
Partition Semantics for Relations
Stavros S. Cosmadakis

MIT

Paris C. Kanellakls]
MIT

Nicolas Spyratos
Universite’ de Paris Sud

Abstract

Set-theoretic partitions were first used in [15] to provide

models for relation schemes, relations and dependencies.

This new point of view of the relational model

demonstrates that there is a natural extension of functional

dependencies (FD‘s), which is based on the duality between

product and sum of partitions. We show that these partifion

dependencies @‘D’s) have the power to express both

functional determination and transitive closure of

undirected graphs, The inference problem of PD’s is sholr;n

to be the uniform word problem in a lattice. We provide a

polynomial time algorithm for this natural generalization of

the FD inference problem. We show how partition

semantics justify a number of variants of the weak instance

assumption and investigate the expressive power of PD’s.

We also provide a polynomial time test for consistency of a

set of relations with a set of PD’s.

‘On leave from Brown University: supported partly by NSF grant
MCS-8210830 and partly by ONR-DARPA grant N00014-83-K-0146,
4KPA Order No. 4786.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

“1985 ACM O-89791-153-9/85/003/0261 $00.75

1. Introduction

It is customary in database theory to consider the

database scheme and logical constraints as sentences from

predicate calculus and the database itself as an

interpretation. This relational interpretation either satisfies

or falsifies the scheme and constraints. An interesting body

of theory has developed around this approach, particularly

with respect to special types of logical sentences about

relations called dependencies (see [16,12] for surveys of the

area). In this paper we will take a slightly different view, in

which database scheme, constraints and the database are

strings of uninterpreted symbols. Interpretations are

provided using partitions, that is, families of nonempty,

disjoint sets whose union is a population of objects. This

new approach allows us to better understand and provide

nontrivial generalizations to such basic concepts as

functional dependencies old weak instances [8,18].

Parlition semantics, first proposed in [15], reveal the

algebraic nature of the most common database

aependency. the functional dependency (FD), Using

partition semantics we demonstrate that the inference

problem for FD’s is the problem of infering an equation

between algebraic expressions from other such equations.

In more mathematical terms, it is a restricted form of rhe

uniform word problem in a laftice [3, ,111. This approach, of

viewing dependency inference as a word problem in an

equational theory, is similar in spirit to algebraic

dependency inference[l9], although much closer in its

details to standard equational theories [lo]:

261

Let +,* be two operators satisfying the lattice axioms

[3] (see also Proposition 1) and let the attributes of the

database scheme be considered as constants. Partition

semantics allow us, without any loss of generality, to treat

an FD AB-KD as the equation A*B=A*B*C*D.

Interestingly enough, partition semantics allow us to

complete the analogy. An equation A=B+ C, where $ is

the natural dual of l in a lattice of partitions, is a

dependency expressing a transitive closure condition. In

general a partition dependency (PD) is an equation e=e:

where e,e’ are algebraic expressions using +,* and the

attributes. Since transitive closure cannot be expressed

using reIationa1 algebra [I], and since, as we show, PD’s

cannot express multivalued dependencies, the expressive

power of PD’s is orthogonal to that of other generalizations

of F-D’s [19,5.2,14].

We show that the inference problem for PD’s can be

solved in polynomial time. For this we solve efficiently the

uniform word problem in a lattice. We also use this

algorithm to efficiently reduce the problem of resfing

consistency of a set of relations with a set of PD’s, to that of

testing consistency with a set of FD’s 181.

An intuitive justification of partition semantics is that the

world consists of a set of objects, for which the tuples in the

database provide names. Two objects in a set, whose name

is a particular tuple, cannot be distinguished on the basis of

this name. The only names with meaning are those of

nonempty sets. This distinction between nonempty sets

(blocks of a partition) and the empty set 0 provides us with

a notion of truth.

We show that this formal approach leads to a number of

variants of the weak instance assumption. These variants

depend on whether we assume an open or closed world

interpretation [13]. If we assume a closed world

interpretation, which we formalize using the Complete

Atomic Data Assumption (CAD) of [15], then testing

consistency of a database with a set of FD’s becomes NP-

complete. If we assume an open world interpretation,

testing consistency of a database with a set of FD’s can be

done using the efficient weak satisfaction test of [8]. We

generalize this test to a set of PD’s.

We assume that the reader is familiar with the standard

relational terminology in [16,12], as well as, with the

concept of a weak instance fo; a database and a set of FD’s

[8,18]. A useful survey of equational theories can be found

in [lo]. Computational aspects of these theories are

explored in [ll].

We define partition semantics in Section 2. The formal

definitions are in Section 2.1. Partition dependencies and

motivating examples, which illustrate functional

determination and transitive closure, are in Section 2.2.

