
ki!
ISIS:

B Interface for a Semantic Information System

n

Kenneth J Goldman Sally A Goldman
Paris C Kanellakls’ Stanley B Zdomk

Brown Unzverszty

Abstract

ISIS IS an experimental system for graphically
manlpulatmg a database The system 1s based on
a simply specified high-level semantic data model
It demonstrates the capablbtles of a workstation
environment by mtegratmg three aspects of data-
base programming m one graphical setting
Namely, it permits database constructlon and
modification, it allows browsing at the schema and
data levels, and provides a graphical query
language In all of these activities it maintains
uniform graphlcal representations and consistent
user mteractlon techniques

1. Introduction

ISIS IS a system that exploits the visual
dimension for database programming It allows
users to construct, maintain, and query a database
using a graphics interface and a consistent opera-
tional paradigm Based on a high-level semantic
data model, ISIS IS an experiment m integrating
several forms of database programming into a sm-
gle interface that IS rich m capability yet mtultlve

1 On leave from Brown Unlverslty, current address La-
boratory for Computer Science, Massachusetts Institute of
Technology, Cambndge, Mass 02139

This research was supported In part by the Office of Na-
val Research and the Defense Advanced Research Projects
Agency under contract N00014-83-K-0146 and ARPA Order
No 4786

Permlssron to copy wlthout tee all or part of this matenal IS granted
provided that the copies are not made or dlstrlbuted for direct
commercial advantage, the ACM copyright notxe and the title of the
pubhcatlon and its date appear, and notlce 1s given that copymg IS by
pertmsslon of the Assoclatlon for Computmg Machmery To copy
otherwse, or to repubhsh, reqmres a fee and/or specdic permIssion

enough for non-experts to use

The construction of database retrievals con-
stitutes a very important part of programming in
commercial data processing A system like ISIS
allows a broad class of users to become “database
programmers” and can substantially reduce the
amount of time required to construct programs of
this type

1.1. Visual Query Languages

Many of the database query languages that
have appeared suffer from the fact that they are
textually oriented and very formal Although sim-
ple queries are reasonably straightforward, slightly
more complex queries exceed the capabdltles of a
novice user The use of the visual dimension seems
to hold promise as a way of providing a more
mtultlve interface m the context of a tw+
dlmenslonal syntax

ISIS uses the visual dimension to integrate
three aspects of database programming With
ISIS, a user IS able to build a databasse or modify
an exlstmg one, to browse through the contents of
a database m order to answer questions about the
data or the schema, and to construct queries that
can be saved for later use All of these actlvltles
are accomplished using the same style of interface
and the same lcomc representations, so that a user
IS able to move easily from one actwty to another
at any time

Other efforts [Zl, MS, He, KI] have made
some progress m this direction Query by Example
(QBE) [Zl] IS a relational query language that
allows a user to fill example values into templates

@ 1985 ACM 0-89791-160-l/85/005/0328 $00 75 Of re’atlons The system then determines which

328

tupies satisfy this pattern and prints the specified
results Cupid [MS] is a graphical query facility to
a relational database that allows users to construct
a two-dimenslonai picture that can be Interpreted
as a query The system represents a relation wlth
a picture of a representative tupie from that reia-
tion (one slot per lield) One draws labeled arcs
between fields to Indicate the constraints that
should hold on the answer The arcs are labeled
with comparison operators SDMS [He] is a very
highly-developed browser that allows a user to
navigate with a Joy stick through a space of Icons
that represent the entities in the database It is
possible to zoom in on an entity at any time to
obtain more details of that entity SKI [Ki] is a
system that allows a user to build a query graphi-
cally Like ISIS, it is based on a semantic data
model, however, unlike ISIS, It does not provide
the integrated faciiites for schema construction
and for browsing at the entity level A number of
browsers using high powered graphics, but with
limited query capabilities have also been developed
[Fo,Ca,SK]

1.2. Semantic Data Models
The relational data model [Col] has recently

achieved a great deal of popularity This is largely
due to the simplicity and uniformity of the model
It is easy to learn and has successfuiiy isolated
semantic issues from implementation concerns At
the same time It has been recognized that the rela-
tional model does not have sufficient expressive
power to specify directly some of the complex data
relationships that one encounters in applications
modeling Recently, a great deal of work has been
done on the development of higher-level data
models that have more expressive capability than
pure relations, [BF, BN, Ch, Co2, IIM, BY, MBW,
S, SS, TL, WMy, Zd] are only some of the efforts
in this direction

