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Abstract. We present a formal framework for distributed databases, and we study the complexity of
the concurrency control problem in this framework. Our transactions are partially ordered sets of actions,
as opposed to the straight-line programs of the centralized case. The concurrency control algorithm, or
scheduler, is itself a distributed program. Three notions of performance of the scheduler are studied and
interrelated: (1) its parallelism, (2) the computational complexity of the problems it needs to solve and (3)
the cost of communication between the various parts of the scheduler. We show that the number of messages
necessary and sufficient to support a given level of parallelism is equal to the minimax value of a combinatorial
game. We show that this game is PSPACE-complete. It follows that, unless NP =PSPACE, a scheduler
cannot simultaneously minimize communication and be computationally efficient. This result, we argue,
captures the quantum jump in complexity of the transition from centralized to distributed concurrency
control problems.
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1. Introduction. There is now considerable literature, both theoretical and
applied, concerning the database concurrency control problem—that is, maintaining the
integrity of a database in the face of concurrent updates. Most of the theoretical work
so far has been concerned with the centralized problem, in which the database resides
at one site, and the update requests are submitted to a single process, called the
scheduler, which implements the concurrency control policy of the database [4], [8],
[11], [15], [17], [18]. There is also some interesting applied work on distributed
databases [1], [2], [13], [16]. It is often said that the concurrency control problem is
much trickier and harder in the distributed case than in the centralized case. This is
evidenced by the existing solutions, which are extremely complex and sometimes
incorrect.

In this paper we present a model of distributed databases, which captures the
intricacies of distributed computation that are most pertinent to the database domain.
Some novelties of our model are:

(a) Transactions are partial orders of atomic steps, thus generalizing the straight-
line programs of the centralized case [8]. The partial order corresponds to both
time-precedence and information flow, and it captures the notion of distributed time
[10].

(b) The scheduler, the concurrency control agent of the system, is itself a distributed
program, consisting of communicating sequential processes [6], one for each site.

(c) Redundancy (the requirement that two entities stored at different sites be
copies of the same “virtual entity”) is not treated at the syntactic level, but is considered
as part of the integrity constraints of the database. Redundancy was at the root of the
complexities of most previous attempts to formalize distributed databases.
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As a consequence, there are three measures of performance in a distributed database
(centralized theory deals with the first two):

(1) parallelism, measured by the set of allowable interleavings of atomic steps,

(2) complexity of the computational problems that the scheduler must solve,

(3) communication, measured as number of messages exchanged by scheduler
processes.

There are some interesting tradeoffs here. For example, let us fix (1) (think of it
as the parallelism specifications of the system). By expending many messages, we can
reduce the problem of distributed concurrency control to the centralized one (by
broadcasting each request) and thus solve it in polynomial time for most reasonable
parallelism specifications [11]. It turns out that, based on a priori information about
transactions, we can minimize the number of messages sent in exponential time (and
polynomial space; this is the upper bound of our main result). Finally we cannot have
a scheduler simultaneously using the minimum number of messages and running in
polynomial time at each site, unless NP = PSPACE (this follows from the lower bound).

Specifically our main result states that: for a certain parallelism specification, which
in fact can be fixed to be the popular serializability principle, minimizing communication
costs is a computational problem complete for PSPACE [3], [5], [14]. Thus, our result
appears to be concrete mathematical evidence suggesting that distributed concurrency
control is indeed an inherently more complex problem than centralized concurrency
control (under quite general conditions, centralized schedulers can be implemented in
polynomial time and always in nondeterministic polynomial time [11], [15],[17], [18]).

Our result also adds to the literature on distributed computation, independently
of its database context. It states, loosely speaking, that one cannot tell efficiently
whether distributed processes can cooperate successfully for performing an (otherwise
easy) on-line computational task, at fixed communication cost. It can therefore be
considered as complementing the result of Ladner for lockout properties of ‘““antagonis-
tic” processes [9]. On the other hand, A. Yao has asked [19] whether minimizing
communication costs for some distributed combinatorial computation is computa-
tionally intractable; NP-complete for the off-line problem. We answer this question
for on-line computation. Yao’s original conjecture was recently answered in the
affirmative [12].

We provide both upper and lower bounds. For the upper bound, we need a
characterization (Theorem 3) of the incomplete executions of transactions that can be
completed within a fixed number of messages. This upper bound holds for most
parallelism specifications that can be achieved efficiently in a centralized manner. For
the lower bound we relate distributed scheduling to a game played on graphs (the
conflict graph of the transactions). Intuitively one player (Player I) is an adversary
who submits update requests so as to force the scheduler to use as many messages as
possible, whereas the other player (Player II) is the distributed scheduler. Player 1
wants to prolong the game as much as possible, whereas Player 1I tries to bring it to
an end as soon as possible; other than that there is no winner or loser. The rules are
related in a simple way to the cycles of the graph. The minimax length of the game
corresponds to the optimal communication cost. We prove that this game is complete
for PSPACE, and then show that our constructs can faithfully reflect a special kind
of distributed concurrency control situation. This new kind of game may be of indepen-
dent interest.

Section 2 describes the model used, § 3 the upper bound and the game on graphs,
and finally §4 has the PSPACE-completeness reduction (Theorem 4) and its
implications.
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2. A model of distributed database concurrency control.

2.1. Distributed database. A distributed database is a collection of sites. Each
site has its own processor and data. The sites are interconnected by a network and
are controlled by a distributed database management system (DDBMS). In Fig. 1 we
show the architecture of a two-site system; distributed programs on this system consist
of communicating sequential processes [6], one for each site, (horizontal arrows join
parts of the same distributed program). Formally, a distributed database is defined as
follows:

DEeFINITION 1. A distributed database (DD) is a triple (G, D, stored-at) where:

(@) G=(U, L) is an undirected graph, where every node corresponds to a site
and every link to a two-way communication link between sites.

(b) D is a set of entities, denoted {x, y, z,* - *}.

(¢) stored-at: D~ U is a function determining the site, where each entity is stored.

The entities are the physical data items. Multiple copies of the same logical data
item are considered as different physical data items stored at different sites. The fact
that they are copies and must remain identical for reasons of consistency is part of the
integrity constraints [1], and is not treated separately. We assume that the DD is fixed
and given.

o8 o8B
site-1 site-2
DDBMS DDBMS

://—’—%
4 \om ¢ \QTm
\\//‘f

Fi1G. 1. Architecture of a two-site system.

2.2. Transactions and schedules. The users interact with the database using trans-
actions. In our model a transaction is a distributed program, not identified with a
particular site.

DEFINITION 2. A transaction T, in a DD, is a directed acyclic graph (dag) T =
(N, A) such that:

(a) Every node p is associated with one of the sites of the system, site(p)e U
and with an entity x, for which stored-at(x,) = site( p).

