 1t allows browsing at the schema and
data levels, and provides a graphical query
language In all of these activities 1t maintains
uniform graphical representations and consistent
user interaction techniques

1. Introduction

ISIS 18 a system that exploits the visual
dimension for database programming It allows
users to construct, maintain, and query a database
using a graphics interface and a consistent opera-
tional paradigm Based on a high-level semantic
data model, ISIS 1s an experiment in integrating
several forms of database programming mnto a sin-
gle interface that 1s rich in capability yet intuitive

1 On leave from Brown University, current address La-
boratory for Computer Science, Massachusetts Institute of
Technology, Cambndge, Mass 02139

This research was supported i1n part by the Office of Na-
val Research and the Defense Advanced Research Projects
Agency under contract N00014-83-K-0146 and ARPA Order
No 4786

Permission to copy without tee all or part of this matenal 1s granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and 1ts date appear, and notice is given that copying 1s by
permussion of the Association for Computing Machinery To copy
otherwise, or to republish, requires a fee and/or specific permission

© 1985 ACM 0-89791-160-1/85/005/0328 $00 75 ©f relations

328

1z

ISIS:

Interface for a Semantic Information System

Sally A Goldman
Stanley B Zdonik

Brown Unwersity

enough for non-experts to use

The construction of database retrievals con-
stitutes a very important part of programming in
commercial data processing A system hke ISIS
allows a broad class of users to become ‘‘database
programmers’’ and can substantially reduce the
amount of time required to construct programs of
this type

1.1. Visual Query Languages

Many of the database query languages that
have appeared suffer from the fact that they are
textually oriented and very formal Although sim-
ple queries are reasonably straightforward, shghtly
more complex queries exceed the capabilities of a
novice user The use of the visual dimension seems
to hold promise as a way of providing a more
intuitive 1nterface 1 the context of a two-
dimensional syntax

ISIS uses the visual dimension to integrate
three aspects of database programming With
ISIS, a user s able to build a databasse or modify
an existing one, to browse through the contents of
a database 1n order to answer questions about the
data or the schema, and to construct quenes that
can be saved for later use All of these activities
are accomplished using the same style of interface
and the same iconic representations, so that a user
1s able to move easily from one activity to another
at any time

Other eforts [Z1, MS, He, Ki] have made
some progress 1n this direction Query by Example
(QBE) {Z]] 1s a relational query language that
allows a user to fill example values into templates
The system then determines which

RIGHTS

tuples satisfy this pattern and prints the specified
results Cupid [MS] is a graphical query facility to
a relational database that allows users to construct
a two-dimensional picture that can be interpreted
as a query The system represents a relation with
a picture of a representative tuple from that rela-
tion (one slot per fleld) One draws labeled arcs
between fields to indicate the constraints that
should hold on the answer The arcs are labeled
with comparison operators SDMS [He] is a very
highly-developed browser that allows a user to
navigate with a joy stick through a space of icons
that represent the entities in the database It is
possible to zoom in on an entity at any time to
obtain more details of that entity SKI [Ki] is a
system that allows a user to build a query graphi-
cally Like ISIS, it is based on a semantic data
model, however, unlike ISIS, it does not provide
the integrated facilites for schema construction
and for browsing at the entity level A number of
browsers using high powered graphics, but with
limited query capabilities have also been developed
[Fo,Ca,SK]

1.2. Semantic Data Models

The relational data model [Col] has recently
achieved a great deal of popularity This is largely
due to the simplicity and uniformity of the model
It is easy to learn and has successfully isolated
semantic issues from implementation concerns At
the same time it has been recognized that the rela-
tional model does not have sufficient expressive
power to specify directly some of the complex data
relationships that one encounters in applications
modeling Recently, a great deal of work has been
done on the development of higher-level data
models that have more expressive capabllity than
pure relations, [BF, BN, Ch, Co2, HM, HY, MBW,
S, SS, TL, WMy, Zd] are only some of the efforts
in this direction

The Semantic Data Model (SDM) [HM] is one
such high-level model, and it provides the under-
pinnings for this work ISIS supports a graphical
interface to a modified subset of the features of the
SDM We will informally summarize the main
features of the SDM in this section and describe
the ISIS subset in the section that follows

Users create and manipulate eniifies when
using an SDM database An entity corresponds to
anything in the application that is semantically
meaningful The most central concept in the SDM
is that of a class A class Is a collection of entities,
all of a similar type Entities have associated
attributes An attribute is defined to have a name

329

i,

and a value class A value class is some class in
the SDM database from which the values of the
attribute are drawn All members of a class have
a common set of attributes