The Semantic Data Model (SDM) [I&f] is one
such high-level model, and It provides the under-
pinnings for this work ISIS supports a graphical
interface to a modifled subset of the features of the
SDM We will informally summarize the main
features of the SDM in this section and describe
the ISIS subset in the section that follows

Users create and manipulate entrtres when
using an SDM database An entity corresponds to
anything In the application that Is semantically
meaningful The most central concept in the SDM
Is that of a class A class Is a collection of entitles,
all of a similar type Entitles have associated
attributes An attrlbute is deflned to have a name

and a value elasa A value class is some class in
the SDM database from which the values of the
attribute are drawn AI1 members of a class have
a common set of attributes

Classes can be related to each other via
cnterelaas eonnectrons The two most common
Interclass connections are subclass connecttons and
grouprng eonneettona A subclass connection lndi-
cates a relationship between some class S and a
class T that is constrained to contain a subset of
the elements of S T is said to be a subclass of S,
and S is said to be a superclass of T The subset
can be defined by enumeration of the members, or
by a predicate such that T contains exactly those
members of S that satisfy the predicate Some
classes are distinguished as baseclasses A
baseclass is one that has no superclasses A group-
ing connection is one that relates a class S to a
grouping class T, where T contains sets of entities
from S as members

Members of a class are said to tnherlt the
attributes from all of their superclasses That is to
say, if T is a subclass of S, all members of T will
automatically be delined to have ail those attri-
butes that are defined on S (as well as the attri-
butes of ail the superclasses of S)

In order to make the construction of the ini-
tial experimental version of ISIS more tractable,
we have selected a modifled subset of the SDM as
our data model For this subset, we chose those
features that would make our system relatlonaiiy
complete and useful One major point of depar-
ture is the way that the our data model handles
groupings In ISIS a grouping is only allowed on
common values of an attribute Another is that
we limit the inheritance behavior of a subclass to
single parent inheritance

It should be noted that ISIS views the con-
struction of a query as equivalent to defining a
new derived class The derived class Is specilied in
terms of a predicate that corresponds to the query
expression of more traditional languages ISIS
allows users to build this predicate using graphical
means

The basic semantic model constructs used
are in Section 2 Their graphical representations
are contained in Section 3 2 and an extended
example is in Section 4 A measure of the success
of the ISIS Interface is the degree In which the
example of Section 4 suffices to demonstrate most
of the system’s non-trivial features

329

2. Basic Concept8

The basic concepts presented in this section
are the building blocks of our data model, and are
sufficient to describe most of the present capabiil-
ties of ISIS They correspond to essential features
of existing semantic data models, and, in particu-
lar, reflect the basic design principles of SDM

Entity: An entlty corresponds to an object in the
application environment Each entity has a unique
name, which is a string

Class: A class is a named set of entities The set
of all entities is partitioned into disjoint classes
called b~eclasses If ciaas C is not a baseclass, it
is associated with a single other class parent(C),
where C E parent(C) We then say that C is a
subclass of parent(C) There are four predeflned
baseclasses the Integers, the Reals, the Booleana
(Yes/No), and the Strings

Attribute: Let C, V be classes, then attribute A
of C with value clacrs V is a function from C to the
subsets of V We say that A is multrvalued (A C
++ V) unless this function is constrained to map
each element of C to a singleton subset of V, then
we say A is srnglevalued (A C --* V) In the
slnglevalued case, A defines a function from C to
V

Map: Let x be an entity of C, and A, C, --* C,,,, 1
5 I 5 n, then A,Ae A,(X) = { e 1 there exists a
sequence of entities x,,xe, ,x,,x,+,, such that, x, is
in C,, x = xl, e = xI1+,, and x1+, = A,(x,), l<n}
We call A,Az An, (n>l) a map urom C, to
Cn+,) For n = 0 we have the rdentrty map from
C to C (I e , x is mapped to {x})

Grouping: Let A be an attribute of a class C with
value class V, then grouping G of C on A is the
following family of subsets of C Indexed by the
members of V, G= {S, 1 entity e in V, and entity
x of C Is in Se if and only if e is in A(x)} We call
class C the parent(G) Unlike classes, groupings
have no attributes, subclasses or groupings How-
ever, we do want groupings to be ranges of attri-
butes For this we allow attribute B to be a func-
tion from a class S to a grouping G This attri-
bute B is treated as B S+-+ parent(G)

