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Waterloo, Ontario N2L 3G1, Canada

Paris C. Kanellakis

Computer Science Department, Brown Unï ersity,
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We study efficient deterministic parallel algorithms on two models: restartable
fail-stop CRCW PRAMs and asynchronous PRAMs. In the first model, syn-
chronous processes are subject to arbitrary stop failures and restarts determined by
an on-line adversary and involving loss of private but not shared memory; the

Žcomplexity measures are completed work where processors are charged for com-
. Žpleted fixed-size update cycles and o¨erhead ratio completed work amortized over

.necessary work and failures . In the second model, the result of the computation is
a serialization of the actions of the processors determined by an on-line adversary;

Ž .the complexity measure is total work number of steps taken by all processors .
Despite their differences, the two models share key algorithmic techniques. We

Žpresent new algorithms for the Write-All problem in which P processors write
.ones into an array of size N for the two models. These algorithms can be used to

implement a simulation strategy for any N processor PRAM on a restartable
fail-stop P processor CRCW PRAM such that it guarantees a terminating execu-

Ž 2 .tion of each simulated N processor step, with O log N overhead ratio, and
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Ž � 2 0.594. Ž . ŽO min N q P log N q M log N, N ? P subquadratic completed work where
.M is the number of failures during this step’s simulation . This strategy has a range

Ž .of optimality. We also show that the Write-All requires N q V P log P com-
pletedrtotal work on these models for P F N. Q 1996 Academic Press, Inc.

1. INTRODUCTION

1.1. Context of This Work

The model of parallel computation known as the Parallel Random
w xAccess Machine or PRAM 14 has attracted much attention in recent

years. Many efficient and optimal algorithms have been designed for it; see
w xthe surveys 13,23 . The PRAM is a convenient abstraction that combines

the power or parallelism with the simplicity of a RAM, but it has several
Ž . Žunrealistic features. The PRAM requires: 1 simultaneous access requir-

. Ž .ing significant bandwidth to a shared resource, namely memory; 2 global
Ž .processor synchronization; and 3 perfectly reliable processors, memory,

and interconnection between them. The gap between the abstract models
of parallel computation and realizable parallel computers is being bridged
by current research. For example, memory access simulation in other

w xarchitectures is the subject of a large body of literature surveyed in 45 ;
w xfor some recent work see 17,37,44 . Algorithms with initial memory faults

w xare examined in 43 . Asynchronous PRAMs are the subject of
w x8,9,15,34,35 . Here we address the issues of synchronization and reliability
of PRAM processors.

w xIn 21 we show that it is possible to combine efficiency and fault-
tolerance in many key PRAM algorithms in the presence of arbitrary

Ždynamic fail-stop processor errors when processors fail by stopping and do
.not perform any further actions . The key to such algorithm design is the

w xfollowing fundamental problem, called the Write-All problem 21 :

Given a P-processor PRAM and a 0-valued array
of N elements, write value 1 into all array locations.

This problem was formulated to capture the essence of the computational
progress that can be naturally accomplished in unit time by a PRAM
Ž .when P s N . In the absence of failures, this problem is solved by a
trivial and optimal parallel assignment. However, it is not obvious how to
design solutions that are efficient in the presence of failures or asyn-
chrony. An algorithm for the Write-All problem that does a total of
Ž 2 . w x Ž .O N log Nrloglog N work is given in 21 algorithm W .
The iterated Write-All paradigm is employed independently by Kedem

w x w x w xet al. 25 and Shvartsman 42 to extend the results of 21 to arbitrary
Ž .PRAM algorithms subject to fail-stop errors without restarts . In addition
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w xto the general simulation technique, 25 analyzes the expected behavior of
several solutions to Write-All using a particular random failure model. A
deterministic optimal work execution of PRAM algorithms is presented in
w x42 . The optimality is achieved in the presence of worst case failures given

Ž w x .parallel slackness as in 46 by Valiant .
Despite the existence of optimal Write-All algorithms and N-processor

w xPRAM simulations 42 that use specific ranges of fault-prone processors,
2 w xe.g., 1 F P F Nrlog N, it was shown in 21 that no optimal solutions for

the Write-All problem exist that use the range of processor 1 F P F N. The
Ž .strongest known lower bound for Write-All is N q V P log N , where

w xP F N, shown by Kedem et al. 26 for a fail-stop no-restart model.
A simple randomized algorithm that serves as a basis for simulating

arbitrary PRAM algorithms on an asynchronous PRAM is presented by
w xMartel et al. 34 . This randomized asynchronous simulation has very good

expected performance for the Write-All problem when the adversary is
w x Ž Ž 2 ..off-line. Kedem et al. 26 show an O N log Nrlog log N deterministic

work upper bound on Write-All for fail-stop no-restart processors. Their
w xupper bound is based on a variation of algorithm W 21 , and it was shown

w xby Martel 32 that the same upper bound applies to algorithm W.
The work presented here deals with dynamic patterns of faults and the

dynamic assignment of processors to tasks. Processors in our algorithms
have very little private information and communicate via shared memory.

w xFor recent advances on coping with static fault patterns, see 20 . We
consider fault granularity at the processor level; for recent work on gate

w xgranularities, see 6,36,38 . The general problem of assigning active proces-
sors to tasks has some similarities to the problems of resource manage-

w xment in a distributed setting, such as in distributed controllers of 2,31 .
w xFault-tolerance of particular network architectures is also studied in 12 .

However, the distributed computation models, the algorithms, and their
analysis are quite different from the parallel setting studied here.

1.2. Contributions of This Paper

w xIn this paper, we extend the fail-stop model of 21 by allowing arbitrary
Ž .dynamic restarts of processors with loss of private memory . We also

consider a model in which private memory is safe, but the interactions of
processors with each other through shared memory can no longer be
assumed to be synchronous. Although the models differ in their formal
definition, some algorithms work equally well in both models.

In the restartable fail-stop model, defined precisely in Section 2.1,
Ž .PRAM processors are subject to on-line dynamic failures and restarts.

We concentrate on the worst case analysis of the completed work of
deterministic algorithms that are subject to arbitrary adversaries, and on
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the o¨erhead ratio, which amortizes the work over the necessary work and
failuresrrestarts. In this model, processors fail and then restart in a way
that makes it possible to develop terminating algorithms, while relaxing the

Žrequirement that one processor must never fail which was necessary in
.the fail-stop without restart model . To guarantee algorithm termination

and sensible accounting of resources, we introduce an update cycle that
generalizes the standard PRAM readrcomputerwrite cycle. In the ab-
sence of update cycles, a thrashing adversary exploiting the separation of
read and write instructions in PRAMs can force quadratic work for any
Write-All solution. The restartable PRAM model is defined in Section 2.1,
where we also discuss the technical choices made.

The asynchronous model is defined in Section 2.2. In this model, we use
w xLamport’s notion of serializability 28 , which states that the effect of a

parallel computation should be consistent with some serialization of atomic
processor actions. We consider the serialization to be chosen by an on-line

Žadversary and use atomic reads and atomic writes other primitives are
.considered as well . This model is related to other models known as

w x w xasynchronous PRAMs 8,9,15,34,35 ; perhaps the closest of these is 34 of
Ž .Martel et al., although this reference considers only off-line prespecified

adversaries and randomized algorithms while we deal with deterministic
algorithm and on-line adversaries. The relationship of the two models in
Sections 2.1 and 2.2 is discussed in Section 2.3; some practical motivation
is also discussed in Section 1.3 below.

In Section 3, we present lower bounds for the Write-All problem. When
reads and writes are accounted together in update cycles of the restartable
fail-stop model, the quadratic lower bound mentioned above no longer
applies. Instead, we show that the Write-All problem of size N using P

Ž .processors requires N q V P log P completed work for P F N. This
bound also holds in the asynchronous model. It holds even when proces-
sors can read and locally process the entire shared memory at unit cost.
Under these assumptions it is the tightest possible bound. We also demon-

Ž . Ž .strate a lower bound of N q V P log N when 3 F P F N for the
Žasynchronous PRAM, when certain atomic primitives such as compare-

.and-swap or test-and-set are used to access shared memory. Note that
w xeven given the lower bound of Kedem et al. 26 , our lower bound results

Ž .are still of interest because: a they demonstrate that any improvement to
the lower bound must take account of the fact that processors can read

Ž .only a constant number of cells in constant time, b they present a simple
Ž .processor allocation strategy that we use to advantage in Section 4, and c

the proofs are simpler to understand and they use only the first principles.
In Section 4 we present three efficient algorithms for the Write-All

Ž .problem. The first Algorithm V is a modification of the algorithm of
w xKanellakis and Shvartsman 21 for the fail-stop no-restart model and runs
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Ž 2on the restartable fail-stop model with completed work O N q P log N
.q M log N , where M is the number of failures. This algorithm is based

Žon an analysis of the lower bounds in Section 3. The second Algorithm
. Ž log 2 3r2 . Ž .X runs on both models in time O N ? P . The third Algorithm T

Ž .runs on both models in the case P s 3, using N q O log N compare-
Ž .and-swap operations on the asynchronous model and N q O log N up-

date cycles in the fail-stop restart model. This matches the lower bound
when three processors are used.

In Section 5, we show how to use Algorithms V and X to simulate any
N processor PRAM on a restartable fail-stop P processor CRCW PRAM.
A terminating execution of each simulated N processor step is guaranteed

Ž 2 . Ž .with O log N overhead ratio, and subquadratic completed work
Ž � 2 log 2 3r24.O min N q P log N q M log N, N ? P , where M is the number of

failures during the simulation of the particular step. The strategy is
work-optimal when the number of simulating processors is P F Nrlog2 N

Ž .and the total number of failures in each simulated step is O Nrlog N .
The lower bounds presented in Section 3 apply to the worst-case work of

deterministic algorithms and to the expected work of randomized and
deterministic algorithms. Randomization does not seem to help, given

Ž .on-line nonprespecified patterns of failures. For example, it is easy to
Ž .construct on-line failure and restart resp. no-restart patterns that lead to

Ž .exponential resp. quadratic in N expected performance for the algo-
w xrithms presented in 34 . These stalking adversaries are described in

Section 6, where we also conclude with some open problems.
w xPreliminary versions of this work were reported in 7,22 .

