ISSN 1397-8640

AALBORG UNIVERSITY

INSTITUTE FOR COMPUTER SCIENCE

FREDRIK BAJERS VEJ 7TE; 9220 AALBORG ST, DENMARK

Abstraction-Based Verification of Distributed
Systems

PhD thesis
by
Henrik Ejersbo Jensen
Supervisor: Kim G. Larsen

June 1999

Pages: 182

Number of Copies: 100

COPYING PARTS OF THIS REPORT IS PERMITTED PROVIDED
THE AUTHOR IS ACKNOWLEDGED

ii

Abstract

This thesis presents abstraction-based proof methods and practical abstrac-
tion strategies to support the integration of theorem proving and model
checking methods in verification of distributed systems. The thesis is in
two parts. In the first part we present abstraction frameworks for untimed
systems described as I/O automata and for real-time systems described as
timed automata. The frameworks provide general conditions for preser-
vation of properties from concrete systems to abstract ones. For the 1/0
automaton model we present preservation conditions for safety and live-
ness properties stated over actions as well as over states. The preservation
conditions are based on simulation relations. The abstraction theory is for-
malized using the Larch theorem prover and a scheme for translating 1/0
automata in to the SPIN model checker is examined. For the timed au-
tomaton model we provide preservation conditions based on requirements
stated as automaton specifications with a satisfaction relation in the form a
timed ready simulation relation. Our preservation conditions are based on
an action parameterized variant of this simulation relation. The timed ab-
straction framework is stated in the input language of the UPPAAL model
checker for real-time systems providing a close link to automatic verifica-
tion. In the second part of this thesis we provide abstraction-based proofs
for three nontrivial distributed algorithms all parameterized in the number
of processes: Burns’ Mutual Exclusion algorithm, The Bounded Concurrent
Timestamp System (BCTSS) algorithm, and Fischer’s Real-Time Mutual
Exclusion algorithm. The proof of Burns’ algorithm utilizes an abstraction
strategy based on skolemization and the proof is carried out by support from
the Larch Prover and the SPIN model checker. The proof of the BCTSS
algorithm is the most advanced in this thesis. The BCTSS algorithm is one
of the most complicated algorithms in the distributed systems literature and
existing proofs are all long and hard to understand. Our abstraction proof
exploits a combination of induction and abstraction strategies to delegate
major proof tasks to automatic verification in the SPIN model checker. The
proof of Fischer’s algorithm utilizes a combination of compositionality and
abstraction strategies based on network invariants. The UPPAAL model
checker is used to verify the constructed abstraction.

iii

v

Dansk Sammenfatning

Denne afhandling prasenterer abstraktionsbaserede bevismetoder og prak-
tiske abstraktionsteknikker til understottelse af en integration af deduktive
og automatiske metoder til verifikation af distribuerede systemer. Afhand-
lingen er i to dele. I den fgrste del praesenterer vi abstraktionsmetoder for
systemer beskrevet som I/O automater og for realtids systemer beskrevet
som tidsautomater. Metoderne giver generelle betingelser for bevarelse af
egenskaber fra konkrete tilstandssystemer til abstrakte tilstandssystemer.
For I/O automater gives betingelser for bevarelse af safety og liveness egen-
skaber udtrykt over handlinger savel som over tilstande. Disse betingelser
er baseret pad simuleringsrelationer. Vores abstraktionsteori er formaliseret
ved brug af Larch theorem prover, og en overordnet metode for oversaet-
telse af I/O automater til SPIN model checkeren undersgges. For tidsauto-
mater giver vi betingelser for bevarelse af egenskaber baseret pa krav op-
stillet som automatspecifikationer og med en tilfredsstillelsesrelation i form
af en tidssimuleringsrelation. Vores betingelser er baseret pa en handlings-
parametriseret variant af tidssimuleringen. Abstraktionsmetoden er givet
for input-sproget som bruges af UPPAAL model checkeren for realtids sys-
temer. Dette giver et direkte link til automatisk verifikation. I den an-
den del af athandlingen praesenterer vi abstraktionsbaserede beviser for tre
ikke-trivielle distribuerede algoritmer som alle er parametriseret i antallet af
processer: Burns’ Mutual Exclusion algoritme, Bounded Concurrent Times-
tamp System (BCTSS) algoritmen samt Fischers Mutual Exclusion algo-
ritme. Beviset for Burns algoritme benytter en abstraktionsstrategi baseret
pa skolemisering og beviset udfgres med stotte fra Larch Prover og SPIN
model checkeren. Beviset for BCTSS algoritmen er det mest avancerede i
denne athandling. BCTSS algoritmen er en af de mest komplicerede algorit-
mer i litteraturen om distribuerede systemer og eksisterende beviser er alle
lange og svaert forstaelige. Vores abstraktionsbevis udnytter en kombination
af induktion- og abstraktionsteknikker til at delegere store bevisbyrder til
automatisk handtering i SPIN model checkeren. Beviset for Fischers algo-
ritme benytter en kombination af kompositionalitet og abstraktion baseret
pa anvendelse af netvaerks-invarianter. UPPAAL model checkeren anvendes
til at verificere den konstrurerede abstraktion.

vi

Acknowledgments

First of all, I would like to thank Kim Larsen, my supervisor, and Nancy
Lynch, my host during a two year stay at M.I.T., for all their wonderful
support, suggestions and comments that made this thesis possible. T am
grateful to have enjoyed their constant enthusiasm and encouragements.

The Theory of Distributed Systems group at M.I.'T. has been a great
place to visit. I spent two years of my Ph.D. studies there and I have
greatly enjoyed the pleasant environment for doing research. I owe thanks
to everyone in the group as well as to my many roommates over time. My
stay has been of great value to me and I hope to visit M.I.T. and the Boston
area again in the future.

At Aalborg University I would like to thank everyone in the Distributed
Systems and Semantics group for making this a great place to work. Al-
though I have spent most of my time during my Ph.D.-studies away from
Aalborg I have always felt welcome here. I look forward to further collabo-
rations in the future.

My family and friends have always been there for encouragement and
support. To my wife and best friend, Helle: Thanks for your love and
constant support through all this work, for always listening to me and for
keeping me sane even when things seemed bleak.

vil

viii

Contents

1 Introduction
1.1 Motivationo
1.2 Scopeof Thesis
1.2.1 Formal Models
1.2.2 Theorem Provers and Model Checkers
1.2.3 Abstraction Frameworks
1.2.4 Applied Abstraction Strategies
1.2.5 Thesis Outline

I Abstraction Frameworks

2 Untimed Abstraction Framework
2.1 Preliminaries
2.1.1 Relations, Functions, and Sequences
22 I/O Automata oL
2.2.1 Composition oL

2.3 Abstraction Theory oo
2.3.1 Simulations oo 0oL
2.3.2 Preservation Conditions

2.4 Abstraction Theory in Larch
241 1/0O Automata in LSL
2.4.2 Trace Simulationsin LSL

2.5 Input/Output Automata in SPIN
2.5.1 Temporal Logic
2.5.2 Translating Automata,

3 Timed Abstraction Framework
3.1 Timed Labelled Transition Systems
3.1.1 Composition o 0oL
3.1.2 Timed Automata

ix

11

13
14
14
15
17
19
20
24
25
28
29
30
30
32
33
36

11

CONTENTS

3.1.3 Properties of Timed Labelled Transition Systems . . .
3.2 Timed Abstraction Theory
3.2.1 Timed Simulations
3.2.2 Preservation Conditions
3.3 Constructing Abstract Timed Automata
3.4 Test Automata for Timed Ready Simulation

Applied Abstraction Strategies

Burns’ Mutual Exclusion Algorithm

4.1 Background an Contributions
4.1.1 Chapter Organization

4.2 Burns’ Algorithmo oo oL
4.2.1 The Mutual Exclusion Property

4.3 The Abstraction oL
4.3.1 Abstract Actions and State Space
4.3.2 The Abstract Property
4.3.3 The Abstract Automaton

4.4 The Simulation Proof
4.4.1 The Automata in LSL
4.4.2 The Simulation Relation in LSL
4.4.3 The LP Simulation Proof

4.5 The SPIN Verification
4.5.1 The PROMELA Implementation
4.5.2 The SPIN Verification

The BCTSS Algorithm
5.1 Background and Contributions
5.1.1 Chapter Organization
5.2 The UCTSS Algorithm
5.2.1 An Application oL
5.2.2 From Unbounded to Bounded Timestamp Domain . .
5.3 The BCTSS Algorithm
5.3.1 The Total Orderedness Property
5.4 The Proof Strategy,
5.5 The Abstraction L oo
5.5.1 Abstract State Space
5.5.2 The Abstract Property
5.5.3 The Abstract Automaton
5.6 The SPIN Verification
5.6.1 The PROMELA Implementation
5.6.2 The SPIN Verification
5.6.3 Further Experiments using SPIN

46
47
47
93
93
o6

63

65
65
66
66
67
67
69
70
72
74
74
76
7
79
79
79

83
83
85
86
89
91

CONTENTS

6 Fischer’s Mutual Exclusion Algorithm
6.1 Background and Contributions
6.1.1 Chapter Organization
6.2 Fischer’s Algorithm
6.2.1 The Mutual Exclusion Property
6.3 The Proof Strategy
6.4 The Abstraction o0
6.4.1 The Well-Formedness Specification
6.4.2 The Network Invariant
6.5 The UPPAAL Verification

7 Conclusion
7.1 Thesis Summary e
7.2 Future Work

A Proof of Theorem 4.2

B Proof of Lemma 5.6

x1

127
127
128
128
131
132
133
133
134
138

143
143
145

157

167

xii CONTENTS

Chapter 1

Introduction

1.1 Motivation

Embedded Systems. Software systems that form an integral part of the
physical environment in which they operate are called embedded systems.
Such systems arise in a still increasing number of application domains, rang-
ing from telecommunications and aircraft control to consumer electronics in
toys and minor appliances. Embedded systems continuously interact with
their environment by monitoring events through sensors and reacting ac-
cordingly via actuators. Therefore, embedded systems are often said to be
reactive, in contrast to the traditional view of a program as something that
takes an input, produces an output and then terminates. Many embedded
systems are designed for implementation on a physical platform consisting of
a set of interconnected processors. Such embedded systems are in addition
said to be distributed.

Common to embedded systems is that they very often are safety crit-
ical, in the sense that failures may have catastrophic effects such as loss
of human lives and vast economical loses. Hence correctness is one of the
most important quality factors of such systems. Ensuring correctness has
traditionally been performed by means of festing techniques where a group
of people are set to work with early releases of programs to report on er-
rors when encountered. However, when considering safety critical embedded
systems this approach is no longer satisfactory as a single means of system
validation. Consider for example an air-traffic control system to be imple-
mented on board an aircraft, with the purpose of alerting the aircrafts pilot
of any “too-close” neighboring aircrafts. It will most certainly be difficult to
find any group of people that would undertake the jobs as “test-pilots” on
beta-releases of such a software system. Testing methods exist that generate
sets of test-suites in a structured way trying to explore or simulate as many
system behaviours as possible. However, ezhaustive testing is usually infea-
sible due to the vast (possibly infinite) set of behaviours of an embedded

2 CHAPTER 1. INTRODUCTION

system. Also, by the testing approach errors are not discovered until very
late in the systems development process. This also applies to logical design
errors which it would be more natural to catch before any implementation
takes place.

Formal Methods. One way to complement the testing approach in order
to overcome the above problems is to make use of formal methods. This term
covers all approaches to specification and verification based on mathematical
formalisms aiming to establish program correctness by mathematical rigour.
Any formal method consists of three basic ingredients: a modelling language
to describe systems, a specification language to state system requirements,
and a werification methodology to establish a formal correctness relation be-
tween a system model and a corresponding specification. The modelling
language provides a mathematically precise behavioural model of systems.
The language is typically in the form of some kind of state-transition system
consisting of a set of states and a binary relation on this set describing a
set of transitions. States represent points in a systems behaviour (values
of variables and program counter) and transitions describe state changes
(execution of statements). For a given system its set of possible behaviours
or executions are taken to be the set of all the possible transition sequences
satisfying some given initial requirement. Transition systems are usually
described syntactically through some (first-order) logical language where
states and transitions are described using formulas.

Verification Methodologies. Formal verification methods can be classi-
fied as either theorem proving methods or model checking methods. Theorem
proving methods are based on proving general mathematical theorems about
systems using formal deduction in a proof system consisting of a set of ax-
ioms and inference rules. The rules of the proof system are used to infer
properties of system models based on their syntactical (logical) description.
Theorem proving methods require intelligent user interaction in the sense
that a thorough understanding of the system to be proved as well as the
mathematical proof system is required in order to establish the right theo-
rems and neccessary additional lemmas and to do the proofs. As a result
theorem proving methods are mainly manual or computer-assisted in a lim-
ited way. Tools supporting theorem proving methods are denoted as theorem
provers. There is in general no restrictions on the class of models and prop-
erties being amenable to theorem proving methods, and the insight gained
by the user into the behaviour of the model at hand is as high as possible.

Model checking methods are fully automatic methods that proves or
disproves properties of systems. In contrast to theorem proving methods,
model checking methods do not work on the syntactical description of a tran-
sition system but rather on the transition system itself explicitly encoded

1.2. SCOPE OF THESIS 3

as a set of transitions. System specifications are verified by automatically
examining all possible transitions in the encoding. Due to this exhaustive
examination, model checking methods are sensitive to the so called state ex-
plosion problem occurring as a consequence of the asynchronous behaviours
among processes in a distributed system. The number of possible states in
such a system grows exponentially with the number of processes. Therefore,
model checking methods are applicable only to systems with a finite, or at
least finitely representable, number of states. Automatic model checking
tools are usually denoted as model checkers.

Abstraction Based Verification. To benefit from both the insight and
generality of theorem proving methods and the automation of model check-
ing methods, there has recently been an increasing interest into frameworks
aiming for an integration of the two. In this thesis we propose such frame-
works for untimed and timed distributed systems based on one of the mainly
investigated integration strategies — the use of abstraction methods.

The goal of any abstraction method is to replace the problem of verifying
a large, possible infinite-state, concrete system to the problem of verifying a
smaller, hopefully finite-state, abstract system. The abstract system must
be safe with respect to the concrete system in the sense that successful verifi-
cation of the abstract system carries over to the concrete system. Obviously,
the goal is for the abstract system to be smaller in size than the concrete
one, and hopefully small enough to be directly model checkable. In general,
verifying that the abstract system is safe with respect to the concrete system
cannot be done automatically and hence this step in an abstraction method
is typically performed via theorem proving methods. The non-trivial part of
any abstraction method lies in the problem of finding the right abstraction
of a given concrete problem. Based on the type of concrete problem at hand
different abstraction strategies may be useful.

A simple and commonly used example of the abstraction idea is the use
of the rule of signs to determine the sign of an arithmetic expression. In
order to say whether —1515 % 17 is positive or negative, we do not have to
perform the multiplication on the “concrete” level of numbers and then look
at the sign of the result, but instead we can first “abstract” the individual
operands to their signs and then apply *, the rule of signs for multiplication:
neg * pos = neg. This rule of signs for the product enjoys the property that
its result always correctly describes the result of any concrete multiplication
on any operands that it abstracts.

1.2 Scope of Thesis

This thesis deals with the topics introduced above. In this section we will
describe in more detail the particular topics and contributions of this thesis.

4 CHAPTER 1. INTRODUCTION

The overall contribution can be summarized as follows:

Abstraction based verification frameworks and practical abstraction
strategies to support the integration of theorem proving and model checking

In the following we first take a look at the formal system models that we
use throughout this thesis. Then we discuss different forms of abstraction
frameworks and we introduce the frameworks developed in this thesis. Fi-
nally, we classify different practical strategies for obtaining safe abstractions
and we briefly describe the particular strategies applied for proofs in this
thesis.

1.2.1 Formal Models

In this thesis we will consider the development of abstraction based veri-
fication frameworks for embedded and distributed systems of two different
kinds: timed and untimed systems. A timed system in our sense is a system
whose behaviours are sensitive to the existence of real-time physical clocks.
Such systems are also commonly denoted as real-time systems. In the fol-
lowing we briefly introduce the formal models that we will use to describe
untimed and timed systems.

I/O Automata. For untimed systems we will use /0 Automata as the
underlying formal model. This is a general labelled transition system model
with action labelled transitions distinguished as being either input, output
or internal. The model was originally proposed by Lynch and Tuttle [LT87,
LT89] and several subsequent developments have taken place [LV95, LV96,
Lyn96, LSVW95, GSSL93, SL95] including extensions for modeling of timed,
hybrid, and probabilistic systems. The I/O automaton model and its related
proof methods have been applied successfully to several non-trivial case
studies [DLY7, LLSA94, LMWF94, WLLSS].

Properties to be proved about I/O automata models are often stated as
trace properties. The traces of an automaton consists of the set of action
sequences obtained by removing states and internal actions from its set of
executions. Thus the traces represent the externally observable behaviour
of an automaton. A trace property is simply a set of action sequences,
and an automaton is said to satisfy a trace property if the set of traces of
the automaton is included in the set of action sequences of the property.
Trace properties can be used to specify both safety and liveness properties
of systems. Informally, a safety property says that some particular bad
thing never happens and a liveness property expresses that something good
will eventually happen. Trace properties can be stated indirectly in terms
of automata specifications and methods based on showing the existence of
simulations between automata are sound with respect to trace inclusion.

1.2. SCOPE OF THESIS)

A simulation is a formal relationship between the states of two automata
requiring that the transitions of one system can in some sense be mimicked
by the other.

The I/O automaton model is equipped with a composition operator
used to describe the parallel composition of asynchronously executing sys-
tems. The composition operator embodies a synchronization mechanisms
between composed automata based on joining input—output pairs of identi-
cally named transitions in different automata. The I/O automaton model is
general enough to describe distributed systems that are based on synchro-
nization via shared memory as well as those based on message-passing.

Systems modelled as a composed automata can often be proved correct
in a modular fashion, based on correctness proofs of its components. In
the I/O automaton model such compositional reasoning is supported by
compositional definitions of properties.

Other formal automaton models have been proposed [Kur94, Har87] hav-
ing many of the same features as described above for the I/O automaton
model. Also models based on the process algebras such as CCS [Mil89],
CSP [Hoa85], and ACP [BHKS6] include analogous modelling and proof
methodologies as those of the I/O automaton model.

Timed Automata. For the modeling of timed systems we will use a for-
mal timed transition system model. A timed transition system, as used in
this thesis, is a transition system with two separate types of transitions:
ordinary action transitions describing discrete state changes and time tran-
sitions describing the continuous evolution of system states. A behaviour of
a timed transition system can be understood as a sequence of discrete ac-
tion transitions separated by time transitions describing the elapse of time
in between actions. This type of behaviour is often denoted as two-phase
behaviour.

We will use timed automata to syntactically describe timed transition
systems. A timed automaton is a standard finite automaton extended
with a set of real valued clocks used to impose constraints on when tran-
sitions may be executed. The particular timed automaton model used in
this thesis is a variation of the original model introduced by Alur and Dill
[AD94]. Timed automata models have been used in several verification
frameworks based on theorem proving methods [AL93, LV96] as well as
model checking methods [DOTY96, BLL 95, AHH96], and for both method-
ologies several case-studies on verification of embedded real-time systems
have been carried out. For case-studies using theorem proving see for exam-
ple [SA93, LLSA94, HL94, Luc95] and for model checking see for example
[DY95, Kri98, HWT95]. Also process algebraic languages have been pro-
posed that are capable of modeling real-time systems [Yi91, NSY91, BB89].

The verification methodology for timed systems considered in this thesis

6 CHAPTER 1. INTRODUCTION

is based on a notion of timed simulations. A timed simulation is a simulation
relation from an implementation to a specification where both discrete action
transitions and timed transitions in the implementation can be mimicked by
corresponding transitions in the specification.

1.2.2 Theorem Provers and Model Checkers

Theorem provers are based on constructing proofs in a logical deduction sys-
tem either automatically or user assisted. Examples of widely used theorem
proving systems include HOL [GM93], Isabelle [Pau94], PVS [ORR196],
and LP [GGY91]. In this thesis we will make use of LP (the Larch Proof as-
sistant) to support abstraction based proofs in our untimed I/O automata
abstraction framework. LP is a theorem prover for multisorted first-order
logic designed to assist users in employing standard mathematical reasoning.
We will formalize parts of our abstraction theory in LSL [GH93] (the Larch
Shared Language) which is supported by a tool that automatically provides
input for LP.

Model checkers are based on constructing proofs of properties specified as
formulae in a logic interpreted over the semantic model (transition system)
of systems. Typically the logic is some kind of temporal logic like Linear
Time Logic (LTL) [MP92], Computation Tree Logic [CES86], u-calculus
[Koz82], or Hennesy Milner Logic (HML) [HM85]. Proving correctness of a
system means to checking if a given formula is satisfied by the system model.
For finite-state systems this can in principle be done automatically by an
exhaustive traversal of the reachable system state space. As we mentioned
earlier though systems consisting of large numbers of parallel components
may run into the state explosion problem making an exhaustive traversal
impossible in practice. In the last decade, several approaches have been
proposed to reduce the effects of the state explosion problem [BCMT90,
GW94, HP94] resulting in a number of efficient model checking tools for
untimed systems [Hol91, HK87, McM93, CPS89] as well as real-time and
hybrid systems [DOTY96, BLLT95, AHH96]. In this thesis we will make
use the SPIN [Hol91] model checker in our untimed framework by providing
a translation scheme for implementing I/O automata in the input language
of SPIN. In the timed framework we will make use of the UPPAAL [BLL*95]
model checker. In our timed framework we use a formal timed automata
model to describe systems which is the input language of UPPAAL and thus
no translation is required.

1.2.3 Abstraction Frameworks

The goal of any abstraction method is to reduce the problem of verifying
a large, possible infinite-state, concrete system to the problem of verifying
a smaller, hopefully finite-state, abstract system. Given a concrete system

1.2. SCOPE OF THESIS 7

together with a concrete requirement specification, one must construct an
abstract system and an abstract specification such that the abstract system
is property preserving. Meaning that, if the abstract system satisfies the
abstract specification then this implies that the concrete system satisfies
the concrete specification. Abstraction methods can be classified according
to two types based on the amount of information they intend to preserve in
abstract models. The two types are weakly preserving methods and strongly
preserving methods.

Weakly Preserving Methods. A weakly preserving method only pre-
serves the satisfaction of properties in one direction, namely if the ab-
stract model satisfies the abstract requirement specification then the con-
crete model satisfies the corresponding concrete specification. To illustrate
this, consider again the example abstraction idea of using the rule of signs to
determine the sign of some arithmetic expression. If z is a variable over the
natural numbers, we want to examine the sign of the expression z? 4z +1 for
all z. It is easy to see, that the sign of this expression is always positive, but
this can actually not be proven using the abstraction idea from before. The
reason for this is the introduction of the + (addition) operator. The rule of
signs for addition is as follows: pos + pos = pos, neg + neg = neg, pos
+ neg = undef, neg + pos = undef, where undef is an abstract value
describing that nothing is known about the result of the abstract addition,
it is either pos or neg but which is unknown. So when deciding, in the
abstract calculus, the sign of the considered expression, we would get (e.g.
for z = —3): (neg ¥ neg) + neg + pos, which can be reduced to neg +
pos = undef.

Weakly preserving methods have been studied in for example [Dam96,
DF95, CGLY2, Kur89, LGS195, MN95]. The methods can be divided into
types based on the kind of mathematical relation required to exist between
states of the concrete model and those of an abstraction. The typical kinds
of relations are: simulation relations, homomorphic functions and Galois
connections. These relations all require, that the abstract model can some-
how “mimic” the behaviour of the concrete model, but not necessarily the
other way round, meaning that the abstraction may have some behaviour
which is not mimicking any concrete behaviour. Thus weakly preserving
abstractions only preserve truth of properties. However, weakly preserving
abstractions can be as “abstract” or “small” as one wants still being weakly
preserving, the only problem being that the more “abstract” an abstraction
becomes the fewer properties does it enjoy.

Some weakly preserving methods [Dam96, LGS'95] have been proposed,
where the abstraction relation is given in the form of a Galois connection.
These methods can all be related to a classical framework of Abstract In-
terpretation initially developed in [CC77, CC79] and presented in overview

8 CHAPTER 1. INTRODUCTION

in [CCY2a, CCY2b]. Abstraction methods based on Galois connections can
be seen as attempts to address the question of which of the many possi-
ble correctly mimicking abstract models should be the chosen one. Adding
some extra requirement to the structure of the abstract domain, the Galois
connection framework allows for an ordering of candidate abstract models
with respect to the number of properties they enjoy. The more properties
an abstract model enjoys the more precise it is. The structure imposed on
abstract states actually guarantees the existence of a most precise abstract
model which is the natural choice among the many possibly candidates.

Strongly Preserving Methods. A strongly preserving abstraction pre-
serves properties both ways in the sense that the abstract model satisfies the
abstract property if and only if the concrete model satisfies the correspond-
ing concrete property. In the example from before, the abstraction to the
rule of signs is strongly preserving with respect to arithmetic expressions
only including multiplication but only weakly preserving when allowing ad-
dition as well. As a result, strongly preserving abstractions preserve both
truth and falsehood of properties, so both positive and negative results from
verification of the abstraction carry over to identical results for the concrete
model. However, strongly preserving abstractions are more restricted than
weak ones regarding the amount of behaviour that can be abstracted away,
which has the result that a sufficiently small (for model checking) abstraction
cannot always be constructed.