Inheritance: Let class C be a subclass of
parent(C), then every attribute A of parent(C) is
also an attribute A of C Since C 5 parent(C), a
function deflned on parent(C) has a natural restric-
tion on C Inheritance of attributes is from the one
parent class to the child class Note that a class
could be a subset of another class without being its

subclass, in this case, attributes are not inherited

Given a collection of classes, attributes, and
groupings one can naturally define two directed
graphs, whose nodes correspond to the given
classes and groupings

The cnherrtanee forest, with arc (X,Y) lff X =
parent(Y) The inheritance forest is easily seen to
be a collection of directed trees, where each tree
contains exactly one baseclass node, its root A
grouping node can only be a leaf in these trees

The semantcc network, with arc (X,Y) labeled A iff
A is attrlbute of class X with value class Y The
semantic network is a standard construction we
use a single arrow for singievaiued and a double
one for multivalued attributes Note that in it no
grouping node has outgoing arcs The outgoing
arcs of a class node correspond to its attributes,
including those that are inherited If a grouping
node corresponds to a grouping on attribute A, we
label it with A

Remark We limit our description to s;ngle
parent rnhentance This is because this type of
inheritance combines a wide range of appilctions
with a single tree representation This is also for
ease of exposition, the system is currently being
extended to handle multrple parent 8nhentance

Schema: A schema is an inheritance forest and a
semantic network on the same set of nodes These
nodes are either class nodes or grouping nodes

Data: Let D be a schema, we associate
(1) a baseclass with each root of the inheritance
forest,
(2) a class C with every class node, such that C C
parent(C),
(3) a (singlevalued) attribute with every (single
arrow) arc of the semantic network,
(4) the grouping G on A of parent(G) with every
grouping node labeled A

We assume that the standard baseclasses,
Integers, Booleans, Reals, and Strrngs, are always
In our schema and contain as data ail integers,
booleans, reals and strings of interest We also
assume that entity names are determined by a spe-
ciai singievaiued naming attribute of each
baseclass

Remark We have deflned a syntactic notion,
the schema, and a semantic notion, the data To
guarantee an acceptable level of rntegrrty we
require that the data be consrstent with the
schema This notion of integrity represents a rea-
sonable requirement we impose on the system at
low computational cost

330

Data is consistent with the schema in the
sense that each entity is in one baseclass only,
each subclass is a subset of its parent, a
singlevalued attribute deflnes a function, and each
grouping is completely determined from its parent
class and an attribute

We allow arbitrary modifications of the data
and/or the schema, such as anserttons, deletcons
and updates, as long as the data remains consistent
with the schema For example, in the data level,
we can insert an entity in a class, provided we also
insert it in its parent and specify a value for its
naming attribute If we do not specify a value for
any other singlevalued attribute, the default is the
null entity, which we assume to be a member of
every class If we do not specify a value for a mul-
tivaiued attribute of an entity the default is the
empty set In the schema level, we may delete a
class, provided it is not the parent of some other
class or the value class of some attribute

The insert, delete, and update facilities are
simple but do not provide for querying the data-
base In order to build queries we use

Derived Subclw: Let V be a class in the
schema A derived class S can be defined from V
using a predicate P on the entites of class V, which
becomes parent(S) S = { e 1 e in V and P(e) =
true}

Derived Attributes: Let V,C be classes in the
schema A derived attribute A can be defined from
C to V If x is an entity in C, A(x) is defined using
a predicate PX on the entities of V Formally, for x
in C, A(x) = { e 1 e in V and P,(e) = true}

Predicates P(e) and P,(e), x in C, e in V, can
be constructed from atoms usmg the boolean con-
nectives and, or. The atoms of P(e) are of the
form (a) or (b), and the atoms of P,(e) are of the
form (a), (b) or (c)
(a) < mapu,(e)> <operator> < mupu,(e)>
(b) < mapu(e)> c operator> < mapc(w)>, WCC
(c) < mapu(e)> <operator> < mapc(x)>
The mapv and mapc are maps from classes V,C
respectively (they could be the identity maps) Set
comparison operators used are set equality (=),
subset and superset operators (s,2,C,>), and a
weak match operator (-) to determine if two sets
have a common element In addition, ordering
operators (L,>) are available for comparing sin-
gleton sets The negations of ail these operators
are also available Finally, there is a shorthand
unary operator (represented by the hand icon) for
assigning some <mapu(e)> to be the derivation of
an attribute These predicates provide the full

power of relational algebra, and other operators
can be easily added to enhance data manipulation
capabilities