1.3. Motï ation and Relation to Physical Systems

The models we present and study are intended to capture certain
features of actual systems.

Processor Delay and Failure. Processor delay is a feature of any mul-
tiuser environment, in which processing priorities are not specified by a
single user. Processing time may be unexpectedly required by another user
or by the underlying system. Processor failure may occur either because of
a physical fault or because another entity in the system preempts process-
ing time without saving the old state.

Communication Delay and Failure. Communication delay is a well-
known feature of multiprocessor systems. Small communication delays are
compatible with synchronization if the step time is sufficient for the
longest possible access time, but synchronizing by counting up to the
longest possible access time eliminates any advantages due to caching and
similar techniques. Communication failure may be due to memory opera-
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tions of other processors. If the communication network reports the failure
of an operation, the processor can reattempt the access, and the situation
can be modeled as a communication delay. If unannounced failures can
occur, an algorithm must either check its write operations or ensure that
omission of a write is not detrimental to performance.

For the purposes of accounting, we treat delay andror failure as
occurring to the processors only. If memory operations are atomic and
serializable, they may be assumed to be instantaneous, and the communi-
cation delays or access failures may be charged to the processor. The
model allows communication delay and other latencies, even though it
does not make explicit mention of them.

An Architecture for a Restartable Fail-Stop Multiprocessor. The abstract
model that we are studying can be realized in the architecture in Fig. 1.
This architecture is more abstract than, for example, a realization in terms
of hypercubes, but it is simpler to program in. Moreover, basic fault-tolerant

Ž w x.technologies as described in surveys 11,18,19 contribute toward concrete
realizations of its components.

Ž w x.1. There are P fail-stop processors see 40 , each with a unique address
and some local memory.

2. There are Q shared memory cells; the input of size N F Q is stored
in shared memory. These semiconductor memories can be manufactured
with built-in fault tolerance using replication and coding techniques with-

w xout appreciably degrading performance 39 .
3. Processors and memory are interconnected via a synchronous net-

Ž w x.work e.g., as in the Ultracomputer 41 . A combining interconnection
network that is well suited for implementing synchronous concurrent reads

w x Žand writes is studied in 27 the combining properties are used in their
.simplest form only to implement concurrent access to memory . The

w xnetwork can be made more reliable by employing redundancy 1 .
With this architecture, our algorithmic techniques become applicable;

i.e., the algorithms and simulations we develop will work correctly and
Žwithin the claimed complexity bounds under the uniform cost memory

.access assumption when the underlying components are subject to the

FIG. 1. An architecture for a fail-stop multiprocessor.
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failures within their respective design parameters. For the processors, we
allow any dynamic pattern of fail-stop failures and restarts.

2. MODELS OF COMPUTATION

2.1. The Restartable Fail-Stop CRCW PRAM

w xWe use as a basis the PRAM model of Fortune and Wyllie 14 , where
Ž .all concurrently writing processors write the same value COMMON CRCW .

w xProcessors are subject to stop failures and restarts as in 40 . Our algo-
rithms are described using the forall rrrrr parbegin rrrrr parend parallel con-
struct.

1. There are P synchronous processors. Each processor has a unique
Ž .permanent identifier PID in the range 0, . . . , P y 1, and each processor

has access to P and its own PID.
2. The global memory accessible to all processors is denoted as shared;

in addition, each processor has a constant size local memory denoted as
Ž � 4.private. All memory cells are capable of storing Q log max N, P bits on

inputs of size N.
3. The input is stored in N cells in shared memory, and the rest of the

Ž .shared memory is cleared i.e., contains zeros . The processors have access
to the input and its size N.

In our algorithms:

v The PRAM processors execute sequences of instructions grouped in
update cycles. Each update cycle consists of reading a small fixed number

Ž .of shared memory cells e.g., 4 , performing some fixed time computation,
Ž .and writing a small number of shared memory cells e.g., 2 .

The parameters of the update cycle, i.e., the number of read and write
instructions, are fixed, but depend on the instruction set of the PRAM; see
w x Ž .14 for a typical PRAM instruction set. The values quoted 4 and 2 are
sufficient for our exposition. It is an interesting question whether smaller
values would suffice to implement efficient algorithms.

We use the fail-stop with restart failure model, where time instances are
the PRAM synchronous clock-ticks:

Ž .1. A failure pattern F i.e., failures and restarts is determined by an
on-line ad¨ersary that knows everything about the algorithm and is un-
known to the algorithm. At any point during the computation, the adver-
sary knows the state of the computation, the contents of the shared and
private memories and it can determine what instructions are being exe-
cuted or about to be executed by the individual processors.

2. Any processor may fail at any time during any update cycle, or having
failed it may restart resynchronized with other processors, provided that:
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Ž .i at any time at least one processor is executing an update cycle
that successfully completes;

Ž .ii single bit writes are atomic; i.e., failures can occur before or
after a write of a single bit.

3. Failures do not affect the shared memory, but the failed processors
lose their private memory. Processors are restarted at their initial state
with their PID as their only knowledge.

24The failure and restart patterns are syntactically defined as follows:

² :DEFINITION 2.1. A failure pattern F is a set of triples tag, PID, t ,
where tag is either failure, indicating processor failure, or restart, indicat-
ing a processor restart, PID is the processor identifier, and t is the time
indicating when the processor stops or restarts. The size of the failure

< <pattern F is defined as the cardinality F .

For simplicity of presentation, we assume that the shared memory writes
Ž � 4.of O log max N, P bit words are atomic. Algorithms using this assump-

w xtion can be easily converted to use only single bit atomic writes as in 21 .
We investigate two natural complexity measures, completed work and

overhead ratio. The completed work measure generalizes the standard
Ž .Parallel-time = Processors product and the A¨ailable Processor Steps S of

w x21 . The overhead ratio is an amortized measure.

DEFINITION 2.2. Consider an algorithm with P initial processors that
terminates in time t after completing its task on some input data I and in

Ž .the presence of a failure pattern F. If P F F P is the number ofi
processors completing an update cycle at time i, and c is the time required

Ž .to complete one update cycle, then we define S I, F, P as

t

S I , F , P s c P F .Ž . Ž .Ý i
is1

Update cycles are units of accounting. They do not constrain the
instruction set of the PRAM, and failures can occur between the instruc-

Ž .tions of an update cycle. However, in S I, F, P the processors are not
charged for the read and write instructions of update cycles that are not
completed.

DEFINITION 2.3. A P-processor PRAM algorithm on any input data I
< <of size I s N, and in the presence of any pattern F of failures and
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< <restarts of size F F M,

v � Ž .4uses completed work S s S s max S I, F, P , andN , M , P
I ,F

S I , F , PŽ .
v has o¨erhead ratio s s s s max .N, M , P ½ 5< < < <I q FI ,F

Ž .Consider a definition of total work S9 I, F, P that also counts incomplete
Ž . Ž . < <update cycles. Clearly S9 I, F, P F S I, F, P q c F . Thus, using S9 does

Ž < < .asymptotically affect the measure of work when F is very large , but it
does not asymptotically affect s .

Ž . Ž Ž < <.One might also generalize the overhead ratio as S I, F, P r T I q
< <. Ž < <.F , where T I is the time complexity of the best sequential solution
known to date for the particular problem at hand. For the purposes of this

Ž .exposition, it is sufficient to express s in terms of the ratio S I, F, P r
Ž < < < <. ŽI q F . This is because for Write-All by itself and as used in the

. Ž < <. Ž < <.simulation T I s Q I .
Now let us briefly comment on the technical choices made in Definitions

2.2 and 2.3.

Work ¨s O¨erhead Ratio. For arbitrary processor failures and restarts,
Ž .the completed work measure S or the total work S9 depends on the size

N of the input I, the number of processors P, and the size of the failure
pattern F. The ultimate performance goal for a parallel fault-tolerant
algorithm is to perform the required computation at a work cost as close as
possible to the work performed by the best sequential algorithm known.
Unfortunately, this goal is not attainable when an adversary succeeds in
causing too many processor failures during a computation.

EXAMPLE A. Consider a Write-All solution, where it takes a processor
one instruction to recover from a failure. If an adversary in a failure

< < Ž 1q« .pattern F with the number of failures and restarts F s V N for
Ž 1q« .« ) 0, then the completed work will be V N , and thus already

nonoptimal and potentially large, regardless of how efficient the algorithm
is otherwise. Yet the algorithm may be extremely efficient, since it takes
only one instruction to handle a failure.

This illustrates the need for a measure of efficiency that is sensitive to
both the size of the input N, and the number of failures and restarts

< < Ž .M s F . When M s O P as in the case of the stop failures without
w xrestarts in 21 , S properly describes the algorithm efficiency, and s s

SN , M , P ŽO . However, when F can be large relative to N and P as is thež /N
.case when restarts are allowed , s better reflects the efficiency of a

fault-tolerant algorithm. Recall that s is insensitive to the choice of S or
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S9, and to using update cycles, as a measure of work. However, update
cycles are necessary for the following two reasons.

Update Cycles and Termination. Our failure model requires that at any
time, at least one processor is executing an update cycle that completes.
Ž w xThis condition subsumes the condition of 21 that one processor does not

.fail during the computation . This requirement is formulated in terms of
update cycles and assures that some progress is made. Since the processors
lose their context after a failure, they must read something to regain it.
Without at least one active update cycle completing, the adversary can
force the PRAM to thrash by allowing only these reads to be performed.

w xSimilar concerns are discussed in 40 .

