
Partition Semantics for Relations 
Stavros S. Cosmadakis 

MIT 

Paris C. Kanellakls] 
MIT 

Nicolas Spyratos 
Universite’ de Paris Sud 

Abstract 

Set-theoretic partitions were first used in [15] to provide 

models for relation schemes, relations and dependencies. 

This new point of view of the relational model 

demonstrates that there is a natural extension of functional 

dependencies (FD‘s), which is based on the duality between 

product and sum of partitions. We show that these partifion 

dependencies @‘D’s) have the power to express both 

functional determination and transitive closure of 

undirected graphs, The inference problem of PD’s is sholr;n 

to be the uniform word problem in a lattice. We provide a 

polynomial time algorithm for this natural generalization of 

the FD inference problem. We show how partition 

semantics justify a number of variants of the weak instance 

assumption and investigate the expressive power of PD’s. 

We also provide a polynomial time test for consistency of a 

set of relations with a set of PD’s. 
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1. Introduction 

It is customary in database theory to consider the 

database scheme and logical constraints as sentences from 

predicate calculus and the database itself as an 

interpretation. This relational interpretation either satisfies 

or falsifies the scheme and constraints. An interesting body 

of theory has developed around this approach, particularly 

with respect to special types of logical sentences about 

relations called dependencies (see [16,12] for surveys of the 

area). In this paper we will take a slightly different view, in 

which database scheme, constraints and the database are 

strings of uninterpreted symbols. Interpretations are 

provided using partitions, that is, families of nonempty, 

disjoint sets whose union is a population of objects. This 

new approach allows us to better understand and provide 

nontrivial generalizations to such basic concepts as 

functional dependencies old weak instances [8,18]. 

Parlition semantics, first proposed in [15], reveal the 

algebraic nature of the most common database 

aependency. the functional dependency (FD), Using 

partition semantics we demonstrate that the inference 

problem for FD’s is the problem of infering an equation 

between algebraic expressions from other such equations. 

In more mathematical terms, it is a restricted form of rhe 

uniform word problem in a laftice [3, ,111. This approach, of 

viewing dependency inference as a word problem in an 

equational theory, is similar in spirit to algebraic 

dependency inference[l9], although much closer in its 

details to standard equational theories [lo]: 
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Let +,* be two operators satisfying the lattice axioms 

[3] (see also Proposition 1) and let the attributes of the 

database scheme be considered as constants. Partition 

semantics allow us, without any loss of generality, to treat 

an FD AB-KD as the equation A*B=A*B*C*D. 

Interestingly enough, partition semantics allow us to 

complete the analogy. An equation A=B+ C, where $ is 

the natural dual of l in a lattice of partitions, is a 

dependency expressing a transitive closure condition. In 

general a partition dependency (PD) is an equation e=e: 

where e,e’ are algebraic expressions using +,* and the 

attributes. Since transitive closure cannot be expressed 

using reIationa1 algebra [I], and since, as we show, PD’s 

cannot express multivalued dependencies, the expressive 

power of PD’s is orthogonal to that of other generalizations 

of F-D’s [19,5.2,14]. 

We show that the inference problem for PD’s can be 

solved in polynomial time. For this we solve efficiently the 

uniform word problem in a lattice. We also use this 

algorithm to efficiently reduce the problem of resfing 

consistency of a set of relations with a set of PD’s, to that of 

testing consistency with a set of FD’s 181. 

An intuitive justification of partition semantics is that the 

world consists of a set of objects, for which the tuples in the 

database provide names. Two objects in a set, whose name 

is a particular tuple, cannot be distinguished on the basis of 

this name. The only names with meaning are those of 

nonempty sets. This distinction between nonempty sets 

(blocks of a partition) and the empty set 0 provides us with 

a notion of truth. 

We show that this formal approach leads to a number of 

variants of the weak instance assumption. These variants 

depend on whether we assume an open or closed world 

interpretation [13]. If we assume a closed world 

interpretation, which we formalize using the Complete 

Atomic Data Assumption (CAD) of [15], then testing 

consistency of a database with a set of FD’s becomes NP- 

complete. If we assume an open world interpretation, 

testing consistency of a database with a set of FD’s can be 

done using the efficient weak satisfaction test of [8]. We 

generalize this test to a set of PD’s. 

We assume that the reader is familiar with the standard 

relational terminology in [16,12], as well as, with the 

concept of a weak instance fo; a database and a set of FD’s 

[8,18]. A useful survey of equational theories can be found 

in [lo]. Computational aspects of these theories are 

explored in [ll]. 

We define partition semantics in Section 2. The formal 

definitions are in Section 2.1. Partition dependencies and 

motivating examples, which illustrate functional 

determination and transitive closure, are in Section 2.2. 