Strongly preserving abstraction methods have been studied extensively
in the framework of real-time systems model checking [BLLT95, DOTYY6,
AHH96, HHK95]. When modeling a real-time system using a dense time do-
main its direct semantics (e.g. timed transition system) will have infinitely
many states and thus it is not directly amenable to model checking. How-
ever, when described as a timed automaton it is possible to partition the
set of concrete states based on a certain equivalence relation on the time
components of states. The equivalence classes of this partitioning forms a
set of abstract states. The equivalence relation is induced by a set of linear
inequations on automaton clocks obtained from the clock guards in transi-
tions. It is important to note that only the time component is abstracted
in real-time model checkers based on the above approach - no abstraction
of the discrete component takes place.

Our Contributions. In this thesis we contribute with weakly preserving
abstraction frameworks for untimed as well as timed systems. Our untimed
framework is for the general untimed I/O automaton model. Here we pro-
vide general conditions for preservation of trace and path properties from
one automaton to another. A path property is analogous to a trace prop-
erty except that it describes a property of state sequences rather than action

1.2. SCOPE OF THESIS 9

sequences. OQur preservation conditions are provided for safety as well as live-
ness properties. The preservation conditions are based on certain notions of
parameterized simulations that we introduce as well. We formalize parts of
our trace based abstraction theory in the Larch tool set to support in dis-
charging preservation conditions, and we provide a rudimentary scheme for
translating finite state I/O automata into the input language for the SPIN
model checker. This includes a way of stating trace and path properties via
LTL formulas.

Our timed framework is for a timed automaton model which is essentially
the one used as input language for the UPPAAL real-time model checker.
Thus, we can make use of the time abstraction method implemented in
the tool. We provide general conditions stating when an abstract timed
simulation problem is safe with respect to a concrete problem. The condi-
tions are based on certain parameterized timed simulations. Checking for
the existence of a timed simulation relation between two timed automata
is not directly implemented in the UPPAAL tool which is based on per-
forming reachability analysis. However, we provide a method for translating
the problem of checking for timed simulations into a reachability problem
amenable to verification in UPPAAL.

1.2.4 Applied Abstraction Strategies

Practical abstraction strategies are often classified as either data abstractions
or control abstractions depending on the source of complexity in the concrete
system of interest. The first class is where the unboundedness (or large
size) of the system results from data variables which range over unbounded
domains. The second class is where the complexity results from the structure
of the system. Systems of the latter kind are typical parameterized systems
consisting of a parallel composition of subsystems, whose number is a varying
parameter.

Most data abstraction strategies are based on the method of abstract
interpretation originally introduced in [CC77, CCT79]. Most of the weakly
preserving frameworks cited in the previous section are of this kind. The
concrete data domain is abstracted into an abstract domain and all oper-
ations of the concrete system are replaced by abstract versions over the
abstracted domain. The abstract domain is typically based on a partition-
ing of the concrete data domain induced by the set of conditions (guards) in
the concrete system description and the concrete property. This is in some
sense analogous to the time abstraction strategy for real-time systems.

Several control abstraction strategies have been proposed for the ver-
ification of parameterized systems. Many of these are based on the use
of network invariants [KM89, WL89a, HLR92]. A network invariant is an
abstract system intended to simulate the composition of concrete subsys-
tems for any number of elements in the composition. Using induction and

10 CHAPTER 1. INTRODUCTION

properties of compositionality the simulation proof task can be reduced to
a problem of showing simulation relations between a few unparameterized
systems.

Our Contributions. In this thesis we present practically applied abstrac-
tion strategies for three nontrivial distributed algorithms. First we consider
a proof of Burn’s mutual exclusion algorithm parameterized in the number of
processes. The control abstraction applied for the proof utilizes a skolemiza-
tion strategy to extract a simple two-process abstraction representing any
pair of concrete processes including the effects of the environment (other
processes). Our proof is within the untimed I/O automaton abstraction
framework and it makes use of the LP theorem prover as well as the SPIN
model checker.

Second, we provide a proof of one of the most complicated algorithms
in the distributed systems literature, the Bounded Concurrent Timestamp
System (BCTSS) algorithm. The algorithm is parameterized in the number
of processes and in addition it has data variables over unbounded domains.
Thus our abstraction makes use of both control and data abstraction strate-
gies. Existing proofs for the algorithm are all long and hard to understand.
Our abstraction proof reduces the proof task by automating a substantial
proof effort via abstraction. Our proof exploits a combination of induction
and abstraction and it is the most advanced proof in this thesis.

Finally, we provide a proof Fischer’s mutual exclusion algorithm pa-
rameterized in the number of processes. Fischer’s algorithm is a real-time
algorithm and thus our proof is within the timed abstraction framework.
Our proof uses a combination of parameterized network invariants and com-
positionality.

1.2.5 Thesis Outline

This thesis consists of two parts. Part I (Abstraction Frameworks) presents
the untimed and timed abstraction frameworks in chapters 2 and 3, respec-
tively. Part IT (Applied Abstraction Strategies) presents our three practical
applications of abstraction strategies. Chapter 4 presents the proof of Burn’s
algorithm, Chapter 5 presents the proof of the BCTSS algorithm, and finally
Chapter 6 presents the proof of Fischer’s algorithm.

Part 1

Abstraction Frameworks

11

Chapter 2

Untimed Abstraction
Framework

This chapter presents our untimed abstraction framework. We consider un-
timed systems specified in the general I/O automaton model of Lynch and
Tuttle [LT87, LT89] and we assume that properties to be verified over au-
tomata are stated as either trace or path properties. A trace property is
a property about the actions of an automaton and a path property is a
property about states. Our abstraction theory provides safe conditions for
replacing one verification problem (the concrete one) (A, P), consisting of an
I/O automaton A and a property P, by another problem (the abstract one)
(A’, P"). That is conditions allowing us to conclude that if A’ satisfies P’
then also A satisfies P. We provide conditions for preservation of trace prop-
erties as well as path properties and for both safety and liveness properties.
Our conditions provide basis for a weakly preserving abstraction method
integrating theorem proving and model checking techniques in two steps:
First, given a concrete problem (A, P), too large to be handled immediately
by model checking, an abstract problem (A’, P') is constructed and shown
to satisfy conditions for property preservation. This step in general requires
theorem proving methods. Second, the abstract problem is automatically
analyzed using model checking, provided it is finite state and small enough.

Our preservation conditions are based on variants of the forward simula-
tion preorder which constitutes a corner stone proof method in the general
I/O automaton model. We propose two variations of the standard forward
simulation useful for providing preservation conditions for trace properties
and path properties, respectively.

We formalize parts of our abstraction theory using the Larch tool set
[GGI1, GHI3] to provide support for discharging the proof obligations for
property preservation. We use the Larch Shared Language (LSL) [GH93]
to formalize the notion of I/O automata and the notions of simulation that
we use as conditions for property preservation. LSL is supported by a tool

13

14 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

that automatically provides input for the Larch Prover (LP) [GG91]. LP
is a theorem prover for multi-sorted first-order logic. Our formalization ex-
tends a framework for reasoning about I/O automata in the Larch tool set
introduced in [SAGG*93]. We also provide a rudimentary scheme for trans-
lating finite state I/O automata models into the input language PROMELA
used by the SPIN model checker [Hol91]. SPIN is capable of model checking
properties in Linear Time Logic (LTL) and our scheme includes a strategy
for specifying trace and path properties using LTL formulas.

Chapter Organization. We begin in Section 2.1 by a few mathematical
preliminaries on relations, functions and sequences. Then in Section 2.2
we introduce the underlying formal model of I/O automata as well as the
notions of trace and path properties. In Section 2.3 we present our general
conditions for property preservation between verification problems based
on our variations of the forward simulation preorder. In Section 2.4 we
formalize part of our abstraction theory using the Larch tool set and finally
in Section 2.5 we examine the translation of I/O Automata and trace/path
properties into a representation suitable for the model checker SPIN.

2.1 Preliminaries

The following mathematical preliminaries defines notions of relations, func-
tions, and sequences. The notions introduced here will be used for both the
untimed and the timed abstraction frameworks of this thesis.

2.1.1 Relations, Functions, and Sequences

A relation over sets X and Y is defined to be any subset of the cartesian
product X xY. If R is a relation over X and Y, then we define the domain of
R to be dom(R) = {x € X | (z,y) € R for some y € Y}, and the range of
Rtoberan(R)={y €Y | (z,y) € R for some z € X}. If dom(R) = X we
say that R is total (on X). For x € X, we define R[z] ={y € Y | (z,y) € R}.
A function f from X to Y is a relation with dom (f) = X satisfying that
for any z there exists exactly one y such that (z,y) € f. We write f(z) =y
to denote (z,y) € f. If f and ¢ are functions with disjoint domains, then
f U g denotes the function from dom (f) U dom (g) to ran (f) U ran(g) such
that (f Ug)(z) = f(z) if z € dom (f) and (f U g)(x) = g(z) if x € dom (g).

Let S be any set. The set of finite and infinite sequences of elements
from S is denoted seq (S). The symbol A denotes the empty sequence and the
sequence containing one element s € S is denoted by s. Concatenation of a
finite sequence with a finite or infinite sequence is denoted by juxtaposition.
Let X and Y’ denote sets of sequences such that all sequences in ¥ are finite.
The concatenation of sets 3 and X' is the set XX/ of sequences oo’ such

2.2. 1/0 AUTOMATA 15

that o € ¥ and o' € ¥'. A sequence o is a prefiz of a sequence p, denoted
by o < p, if either 0 = p, or o is finite and p = o0’ for some sequence o’.
A set X of sequences is prefiz closed if, whenever some sequence is in X, all
its prefixes are as well. A set X of sequences is limit closed if, an infinite
sequence is in X whenever all its finite prefixes are.

A block over S is a sequence of identical elements from S. Any sequence
o of elements from S can be viewed as a sequence of blocks over S. For
any sequence o we assume a partial function ¢ : N — § x N such that
o(i) = (s,n) iff the 7’th block of o is the sequence consisting of n s-states.
We assume that o4(i) and o,(i) returns the first and second component of
o(i), respectively. We further assume that o4(i) # o5(i + 1) for every i such
that o is defined for 7+ and ¢ + 1. Thus, consecutive blocks are of different
states. We let Ib(0) = 4 if the i’th block is the last block of o. If no last
block exists we let [b(c) = w. Let o and ¢’ be sequences over S. We say
that o is a block-prefiz of o', written o < o', if Ib(o) = Ib(c') and for all
1 <i<Ib(o), os(i) = 04(i) and 0,(i) < o,,(3).

If o is a nonempty sequence then first(c) denotes the first element of
o, and tail (o) denotes the sequence obtained from o by removing first (o).
Also, if o is finite, last (o) denotes the last element of o.

If 0 € seq(S), and S" C S, then 0|S’ denotes the restriction of o to
elements in S’, i.e. the subsequence of o consisting of the elements of S’. If
S" = then o|S" = A. If ¥ C seq(S), then 3|S5’ is the set {o]S’ | 0 € X}.

Assume R C S x 8 is a total relation between sets S and §'. If 0 =
S08189 ... is a nonempty sequence in seq (S) then R(o) is the set of sequences
58y sy ... over ran (R) such that for all i, s, € R[s;]. If o = X then R(0) =
{A}. If X C seq(S), then R(X) = U, ¢y, R(0)

2.2 1I/0 Automata

In this section we present the basic I/O automaton model used to describe
untimed distributed systems.

An I/0O automaton is an action labelled transition system where actions
are classified as either input, output, or internal. The inputs and outputs
are used by an automaton to communicate with its environment, while the
internal actions are visible only to the automaton itself. An I/O automaton
cannot guard its input actions. This means, that input actions can arrive
from the environment at any time. We say that I/O automata are input-
enabled. Only the output and internal actions of an automaton can be
controlled by the automaton itself.

Definition 2.1 (I/O Automaton) An I/O automaton, or simply an au-
tomaton, A is a tuple consisting of components sig(A), states(A), start (A),
trans (A), and tasks (A) where,

16 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

e sig(A) is a signature, which is a tuple consisting of components in (A),
out (A), and int(A), being disjoint sets of input, output and internal
actions, respectively. The set ext (A) of external actions of A is in(A)
U out(A) and the set of locally controlled actions local (A) is the set
out (A) Uint(A). The set acts(A) of actions of A is the set ext(A) U
int(A).

e states(A) is a set of states.
e start (A) C states (A) is a nonempty set of start states.

e trans (A) C states (A) x acts(A) x states (A) is a state transition rela-
tion.

e tasks(A) is a task partition, which is an equivalence relation on the
set local (A) having at most countably many equivalence classes.

We let s, s',u,u', ... range over states, and a,a’,b,b’ ... over actions. We
call an element (s,a,s’) of trans(A) a transition, or step, of A. We write
s —=s4 8, or just s —» s’ if A is clear from the context, as a shorthand for
(s,a,s') € trans (A). We write s —> 4 s', or just s — s' if A is clear from
the context, to denote that s — 4 s’ for some action a.

An action a of an automaton A is said to be enabled in a state s if there
exists a state s’ such that the transition (s, a,s') is an element of trans (A).
Every input action is required to be enabled in any state.

Executions, Traces, and Paths

An ezxecution fragment o = sga181a282 ... of an automaton A is a finite or
infinite sequence of alternating states and actions beginning with a state,
and if it is finite also ending with a state, such that for all 7, (s;, a;11, Sit1)
is an element of trans (A). An execution of A is an execution fragment «
where first(a) € start (A). A state s of A is reachable if s = last (o) for some
finite execution « of A.

Let o = sgaisiasse... be an execution fragment. The length of «,
written |o/, is defined as follows. If « is finite, |« is the number of actions
occurring in «. If « is infinite, || = w. We define the ith suffiz of «, for
0<i<|al,asla=sa;118i+1... if i <|al; S|q| if v is finite and 7 =]

The trace of an execution fragment « of an automaton A, written as
tracey (), or just trace (o) when A is clear from context, is the subsequence
consisting of all the external actions occurring in «. Let 8 be a sequence of
actions from acts(A). Then, traces (3), or just trace (3) when A is clear from
context, denotes the subsequence of consisting of all the external actions
occurring in 8. We say that (is a trace of an automaton A if there is an
execution « of A with 8 = trace (o). We denote the set of traces of A by
traces(A).

2.2. 1/0 AUTOMATA 17

The path of an execution « of an automaton A, written path, (a), or
just path (o) when A is clear from context, is the subsequence consisting of
all the states in . We say that v is a path of A if there is an execution «
of A with v = path (a). We denote the set of paths of A by paths (A).

Fair Executions, Fair Traces, and Fair Paths

The task partition tasks(A) of an automaton A, can be thought of as an
abstract description of “tasks” or “threads of control” within A. The parti-
tion is used to specify fairness conditions on A. Such conditions state that
during execution A must give fair turns to each of its tasks. The fairness
conditions considered in this section are sometimes denoted as weak fairness
conditions. We say that a task C is enabled in a state s if some action in C'
is enabled in s.

An execution fragment « of an automaton A is said to be fair if the
following conditions hold for each task C' of tasks(A):

e If o is finite, then C is not enabled in the final state of a.

e If « is infinite, then « contains either infinitely many occurrences of
actions from C or infinitely many occurrences of states in which C is
not enabled.

We denote the set of fair executions of A by fairezecs(A). We say that
0 is a fair trace of A if § is the trace of a fair execution of A, and we denote
the set of fair traces of A by fairtraces (A). We say that -+ is a fair path of A
if v is the path of a fair execution of A, and we denote the set of fair paths

of A by fairpaths (A).

2.2.1 Composition

We can compose individual automata to represent complex systems of in-
teracting components. We impose certain restrictions on the automata that
may be composed.

Formally, we define a countable collection {S;}icr of signatures to be
compatible if for all i, j € I, i # j, all of the following hold: int (S;) Nacts(S;)
= 0, out(S;) N out(S;) = B, and no action is contained in infinitely many
sets acts(S;).

Definition 2.2 (Composition of Signatures) Define the composition S
= ILicrS; of a countable compatible collection of signatures {S;}icr as the
signature with

e out(S) = Ujerout (S;)

o int(S) = Uierint (S;)

18 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

® in (S) = Ujerin (Sz) — Uiefout(Si)

We say that a collection of automata is compatible if their signatures are
compatible.

Definition 2.3 (Composition of Automata) Define the composition A
= ;1 A; of a countable, compatible collection of I/O automata {A;}ic; as
the automaton with

o sig(A) = Iliersig (Ai)
o states (A) = I;crstates (A;)
o start (A) = ;crstart (A;)

e irans(A) is the set of triples (s,m,s') such that, for all i € I, if 7 €
acts(A;), then (s;, m, ;) € trans (A;); otherwise s; = s

o tasks (A) = Ujertasks (Al)

The II in the definition of states(A) and start (A) refers to ordinary
Cartesian product. Also, s; in the definition of trans(A) denotes the ith
component of state vector s.

Notice, that the task partition of the compositions locally controlled
actions is formed by taking the union of the components task partitions;
that is, each equivalence class of each component automaton becomes an
equivalence class of the composition. This means that the task structure
of individual components is preserved when the components are composed.
Notice also, that since the automata A; are input-enabled, so is their com-
position. It follows that II;c;A; is indeed an I/O automaton.

We end this section with a basic result that relates the executions,
traces and paths of a composition to those of the component automata.
Let A = II;c1A; be a composition of automata. Given an execution « =
S0a182a9283 ... of A, we let a|A; be the sequence obtained by deleting each
pair a,, s, for which a, is not an action of A; and replacing each remaining
sy by (sr)i, that is, automaton A;’s piece of the state s,. Given a trace 3
of A, we let 3| A; be the subsequence of [consisting of all the actions of A;
in 3. Also, given a path v = sps182... of A, we let v|A; be the sequence
obtained by replacing each s, by (s,);.

Theorem 2.1 Let {A};c; be a compatible collection of automata and let A
= Hier 4.

1. If a € execs(A), then for every i € I, a|A; € execs(A;).
2. If B € traces(A), then for every i € I, B|A; € traces(A;).

3. If v € paths (A), then for every i € I, there exists v' < ~y|A; such that
v € paths (A;).

2.2. 1/0 AUTOMATA 19

4. If a € fairezecs (A), then for every i € I, a|A; € fairezecs (A;).
5. If B € fairtraces (A), then for every i € I, B|A; € fairtraces (A;).

6. If v € fairpaths (A), then for every i € I, there exists v < y|A; such
that ' € fairpaths (A;).

Proof. The statements 1-2 and 4-5 are Theorem 8.1 and Theorem 8.4,
respectively, in [Lyn96]. Consider 3. Suppose that v € paths (A). Then there
exists « € ezecs (A) such that v = path («). Thus v|A; = path (a)|A;. From
the definition of block prefix < (see Section 2.1) we have that, path (a|A;) <
path ()| A; and from 1, a|A4; € execs(A;). Let v = path(a|A;). Then,
7' € paths (A;) and v < y|A;. Consider 6. Suppose that v € fairpaths (A).
Then there exists o € fairezecs (A) such that v = path (a). Thus y]|A; =
path ()| A;. From definition, path (a|A;) < path ()| A; and from 4, a|A; €
fairezecs (A;). Let o' = path (a|A;). Then, v' € fairpaths (A;) and ' < | A;.
|

2.2.2 Precondition-Effect Language

In this thesis we will describe automata using a precondition-effect style,
which is the standard description style for I/O automata [Lyn96].

The precondition-effect style basically provides a compact description of
the transition relation of an automaton. The style groups together all the
transitions that involve each particular type of action into a single piece of
code. The code specifies the conditions under which the action is permitted
to occur, as a predicate (precondition) on the pre-state. Then it describes
the changes (effects) that occur as a result of the action. These changes are
described either as an assertion relating pre- and post-state or as a sequence
of operations that is applied to the pre-state in order to yield the post-state.

Example 2.1 (Channel I/O Automaton) As an example of an I/O au-
tomaton described in the precondition-effect style, consider a communica-
tion channel automaton C' as shown below. We assume that M is a fixed
message alphabet. First the signature, sig (C), of automaton C is given. In
this example the signature only contains input and output actions, i.e. the
set of internal actions is empty. Next the states, states(C'), and the start
states, start(C), are given as a list of state variables and their initial val-
ues. The transitions of C are described in the precondition-effect style. The
send(m) action is allowed to occur at any time and has the effect of adding
the message m to the end of queue. The receive(m) action can only occur if
m is at the head of queue, and the effect of the action simply consists of m
being removed from queue. Finally, the task partition, tasks (C), groups all
the receive actions into a single task.

20 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

Automaton: C

Signature:
Input:

send(m),m € M
Output:

receive(m), m € M

States:
queue, a FIFO queue of elements from M, initially empty

Transitions:
input: send(m) output: receive(m)
Eff: enqueue(m, queue) Pre: head(queue) = m
Eff: dequeue(queue)
Tasks:

{receive(m) : m € M}

2.2.3 Properties of I/O Automata

In this section we define the types of properties that we will use to reason
about automata. We consider properties stated over either the external
actions or the states of an automaton, and we denote such properties as
trace properties and path properties, respectively. A trace property for an
automaton A is basically a set of sequences of actions from a subset of
ext (A), and a path property for A is basically a set of sequences of states
from states (A).

Definition 2.4 (Trace Property) A trace property P is a pair of compo-
nents sig (P) and traces(P), where

e sig(P) is a signature, which is a pair (in(P), out(P)) consisting of
disjoint sets of input and output actions, respectively. Let acts(P) be
the set in (P) U out (P).

e traces(P) is a set of finite or infinite sequences of actions in acts(P).

Definition 2.5 (Path Property) A path property Q is a pair of compo-
nents states (Q) and paths (Q), where

e states(Q) is a set of states.

e paths (Q) is a set of finite of infinite sequences of states in states (Q).

Two important special types of trace and path properties — safety prop-
erties and liveness properties are defined.

Definition 2.6 (Safety and Liveness Properties) A trace (path) prop-
erty P is said to be a trace (path) safety property provided that all of the
following holds:

2.2. I/O AUTOMATA 21

e traces(P) (paths (P)) is nonempty.
e traces(P) (paths (P)) is prefiz-closed.
e traces(P) (paths (P)) is limit-closed.

A trace (path) property P is said to be a trace (path) liveness property pro-
vided that:

traces(P) (paths (P)).

A safety property can informally be interpreted as saying that no “bad
thing” ever happens. A liveness property can be interpreted as saying that
some “good thing” eventually happens. Thus, the intuition behind the con-
ditions of the above definition can be understood as follows. For the safety
conditions, nonemptiness is a reasonable condition since no “bad thing” can
ever happen in the empty sequence. Prefix-closure is reasonable since, if
nothing bad happens in a sequence (trace or path), then nothing bad hap-
pens in any prefix of that sequence. Finally, limit-closure is reasonable since,
if something bad happens in a sequence, then it happens at some particular
“point” in the sequence, i.e. in some finite prefix of the sequence. The in-
tuition behind the liveness condition is simply that regardless of what has
occurred in a sequence up to some point, it is still possible for the “good
thing” to occur at some later point in time.

Definition 2.7 (Satisfying Trace Properties) An automaton A satis-
fies a trace property P iff the following conditions hold.

e in(P) Cin(A) and out(P) C out(A).
e If P is a safety property, then traces(A)|acts(P) C traces(P).
e If P is a liveness property, then fairtraces (A)|acts(P) C traces(P).

Intuitively, automaton A satisfies trace property P, if P is stated over
a subset of the external actions of A, and the set of traces (fairtraces) of
A projected on to the actions of this subset, is a subset of the traces of
P. This notion of satisfaction of trace properties is a slight generalization
of the standard notion in [Lyn96]. In the standard notion, A satisfies P if
P is stated over the full set of external actions of A, and the set of traces
(fairtraces) of A is a subset of the traces of P. Note, this is a special case
of our definition. The motivation for our definition is related to the ease
at which we can show that one verification problem is property-preserving
with respect to another problem.

Let A be an automaton and let P be a trace (path) property. We will
denote the pair (A, P) a trace (path) verification problem. Given two verifica-
tion problems (A, P) and (B, P'), we say that (B, P') is property-preserving

22 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

with respect to (A, P) iff B satisfies P’ implies A satisfies P. Proving this
property-preservation partly relies on showing that the behavior of A with
respect to actions of P can be simulated by B. Now, most likely P does not
impose restrictions on all the external actions of A. However, the standard
interpretation of A satisfying P does not allow for explicit mentioning of
the interesting subset of external actions. Thus, automaton B need to have
“dummy” actions to “match” (in the simulation) the external actions of A
that are outside the interesting subset. Otherwise, we cannot show that
B simulates A with respect to the actions of P. Our interpretation of A
satisfying P allows for an explicit mentioning of the interesting subset of
external actions of A. Thus, using our interpretation, automaton B need
not to have any dummy actions to match uninteresting external actions of
A. Such uninteresting actions can simply be matched by B doing nothing.

In Section 2.3 we formally define the notion of “trace” simulation in-
tuitively introduced in the above. We also formalize the precise conditions
for an abstract trace problem to be property-preserving with respect to a
concrete problem.

Definition 2.8 (Satisfying Path Properties) An automaton A satisfies
a path property Q iff the following conditions hold.

o states(Q) = states (A).
e If Q is a safety property, then paths (A) C paths (Q).

e If P is a liveness property, then fairpaths (A) C paths(Q).