Derived subclasses and attributes are exam-
pies of schema and data modifications that do not
violate any consistency requirements We
transfrom old data, consistent with an old schema,
into new data, consistent with a new schema
However, the predicates of derived subclasses and
attributes do not (at present) form part of the con-
sistency requirements of the system

3. System Description

In this section we describe the various ISIS
features and capabilities ISIS provides multiple
views of the database schema, as well ss views of
the data itself

A mew corresponds to an entire workstation
screen A view could contain (1) menus, (2) tezt-
windows, and/or (3) wrndows All of these are dis-
joint rectangular areas within the view

Menus are standardized commands for each
view These commands are consistent within the
various views That is, commands in different
views with the same names have the same seman-
tics Selection of the menu commands is made
with a one-button mouse and, in some cases, can
also be made through function keys This last
deviation from mouse purity is a simple conveni-
ence, which greatly speeds up interaction

Text windows are areas used for textual
input (from the keyboard) and for textual ouput
A text window can be used for (1) system error
warnings, (2) system prompts for user input from
the keyboard, mouse, or function buttons, and (3)
system text ouput

Windows are areas containing graphical rep
resentations of subsets of the schema or the data
The metaphor here is that the graphical represent
ations of the schema and the data exist in their
respective planes The windows show us a piece of
these planes, some of the decisions for window
positioning over the planes are made automatically
by the system Commands are always provided
for manually changing the window position (e g ,
panmng commands) Where appropriate, a graphr-
eal edrtor is provided for changing the graphical
representations The one-button mouse is used for
selecting rectangular areas inside the windows

331

3.1. A Two-Level Approach

ISIS operates at two levels, the schema level
and the data level Diagram 1 illustrates how one
moves among these levels during a database ses-
sion The schema level provides views of the
schema plane These views are the semantle net-
work, the rnherttance forest, and the predrcate
worksheet The data level provides views of the
data plane

Schema Level
khOnl8 r1ution is 5

Semantic
NOtWOrk

scs

In both levels, naoyztron is possible using
the maps formed by attributes in the schema The
state of ISIS consists of a schema selectron (the
class, attribute, or grouping being examined) and a
data selectron Schema selection can be changed
(S + S’) at both levels as part of navigating
through the schema Data selection can be
changed (D + D’) at the data level When one
switches levels temporarily to select a constant or
create a user-delined subclass (see loop arrows in
Diagram l), neither the schema selection nor the
data selection are changed upon returning from the
temporary visit to the other level

I I E: ig I/ II [r 8 1;
\, \yI I v/

Data Level
DaU Solwtlon 1s D

s+-s
D+-D

(d S IS a class D IS I subset of S rf S 13 s gfOU&Wg
D I~V)~unlonoftb*contra~olabuWetOi S)

D~ogram 1 Interconnections of ISIS components

3.2. Graphical Representations view classes do not contain inherited attributes,
Classes have three parts (1) a class name section, which appear automatically in all other views A
for baseclasses this is in reverse video, (2) a charac- hand icon is used to point to the schema selection
teristic All pattern unique to the class, which is An editing menu is available at the right for pan-
provided automatically by the system, and (3) an ning within the view, moving classes and group-
attribute section containing a number of attri- ings, deleting classes, attributes and groupings, and
butes undoing and redoing actions

Attributes, in the class attribute sections, contain
their name and the liil pattern of their value class
If an attribute is multivalued, this fill pattern is
shown with a whlte border to signify that the
attribute value is a set The first attribute in a
baseclass is the naming attribute

Maps are represented by a stack of classes These
are the classes linked by the map attributes

Groupings are represented in the same way as
classes, but they have no attribute sections and
their characteristic fill patterns have a white
border to signify that their members are sets

Inheritance of attributes is explicitly represented
in one view, and impilcitly in the others, through
their automatic addition to the attribute section of
a class