This section also contains other possible restrictions on 

interpretations, such as the Complete Atomic Data 

Assumption (CAD). The expressive power of partitions is 

the subject of Section 3. Section 3.1 demonstrates the 

connection with weak instances and contains the lower 

bounds for testing consistency of a database and FD’s when 

we assume CAD. Section 3.2 justifies why PD’s can express 

(without loss of generality) FD’s and symmetric transitive 

closure in a relation. We also show that PD’s cannot express 

multivalued dependencies. A solution to the PD inference 

problem is contained in Section 4. We first present a new 

algebraic view of classical FD inference and then the 

efficient inference algorithm for PD’s. The proof of this 

algorithm uses new techniques for database theory, which 

derive from algebra and the theory of lattices [3,11]. In 

Section 5 we provide a polynomial time test for consistency 

of a set of relations with a set of PD’s; this test combines the 

test of [S] with the efficient inference algorithm for PD’s. 

2. Partition Semantics 
In this Section we summarize the basic concepts of 

partition semantics, first proposed in [15]. 
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2.1. Relations and Partitions 

Let p1 be a finite set of attributes {A1,...,Ak} and 9 a 

countably infinite set of symbols {a,al ,..., b,b, ,... }, such that 

slng=0. A relation scheme is an object R[U], where R is 

the name of the relation scheme and UC%. A tuple t over 

U is a function from U to % If aAd = ai, 15&n = IUl, then 

we represent tuple t as al%...a,, and the restriction oft on a 

subset X of U as 01. A relafion r over U is a set of tuples 

over U. We assume that, in general, there are both finite 

and infinite relations. A database scheme D is a finite set of 

relation schemes {R1[U1],...,R,[U,]} and a database 

d= {rl,.,.,rm} associates each relation scheme Ri[Ui] with a 

relation ri over Ui 

A database is represented, in the natural fashion, by a set 

of tables with the relation schemes as headers, the tuples as 

rows, and each column headed by an attribute. We use d[A] 

to denote the set of symbols appearing in database d under 

all columns hkaded by attribute A. 

We view all the ‘above relational database objects as 

syntactic objects, which we interpret as follows. 

A partition interpretation J is a set of triples { (p(A), nA, 

fA) 1 AC% ), where for each attribute A: 

1. p(A) is a nonempty set, the population of A, 

2. rA is a partition of p(A), the atomic partition of 
A, 

3. fA is a function from g to nAu{O}, such that, 
nA={ fA(x) 1 xE9, f (x)*0 } and 
ifx+y then f,(x)n fJy)= 0. 

Note that nA is a partition, i.e., a family of nonempty, 

disjoint subsets of p(A) whose union is p(A). Also fA maps 

a unique symbol from 5 to each distinct member of nA, 

and maps to 0 otherwise. 

Let us now define two natural operations on partitions. 

Given a partition B of set (or population) p and a partition 

sbf set (or population) p: then their product l is : 

SPIT’={ x 1 x=y-wo, yc77.2~~7’) 

their sum + is : 

n + a’= { x 1 two elements P,Y in pup’are in set x 
if and only if there is a chain of sets x x 
from n or n,‘such that &-c.~, YEX~ 

p 2...xg 

and xlnxi+,fO, for all &<q } 

Note that n*n’is a partition of the population pnp’and 

R + n’is a partition of the pofiulation pup.’ It is standard 

terminology to refer to .members of partitions as blocks. 

Also if p=p’ then l produces the coarsest common 

refinement of IT and r’and + produces theirfinest common 

generalization. It is also easy to verify that the product l is 

associative, commutative, and idempotent. 

We can now use the attributes in 91 and the uninterpreted 

operator symbols l ,+ to build algebraic expressions. We call 

such expressiobs partition expressions; every attribute is a 

partition expression and if e,e’are partition expressions then 

so are (e*e? and (e+ e’). 

Given a partition interpretation J we define the semantics 

(meaning) of a partition expression using structural 

induction and interpreting the l ,+ symbols as partition 

product and sum respectively. 

Let partition expressions e,e; in partition interpret&i& 3, 

have meanings the partitions T,Q’ of populations p,p’ 

respectively, then: 

1. The meaning of attribute A is partition rA of 
population p(A) 

2. The meaning of (e*er ) is partition 9r~‘of 
population pnp: 

3. The meaning of (e+e’) is partition n t s’of 
population pup: 

Given a partition interpretation J we define the meaning 

of a relation scheme R[U], U={ ApAP . . . . A, }, to be the 

same as the meaning of the partition expression 

A,*A,*...*A,. This meaning is well defined because of the 

associativity, commutativity and idempotence of 0. For 

263 



example, the meaning of R[ABC] in 9 is the (composite) 

partition v~*T~*T~ of population p(A)np(B)np(C). 

A partition interpretation 9 also allows us to define the 

meaning of a tuple t in relation r whose scheme is R[U]. 