Update Cycles as a Unit of Accounting. In our definition of completed
work we only count completed update cycles. Even if the progress and

Žtermination of a computation is assured by always completely executing at
.least one update cycle , but the processors are charged for incomplete

update cycles, the work S9 of any algorithm that simulates a single N
Ž .processor PRAM step is at least V P ? N . The reason for this quadratic

behavior in S9 is the following simple and rather uninteresting thrashing
adversary.

EXAMPLE B. We evaluate the work of any solution for the Write-All
problem under the arbitrary failure and restart model. Consider the

Žstandard PRAM read-compute-write cycle if processors begin writing
without reading, a simple modification of the argument leads to the same

.result . A thrashing adversary allows all processors to perform the read
and compute instructions; then it fails all but one processor for the write
operation. Failed processors are then restarted. Since one write operation
is performed per cycle, N cycles will be required to initialize N array

Ž .elements. Each of the P processors performs Q N instructions which
Ž .results in work of Q P ? N .

By charging the processors only for the completed fixed size update
cycles we do not charge for thrashing adversaries. This change in cost
measure allows subquadratic solutions.

2.2. The Asynchronous PRAM

The asynchronous PRAM model departs from the standard PRAM
models in that the processors are completely asynchronous. The only
synchronizing assumption is that reads and writes to memory are atomic

w xand serializable, in the sense of Lamport 28 . Serializability means that
the result of a computation is consistent with some total ordering of

Žatomic actions. Note that this does not mean that the actions are in fact
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.ordered this way, but that the effect of the computation is as if they were.
This is a restriction on the possible outcome of simultaneous events. With
asynchronous processors, the distinction between exclusive writes and
concurrent writes disappears. Among the traditional synchronous PRAM
models, the ARBITRARY CRCW PRAM is closest to the asynchronous
model.

One important situation that is modeled by the asynchronous PRAM is
the case in which the processors are ‘‘nearly synchronous.’’ If identical
processors access shared memory across a common communication chan-
nel or network, then they will run at approximately the same speed, but
the precise interleaving of memory operations may not be under the direct
control of the processors. To model the lack of control over the interleav-
ing, we posit an on-line adversary that chooses the interleaving to maxi-
mize the cost of the computation. At any point in time the adversary knows
the state of the computation, the contents of all memory locations and it is
free to delay any processor for any length of time.

DEFINITION 2.4. We define an interleä ing to be a sequence of proces-
w xsor numbers, each in the range 0, P y 1 . An execution of a PRAM

algorithm consistent with a particular interleaving is the execution of steps
by the processors in the order specified by the interleaving.

The measure of the efficiency of an asynchronous PRAM is the total
number of steps completed, which we term the total work of the computa-

Ž .tion expressed in terms of P and the input size N . To define total work,
we assume that each processor executes a halt instruction when it termi-
nates work on the algorithm. In order for the algorithm to be correct, it
must be the case that at this point, the postconditions for the algorithm are
satisfied. It is the responsibility of the algorithm to ensure that once a
single processor halted, no other processor takes action that deestablishes
the postcondition.

DEFINITION 2.5. The total work of an algorithm with respect to a given
interleaving is the length of the smallest halt-free prefix of that interleav-
ing. The total work required by an algorithm is then the maximum total

Žwork over all possible interleavings of the processors. Note that in this
.worst case, all processors will be ready to execute halt instructions.

Previous work along these lines has assumed either that randomized
w xalgorithms can be used to defeat off-line adversaries 34 or that interleav-

w xings are chosen according to some probabilistic distribution 9,35 . Some of
the models in these last two papers are similar to our restartable fail-stop
model, but failures are probabilistic and restarts do not destroy private
memory. Because of our worst-case assumptions, these analyses are inap-
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w xpropriate. Furthermore, notions of time used in 9 do not work here,
because our scheduling adversary may introduce arbitrarily long delays.

The notion of wait-free asynchronous computation, in which any one
processor terminates in a finite number of steps regardless of the speeds of

w xthe other processors, is introduced in 16 . In the asynchronous PRAM, by
definition any algorithm with bounded work must be wait-free. The same
paper shows that atomic reads and writes are insufficient to solve two-
processor consensus and demonstrates a hierarchy of stronger primitives

Ž .for accessing memory such as test-and-set or compare-and-swap . A later
w xpaper 5 demonstrates wait-free data structures using only atomic reads

and writes.
Finally, we note that the asynchronous model is a very general one, and

it is subject to fewer definitional restrictions that is its fail-stop restartable
counterpart. However, as a result of such restrictions, the fail-stop model
can be used for efficient general deterministic simulations of synchronous

Ž .PRAM as we show in Section 5 . It does not appear to be the case that
efficient deterministic simulations are possible in the asynchronous model.
When randomization is used, it is possible to construct efficient simula-

w xtions for off-line adversaries as recently shown by Kedem et al. 24 . When
asynchronous processors also have initial private data, the computational
capability of the model is further moderated by the asynchronous consen-

w xsus impossibility results 10,16,30 .

2.3. Comparison of the Models

On the surface, the two models of restartable fail-stop processors and of
asynchronous processors are designed for quite different situations. The
fail-stop model treats failure as an abnormal event, which occurs with
sufficient frequency that it cannot be ignored. The asynchronous model
treats delay as a normal occurrence. Nevertheless, the two models are
closely related.

Consider an execution of an asynchronous algorithm. Because the
events are serializable, we may assume without loss of generality that the
events occur at discrete times. In other words, a set of time slices is fixed
in advance, and the scheduling adversary chooses at each time slice
whether or not each processor will start running during that time slice.
From this viewpoint, the two models differ in the following ways.

1. Processors that miss a time slice lose their internal state in the
restartable fail-stop case and keep their internal state in the asynchronous
case.

2. The adversary can stop a processor after any memory operation
within a time slice in the restartable fail-stop case while this has no effect
on the asynchronous case.
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3. The time slices are long enough for several memory operations in the
restartable fail-stop case but allow only a single operation in the asyn-
chronous case.

From the algorithmic point of view, the difference between the models
concerns the number of failures during an execution of the algorithm. In
the restartable fail-stop model, failure is treated as a significant event, and
the number of failures may be taken into account when measuring the
efficiency of the algorithm. In the asynchronous model, delay is the rule
rather than the exception, and the number of delays is not a particularly
meaningful quantity. A normal execution may involve many delays of each
processor between each consecutive step.

An algorithm that performs a bounded amount of work for any number
of failures, and has a small amount of state information, is suitable for
either model. An algorithm whose performance degrades significantly as
the number of failures increases, however, may only be suitable for the

Žrestartable fail-stop model. Algorithms W and V as presented in Section
.4 are examples of the latter case; Algorithms X and T exemplify the

former case.

3. LOWER BOUNDS FOR THE Write-All PROBLEM

Here we show that up to a logarithmic overhead in work will be required
by any Write-All algorithm in the models we consider. A stronger result

w xwas given by Kedem et al. 26 who showed similar lower bounds but for a
Ž . w xmore constrained fail-stop no-restart model. The bound in 26 can also

be extended to test-and-set operations. The results in this section are of
interest for various reasons. The analysis of Algorithm V in Section 4 uses
the bounds shown in Theorems 3.1 and 3.3. We use less constrained
models and the lower bounds stand even if processors are allowed to read
the entire shared memory in unit time. Finally, our proofs are much
simpler and they use only the first principles and require no additional
machinery.

3.1. Lower Bounds with Memory Snapshots

As we have shown in Example B in Section 2.1, without the update cycle
accounting there is a thrashing adversary that exhibits a quadratic lower
bound for the Write-All problem in the restartable fail-stop model. With
the update cycle accounting and for the asynchronous model, we show

Ž . Ž .N q V P log P work lower bounds when P F N for both models, even
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when the processors can take unit time memory snapshots; i.e., processors
can read and locally process the entire shared memory at unit cost.

THEOREM 3.1. Gï en any P-processor CRCW PRAM algorithm that sol̈ es
Ž . Žthe Write-All problem of size N P F N , an ad¨ersary that can cause

.arbitrary processor failures and restarts can force the algorithm to perform
Ž .N q V P log P completed work steps.

Proof. Let Z be any algorithm for the Write-All problem subject to
arbitrary failurerrestarts using update cycles. Consider each PRAM cycle.
The adversary uses the following strategy:

Let U ) 1 be the number of unvisited array elements, i.e., the elements
that no processor succeeded in writing to. For as long as U ) P, the
adversary induces no failures. The work needed to visit N y P array
elements when there were no failures is at least N y P.

As soon as a processor is about to visit the element N y P q 1 making
U F P, the adversary fails and then restarts all N processors. For the
upcoming cycle, the adversary examines the algorithm to determine how
the processors are assigned to write to array elements. The adversary then
lists the first Ur2 unvisited elements with the least processors assigned? @
to them. The total number of processors assigned to these elements does
not exceed Pr2 . The adversary fails these processors, allowing all othersu v
to proceed. Therefore at least Pr2 processors will complete this step,? @
having visited no more than half of the remaining unvisited array locations.

This strategy can be continued for at least log P iterations. The work
performed by the algorithm will be S G N y P q Pr2 log P s N q? @
Ž .V P log P .

Note that the bound holds even if processors are only charged for writes
into the array of size N and do not have to only write the value 1. The
simplicity of this strategy ensures that the results hold in the asynchronous
model.

THEOREM 3.2. Any N-processor asynchronous PRAM algorithm that sol̈ es
Ž .the Write-All problem of size N has total work N y P q V P log P .

Proof. Any possible execution of an algorithm on the restartable fail-
stop model can be duplicated by an appropriate interleaving on the
asynchronous model. The argument in Theorem 3.1 works even if failed
processors do not lose local state, and so the same strategy will work in the
asynchronous model.

This lower bound is the tightest possible bound under the assumption
that the processors can read and locally process the entire shared memory
at unit cost. Although such an assumption is very strong, we present the
matching upper bound for two reasons. First, it demonstrates that any
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improvement to the lower bound must take account of the fact that
processors can read only a constant umber of cells per update cycle.
Second, it presents a simple processor allocation strategy that we use to
advantage in Algorithm V in Section 4.