Classes can be related to each other via
tnterclass connections The two most common
interclass connections are subclass connections and
grouping connections A subclass connection indi-
cates a relationship between some class S and a
class T that is constrained to contain a subset of
the elements of S T is said to be a subclass of S,
and S is sald to be a superclass of T The subset
can be defined by enumeration of the members, or
by a predicate such that T contains exactly those
members of S that satisfy the predicate Some
classes are distinguished as baseclasses A
baseclass is one that has no superclasses A group-
ing connection is one that relates a class S to a
grouping class T, where T contains sets of entities
from S as members

Members of a class are said to snherit the
attributes from all of their superclasses That is to
say, If T is a subclass of S, all members of T will
automatically be defined to have all those attri-
butes that are defined on S (as well as the attri-
butes of all the superclasses of S)

In order to make the construction of the ini-
tial experimental version of ISIS more tractable,
we have selected a modifled subset of the SDM as
our data model For this subset, we chose those
features that would make our system relationally
complete and useful One major point of depar-
ture is the way that the our data model handles
groupings In ISIS a grouping is only allowed on
common values of an attribute Another is that
we limit the inheritance behavior of a subclass to
single parent inheritance

It should be noted that ISIS views the con-
struction of a query as equivalent to defining a
new derived class The derived class is specified in
terms of a predicate that corresponds to the query
expression of more traditional languages ISIS
allows users to build this predicate using graphical
means

The basic semantic model constructs used
are in Section 2 ‘Their graphical representations
are contained in Section 32 and an extended
example Is in Section 4 A measure of the success
of the ISIS interface is the degree in which the
example of Section 4 suffices to demonstrate most
of the system’s non-trivial features

RIGHTS

2. Basic Concepts

The basic concepts presented in this section
are the building blocks of our data model, and are
sufficient to describe most of the present capabili-
ties of ISIS They correspond to essential features
of existing semantic data models, and, in particu-
lar, reflect the basic design principles of SDM

Entity: An entity corresponds to an object in the
application environment Each entity has a unique
name, which is a string

Class: A class is a named set of entities The set
of all entities Is partitioned into disjoint classes
called baseclasses If class C is not a baseclass, 1t
is associated with a single other class parent(C),
where C C parent(C) We then say that C is a
subelass of parent(C) There are four predefined
baseclasses the Integers, the Reals, the Booleans
(Yes/No), and the Strings

Attribute: Let C, V be classes, then attribute A
of C with value class V is a function from C to the
subsets of V. We say that A is multivalued (A C
—— V) unless this function is constrained to map
each element of C to a singleton subset of V, then
we say A is singlevalued (A C — V) In the
singlevalued case, A defines a function from C to
\Y%

Map: Let x be an entity of C, and A/ C, -+ C,_, 1
<1< n then AA, A (x)= {e| there exists a
sequence of entities XXy XX such that, X, is
inC,x=x,e=x_,andx,, = A(X), 1<n}
We call A A, A, (n21) a map (from C, to

C,.,) For n = 0 we have the sdeniity map from

CtoC (i e, x is mapped to {x})

Grouping: Let A be an attribute of a class C with
value class V, then grouping G of C on A is the
following family of subsets of C indexed by the
members of V, G= {Se | entity e in V, and entity
x of Cisin S_if and only if e is in A(x)} We call
class C the parenf(G) Unlike classes, groupings
have no attributes, subclasses or groupings How-
ever, we do want groupings to be ranges of attri-
butes For this we allow attribute B to be a func-
tion from a class S to a grouping G This attri-
bute B is treated as B S—— parent(G)

2!

Inheritance: Let class C be a subclass of
parent(C), then every attribute A of parent(C) is
also an attribute A of C Since C C parent(C), a
function defined on parent(C) has a natural restric-
tion on C Inheritance of attributes is from the one
parent class to the child class Note that a class
could be a subset of another class without being its

330

L

subclass, in this case, attributes are not inherited

Glven a collection of classes, attributes, and
groupings one can naturally define two directed
graphs, whose nodes correspond to the given
classes and groupings

The snherstance forest, with arc (X,Y) if X =
parent(Y) The inheritance forest is easily seen to
be a collection of directed trees, where each tree
contains exactly one baseclass node, its root A
grouping node can only be a leaf in these trees

The semantic network, with arc (X,Y) labeled A iff
A is attribute of class X with value class Y The
semantic network is a standard construction we
use a single arrow for singlevalued and a double
one for multivalued attributes Note that in it no
grouping node has outgoing arcs The outgoing
arcs of a class node correspond to its attributes,
including those that are inherited If a grouping
node corresponds to a grouping on attribute A, we
label it with A