The inheritance forest view provides variants
of a menu of commands for (re)naming the selec-
tion, going to the semantic network view (view
associations), going to the predicate worksheet
(define), and going to the data level (view con-
tents) Schema selection is changed by picking
some other ObJeCt with the mouse The commands
on the menu vary according to whether the
schema selectlon is a class, an attribute or a group
ing For example if the schema selection is a class
then a subclass or attribute can be created If the
schema selection is an attribute then a list of all
classes can be created, as a pop-up menu, for
selecting the value class This selection can also be
made with the mouse in the view

Schema Level:

In the inheritance forest view (see Figure l),
lines connect parent classes to their children and
the system enforces some of the placement deci-
sions Namely, groupings always appear above
their parent class and subclasses below In this

An alternate view at the schema level, the
semantic network, consists of one window, in
which there are classes, groupings, and arcs as
defined in section 2 (see Figure 2) The semantic
network may be used for navigation in the schema
At any point one may pop back to the inheritance
forest view with the new schema selection

332

The predrcate worksheet consists of several
windows (see Figure 9) The atom constructron
wmdow at the lower right contams three subwm-
dows for the left hand ade, the operator, and the
right hand side Maps are specrlied by choosmg
the map attrrbutes with the mouse and forming a
stack of classes The four right hand side optrons
are map, for constructmg a map from the entrty,
as on the left hand side, map starting at cbs,
for contructmg a map starting at an arbitrary class
chosen from the class hst window on the rrght,
constant, which temporarrly takes the user mto
the data level, where he may select or create a
constant m the class at which the left hand side
mappmg terminates, constant starting at cl8ss,
which allows the user to select the class (from the
class hst wmdow) m which he would like to start
searching for the constant at the data level As
atoms are being constructed, feedback 1s provided
above the atom creation window m the atom list
wmdow, which contams atoms that have been con-
structed or are bemg constructed These atoms
may be edited and placed m clauses (the set of
wmdows on the left) in disjunctive or conJunctlve
normal form

D8t8 LeVeh

The view here contams a number of overlap-
pmg pages (see Frgure 3) The top page contams
the schema selectron, a class or groupmg and the
data selectron, some of Its members Each page
contains a class, with all of Its attrrbutes mcludmg
mherrted ones, or a grouping To the right of each
class or grouping IS a pannable lrst of Its members
Selected members are highlighted with bold text
Navrgatron IS possible at the data level by follow-
mg attributes It IS also possible to pop back-
wards At the data level one can change the
schema selection, assrgn/modrfy attribute values,
and create new entrtles and new classes The
latter IS performed by manually selectmg entitles
and using the make subclass menu command to
temporardy vlsrt the mherrtance forest to name
and positron the new class Returnmg to the
inheritance forest correctly sets the hand icon
pomtmg at the new schema selection

4. Exampie

The followmg example dlustrates the maJor
functronahty of the interface We assume an exrst-
mg database (schema plus data), described m sec-
tion 4 1 Then, m section 4 2, we describe an ISIS
session that makes use of the exrstmg database
Although the example does not lliustrate bmldmg
a database from the begmnmg, the techniques used

in section 4 2 for adding to and modrfymg the
database may be used equally well for schema
definrtron and data entry

4.1. Sample Schema

The database InstrumentalJhsrc has base-
classes muszctans, tnstruments, musacdroups, and
famalzes (see Frgure 1)

The mustcmns baseclass has three attributes
stage-name, provrdmg names for the entitles,
plays, which IS a multrvalued attrlbute wrth the
value class tnstruments, and IS the set of mstru-
ments that each musicran plays, and unron, whrch
maps into the YES/NO class and mdrcates
whether or not the given musrcmn belongs to the
musrcrans’ union The groupings by-tnstrument
and work-at&us group the entltres m mustctans
according to the mstruments they play and accord-
mg to whether or not they are umon members
The subclass ploy-strrngs contams those musrcmns
who play at least one mtrument whose attribute
famtla, has the value stringed Thus subclass has an
attrrbute, rngroup, which maps mto the YESfNO
class and indicates whether or not the strmg player
1s the value of the members attribute of some
entity m the class musrc-groups The ploy-strrngs
subclass also has an associated grouping,
by-m-group, which groups musrcmns on the basis
of the attrrbute m-group The subclass solo,& IS
user-defined (1 e , formed by hand-prckmg entrtres
from the parent class