This section also contains other possible restrictions on

interpretations, such as the Complete Atomic Data

Assumption (CAD). The expressive power of partitions is

the subject of Section 3. Section 3.1 demonstrates the

connection with weak instances and contains the lower

bounds for testing consistency of a database and FD’s when

we assume CAD. Section 3.2 justifies why PD’s can express

(without loss of generality) FD’s and symmetric transitive

closure in a relation. We also show that PD’s cannot express

multivalued dependencies. A solution to the PD inference

problem is contained in Section 4. We first present a new

algebraic view of classical FD inference and then the

efficient inference algorithm for PD’s. The proof of this

algorithm uses new techniques for database theory, which

derive from algebra and the theory of lattices [3,11]. In

Section 5 we provide a polynomial time test for consistency

of a set of relations with a set of PD’s; this test combines the

test of [S] with the efficient inference algorithm for PD’s.

2. Partition Semantics
In this Section we summarize the basic concepts of

partition semantics, first proposed in [15].

262

2.1. Relations and Partitions

Let p1 be a finite set of attributes {A1,...,Ak} and 9 a

countably infinite set of symbols {a,al ,..., b,b, ,... }, such that

slng=0. A relation scheme is an object R[U], where R is

the name of the relation scheme and UC%. A tuple t over

U is a function from U to % If aAd = ai, 15&n = IUl, then

we represent tuple t as al%...a,, and the restriction oft on a

subset X of U as 01. A relafion r over U is a set of tuples

over U. We assume that, in general, there are both finite

and infinite relations. A database scheme D is a finite set of

relation schemes {R1[U1],...,R,[U,]} and a database

d= {rl,.,.,rm} associates each relation scheme Ri[Ui] with a

relation ri over Ui

A database is represented, in the natural fashion, by a set

of tables with the relation schemes as headers, the tuples as

rows, and each column headed by an attribute. We use d[A]

to denote the set of symbols appearing in database d under

all columns hkaded by attribute A.

We view all the ‘above relational database objects as

syntactic objects, which we interpret as follows.

A partition interpretation J is a set of triples { (p(A), nA,

fA) 1 AC%), where for each attribute A:

1. p(A) is a nonempty set, the population of A,

2. rA is a partition of p(A), the atomic partition of
A,

3. fA is a function from g to nAu{O}, such that,
nA={ fA(x) 1 xE9, f (x)*0 } and
ifx+y then f,(x)n fJy)= 0.

Note that nA is a partition, i.e., a family of nonempty,

disjoint subsets of p(A) whose union is p(A). Also fA maps

a unique symbol from 5 to each distinct member of nA,

and maps to 0 otherwise.

Let us now define two natural operations on partitions.

Given a partition B of set (or population) p and a partition

sbf set (or population) p: then their product l is :

SPIT’={ x 1 x=y-wo, yc77.2~~7’)

their sum + is :

n + a’= { x 1 two elements P,Y in pup’are in set x
if and only if there is a chain of sets x x
from n or n,‘such that &-c.~, YEX~

p 2...xg

and xlnxi+,fO, for all &<q }

Note that n*n’is a partition of the population pnp’and

R + n’is a partition of the pofiulation pup.’ It is standard

terminology to refer to .members of partitions as blocks.

Also if p=p’ then l produces the coarsest common

refinement of IT and r’and + produces theirfinest common

generalization. It is also easy to verify that the product l is

associative, commutative, and idempotent.

We can now use the attributes in 91 and the uninterpreted

operator symbols l ,+ to build algebraic expressions. We call

such expressiobs partition expressions; every attribute is a

partition expression and if e,e’are partition expressions then

so are (e*e? and (e+ e’).

Given a partition interpretation J we define the semantics

(meaning) of a partition expression using structural

induction and interpreting the l ,+ symbols as partition

product and sum respectively.

Let partition expressions e,e; in partition interpret&i& 3,

have meanings the partitions T,Q’ of populations p,p’

respectively, then:

1. The meaning of attribute A is partition rA of
population p(A)

2. The meaning of (e*er) is partition 9r~‘of
population pnp:

3. The meaning of (e+e’) is partition n t s’of
population pup:

Given a partition interpretation J we define the meaning

of a relation scheme R[U], U={ ApAP A, }, to be the

same as the meaning of the partition expression

A,*A,*...*A,. This meaning is well defined because of the

associativity, commutativity and idempotence of 0. For

263

example, the meaning of R[ABC] in 9 is the (composite)

partition v~*T~*T~ of population p(A)np(B)np(C).

A partition interpretation 9 also allows us to define the

meaning of a tuple t in relation r whose scheme is R[U].

The meaning of symbol t[A] (the symbol of t in the A

column) is fA(t[A]). This meaning is either 0 or a block of

the atomic partition 9rA The meaning of tuple t is

“,&,(t[4>. n is meaning is either 0 or a block of-the

composite partition, which is the semantics of RN. For

example, let tuple abc be in a relation of database d whose

scheme is R[ABC]. Also let us have in 9 f*(a)=a, fn(b)=b,

fc(c) = c, where 4 b, c are blocks from partitions vA, nn,

nC respectively. Then the meaning of t[A] in 9 is a and the

meaning of t is mbnc. In a different partition

interpretation S; which is identical with 9 with the exception

of f,(a)= 0, the meaning of t[A] is 0 and that oft is also 0.