The meaning of symbol t[A] (the symbol of t in the A 

column) is fA(t[A]). This meaning is either 0 or a block of 

the atomic partition 9rA The meaning of tuple t is 

“,&,(t[4>. n is meaning is either 0 or a block of-the 

composite partition, which is the semantics of RN. For 

example, let tuple abc be in a relation of database d whose 

scheme is R[ABC]. Also let us have in 9 f*(a)=a, fn(b)=b, 

fc(c) = c, where 4 b, c are blocks from partitions vA, nn, 

nC respectively. Then the meaning of t[A] in 9 is a and the 

meaning of t is mbnc. In a different partition 

interpretation S; which is identical with 9 with the exception 

of f,(a)= 0, the meaning of t[A] is 0 and that oft is also 0. 

Note that when there is no ambiguity we will use a for 

f*(a) and abc for mbnc. 

We may now view both database scheme and database as 

syntactic objects with partition interpretations. 

Definition 1: Let d be a database and 9 a partition 

interpretation. 9 is a model for d, or J satisfies d, or scd, 

when: 
VrEd, VtEr n ,&Wl)f% 
where R[U] is the relation scheme of relation r. 

2.2. Dependencies 

In this section we provide means of expressing 

restrictions on partition interpretations, other than the 

restriction of being models for a database d, which was 

presented in Definition 1. 

Definition 2: A purtition dependency (PD) is an equation 

e=e: where e,e’ are partition expressions. A partition 

interpretation 9 is a model for e= e: or 9 satisfies e= e: or 

we= e: if: 

n=n’andp=p: 
where,partitions n,nbf populations p,p’ 
are the respective meanings of e,e’in 3. 

Proposition 1: Let x,y,z be partition expressions, The 

following identities are true in all partition interpretations. 
associativity: 
(x*y)*z=x*(y*z), (x+y)+z=x+(ytz) 
commutativity: x*y=y*x, x ty= yt x 
idempotence: x*x=x, x+x=x 
absorption: xt(x*y)=x,x*(xty)=x 

I 

The above properties show that, given a partition 

interpretation 9 the algebraic structure produced by closing 

its atomic partitions under product and sum is a lattice [3]. 

We denote this lattice as L(S). 

Let U be a set of attributes ( A,,...,A, }. With a slight 

abuse of notation, in the context of a PD we use U for the 

partition expression A,*... *A,. This is consistent with our 

definition of the meaning of a relation schenie. We can now 

define a special important class of partition dependencies. 

Let X,Y be sets of attributes. A functional partition 

dependency (FPD) is a partition dependency of the form 

X = X.Y. It is easy to show that: 

Proposition 2: If j!=X=X*Y and if partitions s,n’of 

populations p,p’are the meanings of X,Y in 9 then: 

1. VxEn, 3yc.rr: xcy 

2. pep: I 

Because of the duality of l , t in the lattice of partitions 

(see Proposition 1) the FPD X=X*Y is equivalent to the 

PD Y =X + Y. Proposition 2 is illustrated in Figure 1. 

Example 1: Assume we have two attributes EMPLOYEE- 

NUMBER and MANAGER-NUMBER and we wish to 

express the fact that: each employee can be associated with 

only one manager. This is analogous to the familiar 

functional dependency for relations 



[16,12] EMPLOYEE-NUMBER -+ MANAGER- 

NUMBER. We express this. constraint as the FPD 

EMPLOYEE-NUMBER = EMPLOYEE-NUMBER . 

MANAGER-NUMBER The rigorous justification of the 

correspondence of the functional dependency X-tY to the 

FPD X=X*Y is contained in Section 3.2. Intuitively the 

above FPD guarantees that two individuals of the 

population of EMPLOYEE-NUMBER in the same block 

Of rEMPLOYEE-NUMBER (e.g., all unlucky individuals 

whose employee number is 13) are also in the same block of 

*MANAGER-NUMBER (e*g*> the set of individuals whose 

manager has manager number 7). A fine point is that in 

each model of #is FPD 

p(EMPLOYEE-NUMBER)cp(MANAGER-NUMBER). 

Therefore, by Proposition 2, MANAGER-NUMBER is 

uniquely determined for any possible EMPLOYEE- 

NUMBER. Note that the semantics in this case allows 

models in which a manager manages individuals who do 

not have employee numbers, although every individual 

with an employee number must be managed by a manager. 

An equivalent way of expressing this functionif 

determination is using the PD EMPLOYEE-NUMBER + 

MANAGER-NUMBER = MANAGER-NUMBER. 

Example 2: Another class of useful facts are ISA 

relationships such as: every cur is a vehicle. A surprising 

fact about partition interpretations is that there seems to be 

no distinction between expressing functional determination 

and ISA relationships. This is because ISA relationships 

implicitly define a function from subset to superset. In this 

example the natural FPD constraint is: CAR = CAR l 

VEHICLE In any model of this FPD 

~(CAR)S~(VEHICLE) and a CAR block functionally 

determines a VEHICLE block. 