THEOREM 3.3. If processors can read and locally process the entire shared
memory at unit cost, then a solution for the Write-All problem in the
restartable fail-stop model can be constructed such that its completed work

Ž .using P processors on an input of size N is S s N y P q O P log P , when
P F N.

Proof. The processors follow the following simple strategy: at each step
w xthat a processor PID is active, it reads the N elements of the array x 1..N

to be visited. Say U of these elements are still not visited. The processor
numbers these U elements from 1 to U based on their position in the
array and assigns itself to the ith unvisited element such that i
s PID ? UrP . This achieves load balancing with no more than PrUu v u v
processors assigned to each unvisited element. The reading and local
processing is done as a snapshot at unit cost.

We list the elements of the Write-All array in ascending order according
Ž .to the time at which the elements are visited ties are broken arbitrarily .

We divide this list into adjacent segments numbered sequentially starting
with 0, such that the segment 0 contains V s N y P elements, and0
segment j G 1 contains V s Prj j q 1 elements, for j s 1, . . . , m andŽ .j'for some m F P . Let U be the least possible number of unvisitedj
elements when processors were being assigned to the elements of the jth
segment. U can be computed as U s N y Ý jy1 V . U is of course N, andj j is0 i 0

jy1 Ž .for j G 1, U s P y Ý V G P y P y Prj s Prj. Therefore no morej is1 i

than PrU processors were assigned to each element.j
The work performed by such an algorithm is

m mP P P
S F V F V qÝ Ýj 0U j j q 1 PrjŽ .jjs0 js1

m 1
s V q O P s N q O P log P .Ž .Ý0 ž /j q 1js1

Remark. Under the memory snapshot assumption, it can be shown that
Ž . w xthe V N log Nrlog log N lower bound of Kanellakis and Shvartsman 21

is the best possible bound for failures without restarts. This is done by
w xadapting the analysis of Algorithm W by Martel 32 . According to the

Žanalysis, the number of ‘‘block-steps’’ of W for P s N is O N log Nrlog
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.log N and each block-step can be realized at unit cost using memory
snapshots.

A similar situation holds in the asynchronous model.

THEOREM 3.4. If processors can read and locally process the entire shared
memory at unit cost, then a solution for the Write-All problem in the

Ž .asynchronous model can be constructed with total work N y P q O P log P
using P processors on input of size N, for P F N.

Proof. We use the same algorithm as in the previous proof. The proof
itself applies to the asynchronous model with the following modifications:
Ž .1 one unit of total work is charged for each read and the write that
Ž . Ž .potentially follows. 2 As soon as a processor performs a read, it is
charged one unit work; this is done to take care of the situation when a
processor performs a write only after all elements in a given segment have
been initialized.

3.2. Lower Bounds with Test-and-Set Operations

Under certain assumptions on the way that memory is accessed in the
asynchronous model, we can prove a different lower bound. Assume for
the moment that, instead of atomic reads and writes, memory is accessed
by means of test-and-set operations. That is, memory can only contain
zeroes and ones, and a single test-and-set operation on a memory cell sets

Žthe value of that cell to 1 and returns the old value of the cell. We will
.discuss shortly how this assumption can be generalized.

THEOREM 3.5. Any asynchronous PRAM algorithm for the Write-All
problem which uses test-and-set as an atomic operation requires N q
Ž Ž ..V P log NrP total work, for P G 3.

Proof. Consider the following class of interleavings. A round will be a
length of time in which processors take one step each in PID order;

² :formally, it is the sequence of PIDs 1, 2, . . . , P . We will run the algo-
rithm in phases. To define a phase, suppose that U cells out of the original
N remain unset at the beginning of a phase. We imagine running the
algorithm in rounds until a collision occurs; that is, until a test-and-set
operation is done on a cell that is already set to one. Suppose this happens
in the t th round. The actual definition of the phase depends on the nature
of the collision; there are two cases.

If the cell involved in the collision was set in this round, then it was
initially set by some processor with PID i, and set again by some processor
with PID j. Then to define the phase, we let only processors i and j
alternate steps, instead of running all processors; that is, the phase consists
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of the PIDs i, j repeated t times. A total of 2 t steps are taken and one of
them is wasted work.

On the other hand, if the cell was set in a previous round, then consider
the processor with PID j that set it in this round and let only this
processor take steps. That is, the phase consists of the PID j repeated t
times, for a total of t steps and one wasted step.

We now note that t must be at most UrP , and so a recurrence for theu v
Ž . Ž . Ž .amount of wasted work W U is W U G 1 q W U y 2 UrP q 1 . Byu v

Ž . Ž .induction, we can show that W U G cP ln Ur2 P for a suitable constant
c ) 0; the result follows by noting that unwasted work N is necessary.

The trivial base case of the induction is U F 2 P. Now suppose that the
Ž . Ž .inequality W x G cP ln xr2 P holds for all integer x - U. By the induc-

Ž . ŽŽ . .tion hypothesis, we have W U G cP ln U y 2 UrP q 1 r2 P G 1 qu v
Ž . Ž .cP ln Ur2 P q cP ln 1 y 2rP y 1rU . It thus suffices to prove that 1 q
Ž .cP ln 1 y 2rP y 1rU G 0. But

1 q cP ln 1 y 2rP y 1rU G 1 q cP ln 1 y 5r 2 PŽ . Ž .Ž .
G 1 q cP y5r 2 P y 5 G 0.Ž .Ž .

The first inequality is valid because U ) 2 P; the second inequality uses
Ž . Ž .ln 1 y z G yzr 1 y z , which can be seen by comparing power series;

the third inequality is valid for P G 3 and any choice of c F 1r15. No
attempt was made to optimize the constant c.

The argument used in this lower bound can be applied equally well if
the atomic operation is compare-and-swap, or to any set of atomic read-
modify-write operations where the read and writes are constrained to be to
the same cells. It also applies to atomic read and atomic write, but in this
case there is no known matching upper bound, whereas Algorithm T
Ž . Žpresented in the next section can match the lower bound for some

.choices of atomic operation in the case P s 3. The above proof technique
also applies to the fail-stop restartable model, when each update cycle
accesses only one array element used by the Write-All problem.

4. ALGORITHMS FOR THE Write-All PROBLEM

The original motivation for studying the Write-All problem was that it
intuitively captured the essential nature of a single synchronous PRAM

w xstep. This intuition was made concrete when it was shown 25,42 how to
use any algorithm for the Write-All problem in general PRAM simulations.
This application is discussed in the next section; in this section, we will
present new algorithms for the Write-All problem.
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In what follows, we assume that the umber of array elements N and the
number of processors P are powers of 2. Nonpowers of 2 can be handled
using conventional padding techniques. All logarithms are base 2.

4.1. Algorithm V: A Modification of a No-Restart Algorithm

w x Ž .Algorithm W of 21 is an efficient fail-stop no restart Write-All
solution. The algorithm uses two full binary trees as its basic data struc-

Ž .tures the processor counting and the progress measurement trees . The
algorithm uses an iterative approach in which all active processors syn-
chronously execute the following four phases:

Ž .W1 Processors are counted and enumerated using a static bottom-up,
logarithmic time traversal of the processor counting tree data structure.
Ž .W2 Processors are allocated to the unvisited array locations according

to a divide-and-conquer strategy using a dynamic top-down traversal of the
progress tree data structure.
Ž .W3 Array assignments are done.
Ž .W4 Progress is evaluated by a dynamic bottom-up traversal of the

progress tree data structure.

This algorithm has efficient completed work when subjected to arbitrary
failure patterns without restarts. It can be extended to handle processor
restarts by introducing an iteration counter, and having the revived proces-
sors wait for the start of a new iteration. However, this algorithm may not
terminate if the adversary does not allow any of the processors that were
alive at the beginning of an iteration to complete that iteration. Even if the
extended algorithm were to terminate, its completed work is not bounded
by a function of N and P.

w xIn addition, the proof framework of 21 does not easily extend to
include processor restarts: the processor enumeration and allocation phases
become inefficient and possibly incorrect, since no accurate estimates of
active processors can be obtained when the adversary can revive any of the
failed processors at any time.

On the other hand, the second phase of Algorithm W can implement
Žprocessor assignment in a manner similar to that used in the proof of

. Ž .Theorem 3.3 in O log N time by using the permanent processor PID in
the top-down divide-and-conquer allocation. This also suggests that the
processor enumeration phase of Algorithm W does not impro¨e its effi-
ciency when processors can be restarted.

Therefore we present a modified version of Algorithm W that we call V.
To avoid a complete restatement of the details of Algorithm V, the reader

w xis urged to refer to 21 .
w x ŽV uses the data structures of the optimized Algorithm W of 21 i.e., full

.binary trees with Nrlog N leaves for progress estimation and processor
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allocation. There are log N array elements associated with each leaf.
When using P processors such that P ) Nrlog N on such data structures,
it is sufficient for each processor to take its PID modulo Nrlog N to
assure that there is a uniform initial assignment of at least Pr Nrlog NŽ .
and no more than Pr Nrlog N processors to a work element.Ž .

Algorithm V is an iterative algorithm using the following three phases
that are based on the phases W2, W3, and W4 of Algorithm W.

Ž .V1 Processors are allocated in a dynamic top-down traversal of the
progress tree as in the phase W2, but using the permanent PIDs. This

Ž .assures load balancing in O log N time.
Ž .V2 The processors now perform work, as in the phase W3, at the

Ž .leaves they reached in phase V1 there are log N array elements per leaf .
Ž .V3 The processors begin at the leaves of the progress tree where they

ended phase V2 and update the progress tree dynamically bottom up as in
Ž .phase W4 in O log N time.

