On the Analysis of Cooperation and Antagonism in Networks of Communicating Processes

Paris C. Kanellakis* Labor
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
U.S.A.

Scott A. Smolka†
Department of Computer Science
SUNY at Stony Brook
Stony Brook, NY 11794
U.S.A.

Abstract

We propose a new method for the analysis of cooperative and antagonistic properties of communicating finite state processes (FSPs). This algebraic technique is based on a composition operator and the notion of “possibility equivalence” among FSPs. We demonstrate its utility by showing that potential blocking, lockout, and termination can be efficiently decided for loosely connected networks of tree FSPs. If not all acyclic FSPs are trees, then the cooperative properties become NP-complete and the antagonistic ones PSPACE-complete. For tightly coupled networks of tree FSPs, we also have NP-hardness. For the considerably harder cyclic case, we provide a natural extension of the method as well as a subcase reducible to integer programming with a constant number of variables.

1. Introduction

There has been a great deal of interest in recent years in algebraic approaches to the specification and verification of concurrent systems [e.g., M, Br, HBR, H]. The motivation behind these approaches is to simplify the analysis of potential termination, blocking, deadlock, lockout, liveness and other properties of communicating processes. These tasks are central to both concurrent programming and network protocol validation [e.g., BZ, CES, H, L, OL, RT, S, T]. Unfortunately, if no use of the particular problem structure is made, the general computational problems are usually intractable [L, T, GJ, RT].

We demonstrate the use of an algebraic method which indeed exploits the particular structure of the given problem. We present efficient techniques for the analysis of many properties of a system of communicating finite state processes. These properties refer both to cooperating and to antagonistic processes.

Our model is a network of finite state processes. A non-empty transition (action) of a process represents an instruction for this process to exchange a “handshake” with another specified process. An empty transition (r-move) represents an internal change of the process undetectable by the outside world.

Two processes P, Q can be composed into a combined process $P \parallel Q$, which represents their behavior with respect to the rest of the world and partially hides the interaction between them from the rest of the world. The composition of all processes in a network results in one global process with only r-moves. Analysis of the reachability properties of the global process is a standard, albeit inefficient, way of studying the behavior of the network.

It is reasonable to assume that the global process will change state if possible. This continuity rule (such as the one in [L]) forces system evolution to take place. Let $N = \{P_1, P_2, \ldots, P_m\}$ be our network of processes, $P = P_1$ the process in the network we wish to study, and $Q = P_2 \parallel P_3 \parallel \cdots \parallel P_m$ the rest of the network which P views as a process. (Note that intentionally $|$ is devised to be associative and commutative.)

Process P, due to branching actions in its state diagram and to r-moves, can make choices that affect the behavior of the system. How must P schedule its choices so that it evolves in a “desirable fashion”? By desirable fashion we mean "reaches an accept state" for an acyclic (finite) process and "never stops" for a cyclic (infinite) process. We study three related questions which appear to be fundamental:

(a) Can P make its choices randomly? That is, is it guaranteed to evolve desirably no matter what its choices are? We call this property unavoidable success. Its negation is sometimes known as potential blocking.
(b) Can P make its choices intelligently and locally? That is, can it schedule its choices based only on its partial information about the system and still evolve desirably no matter how antagonistic the other processes are? We call this property \textit{success in adversity}. This is a simple and yet complete version of the no-lockout problem posed in [L].

(c) Is it even possible for P to evolve desirably? That is, can P and the rest of the network collaborate to achieve the desired evolution of P? We call this property \textit{success with collaboration}. It is the weakest of the three notions and does not correspond to any realistic scheduling strategy. It is sometimes known as \textit{potential termination}.

A reasonable assumption about many networks N is that processes are “loosely interconnected”. That is, the graph representing which pairs of processes can handshake has a low degree of connectivity. This C_N could be a tree, a ring, or more generally what we call a k-tree. The sparsity of C_N is the problem structure we would like to take advantage of using our algebraic method. For simplicity, let us think of C_N as a tree with P, the \textit{distinguished} process, determining its center.

Two critical choices in our method of analyzing P’s behavior in context Q are:

1. the choice of composition operator,
2. the choice of equivalence notion among processes.

The composition operator must be associative, commutative, and have the following property: If in a composition operation $R_1 || R_2$ we replace R_2 with an equivalent R_2', the new composition $R_1 || R_2'$ is equivalent to $R_1 || R_2$. Also, the equivalence notion must be sufficient to characterize unavoidable success, success in adversity, and success with collaboration.

We define the appropriate operator $||$ for acyclic processes in Section 2.2, and a technical variant of it for cyclic processes in Section 4. The right notion of equivalence is a refinement of the [HBR] failure equivalence, and is based on the possibilities $\text{Poss}(R)$ of a process R. A possibility (s, Z) of a process is a pair consisting of (1) a string of transitions s bringing the process to a state it cannot change silently and (2) a set Z of all possible next transitions at this state.

Using $||$, we combine processes from the leaves of C_N towards the center, always making sure that possibilities are preserved. We believe that this is the natural organized analysis of our generally hard combinatorial questions. We show that $||$ and $\text{Poss} (\cdot)$ are the appropriate choices because of the efficiency in solving the finite case, and the small modification necessary to extend the finite case to the harder infinite case.

We first show that if we have straight-line processes all the questions of success become one that can be answered easily by a causality argument (Proposition 1). If we have small tree processes interconnected in a tight fashion, unavoidable success is co-NP-complete and success with collaboration is NP-complete (Theorem 1).

These are improvements on bounds derived in [T] for a different process model. For success in adversity of loosely interconnected acyclic processes, where the distinguished process describes an exponential number of paths, we show FSPACE-completeness (Theorem 2). This demonstrates the harder game nature of antagonism versus collaboration (which is in NP) in a simpler fashion than was done in [L]. The NP-hardness bounds of the acyclic case become FSPACE-hardness bounds in the cyclic case. Exponential bounds, similar to [L], can be shown for success in adversity (Proposition 2).