Note that when there is no ambiguity we will use a for

f*(a) and abc for mbnc.

We may now view both database scheme and database as

syntactic objects with partition interpretations.

Definition 1: Let d be a database and 9 a partition

interpretation. 9 is a model for d, or J satisfies d, or scd,

when:
VrEd, VtEr n ,&Wl)f%
where R[U] is the relation scheme of relation r.

2.2. Dependencies

In this section we provide means of expressing

restrictions on partition interpretations, other than the

restriction of being models for a database d, which was

presented in Definition 1.

Definition 2: A purtition dependency (PD) is an equation

e=e: where e,e’ are partition expressions. A partition

interpretation 9 is a model for e= e: or 9 satisfies e= e: or

we= e: if:

n=n’andp=p:
where,partitions n,nbf populations p,p’
are the respective meanings of e,e’in 3.

Proposition 1: Let x,y,z be partition expressions, The

following identities are true in all partition interpretations.
associativity:
(x*y)*z=x*(y*z), (x+y)+z=x+(ytz)
commutativity: x*y=y*x, x ty= yt x
idempotence: x*x=x, x+x=x
absorption: xt(x*y)=x,x*(xty)=x

I

The above properties show that, given a partition

interpretation 9 the algebraic structure produced by closing

its atomic partitions under product and sum is a lattice [3].

We denote this lattice as L(S).

Let U be a set of attributes (A,,...,A, }. With a slight

abuse of notation, in the context of a PD we use U for the

partition expression A,*... *A,. This is consistent with our

definition of the meaning of a relation schenie. We can now

define a special important class of partition dependencies.

Let X,Y be sets of attributes. A functional partition

dependency (FPD) is a partition dependency of the form

X = X.Y. It is easy to show that:

Proposition 2: If j!=X=X*Y and if partitions s,n’of

populations p,p’are the meanings of X,Y in 9 then:

1. VxEn, 3yc.rr: xcy

2. pep: I

Because of the duality of l , t in the lattice of partitions

(see Proposition 1) the FPD X=X*Y is equivalent to the

PD Y =X + Y. Proposition 2 is illustrated in Figure 1.

Example 1: Assume we have two attributes EMPLOYEE-

NUMBER and MANAGER-NUMBER and we wish to

express the fact that: each employee can be associated with

only one manager. This is analogous to the familiar

functional dependency for relations

[16,12] EMPLOYEE-NUMBER -+ MANAGER-

NUMBER. We express this. constraint as the FPD

EMPLOYEE-NUMBER = EMPLOYEE-NUMBER .

MANAGER-NUMBER The rigorous justification of the

correspondence of the functional dependency X-tY to the

FPD X=X*Y is contained in Section 3.2. Intuitively the

above FPD guarantees that two individuals of the

population of EMPLOYEE-NUMBER in the same block

Of rEMPLOYEE-NUMBER (e.g., all unlucky individuals

whose employee number is 13) are also in the same block of

*MANAGER-NUMBER (e*g*> the set of individuals whose

manager has manager number 7). A fine point is that in

each model of #is FPD

p(EMPLOYEE-NUMBER)cp(MANAGER-NUMBER).

Therefore, by Proposition 2, MANAGER-NUMBER is

uniquely determined for any possible EMPLOYEE-

NUMBER. Note that the semantics in this case allows

models in which a manager manages individuals who do

not have employee numbers, although every individual

with an employee number must be managed by a manager.

An equivalent way of expressing this functionif

determination is using the PD EMPLOYEE-NUMBER +

MANAGER-NUMBER = MANAGER-NUMBER.

Example 2: Another class of useful facts are ISA

relationships such as: every cur is a vehicle. A surprising

fact about partition interpretations is that there seems to be

no distinction between expressing functional determination

and ISA relationships. This is because ISA relationships

implicitly define a function from subset to superset. In this

example the natural FPD constraint is: CAR = CAR l

VEHICLE In any model of this FPD

~(CAR)S~(VEHICLE) and a CAR block functionally

determines a VEHICLE block.

Example 3: Let p be a population of cars and p’ a

population of bicycles, moreover let pnp’= 0. We wish to

express that: every vehicle is either a car or a bicycle. Let

CAR-RGS be interpreted as a partition n of p, and

BICYCLE-RGS as a partition r’of p; (the database cannot

distinguish between cars with the same car registration or

between bicycles with the same bicycle registration). Since

the two populations are distinct s + rk n&r: that is +

produces the union of two families of blocks. In this case

one may use the PD: VEHICLE-RGS = CAR-RGS +

BICYCLE-RGS.

Example 4: Consider a database d with only one relation

r representing an undirected graph. This relation has three

attributes: HEAD, TAIL and COMPONENT. For every

edge (a,b) in the graph we have two tuples abc and bat in

the relation, where c is a number which could vary with a

and b. These are the only tuples in r. Note that by the way

r was constructed from the graph we may, without loss of

generality, restrict our attention to models of d with

p(HEAD)=p(TAIL). We would like to express that:

component is the connected component in which the arc

(head tail) belongs. We can do this by restricting partition

interpretations to: %=(d and COMPONENT = HEAD +

TAIL). This last example illustrates how by regarding both

d and a PD as syntactic objects we can express the meaning

of symmetric transitive closure.