Example 3: Let p be a population of cars and p’ a 

population of bicycles, moreover let pnp’= 0. We wish to 

express that: every vehicle is either a car or a bicycle. Let 

CAR-RGS be interpreted as a partition n of p, and 

BICYCLE-RGS as a partition r’of p; (the database cannot 

distinguish between cars with the same car registration or 

between bicycles with the same bicycle registration). Since 

the two populations are distinct s + rk n&r: that is + 

produces the union of two families of blocks. In this case 

one may use the PD: VEHICLE-RGS = CAR-RGS + 

BICYCLE-RGS. 

Example 4: Consider a database d with only one relation 

r representing an undirected graph. This relation has three 

attributes: HEAD, TAIL and COMPONENT. For every 

edge (a,b) in the graph we have two tuples abc and bat in 

the relation, where c is a number which could vary with a 

and b. These are the only tuples in r. Note that by the way 

r was constructed from the graph we may, without loss of 

generality, restrict our attention to models of d with 

p(HEAD)=p(TAIL). We would like to express that: 

component is the connected component in which the arc 

(head tail) belongs. We can do this by restricting partition 

interpretations to: %=(d and COMPONENT = HEAD + 

TAIL). This last example illustrates how by regarding both 

d and a PD as syntactic objects we can express the meaning 

of symmetric transitive closure. 

Example 5: Suppose we wish to keep a relation of cars, 

which are complex objects with characteristics registration 

number and factory serial number. We can express it as a 

composite partition using the semantics of relation 

schemes: CAR = RGS-NUMBER l SERIAL-NUMBER. 

There are some other natural restrictions we might 

impose on our models. Assume J satisfies database d and a 

set of PD’s, we say that: 

1. J satisfies the Complete Atomic Data 
Assumption (CAD) if: 

vAE%, VaEd. 

aEd[A] if and only if fA(a)#O. 

2. J satisfies the Common Atomic Populations 
Assumption (CAP) if: 

vA,BE%. p(A) = p(B). 
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3. In J A,B have disjoint populations if 
PAP = 0 

The CAD assumption produces a closed world[13]. It 

says that the only true atomic facts about attribute A are the 

ones in database d in the columns headed by A, As in 

Definition 1 true is equivalent to having nonempty 

meaning. An interesting fact is that, in contrast to CAD, 

which turns out to be quite restrictive (from a complexity 

point of view), CAP has no significant effect on our 

analysis. Disjoint populations allow us to use + in order to 

express U as in Example 3 above, 

Finally we would like to mention that the lattice 

generated by the atomic partitions of J is not necessarily a 

distributive lattice [3]. We illustrate this in Figure 2 together 

with many of the preceding definitions. 

3. Expressive Power of Partitions 
We are interested in the following question: Given a 

database d and a finite set E of PD’s, is there a partition 

interpretation J such that jt=d and JI=E (i.e., Jl=e for all e 

in E)? We first examine this question in the case where E 

consists of FPD’s; we discover a close connection between 

existence of a partition interpretation and existence of a 

weak instance [8,18] for d satisfying I$ the set of FD’s 

corresponding to the FPD’s in E. The ideas introduced 

motivate a definition of satisfaction of a PD by a database, 

which enables us to study the expressive power of PD’s viz. 

EID’s. 

3.1. Partitions and Weak Instances 

Given a database d and a set E of FPD’s, let q= {X+Y ] 

X=X*Y is in E}. We ask the following two questions: 

a. Is there a partition interpretation J such that jI=d,E? 

b. Is there a partition interpretation J such that j!=d,E 

and J satisfies CAD and CAP? 

Recall that a relation w is a weak instance for a database d 
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iff every tuple of relation R[U] of d appears in the 

projection of w on U [8,18]. The answer to both questions 

above is given in the following 

Theorem 1: 

a There is an J such that j!==d,E iff there is a weak instance 

for d satisfying q. 

b. There is an J such that j!=d,E and Jt=CAD,CAP iff there 

is a weak instance w for d which satisfies l+ and 

w[A] = d[A], for A in 91. 

Proof: 

a. (=+): Say %=d,E and define a relation w over 91 as 

follows: for each i in UAE(L1p(A), w contains a tuple ti, 

where for each attribute A, ti[A] is a if iEaE nA, and i 

otherwise. It is easy to see that w is a weak instance for d: if 

abc is a tuple appearing in relation R[ABC] of d, then an 

bnc;c0, so there is an i such that iEaEsA, iEbcnB, Xc cnC’ 

and therefore ti[ABC]=abc. To see that WI=%, let X-+Y 

be an FD in I+, and suppose there are tuples ti, tj in w such 

that tip] = tj[X]. Then for each A in X 4[A] = tj[A], which 

means i$a for some aEr,,. But J!=X=X-Y, and thus for 

each B in Y i&b for some bEti,, i.e. tJB]=tj[B]. Thus, 

wl=X-+Y. 