(b) Nodes associated with the same site are totally ordered in A, (we denote the
partial order imposed by T on its nodes as =1). A transaction system T is a set of
transactions {T;, 1 = i=m}.
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An example is shown in Fig. 2. Nodes are also called actions, since they are
intended to represent update actions on the corresponding entity. An action p rep-
resents an indivisible read and write operation on x, [8] (we do not distinguish between
read and write operations as in [11]). Action p, as in [8], depends only on actions
preceding it in its transaction. Each transaction T represents a distributed program,
consisting of communicating sequential processes [6], one per site. Let the #’s be
variables local to this program, and the f;’s be uninterpreted function symbols, then
the semantics of action p of transaction T is the indivisible execution of the two
instructions: #,:= X,; X, = f,(tp, tp, tp,s * * * 5 tn,), Where py, pp, * -+, pi are all the actions
preceding p in = .

at site 1 at site 2
N A4
1(x) begin begin
at site 1 at site 2
Y —Y
T1 t1 .= x 1 t3:=2z
2(y 3(z) x 1= 11(t1) z 0= 13(t3,t1)
—
5(z) pr——— Y
t4 := x t6.:=z
xietaags) | 1 z = £5(16)
T2
I—— |
4. 6(w) v}rL > )
(a)
1 t2:2y t6:=w
y 1= 12(12,t1) w 1= 16(t6,15)
5
. Y Y
end end
6 at site 1 at site 2
(v) (c)

FiG. 2. (a) Transaction system T ={T,, T,} (e.g., action 1 updates x). (b) Schedule s =(T, m). (c) The
semantics of the actions in schedule s.

Precedence between actions in a transaction T denotes both temporal precedence
and a transfer of information (i.e., in Fig. 2a action 3 needs data from action 1 and is
executed after action 1). Arcs in a transaction T between actions at different sites are
called cross-arcs defined in T. A cross-arc defined in T indicates information transfer
between processes of T at different sites.

A schedule is a description of a set of transactions and the process of their execution
on the system. In a distributed system it is in general impossible to tell which one of
two events occurred first (because communication is not always instantaneous). Because
of this uncertainty, we describe the execution order of the actions by a partial order.
If two events are incomparable in this partial order, any one could have preceded the
other. There are two restrictions on the partial orders. First, what happens at every
site is totally ordered; this is consistent with the centralized problem and guarantees
that the result of the execution is uniquely determined, as in the case of individual
transactions. Second, precedences specified by the transactions are always respected.
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Formally:

DEFINITION 3. A scheduleis a pair (T, w), where T ={T;, 1 =i = m}isa transaction
system and  is a directed acyclic graph (dag) on the nodes of the transactions T; such
that:

(a) Nodes p with the same site(p) are totally ordered.

(b) For any transaction T; and actions p, q € T; with p=r,q we have that p =, ¢q
(where =, denotes the partial order of ).

A prefix of a schedule s=(T, 7) is a pair (T, @), where a is the subgraph of =
induced by a subset of its nodes and such that if action g€ « all p =, q belong to «a.

Let S denote the set of all schedules. Recall that a partial order can be considered
as a set of total orders (those compatible with it). Let S* denote the set of all schedules
(T, 7), where  is a total order. Therefore a schedule s represents a particular subset
of this basic set S*. Arcs in a schedule, between actions at different sites are called
cross-arcs. The schedules with only transaction defined cross-arcs are maximal when
considered as sets of total orders. Yet schedules can have other cross-arcs also (e.g.,
arc (4, 6) in Fig. 2b), whose presence restricts the represented total orders of actions.
The goal of concurrency control is to recognize on-line large sets of correct total orders.

As in the centralized case, synchronization is necessary only between actions of
a transaction system, which operate on the same entities (i.e., conflict). These conflicts
are represented by the conflict graph G(T). We denote undirected edges by ij and
arcs by (ij).

DErFINITION 4. For the transaction system T ={T;, 1=i=m}, the conflict graph
G(T) is an undirected multigraph (V, E), with a partial order =; on the edges incident
upon each node i, such that:

(a) V ={i|l =i=m}, where node i corresponds to transaction T;.

(b) E is a multiset of edges.

E ={copies of edge ij|for every copy of ij there is a
distinct pair of actions p, q with pe T;,qe T, i #j and x, = x,}.

(c) Fortwo edges incident at node i we have ij =, ik iff the action in T} correspond-
ing to ij precedes the action in T; corresponding to ik.

Note that an edge in E denotes a conflict between two transactions. Every edge
ij in E corresponds to a pair of actions { p, g} which update the same entity. Based on
where this entity is stored we can partition E into as many multisets as there are sites:
red and green edges for two sites. An example is presented in Figs. 3a and 3b.

An ordered mixed multigraph G =(V, E, A,{=;}) is a mixed multigraph, with E
a multiset of edges, A a multiset of arcs and {Z;} partial orders at each node i of the
edges and arcs incident at the node. An ordered undirected multigraph has A = (e.g.,
conflict graphs are such combinatorial objects). An ordered directed multigraph has
E=¢.

Since a conflict (an edge in G(T)) corresponds to two actions at the same site
and a schedule s=(T, 7) has a total order of the actions at each site, we say that a
schedule resolves all conflicts. That is, if edge ij corresponds to the pair of actions
{p.q},pe T, qe T, i#j we direct ij as (ij) iff p =, q. Thus the schedule s determines
a unique ordered directed multigraph G"(T).

DEFINITION 5. A prefix (T, ) assigns a direction (i) to an edge ij of the conflict
graph G(T) ift all schedules, which have (T, «) as prefix, assign ij the direction (ij).
Therefore a prefix (T, a) determines an assignment of directions to some edges of
G(T). Conversely an assignment of directions to edges of the conflict graph is realizable
by a prefix, if there is a prefix of a schedule assigning these directions and no others.
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Thus a prefix (T, a) determines a unique ordered mixed multigraph G*(T), which
is G(T) with some of its edges directed. In Fig. 3c we have a nonrealizable assignment
of directions. Moreover we have the following complete characterization of realizable
assignments of directions, which are, after all, the assignments of interest.

at site 1 at site 2
U U
2
1
(x) o) - -
T1 1'<7A" (w (2)
~a <
2(y) <<
3 3
% ()
T2
o)
s(w) _
ow) P o
3 <A\
-~ ~ - \\(
88 73 y
&) ()
(2)

F1G. 3. (a) Transactions. (b) Conflict graph. (c) A nonrealizable assignment; red ®-——-@ = conflicts at
site 1, green @~w@ = conflicts at site 2.

LemMA 1. Given a conflict graph G(T) = (V, E, &, {=,}), an assignment of direc-
tions to a multiset X of its edges, producing the ordered mixed multigraph
(V, E\X, A, {=;}) is realizable iff:

(a) ije X, is directed as (if) € A, and ik =;ij=>ike X.