The baseclass musacdroups has four attrr-
butes nome, the name of the musrc group,
members, a multlvalued attrrbute, whrch maps mto
the class musactans and represents the members of
the grven music group, szze, which has the value
class INTEGER and IS the number of members m
the group, and zncludes, which maps mto the class
famthes and contains the famdres of instruments
that are played by the musrc group

The baseclass rnstruments has three attrr-
butes name, the name of the grven Instrument,
famtlg, which maps into the class famhes and IS
the family of the mstrument, and popular, an attrl-
bute mapping mto the YES/NO class The group
mg byfamzlg partitions the instruments mto sets
accordmg to their famzly attribute

The baseclass famtlaes contams types of
mstruments (e g , brass) and has attribute name

4.2. Sample Session

The user desires to find entertainment for a
department hohday party Upon entering ISIS, he

333

loads the database Instrumental-Muscc and beglns
by lsmiiarizing himself with the database Upon
loading the database, he sees the inheritance forest
view of the database Since there is no schema
selection, he chooses an object on which to focus
his attention With entertainment in mind, he
moves the cursor to the class solorsts and clicks
the mouse button (this action will be referred to as
picking) Solo&s becomes the schema selection,
identified by the hand icon as in Figure 1

In order to find out more about the informa-
tion associated with soloists, he chooses the func-
tion button, view sssocistione (Note Although
functions need not be picked with the mouse,
example flgures often show the cursor on the
chosen function key description for clarity) Upon
examining the semantic network for soloists, the
user becomes interested in the multivalued attri-
bute plays and picks ita value claw, rnstrumcnts
This causes the tnstruments class to become the
new schema selection and its semantic network to
be displayed as in Figure 2

Deciding that he wants to see the contents of
mnstruments, he picks the pop button to return to
the Inheritance forest, where rnstruments Is now
the schema selection, and then presses the function
button, view confente, which takes him into the
data level He now sees rnstruments with all its
attributes and a list of Its member entities Using
dect/rejecf, he can choose members on which to
focus his attention, these are highlighted wlth a
large boldface type In Figure 3, he has already
selected the flute and is selecting the oboe

Next he wants to find the families associated
with these entities Upon pressing the follow
function key, he is prompted to choose an attri-
bute, and picks famrly The selected entities from
rnstruments are listed in boldface type under that
class, and an arrow is drawn from the followed
attribute to its value class (Figure 4) Since brass
is the only family highlighted on the new page, it
appears that both flute and oboe are in the brass
family But the user knows that these instruments
are both woodwinds and decides to correct the
error Using wlecf/reject, he unhighlights brass
and highlights woodwind He then uses (re)assign
aff. value to update the family attribute for both
flute and oboe simultaneously (Figure 5)

Deciding to find out more about families, the
user returns to the inheritance forest and changes
the schema selection from famrlres to byJamrly
Wondering if this is related to the class famthes,
he uses display predicate and finds that this
grouping indeed contains sets of instruments

grouped by common value of their famrly attri-
bute He returns to the entity level in this group
ing class and selects the percussion family (Figure
6) By pressing the follow function key he sees all
instruments with the percussion instruments
highlighted (Figure 7) When follow is applied to
a grouping, obviously no attribute selection is
required, we merely follow the selected set(s) into
the parent class and highlight the members of the
fN4

Sat&fled that he has browsed enough to fam-
iliarize himself with the database, he returns to the
schema level to begin his query Rather than ran-
domly selecting a music group, he decides to form
a subclass of mustc-groups that will satisfy his
requirements He de&es a music group of four
musicians because of the size of the gathering He
also has the special requirement that at least one
of the musicians must play the piano, since a
friend of his plans to sing at the party and will
need an accompanist After pressing the create
subclass function key, he Is presented with a box
which he may drag into position (Figure 8) He
names this new class quartets using (re)name

He then selects (re)deflne membership,
which takes him into the predicate worksheet He
begins by selecting atom A, which will specify that
the size of the group is four. He puts this atom
into the second clause and picks the edit, button
He then picks the attribute sgze on the left hand
side of the atom creation window and the
predefined clsss INTEGER is added ta the stack of
classes on the left (since the attribute sazc maps
into INTEGER) After picking the equality opera-
tor, he proceeds to the right hand side, where he
picks conetanf Since the left hand side map ter-
minates in the INTEGER class, he is taken tem-
porarily into the data level with the INTEGER
class showing After selecting the constant {4},
the user is returned to the predicate worksheet
Next, he edits atom E, which will require that at
least one musician in the quartet plays the piano
He puts atom E in the first clause, specifies the left
hand side map, and chooses the superset operator
(Figure 9) After selecting the constant {piano}
and changing the predicate to conjunctive normal
form with the switch and/or button, he presses
commit,, which causes evaluation of the predicate
and his return to the inheritance forest