These intractability results provide the setting for our main concern, which is the choice of $||$ and $\text{Poss} (\cdot)$ and their use in showing that all three notions of success can be efficiently decided for loosely interconnected networks of tree processes (Theorem 3). Lemmas 2 (for acyclic processes) and 2' (for cyclic processes) are critical to the analysis. Lemmas 3, 4, 5 express the notions of success in terms of possibilities and analyze success in adversity as a game of partial information [R] between P and Q. Theorem 3 demonstrates that possibilities provide an efficient data structure in this case.

Their are two indications that our approach can provide a practical heuristic for the harder case of loosely interconnected cyclic processes. One is the simple modification of composition (Section 4), which preserves most of the algebraic properties of the acyclic case. The notion of possibilities is not modified at all, however it can no longer provide an efficient data structure in the worst case [KS]. The second indication is that using the weaker “language equivalence” notion, our method efficiently solves a special case of the success-with-collaboration question; i.e. in tree networks of small processes using only one type of handshake. Despite this problem’s restricted nature, we have had to use the powerful technique in [Le] to maintain efficiency.

Section 2 contains our model, Section 3 the analysis of the acyclic case, and Section 4 the extensions and analysis for the cyclic case.

2. The Model

2.1. Networks of Processes

The finite state process, the basic building block of our model, closely resembles the nondeterministic finite state automaton (NFA) of the classical theory of computation.

\textbf{Definition 1:} A Finite State Process (FSP) is a quadruple $<K, p, \Sigma, \Delta>$, where:

1) K is a finite set of states;
2) $p \in K$ is the start state;
3) Σ is a set of symbols called actions, and $\tau \notin \Sigma$ is a special symbol called the \textit{unobservable action};
4) $\Delta \subseteq K \times (\Sigma \cup \{\tau\}) \times K$ is a relation called the \textit{transition relation}.
We also assume that every state in K is reachable from the start state p using some sequence of transitions.

An FSP can be represented as a directed graph, whose nodes are the states and, for each $(p, \lambda, p') \in \Delta$, there is an arc from state p to state p' labeled by λ. This syntax is identical to that of NFAs with empty transitions when all states are accepting states. We will use capital letters P, Q, \cdots to denote FSPs and small letters p, q, \cdots to denote states.

Let $s \in \Sigma^t$ and p, p' be states of an FSP. If $s = \epsilon$ (i.e. s is the empty string), we say that $p \xrightarrow{\approx} p'$ when there is a sequence of k arcs in the graph of the FSP from p to p' with labels δ_i, $k \geq 0$. (Obviously always $p \Rightarrow p$.) If $s = s_1s_2 \cdots s_t, s_i \in \Sigma, 1 \leq i \leq t$, we say that $p \xrightarrow{\approx} p'$ when there is a sequence of $k_0 + k_1 + \cdots + k_t + t$ arcs in the graph of the FSP from p to p' with labels $\delta_{k_0}, \delta_{k_0+k_1}, \cdots, \delta_{k_0+k_1+k_2}, \cdots, \delta_{k_0+k_1+k_2+k_t}, k_0, k_1, \cdots, k_t \geq 0$. We distinguish between τ and ϵ because the unobservable action τ plays a special role in distributed computation [M].

Since there is no distinction between "accept" and "reject" states, the only feature that distinguishes FSP states is the absence of certain transitions. Let p be a state and $s \in \Sigma^t$. We say that $p \xrightarrow{\approx} \text{dead}$, when there is no p' such that $p \xrightarrow{\approx} p'$. This concept is formalized in [HBR] as the failures of state p (or Fail (p)).

$$\text{Fail} (p) = \{(s, Z) | s \in \Sigma^t, Z \subseteq \Sigma \text{ such that: } \exists p' (p \xrightarrow{\approx} p') \text{ and } (\forall z \in Z, p' \xrightarrow{\approx} \text{dead})\}$$

Let $<K, p, \Sigma, \Delta>$ be an FSP and let G be the directed graph representing it. If G is a path we have a linear FSP; if it is a tree (rooted at p) we have a tree FSP; and if it is a directed cyclic graph with single root p, we have an acyclic FSP. A state of the FSP with no transitions leaving it is called a leaf.

The meaning of the actions of an FSP is messages exchanged with other FSPs. For example, if $x \in \Sigma_1 \cap \Sigma_2$ then x is a message that FSP 1 could exchange with FSP 2. As will be clear from the definition of composition (given in the following subsection), the message exchange is in the form of a "handshake" between the two processes. Intuitively, no distinction is made between send and receive. A message can only be exchanged between two processes, i.e. communication is point-to-point. The meaning of a τ is a step inside the FSP invisible to the outside world.

Definition 2: A network N of processes is a set of m FSPs, $N = \{P_1, P_2, \cdots, P_m\}$, where we let P_i denote $<K_i, p_i, \Sigma_i, \Delta_i>$, and

1) the K_i's are distinct sets of states, $1 \leq i \leq m$;
2) each $x \in \bigcup \Sigma_i$ belongs to exactly two process sets of actions.

Therefore a network N is a closed system of communicating processes. Since each action symbol belongs to exactly two processes, we can describe the potential to communicate using a labeled undirected graph C_N. The nodes of C_N correspond to the processes in N and there is an edge $\{i, j\}$ between nodes i and j if $\Sigma_i \cap \Sigma_j \neq \emptyset$. The label of the edge $\{i, j\}$ is $\Sigma_i \cap \Sigma_j$ (i.e. process p_i can communicate with process p_j using any $x \in \Sigma_i \cap \Sigma_j$). If C_N is a tree (ring), we say that network N is a tree (ring).

Let N be a network of processes with $C_N = (V, E)$, and π a given partition (V_1, V_2, \cdots, V_t) of V into disjoint sets. We will call N a k-tree if:

(a) \(|V_i| \leq k, (i = 1, 2, \cdots, l) \)

(b) the graph on nodes $\{1, 2, \cdots, l\}$ and edges $\{i, j\}$ where E contains an edge with endpoints in V_i and V_j is a tree.