Example 5: Suppose we wish to keep a relation of cars,

which are complex objects with characteristics registration

number and factory serial number. We can express it as a

composite partition using the semantics of relation

schemes: CAR = RGS-NUMBER l SERIAL-NUMBER.

There are some other natural restrictions we might

impose on our models. Assume J satisfies database d and a

set of PD’s, we say that:

1. J satisfies the Complete Atomic Data
Assumption (CAD) if:

vAE%, VaEd.

aEd[A] if and only if fA(a)#O.

2. J satisfies the Common Atomic Populations
Assumption (CAP) if:

vA,BE%. p(A) = p(B).

265

3. In J A,B have disjoint populations if
PAP = 0

The CAD assumption produces a closed world[13]. It

says that the only true atomic facts about attribute A are the

ones in database d in the columns headed by A, As in

Definition 1 true is equivalent to having nonempty

meaning. An interesting fact is that, in contrast to CAD,

which turns out to be quite restrictive (from a complexity

point of view), CAP has no significant effect on our

analysis. Disjoint populations allow us to use + in order to

express U as in Example 3 above,

Finally we would like to mention that the lattice

generated by the atomic partitions of J is not necessarily a

distributive lattice [3]. We illustrate this in Figure 2 together

with many of the preceding definitions.

3. Expressive Power of Partitions
We are interested in the following question: Given a

database d and a finite set E of PD’s, is there a partition

interpretation J such that jt=d and JI=E (i.e., Jl=e for all e

in E)? We first examine this question in the case where E

consists of FPD’s; we discover a close connection between

existence of a partition interpretation and existence of a

weak instance [8,18] for d satisfying I$ the set of FD’s

corresponding to the FPD’s in E. The ideas introduced

motivate a definition of satisfaction of a PD by a database,

which enables us to study the expressive power of PD’s viz.

EID’s.

3.1. Partitions and Weak Instances

Given a database d and a set E of FPD’s, let q= {X+Y]

X=X*Y is in E}. We ask the following two questions:

a. Is there a partition interpretation J such that jI=d,E?

b. Is there a partition interpretation J such that j!=d,E

and J satisfies CAD and CAP?

Recall that a relation w is a weak instance for a database d

266

iff every tuple of relation R[U] of d appears in the

projection of w on U [8,18]. The answer to both questions

above is given in the following

Theorem 1:

a There is an J such that j!==d,E iff there is a weak instance

for d satisfying q.

b. There is an J such that j!=d,E and Jt=CAD,CAP iff there

is a weak instance w for d which satisfies l+ and

w[A] = d[A], for A in 91.

Proof:

a. (=+): Say %=d,E and define a relation w over 91 as

follows: for each i in UAE(L1p(A), w contains a tuple ti,

where for each attribute A, ti[A] is a if iEaE nA, and i

otherwise. It is easy to see that w is a weak instance for d: if

abc is a tuple appearing in relation R[ABC] of d, then an

bnc;c0, so there is an i such that iEaEsA, iEbcnB, Xc cnC’

and therefore ti[ABC]=abc. To see that WI=%, let X-+Y

be an FD in I+, and suppose there are tuples ti, tj in w such

that tip] = tj[X]. Then for each A in X 4[A] = tj[A], which

means i$a for some aEr,,. But J!=X=X-Y, and thus for

each B in Y i&b for some bEti,, i.e. tJB]=tj[B]. Thus,

wl=X-+Y.

(e): Let w be a weak instance for d, WC%. Define j as

follows: for each A in 91, p(A)= (it] t is a tuple of w}, and

for each a in 64, fA(a)={i,] t[A]=a}. This fA induces

partition rA. Note that j satisfies CAP. To see that .Jl=d, let

abc be a tuple in relation R[ABC] of d: there is a tuple tin

w with t[ABC] = abc, and thus i,EfA(a)nf,(b)n f&c) = anb

nc, i.e. anbncg0. To see that jl=E, let X=X*Y be an FPD

in E, and let i,, is be elements such that it,i,EaEa* for each

A in X. This means tp]=s[X], and since WI=%, t[B]=s[B]

for each B in Y. But then it,iSEbc7rB for each B in Y, and

thus J l=x =X*Y.

b. Same as (a): all we need to observe is that, if 3 satisfies

CAD and CAP, the relation w defined from J has

w[A] = d[A] for each A in 91. Conversely, if w[A] = d[A] for

each A in ‘U, then the partition interpretation J defined

from w satisfies CAD (it always satisfies CAP). I

Thus, given d,E we can test in polynomial time whether

there is an J such that si=d,E, since we can test whether d

has a weak instance satisfying I$ [S]. However, introducing

CAD complicates things:

Theorem 2: Given d,E it is NP-complete to test whether

there is an J such that J!=d,E and J!=CAD,CAP.