Remark We limit our description to single
parent snherstance This is because this type of
inheritance combines a wide range of applictions
with a single tree representation This is also for
ease of exposition, the system is currently being
extended to handle multiple parent inheritance

Schema: A schema is an inheritance forest and a
semantic network on the same set of nodes These
nodes are either class nodes or grouping nodes

Data: Let D be a schema, we associate

(1) a baseclass with each root of the inheritance
forest,

(2) a class C with every class node, such that C C
parent(C),

(3) a (singlevalued) attribute with every (single
arrow) arc of the semantic network,

(4) the grouping G on A of parent(G) with every
grouping node labeled A

We assume that the standard baseclasses,
Integers, Booleans, Reals, and Strings, are always
in our schema and contain as data all integers,
booleans, reals and strings of interest We also
assume that entity names are determined by a spe-
cial singlevalued naming attribute of each
baseclass

Remark We have defined a syntactic notion,
the schema, and a semantic notion, the data To
guarantee an acceptable level of sniegrity we
require that the data be consistent with the
schema This notion of integrity represents a rea-
sonable requirement we impose on the system at
low computational cost

Data is consistent with the schema in the
sense that each entity is in one baseclass only,
each subclass is a subset of its parent, a
singlevalued attribute defines a function, and each
grouping is completely determined from its parent
class and an attribute

We allow arbitrary modifications of the data
and/or the schema, such as snsertions, deletions
and updates, as long as the data remains consistent
with the schema For example, in the data level,
we can insert an entity in a class, provided we also
insert it in its parent and specify a value for its
naming attribute If we do not specify a value for
any other singlevalued attribute, the default is the

amasll Amélé htnh
null entity, which we assume to be a member of

every class If we do not specify a value for a mul-
tivalued attribute of an entity the default is the
empty set In the schema level, we may delete a
class, provided it is not the parent of some other
class or the value class of some attribute

The insert, delete, and update facilities are
simple but do not provide for querying the data-
base In order to build queries we use

Derived Subclasses: Let V be a class in the
schema A derived class S can be defined from V
using a predicate P on the entites of class V, which
becomes parent(S) S = {e|einV and Ple) =
true}

Derived Attributes: Let V,C be classes in the
schema A derived attribute A can be defined from
C to V If x is an entity in C, A(x) is defined using
a predicate Px on the entities of V Formally, for x

in C, A(x) = { e | elnVandP (e) = true}

Predicates P(e) and P (¢), x in C, e in V, can

be constructed from atoms using the boolean con-
nectives and, or. The atoms of P(e) are of the
form (a) or (b), and the atoms of P (e) are of the
form (a), (b) or (c)

(a) <mapy (e)> <operator> <mapvz(e)>

(b) < mapu(e)> < operator> < mape(w)>, wCC
(¢) <mapue)> <operator> <mape(x)>

The mapv and mapc are maps from classes V,C
respectively (they could be the identity maps) Set
comparison operators used are set equality (=),
subset and superset operators (C,2,C,D), and a
weak match operator (=) to determine if two sets
have a common element In addition, ordering
operators (<,>) are avalilable for comparing sin-
gleton sets The negations of all these operators
are also available Finally, there is a shorthand
unary operator (represented by the hand icon) for
assigning some < mapu(e)> to be the derivation of
an attribute These predicates provide the full

331

RIGHTS 4.

power of relational algebra, and other operators
can be easily added to enhance data manipulation
capabilities

Derived subclasses and attributes are exam-
ples of schema and data modifications that do not
violate any consistency requirements We
transfrom old data, consistent with an old schema,
into new data, consistent with a new schema
However, the predicates of derived subclasses and
attributes do not (at present) form part of the con-
sistency requirements of the system

3. System Description

In this section we describe the various ISIS
features and capabilities ISIS provides multiple
views of the database schema, as well as views of
the data itself

A uview corresponds to an entire workstation
screen A view could contain (1) menus, (2) tezt-
windows, and/or (3) windows All of these are dis-
joint rectangular areas within the view

Menus are standardized commands for each
view These commands are consistent within the
various views That i3, commands in different
views with the same names have the same seman-
tics Selection of the menu commands is made
with a one-button mouse and, in some cases, can
also be made through function keys This last
deviation from mouse purity is a simple conveni-
ence, which greatly speeds up interaction

Text windows are areas used for textual
input (from the keyboard) and for textual ouput
A text window can be used for (1) system error
warnings, (2) system prompts for user input from
the keyboard, mouse, or function buttons, and (3)
system text ouput