Note that a tree network is a 1-tree, a ring network a 2-tree, and if the largest biconnected component of C_N has size k we have a k-tree.

2.2. Process Composition: Algebraic Properties

We can now describe the interaction of processes in a network using the algebraic operation of composition (\models).

Definition 3: Let N be a network of FSPs and $P_1 = <K_1, p_1, \Sigma_1, \Delta_1>$, $P_2 = <K_2, p_2, \Sigma_2, \Delta_2>$ two distinct processes in N. Let:

$$P_1 \times P_2 = <K_1 \times K_2, (p_1, p_2), (\Sigma_1 \cup \Sigma_2), \Delta>$$

where the new transition relation Δ is defined as follows:

if $(q_1, \lambda, r_1) \in \Delta_1$ and $(q_2, \mu, r_2) \in \Delta_2$ then

if $\lambda \in (\Sigma_1 \cup \{\tau\}) - \Sigma_2$ then

$((q_1, q_2), \lambda, (r_1, q_2)) \in \Delta$

if $\mu \in (\Sigma_2 \cup \{\tau\}) - \Sigma_1$ then

$((q_1, q_2), \mu, (r_1, q_2)) \in \Delta$

if $\lambda = \mu \in \Sigma_1 \cap \Sigma_2$ then

$((q_1, q_2), \lambda, (r_1, r_2)) \in \Delta$

The FSP $P_1 \cap P_2$ is $P_1 \times P_2$ restricted to states reachable from the start state (p_1, p_2).

The FSP $P_1 \parallel P_2$ is $P_1 \cap P_2$ with all actions in $\Sigma_1 \cap \Sigma_2$ replaced by the unobservable action τ. $P_1 \parallel P_2$ is the composition of P_1 and P_2.

Let N be the network of FSPs $\{P_1, P_2, \cdots, P_m\}$. The transitions of $P_1 \times P_2$ are either the moves of P_1 with respect to P_3, \cdots, P_m, or moves of P_2 with respect to P_3, \cdots, P_m, or simultaneous moves occur-
ring whenever \(P_1 \) and \(P_2 \) can "handshake". \(P_1 \cap P_2 \) restricts \(P_1 \times P_2 \) to the relevant moves, i.e., those reachable from the start state. In \(P_1 \cap P_2 \) we have the information of which were the "handshakes" of \(P_1 \) and \(P_2 \). \(P_1 \not|\not| P_2 \) hides these "handshakes" from the other processes.

Example: In Figure 1a we have an example of a tree network \((C_N)\) of three processes \(\{P_1, P_2, P_3\}\), where \(P_1\) is a tree process, \(P_2\) an acyclic process, and \(P_3\) cyclic. \(P_1 \times P_2\) is illustrated in Figure 1b, \(P_1 \cap P_2\) is the part of \(P_1 \times P_2\) reachable from state \((1, 1)\). Finally, the composition \(P_1 \not|\not| P_2\) is in Figure 1c; this operation transforms \(C_N\) into \(C_N'\).

By performing a sequence of compositions on the processes of a network \(N\), we can produce new processes whose states are, in essence, tuples of states of the processes in \(N\).

Lemma 1: Let \(P_i, P_j, P_k\) be three distinct FSPs of a network \(N\). Then:
\[
P_i \not|\not| P_j \not|\not| P_k \implies (P_i \not|\not| P_j) \not|\not| (P_j \not|\not| P_k)\]

Since the states of the processes \(P_1, P_2, \ldots, P_m\) of \(N\) are distinct, we may, without loss of generality, disregard the order of states in tuples. For example, if \(q_i \in K_i, q_j \in K_j\), and \(q_k \in K_k\), then composite state \((q_i, q_j)\) is the same as \((q_j, q_i)\), and \((q_i, (q_j, q_k))\) is the same as \(((q_i, q_j), q_k)\). If we follow this convention in naming composite states, Lemma 1 says that \(\not|\not|\) is commutative and associative.

A consequence of Lemma 1 is that the process \(P_1 \not|\not| P_2 \not|\not| \cdots \not|\not| P_m\), \(1 \leq i_1 < i_2 < \cdots < i_k \leq m\), is well-defined. A state of this new process is a tuple composed of states from \(P_{i_1}, P_{i_2}, \ldots, P_{i_k}\).

The associativity of \(\not|\not|\) is a direct consequence of our assumption that action symbols are shared by exactly two processes in the network, and would otherwise not be true [M].

Possibilities of an acyclic FSP

The operation of composition (\(\not|\not|\)) in a network of processes has a number of interesting properties. In particular it matches well with the notion of possibilities, which will be a powerful tool in analyzing FSPs.

Definition 4: Let \(P = <K, p, \Sigma, \Delta>\) be an acyclic FSP. The *language of \(P\) and the possibilities of \(P\) are given as:
\[
\text{Lang}(P) = \{s \mid s \in \Sigma^*, \text{ such that: } \exists q, p \xrightarrow{r} q\}.

\text{Poss}(P) = \{(s, Z) \mid s \in \Sigma^*, Z \subseteq \Sigma, \text{ such that: } \exists q, p \xrightarrow{r} q\}.

The possibility \((s, Z)\) is illustrated in Figure 2a. It is a pair consisting of a string \(s\) and a set \(Z\) of actions. The string \(s\) takes the process from the start state \(p\) to a state \(q\) with no outgoing \(r\)'s and with exactly the set of actions in \(Z\) as outgoing actions.

Note that \((s, Z) \in \text{Poss}(P)\) implies that \(s \in \text{Lang}(P)\), and \((s, \Sigma - Z) \in \text{Fail}(P)\). The sets \(\text{Fail}(\cdot)\) and \(\text{Poss}(\cdot)\) are illustrated in Figure 2b, where it is also demonstrated that \(\text{Fail}(P) = \text{Fail}(Q)\) does not imply \(\text{Poss}(P) = \text{Poss}(Q)\).