Processor resynchronization after a failure and a restart is an important
implementation detail. The model assumes resynchronization on the in-
struction level, but the processors still need to be synchronized with
respect to the phases. One way of realizing processor resynchronization is
through the utilization of an iteration wrap-around counter that is based
on the synchronous PRAM clock. If a processor fails, and then is restarted,
it waits for the counter wrap-around to rejoin the computation. The point
at which the counter wraps around depends on the length of the program
code, but it is fixed at ‘‘compile time.’’

Analysis of Algorithm V. We now analyze the performance of this
algorithm first in the fail-stop, and then in the fail-stop and restart setting.

LEMMA 4.1. The completed work of Algorithm V using P F N processors
Ž 2 .that are subject to fail-stop errors without restarts is S s O N q P log N .

Proof. We factor out any work that is wasted due to failures by
charging this work to the failures. Since the failures are fail-stop, there can
be at most P failures, and each processor that fails can waste at most
Ž .O log N steps corresponding to a single iteration of the algorithm.

Ž .Therefore, the work charged to the failures is O P log N , and it will be
absorbed by the rest of the work.

We next evaluate the work that directly contributes to the progress of
the algorithm by distinguishing two cases below. In each of the cases, it

Ž Ž .. Ž .takes O log Nrlog N s O log N time to perform processor allocation,
Ž .and O log N time to perform the work at the leaves. Thus, each iteration

Ž .of the algorithm takes O log N time. We use the allocation technique of
Theorem 3.3, where instead of reading and locally processing the entire
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Ž .memory at unit cost, we use an O log N time iteration for processor
allocation.

Case 1. 1 F P - Nrlog N. In this case, at most one processor is
initially allocated to each leaf. As in the proof of Theorem 3.3, when the

Ž .first Nrlog N y P leaves are visited, there is no more than one proces-
Žsor allocated to each leaf by the balanced allocation phase balanced

w x.allocation is assured as in Algorithm W 21 . When the remaining P or
Ž . Žless leaves are visited, the work is O P log P by Theorem 3.3 not

. Ž .counting processor allocation . Each leaf visit takes O log N work steps;
therefore, the completed work is:

N
S s O y P q P log P ? log Nž /ž /log N

s O N q P log P log N s O N q P log2 N .Ž . Ž .
Ž .Case 2. Nrlog N F P F N. In this case, no more than

u Ž .vPr Nrlog N processors are initially allocated to each leaf. Any two
processors that are initially allocated to the same leaf, should they both
survive, will behave identically throughout the computation. Therefore, we

u Ž .vcan use Theorem 3.3 with the Pr Nrlog N processor allocation as a
multiplicative factor. From this, the completed work is

N N N
2S s Pr ? O log ? O log N s O P log N .Ž . Ž .ž /log N log N log N

2Ž .The results of the two cases combine to yield S s O N q P log N .

The above upper bound analysis is tight:

THEOREM 4.2. There is a fail-stop ad¨ersary that causes the work of
Ž 2 .Algorithm V to be S s V P log N for the number of processors Nrlog N

Ž .F P F N, and S s V N q P log N log P for the number of processors
1 F P F Nrlog N.

Proof. Consider the following adversary for P s Nrlog N. At the out-
set the adversary fail-stops all processors that are initially assigned to the,
say, left subtree of the progress tree. This is the only action by the
adversary. For the iteration i of Algorithm V, let the number of unvisited

Žleaves in the progress tree be U . The P s Nrlog N processors whetheri
.dead or alive will be assigned in a balanced fashion to the left and right

segments of the contiguous U unvisited elements. Initially, U is Nrlog N,i 0
and in each iteration of the algorithm half of the leaves will be visited by
the live processors. Therefore the algorithm will terminate in log U s0
Ž .Q log N block-steps after that initial stoppage of the processors by the
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Ž .adversary. Each block-step takes Q log N time using the remaining Pr2
Ž . Ž . Ž .processors. Thus, the work is S s Pr2 Q log N Q log N s

Ž 2 . Ž .Q P log N s V N log N .
When P is larger than Nrlog N, then each leaf is allocated at least

Pr Nrlog N and no more than Pr Nrlog N processors. All pro-Ž . Ž .
cessors allocated to the same leaf have their PIDs equal modulo Nrlog N.
Therefore, the work is increased by at least a factor of Pr Nrlog N asŽ .
com pared to th e case P s N r log N . T h at is , S s
? Ž .@ Ž . Ž 2 .Pr Nrlog N V N log N s V P log N .

Finally, when P - Nrlog N, the result follows similarly using the strat-
Ž .egy of case 1 of Lemma 4.1.

The following theorem expresses the completed work of the algorithm in
the presence of restarts:

THEOREM 4.3. The completed work of Algorithm V using P F N proces-
Žsors subject to an arbitrary failure and restart pattern F of size M is S s O N

2 .q P log N q M log N .

Proof. The proof of Lemma 4.1 does not rely on the fact that in the
absence of restarts, the number of active processors is nonincreasing.
However, the lemma does not account for the work that might be per-
formed by processors that are active during a part of an iteration but do
not contribute to the progress of the algorithm due to failures. To account
for all work, we are going to charge to the array being processed the work
that contributes to progress, and any work that was wasted due to failures
will be charged to the failures and restarts. Lemma 4.1 accounts for the
work charged to the array. Otherwise, we observe that a processor can

Ž .waste no more than O log N time steps without contributing to the
progress due to a failure andror a restart. Therefore, this amount of

Ž . Žwasted work is bounded by O M log N . This proves the theorem. Note
< <that the completed work S of V is small for small F , but not bounded by

< < .a function of P and N for large F .

COROLLARY 4.4. The completed work of Algorithm V using P F Nrlog2 N
processors subject to an arbitrary failure and restart pattern F of size

Ž .M F Nrlog N is S s O N .

4.2. Algorithm X: A Binary Tree Algorithm

We present a new Algorithm X for the Write-All problem and show that
Ž log 3r2 .its completedrtotal work complexity is S s O N ? P using P F N

processors in the restartable fail-stop and the asynchronous models of
computation. The important property of X is that it has bounded sub-
quadratic completed work; in the restartable fail-stop model, this is inde-
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pendent of the failure pattern. If a very large number of failures occurs,
< < Ž 0.59.say F s V N ? P , then the algorithm’s overhead ratio s becomes

optimal: it takes a fixed number of computing steps per failurerrecovery.
Like Algorithm V, Algorithm X utilizes a progress tree of size N, but it

is traversed by the processors independently, not in synchronized phases.
This reflects the local nature of the processor allocation in Algorithm X as
opposed to the global allocation used in Algorithms V and W. Each
processor, acting independently, searches for work in the smallest immedi-
ate subtree that has work that needs to be done. It then performs the
necessary work and moves out of that subtree when no more work
remains. We present the algorithm on the restartable fail-stop model.

w x w xInput: Shared array x 1..N ; x i s 0 for 1 F i F N.
w x w xOutput: Shared array x 1..N ; x i s 1 for 1 F i F N.

Data structures: The algorithm uses a full binary tree of size 2 N y 1,
w xstored as a heap implicitely in d 1 . . . 2 N y 1 in shared memory. An

w x Ž . w xinternal tree node d i i s 1, . . . , N y 1 has the left child d 2 i and the
w xright child d 2 i q 1 . The tree is used for progress evaluation and proces-

w xsor allocation. The values stored in d are initially 0.
w xThe N elements of the input array x 1 . . . N are associated with the

w x w xleaves of the tree. Element x i is associated with d i q N y 1 , where
w x1 F i F N. The algorithm also utilizes an array w 0 . . . P y 1 that is used

to store individual processor locations within the progress tree d.
Each processor uses some constant amount of private memory to

perform simple arithmetic computations. An important private constant is
PID, containing the initial processor identifier.

Ž .Thus, the overall memory used is O N q P and the data structures are
simple.
Control flow: The algorithm consists of a single initialization and of
the parallel loop. A high level view of the algorithm is in Fig. 2; all
line numbers refer to this figure. More detailed code can be found in
Appendix A.

Ž .The initialization line 01 assigns the P processors to the leaves of the
progress tree so that the processors are assigned to the first P leaves by

w x Ž .storing the initial leaf assignment in w PID . The loop lines 02]13
Ž .consists of a multiway decision lines 03]12 . If the current node u is

Ž .marked done, the processor moves up the tree line 04 . If the processor is
Ž .at a leaf, it performs work line 05 . If the current node is an unmarked

interior node and both of its subtrees are done, the interior node is
Ž .marked by changing its value from 0 to 1 line 08 . If a single subtree is not

Ž .done, the processor moves down appropriately line 09 .
Ž .For the final case line 10 , the processors move down when neither

child is done. This last case is where a nontrivial decision is made. The
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FIG. 2. A high level view of the Algorithm X.

PID of the processor is used at depth h of the tree node based on the
value of the hth most significant bit of the binary representation of the
PID: bit 0 will send the processor to the left, and bit 1 to the right.

Regardless of the decision made by a processor within the loop body,
each iteration of the body consists of no more than four shared memory
reads, a fixed time computation using private memory, and one shared

Ž .memory write see Appendix A for the detailed algorithm . Therefore, the
body can be implemented as an update cycle.

EXAMPLE C. Consider Algorithm X for N s P s 8. The progress tree
d of size 2 N y 1 s 15 is used to represent the full binary progress tree
with eight leaves. The eight processors have PIDs in the range 0 through 7.
Their initial positions are indicated in Fig. 3 under the leaves of the tree.
The diagram illustrates the state of a computation where the processors
were subject to some failures and restarts. Heavy dots indicate nodes
whose subtrees are finished. The paths being traversed by the processors

Žare indicated by the arrows. Active processor locations at the time when

FIG. 3. Processor traversal of the progress tree.
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.the snapshot was taken are indicated by their PIDs in brackets. In this
configuration, should the active processors complete the next cycle, they
will move in the directions indicated by the arrows: processors 0 and 1 will
descend to the left and right respectively, processor 4 will move to the
unvisited leaf to its right, and processors 6 and 7 will move up.