(e): Let w be a weak instance for d, WC%. Define j as 

follows: for each A in 91, p(A)= (it ] t is a tuple of w}, and 

for each a in 64, fA(a)={i, ] t[A]=a}. This fA induces 

partition rA. Note that j satisfies CAP. To see that .Jl=d, let 

abc be a tuple in relation R[ABC] of d: there is a tuple tin 

w with t[ABC] = abc, and thus i,EfA(a)nf,(b)n f&c) = anb 

nc, i.e. anbncg0. To see that jl=E, let X=X*Y be an FPD 

in E, and let i,, is be elements such that it,i,EaEa* for each 

A in X. This means tp]=s[X], and since WI=%, t[B]=s[B] 

for each B in Y. But then it,iSEbc7rB for each B in Y, and 

thus J l=x =X*Y. 

b. Same as (a): all we need to observe is that, if 3 satisfies 



CAD and CAP, the relation w defined from J has 

w[A] = d[A] for each A in 91. Conversely, if w[A] = d[A] for 

each A in ‘U, then the partition interpretation J defined 

from w satisfies CAD (it always satisfies CAP). I 

Thus, given d,E we can test in polynomial time whether 

there is an J such that si=d,E, since we can test whether d 

has a weak instance satisfying I$ [S]. However, introducing 

CAD complicates things: 

Theorem 2: Given d,E it is NP-complete to test whether 

there is an J such that J!=d,E and J!=CAD,CAP. 

Proof (Sketch): Membership in NP follows from 

Theorem 1 (b): just guess an appropriate weak instance w 

(w need only contain one tuple for each tuple of d), 

NP-hardness is shown by a reduction from 

NOT-ALL-EQUAL-3SAT [6]: given a Boolean formula ‘p over 

variables x1 ,..,, x, with clauses c1 ,.,., c,, test whether there is 

a truth assignment under which each clause ci has one true 

and one false literal. 

-Fiom cp construct d,E as follows: d has a relation 

RpA,...AJ with two tuples tuI...u,, tvl”.vn, and for each 

clause of cp, say cl=xlvx2v(-x3), d has a relation 

RpA,...A,X,...XJ, with a tuple fw4..,wnal% b3z4...zn. E 

contains X,=X,*A, i= l,...,n, and for clause c1 it contains 

X,*X,*X,=X,* X,*X,*T. Thus, I!$ consists of Xi-A, 

i=l,...,n, and X,X,X,-+T for clause cl. Figure 3 shows an 

example for n=4. 

We now show that cp is satisfiable iff relation 

RfTA,...A,X,... Xn] (see Figure 3) can be filled in so that 

no new symbols are introduced in’ any column, and the 

FD’s in q are satisfied (by Theorem 2 (b), this is 

equivalent to existence of an J such that l!=d,E,CAD,CAP). 

Observe that for each i, s1[XJfs2[XJ, sl[xJ *z~ sJXi]fzi 

(because of the FD Xi-+ Ai), and thus {sl[Xjl, sJXJ} = {ai, 

bi}. Make xi true if sl[XJ = ai, false if sl[Xi] = bi. It is easy to 

see that, because of the FD X,X,X,--+T and the tuple s? we 

will only be able to fill in the rest of the values iff the above 

truth assignment makes one literal of c1 true and one false. 

I 

We remark that, since the partition interpretation 3 

defined .fiom a weak instance w satisfies CAP, introducing 

CAP as a requirement does not change anything; i.e., there 

is an J such that J!=d,E,CAP iff there is a weak instance for 

d satisfying %. However, having CAD alone results in a 

somewhat weaker condition than having CAD and CAP: 

Theorem 1’: 

b.’ There is an J such that %==d,E,CAD iff there is a weak 

instance w for d which satisfies E, and for each tuple t of w 

and each FD X+Y in l$ if t[A]Ed[A] for each A in X, then 

t[B]Ed[B] for each B in Y. 

Prool: By the same construction as for Theorem 1 (a). I 

On the other hand, this new condition is no easier to test: 

Theorem 2’: Given d,E it is NP-complett to test if there is 

an J such that %=d,E,CAD. 

Proof: By a slight modification of the reduction in the 

Proof of Theorem 2. I 

Finally observe that, if d consists of a single relation, all 

conditions collapse to one: dbl!$. 

3.2. Expressive Power of PD’s 

We now restrict attention to databases consisting of a 

single relation r: We want to study what kinds of things 

can be said about r by sets of PD’s. To do this, however, we 

first have to define what it means for r to satisfy a PD. We 

make use of a “standard” partition interpretation of r: 

Definition 3: Let r be a relation over U; I(r) is the 

following partition interpretation: 
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1. for each A in 91, p(A) = {it ] t is a tuple of r]. 

2. for each a in 9, f*(a)= {it ] t[A] = a}. 

Partition nA is induced by fA. Note that I(r) satisfies 

CAP. We also define, given a partition interpretation J, a 

“standard” relation that corresponds to it: 

Definition 4: Let J be a partition interpretation over ~1; 

R(J) is a relation containing a tuple ti for each i in 

UAE21p(A), where ti[A]=a if iEfA(a)EnA, and ti[A]=i 

otherwise. 