(b) A has no directed cycles (iyiyis - - * iniy) such that

iy 2y, bals, iy =y, dsls, c 00, dady 2y bl

Proof. “only if”’. Given a prefix (T, a) of a schedule let us first assign the direction
(ij) to any edge ij in G(T), corresponding to a pair of conflicting actions {p, g}, with
pe T, q € T, under the following conditions:

pea and if gea thenp=,q.

It is easily seen that both conditions (a) and (b) hold for the directions constructed
above. Obviously all schedules, which have (T, ) as prefix, resolve these conflicts in
the same way. Moreover if an edge has not been given a direction then both its actions
p*, q* are not in a. We can complete (T, o) using two different schedules, one having
p* before q* and the other g* before p*. One schedule results from completely
executing the transaction of p* first and the other is symmetric. This proves that the
directions we have constructed are exactly those assigned by (T, a).
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Sufficiency. Given an assignment A we construct the following digraph (V*, A*)
from Aand T

V*={p|3(ij) € A, where the conflicting action of
ij in T; is p or one of p’s predecessors in T;},

A*={(pq)|if (pq) is part of some =1, or if (pg) corresponds to an (ij) € A}.

Since (b) is true (V*, A*) is acyclic, and since (a) is true transaction precedences
are respected. Thus (V*, A¥) has the same nodes as some prefix and respects all its
conflict resolving orderings. [

2.3. Serializability. Only a subset of the possible schedules are considered correct
for the operation of the database. The object of concurrency control is to develop
algorithms, which monitor the execution of transactions, and disallow incorrect
schedules. Actually, our results can be stated in a manner independent of the notion
of correctness used in the system. We can show, however, that our negative results
hold even when this correctness criterion is a practically important one, that of
serializability, which we introduce next.

Serializability can be defined semantically [8], [11]. Since we are interested in
simplifying our model, in order to bring out the complications inherent to distributed
databases, we shall adopt instead a simple syntactic definition of serializability. This
definition will not require our formally dealing with the semantics of actions and was,
interestingly, the first to be proposed [4]. It turns out to be equivalent to the semantic
one, if we think of the nodes of the transactions as indivisible read and write operations
(see [8]), as opposed to operations that entail either reading or writing an entity [11].
The example of Fig. 2c illustrates the semantics of updates, in terms of program
schemes [8], [11]. In fact, the following syntactic definitions suffice for the results
presented in this paper.

DEerINITION 6. Two schedules (T, m), (T, p) are equivalent if they determine the
same ordered directed multigraph, (i.e., G™(T) = G*(T)).

DEeFINITION 7. A schedule (T, 7) is serial ift

(a) The execution of actions at every site introduces a total order of transactions
at that site (i.e., there are no T;, T}, i # j with actions p, g€ T;, r€ T; at the same site
with p=,_rand r=,q).

(b) If T; precedes T; at one site it does so at all sites, where both transactions
have actions.

A schedule is serializable iff it is equivalent to a serial schedule.

We denote the set of serializable schedules by SR (SR < S). What is remarkable,
is that deciding whether a schedule is serializable in a centralized or distributed model
are practically identical tasks [11]. We state this as follows:

THEOREM 1. A schedule (T, ) is serializable iff it resolves conflicts without creating
directed cycles in G(T) (i.e, G™(T) is acyclic). Similarly, a prefix (T, a) has a
serializable completion iff the already resolved conflicts do not create a directed cycle in
G(T) (i.e., G*(T) has no directed cycles).

Proof. Easily follows from the analysis of [11]. O

2.4. Schedulers. Up until now the distributed problem appears to be a straight-
forward generalization of the centralized case. What is considerably more complex in
the distributed case is the subject of schedulers and their design to meet performance
specifications. For an exposition of the relatively simple theory for the centralized case
see [11].
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Our schedulers will be distributed programs characterized by the parallelism they
provide and by their efficiency. We will measure parallelism using the subset C of
schedules, which the scheduler allows to be executed as requested. The efficiency of
the scheduler will be measured by the worst-case number of steps it executes and the
worst-case number of messages it sends. We will be interested in the following kinds
of C’s:

DEerINITION 8. Consider a set of schedules C < S, such that for each s€ C the
only cross-arcs are defined by the transactions. Such a C we shall call a concurrency
control principle.

Each schedule s corresponds to a set of total orders {o| o is a total order compatible
with s}. This set is also denoted by s. If C is a set of schedules, we let C* = U, s.
Recall that S is the set of all schedules and S™ the set of all total orders. For a particular
transaction system 7T, with n actions, o€ S is a string of length n over N, where N
is the set of T’s actions. The jth symbol of o is denoted o;.

The cardinality of C* < S* will be the measure of parallelism. The larger C™ is,
the higher the level of parallelism supported by this concurrency control principle.
For example, if SR are the serializable schedules then SR = U, s s. Note that, SR™
is also the set of total orders of a concurrency control principle, the serializable
schedules with only transaction defined cross-arcs; this easily follows from Theorem
1 and Lemma 1. We will hence use the notation SR for this concurrency control
principle, without any loss of generality. Similarly serial execution provides another
example of a concurrency control principle, which obviously supports less parallelism.
Thus concurrency control principles are very natural classes of schedules measuring
parallelism, although not all subsets of S can be expressed as such.

A scheduler A is a distributed program. We do not explicitly specify the model of
computation; we use a model equivalent to [6], although we employ a simple concurrent
language notation as needed (e.g., a send-message instruction). Our distributed pro-
grams consist of a set of communicating sequential processes [6], one for each site.
Their instructions may denote:

(a) local computation;

(b) receiving an execution request for an action g;

(c) granting an execution request of an action g;

(d) sending a message to another site;

(e) receiving a message from another site.

We shall now formalize the input-output behavior of the scheduler. Intuitively,
a scheduler receives a schedule as its input and outputs another schedule. There is a
difficulty though in defining this mapping precisely, because it is essentially a nondeter-
ministic mapping. Although the scheduler has perfectly deterministic algorithms as its
processes, the interaction of these algorithms is conducted via messages, whose delivery
time is unpredictable. M. Fischer uses the term indeterminism [20] for this kind of
unpredictable behavior (nondeterminism would not be an appropriate term, since we
wish to produce correct computations in all cases). To model indeterminism of a
scheduler, we must somehow introduce some notion of time.

(1) The input of a scheduler is a string in S*. Thus we assume that the arrivals of
the requests for executions of the nodes of the schedule-input are totally ordered in
time. This is only a simplifying tool (a formalism of the familiar notion of a timestamp
[10]), and is not used by the scheduler, whose processes still perceive the world in
terms of partial orders. We therefore have introduced a global clock, whose ticks are
the arrivals of the action requests.

(2) What is the output of a scheduler? It is a schedule, of course. However, it
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must also add some more information. Namely, it must tell us whether an action was
granted before or after the arrival of another request. The output of the scheduler is
an n-tuple of strings (11, 75, * -, 7,) € (N*)". Here 7; denotes the sequence of granted
requests between the jth and (j+1)st (after the jth if j=n) arrivals of requests. N*
is the set of all strings constructed from the set of actions N and includes the empty
string. The concatenation of the n strings, conc (74, 75, * * , 7,), should be in S™.