Analysis of Algorithm X. We begin by showing the correctness and
termination of Algorithm X in the following simple lemma.

LEMMA 4.5. Algorithm X with P processors is a correct, terminating and
fault-tolerant solution for the Write-All problem of size N in the fail-stop

Ž . Ž .restartable model. The algorithm terminates in V log N and O P ? N time
steps.

Proof. We first observe that the processor loads are localized in the
sense that a processor exhausts all work in the vicinity of its original
position in the tree, before moving to other areas of the tree. If a
processor moves up out of a subtree then all the leaves in that subtree
were visited. We also observe that it takes exactly one update cycle to:
Ž . Ž .i change the value of a progress tree node from 0 to 1, ii to move up

Ž . Ž . Ž .from a nonroot node, or iii to move down left, or iv down right from a
Ž .nonleaf node. Therefore, given any node of the progress tree and any
processor, the processor will visit and spend exactly one complete update
cycle at the node no more than four times.

Since there are 2 N y 1 nodes in the progress tree, any processor will be
Ž .able to execute no more than O N completed update cycles. If there are

P processors, then all processors will be able to complete no more than
Ž .O P ? N update cycles. Furthermore, at any point in time, there is at least

one update cycle that will complete. Therefore, it will take no more than
Ž .O P ? N sequential update cycles of constant size for the algorithm to

terminate.
Finally, we also observe that all paths from a leaf to the root are at least

log N long; therefore, at least log N update cycles per processor will be
required for the algorithm to terminate.

Now we prove the main work lemma. In the rest of this section, the
expression S denotes the completed work on inputs of size N using PN, P
initial processors and for any failure pattern. Note that in this lemma we
assume that P G N.

LEMMA 4.6. The completed work of Algorithm X for the Write-All problem
of size N with P G N initial processors and for any pattern of failures and

Ž log 3r2 .restarts is S s O P ? N .N , P
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Proof. We show by induction on the height of the progress tree that
there are positive constants c , c , c such that S F c P ? N log 3r2 y1 2 3 N , P 1
c P log N y c P.2 3

For the base case, we have a tree of height 0 that corresponds to an
input array of size 1 and at least as many initial processors P. Since at
least one processor, and at most P processors will be active, this single leaf
will be visited in a constant number of steps. Let the work expended be
c9P for some constant c9 that depends only on the lexical structure of the
algorithm. Therefore, S s c9P F c P ? 1log 3r2 y c P ? 0 y cP when c is1, P 1 2 1
chosen to be larger than or equal to c q c9.3

Ž .Now consider a tree of height log N G 1 . The root has two subtrees
Ž .left and right of height log N y 1. By the definition of Algorithm X, no
processor will leave a subtree until the subtree is marked-one; i.e., the
value of the root of the subtree is changed from 0 to 1. We consider the

Ž .following subcases: 1 both subtrees are marked-one simultaneously, and
Ž .2 one of the subtrees is marked-one before the other.

Case 1. If both subtrees are marked-one simultaneously, then the
algorithm will terminate after the two independent subtrees terminate plus

Žsome small constant number of steps c9 when a processor moves to the
.root and determines that both of the subtrees are finished . Both the work

S expended in the left subtree of, and the work S in the right subtreeL R
are bounded by S . The added work needed for the algorithm toNr2, Pr2
terminate is at most c9P, and so the total work is

S F S q S q c9P F 2S q c9PL R Nr2, Pr2

log 3r2P N P N P
F 2 c y c log y c q c9P1 2 3ž /ž /2 2 2 2 2

2 N
log 3r2s c PN y c P log y c P q c9P1 2 33 2

F c P ? N log 3r2 y c P log N y c P1 2 3

Ž .for sufficiently large c and any c depending on c9, e.g., c G 3 c q c9 .1 2 1 2
Case 2. Assume without loss of generality that the left subtree is

marked-one first with S s S work being expended in this subtree.L Nr2, Pr2
Any active processors from the left subtree will start moving via the root to
the right subtree. The length of the path traversed by any processor as it
moves to the right subtree after the left subtree is finished is bounded by
the maximum path length from a leaf to another leaf c9 log N for a
predefined constant c9. No more than the original Pr2 processors of the
left subtree will move, and so the work of moving the processors is

Ž .bounded by c9 Pr2 log N.
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We observe that the cost of an execution in which P processors begin at
Ž .the leaves of a tree with Nr2 leaves differs from the cost of an execution

where Pr2 processors start at the leaves, and Pr2 arrive at a later time
Ž .via the root, by no more than the cost c9 Pr2 log N accounted for above.

ŽThis is because a simulating scenario can be constructed in which the
second set of Pr2 processors, instead of arriving through the root, start

Ž .their execution with a failure, and then traverse along a path of 1’s if any
in the progress tree, until they reach a 0 node that is either a leaf or whose

.descendants are marked. Having accounted for the difference, we see that
the work S to complete the right subtree using up to P processors isR

Ž .bounded by S by the definition of S, if P F P , then S F S .Nr2, P 1 2 N, P N , P1 2

After this, each processor will spend some constant number of steps
moving to the root and terminating the algorithm. This work is bounded by
c0 P for some small constant c0. The total work S is

P P
S F S q c9 log N q S q c0 P F S q c9 log N q S q c0 PL R Nr2, Pr2 Nr2, P2 2

log 3r2P N P N P P
F c y c log y c q c9 log N1 2 3ž /2 2 2 2 2 2

log 3r2N N
q c P y c P log y c P q c0 P1 2 3ž /2 2

3 c9 3 c0 3c2log 3r2s c PN y c P log N y y c P y y1 2 3ž / ž /2 2c 2 c 2c2 3 3

F c P ? N log 3r2 y c P log N y c P1 2 3

for sufficiently large c and c depending on fixed c9 and c0, e.g., c G c92 3 2
and c G 3c q 2c0.3 2

Since the constants c9, c0 depend only on the lexical structure of the
algorithm, the constants c , c , c can always be chosen sufficiently large1 2 3

Ž . Ž .to satisfy the base case and both cases 1 and 2 of the inductive step.
This completes the proof of the lemma.

The quantity P ? N log 3r2 is about P ? N 0.59. We next show a particular
pattern of failures for which the completed work of Algorithm X matches
this upper bound.

LEMMA 4.7. There exists a pattern of fail-stoprrestart errors that cause
Ž log 3.Algorithm X to perform S s V N work on the input of size N using

P s N processors.
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Proof. We can compute the exact work performed by the algorithm
when the adversary adheres to the following strategy:

Ž .a All processors, except for the processor with PID 0 are initially
stopped.

Ž .b The processor with PID 0 will be allowed to sequentially traverse
the progress tree starting at the leftmost leaf and finishing at the rightmost
leaf. The traversal will be essentially a postorder traversal, except that the
processor will not begin at the root of the binary tree, but at the leftmost
leaf.

Ž .c Any processors with PID / 0 that find themselves at the same
leaf as processor 0 are restarted in synchrony with processor 0 and are
allowed to traverse the progress tree at the same pace as processor 0 until
they reach a leaf, where they are fail-stopped by the adversary. The
computation terminates when all leaves are visited.

Thus the leaves of the progress tree are visited left to right, from the
leaf number 1 to the leaf number N. At any time, if i is the number of the
rightmost visited leaf, then only the processors with PIDs 0 to i y 1 have
performed at least one update cycle thus far.

The cost of such strategy can be expressed inductively as follows:
The cost C of traversing a tree of size 1 using a single processor is 10
Ž .unit of completed work . The cost C of traversing a tree of sizeiq1
2 iq1 is computed as follows: first, there is the cost C of traversing thei

left subtree of size 2 i. Then all processors move to the right subtree
Ž .and participate subject to failures in the traversal of the right subtree

at the cost of 2C }the cost is doubled, because the two processorsi
whose PIDs are equal modulo i behave identically. Thus, C s 3C , andiq1 i

log N log 3C s 3 s N .log N

Now we show how to use Algorithm X with P processors to solve
Write-All problems of size N such that P F N. Given an array of size N,
we break the N elements of the input into NrP groups of P elements

Ž .each the last group may have fewer than P elements . The P processors
are then used to solve NrP Write-All problems of size P one at a time. We
call this Algorithm X 9, and we will use X 9 in the general simulations.

Remark. Strictly speaking, it is not necessary to modify Algorithm X
for P F N processors. Algorithm X can be used with P F N processors by
initially assigning the P processors to the first P elements of the array to
be visited. It can also be shown that X and X 9 have the same asymptotic
complexity; however, the analysis of X 9 is very simple, as we show below.

THEOREM 4.8. Algorithm X 9 with P processors sol̈ es the Write-All prob-
Ž .lem of size N P F N in the fail-stop restartable model using completed work
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Ž log 3r2 .S s O N ? P . In addition, there is an ad¨ersary that forces Algorithm
Ž log 3r2 .X 9 to perform S s V N ? P work.

Ž log 3r2 . Ž log 3.Proof. By Lemma 4.6, S s O P ? P s O P . Thus, theP , P
overall work will be

N N
log 3 log 3r2S s O S s O P s O N ? P .Ž .P , Pž / ž /P P

Using the strategy of Lemma 4.7, an adversary causes the algorithm to
Ž log 3.perform work S s V P on each of the NrP segments of the inputP , P

Ž . log 3. Žarray. This results in the overall work of S s V NrP P s V N ?
log 3r2 .P .

Remark. Lemma 4.5 gives only a loose upper bound for the worst time
performance of Algorithm X}there we are primarily concerned with
termination. The actual worst case time for Algorithm X can be no more
than the upper bound on the completed work. This is because at any point
in time there is at least one update cycle that will complete. Therefore, for

Ž log 3r2 .Algorithm X 9 with P F N, the time is bounded by O N ? P . In
Ž log 3.particular, for P s N, the time is bound by O N . In fact, using the

worst case strategy of Lemma 4.7, an adversary can ‘‘time share’’ the
completed cycles of the processors so only one processor is active at any
given time, with the processor with PID 0 being one step ahead of other

Ž log 3.processors. The resulting time is then V N .