Observe that R(I(r)) = r, but I(R(s)) is not necessarily J. 

Aho I(r)l=r for any relation r. These definitions are 

motivated by the Proof.of Theorem 1. By the argument 

there, ri=X+Y implies I(r)!=X =X-Y, and j!=X=X*Y 

implies R(s)i=X-+Y. Thus, if I(r)!==X=X*Y then 

R(I(r))l=X-tY, i.e. r!=X-+Y. This shows that rl=X+Y iff 

I(r)i=X=X*Y. This supports our claim that the FPD 

X = X*Y is the correct counterpart of the FD X-+Y. Taking 

this observation one step further, we introduce the 

following 

Definition 5: A relation r satisfies a PD e (notation: 

rl=rele) iff I(r)ce. 

Given this definition, one easily sees the following: 

1. rk=, ,C= A*B iff for any tuples t,sEr, (t[C] = s[C] 
iff $A] = s[A] a& t[B] = s[B]). 

2. r!=, ,C = A + B iff for any tuples t,sEr, 
(t[Cj=s[C] iff there is a sequence so’...,s, of 
tuples of r with t=s , s,=s, and for i=O ,..., n-l 
si[A]=si+l[A] or~JB!=sl+~[B]). 

Having reduced our models to relations, it becomes 

evident from (1) that rl==,,X=X*Y iff r!=X-Y, and from 

(2) that the relation of Example 4 correctly represents the 

transitive closure of an undirected graph iff it satisfies 

COMPONENT = HEAD + TAIL. 

We now want to compare the expressive power of PD’s to 

that of previously studied database constraints, namely 

EID’s [5]. Let us say that an EID u is expressed by a set E of 

PD’s iff for any relation r, rl=u iff r~==,lE. From the 

algebraic properties of 0, the PD X=Y*Z is equivalent to 

X=X*Y*Z A Y*Z=X*Y*Z, and therefore it is expressed 

by the set {X-tYZ, YZ-+X). However, because of Example 

4 it should come as no surprise [l] that the PD C= A t B 

cannot be expressed by any set of EID’s: 

Theorem 3: Let 91= ABC; the PD C= A t B cannot be 

expressed by any set of first-order sentences. 

Proof: Let Z be a set of first-order sentences (over a 

single ternary relation symbol R) which expresses 

C=AtB. For k>l, let qk be the following first-order 

formda: 

“t[C]=s[C] and there is no sequence se,.,.,sk such that 

t=sg’ sk=s, and for i=O,...,k-1, ~i[A]=s~+~[Al or 

SiBI =Si+ IPI” 

(one can easily write q.Q Observe that the relation r in 

Figure 4 is a model for ZU{cp,}: rl=re,C=AtB so r!=Z, 

and clearly rtvk’ Thus, any finite subset of X’=Zu{q,: 

k>l} has a model, and thus by the Compactness Theorem 

[4] Z’has a model, say r’. But this is a contradiction, since r’ 

!=Z and thus r’satisfies C= At B, and on the other hand r’ 

l=qk for all k>l and therefore it does not satisfy C=At B. 

I 

On the other hand, an EID as simple as an MVD cannot 

be expressed by PD’s: 

Theorem 4: Let %r=ABC; the MVD A+-+B cannot by 

expressed by any set of PD’s. 

Proof: Let E be a set of PD’s which expresses A-+-tB. 

Referring to Figure 5, relation r1 satisfies A-t-+B, so 

I(r$=E, and L(I(rJ) (the lattice obtained from I(r$ by 

268 



closing under sums and products) satisfies E. On the other 

hand, r2 does not satisfy A-t+B so I@) does not satisfy JZ, 

and L(I(r$) does not satisfy E. But this is a contradiction, 

because L(I(r$), L(I(r,)) are isomorphic, and thus they 

satisfy exactly the same PD’s. I 

4. Dependency Inference 
Given a set E of PD’s and a PD e, we want to know if 

Et==rele, i.e. if e holds in every relation that satisfies E. We 

first observe that this question can be approached as a 

(uniform) word problem for a certain class of algebraic 

structures, namely lattices. 

Lemma 1: Etrele iff Et=l,te, i.e. iff e holds in every 

lattice that satisfies E. 

Proof: (c): Suppose Eclate, and let r be a relation that 

satisfies E. Then I(r) and thus the lattice L(I(r)) 

obtained by I(r) by closing under sums and products 

satisfies E. But then e holds in l(r), and thus r satisfies e. 