(3) We shall now formalize the indeterministic part of the scheduler, namely the
communication delays. A delay vector d is a sequence of nonnegative real numbers.
Intuitively, the jth component is the delay of the jth message sent by the scheduler.
With a given delay vector the operation of a scheduler A on some input o is completely
specified (exactly as the operation of a nondeterministic algorithm becomes specified
if we supply a sequence of choices for the nondeterministic steps). To find the resulting
output, we do the following. For each site, we keep a calendar of events (i.e., arrivals
of actions or messages, operations of the scheduler), with the precise times at which
they occur. An event may trigger a finite sequence of operations of the scheduler,
which we execute. If an operation involves sending a message to another site, we add
the next component of d to the time of the present event and we insert the arrival of
this message in the calendar of the other site at the time of the sum. We thus assume
that, all local operations of the scheduler take 0 time. We break ties on the times of
events in a systematic fashion (e.g., arrivals of actions first, then messages from site
1, etc). We can now produce the output of the scheduler for this input o and this
delay vector d in the obvious way from the calendars of events. This output
(71, 72, +, 74), we denote by A4(o). Not all delay vectors can lead to meaningful
executions, however. What can go wrong is that a long delay can postpone the granting
of an action p until after the successor g of p in its transaction has been received.
Delay vectors for which no such anomaly occurs for an input o are called feasible for
0. The zero sequence d =0 is always feasible.

Therefore the operation of a scheduler is formulated by the function A4:S* >
(N*)"™,

Consider a concurrency control principle C. We say that scheduler A implements
C if, intuitively, all outputs of A are in C and, furthermore, if A is fed with a schedule
in C and all delays are 0, then A grants all requests immediately upon receipt. It is
argued in [11] that these are traits, in the centralized case, of all schedulers that are
on-line and optimistic (i.e., the scheduler does not intervene to unnecessarily delay an
action if the input schedule is so far correct). The same arguments are applicable to
justify Definition 9.

DEerFINITION 9. We say that A is an implementation of concurrency control principle
C iff

(a) conc(A4(o))e C™ for all o€ S and feasible delay vectors d, and

(b) Ap(o)=(0y,**,0,) forall ce C".

There is a fundamental asymmetry in Definition 9. If the input is in C*, then
condition (b) is in effect, and the scheduler must leave it intact, unless forced to do
otherwise because of the delays. If, however, the input is not in C*, then the output
can be any schedule in C™. In practice, we would expect of a scheduler to change a
schedule not in C* as little as possible in order to transform it into one in C*.
Unfortunately, there does not seem to be a clean way to express this mathematically
in the distributed or centralized case. We have adopted the above convention in the
interest of keeping our model and subsequent proofs as simple as possible.

DEerFiNITION 10. The computational complexity of A is the sum of the step-counts
of all local computations by A over all processes of A, maximized over all o and
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feasible d. The communication complexity of A is the number of all send-message
instructions executed by all processes of A, maximized over all o and feasible d.

Note that apart from the messages generated by the scheduler processes of the
system, there is also user defined communication, implied by transaction defined
cross-arcs (e.g., some action at site 2 needs data from site 1). This communication is
assumed free, since it is unavoidable. Such messages, between the processes of a
transaction, can be used to pass information between scheduler processes at no cost.

A scheduler A is polynomial-time bounded (or computationally efficient) if its
computational complexity is bounded by a polynomial in n (where n=|N| and N is
the set of actions of T'). Similarly, with [11] we can prove:

THEOREM 2. C has a computationally efficient implementation iff the set of prefixes
of Cisin P.

Proof. By broadcasting each arrival of a request we can reduce the distributed to
the centralized problem, and use [11, Thm. 10]. Note that this solution is wasteful in
terms of messages. [

Finally in order to characterize communication complexity we define the following
classes of prefixes M.(b):

DEerINITION 11. For concurrency control principle C, its set of prefixes PR(C)
and integer b=0,

M_(b) ={prefixes not in PR(C)}

U{(T, @)|{T, @)e PR(C) and there is an implementation A of C,
which, given that (T, a) has been granted,
proceeds using at most b send-message’s}.

Let b*(T) be the least b for which (T, &)e M_.(b). A scheduler which achieves
b*(T), for every T, is called communication-optimal with respect to C.

Note that for b <0 we can define M_(b) = and then for all b we have M, (b) <
M. (b+1). If (T, @) is a prefix of (T, B) and (T, a)e M.(b), then also (T, B)c M.(b).
By our convention if (T, @) is not a prefix of a schedule in C then (T, a)e M_(0).
Intuitively, if all sites know of an incorrect input they can output a predetermined
correct completion without communication.

In essence, what Definition 11 says is that: the scheduler might use a priori
information, available to all scheduler processes, in order to enhance the communication
performance (worst-case, number of messages used at run time) of the concurrency
control mechanism. For example, a scheduler that implements serializability (for all
transaction systems T'), might also examine the available syntax of transaction system
T, in order to develop a more economical communication strategy between its processes.
This is analogous to the conflict graph analysis used to improve parallelism in SDD-1
[1], [2]. A communication-optimal scheduler is the limit in message performance
attainable, subject to a parallelism requirement C. In the following section we will
show, in a constructive fashion, that such schedulers exist for concurrency control
principles.

3. Communication-optimal schedulers and games. The performance measure of
a concurrency control algorithm is a set of schedules C. We require C to be a
concurrency control principle (see Definition 8). Let PR(C) be the set of prefixes of
schedules in C. We assume that we have an efficient (polynomial time in n) test of
membership of a prefix in PR(C). For example, if C=SR Theorem 1 provides us
with such a test. If no such test is possible, concurrency control is quite hopeless, even
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in the centralized case [11]. We also assume that we have a two-site system. This is
no loss for the negative results of the next section. As for the positive results, they
can be restated without much difficulty, although less succinctly, for the general case.

Let us briefly review the notation used. A prefix is denoted as a pair (T, a), or
simply a when there is no ambiguity. In order to make our notation simple we will
omit T, the obvious transaction system, whenever possible. We use M, (b), for the set
of all prefixes (T, a) of C such that there is an implementation of C, which, when
started with (T, ), sends b or fewer messages. Now let o be a prefix of B, then (B/a);
denotes the prefix of B, that contains a and all actions of B at site i. We call this the
projection of B at site i given « (see Fig. 4 for an example of this important notion).

at site 1 at site 2
N Vg
1(x)
zma(z)
) )
5(v) T2 2
8(y)
7(w) I3 (b)
9(x)
(a)
at site 1 at site2
v Y
4 8
o i~ Al
4
s <
(8/c¢); iN 4
4
® 2
6
( B/, o )2 1 (1N A
4
8 <
5£—_‘(————46 ,(
1 N M
8

(e)

F1G. 4. (a) Transactions (u, v, w at site 1, x, y, z at site 2). (b) Conflict graph (red ®--—-@ = conflicts
at site 1, green @@= conflicts at site 2). (c) Illustrating a bad B. Left: prefixes. Right: assignments of
directions.