Note, that the above definition is not quite “symmetric” to the one for
trace properties. We can make the definition symmetric by first imposing a
structure on to the states of an automaton. We can e.g. define a state as a
tuple of elements from a list of component sets. This will allow us to state
a path property over a subset of the component sets. An automaton A then
satisfies a path property @ if both of the following conditions are satisfied.
First, states(Q) equals the set states(A) restricted to a certain subset of
component sets in states (A). Second, any path of A in which each state is
restricted to the components of () is included in the paths of Q).

We use the less general (but simpler) definition for satisfaction of path
properties, since the more general definition will not, as was the case in the
trace setting, simplify the proof obligations for property-preservation in the
path setting. We explain this intuitively as follows.

Let A be an automaton and let @) be a path property. We denote the
pair (A, Q) a path verification problem. The notion of property-preservation
between path verification problems is analogous to the one for trace verifica-
tion problems. The condition for property-preservation however, is slightly
different in the path setting. Suppose we want to show that a path problem

2.2. 1/0 AUTOMATA 23

(B, Q') is property-preserving with respect to a path problem (4,Q). We
need to show that any transition of A can be “matched” by a transition
of B, where “matched” now refers to states. I.e. the start states of each
transition must “match” and so must the end states. (whether the actions
match is irrelevant). Even transitions of A that do not change the state
with respect to components of () need to be matched by B. This is because
@ may be sensitive to the number of certain states successively occurring in
a path. In Section 2.3 we formally define the notion of “path” simulation
intuitively introduced in the above.

Compositional Reasoning

We can sometimes state a property (trace or path) of a composition of au-
tomata as a composition of properties, one for each component automaton.
We show that under the right interpretation of property composition, we
can infer that a composition of automata satisfies a composition of proper-
ties from the fact that each component automata satisfies a corresponding
component property.

We define a composition operation for trace properties as follows. We
say that a countable collection {P;};c; of trace properties is compatible if
their signatures are compatible.

Definition 2.9 (Composition of Trace Properties) Define the compo-
sition P = Il;c;P; of a countable, compatible collection of trace properties
{P;}ier as the trace property such that:

e sig(P) = Ilicrsig (P)

e traces(P) is the set of sequences 3 of actions of P such that for all
i € 1, Blacts(P;) € traces(F;)

Analogously, we define a composition operation for path properties as
follows.

Definition 2.10 (Composition of Path Properties) Define the compo-
sition P = ;e P; of a countable collection of path properties {P;}icr as the
path property such that:

o states (P) = ;¢ states (P;)

e paths (P) is the set of sequences vy of states of P such that for alli € I,
there exists ' < 7y|states (P;) such that v € paths (P;)

Theorem 2.2 (Compositionality of Trace Properties) Let {A;}icr be
a compatible collection of automata and let A = ;e A;. Also, let {P;}icr be
a compatible collection of trace properties and let P = 1l;c1 P;. Furthermore,
assume that in (P) N out (A) = 0.

24 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

1. If in(P;) C in(A4;), out(P;) C out(A;), and traces(A;)|acts(P;) C
traces(P;) for every i, then in(P) C in(A), out(P) C out(A), and
traces(A)|acts(P) C traces(P).

2. If in (P;) C in(A4;), out(FP;) C out(A;), and fairtraces (A;)|acts(P;) C
traces(P;) for every i, then in(P) C in(A), out(P) C out(A), and
fairtraces (A)|acts(P) C traces(P).

Proof. Consider 1. First we show that in(P) C in(A) and out(P) C
out (A). From the hypothesis, in(P;) C in(A;) and out (P;) C out(A;) for
every i. Since out (P) = Ujcrout (P;) and out (A) = Ujerout (A;), we imme-
diately have that out(P) C out(A). By definition, in(P) = Ujein(P;) —
Uierout (P;) and in (A) = Ujerin (A;) — Ujerout (A4;). From assumption we
have that in (P) N out (A) = 0. Hence, in(P) C in(A).

We now show that traces(A)|acts(P) C traces(P). Suppose that 5 €
traces(A). From Theorem 2.1(2) we have that for every i, 3| A; € traces(A;)
and by hypothesis we have that (5| 4;)|acts(P;) € traces(P;). Since acts(P;) C
ext (4;), (B]A;)|acts(P;) = Blacts(P;). Thus, Blacts(P;) € traces(F;) for ev-
ery i. Since acts(P;) C acts(P) we have that §|acts(P;) = (B|acts(P))|acts(P;).
Thus, from the definition of P, f|acts(P) € traces(P).

The proof of 2 is analogous to the above, using Theorem 2.1(5). |

Theorem 2.3 (Compositionality of Path Properties) Let {A;}icr be
a compatible collection of automata and let A = ;e A;. Also, let {P;}icr
be a collection of path properties and let P = ;¢ P;.

1. If states (P;) = states (A;) and paths (A;) C paths (P;) for every i, then
states (P) = states (A) and paths (A) C paths (P).

2. If states(P;) = states (A;) and fairpaths (A;) C paths (P;) for every i,
then states (P) = states (A) and fairpaths (A) C paths (P).

Proof. Consider 1. Since states (P) = Ilc;states (P;) and states(A) =
IT;crstates (A;) we have from the hypothesis that states(P) = states(A).
Suppose that v € paths(A). From Theorem 2.1(3) we have that for every
i, there exists 7' < 7| A; such that ' € paths (A;) and thus, by hypothesis,
~" € paths (P;). Now, directly from the definition of P, v € paths (P).

The proof of 2 is analogous to the above, using Theorem 2.1(6). |

2.3 Abstraction Theory

In this section we formalize the conditions required in order for one (the
abstract) verification problem (B, P’) to be property-preserving with respect
to another (the concrete) problem (A, P). That is we provide conditions for
the following to hold:

B satisfies P' implies A satisfies P

2.3. ABSTRACTION THEORY 25

Our conditions for property-preservation for trace problems and path
problems are the existence of trace simulations and path simulations, respec-
tively, between the automata in the involved verification problems. These
simulations can be seen as generalizations of standard forward simulations
[Lyn96]. In Section 2.3.1 we define the notions of trace and path simulations
and we show that the simulations are sound with respect to generalized no-
tions of trace and path inclusion. These soundness results provide the basis
for our theorems of Section 2.3.2, which provide conditions for property-
preservation between verification problems in both the trace and the path
setting and with respect to safety as well as liveness properties.

2.3.1 Simulations

We first define the notion of a trace simulation between two automata. The
notion is relative to a relation between the external actions of the automata.
Intuitively, this relation defines an action abstraction. Let A and B be two
automata and let R be a relation from ezt (A) to ezt(B). In a trace sim-
ulation from A to B parameterized by R, we require that any transition of
A on an action @ in the domain of R can be matched in B by an execu-
tion fragment with a single external action b in the range of R, such that
(a,b) € R. We will see that the existence of a trace simulation from A to B
parameterized by R is a sound condition for trace inclusion, relative to R.
Let A and B be two automata and let R be a relation from ezt (A) to

ext (B). We write, u LA, u', or simply u =% W when B is clear from the
context, to denote that B has a finite execution fragment o with first(«)
= u, last(a) = v’ and trace (a)|ran (R) = b.

Definition 2.11 (Trace Simulation) Let A and B be two I/0 automata
and let R be a relation from ext(A) to ext(B). A relation S from states (A)
to states (B) is a trace simulation from A to B parameterized by R provided,

1. If s € start (A) then S[s] N start (B) # 0.

2. If s % &, (s,u) € S, and s and u are reachable states of A and B
respectively, then

(a) If a € dom(R), then 3b,u’ such that u N u', (a,b) € R and
(s',u') € S.

(b) If a & dom (R), then Ju’ such that u 25 o' and (s u') € S.

We write A <% B, if there exists a trace simulation from A to B parame-
terized by R. We write A <', B via S, if S is a trace simulation from A to
B parameterized by R.

We now define the notion of a path simulation between two automata.
Our notion of path simulation can be seen as a generalization of the notion

26 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

of homomorphic abstraction functions used in for example [CGL92]. We
will show that the existence of a path simulation from an automaton A to
an automaton B wia a state relation S, will be a sound condition for path
inclusion, relative to S.

Definition 2.12 (Path Simulation) Let A and B be two 1/0 automata.
A relation S from states (A) to states(B) is a path simulation relation from
A to B provided, dom (S) = states(A) and ran (S) = states (B) and,

1. If s € start(A) then S[s] N start(B) # 0.

2. If s — &', (s,u) € S, and s and u are reachable states of A and B
respectively, then u’ such that v — u' and (s',u') € S.

We write A <P B, if there is a path simulation from A to B. We write
A <P B uwia S, if S is a path simulation from A to B.

Soundness of Simulations

In the following we first introduce an Ezecution Correspondence Theorem.
This theorem states that if any of the simulations defined in the previ-
ous subsection has been proven from a concrete automaton to an abstract
automaton, then for any execution of the concrete automaton, there is a
“corresponding” execution of the abstract automaton. Our theorem is a
minor variation of one in [GSSLI3]. In order to formalize our notion of cor-
respondence, the notions of (S, R)-relation, S-relation, and index mapping
are introduced.

Definition 2.13 ((S, R)-relation and index mappings) Let A and B be
automata, and let S be a relation from states(A) to states(B) and R a re-
lation from ext(A) to ext(B). Furthermore, let a and o be executions of A

and B, respectively, such that o = sqai1s1a982 ... and o = ugbiuibous
We say that « and o are (S, R)-related, written (o,') € (S, R), if there
exists a total, nondecreasing mapping m : {0,1,... . |a|} — {0,1,... ||}
such that

1. m(0) =0,

2. (SisUm()) €S for all i, 0 <1 <|af,

3. trace (a;)|dom (R) € R~ (trace (bm(i—1)41 - - - bmiy) [Tan (R)) for all 1,
0<i<|al, and

4. for all j, 0 < j < |d/|, there exzists an i, 0 < i < |a|, such that
mii) > 7

2.3. ABSTRACTION THEORY 27

The mapping m is referred to as an index mapping from a to o with respect
to (S,R). We write (A,B) € (S,R) if for every execution « of A, there
exists an execution o of B such that (a,a') € (S, R).

If R =0 and m is the identity, we say that « and o' are S-corresponding,
written (v, ') € S, and we refer to m as an index mapping from « to o
with respect to S. We write (A, B) € S if for every execution o of A, there
exists an execution o of B such that (o, ') € S.

Given the above notions of (S, R)-relation and S-relation we can now
state the Execution Correspondence Theorem as follows.

Theorem 2.4 (Execution Correspondence Theorem) Let A and B be
automata. Assume that A <% B via S (or A <P B via S). Then (A,B) €
(S, R) ((A,B) € 5).

Proof. Analogous to the proof of Theorem 6.11 in [GSSL93].]

The Execution Correspondence Theorem can be used to prove the fol-
lowing soundness results of the trace and path simulations with respect to
relativized trace and path inclusion. The soundness results relies on the
following lemma.

Lemma 2.1 Let A and B be automata and let S be a relation from states (A)
to states (B) and R a relation from ext(A) to ext(B). Assume that (o, ') €
(S,R) (or (a, ') € S and ran (S) = states (B)) and let m be an index map-
ping from « to o with respect to (S, R) (with respect to S). Then, for all
0<i<|al

trace (;|a)|dom (R) € R~ (trace (m(i)le)|ran (R))

(path (i) € S~ (path (s))))
Proof. Analogous to the proof Lemma 6.14 in [GSSL93].]

We can now prove the following soundness results for trace and path
simulations.

Theorem 2.5 (Soundness of Trace Simulations) Let A and B be au-
tomata.

If A <% BuiaS then, traces(A)|dom (R) C R™'(traces(B)|ran (R))

Proof. Let 8 € traces(A)|dom (R) and let « be an execution of A such
that 8 = trace(a)|dom (R). Then, by Theorem 2.4, there exists an exe-
cution o of B such that («,a') € (S,R). For any execution o we have
that gl = o, and for any index mapping m, m(0) = 0. Thus, from
Lemma 2.1, trace (o)|dom (R) € R~ (trace (')|ran (R)). We thus have that
B € R (traces(B)|ran (R)) as required. []

28 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

Theorem 2.6 (Soundness of Path Simulations) Let A and B be au-
tomata.

If A <P Buwia8 then, paths(A) C S~ (paths (A"))

Proof. Analogous to proof of Theorem 2.5. |

2.3.2 Preservation Conditions

We end this section by stating our conditions for property preservation in
the following four theorems. The theorems provide preservation conditions
for properties of type: trace safety, path safety, trace liveness, and path
liveness.

Theorem 2.7 (Trace Safety Preservation) Let (A, P) and (B,P') be
two trace safety verification problems. Let R be a relation with dom (R)
= acts(P) and ran (R) = acts(P'), such that R~ '(traces(P')) C traces(P).

If,
1. A<'%, B, and
2. B satisfies P’

then, A satisfies P.

Proof. From 7 we have that, traces(A)|dom (R) C R~ (traces(B)|ran (R)).
By assumption dom (R) = acts(P) and ran (R) = acts(P'). Thus, we have
that traces(A)|acts(P) C R~ '(traces(B)|acts(P')). From 2 we have that
traces(B)|acts(P') C traces(P') and since ran (R) = acts(P’') this implies,
R~ Y(traces(B)|acts(P')) C R '(traces(P')). By assumption we have that
R~ '(traces(P')) C traces(P). Thus, by transitivity of C, we conclude that
traces(A)|acts(P) C traces(P). []

Theorem 2.8 (Path Safety Preservation) Let (A, Q) and (B, Q') be two
path safety verification problems. Let S be a relation with dom (S) = states (Q)
and ran (S) = states (Q') such that S~'(paths (Q')) C paths (Q). If,

1. A<P Buwia S, and
2. B satisfies Q'

then, A satisfies Q.
Proof. Analogous to proof of Theorem 2.7. [

Theorem 2.9 (Trace Liveness Preservation) Let (A, P) and (B, P') be
two trace liveness verification problems. Let R be a relation with dom (R) =
acts(P) and ran (R) = acts(P'), such that R~ "(traces(P')) C traces(P). If,

2.4. ABSTRACTION THEORY IN LARCH 29

1. A<Y% B via S,
2. for all (a,a) € (S, R) : « € fairezecs (A) = o € fairexecs (B), and
3. B satisfies P’

then, A satisfies P.

Proof. First prove fairtraces (A)|dom (R) C R '(fairtraces (B)|ran (R)).
Let B € fairtraces (A)|dom (R). Then there is an execution a of A such
that « € fairexecs(A) and 8 = trace (a)|dom (R). From 1 and Theorem 2.4
(ECT), there exists an execution o' of B such that («,’) € (S, R). From
2, o € fairezecs(B) and from Lemma 2.1 we get that, trace (a)|dom (R)
€ R (trace (a)|ran (R)). This implies that 8 € R !(trace(/)|ran (R))
and since o/ € fairezecs (B), we have that 8 € R~ '(fairtraces (B)|ran (R)).
Thus, fairtraces (A)|dom (R) C R~ !(fairtraces (B)|ran (R)). Since dom (R)
= acts(P) and ran(R) = acts(P') we have that fairtraces(A)|acts(P) C
R~ Y(fairtraces (B)|acts(P')). From 8, fa’irtmces()acts(P") C traces(P")
and since ran (R) = acts(P') this implies, B! (fazrtmces()acts(P")) C
R '(traces(P')). By assumption we have that, R~ !(traces(P')) C traces(P)
and by transitivity of C, we conclude that fairtraces (A)|dom (R) C traces(P).
|

Theorem 2.10 (Path Liveness Preservation) Let (A, Q) and (B,Q’
two path liveness verification problems. Let S be a relation with dom (S

)

) f—
states (Q) and ran (S) = states (Q') such that S~ (paths (Q")) C paths (Q).
If,

1. A<P Buwia S,

be

2. for all (a,d) € S « € fairexecs (A) = o € fairezecs (B), and
3. B satisfies Q'

then, A satisfies Q.

Proof. Analogous to proof of Theorem 2.9. [

2.4 Abstraction Theory in Larch

In this section we present a formalization using the Larch tool set of the
safety part of the trace abstraction framework introduced in the preced-
ing section. In [SAGGT93] a framework is introduced for specifying and
reasoning about I/O Automata using the Larch tool set. We extend this
framework to include a formalization of our trace abstraction theory. The
theory is formalized in the Larch Shared Language (LSL) [GH93] which is

30 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

supported by a tool that produces input for LP, the Larch Prover. LP is
a theorem prover for multi-sorted first-order logic designed to assist users
who employ standard proof techniques such as proofs by cases, induction,
and contradiction.

2.4.1 I/O Automata in LSL

LSL specifications define two kinds symbols, operators and sorts. Operators
name total functions from tuples of values to values. Sorts name disjoint
non-empty sets of values indicating the domains and ranges of operators.
Operators and sorts are introduced in traits. A trait is the basic unit of
specification in LSL and it can be seen as somewhat similar to the definition
of an abstract data type in many algebraic specification languages. However,
traits need not fully define a type.

Figure 2.1 shows the trait specifying an I/O automaton A. The trait
begins with the introduces clause, declaring a set of operators by providing
a signature for each. Signatures implicitly defines sorts for domains and
ranges of operators and they are used to sort-check terms. For example, the
signature for operator start implicitly defines the sort States[A] of states
of A. The body of a trait follows the reserved word asserts. In the asserts
clause the introduced operators are constrained by equations. For example,
the execution fragments of automaton A are defined to be those elements
of sort StepSeq[A] that satisfy the predicate execFrag, which is defined
inductively in the asserts clause.

Each trait defines a theory (a set of sentences closed under logical conse-
quences) in multisorted first-order logic with equality. Each theory contains
the trait’s assertions, the conventional axioms of first-order logic, every-
thing that follows from them, and nothing else. The basic theory associated
with Automaton (A) consists of the set of sentences that can be obtained
from the assertions by equational rewriting. The equational theory is fur-
ther strengthened by the generated by clause, that asserts that operators
empty and ~ constitute a complete set of generators for sort Traces[A]. This
justifies a generator induction scheme for proving things about the sort.

2.4.2 Trace Simulations in LSL

In order to complete our formalization of the trace based abstraction theory,
we introduce two traits specifying the required theory of action parameter-
ized simulation relations.

In Figure 2.2 the trait ActRel formalizing the notion of a relation be-
tween the external actions of automata and related operators is presented.
The trait begins by an includes clause which is a means of combining the-
ories. The theory associated with ActRel is the theory associated with the
union of theories from the included traits, Automaton(A) and Automaton (B),

2.4. ABSTRACTION THEORY IN LARCH 31

Automaton (A): trait

introduces
start : States[A] -> Bool
enabled : States[A], Actions[A] -> Bool
effect : States[A]l, Actions[A], States[A] -> Bool
isExternal : Actions[A] -> Bool
isInternal : Actions[A] -> Bool
isStep : States[A], Actions[A], States[A] -> Bool
null : States[A] —-> StepSeq[Al
..} : StepSeq[A], Actions[A], States[A] -> StepSeq[A]
execFrag : StepSeql[Al -> Bool
first, last : StepSeq[A] -> States[A]
empty : -> Traces[A]
T : Traces[A], Actions[A] -> Traces[A]
trace : Actions[A] -> Traces[A]
trace : StepSeq[A] -> Traces[A]
inv : States[A] -> Bool

asserts

sort Traces[A] generated by empty, ~

\forall s, s’: States[A], a, a’: Actions[A], ss: StepSeql[Al
isInternal(a) <=> “isExternal(a);
isStep(s, a, s’) <=> enabled(s, a) /\ effect(s, a, s’);
execFrag(null(s));
execFrag(null(s){a,s’}) <=> isStep(s, a, s’);
execFrag((ss{a,s}){a’,s’}) <=> execFrag(ss{a,s}) /\ isStep(s, a’, s’);
first(null(s)) = s;
last(null(s)) = s;
first(ss{a,s}) = first(ss);
last(ss{a,s}) = s;
trace(null(s)) = empty;
trace(ss{a,s}) = (if isExternal(a) then trace(ss) ~ a else trace(ss));
trace(a) = (if isExternal(a) then empty ~ a else empty)

Figure 2.1: Automaton.lsl

32 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

ActRel(R,A,B): trait

includes Automaton(A), Automaton(B)

introduces
R : Actions[A], Actions[B] -> Bool
proR : Traces[B] -> Traces[B]
inR : Actions[A] -> Bool
asserts

with a: Actions[A], a’: Actions[B]
inR(a) <=> (\E a’ (R(a,a’)));

with tr: Traces[B], a’: Actions[B], a: Actions[A]
proR(empty) = empty;
proR(empty~a’) = (if \E a R(a,a’) then empty~a’ else empty);
proR(tr"a’) = (if \E a R(a,a’) then proR(tr) a’ else proR(tr));

Figure 2.2: ActRel.lsl

and the assertions of ActRel itself. Note that Automaton(B) defines a the-
ory disjoint (disjoint sorts with new operators) from that of Automaton(A)
by renaming the parameter A by B. The trait introduces a relation R as a
relation from the actions of automaton A to those of automaton B. It further
defines operators proR on traces of B and inR on actions of A. Operator proR
projects a trace of B on to the actions in the range of relation R. Operator
inR is a predicate telling whether or not an action of A is in the domain of
relation R.

In Figure 2.3 we show the trait Simulation specifying the theory of trace
simulation relations. The trait assumes (similar to includes) the theory of
two automata A and B as well as a relation R from the actions of A to those
of B. The trait further introduces an operator S to denote a relation among
states of A and B. The assertions of the trait are simply a formalization of
the conditions in the definition of a trace simulation relation. The theory
can be used to assist in proving that a given state relation S between two
automata A and B is a trace simulation parameterized by relation R from A
to B. In Chapter 4, in the second part of this thesis, we demonstrate the
use of LP to discharge preservation conditions in an abstraction proof for
Burns’ mutual exclusion algorithm.

2.5 Input/Output Automata in SPIN

An abstract verification problem which is finite-state is directly amenable
to automatic verification. We end this chapter on our untimed abstraction

2.5. INPUT/OUTPUT AUTOMATA IN SPIN 33

Simulation(A,B,R,S): trait
assumes Automaton(A), Automaton(B), ActRel(R,A,B)

introduces
S : States[A], States[B] -> Bool

asserts
with s, s’ : States[A], u: States[B], a: Actions[A]l, a’,a’’: Actions[B],
alpha: StepSeql[B]
start(s) => \E u (start(u) /\ S(s, u));

S(s, u) /\ isStep(s, a, s’) /\ inR(a) =>
(\E alpha \E a’ (execFrag(alpha) /\ first(alpha) = u /\
S(s’, last(alpha)) /\ proR(trace(alpha)) = empty~a’
/\ R(a,a’)));

S(s, u) /\ inv(s) /\ isStep(s, a, s’) /\ "inR(a) =>
(\E alpha (execFrag(alpha) /\ first(alpha) = u /\ S(s’, last(alpha))
/\ proR(trace(alpha)) = empty))

Figure 2.3: Simulation.ls]

framework by examining a translation scheme for representing finite-state
verification problems from the I/O automata framework in the model checker
SPIN [Hol91]. The SPIN model checker supports automatic verification of
next-time-free LTL properties over finite-state transition systems described
in the PROMELA language. We begin in Section 2.5.1 by examining a
method for specifying trace and path properties using LTL. Then in Sec-
tion 2.5.2 we present a rudimentary scheme for translating finite-state 1/0O
automata into the PROMELA input language for SPIN.

2.5.1 Temporal Logic

In this section we present a method for specifying trace and path properties
using Linear Time Temporal Logic (LTL). We will assume, that any 1/0
automaton A has a set of state variables V4 over some domain. We will
interpret a state of A as a mapping s from V4 to its domain. We write s(v)
to denote the value of v in state s. We will further assume a reserved action
variable v, ranging over acts(A) U {e}, where € is a distinct “no-action”
symbol. We assume a basic assertion language over variables V4 U {vge}-
Assertions are constructed from basic expressions v = z (z in the domain of
v) using only standard boolean connectives.

For an assertion p and a function s that interprets all free variables in
p, we write s |= p to denote that s satisfies p. Meaning, that the formula

34 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

obtained by substituting in p all variables v by s(v), is true.

Definition 2.14 (Temporal Formulae) Let A be an automaton. A tem-
poral formula of A is a formula constructed from assertions of A to which
we apply the boolean connectives — and V and the basic temporal operator U
denoted (Strong) Until.

For an I/O automaton A, we let seq(A) denote the set of all finite and
infinite alternating sequences of states and actions in A. Any sequence must
begin with a state and if it is finite it must also end with a state. Note, that
the set of executions execs (A) is a subset of the set seq(A). The trace of a
sequence o € seq(A) consists of the subsequence of external actions in o.

Definition 2.15 (Stutter Extending Sequences) Let o be a finite se-
quence in seq(A) such that o = s0a181...axsg. We define the stutter ex-
tension of o as the infinite sequence,

Ogt — S0A1S51 -..QkSKESLESE . ..

obtained by concatenating o with the sequence consisting of an infinite al-
ternation of the “no-action” € and the last state s of o. For an infinite
sequence o we define og = 0.

Definition 2.16 (Encoding Actions in State Sequences) Let o be a
sequence in seq(A) such that o = spa181a982.... Then & denotes the se-
quence obtained from o by encoding in any state the information of the
immediate preceding action in the reserved action variable vgep. Formally,

= (80 U [vaet = €])(s1 U [vger — a1])(s2 U [vger = ag]) ...
where € denotes a distinct “no-action” not in acts(A).

Definition 2.17 (Sequences Satisfying Formulae (|=)) Let A be an au-
tomaton and let p be a temporal formula of A. Furthermore, let o € seq(A).
We define inductively the notion of p holding at a position 7 > 0 in &g,
denoted by (64, 7) = p, as follows.