For acyclic FSPs it is also easy to show that \(\text{Poss}(P) = \text{Poss}(Q)\) implies that \(\text{Fail}(P) = \text{Fail}(Q)\). Thus the equivalence relation on acyclic FSPs induced by the possibilities is a refinement of the [HBR] failure equivalence.

The set \(L = \{(s \mid (s, \emptyset) \in \text{Poss}(P)\}\) is the language of strings accepted by the leaves of the acyclic process \(P\).

We now show that possibility equivalence is a congruence with respect to composition.

Lemma 2: Let \(P, P_1, P_2\) be acyclic FSPs. Then:
\[
\text{Poss}(P_1) = \text{Poss}(P_2) \implies \text{Poss}(P \not|\not| P_1) = \text{Poss}(P \not|\not| P_2), \text{ and }

\text{Lang}(P_1) = \text{Lang}(P_2) \implies \text{Lang}(P \not|\not| P_1) = \text{Lang}(P \not|\not| P_2).

Proof: If \(\text{Poss}(P_1) = \text{Poss}(P_2)\) then \(\text{Lang}(P_1) = \text{Lang}(P_2)\). By ignoring (without loss of generality) symbols not present in the transition diagrams of \(P_1\) and \(P_2\), we must have that \(\Sigma_1 = \Sigma_2\). Let \((s, Z) \in \text{Poss}(P \not|\not| P_1)\); we will show that \((s, Z) \in \text{Poss}(P \not|\not| P_2)\).

Symmetry this will suffice.

The string \(s\) over the alphabet \(\Sigma \cup \Sigma_1 = (\Sigma \cap \Sigma_1) \cup Z\) is a subset of this alphabet. There exists a state in \((p', p_1')\) in \(P_1 \not|\not| P_1\) such that \((p, p_1) \xrightarrow{r} (p', p_2')\). By tracing the path that serves as a witness to the fact that \((p, p_1)\) goes to \((p', p_2')\), we can construct two strings \(t \in \Sigma^*\) and \(r \in \Sigma_1^*\). These two strings are subsequences of \(s\), with additional matching symbols from \(\Sigma \cap \Sigma_1\) such that \(p \xrightarrow{r} p'\) and \(p_1 \xrightarrow{r} p_1'\) in FSPs \(P\) and \(P_1\), respectively. Therefore the possibilities \((t, Y) \in \text{Poss}(P)\) and
Fail(P_3) = (\{c\} \times 2^{(b,c)}) \cup (\{b\} \times 2^{(b,c)}) \cup (\{c\} \times 2^{(c)})

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1}
\caption{Figure 1}
\end{figure}
For these possibilities we must have that $Y \cap Y_1 = \emptyset$ and $(Y \cup Y_1) - (\Sigma \cap \Sigma_1) = Z$ (recall $P \parallel P_1$'s construction and that there are no τ-moves from (p', p'_1)). Since $\text{Poss}(P_1) = \text{Poss}(P_2)$, we have that $(r, Y_1) \in \text{Poss}(P_2)$. Thus in $P \parallel P_2$ we can show that $(p, p_2) \Rightarrow (p', p_2')$ by simulating the previous decomposition of s into t and r, where p_2' is a state in P_2 witnessing the fact that $(r, Y_1) \in \text{Poss}(P_2)$. The transitions out of (p', p_2') in $P \parallel P_2$ are exactly labeled by the symbols in Z, since $Y \cap Y_1 = \emptyset$, $(Y \cup Y_1) - (\Sigma \cap \Sigma_2) = (Y \cup Y_1) - (\Sigma \cap \Sigma_1) = Z$, and no τ-moves leave p' or p_2' in P and P_2, respectively.

That $\text{Lang}(P_1) = \text{Lang}(P_2)$ implies $\text{Lang}(P \parallel P_1) = \text{Lang}(P \parallel P_2)$ also follows from an argument similar to the one above.

![Diagram](image)

(a) no outgoing τ-moves from q

b a τ

τ

τ

p_2

p_2

p_1

$\text{Fail}(P_1) = \text{Fail}(P_2) = \{\varepsilon, a, b\} \times 2^{\{a,b\}}$

$\text{Poss}(P_1) = \{\varepsilon, a, b\} \times \emptyset$

$\text{Poss}(P_2) = \text{Poss}(P_2) \cup \{(\varepsilon, \{a, b\})\}$

(b) Figure 2
3. Acyclic Processes

Let \(N = \{P_1, P_2, \ldots, P_n\} \) be a network of FSPs, let \(P = P_1 \) be the distinguished process, and let \(Q \) be its context \(P_2 /|P_3| \ldots |P_m \). The global FSP \(G = P_1 \mid P_2 \mid \ldots \mid P_m \), which has only \(\tau \)-moves, captures all possible state changes in the system.

We wish to study the behavior of \(P \) in its context \(Q \); therefore we must assume that the global FSP \(G \) changes state if there is a possibility to do so.

Continuity Rule: Let \(G \) be in state \(q_1, q_2, \ldots, q_m \) and let \(\Delta \) be the set of transitions (i.e., \(\tau \)-moves to other global states) possible from this state. Unless \(\Delta = \emptyset \), one of the transitions in \(\Delta \) must take place.

In the case of acyclic FSPs, \(P = P_1, P_2, \ldots, P_m, Q, G \) are all acyclic and \(G \) changes state because of the continuity rule until it reaches one of its leaves.

Choices are possible in a network of FSPs. In the simple example of Figure 3, process \(Q \) can choose to remain in state 1 in which case, because of the continuity rule, the global FSP must evolve from \((1,1)\) to \((2,2)\) using an "a-handshake" between \(P \) and \(Q \). Alternatively, process \(Q \) can choose to go to state 3 in which case the global FSP evolves from \((1,1)\) to \((3,1)\).