Downloaded 04/10/20 to 173.48.63.192. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE COMPLEXITY OF DISTRIBUTED CONCURRENCY CONTROL 63

DEeFINITION 12. Let (T, a)e PR(C), and let « be a prefix of B. We call B bad, with
respect to a, if

(a) (B/a)y,(B/a),€ PR(C); and

(b) B£'PR(C).

It is only bad prefixes that force the scheduler to communicate, in rounds of two
messages. This, as well as a description of the possible strategies for guarding against
bad prefixes, is captured by the following theorem.

THEOREM 3. Let C be a concurrency control principle, (T, a)e PR(C) and b=0.
Let i denote the site number, i € {1,2}. Then statements (1) and (II) are equivalent:

(I) aeM.(b).

(II) For all bad B, with respect to, a: (1) (B/a);€ M.(b) for i=1,2 and (2) at
least one of the (B/a);e M .(b—2).

The intuitive interpretation of the theorem is the following: Suppose that there
is a possible scenario (see Fig. 4 for an example) in which both sites see projections
(B/a); that are perfectly legal locally (i.e., both are in PR(C)) and still, they are not
legal when put together (i.e., B is not in PR(C)). This clearly calls for communication.
The theorem says that, in the worst case, two messages are both necessary and sufficient
to overcome this problem.

Proof. “‘only if”. To show that (I) implies (II), suppose that a scheduler A can
start from a and implement C with only b messages. Let 8 be bad with respect to a.
It is easy to see that (II.1) is satisfied. We must now show that (I1.2) is also true.

What should site i do if it is presented with requests for the actions in (8/a);?
Clearly, it should have a way of granting them, perhaps after certain communication,
since A is supposed to implement C (i.e., see Definition 9 for the on-line property).
If site i grants the requests without waiting for any messages, then site j=3—i must
guard against this eventuality, when presented with (8/a); by asking site i’s state.
This takes two messages, which synchronize the two processes, and thus A must
implement C starting from (B/a); within b—2 messages; thus property (II.2) holds.
This leaves us with the case in which site i waits for a-message before granting (8/a).
It cannot wait for a message triggered by any event at site j other than an arrival of
a message from i; this follows from the fact that A must implement C. We are therefore
reduced to the previously examined case.

“if”. To show that condition (II) is sufficient, we shall construct an explicit
algorithm that implements C, starting from « and using no more than b messages,
assuming (II) holds. The algorithm is recursive, and is shown in Fig. 5.

The algorithm, localscheduler, is the process run by each site. Its arguments are
the prefix (T, a) of granted actions at the instant it takes over and the number b of
messages that it can use. For example if no actions have been granted, both sites start
by running localscheduler({T, &), b).

The variable localstate represents the actions that the site knows are granted
(through its own granting actions and other messages), whereas commonstate is the
information this site knows the other site already has. The values of these variables
are prefixes in PR(C). They are both initialized to (T, a) and updated appropriately
whenever:

(a) An action is granted at this site, through the function grant( p).

(b) A message is exchanged by scheduler processes, through the functions askstate
and reportstate.

(c) A message is exchanged by transaction processes, because of a transaction
defined cross-arc.

In the last case the localstate at one site, may be passed to the other at no communication
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cost. The detailed code for performing these updates or the functions grant, askstate
and reportstate is straightforward and is not shown in Fig. 5. The low level details of
all these functions can be found in [7].

When a request p arrives, the scheduler first decides whether it is necessary to
communicate. This is the first test in Fig. 5. Communication is forced just in the case
that a prefix B exists, such that:

(a) it violates the concurrency control principle C (i.e., B € PR(C));

(b) its projection at the other site given commonstate is in PR(C);

(c) its local projection is localstate|[p (where | denotes concatenation), and
moreover it is amenable to scheduling with b —2 messages. In other words, condition
(I1.2) of the theorem is satisfied with i equal to the present site.

procedure localscheduler({T, o), b)
localstate = commonstate =(T, a);
on request-arrival p do
if there is a prefix B 2’ PR(C), whose projection at the other site
given commonstate is in PR(C), and whose local projection is
localstate|lp e M. (b—2)
then begin
localstate = askstate( );
if localstate|lp e PR(C)
then grant( p); localscheduler(localstate,b—2)
else tablelookup( )
end
else if localstate|lpe PR(C)
then grant(p)
else tablelookup( )
end localscheduler

FIG. 5. The process localscheduler.

By convention, any prefix not in PR(C) needs 0 messages and therefore the prefix
localstate|l[p 2 PR(C) would pass the test only if b> 0. Except for this case a 8, such
that the above conditions are true, is one satisfying (II) of the theorem.

If the above conditions are met, the scheduler decides to communicate. The
function askstate learns the state of the other site at the cost of two messages.
Presumably the return message is sent by a function reportstate at the other site, which
also does the appropriate updating. If p is found to be safe, it is granted, and
localscheduler is called recursively with the new arguments (note that localstate would
be appropriately updated by grant). Since the test succeeded, we know that it can
carry out its task within b—2 messages. If now localstate|[p 2 PR(C), then the arriving
stream of requests is not in C, and therefore we have no contract to fill (recall the
paragraph right after Definition 9); both sites continue scheduling by some tablelookup,
agreed upon in advance between the sites.

If the first test fails, then we must proceed with locally available information. If
p looks safe, we grant it. We know we are not risking anything since, by (II), the other
site will pass the test, and will communicate before it grants its part of any bad B. If
p is not safe, we again resort to tablelookup, but now since b =0 and (II) is true both
sites can proceed independently with no risk.
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The formal proof that the algorithm, as specified above, correctly schedules a
given prefix within the given number of messages is now straightforward, by induction
on the number of actions in any suffix of (T, a). It should also be noted that we use
the fact that C is a concurrency control principle when we test if a localstate[lp is in
PR(C). Since schedules in C have only transaction defined cross-arcs this test can be
done locally. O

CoroLLARY 3.1. If C, a concurrency control principle, has a computationally
efficient implementation, then it has a communication-optimal implementation, which
uses space polynomial in n (n = number of actions of T).

Proof. The hardest computation performed by localscheduler in the proof of
Theorem 3 is testing whether a prefix is in M_(b). This, however, can be expressed as
a predicate with polynomial matrix and b alternations of quantifiers. It is therefore in
PSPACE [3]. O

Distributed scheduling is related to a game on prefixes called PREFIX. The rules
of this game are displayed in Fig. 6. In this game Player I corresponds to a malicious
adversary who wishes to force communication. His move is a continuation 8 of the
current position a, which satisfies the conditions of Theorem 3. Player II corresponds
to the two cooperating scheduler processes. Each one of his choices i* indicates, which
of the two processes has the responsibility of guarding against the continuation 8 (by
questioning the other process before proceeding). Player I wants to prolong the game
as much as possible, whereas Player II tries to bring it to an end as soon as possible
(other than that there is no winner or loser). Players I and II take turns moving.