Windows are areas containing graphical rep-
resentations of subsets of the schema or the data
The metaphor here is that the graphical represent-
ations of the schema and the data exist in their
respective planes The windows show us a piece of
these planes, some of the decisions for window
positioning over the planes are made automatically
by the system Commands are always provided
for manually changing the window position (e g,
panning commands) Where appropriate, a graphi-
cal editor is provided for changing the graphical
representations The one-button mouse is used for
selecting rectangular areas inside the windows

RIGHTS

3.1. A Two-Level Approach

ISIS operates at two levels, the schema level
and the data level Diagram 1 illustrates how one
moves among these levels during a database ses-
sion The schema ievel provides views of the
schema plane These views are the semantic nel-
work, the tnheritance forest, and the predicate
worksheet The data level provides views of the
data plane

In both levels, navigation is possible using
the maps formed by attributes in the schema The
state of ISIS consists of a schema selection (the
class, attribute, or grouping being examined) and a
data selection Schema selection can be changed
(S « S’) at both levels as part of navigating
through the schema Data selection can be
changed (D + D') at the data level When one
switches levels temporarily to select a constant or
create a user-defined subclass (see loop arrows in
Diagram 1), neither the schema selection nor the
data selection are changed upon returning from the
temporary visit to the other level

3.2. Graphical Representations

Classes have three parts (1) a class name sectlon,
for baseclasses this is in reverse video, (2) a charac-
teristic flll pattern unique to the class, which is
provided automatically by the system, and (3) an
attribute section containing a number of attri-
butes

Attributes, in the class attribute sections, contain
their name and the fill pattern of their value class
If an attribute is multivalued, this fill pattern is
shown with a white border to signify that the
attribute value is a set The first attribute in a
baseclass is the naming attribute

Maps are represented by a stack of classes These
are the classes linked by the map attributes

Groupings are represented In the same way as
classes, but they have no attribute sections and
their characteristic fill patterns have a white
border to signify that their members are sets

Inheritance of attributes Is explicitly represented
in one view, and implicitly in the others, through
their automatic addition to the attribute section of
a class

Schema Level:

In the Inheritance forest view (see Figure 1),
lines connect parent classes to their children and
the system enforces some of the placement deci-
sions Namely, groupings always appear above
their parent class and subclasses below In this

1z

332

Semantic
Schema Level Network
Schema selection is S SeS
J PP | cosocistions
defire/discley 4
predicate Inheritance
Predicate Forest
Worksheet coment/abort S Ses
is 3 g
3 g Fl
£2 gg' i g :
SeS
Data Level DeD

Data Selection is D

(if Sisaclass Disasubsetof S if Sisagrouping
D is the union of the contents of a subset of)

Diagram 1 Interconnections of ISIS components

view classes do not contain inherited attributes,
which appear automatically in all other views A
hand icon is used to point to the schema selection
An editing menu is avallable at the right for pan-
ning within the view, moving classes and group-
ings, deleting classes, attributes and groupings, and
undoing and redoing actions

The inheritance forest view provides variants
of a menu of commands for (re)naming the selec-
tion, going to the semantic network view (view
assoclations), going to the predicate worksheet
(define), and going to the data level (view con-
tents) Schema selection is changed by picking
some other object with the mouse The commands
on the menu vary according to whether the
schema selection is a class, an attribute or a group-
ing For example if the schema selection is a class
then a subclass or attribute can be created If the
schema selection is an attribute then a list of all
classes can be created, as a pop-up menu, for
selecting the value class This selection can also be
made with the mouse in the view

An alternate view at the schema level, the
semantic network, consists of one window, in
which there are classes, groupings, and arcs as
defined in section 2 (see Figure 2) The semantic
network may be used for navigation in the schema
At any point one may pop back to the inheritance
forest view with the new schema selection

RIGHTS

The predicate worksheet consists of several
windows (see Figure 9) The atom construction
window at the lower right contains three subwin-
dows for the left hand side, the operator, and the
right hand side Maps are specified by choosing
the map attributes with the mouse and forming a
stack of classes The four right hand side options
are map, for constructing a map from the entity,
as on the left hand side, map starting at class,
for contructing a map starting at an arbitrary class
chosen from the class hist window on the right,
constant, which temporanly takes the user into
the data level, where he may select or create a
constant 1 the class at which the left hand side
mapping terminates, constant starting at class,
which allows the user to select the class (from the
class list window) 1 which he would like to start
searching for the constant at the data level As
atoms are being constructed, feedback 1s provided
above the atom creation window 1n the atom lhst
window, which contains atoms that have been con-
structed or are being constructed These atoms
may be edited and placed in clauses (the set of
windows on the left) mn disjunctive or conjunctive
normal form

Data Level:

The view here contains a number of overlap-
ping pages (see Figure 3) The top page contains
the schema selection, a class or grouping and the
data selection, some of 1ts members Each page
contains a class, with all of 1ts attributes including
inherited ones, or a grouping To the right of each
class or grouping 1s a pannable hist of its members
Selected members are highlhighted with bold text
Navigation 1s possible at the data level by follow-
ing attributes It 1s also possible to pop back-
wards At the data level one can change the
schema selection, assign/modify attribute values,
and create new entities and new classes The
latter 1s performed by manually selecting entities
and using the make subclass menu command to
temporarily visit the inheritance forest to name
and position the new class Returning to the
mheritance forest correctly sets the hand 1con
pointing at the new schema selection

4. Example

The following example 1illustrates the major
functionality of the interface We assume an exist-
mg database (schema plus data), described in sec-
tion 41 Then, 1n section 4 2, we describe an ISIS
session that makes use of the existing database
Although the example does not 1llustrate building
a database from the beginning, the techmiques used

333

1z

in section 42 for adding to and modifying the
database may be used equally well for schema
definition and data entry

4.1. Sample Schema

The database Instrumental_Music has base-
classes musicians, instruments, music_groups, and
families (see Figure 1)

The musicians baseclass has three attributes
stage_naeme, providing names for the entities,
plays, which 1s a multivalued attribute with the
value class snstruments, and 15 the set of instru-
ments that each musician plays, and union, which
maps mto the YES/NO class and indicates
whether or not the given musician belongs to the
musicians’ union The groupings by_snstrument
and work_status group the entities in musicians
according to the mstruments they play and accord-
mng to whether or not they are umon members
The subclass play_strings contains those musicians
who play at least one mtrument whose attribute
family has the value stringed This subclass has an
attribute, :n_group, which maps mto the YES/NO
class and indicates whether or not the string player
15 the value of the members attnbute of some
entity m the class music_groups The play_strings
subclass also has an associated grouping,
by_in_group, which groups musicians on the basis
of the attribute in_group The subclass soloists 1s
user-defined (1e, formed by hand-picking entities
from the parent class

The baseclass music_groups has four attn-
butes name, the name of the music group,
members, a multivalued attribute, which maps nto
the class musicians and represents the members of
the given music group, size, which has the value
class INTEGER and i1s the number of members m
the group, and :ncludes, which maps mto the class
families and contains the families of instruments
that are played by the music group

The baseclass instruments has three attn-
butes name, the name of the given mstrument,
family, which maps into the class families and 1s
the family of the instrument, and popular, an attr-
bute mapping nto the YES/NO class The group-
ing by_family partitions the nstruments into sets
according to their famsly attribute

The baseclass families contamns types of
nstruments (e g , brass) and has attribute name

4.2. Sample Session

The user desires to find entertamment for a
department holiday party Upon entering ISIS, he

RIGHTS

loads the database Instrumental_Music and begins
by familarizing himsell with the database Upon
loading the database, he sees the inheritance forest
view of the database Since there is no schema
selection, he chooses an object on which to focus
his attention With entertainment in mind, he
moves the cursor to the class solossts and clicks
the mouse button (this action will be referred to as
picking) Soloists becomes the schema selection,
identified by the hand icon as in Figure 1

In order to find out more about the informa-
tion associated with soloists, he chooses the func-
tion button, view associations (Note Although
functions need not be picked with the mouse,
exampie figures often show the cursor on the
chosen function key description for clarity) Upon
examining the semantic network for soloists, the
user becomes interested in the multivalued attri-
bute plays and picks its value class, snstruments
This causes the instruments class to become the
new schema selection and its semantic network to
be displayed as in Figure 2

Deciding that he wants to see the contents of
instruments, he picks the pop button to return to
the Inheritance forest, where snstruments Is now
the schema selection, and then presses the function
button, view contents, which takes him into the
data level He now sees snsiruments with all its
attributes and a list of its member entities Using
select /reject, he can choose members on which to
focus his attention, these are highlighted with a
large boldface type In Figure 3, he has already
selected the flute and is selecting the oboe

Next he wants to find the families associated
with these entities Upon pressing the follow
function key, he is prompted to choose an attri-
bute, and picks famsly The selected entities from
snstruments are listed in boldface type under that
class, and an arrow is drawn from the followed
attribute to its value class (Figure 4) Since brass
is the only family highlighted on the new page, it
appears that both flute and oboe are in the brass
family But the user knows that these instruments
are both woodwinds and decides to correct the
error Using select/reject, he unhighlights brass
and highlights woodwind He then uses (re)assign
att. value to update the family attribute for both
flute and oboe simultaneously (Figure 5)