We will investigate the existence of sequences of choices that lead to "desirable" behavior of \(G \).

3.1. Three Problems of Success

Let \(N = \{P_1, P_2, \ldots, P_n\} \) be a network of acyclic FSPs, \(P = P_1 \) the distinguished process, \(Q \) its context and \(G \) the global FSP. We will analyze the possible choices in \(P \) so that, under the continuity rule:

(a) \(P \) has to reach one of its leaves;
(b) \(P \) can reach one of its leaves even if \(Q \) is antagonistic;
(c) \(P \) can reach one of its leaves if \(Q \) collaborates with it.

More formally:

\[
S_u(P, Q) = \text{true} \quad \text{(unavoidable success)}
\]
\[
\forall p', q'. [(p', q') \text{ leaf_of } G] \implies [p' \text{ leaf_of } P].
\]

\[
S_a(P, Q) = \text{true} \quad \text{(success in adversity)}
\]
\[
P \text{ has a winning strategy in Game } (P, Q) \quad \text{(see Figure 4)}.
\]

\[
S_c(P, Q) = \text{true} \quad \text{(success with collaboration)}
\]
\[
\exists p', q'. [(p', q') \text{ leaf_of } G] \land [p' \text{ leaf_of } P].
\]

Obviously, \(S_u(P, Q) \implies S_a(P, Q) \implies S_c(P, Q) \).

We will be using the term potential blocking for \(\neg S_u(P, Q) = \text{true} \). It is easy to see that potential blocking corresponds to:

\[
\exists p', q'. [(p', q') \text{ leaf_of } G] \land \neg [p' \text{ leaf_of } P].
\]

For success in adversity we assume that \(P \), the distinguished process, has no \(\tau \)-moves. This is to simplify the rules of the Game of Figure 4, which captures the evolution of the system. In Game, player \(Q \) is forced to move if it can (continuity rule) and player \(P \) is forced to respond to \(Q \)’s message. Player \(Q \) has a strong adverse role since it knows the global state and selects the next legal action. Player \(P \) knows only its local state and can estimate the global state from messages received and \(Q \)’s structure. Whereas player \(Q \) chooses \(q_{i+1} \) and \(a_{i} \) (its next local state and the next action), player \(P \) only chooses \(p_{i+1} \) (its next local state). This is a game of partial information for \(P \) and total information for \(Q \) [R]. Since the FSPs are acyclic, the game is a finite one.

![Figure 3](image-url)
3.2. Complexity

In this section we will examine the complexity of deciding the predicates \(S_u(P, Q) \), \(S_a(P, Q) \), and \(S_c(P, Q) \), where we are given a network \(N = \{ P_1, P_2, \ldots, P_m \} \) of acyclic FSPs; \(P = P_1 \) and \(Q = P_2 \parallel P_3 \parallel \cdots \parallel P_m \). \(N \) is of size \(n \).

For arbitrarily connected networks of linear FSPs there are no significant choices to be made and we can make the following observation:

Proposition 1: If all processes in \(N \) are linear, then:

\[
S_u(P, Q) = S_a(P, Q) = S_c(P, Q)
\]

and can be decided in \(O(n) \) time.

Proof: To see this, first construct a directed graph \(H \) consisting of \(m \) linear orders. The nodes of \(H \) are all the non-\(r \) transitions of the processes, each node labeled by its action symbol. If transition \(b \) is the first non-\(r \) transition of \(P_j \) before the non-\(r \) transition \(b' \) of \(P_i \), insert the arc \((b, b') \) in \(H \). Now match the nodes of \(H \) in pairs. That is, match the first node with label \(a \) in \(P_i \) with the first node with label \(a \) in \(P_j \) (\(a \in \Sigma_i \cap \Sigma_j \)), etc. Delete all unmatched nodes and their successors from \(H \) until the only remaining nodes are all matched in pairs (the deleted actions have no hope of ever being executed). If a node of \(P_i \) has been deleted, we can now say \(S_c(P, Q) = false \). Otherwise, create the directed graph \(H' \) by merging each matched pair into one node and merging only the matched pairs that are predecessors of some matched pair with a node in \(P_1 \). \(H' \) is acyclic iff \(S_a(P, Q) = true \), and \(H' \) is cyclic iff \(S_c(P, Q) = true \).

For the case of acyclic FSPs both \(S_a(P, Q) \) and \(S_c(P, Q) \) are in NP. This is because the desired "witness" in each case, which we use to verify success with collaboration and potential blocking respectively, is an \(O(m \cdot n) \) sequence of moves from the initial global state (i.e. the length of the maximum path in the global machine \(G \)).

For \(S_u(P, Q) \), however, we have a finite game of linear time bounded alternation (i.e. the length of the maximum path (i.e. the length of the maximum path in the distinguished machine \(P \)). Thus \(S_u(P, Q) \) is in PSPACE.

Unfortunately, even simple choices can lead to a combinatorial explosion.

Theorem 1: Let the processes in \(N \) be acyclic and such that \(|\Sigma_i \cap \Sigma_j| \leq 1 \) for \(1 \leq i \neq j \leq m \). \(S_u(P, Q) \) and \(S_a(P, Q) \) are NP-complete even if either

1. \(C_N \) is a tree and all FSPs but one are \(O(1) \) linear FSPs, or
2. each \(P_i, 1 \leq i \leq m \), is an \(O(1) \) tree FSP.
In case (1), the result holds both if P_1 is the only acyclic but non-linear FSP or if P_1 is linear. Note that communication between two processes in Theorem 1 is restricted to repetitions of just one symbol.

The reductions are from 3SAT, where each variable is restricted to appear once negated and once or twice unnegated, a well-known NP-complete problem. They are illustrated in Figure 5 for case (1) and Figure 6 for case (2) using the formula $(\bar{x}_1 \lor \bar{x}_2 \lor x_3) \land (x_1 \lor x_2 \lor \bar{x}_3)$.