If p assertion:

(Gst,7) Fp = sjl=p
Otherwise:
(&staj) ‘: -p (&staj) lfJ: D

<
(&Staj) ‘:pvq — (&Staj) |:p or (6Staj) |:q
(6st,J) EpUq <= there exists k > j,(0,k) = q and
foralli,j <i<k,(6,i) =p

We say that o satisfies p iff (s,0) E p. We will write o = p in this case.

2.5. INPUT/OUTPUT AUTOMATA IN SPIN 35

We can introduce additional derived operators. Boolean operators A
and — may be defined in the usual way, using the basic V and — operators.
Additional temporal operators are defined by:

Op = truelp Eventually p
Op = =O-p — Always p
pWq = OpVpUq p Waiting-for (Unless) q

Definition 2.18 (Induced Trace and Path Properties) Let A be an au-
tomaton. Let p be an arbitrary temporal formula of A. Define,

1. tracesa(p) = {trace (o) | 0 € seq(A) Ao = p}
2. paths, (p) = {path (o) | o € seq(A) Ao = p}

The trace property induced by p, written Ta(p), is the trace property with
signature sig (Ta(p)) = (in(A), out (A)) and set of traces traces(Ta(p)) =
tracesa(p). The path property induced by p, written P4(p), is the path prop-
erty with signature sig(Pa(p)) = states(A) and set of paths paths (Pa(p))

= paths , (p).

We say that a temporal formula p of A is a trace (path) safety formula
if Ta(p) (Pa(p)) is a trace (path) safety property. Analogously, p is said to
be a trace (path) liveness formula if T4(p) (Pa(p)) is a trace (path) liveness
property. In [Pnu86] is a characterization of temporal logic properties ac-
cording to notions of safety and liveness. Our notion of liveness corresponds
to temporal properties commonly called pure liveness properties.

Usually, a temporal formula intended to specify a trace property of an
automaton A, will only contain assertions over the action variable v,.. Anal-
ogously, a temporal formula intended to specify a path property, will usually
contain only assertions over the state variables V4 of A.

Definition 2.19 (Fairness Condition in Temporal Logic) Let A be an
automaton. The fairness property for A is the property Fa defined as,

Fa= J\ (ODEA(C) = OO(vgu € C))
Cetasks(A)

where E4(C) is a predicate describing states of A in which some action from

C is enabled.

Lemma 2.2 Let A be an automaton and let « be any execution of A. Then,

al=Fa < «c€ fairezecs (A)

36 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

Proof. =—: Suppose « is infinite and « & fairexecs (A). Then a contains
only finitely many occurrences of actions from C' and only finitely many
occurrences of states in which C is not enabled. Thus « satisfies the hy-
pothesis of F4 but not the conclusion. Hence, a = F4. Suppose « is finite.
Assume for the sake of contradiction that an action a € C (for some task
(') is enabled in the last state s; of @. Then (d,0) = COEA(C) since sy is
repeated infinitely in ;. Therefore, since o = Fu ((Gst,0) = Fa), it must
be that infinitely often in &y there exists a state in which the v, € C.
This, however contradicts the fact that by construction @g has an infinite
suffix of states in which v, = €. Thus, no C is enabled in sy.

<=: Suppose « is infinite and « € fairezecs(A). Suppose a contains
infinitely many occurrences of action from some task C'. Then the conclu-
sion of F4 holds and thus @ = F4. Suppose a contains infinitely many
occurrences of states in which C is not enabled. Then the hypothesis of
Fa is false and « = F4 vacuously. Suppose « is finite. Then no task C
is enabled in the last state s; of a. Since sj is repeated infinitely in g,
(ast) = ©OEA(C) for any C. Hence, o = F4 vacuously. []

We now formally define the notion of an I/O automaton A satisfying a
temporal formula as follows.

Definition 2.20 (Automata Satisfying Formulae) Let A be an automa-
ton and let p be any safety formula and q any liveness formula. Then,

AE=Ep < Vac€ezecs(A). al=p
A=q < Vacezrecs(A). alEFa—q

It follows from the definition that, if A = p then A satisfies T4(p) and
Palp)-

2.5.2 Translating Automata

Our translation scheme is based on the representation of I/O automata in the
precondition-effect language described in Section 2.2.2. We will assume that
the state types, predicates, and operations used to describe states, precondi-
tions and effects of I/O automata are all implementable in the PROMELA
language. Thus, our translation scheme is relative to a correct translation
of the above elements. In theory, only a fragment of the very general meta
I/O automata language is implementable in the PROMELA language. In
practice however, many nontrivial algorithms are describable in a fragment
of the I/O automata language that allows for translation.

We consider the general translation of a composition A = Il;c;A; of
automata. Figure 2.4 presents the generic code for any automaton A; in the
composition. We assume that pre(4;,a) defines the precondition for action
a of automaton A;. Analogously, we assume that eff (A;, a) defines the effect
of action a.

2.5. INPUT/OUTPUT AUTOMATA IN SPIN

Automaton: A;

Signature
Inputs:
ai1, iz, . . .
Internals:
bi1 s b,‘g, -
Outputs:
Ci1,Ci24. ..

States:
zi1 : Loy xin : Tia,y . ..

Transitions:

input: a;;

Eff: eﬂ"(A,-, a,-j)

internal: b;;
Pre: pre(A;, bix)
Eff: eff(Ai,b,-k)

Tasks:
{Cilv Ci?a ce }

output: ¢;;
Pre: pre(A;,ci)
Eff: eff(Ai,Cil)

Figure 2.4: I/O Automaton A;

38 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

proctype A (){
mtype ={in(A),int(A), out(A)};
mtype vgct;

TH Ti1y. .. ;Tnm Tnm

do

:r atomic {true — > vger = asj; eff (As, ai5)}

it atomic {pre(A;, bix) — > vget = bik; eff (Ai, bir)}

v atomic {pre(Ai, ci) — > vger = ca; eff (A1, ca); .. s eff(An, ci)}

::else — > vget = € ; break
od}

Figure 2.5: PROMELA code for automaton A

We translate the composition A into a single PROMELA proctype dec-
laration as shown in Figure 2.5. We use typewriter font for PROMELA
syntax. We use the syntax of the precondition-effect code to describe the
PROMELA implementations of state and action variables of A. We also use
the notions pre(A4;,a) and eff (A4;,a) to denote the PROMELA implementa-
tions of the identically named predicates and operations of the precondition-
effect code. Recall, that we assume that a correct translation of these entities
exists.

The PROMELA code starts by declaring a process A with no parameters.
The process declaration is divided into two parts. The first part consists
of the first three lines inside the proctype declaration and it declares the
variables to be used in process A. In the first line we declare a message
type mtype to be a list of all the actions of the composition A, and in the
next line we declare the variable v, to be of this type. The variable v,
implements the action variable described in Section 2.5.1 and is used to keep
track of the latest action performed by A. Recall from Section 2.5.1 that we
use vqe to describe trace properties by LTL properties. The third line ends
the declaration part of the translation. Here we simply declare all the state
variables of the composition A.

The transitions of automaton A are described in a single do: :0d loop
construction. The loop has an entry for any action in the composition
A. Consider the actions of automaton A; and let us see how these are
represented in the PROMELA description of the composition A.

Consider an input action a;; of A;. If no other process A, contains a;;
as an output action, a;; becomes an input in the composition A. In this
case the effect of a;; in A becomes the effect of a;; in A;. This situation is
the one described for action a;; in Figure 2.5. The precondition and effect

2.5. INPUT/OUTPUT AUTOMATA IN SPIN 39

of the action is encapsulated in an atomic sequence which guarantees the
execution of precondition and effect as a single indivisible statement. The
atomic sequence is divided into two parts, a guard and an effect. The guard
in this case in the statement {rue, describing the input-enabledness of action
a;j. The effect consists of assigning to v, the name of the action performed,
as well as performing the effect of a;; in A;.

If some process Ay contains a;; as output action, a;; becomes an output
in A. This situation is described in Figure 2.5 for an output action c¢;; of
automaton A;. Since A; is the only automaton controlling ¢;; in A, the
precondition in A becomes the precondition from A;. The effect however
becomes the sequence of effects that action ¢;; may have by virtue of being
an input action in other automata than A;, as well as the effect of ¢;; in A;.
As before, the effect also contains the assignment to action variable v,¢; of
the name of the action ¢;; performed.

Finally, consider an internal action b;; of A;. This action becomes an
internal action of A with preconditions and effects identical to those of A;.

The PROMELA code for A contains a final entry in the loop construc-
tion. This entry, guarded by the statement else, is executable exactly if
none of the other entries are. The effect of the entry simply consists of as-
signing the “no-action” e to the action variable v,.; and then breaking out
of the loop construct. We use this entry to guarantee the correct stutter se-
mantics of automata as it is described in Section 2.5.1. When verifying LTL
properties, SPIN automatically stutters the last state in any finite execution
to obtain an infinite execution. The entry described above guarantees that
Vaet = € In any stutter extension of a finite execution.

The tasks of automaton A are not directly code into the PROMELA
code for A. Rather, we code the fairness conditions induced by the task
partition into liveness properties as described in Section 2.5.1.

40 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

Chapter 3

Timed Abstraction
Framework

In this chapter we present our timed abstraction framework. Analogous
to the untimed framework, presented in the previous chapter, the timed
framework provides general conditions for one verification problem to be
property preserving with respect to another problem. However, the systems
that we consider in this framework are timed systems, and so the properties
that interests us include timing information as well.

The timed framework developed in this thesis is motivated by practical
experience with the UPPAAL real-time model checker [BLL*95]. UPPAAL
can efficiently deal with verification of real-time systems (over a dense time
domain) specified as networks of timed automata. A timed automata is
basically an extension of a classical automaton with real-valued clocks. The
timed automaton model constrains the allowed conditions on clock variables
in a way that makes it possible to obtain a finite abstract semantic model.
The abstract model preserves (strongly) enough information to allow it to be
used for verification about properties of the concrete system. Thus, the tool
performs an automatic abstraction of the timing component of any properly
described real-time system.

We provide an abstraction framework that in addition allows for the ab-
straction of untimed information like control and data. Thus our framework
provides a link to the UPPAAL tool providing support for verification of e.g.
parameterized real-time systems consisting of a number of composed pro-
cesses, the particular value of the number being the parameter, or processes
with unbounded number of actions or unbounded data domains.

The properties that can be directly verified in UPPAAL are simple reach-
ability properties. However, based on the use of test automata verification
of properties other than plain reachability ones may be carried out as well.
In [ABL98] the authors describe the testing approach for properties ex-
pressed in a dense-time temporal logic suitable for specifying safety and

41

42 CHAPTER 3. TIMED ABSTRACTION FRAMEWORK

bounded liveness properties. Given a property ¢ to model check, the user
provides a test automaton Ty for it. The test automaton must be such that
the original system S has the property expressed by ¢ precisely when no
bad states of Ty can be reached in the composition of S and Tj. In [ABL9S]
it is also presented how the logical property language of that paper can be
used to provide characteristic properties [1S94] for timed automata with re-
spect to a timed version of the ready simulation preorder [LS91, BIM95].
This provides for an indirect verification of timed ready simulation using the
testing approach.

Our abstraction framework is based on a variant of the timed ready sim-
ulation preorder. We consider verification problems consisting of a pair of
timed systems, an implementation and a specification, and our goal is to
verify whether the implementation is timed ready simulated by the speci-
fication. Given two verification problems, a concrete one and an abstract
one, we provide conditions for the abstract problem to be property pre-
serving with respect to the concrete problem. Meaning that under these
conditions, if the abstract implementation is timed ready simulated by the
abstract specification then the concrete implementation is timed ready sim-
ulated by the concrete specification. The condition for property preservation
is based on an action parameterized version of the timed ready simulation.
We will see that this simulation has nice properties like e.g. preservation
under system composition which supports hierarchical verification.

We furthermore provide a method for translating the problem of check-
ing for the existence of timed ready simulations into a reachability question
amenable to verification by UPPAAL. Given two systems Si,.S2 we write
S1 = Sy if Sp is timed ready simulated by S5. By our testing approach, we
construct a test automaton T, for Sy such that no bad states of the compo-
sition of S and T, can be reached precisely when S; < S3. Our approach
is more direct than the one presented in [ABL98] in which a characteristic
property of system Sy must first be constructed and then in a second step
a test automaton for this property must be constructed.

Chapter Organization. We begin in Section 3.1 by presenting the un-
derlying formal model used to describe timed systems. We use a notion of
timed labelled transition systems commonly used to provide semantics for
timed automata. The timed automata language is presented in this section
as well. In Section 3.2 we present the general conditions for property preser-
vation between verification problems based on the notion of parameterized
timed ready simulation. We also prove properties like compositionality and
transitivity of parameterized timed ready simulations. Section 3.3 presents a
method for constructing abstract verification problems from concrete prob-
lems such that the required conditions for property preservation are guar-
anteed to hold. Finally, in Section 3.4 we present the method of translating

3.1. TIMED LABELLED TRANSITION SYSTEMS 43

checks for the existence of timed ready simulations into a reachability prob-
lem.

3.1 Timed Labelled Transition Systems

In this section we present the basic model of timed labelled transition sys-
tems as well as the timed automaton language used to describe these tran-
sition systems syntactically.

A timed labelled transition systems has two types of labels: atomic
actions and delays, representing discrete and continuous changes of real-
time systems. We will assume that A, and A; are universal and disjoint
sets of urgent actions and lazy actions, respectively. Urgent actions are
used to enforce immediate synchronization among transition systems, in the
sense that no delay can occur beyond a point in time at which an urgent
synchronization becomes enabled. Lazy actions are simply all non-urgent
actions. We let A = A, U A,.

We will assume the existence of a special internal action 7 distinct from
any action in A and we define A, = AU{7}, Ay, = A, U{r} and A, =
AU {r}. We use D to denote the set of delay actions {e(d) | d € R>o}
where R denotes the set of non-negative real numbers. We denote the
0-delay action €(0) by 0 and we define A, o = A, U {0}, A, 0 = A, U {0}
and A; 9 = A; U {0}. We use a,b to range over A, g.

Definition 3.1 (Timed Labelled Transition System) A timed labelled
transition system is a tuple T = (S, sg, —) where S is a set of states, sg
€ S is the initial state, and — C S x A, UD x S is a transition relation
satisfying the following properties:

. .. . d d
~ (time determinism) For every s,s',s" € S, if s Q s' and s Q) s,

then s' = s".

. cle - (d1+d . (d (d
(time additivity) For every s,s"” € S, s Ahdda) o iff s) g () s",

for some s' € S.

(0-delay) For every s,s' € S, s BN iff s=s

We say that a timed labelled transition system is deterministic if, in addition,
the transition relation satisfies the following property:

« . . a
(determinism) For every s,s',s" € S and a € A,, if s — s and
a
s — 8", then s’ = s".

Following [ABL98, Yi90], we now define versions of the transition re-
lations that abstract away from the internal evolution of states. Let "
denote the reflexive and transitive closure of —. For any states s and s’

44 CHAPTER 3. TIMED ABSTRACTION FRAMEWORK

of a timed labelled transition system and for any action a € A,, we write
a . . a . a .
s — iff there exists s’ such that s — s’, and we write s = s’ iff there
m T on o a m /
such that s — s" — s

. T * .
exists s, s — §'. Analogously, we write

(d) . . -(d . -(d .
s WS there exists ¢ such that s <% s', and we write s g s’ iff there

exists a finite transition sequence s = sg e - LN sp, = s such
that for all s € {1,... ,n}, ; =7 ora; € D, and d = Y {d; | o; = e(d;)}.
By convention, if the set {d; | a; = €(d;)} is empty, then > {d; | o; = €(d;)}
is 0. With this convention, the relation =% coincides with — . We say
that a state s of T is reachable if there exists a finite transition sequence
S0 -5 51 =2 59... 2 g, of T such that for alli € {1,... ,n}, a; € A;UD,
so is the initial state of 7, and s, = s. By acts(T) we denote the set
{a € Aro | 3s,s" 1 s =% s'}. Note that 0 is an element of acts(T).

3.1.1 Composition

To describe concurrency and synchronization between timed labelled transi-
tion systems we use synchronization functions. Assume a special “undefined”-

symbol — ¢ A, UD.

Definition 3.2 (Synchronization Function) A synchronization function
[is a function from (A;o0U{—}) x (A;0U{=}) to Ao U{—} satisfying
the following conditions:

. Ifa,be Ayp and a #0 or b # 0, then f(a,b) € A, U{-}.

~

2. Ifa,be Aig and a # 0 or b # 0, then f(a,b) € A, U{-}.
3. Ifa € A, and b € A; then f(a,b) = —.

4- f(0,0) =0

5. f(r,0) = f(0,7) =T.

6. If a € A;, then f(a,7) = f(1,a) = —.

7. If a € Az, then f(a,—) = f(—,a) = f(=,—) = —

Condition 1 states that the synchronization of two urgent actions, or a
single urgent action combined with the 0-action, must result in either an ur-
gent action, the internal action 7, or the “undefined” symbol —. Condition
2 states the analogous preservation condition for lazy actions, and condition
3 prohibits joint synchronization of urgent and lazy actions. Condition 4
implies that the 0-delay property of timed labelled transition systems is pre-
served by parallel composition. Condition 5 states that 7-actions can occur
asynchronously in a composition, and condition 6 says that 7-actions can
not synchronize with any other actions than the 0-action. Finally, condition
7 prohibits any synchronization with the undefined symbol —.

3.1. TIMED LABELLED TRANSITION SYSTEMS 45

Definition 3.3 (Composition) Let 7; = (S;, s0i, —i), ¢ = 1,2 be two
timed labelled transition systems and let f be a synchronization function.
The parallel composition Ty @y To is the timed labelled transition system
(S,s0,—) where S = 81 x Sa, s9 = (s10,520), and — is defined as
follows for all a € A; o and d > 0:

(s1.82) ~5 (s, sh) iff s1 -1 8], sz -y sh, and f(ar,a2) =a

ed) ,, , . e(d) e(d)
(s1,82) —> (s1,89) iff s1 —>1 58], s2 —>2 sy, and
Vit € [0,d[, a1,a2 € Ay, sY,sY,

e(t) a e(t) a
—|(Sl —1 S'll —1>1 N S —9 S'QI —2>2 VAN

flai,az) # —)

Note that the 0-delay property is preserved by the first of the two rules since
by Definition 3.2, f(0,0) = 0. The definition forces the composed transition
systems to synchronize on actions that correspond via f and on delays, but
with the restriction that delaying is only possible when no synchronization
on urgent actions is. Thus synchronizations on urgent actions must happen
immediately.

3.1.2 Timed Automata

Timed labelled transition systems are described syntactically by timed au-
tomata. The timed automata model considered is the one used by the UP-
PAAL tool and described e.g. in [BLLT95, Kri98]. A timed automaton is
a standard automaton extended with finite collections of real-valued clocks
and integer-valued data variables. We consider general automata where ac-
tions are taken from the infinite set A, and data variables are over the
unbounded set of integers. However, when providing input for UPPAAL
we are restricted to finite sets of actions and integers in order to obtain
decidability. Assume C' is a finite set of clocks and V is a finite set of data
variables. We use G(C,V) to stand for the set of guards g generated as
logical combinations of constraints p on the form: © ~ n or 1 ~ n for x €
C,ieV,~ € {<,> =}, and n being a natural number. A guard g can be
divided into two parts: a conjunction g. of constraints of the form z ~ n
over clock variables z, and a conjunction g, of constraints of the form i ~ n
over data variables 7. To manipulate clock and data variables we use reset
set of the form: w := €, which is a set of assignment operations of the form
w = e for w a clock or data variable and e an expression. We use R to
denote the set of all possible reset operations. A reset operation on a clock
variable £ must be of the form z := n, n being a natural number, and a reset
operation on a data variable ¢ must be of the form i := c¢*i+¢’, where ¢ and
¢ are integer constants. For a reset set r € 2% we let 1, be the subset of r
consisting of reset operations on data variables and r. the subset consisting
of reset operations on clock variables.

46 CHAPTER 3. TIMED ABSTRACTION FRAMEWORK

Definition 3.4 (Timed Automaton) A timed automaton A is a tuple
(N,ly,C, V. E) where N is a finite set of locations, ly € N is the initial
location, C is a finite set of clocks, V is a finite set of data variables, and
ECNxG(C, V) x A, x 2 x N is a set of edges.

For a timed automaton A, we sometimes write / I I', or simply
1 2% 1" when A is clear from the context, to denote that (I, g,a,r,1') is an
edge of A.

Suppose that C' and V are sets of clock variables and data variables,
respectively. A wariable assignment is a mapping from C to R>o and from
V to integers. For a variable assignment v and a delay d € R>q, v+d denotes
the variable assignment such that (v +d)(z) = v(z) + d for any = € C, and
(v+d)(i) = v(i) for any integer variable i. For a reset set r, we use r(v) to
denote the variable assignment v' with v'(w) = val(e,v) whenever w :=e €
r and v'(w) = v(w) otherwise, where val(e,v) denotes the values of e in v.
Given a guard g € G(C,V) and a variable assignment v, ¢g(v) is a boolean
value describing whether or not g is satisfied by v.

A state of an automaton A is a pair (I, v) where [is a node of A and v is
a variable assignment. The initial state of A is (ly, vg), where [is the initial
node of A and v is the initial assignment that maps all variables to 0.

Definition 3.5 (Timed Automaton Semantics) The operational seman-
tics of a timed automaton A is given by the timed labelled transition system,

Ta = (S, s0,—>), where S is the set of states of A, sy is the initial state of
A, and — 1is the transition relation defined as follows:

a

= (lo) =5 (") iff Frg. LES U A g(v) A =1(v)

«(

(I,v) @ oy dff l=U'Av =v+d
where a € A; and €(d) € D.

For any timed automata A and B, we define A®; B iff Ty ® T, and
way say that B is deterministic iff 7g is deterministic.

3.1.3 Properties of Timed Labelled Transition Systems

When reasoning about a timed labelled transition system 7, we will specify
the requirements to 7 using a specification 7', and we will say that T
satisfies 7' provided there exists a timed ready simulation relation from T
to 7. The relation is a special case of a more general parameterized timed
ready simulation, where the parameter is a certain action relation. This
parameterized timed ready simulation will play a central role in our later
conditions for property preservation. The general simulation relation will
be introduced in the following section.

3.2. TIMED ABSTRACTION THEORY 47

3.2 Timed Abstraction Theory

In this section we present our abstraction theory for timed labelled transition
systems. We will denote a pair (77, 72) of timed labelled transition systems
with acts(Ty) = acts(T2) as a wverification problem and it is our intention
to verify whether 77 is timed ready simulated by 73, to be written 7; <
T2. Given another (abstract) verification problem (7/,7;) we will provide
conditions for the following to hold:

T =T, implies Ty < Ty

We begin in Section 3.2.1 by introducing a notion of parameterized timed
ready simulation, where the parameter is a certain action relation. This is
quite analogous to the parameterized simulations of the untimed framework.
The above notion =< of unparameterized timed ready simulation will be
a special case of the parameterized relation, where the parameter is the
identity relation. We will prove several nice properties of the parameterized
simulation relation such as e.g. preservation under composition of timed
labelled transition systems. Then in Section 3.2.2 we present the conditions
for property preservation between verification problems.

3.2.1 Timed Simulations

The parameter of a parameterized timed ready simulation will be a relation
on the actions of the involved transition systems. The intention is, as in
the untimed framework, to allow for abstraction of a large set of concrete
actions by a smaller set of abstract actions. Formally, an action relation is
defined as follows.

Definition 3.6 An action relation R is a relation over Aiyo such that for
all (a,b) € R, a,b € Ay, a,b € Ay, or a,be€ {0,7} and a = b.

We require that urgency and laziness of actions is preserved by abstraction.
Note that if R is an action relation then so is R~'.

Definition 3.7 Let T1, To be two timed labelled transition systems and let
R be an action relation. We say that R is total on Ty and Ty provided,

o for all a € acts(Th) there exists b € acts(Ta) such that (a,b) € R

o for all b € acts(Ta) there exists a € acts(Ty) such that (a,b) € R

We now define the notion of a parameterized simulation relation as fol-
lows. The definition is variant of the one in [ABL98] parameterized with an
action relation.

48 CHAPTER 3. TIMED ABSTRACTION FRAMEWORK

Definition 3.8 Let T; = (S;, S04, —i), ¢ = 1,2 be two timed labelled tran-
sition systems. Let R be an action relation total on Ty and Ta, and let Q) be
a relation from Si to So. We say that Q) is a timed ready simulation from
Ti to Ty parameterized by R provided,

1. (s0,1,%02) € Q

2. whenever s1,89 are reachable states of T1 and Ta, respectively, and

(s1,82) € Q:

(a) if 51 ==1 s} for some a € A, then for all b € acts(T3) N R|a] there
exists s such that sy == sy and (s),s)) € Q

d d
(b) if s1 gl sy for some d > 0, then sy gg sh for some s such
that (s},sh) € Q

(c) if so —b>2 s for some b € A, then for all a € acts(Ty) N R~ '[b]
there exists s such that s — s}

We write Ty <% Ty if there exists a timed ready simulation from T; to To
parameterized by R.

Conditions 2(a) and 2(b) state that concrete action and delay moves must
be matched by abstract moves with related actions and identical delays,
respectively. Condition 2(c) is required in order to obtain preservation of
the simulation under system composition.