COROLLARY 3.2. The minimum number of messages used by a communication-
optimal implementation of C equals the length of PREFIX((T, &)) if both players play
optimally, (we call this the minimax length).

Proof. 1t follows from Theorem 3 and the theory of alternation [3]. Note that
although in general we define PREFIX from an arbitrary initial position (T, a), we
are in fact interested in a =, (T represents the static a priori information on
transactions, that is used to optimize communication). As a result the question:
YT, ay@M,(b)?” is equivalent to “can Player I make PREFIX((T, a)) last more than
b moves?” [

PREFIX(T, o))

Position before player I's move: A prefix (T, a)

Player I: Select a prefix B, which has a as a prefix such that:
1) (B/a)y,(B/a),€ PR(C)
(2) BZPR(C)

Player II: Select i*<c{1,2} and set a = (B/a)

F1G. 6. The game PREFIX.

4. The complexity of PREFIX. In this section we prove the following theorem:

THEOREM 4. Let C =SR. Given T and b=0, determining whether the minimax
length of the game PREFIX((T, &)) equals b is PSPACE-complete.

This theorem, as is pointed out explicitly in a series of corollaries, is a fundamental
negative complexity result for distributed concurrency control.

It turns out that PREFIX, with C = SR, is closely related to a game played on
the conflict graph of T. Recall that the conflict graph is an ordered undirected multigraph
with edges colored red or green. The game, called CONFLICT, is displayed in Fig. 7.
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CONFLICT(G)

Position before player I's move: An ordered mixed multigraph G=
(V, E, A,{=,}), with E partitioned into red and green, and A closed.

Player I: Select a set X of edges and assign directions to them. Let X,(X,) be a
subset of X containing all its red (green) edges and let A,(A,) be the corre-
sponding arcs. The sets A,, A, must be such that:

1) AUA,, AU A, are acyclic and closed;
(2) AUA,U A, has a cycle and is closed;
Player II: Select cc{r, g} and set E:= E\X_; A=AUA..

F1G. 7. The game CONFLICT.

A round (i.e., of moves by the two players) starts with a position, which is an
ordered mixed multigraph G =(V, E, A,{=,}). Player I gives directions to certain
undirected edges X, with subsets X, X,, such that already existing arcs (i.e., A) and
each new directed subset A, or A, do not create a cycle, whereas all arcs together
do. Player II picks a color (i.e., red or green) and fixes the directions proposed by I
(i.e., creates a new A). In the absence of the partial orders =,, the moves of Player I
are very simple: He picks a two-color cycle that contains some red edges (X,), some
green edges (X,) and possibly some arcs, and the arcs are all directed with the same
sense around the cycle. These rules are complicated a little by the existence of the
partial orders on edges and arcs. Again Player I chooses a set of undirected edges X
and assigns directions to them, but now the sets of arcs AUA,, AUA, and AUA,U A,
must be closed (e.g., each one of X,, X, contains all edges of one color in X and might
contain some edges of the other color) where formally:

“arc (if) is in a closed set of arcs and ik =; (if) = ik is in this set as arc (ik) or (ki)”’

Again, as in PREFIX, Player I’s goal is to prolong and Player II’s is to shorten
the game. The intuition behind CONFLICT and its relation to concurrency control is
the following:

Concurrency control means to direct somehow all edges of the conflict graph,
without forming directed cycles. (The color, red or green, of an edge is the site that
is responsible for directing it.) To carry out this task in a distributed fashion, we may
have to communicate, in order to prevent two-color cycles. Single-color cycles are
benign, since they can be detected locally and prevented without communication.
Player I’'s move is an orchestrated stream of requests for conflict resolutions, that
forces such a communication. Player II, the distributed scheduler, chooses the site
(color) that will send a message, trying to block long sequences of legal moves for 1
(i.e., trying to save messages). The connection between the concurrency control problem
and PREFIX was established in Corollary 3.2. The connection between PREFIX and
CONFLICT discussed above, can be formalized in the following, straightforward
lemma:

LEMMA 2. The minimax length of the game PREFIX((T, &)), with C = SR, equals
the minimax length of the game CONFLICT(G(T)), (i.e., G(T) is the conflict graph
of T).

Proof. The correspondence between PREFIX((T, a)), and CONFLICT(G*(T))
is easily seen to be as follows:

a corresponds to A (i.e., the conflicts of G(T) resolved by «);

B corresponds to AU A,U A, (i.e., a nonserializable input);

(B/a), corresponds to AU A, (i.e., a serializable projection at site 1 given a);

(B/a), corresponds to AU A, (i.e., a serializable projection at site 2 given a).
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A,AUAUA, AUA, AU A, have to be closed, because the moves in CONFLICT
must be realizable by prefixes (see Lemma 1, § 2.2). O

It is easy to see that CONFLICT is in PSPACE (that is, computing the minimax
length is in PSPACE). To show Theorem 4, we shall first prove that CONFLICT is
PSPACE-complete. We start by proving a weaker result, whose proof is indicative of
the method used [3], [5], [14].

LEMMA 3. Computing the minimax length of CONFLICT is I15-hard, (even when
the initial mixed graph has no orders on the edges).

Proof. Let F be an AE-quantified Boolean formula

F=VYx,¥Yx,: - Vx,3x,3x5- - Ix,_1 F¥(x1, -+, X,),

where F* is a 3CNF formula with n variables (n is even) and m clauses. We shall
construct a mixed graph G such that the minimax number of rounds of CONFLICT
(rounds of moves by the two players), started on G, is equal to (n/2)+1 iff F is true.
G is constructed as follows:

For each existentially quantified variable x;,i=1,3,---,n—1, we add to G a
copy of the 3-graph shown in Fig. 8c. For each universally quantified variable x;, i =
2,4,--+,n,we add to G a copy of the V-graph in Fig. 8a. Finally, for each clause C,
we add to G the C-graph in Fig. 9. All these subgraphs are connected as indicated
from vertex names (i.e., “in tandem”), with 3-graphs alternating with V-graphs,
followed by the C-graphs (that is, S,,; = C;). The “cycle” is closed by a green edge
S1C,+1 (see Fig. 10 for an example).

directed e—)—e
red >~ - T D
green a NN - - =

1 Sl¢1

(c) Ix,

F1G. 8

So far we have only taken into account the numbers » and m. To encode the
structure of F* into G, we must look at the C-graphs of Fig. 9 in some detail. The
C-graph consists of 7 paths, numbered from 001 to 111. These are the 7 truth
assignments to the literals u, v, w of the clause, that satisfy the clause. Thus each of
the 21 red edges of a C-graph, say e, is associated with a literal /(e) and a truth value
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FOR

FI1G. 9

t(e). We now connect e’s right endpoint with appropriate 3- and V-graphs. We draw
an arc from the right endpoint of the edge e

to F; if (I(e)=x; and t(e)=1), or (I(e) ="1x; and t(e) =0); and

to T; if (I(e) =x; and t(e) =0), or (I(e) ="x; and t(e) =1).
These arcs are called backarcs.