Theorem 2: Let the processes in N be acyclic. Even if C_N is a tree and all processes except P are tree FSPs, $S_4(P, Q)$ is PSPACE-complete.

The reduction is from QBF [GJ] and is illustrated in Figure 7 using the formula \\
$\exists x_1 \lor x_2 \exists x_3 \ (x_1 \lor \bar{x}_2 \lor x_3) \land (x_1 \lor x_2 \lor \bar{x}_3)$.

3.3. Efficient Tests for Tree Processes

The computational complexity indicated by Theorems 1 and 2 depends on two factors. One is high connectivity in C_N (Theorem 1, case 2). The other is the fact that an acyclic process can succinctly describe many sequences of events (Theorem 1, case 1 and Theorem 2). In a loosely connected network, for example whenever C_N is a k-tree for some fixed k, the second factor is critical.

Using the algebraic properties of composition and the notion of possibilities we can show the following:

Theorem 3: Let N be a network of tree processes of size n and let C_N be a k-tree. Then, $S_4(P, Q)$, $S_4(P, Q)$, $S_4(P, Q)$ can be decided in $O(n^k)$ time.

We first have to express the various properties of interest using the notions of $\text{Lang}(\cdot)$ and $\text{Poss}(\cdot)$.

![Figure 5](image.png)

for $S_4(\cdot)$ use $P_1 = P$
for $\neg S_4(\cdot)$ use $P_1 = P'$
for $S_e(\cdot)$ use $P_1 = P$
for $\neg S_e(\cdot)$ use $P_1 = P'$
Lemma 5: (success with collaboration) \(S_e (P, Q) = \text{true} \) iff
\[\exists s. s \in \text{Lang}(Q) \text{ and } (s, \emptyset) \in \text{Poss}(P). \]

Lemma 4: (potential blocking) \(\neg S_e (P, Q) = \text{true} \) iff
\[\exists s, X, Y. (s, X) \in \text{Poss}(P) \text{ and } (s, Y) \in \text{Poss}(Q) \text{ and } X \neq \emptyset \text{ and } X \cap Y = \emptyset. \]

Both lemmas are simple consequences of the definitions in Section 3.1. The more interesting notion is blocking, which is very much related to possibilities.

Lemma 5: (success in adversity)
\[\text{Poss}(Q) = \text{Poss}(Q') \text{ implies } S_e (P, Q) = S_e (P, Q'). \]

As will be made clear by the analysis of an optimal strategy for player P, no distinction can be made between Q and Q'. This is because player P uses only partial information, whereas Q (Q') has total information.

Proof of Lemma 5: Let us assume we are player P at round \(i \), that string \(s = a_1 a_2 \cdots a_i \) has been exchanged, and that we are in state \(p_i \). We wish to decide if it is a winning choice to use \(a_i \) and go to state \(p_{i+1} \) (we call this situation \(<s, p_i, p_{i+1}> \)). We examine the immediate descendants of \(p_{i+1} \) for all of which we have inductively solved the question. That is, we know if situation \(<s, \sigma, p_{i+1}, p'_{i+1}> \) is a winning one or not, where \(\sigma \in \Sigma \) is L^-1 and \(p_{i+1} \Rightarrow p'_{i+1} \). The basis of this induction are the leaves of the FSP P and all paths leading to them; these are winning situations for us. Let the outgoing actions \(a \) to winning situations form set \(W \) and to loosing situations form set \(L \).

If there is a possibility \((s, Z) \in \text{Poss}(Q) \) such that \(Z \cap (W \cup L) = \emptyset \), player Q can block us and the situation is a loosing one. If there is a string \(s \sigma \in \text{Lang}(Q) \) such that \(\sigma \in L \cap W \), then player Q can force us into a loosing position and thus the situation is again a loosing one. Otherwise, because of the continuity rule, player Q must give us an action for which we have a winning choice.

Finally, it is clear that player P need only examine situations with \(s \) in \(\text{Lang}(Q) \). Recall that \(\text{Poss}(Q) = \text{Poss}(Q') \) implies \(\text{Lang}(Q) = \text{Lang}(Q') \).

Proof of Theorem 8: We can assume, without loss of generality, that \(C_N \) is a tree. This is because the processes in a given partition of a \(k \)-tree can be composed directly to produce \(O(n^k) \) size processes. Since \(| \) is associative and commutative, there is no restriction on how it is applied. (For example, a ring network can be transformed into a path of \(O(n^2) \) size processes — see Figure 8a.) We thus modify \(C_N \) to obtain \(C_N' \) so that in the tree \(C_N' \), the distinguished process \(P \) is at the root and the processes, whose product is \(Q \), form a forest of trees: \(\{ T_1, T_2, \cdots, T_j \} \), where \(P_i \) is the \(j \)th process in tree \(T_i \) and \(Q_i = \prod P_i \), and \(Q = \prod Q_i \).

We will now further reduce the tree \(C_N' \), to a star configuration with \(P \) at the center by replacing each \(Q_i \) (and tree \(T_i \) of FSPs) with a \(Q_i' \) (a single FSP), such that \(\text{Poss}(Q_i) = \text{Poss}(Q_i') \). By Lemma 2, \(\text{Poss}(Q) = \text{Poss}(|Q_i|) = \text{Poss}(Q_i') \). By Lemmas 3, 4, and 5 there is no change in the various success predicates.

We construct \(Q_i' \) using the processes in the tree \(T_i \); we proceed from \(T_i \)'s leaves. Let us start with a node \(P_f \) in \(T_i \) which communicates with leaves \(\{ P_e \mid P_e \text{ is leaf of } T_i \text{ and child of } P_f \} \), and with one other process in \(T_i \); say \(P_f \) (see Figure 8b). If \(\text{Poss}(P_f) = \text{Poss}(P_e) \), i.e. \(P_e \) is a normal form of \(P \) with respect to possibilities, we have by Lemma 2 that \(\text{Poss}(P_f) = \text{Poss}(P_e) \). The critical step now is to compute a normal form \(P_e \) such that \(\text{Poss}(P_e) = \text{Poss}(P_e) \). For tree processes this is possible with \(P_f \) having size no greater than \(P_f \) and using linear time in the size of \(P_f \) and the \(P_e \)'s.