Now the user would like to know all instru-
ments played by the members of each music group
in the quartets subclass To accomplish this, he
creates an new attribute, names it all-rnst, and
then uses (re)specify value class to tell the

334

system that the vslues of this attribute come from
the class :nstruments He then chooses (re)defIne
derivation except for the addition of the unary
assignment operator (shown as a hand icon), he
sees the same predicate worksheet as before
Using the same mechanisms as before, he specifies
the attribute derivation, which is shown completed
in Figure 10

After returning to the inheritance forest, the
user is ready to look at the entites In the quartets
subclass and enters the data level Finding only
one quartet has met his requirements, he decides
to examine it more closely

He follows the attribute members to see who
is in the quartet After seeing the members he
thinks that Edith sounds familiar and wants to
focus on her Therefore, he uses wlect/reject to
unhighlight the other members (Figure 11) He
follows pfays and sees that she plays the viola and
the violln The user wants to remember this infor-
mation so he presses make oubclsss, which takes
him temporarily to the inheritance forest, where he
names this new subclass edrthghys and positions
it under rnstruments (Note this subclass
automatlcally becomes the child of the class on the
current page at the data level) After more brows
ing, he Is satisfied and returns to the inheritance
forest, where he sees the subclass that he created
(Figure 12)

Finally, he feels that he has seen enough for
now and picks stop In case he needs to come
back and browse some more, he saves this new
database as entertacnment, and then phones
LaBelle Musique

In this sesslon, the user was able to become
familiar with the organization of a database,
through browsing In both the schema level and the
data level As he browsed, he was able to modify
the data to correct an error He then added to the
schema in forming a query, he created a new sub-
class, and then added a derived attribute to that
subclass Finally, he was able to explore the result
of his query at the data level and to create a user-
deflned subclass containing some information that
he wanted to remember

5. Summary

We have described an experimental system
for graphically manipulating a database This sys-
tem integrates several aspects of database pro-
gramming In particular, it allows users to con-
struct schemas, to browse through the database at
both the schema and the data level, and to

formulate queries that can be stored as part of the
schema and reused at some time in the future

We feel that this system builds very strongly
on previous work and contributes a paradigm of
interaction that integrates more functionality than
any of its predecessors This integration is
achieved by using a uniform model of data coupled
with a simple set of functions and a single iconic
representation

ISIS is a part of a larger effort at Brown
University to build a programming environment
based on visualizations of the structures that are
required to create programs This effort stresses
the need to vlew these program structures in mul-
tiple ways and to make changes to the underlying
programs by directly manipulating the graphical
images Other components of this environment
include PECAN [Re) and BALSA [BS] ISIS is
implemented on an Apollo workstation in the C
programming environment It uses the ASH
graphlcs package and the API0 input package,
both developed at Brown

At this point, ISIS is only an experimental
vehicle We see several interesting directions In
which this work could proceed First, we would
like to include additional SDM features into our
system without disturbing the smoothness of the
interface For example, we are working on provid-
ing multiple inheritance Second, we would like to
be able to specify arbitrarily complex predicates in
a similar graphical way as a part of an integrity
constraint specigcation system For example, how
would a user specify that an employee cannot earn
more than his/her manager using only a screen
and a pointing device? Third, we would like to
add features to assist users in the process of
designing their schemas, as In [RBBCFKLR] For
example, it would be useful to be able to keep
track of the history of a database design

335

Figure 1. The mheritance forest view with solozsts as the
schema selection

Instrumental~muslc
I I

Figure 2. The semantic network view with znstruments as
the schema selection

336

Figure 3. Selectmg the entity oboe from the znstruments
class at the data level

instrumental-music

Figure 4. iZfter followmg the jumzly attribute for the entitles
flute and oboe

337

Instrumental-musk

I

Figure 5. Updating the jumzly attribute for both flute and
oboe

Figure 6. The byfamzly grouping at the data level

338

Figure 7. After followmg percusszon (from the byfamsly
grouping) mto the znstruments class

Instrumental-music

p

Figure 8. Creating a subclass of muszc-groups

339

Instrumental-music

Figure 9. Constructing a predicate to define the member-
ship of the quartets class

Figure 10. A completed derivation for the attribute all-znst
in the quartets class

340

Figure 11. Changing the data selection.