This completes the construction of G (i.e., all orders =; are empty). In Fig. 10
we have an example of the construction if we ignore the nodes A;, B, M, N; i=1,3
and Ay, Az, Ass.

We now claim that, from the mixed graph G the minimax number of rounds
(rounds of two moves each) is (n/2)+1 iff F is true. Clearly, since there are (n/2)+1
green edges, this number is at most (n/2)+1. We shall show that Player I can force
(n/2)+1 rounds iff F is true.

Since the orders are empty, Player I's moves consist of choosing two-color directed
cycles. These contain just one green edge (if I is to play n/2+1 times), and, if we
disregard this green edge, there is no directed cycle in the graph with the proposed
directions of red edges. It is easy to see that each green edge can be used only in one
move, even if Player II does not explicitly direct it after this move (i.e., if his choice
is red, in the new A, he has created a directed path between the endpoints of the
green edge, and thus implicitly fixed its direction). Without loss of generality, the first
n/2 moves will involve the green edges F.E; of the V-graphs. The two-color cycle
(F:E;T;D;F;) is such a possibility. The choices of Player II can be thought of as fixing
the direction of FE; to: (F;E;)—(x;=0) or (EF,)—(x;=1).

The claim is that Player I has an [n/2 + 1]st move, no matter what Player II plays,
iff Fis true. Player I has a [n/2+1]st move iff at the end there is a two-color cycle,
which contains the only green edge left, (C,+,S;), some red edges, some directed
edges and no directed cycle without the green edge. Picking red edges is no problem—
one has to do this to “pass through’ the C-graphs and the 3-graphs. In the V-graphs,
the path must follow either (S;T;D;S;+,) or (S;F.E;S;+1). It follows the latter iff (FE;)
was picked by Player II in the corresponding move—otherwise a cycle (F.E;T;D;F;)
would be created. In the 3-graphs, this choice can be thought of as an assignment of
the truth value to x; by Player I (i.e., 1 if (S, T;D;S;+,) was picked, 0 if (S;F;E;S;.,) was
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to F1

fo F2

to F3

to F2

to F4

to 13

F1G. 10. 3x,Vx,3x3Vx, (x; VX, Vxs) A (x, VX, VE,).

picked). Finally, in each of the C-graphs, Player I must pick one of the 7 paths, which
would not create cycles because of the backarcs. Therefore this path corresponds to
a truth assignment, which agrees with the one chosen at the V- and 3-graphs. It follows
that such a path (indeed, such an [n/2 + 1]st move by Player 1) exists iff F* is satisfiable
no matter what the values of x,, x4, - -+, x,, are, or, equivalently iff F is true. O
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LeMMA 4. Computing the minimax length of CONFLICT is PSPACE-complete,
(even when the initial ordered graph is undirected).

Proof. There are two directions in which we must extend the previous proof. First,
we must encode in G the n alternations of quantifiers. We do this by designing a more
elaborate 3-graph (containing a green edge too) and using the partial orders {=}.
Second, we must get rid of the directed arcs of G. We do this last, by replacing each
directed arc by a triangle, and using the partial orders.

Starting from the QBF instance F =3x,Vx,3x; - - Ax, VX, F*(xq,- -, x,) we
construct an ordered mixed graph G by putting together the 3-graphs of Fig. 8b (not
8c), the V-graphs of Fig. 8a and the C-graphs of Fig. 9, as in Lemma 3. We also have
the following edges connecting neighboring V- and 3-graphs:

arcs (AAii2), (Aiiv2Bits), i=1,3,---,n-3,
(AiAiin1); (Apini Fivy),  i=1,3,---,n—1,
red edges ABi,,, i=1,3,---,n—-3,
AiFiyq, i=1,3,---,n—1.

(These connections will guarantee that the order of moves by Player I will respect the
order of quantification.) A full example is shown in Fig. 10.

Notice that, so far, we have not specified the orders {=;}. The orders for the arcs
can be empty and for the undirected edges arbitrary total orders exist at all nodes
except for the A;, B, F; nodes. There they are designed in such a way that Player I
must play the green edges in their quantificational order (if the closure properties are
to hold):

at Ai7 A,‘B,'gA,'E+1§AiBi+2, i= 1, 3, recy, n—1 (the last for i # n_l),
at Fi+17 E+1Ai§Fi+lEi+17i=l93"”,n—'ly
at B;,,, Bi2AiZ BisAi,i=1,3,- -+, n—3.

We can indicate these total orders by assigning the integers 1,2, 3 to the undirected
edges at each node and using the ordering of these numbers (see Fig. 11a).

We claim that the minimax number of rounds equals n+1 (again, the number of
green edges in G) iff F is true. This would prove the lemma, modulo the presence of
directed edges. The proof parallels that of Lemma 3, but is slightly harder.

It is easy to see that if Player I wishes to play n+ 1 rounds each one of his moves
has to contain exactly one green edge, whose direction has not been fixed by previous
moves. Therefore, as in Lemma 3, a game in which Player I can force n+1 rounds is
essentially a permutation of the n+1 green edges. We will thus name his moves after
their green edge. We will demonstrate that A;B;-moves i=1,3,- -, n—1 will corre-
spond to Player I assigning values for the 3-variables of FF and F,E;-moves i=2,4, -+, n
to Player II assigning values to the V-variables of F. Moreover in a game where both
players play optimally these choices alternate. The matter will consequently be reduced
to the existence of an [n+1]st round, which will be equivalent to the validity of F.

Necessity. Assume the QOBF instance F is false. We will describe a strategy for
Player II, that will make the [n+ 1]st round impossible.

If Player I wishes to play n+1 rounds his game will be constrained in a variety of ways:

(a) Every A, ,B;_,-move must precede the A;B;- and F,_,E; ,-moves i=
3,5, -+, n+1. Since the arcs of G have to be respected, we can only have (B;A;) € A,
and (F;_,E;_,) € A, for legal assignments in these moves. This is because A,UA, U A
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A 5142

(b)

F1G. 11. (a) Forcing alternation. (b) Forcing directions: red ®——-@®; green @ ~®; directed ®—>—®.

must contain a cycle whose orientation is determined by the existing arcs. Now we
can justify the construction in Fig. 11a. If (B;A;) € A, from the =g, order and the
closure property of moves we have that (A;_,B;) € A, U A (e.g., the direction of A;_,B;
is fixed because of the existing directed path (A;_,A;,;B;) in G). From the =4, _,
order we have now that A; ,B;_, must already be assigned a direction. Thus the
A;_»B;_,-move must have already taken place. A similar argument holds for F;_, E;_;.
It is easy to see also that the C,,.,S;-move has to follow the F,E,-move.