Proof (Sketch): Membership in NP follows from

Theorem 1 (b): just guess an appropriate weak instance w

(w need only contain one tuple for each tuple of d),

NP-hardness is shown by a reduction from

NOT-ALL-EQUAL-3SAT [6]: given a Boolean formula ‘p over

variables x1 ,..,, x, with clauses c1 ,.,., c,, test whether there is

a truth assignment under which each clause ci has one true

and one false literal.

-Fiom cp construct d,E as follows: d has a relation

RpA,...AJ with two tuples tuI...u,, tvl”.vn, and for each

clause of cp, say cl=xlvx2v(-x3), d has a relation

RpA,...A,X,...XJ, with a tuple fw4..,wnal% b3z4...zn. E

contains X,=X,*A, i= l,...,n, and for clause c1 it contains

X,*X,*X,=X,* X,*X,*T. Thus, I!$ consists of Xi-A,

i=l,...,n, and X,X,X,-+T for clause cl. Figure 3 shows an

example for n=4.

We now show that cp is satisfiable iff relation

RfTA,...A,X,... Xn] (see Figure 3) can be filled in so that

no new symbols are introduced in’ any column, and the

FD’s in q are satisfied (by Theorem 2 (b), this is

equivalent to existence of an J such that l!=d,E,CAD,CAP).

Observe that for each i, s1[XJfs2[XJ, sl[xJ *z~ sJXi]fzi

(because of the FD Xi-+ Ai), and thus {sl[Xjl, sJXJ} = {ai,

bi}. Make xi true if sl[XJ = ai, false if sl[Xi] = bi. It is easy to

see that, because of the FD X,X,X,--+T and the tuple s? we

will only be able to fill in the rest of the values iff the above

truth assignment makes one literal of c1 true and one false.

I

We remark that, since the partition interpretation 3

defined .fiom a weak instance w satisfies CAP, introducing

CAP as a requirement does not change anything; i.e., there

is an J such that J!=d,E,CAP iff there is a weak instance for

d satisfying %. However, having CAD alone results in a

somewhat weaker condition than having CAD and CAP:

Theorem 1’:

b.’ There is an J such that %==d,E,CAD iff there is a weak

instance w for d which satisfies E, and for each tuple t of w

and each FD X+Y in l$ if t[A]Ed[A] for each A in X, then

t[B]Ed[B] for each B in Y.

Prool: By the same construction as for Theorem 1 (a). I

On the other hand, this new condition is no easier to test:

Theorem 2’: Given d,E it is NP-complett to test if there is

an J such that %=d,E,CAD.

Proof: By a slight modification of the reduction in the

Proof of Theorem 2. I

Finally observe that, if d consists of a single relation, all

conditions collapse to one: dbl!$.

3.2. Expressive Power of PD’s

We now restrict attention to databases consisting of a

single relation r: We want to study what kinds of things

can be said about r by sets of PD’s. To do this, however, we

first have to define what it means for r to satisfy a PD. We

make use of a “standard” partition interpretation of r:

Definition 3: Let r be a relation over U; I(r) is the

following partition interpretation:

267

1. for each A in 91, p(A) = {it] t is a tuple of r].

2. for each a in 9, f*(a)= {it] t[A] = a}.

Partition nA is induced by fA. Note that I(r) satisfies

CAP. We also define, given a partition interpretation J, a

“standard” relation that corresponds to it:

Definition 4: Let J be a partition interpretation over ~1;

R(J) is a relation containing a tuple ti for each i in

UAE21p(A), where ti[A]=a if iEfA(a)EnA, and ti[A]=i

otherwise.

Observe that R(I(r)) = r, but I(R(s)) is not necessarily J.

Aho I(r)l=r for any relation r. These definitions are

motivated by the Proof.of Theorem 1. By the argument

there, ri=X+Y implies I(r)!=X =X-Y, and j!=X=X*Y

implies R(s)i=X-+Y. Thus, if I(r)!==X=X*Y then

R(I(r))l=X-tY, i.e. r!=X-+Y. This shows that rl=X+Y iff

I(r)i=X=X*Y. This supports our claim that the FPD

X = X*Y is the correct counterpart of the FD X-+Y. Taking

this observation one step further, we introduce the

following

Definition 5: A relation r satisfies a PD e (notation:

rl=rele) iff I(r)ce.

Given this definition, one easily sees the following:

1. rk=, ,C= A*B iff for any tuples t,sEr, (t[C] = s[C]
iff $A] = s[A] a& t[B] = s[B]).

2. r!=, ,C = A + B iff for any tuples t,sEr,
(t[Cj=s[C] iff there is a sequence so’...,s, of
tuples of r with t=s , s,=s, and for i=O ,..., n-l
si[A]=si+l[A] or~JB!=sl+~[B]).

Having reduced our models to relations, it becomes

evident from (1) that rl==,,X=X*Y iff r!=X-Y, and from

(2) that the relation of Example 4 correctly represents the

transitive closure of an undirected graph iff it satisfies

COMPONENT = HEAD + TAIL.