Instrumental musk

Figure 12. The inheritance forest with the new user-defined
subclass edzth-plays that was created at the data level

341

References

[BF] P Buneman, R E Frankei, “FQL - A Funo
tional Query Language”, In Proc ACM SIGMOD
Int Conf Management of Data, Boston, Mass,
1879

[BN] H Biller, E J Neuhold, “Semantics of Data-
bases The Semantics of Data Models”, Inf Syst.
3 (1978), 11-30

[SS] M Brown and R Sedgewick, “A System for
Algorithm Animation”, Brown University, Depart-
ment of Computer Science, Technical Report No.
CS84-01

[Ca] R G G Cattell, “An Entity-based Database
User Interface”, In Proc ACM SIGMOD Conf
Management of Data, May, 1980

[Ch) PP S Chen, “The Entity-Relationship
Model Towards a Unified View of Data”, ACM
TODS 1, 1, March 1976

[Col] E F Codd, “A Reiatlonal Model for Large
Shared Data Banks” Communications of the
ACM 13, 6 (June 1970) 377-387

[Co21 E F Codd, “Extending the Database Rela-
tional Model to Capture More Meaning” ACM
Transactions on Database Systems 4, 4 (December
1979), 397-434

PO] Fogg, D , “Lessons From “Living in a Data-
base” Graphlcai Query”, ACM SIGMOD, 14, 2,
Proceedings of the Annuai Meeting, June 18-21,
1984

we] C F Herot, “Spatial Managment of Data”,
ACM Transactions on Database Systems, Vol 5,
No 4, December 1980, pages 493-514

m] M Hammer, D McLeod, “Database Descrip
tion with SDM A Semantic Database Model”,
ACM TODS 6, 3, September 1981, 351-387

[KY] R Hull, C K Yap, “The Format Model A
Theory of Database Organization”, JACM, Vol
31, No 3, July 1984, pages 518-537

WI R King,“Sembase A Semantic
DBMS”,Proceedings of the First International
Workshop on Expert Database Systems, Kiawah
Island, South Carolina, October 1984

[MBW] J Mylopoulos, PA Bernstein, H K T
Wow, “A Language Facility for Designing
Database-Intensive Applications”, ACM Transao
tions on Database Systems, Vol 5, No 2, June,
1980, pages 185-207

[MS] N McDonald and MR Stonebraker,
“CUPID - The Frleadly Query Language”,
Proceedings of the ACM Paciiic Conference, San
Francisco, April, 1975

[RBBCFKLR] D Reiner, M Brodie, G Brown,
M Chiienskas, M Friedell, D Kramlich, J Leh-
man, and A. Rosenthal, “A Database Design and
Evaluation Workbench Preliminary Report”,
Proceedings of the International Conference on
Systems Development and Requirements
Speciiication, Gothenburg, Sweden, August, 1984

(Re] S Reiss, “Graphical Program Development
with PECAN Program Development System”,
Brown University, Department of Computer Sci-
ence, Technical Report No CS-84-04.

[S] D W Shipman, “The Functional Data Model
and the Data Language DAPLEX”, ACM TODS 6,
1 (1981), 140-173

[SK] M Stonebraker, J Kalash, “TIMBER A
Sophisticated Relational Browser “, Technical
Report, University of California, Electronics
Research Laboratory, May, 1982

[SS] J M Smith, D C P Smith, “Database
Abstractions Aggregation”, CACM 20, 6 (1977)

[TL] D C Tsichritzis, F H Lochovsky, “Data
Models”, Prentice-Hall, 1982

[WMy] H K T Wong, J Mylopoulos, “Two Views
of Data Semantics A Survey of Data Models in
Artificial Intelligence and Database Management”,
INFOR 15, 3 (1977), 344-382

[Zd] S B Zdonik, “Object Mangement System
Concepts”, Proceedings of the Second ACM-
SIGOA Conference on OfIice Information Systems,
Toronto, Canada, June, 1984

[Zl] MM Zloof, “Query by Example The Invoca-
tion and Deiinition of Tables and Forms”,
Proceedings of the First International Conference
on Very Large Databases, September, 1975

342