In Algorithm X, processors work for the most part independently of
other processors; they attempt to avoid duplicating already-completed
work but do not coordinate their actions with other processors. It is this
property which allows the algorithm to run on the asynchronous model
with the same work and time bounds.

LEMMA 4.9. Algorithm X with P processors sol̈ es the Write-All problem
Ž . Ž log 3r2 .of size N P G N on the asynchronous model with total work O P ? N .

Proof. If we let S be the total work done by Algorithm X on aN, P
problem of size N with P processors, then S satisfies the sameN, P
recurrence as given in the proof of Lemma 4.6. The proof, which never
uses synchroneity, goes through exactly as in that lemma, except that case
Ž .1 where left and right subtrees have their roots marked simultaneously

does not occur.
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The final result of this section is similar to Theorem 4.6:

THEOREM 4.10. Algorithm X 9 with P processors sol̈ es the Write-All
Ž .problem of size N P F N on the asynchronous model with total work

Ž log 3r2 .O N ? P .

4.3. Algorithm T: A Three-Processor Algorithm

Quite different techniques are necessary when designing a parallel
algorithm in which the number of processors is much smaller than the size
of the input. The goal in this situation, when the underlying machine is
synchronous, is to find a method whose parallel time complexity is at most
the sequential time complexity divided by the number of processors plus a

w xsmall additï e overhead; see 3 for an example of such an algorithm. Note
that constant factors are important and cannot be hidden in O notation.
When considering algorithms on fail-stop or asynchronous models, the
goal is to have the parallel work complexity to be equal to the sequential
complexity plus small overhead.

For the Write-All problem, it is easy to achieve this goal with two
Ž .processors. The processor with PID 0 henceforth, P reads and then0

writes locations sequentially starting at 1 and moving up; processor P1
reads and then writes locations sequentially starting at N and moving
down. Both processors stop when they read a 1. The completed work is
exactly N q 1.

The first nontrivial case is that of three processors. There are two
important points to the algorithm we are about present: the implementa-

Ž .tion is nontrivial even through the idea is simple , and the case of four
processors is still open. This makes our algorithm interesting.

Here is an intuitive description of a three-processor algorithm. Proces-
sor P works left-to-right, processor P works right-to-left, and P fills0 1 2
starting from the middle and alternately expanding in both directions. If
P and P meet, they both know that an entire prefix of the memory cells0 2
has been written. Processor P then jumps to the leftmost cell not written0
by itself or P , and P jumps to the new ‘‘middle’’ of unwritten cells. A2 2
meeting of P and P is symmetric. When P and P meet, the computa-1 2 0 1
tion is complete. Intuitively, processors can maintain an upper bound on
the number of empty cells remaining that starts at N and is halved every
time a collision occurs. Thus, at most log N collisions are experienced by
each processor. High-level pseudo-code for the algorithm is given in Fig. 4.

Implementation of the high-level algorithm requires some form of
communication among the asynchronous processors. At a collision, a
processor must determine which processor previously wrote the cell. In the
case of a collision with P , a processor must also determine what portion2
of the array to jump over. This communication may be implemented either
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FIG. 4. A high-level description of Algorithm T. Processor P executes T .i i

by writing additional information to the cells of the array or by using
auxiliary variables.

If the array in which processors are writing is also used to hold auxiliary
information, implementation is straightforward. When processor P writes2

Ž .to a cell at the left resp. right end of its area, it writes the location of the
Ž .next unwritten cell to the right resp. left . P and P write the values y10 1

and N q 1 respectively, to signal no unwritten cells. A total of N q
Ž . Ž .O log N reads and N q O log N writes are required on the asyn-

chronous model. If an atomic compare-and-swap is used, the total work is
Ž .reduced o N q O log N operations.

To solve the pure Write-All problem, in which only 1’s are written to the
array, auxiliary shared variables are required. These variables must be
carefully managed to ensure that the processors maintain a consistent view
of the progress of the algorithm. Because a processor may be delayed



PARALLEL ALGORITHMS WITH FAILURES 75

between reading an auxiliary variable and writing to the array, complete
consistency is impossible. Approximate consistency is sufficient, however, if
the processors are appropriately pessimistic. The precise code is presented
and analyzed in Appendix B.

In summary, Algorithm T provides the following bounds.

THEOREM 4.11. The Write-All problem for three processors can be sol̈ ed
Ž . Ž .with N q O log N writes to and N q O log N reads from the array.

In most applications, the array also has room for communication vari-
ables, and no auxiliary variables are necessary.

5. GENERAL SIMULATIONS ON RESTARTABLE
FAIL-STOP PROCESSORS

We now present a major extension to the algorithms presented so far in
the restartable fail-stop model. This is an efficient deterministic simulation
of any N-processor synchronous PRAM on P restartable fail-stop proces-

Ž .sors P F N .
We first formally state the main result and then discuss its proof.

THEOREM 5.1. Any N-processor PRAM algorithm can be executed on a
restartable fail-stop P-processor CRCW PRAM, with P F N. Each N-processor
PRAM step is executed in the presence of any pattern F of failures and restarts
of size M with:

v
2 log 3r2Ž � 4.work: S s O min N q P log N q M log N, N ? P ,

v
2Ž .o¨erhead ratio: s s O log N .

EREW, CREW, and WEAK and COMMON CRCW PRAM algorithms are
simulated on fail-stop COMMON CRCW PRAMs; ARBITRARY and STRONG

CRCW PRAMs are simulated on fail-stop CRCW PRAMs of the same type.

Remark. PRIORITY CRCW PRAMs cannot be directly simulated using
Žthe same framework, for one of the algorithms used namely Algorithm X

.in Section 4 does not possess the processor allocation monotonicity prop-
erty that assures that higher numbered processors simulate the steps of the

w xhigher numbered original processors 42 .
An approach for executing arbitrary PRAM programs on fail-stop CRCW

Ž . w xPRAMs without restart was presented independently in 25,42 . The
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execution is based on simulating individual PRAM computation steps
using the Write-All paradigm. It was shown that the complexity of solving
an N-size instance of the Write-All problem using P fail-stop processors is
equal to the complexity of executing a single N-processor PRAM step on a
fail-stop P-processor PRAM. Here we describe how Algorithms V and X 9

w x w xare combined with the framework of 25 or 42 to yield efficient execu-
tions of PRAM programs on PRAMs that are subject to stop-failures and
restarts as stated in Theorem 5.1.

THEOREM 5.2. There exists a Write-All solution using P F N processors on
instances of size N such that for any pattern F of failures and restarts with
< < Ž � 2F F M, the completed work is S s O min N q P log N q M log N, N ?

log 3r24. Ž 2 .P , and the o¨erhead ratio is s s O log N .

Proof. The executions of Algorithms V and X 9 can be interleaved to
yield an algorithm that achieves the performance as stated. The completed
work complexity is asymptotically equal to the minimum of the completed
work performed by V and X 9. This is because the number of cycles
performed by each algorithm in the interleaving differs by at most a
multiplicative constant. The overhead ratio is directly inherited from
Algorithm V by the same reasoning because of the Definition 2.3 of s
and S.

The simulations of the individual PRAM steps are based on replacing
the trivial array assignments in a Write-All solution with the appropriate
components of the PRAM steps. These steps are decomposed into a fixed
number of assignments corresponding to the standard fetchrdecoder
execute RAM instruction cycles in which the data words are moved
between the shared memory and the internal processor registers. The
resulting algorithm is then used to interpret the individual cycles using the
available fail-stop processors and to ensure that the results of computa-
tions are stored in temporary memory before simulating the synchronous
updates of the shared memory with the new values. For the details on this

w xtechnique, the reader is referred to 21,25,42 . Application of these tech-
niques in conjunction with the algorithms V and X 9 yield efficient and
terminating executions of any non-fault-tolerant PRAM programs in the
presence of arbitrary failure and restart patterns. Theorem 5.1 follows

w x w xfrom Theorem 5.2 and the results of 25 or 42 . The following corollaries
are also interesting:

< <COROLLARY 5.3. Under the hypothesis of Theorem 5.1, and if F F P F
Ž 2 . Ž 2 .N, then S s O N q P log N , and s s O log N .
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Ž .The fail-stop without restarts behavior of the combined algorithm is
subsumed by this corollary. The next result gives additional insight into the
efficiency of our solution:

COROLLARY 5.4. Under the hypothesis of Theorem 5.1:

v < < Ž . Ž .when F is V N log N , then s is O log N ,

v
1.59< < Ž . Ž .when F is V N , then s is O 1 .

Thus the overhead efficiency of our algorithm actually improves for
large failure patterns. These results also suggest that it is harder to deal
efficiently with a few worst case failures than with a large number of
failures.

Our next corollary demonstrates a nontrivial range of parameters for
which the completed work is optimal; i.e., with Corollary 4.4, the work
performed in executing a parallel algorithm on a faulty PRAM is asymptot-
ically equal to the Parallel-time = Processors product for that algorithm.

COROLLARY 5.5. Any N-processor, t-time PRAM algorithm can be exe-
cuted on a P F Nrlog2 N processor fail-stop CRCW PRAM, such that when
during the execution of each N-processor step of that algorithm the total

Ž .number of processor failures and restarts is O Nrlog N , then the completed
Ž .work is S s O t ? N .

6. DISCUSSION AND OPEN PROBLEMS

We conclude with a brief discussion of open problems and the effects of
on-line adversaries on the expected performance of randomized algo-
rithms.

Ž . ŽLower Bounds. We have shown an V N log N lower bound when
.N s P for the Write-All problem in both the restartable fail-stop and the

asynchronous models under the assumption that processors can read and
locally process the entire shared memory at unit cost. Under this assump-
tion, these are the best possible lower bounds. Can these lower bounds be
improved for the fail-stop restartable and the asynchronous models?