Consider two timed labelled transition systems 77 and 73 with acts(7;) =
acts(T3). The identity relation id is trivially an action relation total on Ty
and 73. We write 77 < T3 in case 77 < T3. Thus we have identified the
notion of unparameterized timed ready simulation as a special case of the
parameterized one.

In the following we state and prove several results about the parameter-
ized timed ready simulation. Some of these results will form the basis for
the preservation condition in Section 2.3.2.

The following proposition states an alternative characterization of a
timed ready simulation, which is useful when proving results about it. For
any a € A;p, let a =0 if a = 7 and @ = a otherwise.

Proposition 3.1 If 7; = (Si, S04, —i), @ = 1,2 are two timed labelled
transition systems, R is an action relation total on T and T2, and Q is a
relation from Si to So, then Q is a timed ready simulation from Ty to Ta
parameterized by R iff,

1. (s0,1,%02) € Q

2. whenever si,sy are reachable states of T1 and Ta, respectively, and

(s1,82) € Q-

3.2. TIMED ABSTRACTION THEORY 49

(a) if 51 —=1 s for some a € A, then for all b € acts(T3) N R|a]
there exists sy such that so =2, s and (s},55) € Q

. d d
(b) if s1 Qﬁ sy for some d > 0, then sy gg sh for some sl such
that (s}, sh) € Q

(c) if so L, sy for some b € Ay, then for all a € acts(T1) N R~'[b]
there exists s such that s; —%>1 s

Proof. In the following 1’ and 2’ refers to 1 and 2 of Proposition 3.1, and
1 and 2 refers to 1 and 2 of Definition 3.8.

Assume that () is a timed ready simulation from 77 to 75 parameterized
by R. That is 1 and 2 hold. We show that 1’ and 2’ hold. Trivially 1’ holds
since it is identical to 1. Now, assume s; and sy are reachable states of Tq
and T3, respectively, and (sq, s3) € Q. Suppose s; ——; s} for some a € A,.

Then s; == s} and from 2(a) (case a # 7) and 2(b) (case a = 7) we have
that for any b € acts(72) N Rla] there exists s, such that so L, sh and

e(d e(d
(s1,85) € Q. Thus 2'(a) holds. Suppose s; Q)l . Then s; ;;1 s} and

e(d
from 2(b) there exists s, such that so ;;2 sh and (s},s5) € Q. Thus 2'(b)

holds. Finally, 2'(c) holds trivially since it is identical to 2(c).

Now, assume that @ and R are relations satisfying 1’ and 2'. We show
that 1 and 2 hold. Trivially 1 holds since it is identical to 1. Now, assume
s1 and sy are reachable states of 71 and Ta, respectively, and (s1,s92) € Q.

* *
It can trivially be shown that if s; —>, s} then sy —, s} for some s/, such
that (s, s5) € Q. Let (x) denote this fact. . .

Now, suppose $; == s} for some a € A. Then s; —; s L, st T
sy for some s, s!". From (x) and 2'(a) we have that for any b € acts(72) N
Rla], there exists s}, such that sy 2, sh and (s}, s)) € Q. Note that b # 7

~ -(d
so b = b. Thus 2(a) holds. Suppose s; gl sy. If d = 0 then s L)I sh.
% %
From (%), s3 —, sb for some s} such that (s},s}) € Q. Since — ===

. . * e(dy
this proves 2(b) in the case d = 0. If d > 0 then 51 = 51 L>1 s1o (—>)1
* e(da * * e(dn
$1,1 s 3’171 (—21 51,2) 3’1,an (—Ql $1n = 8} (n > 0) such

that > {d; | 1 <i <n} =d. From () and 2'(b) we have that there exists s/,

such that so gg sh and (s, s)) € Q. Thus 2(b) holds. Finally, 2(c) holds
trivially since it is identical to 2'(c). |

Let o denote the synchronization function such that o(a,a) = a for all
a € A. For any two timed labelled transition systems 7; and 75, we denote
the parallel composition 71 ®, Ta the synchronous composition of T; and
T>. Note, that this composition is synchronous only with respect to non-7
actions. It still allows for asynchronous execution of 7-transitions from 7Ty
and T,. This follows directly from condition 5 in Definition 3.2.

50 CHAPTER 3. TIMED ABSTRACTION FRAMEWORK

Theorem 3.1 (Idempotency of Synchronous Composition) If7T has
no urgent actions, then T 2T @, T and T ®, T 2 T.

Proof. We first show that 7 < T ®, 7. Let @@ be the relation from states
of T to states of T ®, T such that (s, (s2,s3)) € Q iff 57 = s9 = s3. We
show that () is a timed ready simulation parameterized with the identity
action relation. Let sy be the initial state of 7. Then (s, s¢) is the initial
state of T ®, T and trivially (so, (so, s0)) € Q.

Consider reachable states s and (s,s) of T and T ®, T, respectively.
Then (s, (s,s)) € Q. Suppose s —— s’ for some a € A,. Consider first
the case that @ = 7. From condition 5 in Definition 3.2 we have that
o(1,0) = o(0,7) = 7. Thus, (s,s) — (s',s) — (s',5'). Consider now
a # 7. Since o(a,a) = a, we have that (s,s) —— (s',s'). Suppose that

e(d . . e(d .
s U Since T has no urgent actions, (s, s) @ (s',s"). This concludes

the first part of the proof.

We now show that 7 ®, 7 =< 7. Let @ be the relation from states of
T ®, T to states of T such that ((sq,s2),s3) € Q iff s; = s3 or s9 = s3. The
initial condition holds by identical argument to the one above.

Consider reachable states (s1, s2) and s3 of T ®, T and T, respectively.
Assume without loss of generality that s; = s3. Then ({s1,s2),51) € Q.
Suppose (s1,52) — (s, s5) for some a € A,. Then s; — s} and sy —2 s,
for some a1, as such that o(a1,as) = a. Three cases exist. Case 1: a; =
as = a. Trivially, s; — si. Case 2: a1 = 0,a9 = a = 7. Trivial since
s\ = 5. Case 3: a; = a = 7,ap = 0. Trivially, s; — s!. Now, suppose

that (s1,s2)) (s, 85). Then s; @ sy and s9 “d sh. This concludes the

proof. [|

An important property of parameterized timed ready simulation is preser-
vation under composition of timed labelled transition systems. In the ver-
ification of realistic distributed systems, it is often useful to replace the
individual components of the system under verification with more abstract
versions before building the model of the complete system. The follow-
ing compositionality theorem supports this type of hierarchical approach to
verification. In the second part of this thesis we present an application of
this compositionality principle in an abstraction based verification of the
parameterized Fischer distributed mutual exclusion algorithm.

Definition 3.9 Let R be an action relation and f a synchronization func-
tion. We say that R is closed with respect to f provided that, if f(aq,a2) = a,
f(b1,b9) = b, and (a,b) € R then (a1,b1) € R and (ag,bs) € R.

Theorem 3.2 (Compositionality) Let R be an action relation closed with
respect to f and total on Ty @5 Tz and To @5 Ta. If Ti =¥ Ty and T3 <% T4,
and T3, Ty are -free, then Ty ®; Tz <X Ty ®; Ta

3.2. TIMED ABSTRACTION THEORY ol

Proof. Assume that ()1 and Q3 are timed ready simulations from 77 to 73
and from T3 to Ty, respectively, both parameterized with action relation R.
Define @) to be the relation from states of 71 ® y 73 to states of 7o ® ; 74 such
that ((s1,s3), (s2,54)) € Q iff (s1,52) € Q1 and (s3,54) € Q2. We will show
that @ is a timed ready simulation parameterized with R.

The initial state ({so,1,50,3), (S0,2,50,4)) € @ since sg; is the initial state
of 7; for any 4, and by assumption (sg,1,50,2) € Q1 and (s0,3, 504) € Q2.

Now assume that ((s1, s3), (s2,s4)) € Q and that (s1, s3) and (s9, s4) are
reachable states of 71 ® 73 and T2 ® Ta, respectively.

Suppose (s1,53) —— (s}, s4) for some a € A,. Then s; “% s and
S5 —2y s4 for some a1,a9 € A; o such that f(ai,a2) = a. Let b be any
action in acts(Ta ®f Ta) N Rla]. Note that such an action exists since R
is total on 77 ® T3 and T ® T4. By definition there exists by € acts(72),
by € acts(Ty) such that f(by,by) = band since R is closed wrt. f, (a1,b1) € R

and (ag,by) € R. Thus by simulation def. we have that so N s, and

b
sy == s} for some s}, s such that (s},s}) € Q1 and (s}, s)) € Q2. Thus

(s2,51) == (sh, s)) and (s}, s4), (sh, s})) € Q.

Suppose (s1, s3) ﬂ (s, s5). Then s; ﬂ s, $3 ﬂ s%, and for all

t t .
t € [0,d], a1,a2 € Ay, and s7,s5: —(s Q s 2 A s ﬁ) sh 25 A

flay,a9) # —) (x). Since (s1,92) € @1, (83,54) € Q2, and Ty and Ty are

e(d
7-free, we have that so) sh for some sh, such that (s,s}) € Q1 and

(d)

d
sS4 =% s} for some s such that (s}, s}) € Q2. Now, assume for the sake of
contradiction that there exists ¢ € [0,d[, b1,by € A,, and s}, s such that

(t (t : . e
59 O st i)’ S4), s 2), and f(by,by) # —. From time additivity

. e(t €(t .
there exists s, s4 such that s, <, sy and s3 <, sy, and due to time

determinism (s, s)) € Q1 and (s}, s{) € Q2. Suppose f(by,b2) = b and let
a be any action in acts(T; ®f T3) N R~'[b]. Note that such an action exists
since R is total on 71 ® f T3 and T ® T4. By def. there exists a1 € acts(71)
and ay € acts(T3) such that f(a1,a2) = a, and since R is closed wrt. f,
(a1,b1) € R, (a2,b2) € R, and ay,a2 € A,. Thus from simulation def.
s 5 and s§ % contradicting (x).

Suppose (S92, 84) LI (sh,sy) for some b € A,. Then sy LI sh and

54 N s} for some by, by € A, U {0} such that f(by,be) = b. Let a be any
action in acts(Ti ®f T3) N R~'[b]. By def. there exists a1 € acts(T1), as €
acts(T3) such that f(a1,as) = a, and since R is closed wrt. f, (a1,b1) € R
and (az,by) € R. Thus 51 -2 s} and s3 —=» s4 for some s}, s5 and hence

(s1,83) — (1, 55) and (s}, 55), (s, 51)) € Q. u

Theorem 3.3 (Transitivity) Suppose Ti =1 Ty and Ty =<%2 T3. Then
Tixff Ty

52 CHAPTER 3. TIMED ABSTRACTION FRAMEWORK

Proof. Note that by definition Ry Ry is total on 77 and 73. Assume that ()4
is a timed ready simulation from 7; to T2 parameterized by R; and Qs is a
timed ready simulation from 75 to T3 parameterized by Ry. Let Q = Q1Qs.
We show that () is a timed ready simulation from 77 to 73 parameterized
by RiRs. We consider each of the conditions in Definition 3.8 seperately.

By assumption (50,1,50,2) € Q] and (50,2,8073) S QQ for 50,15, 50,2 the
initial states of 77 and 73, respectively. Thus (sq 1, S0,3) € @ and condition
1 is satisfied. Now, assume that (s1,s2) € Q1 and (s92,s3) € Q2 and s1, s9
and s3 are reachable states of 77, 7o and T3, respectively.

Suppose 51 == s} for some s} and a € A. Consider any b € acts(T3) N
RiRs[a]. Then for some ¢ € acts(T3), (a,¢) € Ry and (¢,b) € Ry. Since
(51,82) € Q1, s3 = s} for some sb, such that (s},s)) € Qi, and since
(s2,83) € Q2, s3 N s% for some s§ such that (s}, s5) € Q2. Hence (s}, s}) €
@ and 2(a) holds.

(d .
Suppose s1 4 sy for some s} and e(d) € D. Since (s1,s2) € Q1,
d .
89 g sh for some s, such that (s},s}) € Q1, and since (s2,83) € Q2,

$3 <4 sy for some s4 such that (sb, s5) € Q2. Hence (s}, s5) € Q and 2(b)
holds.

Finally, suppose s3 LN st for some sy and b € A,. Consider any a €
acts(T1) N RyRy '[b]. Then for some ¢ € A,, (a,c) € Ry and (¢,b) € Ry.
Since (sg,53) € Ry, 59 — sh for some b, and since (s1,$2) € Ry, $1 BN sh
for some s}. Hence 2(c) holds. []

Theorem 3.4 (Subset Closure) If 7, =% Ty then for all action relations
R' C R such that R' is total on T; and Tz, T, <% T5

Proof. Assume () is a timed ready simulation from 77 to 75 parameterized
by R. Let R’ be any action relation from 7; to 75 such that ' C R and R’ is
total on 77 and 73. We show that () is a timed ready simulation from 7; to
T5 parameterized by R'. We consider each of the conditions in Definition 3.8.
Condition 1 holds trivially. Asumme that s; and so are reachable states of
Ti and T3, respectively, and (s1, s9) € Q.

Suppose s; == s} for some s! and a € A. Consider any b € acts(73) N
R'[a]. Then b € acts(T2) N R[a] and since (s1,2) € Q, $2 N sh for some s
such that (s, s}) € Q. Hence 2(a) holds.

Condition 2(b) holds directly by Definition 3.8 since (s1,82) € Q.

Suppose s9 BLIN sh for some s, and b € A,,. Consider any a € acts(T1) N
(R")~'[b]. Then a € acts(T;) N R~'[b] and since (s1,s2) € Q, 51 — s for
some s), so 2(c) holds. []

We now proceed to provide sufficient conditions for an abstract verifica-
tion problem to be property preserving with respect to a concrete problem.

3.3. CONSTRUCTING ABSTRACT TIMED AUTOMATA 53

3.2.2 Preservation Conditions

For any two verification problems (77,72) and (7{,7;), we will state and
prove a sufficient condition for the following to hold:

T < T, implies Ty < T

The condition is based the existence of parametarized timed simulation re-
lations from 7; to 7{ and from 73 to T3, respectively.

Theorem 3.5 Let (T1,72) and (T{,T3) be two verification problems. Also,
let R be an action relation total on Ty and T{ (R™' is an action relation
total on T3 and T3). If,

Ti <®T and T} <% T

then
T, =Ty implies T1 <X T

Proof. Assume that Ty <% 7/, T <R~ 1, and T{ < 7. By transitivity,
Theorem 3.3, T1 jRR?1 75 and since id C RR~" and since id is an action
relation total on 77 and 75, subset closure, Theorem 3.4, implies that 77 <

Ts. []

3.3 Constructing Abstract Timed Automata

In this section we consider the problem of constructing a special and use-
ful abstract timed automaton directly from the description of a concrete
automaton together with a set of abstract actions and an abstract data
variable domain. The abstraction is constructed such that it timed simu-
lates, up to the action relation, the concrete automaton, and the concrete
automaton timed simulates, up to the inverse action relation, the abstract
automaton. The construction here will be used in the abstraction proof of
Fischer’s mutual exclusion algorithm presented in Chapter 6 of the second
part of this thesis.

Let A = (N,ly,C,V, E) be a timed automaton and let h : Z — Z be a
function. For any guard g € G(C,V) we denote by g5, the guard obtained
from g by replacing all occurrences of natural numbers n in g, by h(n).
Similarly, for any reset set r € 2% we denote by r;, the set obtained from r
by replacing all occurrences of integers ¢ in reset operations of r, by h(c).
For any variable assignment v we let h(v) denote the assignment such that
h(v)(i) = h(v(7)) for any data variable ¢ and h(v)(xz) = v(z) for any clock
variable z. A guard g is said to be preserved by h iff for any assignment v,

g(v) iff gn(h(v))

54 CHAPTER 3. TIMED ABSTRACTION FRAMEWORK

A reset set r is said to be preserved by h iff for any assignment v,

An abstract data domain for A is a pair (A, h), where A C Z such that
0 € A, and where h is a function from Z to A such that h is preserving
any guard and any reset operation of A and h(0) = 0. An abstract action
domain for A is a pair (X, R), where R is an action relation total on acts(7T)
and X. An abstract domain for A is a pair consisting of a data abstraction
for A an action abstraction for A. Given an automaton A and and abstract
domain F' for A we now define an abstract automaton Ar which we can
show will timed ready simulate automaton A. The abstract automaton is
obtained simply by replacing transition labels of A (guards, actions, resets)
with their abstracted counterparts.

Definition 3.10 Let A be a timed automaton and F = ((A,h), (3, R)) an
abstract domain for A. The abstraction of A with respect to F is the timed
automaton Ap over nodes and wvariables of A and with transition relation
such that: o

RSN T R S

for some ¢'.7',a such that g) = g, =r, and (a,b) € R.

We say that A is closed under R iff 1 225, I’ and (a,b) € R implies that

for all ' such that (a',b) € R, | “2% 4 I'. If we restrict a,a’ to be urgent
actions, we say that A is urgent closed under R. For timed automata A,B
we define A < B iff T4 <E T5.

Theorem 3.6 If A is a timed automaton and F is an abstract domain for
A with action relation R, and if A is urgent closed under R. Then A <% Ap.

Proof. Let F = ((A,h), (X, R)). Let @ be the relation from states of T4
to states of Ty, such that ((I,v),(I',v")) € Q iff I' =1 and o' = h(v). We
show that () is a timed ready simulation from 74 to T4, parameterized by
R. We consider each of the conditions in Definition 3.8.

Let (lp,v9) be the initial state of T. Directly from the definition of
Ap we have that (lp,vo) is the initial state of 74, and since h(0) = 0 we
have that h(vg) = vy and hence ({lg,vo), (lp,v0)) € Q. Now, assume that
((I,v),(l,h(v))) € Q and that ([,v) and (I,h(v)) are reachable states of T4
and Ty, , respectively.

Suppose that (I,v) —= (I',v') for some a € A,. Then there exists g, r
such that [225, ', g(v), and r(v) = v'. From definition of Ay we have that

for any b such that (a,b) € R, [g’ﬂ)hAF I'. Thus, since g(v) implies gp, (h(v))
and 7, (h(v)) = h(r(v)) = h(v'), we have that (I,h(v)) —= (I',h(v')) and
(I, 0"), (', h(v')) € Q.

3.3. CONSTRUCTING ABSTRACT TIMED AUTOMATA 55

Suppose that (I, v) “d (I',v") for some e(d) € D. Then I’ = [and

v/ = v +4d. Since h(v) + d = h(v + d) = h(v') we have directly from the

operational semantics of a timed automaton that (I, h(v)) G\ (I, h(v'")) and
({F), 0, B()) € Q.

Suppose that (I, h(v)) LN (I'’v') and b € A,. Then there exists g,r

such that [g’—bm)AF ', g(h(v)), and r(h(v)) = v'. From the definition of Ap

and since A is urgent closed under R there exists ¢',r’ such that g, = ¢

! !
g ,a,r

and rj, = r and for any a € A, such that (a,b) € R, 1 "“=5 4 I'. Now,
since g(h(v)) implies ¢'(v) and r(v') = r(h(v)) = h(r'(v)) we have that
(I,v) =% (I',r'(v)) and ((I',r'(v)), (I', h(r'(v))) € Q. This ends the proof
that A < Ap. n

Theorem 3.7 If A is a timed automaton and F is an abstract domain for
A with action relation R, and if A closed under R. Then Ap jRi] A.

Proof. Let F = ((A,h), (X, R)). Let @ be the relation from states of T4,
to states of T4 such that ((I,v),(l',v")) € Q iff I' = [and v = h(v'). We
show that () is a timed ready simulation from 74 to 74, parameterized by
R. We consider each of the conditions in Definition 3.8.

Let (lp,vg) be the initial state of 74,. Directly from the definition of
Ap we have that (lp,vg) is the initial state of 74 and since h(0) = 0 we
have that h(vg) = vy and hence ({lg,vp), (lp,v9)) € Q. Now, assume that
((I, h(v)),(l,v)) € Q and that (I, h(v)) and (I,v) are reachable states of T4,
and T4, respectively.

Suppose that (I, h(v)) — (I',v') for some a € A,. Then there exists
g,r such that I 223, I, g(h(v)), and r(h(v)) = ¢'. From definition of Ap
and since A is closed under R there exists ¢', 7’ such that g; = g and r}, =7

and for any b such that (a,b) € R, 1 by A l'. Thus, since g(h(v)) implies
¢'(v) and o' = r(h(v)) = h(r'(v)), we have that (I,v) by (I',r'(v)) and

(", h(r' (v))), (', 7" (v))) € Q.

Suppose that (I, h(v)) G (I';v") for some €(d) € D. Then I’ = | and

v' = h(v)+d. Since h(v)+d = h(v+d) we have directly from the operational

semantics of a timed automaton that (I, v) 4 (I,v+dy and ((I',h(v +

d),(I',v+d)) € Q.

Suppose that (I, v) LN (I',v"y and b € A,. Then there exists g,r such
that [g’—b’r)A I') g(v), and r(v) = v'. Directly from the definition of A, for
any a € A, such that (a,b) € R~', 1 "2®%" , 1" Now, since g(v) implies
gn(h(v)) and h(v") = h(r(v)) = r,(h(v)) we have that (I, h(v)) i>< ', h(v"))
and ((I',h(v')), (I',v') € Q. This ends the proof that Ay <% A. |

56 CHAPTER 3. TIMED ABSTRACTION FRAMEWORK

The following corollary follows directly from Theorems 3.5, 3.6, and
3.7.

Corollary 3.8 Let (A, B) be a verification problem and F an abstract do-
main for A and B with action relation R.

1. If A is urgent closed and B is closed, under R, then

Ap = Bp implies A<B

2. If A and B are closed under R, then

Ar < Br iff A<XB

3.4 Test Automata for Timed Ready Simulation

We end this chapter by considering the problem of testing for the existence
of a timed ready simulation between two timed automata. For any deter-
ministic and 7-free timed automaton B we will define the notion of a test
automaton T for B. Test automaton Ts will have the property that it can
be used to determine whether B timed ready simulates any timed automa-
ton A (A =< B), by performing reachability analysis in the composition of A
and Tg. In the following we will assume that A is equipped with a mapping
“: A+ A such that @ = a for every a € A. Let A = (N,ly,C,V,E) be a

timed automaton. We let G, denote the set of guards {g | 3r,I". | ER
I' € BE}. We let U, denote the set {a € A, | 3g,r, . 1 "2 I' € E}.
For any node [€ N and urgent action a € Ug; we assume the existence
of distinguished nodes I} and 12 such that [},12 ¢ N. We let Nz denote
the set (J;cn UanEJ{l;,lg}. For any [€ N, we also assume the existence
of a distinguished nodes I,,l; ¢ N UNg, I, # l;. We let N, ; denote the
set U;en{lr,lr}. Finally, for any urgent action a € {J;cy Ur,; we assume

the existence of a distinguished clock z, ¢ C. We let Cr denote the set

UleN UagUE’,{ma}-

Definition 3.11 Let A = (N,ly,C,V, E) be a T-free deterministic timed
automaton. The test automaton for A is the timed automaton Ty = (N7, lOT,
CT. VT ETY where N = NUNgUN, ., I§ =1, CT =CuCr, VI' =V,
and where lp 25T Il e ET iff one of the following holds:

Lilp=l ANlp=1 Ngpr=true N ar=17 AN rp =10
2 0lp =1 ANllp=I' ANgr=g Nar=a Arp=r A1 31" cE
3. lp =1, A lIT:lr VAN gT:/\QEGE,l,a_‘g ANar=a N rp =10

4olp =1 AN l=1L A gT:\/gecE,l,ag AN ar=1 N rp={z,:=0}

3.4. TEST AUTOMATA FOR TIMED READY SIMULATION o7

A llleg A gr=true N ar=a N rpr =10
6. lp =1 Nlbo=1l, AN gr={x,>0} ANar=1 Arp =10

We will write a variable assignment over C UV UCg as a composition
v @ w of variable assignments v and w over C UV and Cg, respectively, such
that (v @ w)(z) = v(z) if z € CUV and (v ® w)(z) = w(z) if z € C. In
Figure 3.1 we have illustrated the general test automaton construction of

.- lse,a, .]
Definition 3.11. Note that we assume that [7“4 QA I' for any 1" iff [/% 4.

We now define the notion of testing. First, let s denote the synchroniza-
tion function defined as follows. For any a € A, s(a,a) = 7, and s(a,0) =
s(0,@) = —. In the following we will write ® to denote the composition op-
erator ®,. This operator will be the one used to combine a test automaton
(its semantics) with a given system to be tested.

Definition 3.12 Let T be a TLTS and T4 the test automaton for some
timed automaton A.

A nodel of T4 is reachable from a state (s,t) of T ®Tr, iff there exists
a state (s',t") of T @ Tr, such that (s',t') is reachable from (s,t) and
t' = (l,v) for some variable assignment v.

— We say that T fails the A-test iff a reject node [, of T4 is reachable
from the initial state of T @ Tr,. Otherwise, we say that T passes the
A-test.

If B and A are timed automata, we say that B passes the A-test iff Tp
passes the A-test.

Theorem 3.9 If T is a TLTS and A is a T-free and deterministic timed
automata, then T passes the A-test iff T = Ta.