Deciding to find out more about families, the
user returns to the inheritance forest and changes
the schema selection from families to by_family
Wondering if this is related to the class families,
he uses display predicate and finds that this
grouping indeed contains sets of instruments

L

334

grouped by common value of their family attri-
bute He returns to the entity level in this group-
ing class and selects the percussion family (Figure
68) By pressing the follow function key he sees all
instruments with the percussion instruments
highlighted (Figure 7) When follow is applied to
a grouping, obviously no attribute selection is
required, we merely follow the selected set(s) into
the parent ciass and highiight the members of the
set(s)

Satisfied that he has browsed enough to fam-
iliarize himself with the database, he returns to the
schema level to begin his query Rather than ran-
domly selecting a music group, he decides to form
a subciass of musse_groups that wiii satisfy his
requirements He desires a music group of four
musicians because of the size of the gathering He
also has the special requirement that at least one
of the musicians must play the plano, since a
friend of his plans to sing at the party and will
need an accompanist After pressing the create
subclass function key, he is presented with a box
which he may drag into position (Figure 8) He
names this new class quartets using (re)name

He then selects (re)define membership,
which takes him into the predicate worksheet He
begins by selecting atom A, which will specify that
the size of the group is four. He puts this atom
into the second clause and picks the edit button
He then picks the attribute size on the left hand
side of the atom creation window and the
predefined class INTEGER is added to the stack of
classes on the left (since the attribute ssze maps
into INTEGER) After picking the equality opera-
tor, he proceeds to the right hand side, where he
picks constant Since the left hand side map ter-
minates in the INTEGER class, he Is taken tem-
porarily into the data level with the INTEGER
class showing After selecting the constant {4},
the user is returned to the predicate worksheet
Next, he edits atom E, which will require that at
least one musician in the quartet plays the piano
He puts atom E in the first clause, specifies the left
hand side map, and chooses the superset operator
(Figure 9) After selecting the constant {piano}
and changing the predicate to conjunctive normal
form with the switch and/or button, he presses
commit, which causes evaluation of the predicate
and his return to the inheritance forest

Now the user would like to know all instru-
ments played by the members of each music group
in the quartets subclass To accomplish this, he
creates an new attribute, names it all_tnst, and
then uses (re)specify value class to tell the

RIGHTS

system that the values of this attribute come from
the class snstruments He then chooses (re)define
derivation except for the addition of the unary
assignment operator (shown as a hand icon), he
sees the same predicate worksheet as before
Using the same mechanisms as before, he specifies
the attribute derivation, which is shown completed
in Figure 10

After returning to the inheritance forest, the
user is ready to look at the entites in the quartels
subclass and enters the data level Finding only
one quartet has met his requirements, he decides
to examine it more closely

He follows the attribute members to see who
is in the quartet After seeing the members he
thinks that Edith sounds familiar and wants to
focus on her Therefore, he uses select/reject to
unhighlight the other members (Figure 11) He
follows plays and sees that she plays the viola and
the violin The user wants to remember this infor-
mation so he presses make subclass, which takes
him temporarily to the inheritance forest, where he
names this new subclass edsth_plays and positions
it under snstruments (Note this subclass
automatically becomes the child of the class on the
current page at the data level) After more brows-
ing, he is satisfled and returns to the inheritance
forest, where he sees the subclass that he created
(Figure 12)

Finally, he feels that he has seen enough for
now and picks stop In case he needs to come
back and browse some more, he saves this new
database as entertainment, and then phones
LaBelle Musique

In this session, the user was able to become
familiar with the organization of a database,
through browsing in both the schema level and the
data level As he browsed, he was able to modify
the data to correct an error He then added to the
schema in forming a query, he created a new sub-
class, and then added a derived attribute to that
subclass Finally, he was able to explore the result
of his query at the data level and to create a user-
defined subclass containing some information that
he wanted to remember

6. Summary

We have described an experimental system
for graphically manipulating a database This sys-
tem integrates several aspects of database pro-
gramming In particular, it allows users to con-
struct schemas, to browse through the database at
both the schema and the data level, and to

335

1z

formulate queries that can be stored as part of the
schema and reused at some time in the future

We feel that this system builds very strongly
on previous work and contributes a paradigm of
Interaction that integrates more functionality than
any of its predecessors This integration Iis
achleved by using a uniform model of data coupled
with a simple set of functions and a single iconic
representation

ISIS is a part of a larger effort at Brown
Unlversity to build a programming environment
based on visualizations of the structures that are
required to create programs This effort stresses
the need to view these program structures in mul-
tiple ways and to make changes to the underlying
programs by directly manipulating the graphical
images Other components of this environment
include PECAN [Re] and BALSA [BS] ISIS is
implemented on an Apollo workstation in the C
programming environment It uses the ASH
graphics package and the APIO input package,
both developed at Brown