Ž OŽ1. .Upper Bounds. Is O N log N completedrtotal work for solving
Write-All with N processors and input of size N achievable in the
restartable fail-stoprasynchronous model? Recently, an existence proof

Ž 1qe .for an algorithm achieving O N work was given by Anderson and
w xWoll 4 .

In the fail-stop no restart model, Lopez-Ortiz recently exhibited the´
Ž 2 .known worst fail-stop work for Algorithm X of Q N log Nrlog log N

w x29 . As the corollary of this result, the upper bound for Algorithm X is no
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better than the upper bound for Algorithm W for the fail-stop no-restart
model.

Can Algorithm T be generalized to work with more than three proces-
Ž .sors, or can another more general algorithm be found that achieves truly

optimal speedup for small numbers of processors?

Model Issues. What is the minimum number of reads and writes neces-
sary in an update cycle to ensure efficient algorithms? What is the precise

Žrelationship between the complexity of problems as opposed to algo-
.rithms on the two models presented here? Finally, are there efficient

algorithms for important problems that do not come from simulation of
synchronous PRAM algorithms?

On Randomization and Lower Bounds. Analyses of randomized solu-
Žtions for the Write-All problem have so far considered only off-line non-

. w xadaptive adversaries. Recently, Martel and Subramonian 33 have ex-
w xtended the Kedem et al. deterministic lower bound 26 to randomized

algorithms against off-line adversaries. The lower bounds of Section 3
apply to both the worst case performance of deterministic algorithms and
the expected performance of randomized algorithms subject to on-line
adversaries.

Ž .A randomized asynchronous coupon clipping ACC algorithm for Write-
w xAll was analyzed by Martel et al. 34 . Assuming off-line adversaries, it was

w x Ž .shown in 34 that ACC algorithm performs expected O N work using
Ž .P s Nr log N log* N processors on inputs of size N.

In the on-line case, we observe that a simple stalking adversary causes
Ž . Ž 2 .the ACC algorithm to perform expected work of V N rpolylog N in

ŽŽ .Nrpolylog N .the case of fail-stop errors, and V Nrpolylog N work in the
case of fail-stop errors with restart even when using P F Nrpolylog N
processors. The stalking adversary strategy consists of choosing a single
leaf in a binary tree employed by ACC, and failing all processors that
touch that leaf until only one processor remains in the fail-stop case, or
until all processors simultaneously touch the leaf in the fail-stoprrestart
case. This performance is not improved even when using the completed
work accounting. On a positive note, when the adversary is made off-line,
the ACC algorithm becomes efficient in the fail-stoprrestart setting.

APPENDIX A: ALGORITHM X PSEUDOCODE

Ž .Here we give detailed pseudocode for Algorithm X Fig. 5 on the
restartable fail-stop model.

w xIn the pseudocode, the action, recovery end construct of 40 is used to
denote the actions and the recovery procedures for the processors. In the
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FIG. 5. Algorithm X.

algorithm this signifies that an action is also its own recovery action,
should a processor fail at any point within the action block.

w Ž .xThe notation ‘‘PID log k ’’ is used to denote the binary truerfalse
Ž .value of the log k -th bit of the log N -bit representation of PID, whereŽ .

the most significant bit is the bit number 0, and the least significant bit is
bit number log N. Finally, div stands for integer division with truncation.

The actionrrecovery construct can be implemented by appropriately
checkpointing the instruction counter in stable storage as the last instruc-
tion of an action, and reading the instruction counter upon a restart. This
is amenable to automatic implementation by a compiler.

Ž .It is possible to perform local optimization of the algorithm by: i evenly
Ž .spacing the P processors NrP leaves apart by when P - N, and by ii

using the integer values at the progress tree nodes to represent the known
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FIG. 6. Shared variable definitions for algorithms T , T , and T .0 1 2

number of descendent leaves visited by the algorithm. Our worst case
analysis does not benefit from these modifications.

The algorithm can be used to solve Write-All ‘‘in place’’ using the array
w x Ž . w xx as a tree of height log Nr2 with the leaves x Nr2..N y 1 , and

w xdoubling up the processors at the leaves, and using x N as the final
element to be initialized and used as the algorithm termination sentinel.

w xWith this modification, array d is not needed. The asymptotic efficiency
of the algorithm is not affected.

APPENDIX B: ALGORITHM T PSEUDOCODE

The code for Algorithm T is given in four parts. The shared declaration
part in Fig. 6 is followed by one part for each of the three processors in

Ž .Figs 7 and 8 Algorithm T for processor P . The code given is designedi i
for easy proof of correctness, rather than optimality.

T and T terminate because I increases and I decreases with every0 1 0 1
loop iteration. T terminates because every loop iteration either increases2
i or decreases Right2 y Left2. Since any execution of Algorithm T is
equivalent to some serialized execution, the following lemma implies that
all cells of the array x are 1 at termination.

LEMMA B.1. E¨ery serialized execution of algorithm T maintains the
following in¨ariants:

1. For all k such that 1 F k F I , cell k contains 1.0

2. For all k such that I - k F N, cell k contains 1.1

3. For all k such that 1 F k F Left2, cell k contains 1.
4. For all k such that Right2 - k F N, cell k contains 1.
5. For all k such that Mid2 y i - k - Mid2 q i, cell k contains 1.

If some cell k has ¨alue 1, then at least one of the following holds.

6. Cell k was written by P at a time when I had the ¨alue k, or0 0

7. Cell k was written by P at a time when I had the ¨alue k, or1 1
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FIG. 7. Algorithms T and T .0 1

8. Cell k was written by P at a time when the ¨alues of Mid2 and i2
satisfied k s Mid2 " i.

Proof. Inspection of the code reveals that the consecutive values of I0
and of Left2 are nondecreasing, and the values of I and of Right2 are1
nonincreasing. Also, no processor writes to the same cell twice, and 0 is
never written.

The invariants are vacuous at the start of the algorithm. It is necessary
and sufficient to show that every operation preserves the invariants. The
last three are trivial.

The assignments I [ I q 1, I [ N q 1, and I [ Left2 preserve the0 0 0 0
invariants because of the comparisons preceding their execution and the

qmonotonicity properties. The assignment I [ 2 temp0 y I is executed0 0
only after cell I has been found to have been written by P only. The0 2
variable temp0 holds a value of Mid2 that was valid at some time after the
write and before Left2 was increased by a subsequent execution of
procedure jumpright. If P had not yet jumped, conditions 8 and 5 imply2
the preservation of condition 1. Otherwise P jumped to the left because2
of a collision with P , and the entire array has been written, satisfying all1
of the invariants.

The case of assignments to I is symmetrical.1
The assignment Left2 [ Mid2 q i is executed only after P has written0

to cell Mid2 y i, and hence conditions 1, 5, and 6 imply preservation of
condition 3. Similarly, Right2 [ Mid2 y i is executed only after P has1
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FIG. 8. Algorithm T .2

written to cell Mid2 q i, and hence conditions 2, 5, and 7 imply preserva-
tion of condition 4.

To prove the desired work bound, we use the following definition of a
collision between processors.

Ž � 4.DEFINITION B.1. P collides with P j g 1, 2 if P executes the code0 j 0
Ž � 4.block labeled ‘‘collision with P .’’ P collides with P j g 0, 2 if Pj 1 j 1

executes the code block labeled ‘‘collision with P .’’ P collides with P ifj 2 0
P executes procedure jumpright. P collides with P if P executes2 2 1 2
procedure jumpleft.

A redundant write does not imply that the writing processors collide
with one another. Nevertheless, the number of collisions is a bound on the
number or redundant writes.
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ŽLEMMA B.2. Suppose two processors both write to cell k. Then one or
.both of the processors will collide in its next loop iteration.

Proof. One of the two processors must be P or P . If it is P , then the0 1 0
other will next attempt to write to cell k y 1 and collide. If it is P , then1

Žthe other will next attempt to write to cell k q 1 and collide. In either
.case, the collision may involve the third processor.

Ž .LEMMA B.3. There are O log N collisions.

Proof. When P jumps, the quantity Right2 y Left2 decreases by a2
factor of at least 2. Hence, P collides at most log N times. Also, P can2 0
collide with P , and P with P , at most once each.1 1 0

Suppose P collides with P in attempting to write to cell k. Because P0 2 0
did not collide with P , P wrote to cell k with some value m in Mid2 and1 2
the value m y k in i. If P continues to process, it will collide with either2
P or P after at most two iterations, when the value of i has become0 1

Ž .m y k q 2. The worst case occurs if P and P both write cell k y 1.0 2
Hence the only cells that P writes with m in Mid2 are in the interval2
w xk y 1, 2m y k q 1 . Thus P attempts to write at most four cells in the0

Ž .interval i.e., cells k y 1, k, 2m y k and 2m y k q 1 , and can collide
only at the latter three. Therefore, the number of collisions of P with P0 2
is at most three times the number of collisions of P .2

Similarly, the number of collisions of P with P is at most three times1 2
the number of collisions of P . Hence the total number of collisions in2
Ž .O log N , as required.

Each collision involves only a constant number of memory accesses.
Thus the algorithm satisfies the required work bounds.

THEOREM B.4. Algorithm T sol̈ es the Write-All problem for three proces-
Ž . Ž .sors using N q O log N writes to and N q O log N reads from the array.

Ž . Ž .There are at most N q O log N writes and O log N reads in¨ol̈ ing
auxiliary ¨ariables.

Proof. The result follows directly from the above discussion.

If the cells of array x can hold arbitrary integer values, then the
information communicated by the values of the shared auxiliary variables
can be stored directly in the array. Processors P and P write y1 and y20 1
respectively. Processor P writes the value Mid2 q i when writing to the2
left of Mid2 and the value Mid2 y i when writing to the right of Mid2. In
this case, only private local variables are required.
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