We now want to compare the expressive power of PD’s to

that of previously studied database constraints, namely

EID’s [5]. Let us say that an EID u is expressed by a set E of

PD’s iff for any relation r, rl=u iff r~==,lE. From the

algebraic properties of 0, the PD X=Y*Z is equivalent to

X=X*Y*Z A Y*Z=X*Y*Z, and therefore it is expressed

by the set {X-tYZ, YZ-+X). However, because of Example

4 it should come as no surprise [l] that the PD C= A t B

cannot be expressed by any set of EID’s:

Theorem 3: Let 91= ABC; the PD C= A t B cannot be

expressed by any set of first-order sentences.

Proof: Let Z be a set of first-order sentences (over a

single ternary relation symbol R) which expresses

C=AtB. For k>l, let qk be the following first-order

formda:

“t[C]=s[C] and there is no sequence se,.,.,sk such that

t=sg’ sk=s, and for i=O,...,k-1, ~i[A]=s~+~[Al or

SiBI =Si+ IPI”

(one can easily write q.Q Observe that the relation r in

Figure 4 is a model for ZU{cp,}: rl=re,C=AtB so r!=Z,

and clearly rtvk’ Thus, any finite subset of X’=Zu{q,:

k>l} has a model, and thus by the Compactness Theorem

[4] Z’has a model, say r’. But this is a contradiction, since r’

!=Z and thus r’satisfies C= At B, and on the other hand r’

l=qk for all k>l and therefore it does not satisfy C=At B.

I

On the other hand, an EID as simple as an MVD cannot

be expressed by PD’s:

Theorem 4: Let %r=ABC; the MVD A+-+B cannot by

expressed by any set of PD’s.

Proof: Let E be a set of PD’s which expresses A-+-tB.

Referring to Figure 5, relation r1 satisfies A-t-+B, so

I(r$=E, and L(I(rJ) (the lattice obtained from I(r$ by

268

closing under sums and products) satisfies E. On the other

hand, r2 does not satisfy A-t+B so I@) does not satisfy JZ,

and L(I(r$) does not satisfy E. But this is a contradiction,

because L(I(r$), L(I(r,)) are isomorphic, and thus they

satisfy exactly the same PD’s. I

4. Dependency Inference
Given a set E of PD’s and a PD e, we want to know if

Et==rele, i.e. if e holds in every relation that satisfies E. We

first observe that this question can be approached as a

(uniform) word problem for a certain class of algebraic

structures, namely lattices.

Lemma 1: Etrele iff Et=l,te, i.e. iff e holds in every

lattice that satisfies E.

Proof: (c): Suppose Eclate, and let r be a relation that

satisfies E. Then I(r) and thus the lattice L(I(r))

obtained by I(r) by closing under sums and products

satisfies E. But then e holds in l(r), and thus r satisfies e.

(*): Suppose Ebrele, and let L be a lattice satisfying

E. L is isomorphic to a sublattice of the lattice of partitions

of time set X [3]. Translated into our terminology, this

means that we can find a partition interpretation 9,

satisfying CAP, such that L is isomorphic to L(J). Thus,

JI=E. Now consider the relation R(J)=r: since .%=CAP,

I(R(j))= 9, therefore rkreIE. By the hypothesis rl=,e,e,

which means I(r)= jce. Thus L(.Q=e, and e holds in L. I

Thus, Ec,,e can be viewed ES a word problem, since a set

with two binary operations +,* is a lattice iff the following

set of axioms (LA) is satisfied:

1. x t x = x, x*x=x (idempotency)

2. x t y = y + x, x* y = 9.x (commutativity) (Intuitively, p = idq iff the PD p = q holds in all relations).

3.xt(y+z)=(x+y)tz,
(associativity)

x*(y*z)=(x*y)*z

4. x t (x*y)=x, x*(x + y)=x (absorption)

I.e., Ek,ate iff e is implied from E u LA,

in particulari let eU be the FPD corresponding to an FD

u (e,, is X=X*Y if (T is X-+Y), and let E, be the set of

FPD’s corresponding to a set of FD’s Z. Since rk:cr iff

rt=,leO, ZI=U iff E$=relea. Thus, the implication problem

for FD’s can be reduced, in a straightforward way, to the

(uniform) word problem for idempotent commutative

semigroups (structures with a single associative,

commutative and idempotent operator). On the other hand,

since X = Y is equivalent to X=X-Y and Y =Y l X, we can

also reduce the above word problem to the implication

problem for FD’s.

We now present a polynomial-time algorithm for the

implication problem for PD’s. Suppose we are given a set E

of PD’s, and a PD p = q: we want to test if Et=,,,p = q.

Consider the set W(%) of partition expressions over 91,

t, l : we define several binary relations on W(U). First,

define lid (identically less-than-or-equal) inductively as

follows:

1. A&A, A in ~1.

2. if p&r, q&r then p + qsidr.

3. if p&r then p*q&r.

4. if rgidp, rsidq then rIidp*q.

5. if rlidp then r&p + q.

C-t,* are meant here as uninterpreted operations on

partition expressions, which return another expression).