Reduction Step:
Let \((s, Z) \in \text{Poss}(\prod P_e) \) for some \(P_f \). Then \(s \) is a string over \(\Sigma_f \cap \Sigma_g \) and \(Z \subseteq \Sigma_f \cap \Sigma_g \), \((\Sigma_f, \Sigma_g, \text{and } \Sigma_e) \) are the alphabets of \(P_f, P_g, \) and \(P_e \). Moreover, there is a "witness" string \(r \) to this fact, which is a string in \(\text{Lang}(P_f) \). The symbols in \(r \) from \(\Sigma_f \cap \Sigma_g \) form \(s \), the symbols in \(r \) from each \(\Sigma_f \cap \Sigma_e \) form \(s_e \). The witness string \(r \) takes \(P_f \) from the start state to some state \(p \) with no outgoing \(a \)-moves in \(P_f \), exactly \(Z \) as outgoing actions in \(\Sigma_f \cap \Sigma_g \), and outgoing actions \(W_f \) from each \(\Sigma_f \cap \Sigma_e \) which are "appropriate". By appropriate we mean that for each \(P_f \) there is a possibility \((s_e, X_e) \) such that \((X_e \cap W_f) = \emptyset \).

It is now clear that if \(P_f \) is a tree and the \(P_e \)'s are (inductively) of size no greater than the size of \(P_f \), then the possibilities \((s, Z) \) forming \(P_e \) can be computed in linear time and will be of no greater size than \(P_f \) (Figure 9 presents an example).

Final Step:
We have reduced the three decision questions of interest to decision questions for a star network of tree processes with \(P \) at the center, \(Q_i \)'s as leaves, and each tree process of size \(O(n^k) \).

Using Lemmas 3, 4 and the proof of Lemma 5, as well as the "small" size of \(\text{Poss}(P) \) (recall that \(P \) is a tree), we can decide \(S_e (P, \prod Q_i') \), \(S_e (P, \prod Q_i') \), and \(S_e (P, \prod Q_i') \) in \(O(n^k) \) time. This is because, although \(\prod Q_i' \) might be large, there is no interaction between the small \(Q_i' \).
Figure 8
\[S_u(P, Q) = false \ (P_4 \ makes \ \tau\text{-move}; \ P \ left \ branches \ on \ a) \]
\[S_a(P, Q) = true \ (P \ right \ branches \ on \ a) \]
\[S_e(P, Q) = true \]
4. Cyclic Processes

In this section we will extend most of the theory of Section 3 to cyclic processes. We will assume throughout that \(N = \{P_1, P_2, \ldots, P_m\} \) is the given network of processes of size \(n \), \(P = P_1 \) is the distinguished process, and \(Q = P_2 | P_3 | \cdots | P_m \) its context. We will also assume that each \(P_i \) in \(N \) has no \(\tau \)-moves and no leaves. These assumptions simplify our arguments, without loss of generality. Note that even if \(P_2, \ldots, P_m \) have no leaves and no \(\tau \)-moves, \(Q \) very well could have such features. Once again the continuity rule (Section 3) forces the evolution of the system.

The goals of success of the distinguished process \(P \) in context \(Q \) become:
(a) \(P \) cannot stop moving;
(b) \(P \) can keep moving forever even if \(Q \) is antagonistic;
(c) \(P \) can keep moving forever if \(Q \) collaborates with it.

This is a natural generalization of Section 3 if process \(P \) is thought of as an infinite tree whose leaves are at infinity.

4.1. Success and Possibilities

The technical problem of the generalization from finite to infinite trees is the presence inside a process, say process \(Q \), of a cycle of \(\tau \)-moves. Intuitively, such a cycle means that if \(Q \) can reach this cycle, it can make choices that will keep it there forever. The behavior of such a temperamental \(Q \) would then be similar to going, via a \(\tau \)-move, to a new leaf. There is a simple solution to this problem through a modification of the composition operator \(|| \).

Composition for Cyclic Processes \(Q_1 \) and \(Q_2 \): As in Section 2.2, we first construct \(Q_1 \times Q_2 \), then keep only the reachable part \(Q_1 \cap Q_2 \), and then hide the common symbols in \(Q_1 \cap Q_2 \). The addition is that if \((q_1', q_2') \) is a state in \(Q_1 \cap Q_2 \) from which, using \(\tau \)-moves, we can enter a loop of \(\tau \)-moves, then we add a new leaf \(q_{new} \) to the state space and a new \(\tau \)-move \((q_1', q_2', \tau, q_{new}) \) to the transitions of \(Q_1 \cap Q_2 \).

Consider two cyclic processes \(R_1, R_2 \) produced from \(N \) using the above composition. A first consequence of the new definition is that \(\text{Poss}(R_1) = \text{Poss}(R_2) \) implies \(\text{Lang}(R_1) = \text{Lang}(R_2) \). Thus we have already overcome one difficulty mentioned in Section 2.2.

Let us assume that we use the above composition operator \(|| \) to produce processes from our network \(N \). Let us then use Definition 4 for \(\text{Lang}(\cdot) \) and \(\text{Poss}(\cdot) \) of these processes. Note that the new \(|| \) is still associative and commutative.