At this point, ISIS is only an experimental
vehicle We see several interesting directions in
which this work could proceed First, we would
like to include additional SDM features into our
systemn without disturbing the smoothness of the
interface For example, we are working on provid-
ing multiple inheritance Second, we would like to
be able to specify arbitrarily complex predicates in
a2 similar graphical way as a part of an integrity
constraint specification system For example, how
would a user specify that an employee cannot earn
more than his/her manager using only a screen
and a pointing device? Third, we would like to
add features to assist users in the process of
designing their schemas, as in [RBBCFKLR] For
example, it would be useful to be able to keep
track of the history of a database design

RIGHTS

1

Instrumental_music

by_instrunent

work_status

by_in_group
NN

Wy
BT
frave |

L]

"o
.....

SN TRE

A

e [

@

(reInane create
subclass

create treate (rerdef1ne aisplay
grouping atteibute aeapership | predicate

viev
associatians

view
contents

Figure 1. The inheritance forest view with soloists

schema selection

Instrumentat_music

as the

plays nane

27

N

famly

popular _ l

Figure 2. The semantic network view with wnstruments as

the schema selection

336

Instrumental music

bass
bassoon
celto
clarinet
flute
fronch_hoen
guitar

harp
harpsichord

piana
piccalo
saxaphone
timpam
triangle
tromnone
truspet
1018
1000
xylophone

M)

[

delete done
entity

select follow nake create (rerassign
ceject sudclass entity att value

Figure 3. Selecting the entity oboe from the instruments
class at the data level

instrumental_music

brass
%0{ percussion
1 stringed
vaoduing

E] Y]

]

(re assign

lects follow
att value

reject

delete done
entity

make create
subclass entity

Figure 4. After following the famaly attribute for the entities
flute and oboe

337

RIGHTS LI

Instrumental_music

[]
B brass
O percussion
stringeq
nane
voodwind
Fomily
popul ar
flute
oboe
seiect/ follow nake create (relassign delete done
rejoct subchass entity att value entity

Figure 5. Updating the famaly attribute for both flute and
oboe

Instrumental_muslc
by_famly stringed
[(NNNNATR| veowine
brass
percussion
select/ follow make create (rerassign delete done
reject subclass entity att value entity

Figure 6. The by_family grouping at the data level

338

RIGHTS 4.

Instrumental_music

bass
bassoon
celip
clarinet
flute
french_horn
quitar
narp
fharpsichord
aboe

prane
piccolo

RIS VEDY

percussion

saxaphane
timpani
triangle
troabone
trunpet
viola
vielin
xylophone

F) M)

create re a sign drlete | dre ’
entity ate alse antiyy

sele 1 fallo nave
ryt scla

Figure 7. After following percussion (from the by_famaly
grouping) mnto the wnstruments class

instrumental_muslc

work_status

SRGINTE!

il ld

by_1n_group
NN

SRR
0leletetetete’y
[44%0%2%0%0 %%

Position the subclass below its father

(re name create create create
subcl2ss grouping attribute

ire gef1ne
aeabership

view
conte ts

arsplay te
predicate | associations

Figure 8. Creating a subclass of music_groups

339

RIGHTS LI

Instrumental_music

INTEGER

REAL

STRING
YES/ND
by_farily
by_in_group
by_1nstrusent
fanidies
instruments
susic_groups
ausicians
play_strings
quartets
soloists
work status

si20(n) IS THE SANE RS {4)

/“- aNDx

@
~—
AND /— QND\
[;]*¥_J

neabers plays(a) CONTAINS

HEleREEEEE]

AN

’IV Y,

e
starting at class
CONSTANT
CONSTANY
starting at class

RNKINH I
FHLYUER

edit clear clear clear switch commit abort
Teft right AND/OR

Figure 9. Constructing a predicate to define the member-
ship of the quartets class

Instrumental_music

INTEGER
REAL

STRING
YES/NO

by family
by in_group

seaders plags(e) IS THE ATTRIBUTE VALUE

by_1nstruaent
faaiiies
nstrusents
nus1c_groups
nusiclans
play_strings
quartet
soloists

vory status

Ol
HEEECREEREE

RNANINK VYV
N UMNIU %A IA

B

eant clear clear clear suiten commt abort
reft Fight AND/OR

.Figure 10. A completed derivation for the attribute all_inst
in the quartets class

340

RIGHTS LI

RIGHTS

1z

instrumental_music

alfred
dattes
edith

Y
karen
tazar
nistiav
savely
willie
Labelle_Musique yehuds

F)]

craats
entity

selects follow
reject

pake
subclass

(rerassign delste done
at value entity

Figure 11. Changing the data selection.