Now define = id as folIows: p = idq iff (pIid nndqsidp).

The relation =id is an equivalence relation, and in

particular it is a congruence (see [3] for a long and tedious

prod: i.e., if Plzidql, &=idq2 then P1+p~=~dq~+q2.

269

equivalence classes Of = id The structure obtained this way

is a fartice 131.

and P1’P2=idql’q2’ Thus, one can define +, l on the set of S. from &r derive p*q<gr.

6.fiom r<,p, r$q derive r&p*q.

7. from r&p derive r$p + q.

We now capture the effect of E: define the following

relation = sub on W(U) : p=,,,q iff q can be obtained

from p by substituting wi for one or more occurences of zi,

where zi= wi (wi=zi) is in E, i=O ,..., n for some n. It is

Prooi: (a)*(b): if p+,q, then LB does not satisfy p=q,

whereas it satisfies E. Thus, b is a counlerexample to

Eb=,,tp = q.

easily verified that = sub is a congruence.

Now define =E as the sum of =id, =,,& this means that

the equivalence classes of =E form a partition of W(Q)

which is the sum of the partitions induced by = id, = sub. In

other words, p = Eq iff there is a sequence qu,...,q, such that

(b)*(c): by an easy induction on the definition of =E

(c)=(a): it is easy to see (by induction) that if p$q can

be proved, then psq in every lattice satisfying E. Thus,

p =q in every lattice satisfying E, i.e. E~==,,tp = q. I

p=qg, q,=q, and for i=O,...,n-1 qi=idqi+l ofqi=subqi+l, We can now prove our main result:

As a sum of two congruences, =E is also a congruence

[7]. One can also observe that the equivalence classes of

= E form a lattice b under the induced + , 0: just check

LA, e.g. p+~=~p because p+~=~~p, and in general if

p = idq then p = Eq. Note that b satisfies the PD p = q iff

P=Eq*

We now show that the relation =E captures the PD’s

implied by E, and give a proof system for implication of

PD’s:

Lemma 2: The following statements are equivalent:

a. E+=,,,P = q

b.p=Eq

c. p$.q and q&p can be proved using the, following

rules:

Theorem 5: There is a polynomial-time algorithm for

inference of PD’s.

Proof: Observe that, if there is a proof that p+q, then

this proof need only mention subexpressions of p, q, and of

the expressions appearing in E. Thus, we can just write

down these expressions (say, as in [ll]) and repeatedly

apply the rules, until no new inference can be made. I

Since inference of FD’s can be seen as a special case of

inference of PD’s, the problem is actually polynomial-time

complere [17]. However, in the special case where E is

empty it can be solved in logarithmic space [9] as follows:

we first rewrite p = q as a Boolean tree with leaves of the

form AsB, A,B in 21. We then replace A<A by true and

A<B by&/se if A*B, and evaluate the resulting tree.

Example: A+ B = CD is (recursively) rewritten as

1. A+A, A in p1. A+B@D A C*D<A+B

2. zlEw, wsEz for z=w in E

3. from psEq, qSEr derive psErs
(A+B<C A A+B_<D) A (C*D<A V C*DsB)

4. from p<,r, q$r derive p + q<,r. ((A<C A B<C) A (A<D A BID)) A ((CIA V D<A)

v (C<B v DSB))

270

5. Testing Satisfaction of PD?s
Given a database d and a set of PD’s E, we want to test if

there is a partition interpretation J such that Ji==d,E. We

first give a characterization in terms of (general) weak

instances:

Lemma 3: There is an J such that jt=d,E iff there is a

weak instance for d satisfying E

Proof: Let w be a weak instance for d satisfying E. It is

then easy to see (as in the Proof of Theorem 1) that I(w)!=&

and of course I(w)r=E

Conversely, let J be a partition interpretation satisfying

d,E. Consider the relation R(J): As in the Proof of Theorem

1, R(J) is a weak instance for d. and thus it remains to show

that it satisfies E, i.e. that I(R(s))cE. Now this partition

interpretation may- be different from 9, since it satisfies

CAP while J in general does not; however, one can observe

that L(I(R(j))) is isomorphic to L(j), and therefore

I(R(j))kE since ji=E. I

We now outline how to test whether there exists a weak

instance for d satisfying E

First, we replace E by a set E’of PD’s of the form C= A*B

or C= A+ B, where A,B,C are attributes from a universe ‘U’

containing 91: this is done by (recursively) replacing

X=Y*Z by the PD’s X=C, Y=A, Z=B, C=A*B, where

A,B,C are new attribute names. It is easy to check that

there is a weak instance for d satisfying E iff there is a weak

instance for d satisfying E’.

Let us denote by p-tq, where p,q are partition

expressions, the PD p = p*q. This slight abuse of notation is

consistent, since the FPD X-tY is actually equivalent to the

FD X+Y. Now a PD C= A*B in E’can be replaced by the

FPD’s C-+AB, AB+C, and a PD C=A+B in E’can be

replaced by the PD’s A+ B+C, C-+A+B; furthermore, the

PD A+B+C can be replaced by the FPD’s A+C, B+C.