Lemma 2':
\[
\text{Poss}(R_1) = \text{Poss}(R_2) \quad \text{implies} \quad \text{Poss}(R || R_1) = \text{Poss}(R || R_2),
\]
\[
\text{Lang}(R_1) = \text{Lang}(R_2) \quad \text{implies} \quad \text{Lang}(R || R_1) = \text{Lang}(R || R_2).
\]

Sketch of Proof: The proof is similar to that of Lemma 2 except for one case. This is for \((s, \emptyset) \in \text{Poss}(R || R_1)\) that was produced because of a new \(\tau \)-loop reachable using \(s \) in \(R || R_1 \). This possibility \((s, \emptyset) \) is present because the new \(|| \) operator forces us to make a \(\tau \)-move to a new leaf in \(R || R_1 \).

\[
\text{Let } s = \varepsilon \text{ (without loss of generality). Then this particular possibility } (\varepsilon, \emptyset) \text{ implies that there is an infinite set of strings in } \text{Lang}(R_1) \cap \text{Lang}(R_2), \text{ and also in } \text{Lang}(R) \cap \text{Lang}(Q). \text{ Using this infinite set, the finite-state } R_2, \text{ and the pigeon-hole principle, we can argue that } (\varepsilon, \emptyset) \in \text{Poss}(R || R_2). \]

We can now define reasonable generalizations of the success predicates.

\[
\begin{align*}
\text{Su}(P, Q) &= \text{ true } \quad \text{(potential blocking)} \\
\text{iff} \\
\exists s, X, Y. \quad (s, X) \in \text{Poss}(P) \quad \text{and} \quad (s, Y) \in \text{Poss}(Q) \quad \text{and} \quad X \cap Y = \emptyset.
\end{align*}
\]

\[
\begin{align*}
\text{Sc}(P, Q) &= \text{ true } \quad \text{(success with collaboration)} \\
\text{iff} \\
\text{Lang}(P) \cap \text{Lang}(Q) \text{ is infinite.}
\end{align*}
\]

\[
\begin{align*}
\text{Sa}(P, Q) &= \text{ true } \quad \text{(success in adversity)} \\
\text{iff} \\
P \text{ has a winning strategy in } \text{Game}(P, Q).
\end{align*}
\]

Game \((P, Q)\) for cyclic processes has the same rules as the game in Figure 4. The only difference is that if the game stops \(Q \) is the winner. \(P \) wins if it can force the game to go on forever. Since we have modified composition such that if \(Q \) has the option to get in a \(\tau \)-loop forever, it now has the option to reach a leaf and win, we have lost no generality.

As with \(\text{Game} \), potential blocking and success in collaboration are natural generalizations of Lemmas 3 and 4. Again the new \(|| \) handles \(\tau \)-loops.

4.2. Complexity

A reasonable assumption about a network \(N \) of FSPs is that \(C_N \) is a \(k \)-tree. It is also reasonable to assume that the processes are cyclic processes “small” in comparison to the size of the network. Under these assumptions, the methodology of Theorem 3 could be used, where \(\text{Poss}(\cdot) \) and \(\text{Lang}(\cdot) \) supply the normal form notions. Unfortunately, in the worst case, the reduction step and final step (see proof of Theorem 3) are no longer efficient. This is because testing possibility equivalence of cyclic processes is \(\text{FSPACE} \)-complete [KS].
Proposition 2: $S_a(P, Q)$ and $S_c(P, Q)$ are PSPACE-complete, even if N consists strictly of constant size cyclic processes and C_N is a tree. $S_a(P, Q)$ can be decided in deterministic time d^k for some $d > 1$, and cannot be solved in deterministic time $c^{|n|/2 n}$ for some $c > 1$.

The reductions are from LBA acceptance [GJ] and alternating linear space Turing machine acceptance. We use techniques similar to [RT] and [L]. Binary communication alphabets are needed. These worst case bounds are not surprising, however, using the powerful combinatorial result in [Le] we can show that:

Theorem 4: Let $N = \{P_1, P_2, \ldots, P_m\}$ be a network of $O(1)$ size cyclic processes such that C_N is a tree. Also let $|\Sigma_i \cap \Sigma_j| \leq 1$ for $1 \leq i \neq j \leq m$. Then:

$S_c(P, Q)$ can be decided in $O(m^k)$ time for some constant k.

Sketch of Proof: The method is similar to that of Theorem 3. Since $S_c(P, Q)$ depends only on $\text{Lang}(\cdot)$, we need a normal form weaker than the one preserving $\text{Poss}(\cdot)$. A normal form preserving $\text{Lang}(\cdot)$ in the case of a unary communication alphabet is just a number: if we have a finite prefix-closed language, it is the length of the longest string; else it is everything. Note that this number must be coded in binary, for it is easy to construct a chain of multiply-by-2 processes.

Reduction Step: P_f is now a constant size machine to which we present a constant number of $O(m)$ bit integers. P_{fa} will be an $O(m)$ bit integer (see Theorem 3 and Figure 8b). Because P_f is a finite state machine, we can formulate the computation of P_{fa} as an integer programming problem with a constant number of variables and use the [Le] polynomial time algorithm. (The argument for the final step is similar).

5. Discussion and Open Problems

We have demonstrated the use of a new algebraic method for analyzing communicating finite state sequential processes. The basis of the method is the introduction of an appropriate composition operator (e.g. $||$) with the right normal form (e.g. $\text{Poss}(\cdot)$). This interaction allows us to use the structure of a system of processes in order to decide nontrivial properties about the system behavior. These properties are both about cooperating and antagonistic processes.

Our approach leads to efficient time bounds for all properties in the finite tree case. We also extend the approach in a natural fashion to the more practical cyclic case. We believe that despite the worst case complexity of the cyclic case, the technique can be useful in practice.

An interesting generalization of these problems involves introducing more symmetry between the distinguished process and the other processes in the network. For this, let $N = \{P_1, P_2, \ldots, P_{2m}\}$ be a network partitioned into $P = P_1 || P_2 || \ldots || P_m$ and $Q = P_{m+1} || \ldots || P_{2m}$. Deciding success for tree processes in this case is an open question.

Acknowledgements: The authors are indebted to Steve Brookes, Ed Clarke, and Ashfaq Munshi for helpful discussions.

References