Proof. We will assume that F denotes the set of edges of automaton A.
Assume that T passes the A-test. Define R to be the relation from
states of T to states of T4 such that (s, (l,v)) € R iff there exists w such
that (s, (l,v @ w)) is reachable from the initial state of T ® Tp,. We will
show that R is a timed ready simulation relation from 7 to 74. We show
that R satisfies the conditions of Proposition 3.1. Consider first condition 1.
Let sp and (lp,vg) be the initial states of 7 and T4, respectively. From the
definition of 77, (lo, vo@wp) is the initial state of T7,, where wy is assigning
the value 0 to all elements of Cp. Thus, from the definition of 7 ® Tp,,
(s0, (lo,vo @ wp)) is the initial state of 7 ® 77, and hence (sg, (lo, vo)) € R.
Now assume that (s, (/,v)) € R and s and ([,v) are reachable states
of T and Ty, respectively. Then there exists w such that (s, ([,v & w)) is
reachable in 7 ® Tr,. Fix w. We consider each of the conditions 2(a)-2(d).

o8

CHAPTER 3. TIMED ABSTRACTION FRAMEWORK

Figure 3.1: Timed Automaton A and Test Automaton T4

3.4. TEST AUTOMATA FOR TIMED READY SIMULATION 59

Suppose s —» s’ for some a € A. From condition 1 in the definition of
Ta, (L,v®w) — (I, v®w), and from condition 3, (I;,vBw) — (I,,vDw)
if gr(v ® w) where gp = /\qEGF .. 9. Thus, since T passes the A-test it
must be that =gy (v @ w) i.e. V.QEGE‘,I,U, g(v@®w). This implies \/geGm’a g(v).

g7a1r

Fix g. Then, there exists r,I’ such that | == I’ € F and g(v) implies
that (I,v) —= (I,v'), v' = r(v). From condition 2 in the definition of T,
(ly,v @ w) —% (I',9" ®w) and thus (s, (I',v" @ w)) is reachable in T ® T7,
and so (s',(I',v")) € R.

Suppose s — s'. Then (s, (I, v@w)) — (s', (I, v®w)) and (s', (I, vOw))
is reachable in 7 ® T7,. Hence (s',(l,v)) € R.

(d -(d
Suppose s Q) s'. We know that (I,v) ﬂ) (I,v') where v' = v + d, and
(d
(I,v ® w) @ (I,v" ® w') where w' = w + d. Now, assume for the sake of
(d
contradiction that (s, (I,v ® w)) ;Q) Then from Definition 3.3, there exists

(t
t € [0,d[, a € Ay, such that (I,v ®w) <, (I, (v@®w) +1t) —=. However, this
contradicts conditions 1 and 4 in the definition of T’y according to which, only

T-actions are possible from states with node component . Thus, (s, (I, v®w))

U8 (s, (1,0 @ w)) and so (5, (1,v')) € R.

Suppose (I,v) — (I,v") for some a € A,. Then there exists ¢, such
that I 2% I € E and g(v). Since no variables from Cp occurs in g, g(v)
implies g(v @ w). Since g € G, we have from condition 4 in the definition
of T4 that (I,v ® w) — (I,v ® w') where w' = w{z, := 0}. Hence,
(s, (lLv@w)) = (s,(I},v®w')). Now, assume for the sake of contradiction

that (s, (I},v ® w')) @ for some d > 0. Then (110 @ w') @ (1 (v +

d) & (w' + d)) and since (w' + d)(z,) > 0 we get from condition 6 in the
definition of Ty that (I}, (v+d)® (w' +d)) — (I,, (v+d)® (w' +d)). Hence
(sy{lp, (v +d) & (w' + d))) is reachable in T ® Ty, which contradicts the
fact that 7 passes the A-test. Therefore, (s, (I}, v @ w')) ;& for any d > 0.
Hence, there exists aj,as € A, such that s — and (1L v e w' 2y and
ay = Gy. From part 5 in the definition of T, (It,v @ w') % (12,0 @ w') is
the only urgent transition possible from this state and hence s ——.

Assume now that T < T4. In the following we let N, C, and V denote
the node set, clock set, and data variable set, respectively, of A. Let R be a
timed ready simulation from T to T4. We will prove the following invariants
for any reachable state (s, (n,u @ w)) in T @ Tr,:

Pl. n#1, forany l € N
P2. if n =1} for some | € N, a € U, then w(z,) =0

P3. ifn € {I},1,1;} for some | € N, a € U, then (s,(l,u)) € R and s and
(I,u) are reachable in T and T4, respectively

60 CHAPTER 3. TIMED ABSTRACTION FRAMEWORK

Invariant P1 implies that 7 passes the A-test. Invariants P2 and P3
are used to strengthen the inductive hypothesis enough to prove P1. We
prove P1, P2, and P3 by induction on the length of a transition sequence in
T ® Tr, starting in the initial state.

Let (sq, (no,ug @ wg)) be the initial state of T ® Tz,. Then ng = I
where [y is the initial node of A. Thus ng ¢ {l,,l}} for any | € N and
a € Ug,. Hence both P1 and P2 holds for the initial state. Finally, ug = v
where vg is the initial assignment over C' and V and from the definition of
R, (s, (lg,v0)) € R.

Now, assume that (s, (n,u @ w)) is reachable in 7 ® Tr, and that P1,
P2, and P3 holds in this state.

Suppose (s, (n,u ® w)) — (s',(n',u' ® w')). Then exactly one of the
following three cases hold:

a. s — s and (n',u' @ w') = (n,u @ w)
b. s’ =sand (n,u ®w) — (n',u' ®w')
c. s % 5" and (n,u ® w) —= (n',u' ®w') for some a € A

Consider case a. In this case P1 and P2 holds vacuously in (s', (n/,u' &
w")) since (n', v’ ® w') = (n,u ® w) and by hypothesis P1 and P2 holds for
(n,u®w). Consider P3. Supposen € {I},1,1,} for some ! € N and a € Ug,.
By hypothesis (s, (l,u)) € R. Thus, since A is 7-free, (s',(l,u)) € R and
since n' = n and u' = u this proves P3 in the case that n € {I} 1,1.}.
Suppose n ¢ {IL,1,1;} for any | € N, a € Ug,. Since n’ = n, P3 holds
vacuously.

Consider case b. Assume for the sake of contradiction that n' = [, for
some [€ N. From condition 6 in the definition of T4 we have that the
only way a state with node component [, can be reached via a 7T-action is
if n = I} for some a € Ug,. and w(z,) > 0. This however contradicts P2
for state (s, (n,u @ w)) and thus n’ # [, for any | € N and hence P1 holds.
Now, assume that n’ = [} for some | € N, a € Ug,- From condition 4 in the
definition of T4 it must be that w'(z,) = 0. Hence P2 holds. Finally, from
conditions 1 and 4 in the definition of T4, we have that n = [and either
n' =1, or n' =1, for some | € N, a € U,;. Furthermore, ' = u and from
hypothesis (s, (l,u)) € R. Hence P3 holds.

Consider case ¢. Assume for the sake of contradiction that n' = [, for
some | € N. Then from condition 3 in the definition of T, n = I, gr(uBw)
where g7 = /\gGGE,l .79, u' = u, and w' = w. From hypothesis (s, (/,u)) €
R. Thus, since A is 7-free and deterministic there is a unique state (I, v)
such that (I,u) — (I’,v). Thus there exists g, such that [2% I’ € E and
g(u). Now, g(u) implies g(u & w) since no variables from Cg occurs in g.
However, g(u @ w) contradicts gr(u @ w) since g € G, Hence n' # [,
and P1 holds. From condition 4 in the definition of T’y we can only reach

3.4. TEST AUTOMATA FOR TIMED READY SIMULATION 61

a state with node component [} by a 7-transition. Thus n’ # I} for any
l € N, a € Ug; and hence P2 holds vacuously. Now, suppose that n' €
{13,1,1.} for some | € N, a € Ug,. From condition 2 in the definition of Ty

we then have that n’ = [and that there exists I/, g, r such that I’ 23 | € E,
n' =1, g(u), r(u) =4, and w' = w. Now, since (s, (l',u)) € R and since
A is deterministic and 7-free, (I',u) —% (I,u') is the only a-transition from
this state and hence (s, (I,u')) € R. Thus P3 holds.

Now, suppose (s, (n,u & w)) d (s', (n,u’ ®w')) for some d > 0. Then

P1 holds vacuously in (s', (n,u' @ w')) since by hypothesis P1, n # [, for any

e(d e(d
| € N. Consider P2. We know that s % & and (n,u®w) d (n,u' @ uw').

Now, assume for the sake of contradiction that n = I} for some I € N,

a € Ug,. Then from condition 5 in the definition of Ty, (n, u®w) -2, From

yT51Tq:=0
condition 4 in the same definition, [" T{—I> I 1!

where gr = \/QGGEM g
is the only edge leading to node I}. Since (s, (n,u @ w)) is reachable and
since by hypothesis w(z,) = 0, there exists w” such that (I,u ® w") =
(n,u @ w). Thus there exists g € Gp,, such that g(u). Thus (I,u)

and since (s, (l,u)) € R we have that s ——». This however contradicts
-(d
our assumption that (s, (n,u & w)) ﬂ) Hence n # I} for any [€ N,
a € Ug, and P2 holds. Finally, suppose n € {Il,1,1;} for some [€ N,
a € Ug,. By hypothesis (s, (l,u)) € R. Now, since A is 7-free and due to
d
time determinism (I, u) S\ (l,u+d) and (¢',(l,u + d)) € R. Now, since
u+d = o/, this proves P3. []

62

CHAPTER 3. TIMED ABSTRACTION FRAMEWORK

Part 11

Applied Abstraction
Strategies

63

Chapter 4

Burns’ Mutual Exclusion
Algorithm

This chapter presents our first application of abstraction techniques to prove
correctness of distributed systems. We consider as case study, the Burns dis-
tributed mutual exclusion algorithm [Bur78]. We prove that the parameter-
ized algorithm guarantees mutual exclusion between any pair of processes,
where the parameter is the number of processes running the algorithm. Our
proof exploits abstraction, by using a certain skolemization strategy to con-
struct a simple 2-process abstract model preserving the required properties
from the concrete n-process model. The abstract model preserves not only
the behavior of any pair of concrete processes, but also the possible effects
on such a pair by processes in its environment. Our proof is within the
I/O automaton framework and it uses the theory of Chapter 2 to obtain
conditions for property preservation. In particular, our notion of param-
eterized trace simulations will provide preservation conditions that nicely
supports the skolemization abstraction strategy. The conditions for prop-
erty preservation are easily discharged using support from the LP theorem
prover, and the abstract algorithm is automatically verified using the SPIN
model checker. The results of this chapter have previously been published
in [JL9§].

4.1 Background an Contributions

Mutual exclusion algorithms are intended to guarantee a set of concurrent
processes mutually exclusive access to a single unshareable resource. The
exclusion condition to be satisfied by such algorithms states that for any
reachable system state there cannot be two processes both in their criti-
cal regions. We can interpret the exclusion condition as a simple logical
conjunction over the collection of process index pairs.

The skolemization strategy that we apply in the proof for the Burns al-

65

66 CHAPTER 4. BURNS’ MUTUAL EXCLUSION ALGORITHM

gorithm utilizes exactly this conjunctive form of properties. Proving mutual
exclusion between all pairs of processes can be done by considering an arbi-
trary pair of Skolem processes and our abstract model essentially consists of
such an arbitrary pair of processes, with additional information representing
the effects on such a pair by other processes. We show that this abstrac-
tion does indeed preserve the mutual exclusion property between any pair
of concrete processes. The preservation proof consists of showing that the
abstract model correctly simulates the behaviors of any two processes in
the concrete model. Our notion of parameterized trace simulation nicely
supports this kind of proof. We formalize our preservation proof in the LP
theorem prover, and the proof is carried out with almost no user assistance.
Finally, we verify the abstract model using the SPIN model checker.

In [LSW95] the authors apply a skolemization strategy related to ours to
give a proof of a timing based mutual exclusion protocol. In their approach,
the protocol model as well as the exclusion specification is described as a
conjunction of aspects or projective views, one for each pair of process indices.

4.1.1 Chapter Organization

This chapter is organized as follows. In section 4.2 we introduce the Burns
algorithm as well as the mutual exclusion property to be proved. Section 4.3
presents our skolemization abstraction strategy as well as the abstract algo-
rithm and abstract property resulting from its use. In section 4.4 we present
the LP supported proof of property preservation and finally in section 4.5
we describe the automatic verification in SPIN of our abstract algorithm.

4.2 Burns’ Algorithm

In this section we present Burns n-process mutual exclusion algorithm. The
algorithm runs on a shared memory model consisting of n processes together
with n shared variables flag,, ... , flag,, each flag; writable by process i and
readable by all other processes. Each process i is acting on behalf of a user
process which can be thought of as some application program. The processes
competes for mutually exclusive access to a shared resource by reading and
writing the shared variables in a way determined by the algorithm.

We model the algorithm formally as an I/O automaton Burns, which
is the composition of a shared memory automaton M and a set of user
automata Uy,... ,U,. Automaton M models the n processes together with
the set of shared variables flag,, ... , flag,, and it is modelled as one big I/O
automaton, where the process and variable structure is captured by means of
some locality restrictions on transitions. Each state in M consists of a state
for each process i, plus a value for each shared variable flag;. We specify
the transitions of M by giving preconditions and effects for all the actions.
For any 7 € {1,... ,n} automaton M has actions as shown in Figure 4.1.

4.3. THE ABSTRACTION 67

The inputs to M are (for all 1 < i < n) actions ¢ry;, which models a request
by user 4 to process i for access to the shared resource, and actions ezit;,
which models an announcement by user 4 to process ¢ that it is done with
the resource. The outputs of M are crit;, which models the granting from
process i of the resource to user 4, and rem;, which models process i telling
user ¢ that it can continue with the rest of its work.

Each process i executes three loops. The first two loops involve checking
the flags of all processes with smaller indices, i.e. all flag;, 1 < j < 4. The
first loop is actually not needed for the mutual exclusion condition, but
is important to guarantee progress. The two loops are modelled in M by
internal actions test-sml-fst(j); and test-smi-snd(j),, where j is a parameter
denoting the index of the flag to be read by process ¢. In between the first
two loops process i sets its own flag; to 1, modelled in M by internal action
set-flg-1;. If both loops are successfully passed, meaning all the considered
flags have value 0, then i can proceed to the third loop, which involves
checking the flags of all processes with larger indices, i.e. flag;, i < j < n.
This is modelled by internal action test-lrg(j);. If process i passes all three
loops successfully, it proceeds to its critical region. Process i keeps the value
of its flag; to 1 from when it starts testing flags with larger indices and until
it leaves its critical region. The state of each process i in M is modelled by
two state variables local to M: a program counter pc; initially having the
value rem, and a set S; of process id’s initially empty, used to keep track of
the indices of all shared flags that have successfully been checked in one of
the three loops.

Each user automaton U; has as single state variable a program counter
pc;, local to U; and initially having the value rem, indicating that U; starts
in its remainder region ready to make a request for access to the shared
resource. We specify the transitions of U; by giving preconditions and effects
for all the different actions of U; as shown in Figure 4.2.

4.2.1 The Mutual Exclusion Property

We state the mutual exclusion property for Burns as a conjunction of trace
properties Py; 1, one for each subset {i,7}ix; in the set of process indices
{1,...,n}. The set sig(P;;3) has as its only actions the set of output
actions from Burns with indices 4+ and j, and tmces(P{i’j}) is the set of
sequences such that no two crit;, crit; events occur (in that order) without
an intervening exit; event, and similarly for ¢ and j switched.

4.3 The Abstraction

To prove the mutual exclusion property we will construct a single finite-state
abstract model which preserves the external behavior of any two concrete

68 CHAPTER 4.

BURNS’ MUTUAL EXCLUSION ALGORITHM

input: try;
Eff: pc, := set-flig-0

internal: set-flg-0;
Pre: pc; = set-flg-0

Eff: flag, :=0
if i =1 then
pe; = set-flg-1
else

pe; = test-sml-fst

internal: test-smi-fst(j),
Pre: pec; = test-sml-fst

J& S
1<j<i-1
Eff: if flag; = 1 then
Si =
pe; = set-flg-0
else
S; = S; U{j}
if | Si|=1¢—1 then
S, =10
pe; = set-flg-1

internal: set-flg-1;
Pre: pc; = set-flg-1

Eff: flag, :=1
if i =1 then
pe; = test-Irg
else

pc; = test-sml-snd

internal: test-sml-snd(j),
Pre: pc; = test-sml-snd

J€Si
1<j<i—1
Eff: if flag; =1 then
S, =10
pe; = set-flg-0
else
Si =S U{j}
if | Si|=1¢—1 then
Sii=10

if i = n then
pec; = leave-try
else

pe; = test-lrg

internal: test-irg(j);
Pre: pc;, = test-lrg

J€Si
i+1<j<n
Eff: if flag; =1 then

S, =10

else
Si = S; U{j}
if | S;|=n — i then

pe; = leave-try

output: crit;
Pre: pc; = leave-try
Eff: pe; := crit

input: ezit;
Eff: pc, := reset

internal: reset;
Pre: pc;, = reset

Eff: flag, :=0
S, =10
pe; = leave-exit

output: rem;
Pre: pc; = leave-exit
Eff: pc;, := rem

Figure 4.1: Precondition-Effect code for automaton M

4.3. THE ABSTRACTION 69

output: fry, output: ezit;
Pre: pc; = rem Pre: pc; = crit
Eff: pc; :=try Eff: pc; = exit
input: crit; input: rem;
Eff: pc; := crit Eff: pc; :== rem

Figure 4.2: Precondition-Effect code for automaton U;

processes running in the environment of all other processes and users. For-
mally, we construct an abstract automaton Burns,, which is the composition
of a shared memory automaton, M,, with two user automata. Automaton
M, models two abstract processes 0 and 1 together with two shared vari-
ables flag, and flag,. Processes 0 and 1 are abstract representations of any
pair of concrete processes ¢ and j within the environment of all other con-
crete processes. Assuming that ¢ < j, the abstract process 0 represents the
smaller concrete process 1 and abstract process 1 represents the larger con-
crete process j, both within the environment of all other processes. We also
construct an abstract trace property P, over the external actions of Burns,,.
This property is basically obtained from the concrete property Py; j; by a
change of action indices, 0 for ¢ and 1 for j. We will define relations, Ry; ;y
from the external actions of Burns to the external actions of Burns, and
Sy;,jy from the states of Burns to the states of Burns,, and we will prove
that for any subset {i,j}:

Burns StR{i’j} Burns, via Sy; 3, and (4.1)

R{iij}(trace,e(Pa)) C traces(Py; ;). (4.2)
Then from Theorem 2.7 (Trace Safety Preservation) we can conclude
that if Burns, satisfies P, then Burns satisfies Py; ;1 for any {i,5}.

4.3.1 Abstract Actions and State Space

The external actions of automaton M, are the actions try,, critg, exify,
remy, for any k € {0,1}. This set of actions also forms the interface of
the two user automata to be composed with automaton M,. These two
automata are obtained from the concrete user automaton U; by changing all
occurrences of index 4 in actions and states to values 0 and 1, respectively.
The abstract user automata are denoted Uy and U;. In the following we let
i, 7 be any pair of indices in {1,... ,n} such that i < j. We define a relation
Ry; jy from the external actions of Burns to the external actions of Burns,
relating actions in the obvious way.

70 CHAPTER 4. BURNS’ MUTUAL EXCLUSION ALGORITHM

Definition 4.1 Ry, ;y is a relation from ext (Burns) to ext(ABurns) such
that:

R{Z,]} = {(tryza tT'yo), (t’f’y7, try;)a (Critia C’I”’L't[]), (C’f’itj, crity)7
(exit;, exity), (exit;, exity), (rem;, remyg), (rem;, remy) }

Thus, abstract actions with index 0 represent the external actions of the
(smaller) concrete process i and actions with index 1 represent the external
actions of the (larger) concrete process j.

A state of automaton M, consists of a state for each of the abstract
processes 0 and 1 together with values for each of the shared variables flag,
and flag,. The states of the abstract processes 0 and 1 are modelled by
variables pc, and Sy for k € {0,1}. Variable pc, is a program counter
and Sy is a set of elements from {0,1}. The intended interpretation of the
introduced state variables is represented in the following definition of the
state abstraction relation Sg; ;.

Definition 4.2 Sy; j, is a relation from states (Burns) to states(Burns,)
such that Sy jy(s,u) iff :

o w.upcy = s.upc; and u.upcy = S.upc,
® u.ppcy = s.ppc; and u.upc; = 8.ppc;
e u.flagy = s.flag; and u.flag, = s.flag,

o u.Sy = {1} if j € 5.8; and u.S; = {0} if i € 5.5

We use notation upc; to denote the value of program counter pc; in user
automaton U;, and ppc; to denote the value of the program counter pc; in
automata M and M,,.

4.3.2 The Abstract Property

The abstract mutual exclusion property for Burns, is the trace property P,
with sig (P,) having as its actions the external actions of Burns, and having
traces(Py) as the set of sequences such that no two crify and crit; events
occur (in that order) without an intervening ezity event, and similarly for 0
and 1 switched. Thus, directly by definition we have the following theorem,
proving condition (4.2).

Theorem 4.1 For all 1,5, i # 7, R&lj}(trace.e(Pa)) C traces(Py; j1)

4.3. THE ABSTRACTION

71

input: try,
Eff: pc := set-flg-0

internal: set-flg-0,
Pre: pc = set-flg-0

Eff: flagy :=0
pc = test-sml-fst

internal: set-flg-0-sml,
Pre: pc = set-flg-0

Eff: flag, :=0
pc = set-flg-1

internal: test-smli-fail,
Pre: pc € {test-sml-fst, test-sml-snd}

Eff: pc := set-flg-0

internal: test-smli-fst-succ,
Pre: pc = test-sml-fst

Eff: pc := set-fig-1

internal: set-flg-1,
Pre: pc = set-fig-1

Eff: flag, :=1
pc := test-sml-snd

internal: set-flg-1-sml,
Pre: pc = set-flg-1

Eff: flag, :=1
pc = test-lrg

internal: test-smi-snd-succo
Pre: pc = test-sml-snd

Eff: pc := test-lrg

internal: test-other-flg,
Pre: pc = test-lrg
S=0
Eff: if flag, = 0 then
S:=Su{1}

internal: test-lrg-fail,
Pre: pc = test-lrg

Eff: S:=0

internal: test-lrg-succ,
Pre: pc = test-lrg
S ={1}
Eff: pc := leave-try

output: crity
Pre: pc = leave-try

Eff: pc:= crit

input: ezity
Eff: pc := reset

internal: resetg
Pre: pc = reset
Eff: flagy :=0
S:=0

pc := leave-exit

output: remg
Pre: pc = leave-exit

Eff: pc:=rem

Figure 4.3: Transitions of abstract process 0 in M,

72 CHAPTER 4. BURNS’ MUTUAL EXCLUSION ALGORITHM

4.3.3 The Abstract Automaton

We now present the abstract automaton M, by considering the transitions
for each of the abstract processes 0 and 1 modelled by M,. The transitions
of process 0 are shown in Figure 4.3.

One of the consequences of having abstract process 0 represent the be-
havior of any smaller process is that the abstract process has two actions
for setting its own flag to 0 (1): set-flg-0-smly (set-flg-1-smly) and set-flg-0,
(set-flg-1,). The first representing that the concrete process 1 (the one with
smallest index) sets its flag to 0 (1), where after it skips the test of flags with
smaller indices, as there are none, and sets it program counter to set-flg-1
(test-lrg). The second representing that any other smaller process sets it
flag to 0 (1) and thereafter tests flags with smaller indices, which do exist
in this case. The abstract process represents that a smaller process fails or
succeeds a test of smaller flags by allowing abstract fail or succeed actions
whenever its program counter is test-sml-fst or test-sml-snd. No further
preconditions apply to these actions since all information about the actual
values of smaller flags have been abstracted away.

In order for abstract process 0 to succeed its test of flags with larger
indices, it must test the flag of abstract process 1 since this process rep-
resent some larger concrete process. This test is modelled by the action
test-other-flg,. Having read this flag successfully (i.e. as 0) abstract process
0 can now enter its critical region. Also, as long as the process has program
counter fest-Irg it can at any time perform an abstract action test-lrg-fail.

Abstract process 1 is modelled analogously and its transitions are shown
in Figure 4.4. Process 1 differs from process 0 only in the implementation of
the test-actions. In order for process 1 to perform actions test-smi-fst-succ,
and test-sml-snd-succy it must have seen flag, = 0 since process 0 represents
a concrete process having a smaller index than that of the process repre-
sented by 1. In contrast, process 0 can perform actions test-smi-fst-succ
and test-sml-snd-succy without knowing anything about flag, since process
1 represents a concrete process with an index larger than that of the process
represented by 0. Analogously, process 1 can perform action test-lrg-succy
without knowing anything about flag,, whereas process () must have seen
flag; = 0 to perform test-lrg-succy.

That our abstract automaton preserves the behaviour of any two concrete
processes is stated in the following theorem, which proves condition (4.1).

Theorem 4.2 For all 4,5, i # j, Burns S}?{i " Burns, via Sy; j

The proof of Theorem 4.2 is the topic of the following section.