We now have a set F consisting of FPD’s and of PD’s of the

form &At-B, and it is obvious that there is a weak

instance for d satisfying E’iff there is a weak instance for d

satisfying E

Now compute (using the algorithm of the previous

Section) all consequences of F of the form A+B, A,B in ‘u’,

and add them to F. Furthermore, if now F contains A-+B

and C+A + B, replace &A+ B by C-+B. Let F’be the set

of FPD’s in F. The crucial fact is given in the following

Lemma 4: There is a weak instance for d satisfying E’iff

there is a weak instance for d satisfying F:

Proof (Sketch): The “only if’ direction is obvious. For

the converse, let w be a weak instance for d satisfying F:

and assume that w does not satisfy some PD C-tA+ B in E’

We can pick two tuples t,s such that t[ABC]=a,b,c,

s[ABC]=%b2c, and add to w a new tuple s such that

s[ABC] = alb,c and the relation w1 obtained satisfies F: But

then we can repeate the argument to obtain relations wz, w3

and so on. The relation ww obtained after an infinite

number of steps is a weak instance for d satisfying E;

because any violation of some PD C+A+B appearing at

any stage has been taken care of at some later stage. I

Theorem 6:There is a polynomial-time algorithm to test

whether a given database d is consistent with a set E of

PD’S.

Proof: Using the polynomial-time algorithm for inference

of PD’s given in Section 4, we can construct the set F: By

Lemma 4, we can then use the chase algorithm of [8] to test

if d is consistent with F: I

6. Conclusions
We have shown that: (1) the inference problem for PD’s

and (2) the problem of testing consistency of a set of

relations with a set of PD’s are in polynomial time. Both

proofs use algebraic techniques and make use of finite and

271

infinite relations. If we restrict ourselves to finite relations

we are faced with hardquestions about finite realizations of

lattices [3].

We would like to point out that the FD inference

problem can be formulated, in a straightforward fashion, as

a special case of the generator problem for finitely

presented algebras [ll]. In our analysis FD inference is a

word problem in a lattice, which reveals much more of its

algebraic structure,

References

1. Aho, A.V1 and Ullman, J.D. “Universality of Data
Retrieval Languages”. Proceedings ofthe Sixth ACM
Symposium on Principles of Programming Languages, ACM
(1979).

2. Beeri, C. and Vardi, M. “Formal Systems for Tuple and
Equality Generating Dependencies”. SIAM J. of
Computing 23,l (February 1984). 76-98. .

3. Crawley, P. and Dilworth, R.P.. Algebraic Theory of
Lattices Prentice-Hall, Inc., , 1973.

4. Enderton, H.B. A Mathematical Introduction to Logic.
Academic Press, Inc., ,1972.

5. Fagin, R. “Horn Clauses and Database Dependencies”.
Journal of the ACM 29,4 (October 1982), 952-985. .

6. Garey, M.R. and Johnson, D.S.. Computers and
Intractability: A Guide to the Theory ofNP-Completeness.
W.H. Freeman and Company,, 1979.

7. Gritzer, G.. Universal Algebra Springer-Verlag New
York Inc., ,1979.

8. Honeyman, P. “Testing Satisfaction of Functional
Dependencies”. Journal of the ACM 29,3 (July 1982),
668-677..

9. Hopcroft, J.E. and Ullman, J.D.. Introduction fo
Automata Theory, Languages, and Computation. Addison-
Wesley Publishing Company, Inc., ,1979.

10. Huet, G. and Oppen, D. Equations and Rewrite Rules:
a Survey. In Formal Languages: Perspectives and Open
Problems, , Eds., Academic Press, ,198O.

11. Kozen, D. “Complexity of Finitely Presented
Algebras”. Proceedings of the Ninth Annual ACM
Symposium on Theory of Computing, ACM SIGACT (May
1977), .

12. Maier, D.. The Theory of Relational Databases.
Computer Science Press, Inc., (1983.

13. Reiter R. On Closed World Databases. In Logic and
Databases,
Plenum Press, (1978..

14. Sadri, F. and Ullman, J.D., “Template Dependencies:
A Large Class of Dependencies in Relational Databases
and its Complete Axiomatization”. JACM (1982).

15. Spyratos, N. “The Partition Model: A Deductive
Database Model”. INRIA Research Report No. 286 (April
1984), .

16. Ullman, J.D.. Principles of Database Systems
Computer Science Press, Inc., (1983.

17. Vardi, M.Y. “Personal Communication”. ().

18. Vassiliou, Y. A Formal Treatment of Imperfect
Information in .Database Management. Ph.D. Th.,
University of Toronto, 1?80.

19. Yannakakis, M. and Papadimitriou, C.H. “Algebraic
Dependencies”. Journal of Computer and System Sciences
25,l (August 1982), 2-41. .

272

273

A BC
- t: 1 2 0

3 2 0

3 9 0

5 4 0

.

K-L ' k 0

K+i h 0

5: IL+1 IL+2 0

274

275