Instrumental_music

SRR E

by_1n_group
NN

.......
BOOOC
........

fro)
T

(rexgefire
nemberchip

display view view
predicate |associations | conterts

freinane create create create
subclass grouping atteibute

Figure 12. The inheritance forest with the new user-defined
subclass edith_plays that was created at the data level

341

RIGHTS

References

[BF] P Buneman, RE Frankel, “FQL - A Func-
tional Query Language”, In Proc ACM SIGMOD
Int Conf Management of Data, Boston, Mass,
1979

[BN] H Biller, EJ Neuhold, “Semantics of Data-
bases The Semantics of Data Models”, Inf Syst.
3 (1978), 11-30

[BS] M Brown and R Sedgewick, ““A System for
Algorithm Animation”, Brown University, Depart-
ment of Computer Science, Technical Report No.
CS-84-01

[Ca] R G G Cattell, ““An Entity-based Database
User Interface’””, In Proc ACM SIGMOD Conf
Management of Data, May, 1980

[Ch)] PPS Chen, “The Entity-Relationship
Model Towards a Unified View of Data”, ACM
TODS 1, 1, March 1976

[Col] EF Codd, “A Relational Model for Large
Shared Data Banks’ Communications of the
ACM 13, 6 (June 1970) 377-387

[Co2] EF Codd, “Extending the Database Rela-
tional Model to Capture More Meaning” ACM
Transactions on Database Systems 4, 4 (December
1979), 397-434

[Fo] Fogg, D, “Lessons From "Living in a Data-
base” Graphical Query’”, ACM SIGMOD, 14, 2,
Proceedings of the Annual Meeting, June 18-21,
1984

[He] CF Herot, “Spatial Managment of Data”,
ACM Transactions on Database Systems, Vol 35,
No 4, December 1980, pages 493-514

[HM] M Hammer, D McLeod, “Database Descrip-
tion with SDM A Semantic Database Model”,
ACM TODS 8, 3, September 1981, 351-387

[HY] R Hull, CK Yap, “The Format Model A
Theory of Database Organization”, JACM, Vol
31, No 3, July 1984, pages 518-537

[Kij R King,*'Sembase A Semantic
DBMS’,Proceedings of the First International
Workshop on Expert Database Systems, Kiawah
Island, South Carolina, October 1984

[MBW] J Mylopoulos, P A Bernstein, HK T
Wong, ‘‘A Language Facility for Designing
Database-Intensive Applications’’, ACM Transac~
tions on Database Systems, Vol 5, No 2, June,
1980, pages 185-207

34

1z

[MS] N McDonald and MR Stonebraker,
“CUPID - The Friendly Query Language’,
Proceedings of the ACM Pacific Conference, San
Francisco, April, 1975

[RBBCFKLR] D Reiner, M Brodie, G Brown,
M Chilenskas, M Friedell, D Kramlich, J Leh-
man, and A. Rosenthal, ‘A Database Design and
Evaluation Workbench Preliminary Report”,
Proceedings of the International Conference on
Systems Development and Requirements
Specification, Gothenburg, Sweden, August, 1984

[Re] S Relss, “Graphical Program Development
with PECAN Program Development System'’,
Brown University, Department of Computer Sci-
ence, Technical Report No CS-84-04.

[S) D W Shipman, “The Functional Data Model
and the Data Language DAPLEX"', ACM TODS 86,
1 (1981), 140-173

[SK] M Stonebraker, J Kalash, “TIMBER A

Sophisticated Relational Browser ', Technical
Report, University of California, Electronics
Research Laboratory, May, 1982

[SS] JM Smith, DCP Smith, “Database

Abstractions Aggregation”, CACM 20, 6 (1977)

[TL] DC Tsichritzis, FH Lochovsky, *Data
Models”’, Prentice-Hall, 1982

(WMy] HK T Wong, J Mylopoulos, ‘“Two Views
of Data Semantics A Survey of Data Models in
Artificial Intelligence and Database Management’’,
INFOR 15, 3 (1977), 344-382

[Zd] SB Zdonik, *“Object Mangement System
Concepts’’, Proceedings of the Second ACM-
SIGOA Conference on Office Information Systems,
Toronto, Canada, June, 1984

[Zl] MM Zloof, “Query by Example The Invoca-
tion and Definition of Tables and Forms”,
Proceedings of the First International Conference
on Very Large Databases, September, 1975