(b) The F,E;-move corresponds to Player II assigning a value to x;, i =2, 4, - -, n;
as in Lemma 3.

(c) The A;B-move corresponds to Player I assigning a value to x;i=
1,3, -+, n—1. The only possible choices of cycles are (B;A;T.D:M;B;) corresponding
to x; =1 and (B;,A;F;E;N,B;) corresponding to x; =0. For x; =1 (x; =0 is symmetric)
the choice is forced by the existing arcs and because:

(B;AiB; 1A+, + + +) would use up BixAim;
(B:AT,D,F;E; - - -) would introduce a cycle in A,U A;
(BiAiT‘iDiSi+1 v ') would fix the direction of E+1Ei+l'

The strategy of Player II in response to these moves will be always to play red, fixing
the directions of T;D;, and F,E; and making vertex A; inaccessible from S;.

Obviously the best Player I can do is assign a value to x; (by the A;B;-move),
force Player II to show his hand by assigning a value to x, (by the F,E,-move), assign
a value to x; etc. As a result the choices for the C,,,,S,-move are constrained as in
Lemma 3. Consequently the existence of a legal [n+1]st round depends on whether
the assignment of values to the x’s has made F*(x,, -+, x,) true. Since the QBF
instance F is not valid Player II can always pick values for x;, i =2, 4, - - -, n that make
F*(xy,- -+, x,) false and the [n+1]st round impossible.
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Sufficiency. Assume Fis true. Player I’s game follows the same structure as above.
Only now, because of the validity of F, he can choose an assignment for x;,i=
1,3, -, n—1 which will make F*(x,," -, x,,) true and the [n+ 1]st round possible.

Finally, we must eliminate the arcs of the graph in the construction above. We
accomplish this by replacing each arc (RQ) by an undirected triangle RQP, where P
is a new node, PQ is green and RQ and RP are red (Fig. 11b). At the nodes R, P, Q
the three edges are ordered as indicated in Fig. 11b. The triangles themselves (K, ,,
in number) can be ordered. We can add kK, ,, to the numbers 1, 2 at the edges of the
kth rectangle, that indicate the orderings. Thus all {=;} become total orders. We have
therefore constructed an ordered undirected graph G* from an arbitrary QBF instance
F. We claim that the minimax number of rounds equals the number of green edges in
G* iff F is true.

Let us look at legal PQ-moves, that is moves whose green unfixed edge belongs
to a triangle. If this move (A, U A, U A) produces a cycle (RQPR), we can infer the
following: The arc (RQ) must belong to A,U A and A, U A. This is because A,U A
must contain a directed path (P--- Q) and OR =, QP. (Recall that QP is the only
green edge without a previously fixed direction.) Thus no matter what the response
of Player II is to such a PQ-move the arc (RQ) becomes part of A. On the other hand
a PQ-move producing a cycle (QRPQ) is never legal. This is because A, U A must
contain {(PQ), (QR), (RP)} a cycle. The existence of a path (Q--- P) in A,U A and
the fact that RQ = PR = QP force this situation. Thus PQ-moves fix the direction
of OR to (RQ). Finally if Player I were ever to use a OR in the direction (QR), in
some other e-move (e a green unfixed edge), then a response of red by Player II would
consume two green edges (i.e., e and PQ).

Now in order for Player I to play as many times as there are green edges in G*,
he must move using the green edges in the triangles and forcing the desired directions.
This completes the proof of Lemma 4. [

Proof of Theorem 4. The theorem now follows by observing that the ordered
graph G=(V, E, J,{=;}) in Lemma 4 is indeed the conflict graph of a transaction
system T. For each vertex i in V there is a transaction T; in T. For each edge e =ij
in E, there is an entity x, updated by both T; and T;. If e is red, x, is stored at site 1,
if green at site 2. For the (total) orders =;, we simply order the actions of transaction
T; accordingly. [

As more-or-less immediate consequences of Theorem 4 and its proof we can
obtain complexity characterizations for several special cases. Let us slightly abuse our
notation, and use PREFIX((T, a), b) to denote the decision problem:

Is the minimax length of game PREFIX((T, a)) larger than b?

We have the following cases depending on the structure of (T, @) and b.

CoROLLARY 4.1. (a) PREFIX({T, &), b) is PSPACE-complete.

(b) PREFIX(T, a), b) is PSPACE-complete and PREFIX((T, a),0) is NP-
complete, even if T contains no cross-arcs.

(¢) PREFIX((T, &), 0), if T contains no cross-arcs, is in P.

Furthermore, (a) and (b) hold even when there are no more than six actions per
transaction.

Proof. Note that (a) follows directly from Theorem 4 and (b) can be easily shown
by extending the proofs of Lemmas 3 and 4. By minor modifications [ 7] to the subgraphs
of Figs. 8 and 9 we can make the nodes (after substituting triangles for directed edges)
have at most degree 6. For case (c) all we have to test for is if G(T) contains a
two-color cycle. [
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We finally obtain the following result on the complexity of distributed concurrency
control.

COROLLARY 4.2. Unless NP =PSPACE, there is no scheduler for SR, which is
both computationally efficient and communication-optimal; even if we restrict T to sets
of transactions which are total orders and have six actions each.

Proof. If such a general scheduler existed, we would have a nondeterministic
polynomial-time algorithm for solving the PSPACE-complete problem PREFIX
(T, @), b), as follows:

On input (T, &), b:

1. Guess a schedule in SR, check it in polynomial time.

2. Simulate (in a centralized manner) the operation of the scheduler on this
schedule. Whenever a send-message instruction occurs, guess a delay d, and increase
a message count. (The delay d can be chosen to be a number bounded by a polynomial
in size of the input).

3. In the end, if more than b messages were used, then report “‘yes”, else report
“no”. O

5. Conclusions. Our main result shows that concurrency control, an on-line
problem clearly in NP (P for serializability) in the centralized case, is PSPACE-complete
in the distributed case. This result is quite strong, in that it holds for transaction systems
of rather ordinary appearance (e.g., transactions which are total orders with at most
six actions each). Also, the negative implications of our result (Corollary 4.2) are quite
robust. For example, even if the scheduler is equipped with a powerful oracle belonging
anywhere in the polynomial hierarchy, it still cannot minimize communication
efficiently, unless the polynomial hierarchy collapses.

In the process of proving this negative result, we have related distributed concur-
rency control to certain combinatorial games played on graphs. It could be that this
connection is of some practical value. There is a more-or-less immediate heuristic for
approximating an optimal strategy in the game CONFLICT. This heuristic is based
on the following purely combinatorial problem:

Given an undirected graph with its edges colored red and green, find a “small”
set of edges that have to be deleted in order for the resulting graph to have no two-color
cycle.
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