(*): Suppose Ebrele, and let L be a lattice satisfying 

E. L is isomorphic to a sublattice of the lattice of partitions 

of time set X [3]. Translated into our terminology, this 

means that we can find a partition interpretation 9, 

satisfying CAP, such that L is isomorphic to L(J). Thus, 

JI=E. Now consider the relation R(J)=r: since .%=CAP, 

I(R(j))= 9, therefore rkreIE. By the hypothesis rl=,e,e, 

which means I(r)= jce. Thus L(.Q=e, and e holds in L. I 

Thus, Ec,,e can be viewed ES a word problem, since a set 

with two binary operations +,* is a lattice iff the following 

set of axioms (LA) is satisfied: 

1. x t x = x, x*x=x (idempotency) 

2. x t y = y + x, x* y = 9.x (commutativity) (Intuitively, p = idq iff the PD p = q holds in all relations). 

3.xt(y+z)=(x+y)tz, 
(associativity) 

x*(y*z)=(x*y)*z 

4. x t (x*y)=x, x*(x + y)=x (absorption) 

I.e., Ek,ate iff e is implied from E u LA, 

in particulari let eU be the FPD corresponding to an FD 

u (e,, is X=X*Y if (T is X-+Y), and let E, be the set of 

FPD’s corresponding to a set of FD’s Z. Since rk:cr iff 

rt=,leO, ZI=U iff E$=relea. Thus, the implication problem 

for FD’s can be reduced, in a straightforward way, to the 

(uniform) word problem for idempotent commutative 

semigroups (structures with a single associative, 

commutative and idempotent operator). On the other hand, 

since X = Y is equivalent to X=X-Y and Y =Y l X, we can 

also reduce the above word problem to the implication 

problem for FD’s. 

We now present a polynomial-time algorithm for the 

implication problem for PD’s. Suppose we are given a set E 

of PD’s, and a PD p = q: we want to test if Et=,,,p = q. 

Consider the set W(%) of partition expressions over 91, 

t, l : we define several binary relations on W(U). First, 

define lid (identically less-than-or-equal) inductively as 

follows: 

1. A&A, A in ~1. 

2. if p&r, q&r then p + qsidr. 

3. if p&r then p*q&r. 

4. if rgidp, rsidq then rIidp*q. 

5. if rlidp then r&p + q. 

C-t,* are meant here as uninterpreted operations on 

partition expressions, which return another expression). 

Now define = id as folIows: p = idq iff (pIid nndqsidp). 

The relation =id is an equivalence relation, and in 

particular it is a congruence (see [3] for a long and tedious 

prod: i.e., if Plzidql, &=idq2 then P1+p~=~dq~+q2. 
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equivalence classes Of = id The structure obtained this way 

is a fartice 131. 

and P1’P2=idql’q2’ Thus, one can define +, l on the set of S. from &r derive p*q<gr. 

6.fiom r<,p, r$q derive r&p*q. 

7. from r&p derive r$p + q. 

We now capture the effect of E: define the following 

relation = sub on W(U) : p=,,,q iff q can be obtained 

from p by substituting wi for one or more occurences of zi, 

where zi= wi (wi=zi) is in E, i=O ,..., n for some n. It is 

Prooi: (a)*(b): if p+,q, then LB does not satisfy p=q, 

whereas it satisfies E. Thus, b is a counlerexample to 

Eb=,,tp = q. 

easily verified that = sub is a congruence. 

Now define =E as the sum of =id, =,,& this means that 

the equivalence classes of =E form a partition of W(Q) 

which is the sum of the partitions induced by = id, = sub. In 

other words, p = Eq iff there is a sequence qu,...,q, such that 

(b)*(c): by an easy induction on the definition of =E 

(c)=(a): it is easy to see (by induction) that if p$q can 

be proved, then psq in every lattice satisfying E. Thus, 

p =q in every lattice satisfying E, i.e. E~==,,tp = q. I 

p=qg, q,=q, and for i=O,...,n-1 qi=idqi+l ofqi=subqi+l, We can now prove our main result: 

As a sum of two congruences, =E is also a congruence 

[7]. One can also observe that the equivalence classes of 

= E form a lattice b under the induced + , 0: just check 

LA, e.g. p+~=~p because p+~=~~p, and in general if 

p = idq then p = Eq. Note that b satisfies the PD p = q iff 

P=Eq* 

We now show that the relation =E captures the PD’s 

implied by E, and give a proof system for implication of 

PD’s: 

Lemma 2: The following statements are equivalent: 

a. E+=,,,P = q 

b.p=Eq 

c. p$.q and q&p can be proved using the, following 

rules: 

Theorem 5: There is a polynomial-time algorithm for 

inference of PD’s. 

Proof: Observe that, if there is a proof that p+q, then 

this proof need only mention subexpressions of p, q, and of 

the expressions appearing in E. Thus, we can just write 

down these expressions (say, as in [ll]) and repeatedly 

apply the rules, until no new inference can be made. I 

Since inference of FD’s can be seen as a special case of 

inference of PD’s, the problem is actually polynomial-time 

complere [17]. However, in the special case where E is 

empty it can be solved in logarithmic space [9] as follows: 

we first rewrite p = q as a Boolean tree with leaves of the 

form AsB, A,B in 21. We then replace A<A by true and 

A<B by&/se if A*B, and evaluate the resulting tree. 