4.3. THE ABSTRACTION

73

input: try,
Eff: pc := set-flg-0

internal: set-flg-0,
Pre: pc = set-flg-0

Eff: flag, :=0
pc = test-sml-fst

internal: test-other-flg,
Pre: pc € {test-smi-fst, test-smil-snd}
S=10
Eff: if flagy = 0 then
S:=Su{o}

internal: test-smi-fail,
Pre: pc € {test-smi-fst, test-smil-snd}
Eff: S:=0
pc = set-flg-0

internal: test-sml-fst-succ,
Pre: pc = test-sml-fst

5 ={0}
Eff: S:=10
pe = set-flg-1

internal: set-flg-1,
Pre: pc = set-flg-1

Eff: flag, :=1
pc := test-sml-snd

internal: test-sml-snd-succy
Pre: pc = test-sml-snd

5 ={0}
Eff: pc := test-lrg

internal: test-sml-snd-succ-lrg,
Pre: pc = test-sml-snd

5 = {0}
Eff: pc := leave-try

internal: test-lrg-fail,
Pre: pc = test-lrg

Eff: pc := test-lrg

internal: test-lrg-succ,
Pre: pc = test-lrg
Eff: pc := leave-try

output: crit;
Pre: pc = leave-try

Eff: pc:= crit

input: exit
Eff: pc := reset

internal: reset;
Pre: pc = reset
Eff: flag, :=0
S:=10

pc := leave-exit

output: rem;
Pre: pc = leave-exit

Eff: pc:= rem

Figure 4.4: Transitions of abstract process 1 in M,

74 CHAPTER 4. BURNS’ MUTUAL EXCLUSION ALGORITHM

4.4 The Simulation Proof

To prove Theorem 4.2 for all 7, j we prove it for any i, 7 with 7 and j treated
as Skolem constants. For the remaining part of this section we assume that
1 and j are Skolem constants with ¢ < j. To prove the theorem, we need to
check the two conditions in the Trace Simulation definition, Definition 2.11.
We use our formalization from Chapter 2 of the trace abstraction theory
in Larch to discharge the proof obligations. We begin by describing the
formalization of automata Burns and Burns, in the Larch Shared Language.

4.4.1 The Automata in LSL

The formalization of automata Burns and Burns, in LSL is a rather straight-
forward translation from the precondition-effect descriptions given in the
preceding sections. In the following we present in detail the translation of
the concrete automaton Burns.

Recall that automaton Burns is defined as the composition of the shared
memory automaton M and the set of user automata Uy, ... ,U,. We formal-
ize automaton Burns as a single trait called AutomatonBurns representing
the above composition. A part of the trait is shown in Figure 4.5. The trait
consists of a declaration part in which sorts and operator signatures are de-
clared, and a body part in which the introduced operators are constrained
by equations.

The trait begins with an includes clause that includes in the theory
of trait AutomatonBurns the union of theories from the included traits.
AutomatonBurns specializes the state and action sorts from the general
Automaton trait introduced in Chapter 2. A state of AutomatonBurns is
a tuple of integer indexed arrays upc, ppc, flag and S. For any integer
i, the elements upc[i], ppcl[il, flag[il, and S[i] together describe the
combined state for user automaton U; and process i in automaton M.

Actions of AutomatonBurns are of two types depending on the number of
parameters. The test-actions have two parameters, the index of the process
performing the test and the index of the flag to be tested. All other actions
have a single parameter, being the index of the performing process.

Besides introducing state and action sorts, trait AutomatonBurns also
introduces a constant N denoting the total number of processes and a few
operators implementing predicates on integers.

The body of trait AutomatonBurns is contained in the asserts clause
which constrains the operators of the trait. The clause defines the initial
state and the actions of the automaton by constraining predicates start,
enabled and effect. Figure 4.5 only shows the equations defining the try;
action. The enabled predicate states that action ¢ry, is enabled in state
s only if the user automaton U; has its program counter equal rem. The
effect predicate states that as a result of performing action #ry; in state s,

4.4. THE SIMULATION PROOF 75

AutomatonBurns (B): trait

includes Automaton(B), Integer1l(Int), Arrayl(PPC, Int, PPCs),
Array1 (UPC, Int, UPCs), Arrayl(Int, Int, FLGs),
Set1(Int, UIDSET), Arrayl(UIDSET, Int, UIDSETs)

PPC enumeration of rem, setflg0, testsmlfst,
testsmlsnd, setflgl, testlrg, leavetry, crit, reset, leaveexit
UPC enumeration of rem, try, crit, exit
States[B] tuple of upc: UPCs, ppc: PPCs, flag: FLGs, S: UIDSETs
ActionTypes1[B] enumeration of try, setflg0O, setflgl, crit, exit,
reset, rem
ActionTypes2[B] enumeration of testsmlfst, testsmlsnd, testlrg

introduces
__[.1 : ActionTypes1[B], Int -> Actions[B]
I : ActionTypes2[B], Int, Int -> Actions[B]
unchangedB : States[B], States[B], Int -> Bool
N : => Int
isIndxB : Int -> Bool
isSmlIndx : Int, Int -> Bool
isLrgIndx : Int, Int -> Bool
asserts
sort Actions[B] generated freely by __[__1, __[__,__]

with s: States[B], i: Int
start(s) <=> \A i (isIndxB(i) =>
((s.upc[i] = rem) /\ (s.ppcl[il = rem) /\
(s.flag[i] = 0) /\ (s.S[i]l = {})));

with s,s’: States[B], i,j: Int
unchangedB(s, s’, i) <=> \A j ((isIndxB(j) /\ j ~= i) =>
((s’.upcl[jl = s.upcl[jl) /\
(s’ .ppcljl = s.ppcljl) /\
(s’.flagl[jl = s.flagl[jl) /\
(s?.5[3]1 = s.S[31)));

enabled(s, try[i]) <=> isIndxB(i) /\
s.upc[i] = rem;
effect(s, tryl[il, s’) <=> s’.upcl[i] = try /\ s’.ppcli] = setflg0 /\
s’.flagl[i] = s.flagl[il /\ s’.S[i] = s.S[i]
/\ unchangedB(s, s’, i);

Figure 4.5: Trait AutomatonBurns.lsl

76 CHAPTER 4. BURNS’ MUTUAL EXCLUSION ALGORITHM

BurnsSimulation: trait

includes AutomatonBurns(B), AutomatonABurns(C), ActRel(R,B,C)

introduces
I: -> Int
J : -> Int

S : States[B], States[C] -> Bool

asserts
with s: States[B], u: States[C]
S(s, u) <=> ((u.upcl[0] = s.upc[I] /\ u.upc[1] s.upc[J]) /\
(u.ppcl0] = s.ppclI] /\ u.ppcll]l = s.ppclJ]) /\
(u.flagl0] = s.flagl[I] /\ u.flagll] = s.flagl[J]) /\
(J \in s.S[I1 => u.S[0] = {1}) /\
(I \in s.S[J] => u.S[1] = {0}))

with a: Actions[B], a’: Actions[C]
R(a,a’) <=>
((a = try[I] /\ a’ = try[0]) \/ (a = tryl[J] /\ a’ = tryl[1]) \/
(a = crit[I] /\ a’ = crit[0]) \/ (a = crit[J] /\ a’ = crit[1]) \/
(a = exit[I] /\ a’ = exit[0]) \/ (a = exit[J] /\ a’ = exit[1]) \/
(a = rem[I] /\ a’ = rem[0]) \/ (a = rem[J] /\ a’ = rem[1]));

with i: Int isLrgIndx(J,I);

implies
Simulation(B,C,R,S)

Figure 4.6: Trait BurnsSimulation.lsl

the user U; changes its program counter to ¢ry and process ¢ in M changes its
program counter to set-flg-0. All other state components are unchanged by
the action. The parts of the asserts clause not shown in Figure 4.5 consists
of a direct translation of remaining transitions in automaton Burns.

In a manner completely analogous to the above, we formalize automa-
ton Burns, into an LSL trait AutomatonABurns. Having defined the two
automata Burns and Burns, in LSL we now proceed to define the LSL ver-
sion of relations Ry; j; and Sy; ;3 from Definitions 4.1 and 4.2, respectively.

4.4.2 The Simulation Relation in LSL

The LSL formalization of relations Ry; ;3 and Sy, ; takes place in the trait
BurnsSimulation shown in Figure 4.6. The trait fixes the Skolem constants
i and j as the integers I and J, respectively. The LSL definitions of the
relations follows directly from Definitions 4.1 and 4.2.

Trait BurnsSimulation ends with an implies clause, where we state a

4.4. THE SIMULATION PROOF 7

claim that the theory of trait BurnsSimulation logically implies the theory
of trait Simulation. Trait Simulation states the requirements for a trace
simulation relation. The trait is defined is defined in Figure 2.3 of Chapter 2
and it implements the requirements from the Trace Simulation definition,
Definition 2.11. In the next section we describe how we prove the theory
containment claim using the Larch Prover.

4.4.3 The LP Simulation Proof

LSL is supported by a tool, the LSL Checker, which can be used to syntax-
check and type-check LSL traits and to extract proof required to check the
semantic claims from traits. When running the LSL Checker with input
trait BurnsSimulation, an input for LP is generated that initiates a proof
of the claim from the trait. The first proof obligation to be discharged is
the start condition from the Trace Simulation definition, Definition 2.11.

The start condition is trivial, because the initial states of Burns and
Burns, have the value of pe set to rem for all processes and users, and they
have all flags set to 0 and all sets of indices empty.

The second proof obligation is the step condition, condition 2, from the
Trace Simulation definition. For the step condition suppose that s and u
are states of Burns and Burns,, respectively, such that Sy; ;1 (s, u). We then
consider cases based on the type of action 7, performed by s on a transition
s —% s'. For each action 7, we consider z =i, z = j and z ¢ {i,j}. The
proof is relatively simple, since the execution fragment corresponding to a
certain concrete action 7, for the most cases can be picked to be the abstract
version of the concrete action. So the proof is a rather straightforward
matching up of concrete actions with their abstract counterparts. The main
user assistance that LP needs for the proof is the input of the corresponding
abstract execution fragment for each concrete action. The rest of the user
guidance consists of directing LP to break some proof parts into cases, and
directing LP to use whatever information it has already got to try and do
some rewriting to complete proof subgoals. Figures 4.7 and 4.8 illustrates
the proof in case m, = test-smi-fst(y),, * = j, y = 14, s.flag; = 0, and
s5.18;] < j — 2. Figure 4.7 shows the manual proof and Figure 4.8 shows the
proof as it is computer-assisted by LP.

The two proofs in Figures 4.7 and 4.8 have the exact same overall struc-
ture. The LP proof contains no further user assistance than what is shown.
Line 0 shows the overall proof subgoal that leads to the considered case.
The subgoal is generated by running the LSL Checker with input trail
BurnsSimulation. It states as follows. If s and u are states of Burns and
Burns,, respectively, such that s and u are related by Sy; j, and if s 5 §'is
a step of Burns with a € dom (R). Then, there exists an execution fragment
« of Burns, with first (a) = u, last (a) = u', and trace (a)|ran (R j3) = A
The proof proceeds by considering the various cases of action a. In Figure

78

CHAPTER 4. BURNS’ MUTUAL EXCLUSION ALGORITHM

Case m, = test-sml-fst(y) , x = j, y =1, s.flag; =0, [s.5;| =7 — 2

test-sml-fst-succ,
If u.S1 = {0} the corresponding fragment is u ————————— u'. The fragment

is enabled since by definition of state relation Sy, jy, u.ppe, = s.ppc; = test-smi-fst
and u.S1 = {0}. From Burns the only changes resulting from performing action
are s'.5; = 0 and s'.ppc; = set-flg-1. From Burns, the only changes are u'.S; = 0
and u'.ppe, = set-flg-1, so Sg; j3(s',u').

If u.S1 = 0 we let the corresponding execution fragment be the following fragment:

test-other-flg, test-sml-fst-succ,
U u'’ u'. Action test-other-flg, is enabled in u

since by definition of Sy; jy, w.ppc, = s.ppc; = test-smi-fst and u.S1 = (. From
Burnsa, v’ .ppc; = test-sml-fst and u" .Sy = {0} since u.flag, = s.flag; = 0. There-
fore, test-sml-fst-succ, is enabled in 4''. From Burns the changes resulting from
performing action m, are s'.S; = 0 and s".ppc; = set-flg-1, and from Burns, the
changes are, v'.S1 = 0 and u'.ppc, = set-flg-1, so Sy; j3 (s, u').

Figure 4.7: Manual proof

(0)

(1
(2)
(3)
(4)
(5)

(6)
(7

prove
((8(s, u) /\ inv(s) /\ isStep(s, a, s’) /\ "inR(a) =>
\E alpha (execFrag(alpha) /\ first(alpha) = u /\
S(s’, last(alpha)) /\ proR(trace(alpha)) = empty))

%%h Case a = a3[ilc,i2c], a3 = testsmlfst, i2c = J, ilc = I,
sc.flaglilc] = 0, size(sc.S[J] \U {I}) = pred(J)

resume by case u.S[1] = {0}

resume by specializing alpha to null(uc){testsmlfstsucc[1], u’c}
instantiate j by I in *ImpliesHyp*
instantiate j by 0 in SimulationTheorem* ~ (*Hypx*)

resume by specializing alpha to
(null (uc){testotherflg[1], u’’cl}){testsmlfstsucc[1], u’c}
instantiate j by I in *ImpliesHyp*
instantiate j by O in SimulationTheorem* ~ (*Hyp%*)

Figure 4.8: LP proof

4.5. THE SPIN VERIFICATION 79

4.8 we show the proof case indicated in the remark. In line 1, we tell LP
to break the proof into cases based on the value of u.S7. We start by the
case u.S7 = {0} and LP automatically provides proof obligations for the
other case, u.S1 # {0}, i.e. u.S; = (), as well. The two cases are proved in
lines 2 4 and 5 7, respectively. In lines 2 and 5 we direct LP to specialize
the execution fragment of automaton Burns, that we want to correspond
to the concrete step of automaton Burns. In the LP proof, uc, u’c, and
u’’c are constants corresponding to u, u’, and u” in the manual proof. The
instantiate command replace variables by appropriate constants in defi-
nitions and case hypotheses, and LP uses the created facts to rewrite the
stated conjectures to true. Thus, LP automatically checks that the proposed
abstract execution fragment is indeed enabled in state v and also that the
states s’ and v’ are related by S¢ij1- The complete proof of Theorem 4.2 is
shown in Appendix A.

4.5 The SPIN Verification

In this section we present the automatic verification of the abstract automa-
ton Burns, in the SPIN model checker. We translate automaton Burns,
into a PROMELA model and we translate the trace property P, into an
LTL formula suitable for SPIN.

4.5.1 The PROMELA Implementation

Automaton Burns, is translated into a single PROMELA process called
BurnsAlpha(). The process has variables representing flags, program coun-
ters and index sets of automaton Burns,. Figure 4.9 shows the PROMELA
implementation of the state variables. The code should be self-explanatory.

Process BurnsAlpha is shown in Figure 4.10. The figure only shows the
entries in the do: :od construction that implements transitions of abstract
process (. Additional entries exist that implements the transitions of process
1. The translation follows the scheme introduced in Chapter 2.

4.5.2 The SPIN Verification

Recall the definition of the abstract trace property P,. The set traces(P,)
consists of all the sequences of actions in ezt (Burns,) such that no two critg
and crit; actions occur (in that order) without an intervening exity action,
and similarly for indices 0 and 1 switched. Assuming that Burns, has a
state variable v, used to track the most recent action performed by the
automaton, we can rephrase the above trace property as the following LTL
invariant property:

D((Uact = CTZ'to) — (((Uact # Critl)u(vact = e:l)’ito)) \% D(rUact # Critl)))/\
O((vaet = crity) = ((vaer # critg) U (vaer = exity)) V O(vqer # crity)))

80

CHAPTER 4. BURNS’ MUTUAL EXCLUSION ALGORITHM

mtype

mtype
mtype
mtype
mtype
mtype
mtype

= {rem, try, setflag0, testsmallerfirst, testsmallersecond,

setflagl, testlarger, leavetry, crit, reset, exit,
leaveexit, empt, one, zero}

pcPO = rem;
pcPl = rem;
pcUO0 = rem;

pcUl = rem;

S0
S1

= empt;
= empt;

bit flag0 = 0;
bit flagl = 0;

Figure 4.9: States of process BurnsAlpha

proctype BurnsAlpha()

{
do

atomic{ pcUO==rem -> pcUO=try; pcPO=setflag0 }

atomic{ pcPO==setflag0 -> flag0=0; pcPO=setflagl }

atomic{ pcPO==setflag0 -> flag0=0; pcPO=testsmallerfirst }
atomic{ pcPO==testsmallerfirst -> pcPO=setflag0 }

atomic{ pcPO==testsmallersecond -> pcPO=setflag0 }

atomic{ pcPO==testsmallerfirst -> pcPO=setflagl }

atomic{ pcPO==setflagl -> flag0=1; pcPO=testlarger }
atomic{ pcPO==setflagl -> flag0O=1; pcPO=testsmallersecond }
atomic{ pcPO==testsmallersecond -> pcPO=testlarger }
atomic{ (pcPO==testlarger && SO==empt) ->

if

:: flagl==0 -> SO=one
else -> skip

fi }

atomic{ pcPO==testlarger -> SO=empt }

atomic{ (pcPO==testlarger && SO==one) -> pcPO=leavetry }
atomic{ pcPO==leavetry -> pcPO=crit; pcUO=crit }

atomic{ pcUO==crit -> pcUO=exit; pcPO=reset }

atomic{ pcPO==reset -> flag0=0; SO=empt; pcPO=leaveexit }
atomic{ pcPO==leaveexit -> pcPO=rem; pcUO=rem }

od

Figure 4.10: Process BurnsAlpha

4.5. THE SPIN VERIFICATION 81

#define p (pcPO==crit)
#define q (pcPl==crit)
#define r (pcPO==reset)
#define s (pcPl==reset)

/* Formula verified:

(O > () U [I (OCa))))) &&
(O(q => ((C'p) U s) 11 0PI

x/

Figure 4.11: The LTL property

We can easily extend process BurnsAlpha with a variable representing vg.;.
In fact, our general translation scheme introduced in Chapter 2 insists that
we do so. However, to simplify our PROMELA code slightly we use the exist-
ing state variables of process BurnsAlpha to implement the above property.
It can easily be observed, that variable pcPO=crit whenever v, = crify
and pcPO=reset whenever v, = exify. Analogously, pcP1=crit whenever
Vgt = crity and pcPl=reset whenever v, = exit;. Thus we verify the LTL
property defined in Figure 4.11. SPIN successfully verifies the property from
Figure 4.11 of process BurnsAlpha. We thus conclude, that the concrete au-
tomaton Burns satisfies the mutual exclusion property P; jy for all distinct
indices 1, j.

82 CHAPTER 4. BURNS’ MUTUAL EXCLUSION ALGORITHM

Chapter 5

The BCTSS Algorithm

In this chapter we present a formal proof, using abstraction, of one the most
complicated algorithms in the distributed systems literature: the Bounded
Concurrent Timestamp System (BCTSS) algorithm of Dolev and Shavit
[DS89]. We prove a key invariant of the parameterized BCTSS algorithm,
where the parameter is the number of processes running the algorithm. Our
proof is based on the construction of a finite-state abstraction, that preserves
the behavior of the concrete algorithm with respect to the key invariant.
The proof is within the I/O automaton framework, and it uses the theory
of Chapter 2 to obtain proof obligations for property preservation from the
abstract to the concrete algorithm. The proof obligations are discharged
manually and the abstract algorithm is automatically verified in the SPIN
model checker, using the translation scheme of Chapter 2.

5.1 Background and Contributions

A timestamp system works somewhat like a ticket machine at a bakery,
where customers draw tickets when they enter and are served in the order of
their ticket numbers. The ticket machine provides a newly arrived customer
with a ticket numbered above that of any earlier arrived customer. A person
working in the bakery, in order to decide the order customers must be served,
need only scan through all the numbers and observe the order among them.

A concurrent timestamp system (CTSS) is a timestamp system in which
any process can either take a new ticket or scan the existing tickets simul-
taneously with other processes. An algorithm implementing a CTSS runs
on an asynchronous shared memory model with a set of processes and a set
of timestamps, one per process. Each process repeatedly performs either a
label or a scan operation. A label operation consists of a sequence of reads of
all timestamps, followed in a separate step by a write (update) to the process
own timestamp of a value greater than the maximal value read. The values
written establish a total order on the label operations with ties broken by

83

84 CHAPTER 5. THE BCTSS ALGORITHM

process identifiers. A scan operation consists of a sequence of reads of all
timestamps, returning a sequence of process indexes ordered consistently
with the above total order.

A CTSS is the core in several algorithms for solving fundamental prob-
lems in multiprocessor concurrency control. Examples of such algorithms
include Lamport’s first come first served mutual exclusion [Lam74], Vitanyi
and Awerbuch’s construction of a multi-reader multi-writer atomic regis-
ter [VA95], Abrahamson’s randomized consensus [Abr88|, and Afek, Dolev,
Gafni, Merritt, and Shavit’s first come first enabled ¢-exclusion [ADG™T94].
These algorithms are all based on the use of an unbounded concurrent times-
tamp system (UCTSS), a CTSS in which the timestamps are taken from an
unbounded domain, usually the nonnegative reals. This unboundedness is
unrealizable in practical implementations of the algorithms, since it allows
for behaviours in which timestamp values can grow arbitrarily large. This
problem cannot be solved by any simple scheme of cycling through a finite
set of integers. Much in analogy with the Year 2000 Problem (Y2K), prob-
lems can occur when a new timestamp wraps around and starts reusing the
smallest value of the domain.

In [DS89], Dolev and Shavit showed that a bounded concurrent times-
tamp system (BCTSS), a CTSS in which the timestamps are taken from a
bounded domain, is constructible. The BCTSS algorithm from [DS89] thus
allows for bounded solutions to the concurrency problems referenced above.
The particular bounded domain used in the BCTSS algorithm is a certain
nested graph, nested to depth n — 1, where n is the number of processes.

The BCTSS algorithm is widely considered as one the most complicated
algorithms in the distributed systems literature. The correctness proof by
Dolev and Shavit [DS89], based on ordering relations defined by Lamport
[Lam86], is long, detailed, and hard to understand. In [GLS92], Gawlick,
Lynch, and Shavit give a correctness proof for a slight simplification of the
original BCTSS algorithm, using atomic snapshots of the shared memory.
Their proof has a nicer structure than the original proof. It is based on
the Input/Output Automaton model [LT89, Lyn96] and uses a set of invari-
ant assertions and a forward simulation mapping [LT87, Lyn96] from the
BCTSS model to a model of a UCTSS algorithm. All the complexity of
their simulation proof is centered in the use of a key invariant of the BCTSS
algorithm. This invariant asserts that in any state, certain sets of times-
tamps are totally ordered (wrt. a defined timestamp ordering). The proof of
the key invariant uses a set of subinvariants, some of which are rather tech-
nical and unintuitive, and the proof is somewhat long and detailed (about
10 pages).

We present an alternative proof of the key invariant from [GLS92], using
abstraction to combine deductive reasoning with automatic verification. Al-
though it uses a bounded timestamp domain, the BCTSS algorithm is still
parameterized in the number n of processes. This implies not only the exis-

5.1. BACKGROUND AND CONTRIBUTIONS 85

tence of n timestamps, but also that the domain for these is parameterized
by n. We construct a property preserving finite-state abstraction ABCTSS
of the n-process BCTSS algorithm. As in [GLS92], our proof is based on
the I/O automaton model.

Our abstract ABCTSS algorithm can intuitively be seen as the BCTSS
algorithm running on an abstract shared memory model, where the set of n
concrete timestamps has been replaced with a finite and nonparameterized
set of abstract timestamp views, each view having a finite and nonparame-
terized domain. The timestamp views can be seen as a partitioning of the
set of concrete timestamps with respect to a certain equivalence relation. All
operations of BCTSS on timestamp variables are replaced in ABCTSS with
abstract counterparts operating on the abstracted domains. Our simulation
proof, showing property preservation, essentially consists of showing that
each of the abstract operators is homomorphic with respect to its concrete
counterpart. These proofs are easy, since we have intentionally defined the
abstract operators with only this one purpose. Only a few subinvariants are
used in our simulation proof, all relatively high-level and the proof of these
is short (about 3 pages).

5.1.1 Chapter Organization

This chapter is organized as follows. In section 5.2 we introduce an algo-
rithm that implements a UCTSS. The algorithm is simple to understand,
and we use it to explain the basic functionality of any CTSS. We illustrate
how a CTSS can be used as the core in an algorithm for multiprocessor
concurrency control. We end the section with a discussion of the prob-
lems involved in going from an unbounded timestamp domain to a bounded
domain. In section 5.3 we present the BCTSS algorithm used in the rest
of this chapter. The algorithm differs from the UCTSS algorithm only in
the underlying timestamp domain and in the implementation of a function
that picks new labels for processes. Section 5.3.1 presents the key invariant
that we wish to prove about the BCTSS algorithms and section 5.4 presents
the high-level proof strategy that we apply for the invariant. The strat-
egy is a combination of induction and abstraction techniques. Section 5.5
provides the bulk of this chapter. Here we present our abstracted version
of the BCTSS algorithm as well as our abstracted version of the concrete
key invariant and we show that these abstractions satisfy the conditions for
property preservation with respect to their concrete counterparts, as stated
in the abstraction framework of Chapter 2. Finally, section 5.6 describes
the automatic verification in SPIN of our abstract algorithm. Besides veri-
fying the key invariant of interest, we also present a few experiments on the
abstract model performed using SPIN. These experiments are used to auto-
matically provide further insight into the workings of the concrete algorithm
in particular into the workings of the bounded timestamp domain.

86 CHAPTER 5. THE BCTSS ALGORITHM

5.2 The UCTSS Algorithm

In this section we present the UCTSS algorithm from [GLS92]. This un-
bounded algorithm is simple to understand and use, and it differs from the
more complicated BCTSS algorithm, to be introduced later, only in the
choice of timestamp domain and in the implementation of a function that
picks new timestamps.