Example: A+ B = CD is (recursively) rewritten as 

1. A+A, A in p1. A+B@D A C*D<A+B 

2. zlEw, wsEz for z=w in E 

3. from psEq, qSEr derive psErs 
(A+B<C A A+B_<D) A (C*D<A V C*DsB) 

4. from p<,r, q$r derive p + q<,r. ((A<C A B<C) A (A<D A BID)) A ((CIA V D<A) 

v (C<B v DSB)) 
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5. Testing Satisfaction of PD?s 
Given a database d and a set of PD’s E, we want to test if 

there is a partition interpretation J such that Ji==d,E. We 

first give a characterization in terms of (general) weak 

instances: 

Lemma 3: There is an J such that jt=d,E iff there is a 

weak instance for d satisfying E 

Proof: Let w be a weak instance for d satisfying E. It is 

then easy to see (as in the Proof of Theorem 1) that I(w)!=& 

and of course I(w)r=E 

Conversely, let J be a partition interpretation satisfying 

d,E. Consider the relation R(J): As in the Proof of Theorem 

1, R(J) is a weak instance for d. and thus it remains to show 

that it satisfies E, i.e. that I(R(s))cE. Now this partition 

interpretation may- be different from 9, since it satisfies 

CAP while J in general does not; however, one can observe 

that L(I(R(j))) is isomorphic to L(j), and therefore 

I(R(j))kE since ji=E. I 

We now outline how to test whether there exists a weak 

instance for d satisfying E 

First, we replace E by a set E’of PD’s of the form C= A*B 

or C= A+ B, where A,B,C are attributes from a universe ‘U’ 

containing 91: this is done by (recursively) replacing 

X=Y*Z by the PD’s X=C, Y=A, Z=B, C=A*B, where 

A,B,C are new attribute names. It is easy to check that 

there is a weak instance for d satisfying E iff there is a weak 

instance for d satisfying E’. 

Let us denote by p-tq, where p,q are partition 

expressions, the PD p = p*q. This slight abuse of notation is 

consistent, since the FPD X-tY is actually equivalent to the 

FD X+Y. Now a PD C= A*B in E’can be replaced by the 

FPD’s C-+AB, AB+C, and a PD C=A+B in E’can be 

replaced by the PD’s A+ B+C, C-+A+B; furthermore, the 

PD A+B+C can be replaced by the FPD’s A+C, B+C. 

We now have a set F consisting of FPD’s and of PD’s of the 

form &At-B, and it is obvious that there is a weak 

instance for d satisfying E’iff there is a weak instance for d 

satisfying E 

Now compute (using the algorithm of the previous 

Section) all consequences of F of the form A+B, A,B in ‘u’, 

and add them to F. Furthermore, if now F contains A-+B 

and C+A + B, replace &A+ B by C-+B. Let F’be the set 

of FPD’s in F. The crucial fact is given in the following 

Lemma 4: There is a weak instance for d satisfying E’iff 

there is a weak instance for d satisfying F: 

Proof (Sketch): The “only if’ direction is obvious. For 

the converse, let w be a weak instance for d satisfying F: 

and assume that w does not satisfy some PD C-tA+ B in E’ 

We can pick two tuples t,s such that t[ABC]=a,b,c, 

s[ABC]=%b2c, and add to w a new tuple s such that 

s[ABC] = alb,c and the relation w1 obtained satisfies F: But 

then we can repeate the argument to obtain relations wz, w3 

and so on. The relation ww obtained after an infinite 

number of steps is a weak instance for d satisfying E; 

because any violation of some PD C+A+B appearing at 

any stage has been taken care of at some later stage. I 

Theorem 6:There is a polynomial-time algorithm to test 

whether a given database d is consistent with a set E of 

PD’S. 

Proof: Using the polynomial-time algorithm for inference 

of PD’s given in Section 4, we can construct the set F: By 

Lemma 4, we can then use the chase algorithm of [8] to test 

if d is consistent with F: I 

6. Conclusions 
We have shown that: (1) the inference problem for PD’s 

and (2) the problem of testing consistency of a set of 

relations with a set of PD’s are in polynomial time. Both 

proofs use algebraic techniques and make use of finite and 
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infinite relations. If we restrict ourselves to finite relations 

we are faced with hardquestions about finite realizations of 

lattices [3]. 

We would like to point out that the FD inference 

problem can be formulated, in a straightforward fashion, as 

a special case of the generator problem for finitely 

presented algebras [ll]. In our analysis FD inference is a 

word problem in a lattice, which reveals much more of its 

algebraic structure, 
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A BC 
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3 2 0 

3 9 0 

5 4 0 

. 

K-L ' k 0 

K+i h 0 

5: IL+1 IL+2 0 
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