The UCTSS algorithm uses as unbounded timestamp domain the set of
nonnegative reals, R>¢, and it is modeled as an 1/O automaton UCTSS.
Automaton UCTSS is the composition of a shared memory automaton and
a set of user automata. The shared memory automaton, denoted M, models
the n processes in the concurrent timestamp system together with the set
of shared timestamp variables. It is modeled as one big I/O automaton,
where the process and variable structure is captured by means of some lo-
cality restrictions on transitions. For any process index 4 there exists a user
automaton Uj;, providing the environment for process 7 in M.

Each process 7 in M can perform two operations, a scan operation and
a label operation, both performed upon request from its user U;. A scan
operation of process ¢ consists of an input action beginscan; and an output
action endscan(s);. The operation performs an atomic snapshot of the set
of timestamp variables and returns to user U; a total ordering of process
indexes induced by the order of timestamp values. A label operation of pro-
cess 4 consists of an input action beginlabel, and an output action endlabel;.
This operation also performs an atomic snapshot of the set of timestamp
variables and then computes a new timestamp value for 7, greater than the
maximal value read. The updating of process i’s timestamp variable with
the newly computed value is performed in a separate step. In the following
we present the shared memory automaton as well as the user automata. In
the presentation we will use the words timestamp and label interchangeably.

Automaton M models the n processes as well as the shared variables.
The state of M has the following components, for each i € {1,... ,n}:

— t; € R>g : The current label associated with process . Initially ¢; = 0.

— nt; € R>g : The new label for ¢ determined by a function newlabel.
Initially nt; = 0.

— ¢ € RZ, : An array of labels returned by an action snap;. Initially
fi=0m
0, € {1,...,n}" : An array of process indexes ordered based on an

order <<. Initially 9; = (1...n).

— pe; € {nil, snap, update, endscan, endlabel} : The non-input action cur-
rently enabled. Initially pc; = nil.

5.2. THE UCTSS ALGORITHM

87

input: beginscan,
Eff: op, := scan
pe; = snap

internal: snap,
Pre: pc, = snap
Eff: #;:= (t1...tn)
if op; = scan then
0; := sequence of indexes s.t.
J <z kiff (¢5,7) << (tk, k)
pe; = endscan

input: beginlabel,
Eff: op, := label
pe; = snap

internal: wupdate,
Pre: pc; = update
Eff: t; := nt;
pe; = endlabel

output: endlabel;
Pre: pc; = endlabel

if op; = label then Eff: pc; := nil
if tynaz = — V % = tmae then
pe; = endlabel
else
nt; = newlabel(i, ;)
pe; = update

output: endscan(s),
Pre: pc; = endscan
S =0;
Eff: pc;, := nil

Figure 5.1: Precondition-Effect code for automaton M

op; € {nil, scan, label} : The current operation. Initially op; = nil.

All of the above variables are local to automaton M. For any 4, the vari-
ables with this index models the variables “belonging to” process 4. Variable
t;, models the current timestamp of process 2. The t; models a shared vari-
able, writable by process ¢ and readable by all processes. Any other variable
with index 7 models a variable local to process .

We specify the transitions of M by giving preconditions and effects for
all the actions. For any ¢ € {1,... ,n} automaton M has actions as shown
in Figure 5.1.

Action beginscan,; just sets the operation counter op; to scan and then en-
ables the atomic snapshot action snap;. The snap; action first reads (atom-
ically) the value of all timestamp variables into variable ;. Then, within
the scan operation, the snap; action sets 0; to the total ordering of process
indexes given by the timestamp labels in the atomic snapshot, with ties bro-
ken by process index (the << order). Notice, that in the snap; action, we
refer directly to a shared variable #; rather than its local copy #;; in vector
t;. This is safe due to the fact that effects are atomic and ¢; = (¢1...t,)
in the effect of snap;. Action endscan(s), resets the pc; variable to nil and

returns the current 9; to user Uj;.
Action beginlabel; sets the operation counter op; to label and then enables

88 CHAPTER 5. THE BCTSS ALGORITHM

output: beginscan, output: beginlabel,
Pre: pe; = nil Pre: pe;, = nil
Eff: pc; := snap Eff: pc; := snap

input: endscan(s), input: endlabel;
Eff: pc; := nil Eff: pc; := nil

Figure 5.2: Precondition-Effect code for automaton U;

the snapshot action snap;. Within the label operation, the snap; action sets
the “local” variable nt; to the new timestamp value for 4, computed by the
newlabel function. The updating of the “shared” variable ¢; is performed in
a separate step by action update;. Action endlabel; ends the label operation
by simply resetting the program counter pc; to nil. Notice, that a new label
for 7 is only computed, in action snap;, under the condition that: 4,4, # —
and ¢ # i;pe- In any state of UCTSS we have derived variables t,,4, and
Imaz- Variable t,,,. is the maximal value held by any timestamp variable,
tmaz = max(ti,... ,t,), and 4,4, 18 the largest process index i such that
ti = tmae- The value — is used to denote that %,,,; is “undefined” in the
case that no maximal timestamp value #,,,, exists. For the unbounded
domain, R>p, used in UCTSS such a maximal value always exists, since
the usual < relation on R is a total ordering. For the bounded domain,
to be introduced later, the timestamp relation, also to be introduced later,
only defines a total ordering on a subset of the domain. Thus, we cannot
immediately conclude that a maximal timestamp value exists in any state
of the bounded algorithm.

We now formally define the << order and the newlabel function used in
UCTSS. For any state of UCTSS define as follows.

Definition 5.1 (<< order) (#;,i) << (t;,7) iff either t; < t; or t; = t;
and 1 < j.
Definition 5.2 If i # 4,4, then,
newlabel(i, t;) = typae + X
where X 1is nondeterministically selected from Rsq

Each automaton U; has a single local variable, pc;, a program counter,
initially having the value nil. We specify the transitions of U; by giving
preconditions and effects for all the different actions of U; as shown in Fig-
ure 5.2.

The parameter 5 of input action endscan(s); is the array of process in-
dexes returned by the scan operation of process i in M.

5.2. THE UCTSS ALGORITHM 89

Process 1 :

(1) choosing(i) := 1

(2) number(i) := 1+ max;x; number(j)

(3) choosing(i) :=0

(4) for j#ido

(5) if choosing(j) # 0 then goto (5)

(6) if number(j) # 0 and (number(j), j) < (number(i), i) then goto (6)
(7) ** critical region **

(8) number(i) :=0

(9) ** noncritical region **

(10) goto (1)

Figure 5.3: Pseudo-code for process i in Bakery algorithm

5.2.1 An Application

As we have mentioned before, a CTSS is the core in several algorithms for
multiprocessor concurrency control. The UCTSS algorithm presented so
far provides the service of a CTSS. To better understand the use of the
algorithm, we now present an application using it as underlying service.
The application is Lamport’s first-come first-serve mutual exclusion algo-
rithm [Lam74], better known as the Bakery algorithm. We first present the
Bakery algorithm without the explicit use of the UCTSS algorithm. Our
presentation follows closely the original presentation in [Lam74]. We then
present the Bakery algorithm rewritten to make use of the UCTSS algo-
rithm as underlying service. This presentation follows closely a presentation
of Gawlick in [Gaw92]. Actually, the latter algorithm merely assumes an un-
derlying CTSS with an action interface identical to the one for the UCTSS
algorithm. Thus, it is independent of the underlying timestamp domain be-
ing unbounded or bounded, and the BCTSS algorithm to be presented can
replace the UCTSS algorithm without causing any changes.

The presentation of the standard Bakery algorithm as well as the Bakery
algorithm using a CTSS service, called Bakery-CTSS, will be in informal
pseudo-code style rather than in I/O automaton language. Our intention is
to provide a high-level understanding of the use of a CTSS as service for an
application, not to prove properties of the Bakery algorithm.

The Bakery algorithm runs on a shared memory model, where pro-
cesses communicate using single-writer /multi-reader shared variables. Be-
sides guaranteeing mutual exclusion between any pair of processes, the Bak-
ery algorithm also guarantees a certain FIFO (first-in first-out) property
among processes waiting to enter their critical regions. Any process ¢ con-
trols two variables, choosing(i) € {0,1} and number(i) € N, both writable
by 7 and readable by all j # 4, and both initially 0. The algorithm run by
any process ¢ is presented in Figure 5.3.

90 CHAPTER 5. THE BCTSS ALGORITHM

Process 1 :

choosing(i) := 1
beginlabel,
endlabel;
choosing(i) := 0
for j #1i do

if choosing(j) # 0 then goto (6)

beginscan;

endscan(s),

if choosing(j) = 0 and j < ¢ in § then goto (7)
** critical region **
choosing(i) := nil
** noncritical region
goto (1)

* %k

NN AN AN N N N N N N S N
= = O 00 N O O s W N
QO N = O o~ o

OO —

Figure 5.4: Pseudo-code for process i in Bakery-CTSS algorithm

Process i is said to be in the doorway while choosing(i) = 1, i.e. while
in lines (1)-(2). While in the doorway, process i chooses a number that
is greater than all the numbers that it reads for the other processes. It
reads the other processes’ numbers one at a time, in any order, then writes
its own number. While it is reading and choosing numbers, 7 makes sure
that choosing(i) = 1, as a signal to the other processes. It is possible for
two processes to be in the doorway at the same time, which can cause
them to choose the same number. To break such ties, processes compare
their (number, index) pairs. The comparison it done lexicographically, thus
breaking ties in favor of the process with the smaller index. In the remaining
part of the trying region, the process waits for the other processes to finish
choosing and also waits for its (number, indez) pair to become the lowest.

Mutual exclusion follows from an easily proved invariant, stating that for
any two processes i and j, i # j, if ¢ is in the critical region (line (7)) and
J is in either the critical region (line (7)) or in the part of the trying region
outside the doorway (lines (3)-(6)), then (number(i),i) < (number(j), 7).

In the Bakery-CTSS algorithm we assume that each process ¢ can use the
service provided by the the shared memory automaton M from the UCTSS
algorithm. That is, process ¢ has output actions beginscan; and beginlabel;,
and input actions endscan(s), and endlabel;. The CTSS will take care of the
handling of timestamps. Hence, there is no need in the Bakery algorithm,
running on top of the CTSS, to deal with this. Therefore, process i will
not need the number variable anymore. Only variable choosing(i) is needed.
The pseudo-code for algorithm Bakery-CTSS is shown in Figure 5.4.

To compare with the Bakery algorithm in Figure 5.3, the following have
changed. In Bakery-CTSS, lines (2)-(3) take the place of line (2) in Bakery,
and lines (7)-(9) take the place of line (6). Moreover, since the number

5.2. THE UCTSS ALGORITHM 91

variable no longer exists in Baker-BCTSS, the choosing variable, with an
extension of its domain to include a special nil value, is used to replace
the first condition in line (6). The condition number(j) # 0 is replace by
choosing(j) = 0.

Note, that Bakery-CTSS is independent of the implementation of the
timestamp domain in the underlying CTSS service. Thus, the BCTSS algo-
rithm, to be introduced later, can provide the underlying service. This gives
a bounded version of the Bakery algorithm.

5.2.2 From Unbounded to Bounded Timestamp Domain

It is easy to see, that the unbounded timestamp domain of the UCTSS
algorithm always allows processes to pick new timestamps ordered above
the timestamps of all other processes. However, it is not obvious how the
same property can be obtained within a bounded domain. A first intuitive
idea might be to use a simple wrap around strategy to cycle through some
bounded domain. In the following we will examine the inadequacies of this
simple strategy, thereby hopefully providing some intuition for the more
complicated bounded timestamp domain used in the BCTSS algorithm of
the next section.

Consider a system of n processes and assume that the timestamp domain
consists of the natural numbers from 0 to n with the usual < ordering. As
before, ties between processes are broken based on process index. The obvi-
ous problem with this label set is deciding what happens when some process
has the label n and another process needs a new, bigger label. According to
the simple wrap around strategy, the latter process would pick the number
0 as new label. Thus, the ordering among labels would have the additional
feature that n < 0.

Using this strategy provides a good solution for two processes. In par-
ticular consider two processes p; and py with label set {0,1,2}. The wrap
around strategy obviously works in this case since there will always be an
extra number between the labels of p; and ps to make sure that they are
totally ordered. Figure 5.5 illustrates the above label set with the extended
< order, in the situation where p; has label 1 and ps has label 2.

P1

Figure 5.5: The extended < order on {0, 1,2}

92 CHAPTER 5. THE BCTSS ALGORITHM

The wrap around strategy does however not work for three processes.
Consider the following situation for three processes. Let each p; have label
1 and assume that process ps with label 2 wants a new label that is bigger
than the label 3 of p3. The situation is illustrated in Figure 5.6.

b1

D2

3103

Figure 5.6: The extended < order on {0,1,2,3}

Using the wrap around strategy, the new label for po would be 0. How-
ever, now process po’s label is ordered below that of p; which has label 1.
This violates the ordering properties of a timestamp system since p;’s cur-
rent label was acquired before ps acquired the label 0. One solution might
be to extend the set of numbers from which the labels are chosen so that
the wrap around happens later. However, it is easy to see that this will not
help. In particular, processes po and p3 can ask for new labels alternately
until one of them reaches the highest label. The first process to wrap around
will encounter the same problem as identified above. What is needed is the
ability to create a cycle of numbers for processes ps and ps such that all
numbers in that cycle are ordered above the label of py.

Consider as alternative label domain the set {0,1,2}? equipped with a
label ordering being the lexicographical order based on the the usual < order
with the additional feature that 2 < (. This new ordering can be represented
as a nested version of the graph in Figure 5.5. Figure 5.7 illustrates this
representation. For clarity we have omitted directions on the edges as well
as numbering of the nodes on the subgraphs, but these graphs are merely
copies of the graph in Figure 5.5. Figure 5.7 illustrates a situation where
processes p1, p2, and ps have labels 0.0, 0.1, and 1.1, the labels being ordered
in the order of process indexes.

Consider again now the situation in which processes py and p3 alternately
asks for new labels. Starting with ps, they can pick labels alternately in the
following sequence: 1.1, 1.2, 1.0, 1.1, 1.2, 1.0, In other words, they can
use the size three cycle defined by labels with prefix 1. The size three cycle
is large enough to accommodate the two processes since there will always be
an extra number between the labels of po and p3 to make sure that they are
totally ordered. Moreover, the labels of po, and p3 are always ordered above
p1’s label of 0.0. If at some point p; becomes active, it can pick a new label

5.3. THE BCTSS ALGORITHM 93

Figure 5.7: The lexicographical order based on the extended < order

2.0 which will be higher than the two labels of py and p3, both having prefix
1.

The label set from above can be generalized to work for any number n of
processes. The generalized label set being {0,1,2}" and the label ordering
being the lexicographical order based on the extended < order on the set
{0,1,2}. The label ordering can be represented as the graph in Figure 5.5
nested to depth n — 1.

In the above discussion, we have implicitly assumed that processes com-
pute new labels and update their timestamp variables in a single atomic
step. When considering the more general setting in which the above atom-
icity cannot be guaranteed, the label set from above needs further general-
ization. The generalized domain is the topic of the next section in which we
present the BCTSS algorithm.

5.3 The BCTSS Algorithm

In this section we present the BCTSS algorithm from [GLS92]. The algo-
rithm differs from the UCTSS algorithm from the previous section only in
the underlying timestamp domain and in the implementation of the newlabel
function. We denote by BCTSS the automaton obtained from automaton
UCTSS by changing the timestamp domain and the newlabel function as
presented in this section.

The timestamp domain is a generalization of the nested cycle structure
introduced in section 5.2.2. The generalization is required to guarantee
that the set of process timestamps is always totally ordered in the setting
where processes can pick and update new labels non-atomically. To provide
some intuition for the timestamp domain, we examine the inadequacies of
the nested cycle structure from section 5.2.2 in this setting. Consider the
situation illustrated in Figure 5.7, in which processes p;, ps, and p3 have
labels 0.0, 0.1, and 1.0, respectively. More precisely, in terms of the variables
in the shared memory automaton M of BCTSS, t; = 0.0, 3 = 0.1, and

94 CHAPTER 5. THE BCTSS ALGORITHM

t3 = 1.0. Now, suppose that ps and p; both want to pick a new label.
Observing the maximal label having the value 1.0, they can both pick as
new value, 1.1. Thus, p; and po set their “local” variables nt; and niy to
the value 1.1. Now, ps can update its timestamp variable, i.e. it can set
to = nty = 1.1 and ps and p3 can start to alternately pick new timestamps
within the cycle having prefix 1. At some point they may end up in a
situation where t5 = 1.0 and #3 = 1.2. Notice, they are still ordered above
the timestamp ¢; = 0.1 of process p;. However, at this point p; may choose
to update its timestamp variable, thus setting ¢; = nt; = 1.1. Now the three
processes have picked labels on each of the nodes in the size three cycle with
prefix 1 which implies that the labels are no longer totally ordered. No
maximal timestamp exists. This unwanted behavior can be removed by
enforcing processes to move through a few nodes not occurring in any cycle,
before they enter a cycle.

We now present the label domain and ordering used by automaton
BCTSS. We introduce the set A = {1...5} and we define an order <4
on the elements of A as follows.

Definition 5.3 (<4 order) Define <4 as,
1<42.3,45 2<43.45 3<44 4<45 5<43

The graph in Figure 5.8 represents the order < 4, where a < 4 b iff there
is a directed edge from b to a. Note that the ordering is not a partial
order, since it is not transitive — it only gives pairwise ordering relationships
between nodes. In comparison with the graph of Figure 5.5 we observe that
the graph of Figure 5.8 also has a size three cycle. This cycle consists of
nodes 3, 4, and 5. Moreover, the graph also has two additional nodes 1 and
2 ordered below any node within the cycle.

5

Figure 5.8: The < 4 order

We define a function nezt on the elements of A. For any k, next(k)
returns the least &' such that k <4 £'.

Definition 5.4 (next) For k € A define the function next as,

E+1 ifke {1,234
"m(k):{ 3 7§k:{5 }

5.3. THE BCTSS ALGORITHM 95

A label is an element of A”~! where n is the number of processes in
the system. All £- and nt-variables of BCTSS are initially set to 1"~'. The
order between labels that is used in the BCTSS algorithm is based upon the
following order <, defined between elements of A™ for any natural number
m. This order is the lexicographic ordering on A™ based on the < 4 order.
We refer to elements of A™ using array notation. Specifically, the h’th digit
of £ € A™ will be denoted by £[h]. In the following let m be any natural
number.

Definition 5.5 (< order) Let ¢1,¢y be elements of A™. Then, {1 < ¥y
iff there exists h € {1...m} such that £1[h'] = La[h'] for all K’ < h and
Gi[h] <4 L2[h].

The order between labels used by BCTSS is the < order on elements of
A", where n is the number of processes. This order can be seen as the
nesting of the graph in Figure 5.8 to depth n — 1.

In the following we will state and prove a lemma that gives a necessary
and sufficient condition for a set of elements from A™, m any natural num-
ber, to be totally ordered. This condition will later serve as the basis in our
definition of the concrete key invariant that we want to prove of BCTSS.
The following lemma shows that any two elements of A™ are always totally
ordered by the < order.

Lemma 5.1 If ¢ and ¢y are elements of A™, then ezxactly one of the fol-
lowing s true: €1 < fo fo < l1, or {1 = {s.

Proof. If a,b € A, then by definition of <4 exactly one of the following
is true: a <4 b, b <4 a, or a = b. The lemma now follows since < is a
lexicographical order defined by < 4. [|

Definition 5.6 If¢{ € A™ and h € {1,... ,m}, then £ is the prefiz of £ up
to and including digit h; ¢° is the empty prefiz denoted .

We can now state and prove the lemma giving a necessary and sufficient
condition for a set of elements from A™ to be totally ordered.

Lemma 5.2 A set L of elements from A™ is totally ordered by < iff for all
01,089,053 in L and for all h € {1,... ;m},

(G =67 =070 A {a[h] 6], L]} = {3,4,5))

Proof. =: Assume for the sake of contradiction that there exists £, £o, /3
€ Land h € {1,... ,m} such that £/~1 = ¢~ = /A= and {£,[h], £2[h)], £3[h]}
= {3,4,5}. By definition of A we can conclude without loss of generality
that £1[h] <4 fa[h] < €3[h] and £1[h] £ €3[h]. Since /27! = b1 = /i~1

96 CHAPTER 5. THE BCTSS ALGORITHM

and < is a lexicographical order, #; < £y < 43, and ¢; £ ¢3. Hence < is not
transitive, contradicting our hypothesis that < is a total order.

<: Assume for the sake of contradiction that < is not total. By defi-
nition < is irreflexive and by Lemma 5.1 it is antisymmetric. Therefore, it
must be that transitivity does not hold. Specifically, there must exist 41,
ly, 3 € L such that £; < ¢y < /3, and £; £ f35. Suppose, for the sake of
contradiction, that /; = £3. We then have /1 < 5 and ¢9 < /1 which directly
contradicts Lemma 5.1. Thus, ¢35 < £;. Knowing, that ¢ < £y, £9 < ¢35, and
¢35 < 41, we now show that there exists h € {1,... ,m} such that 2’17‘71 =
= = 07 and £4[h] <4 £a[h], falh] <4 £3[h] and £3[h] <4 £1[h]. Assume
for the sake of contradiction that no such A exists. By definition of <, we
know that there exists h, h', and h” such that all of the following three hold.
(1): 6171 = A=Y and £1[h] <4 Lo[h). (2): 471 = 2" and £y[h'] <4 L3[).
(3): Eé‘”*] — "1 and l3]h"] <4 £,[h"). Furthermore, by assumption not
all of h, h', and h" can be equivalent. Assume without loss of generality that
h < h'. From (2), églf] = é’glf] and since h < h’ we can conclude from (1)
that #2771 = ¢271 and ¢,[h] <4 £3[h], i.e. £; < 3. This however contradicts
(3) by which ¢3 < ¢;. Thus, there exists h € {1,... ,m} such that E?*] =
= = g8V and £4[h] <4 £o[h], fa[h] < £3[h] and £3[h] <4 £1[h]. Now, by
definition of < 4, {¢1[h], £2[h], ¢3[h]} = {3,4,5} contradicting our hypothesis
that — (2071 = h=1 = A=V A {0y[h], 02]h], £3]h]} = {3,4,5}).]

Having defined the notions of labels and orderings used by automaton
BCTSS, we can now present the new implementation of the << order and
the newlabel function.

Definition 5.7 (<< order) (t;,i1) << (t;,7) iff either t; < t; or t; = t;
and 1 < j.

To define the new newlabel we require a set of preliminary definitions.

Definition 5.8 (t",.) For any h € {1,... ,n—1}, if for some indez i,

max
f’; = t? for all j # i then th . = t?; Otherwise, th,.. = —. We define
) o = €. We write tyay for th. L. If taw # — then imaes is the largest

index i such that t; = tyae; Otherwise, imer = —

In any state, ¢/, returns the maximal value of the set of h-prefixes of ¢-
+h

labels; if such a maximal value exists (we will prove that ' always exists).

Otherwise, t’,;‘mw returns —. If ¢4, # — then i,,,, returns the maximal index

of the set of processes having their timestamp value equal to %,,4-
Suppose t" # —. For any h' < h, we will use parentheses (#"

Lmax ‘max
denote the prefix of ", up to and including digit A'.

)M to

Lemma 5.3 For any h € {1,... ,n—1}, if th . # — then for any h' €
{Oa s ah‘ o 1}) (tlrlnafr,)hl = fh,

‘max "’

5.3. THE BCTSS ALGORITHM 97

Proof. Assume for the sake of contradiction that " # — and for some
W < hy (th)" #th . Let i be such that t# = ¢" . Then by assumption
there exists k # 4 such that t',z/ - tfl. But then by definition of < and since

h' < h, tZ‘ >~ ¢! which contradicts that ! = " Hence for all k # 1, tZ" <

max-®

t?" and by definition then %" = ¢7 . []
In the following definitions we assume that t,,,, # —. We do so since

all the definitions are used to implement the function newlabel and as can
be seen from the code of automaton M, see Figure 5.1, this function is only
called in states where t,,,, # —. When t,,,, # — we have from Lemma 5.3
that th = (tmaz)" forany h € {0,... ,n—1} (note t2 .. = €). The following
list of functions, on states of BC'TSS, forms the basis of the newlabel function.

Definition 5.9 (agree, num, num;) For any h € {0,... ,n—1}, £ € A" 1,
and v € A,

agree(f’) = {i|th ="}

num(¢P) = |agree(")|

num;(¢") = |agree(") — {i}|

num(f*,v) = |agree(!") N {i| t;[h+ 1] =v}| (h#n—1)

In any state, agree(#") returns the set of process indexes i such that the
prefix ! is equivalent to the prefix £ of label £. num(¢") is the cardinality
of agree(¢"). num;(¢") is the cardinality of agree(¢") once index i is removed
from agree(¢?). Finally, num(¢",v) is the cardinality of the intersection
between agree(¢") and the set of indexes i such that the (h + 1)st element
of t; equals the value v.

Definition 5.10 (full;) For anyi € {1,... ,n} and h € {1,... ,n—1},

fh

‘max

true if num;()>n—h

Sfull;(h) :{ false otherwise

In any state, full;(h) returns true if at least n— h t-labels, excluding #;,
agree with the prefix of ¢,,,, up to and including the hA’th digit.

Definition 5.11 (next-label) For any h € {1...n—1}, by = next-label(¢1, h)
iff L1 = 0h=1 0y[h) = next(£1[h]) and Lo[h'] =1 for all h' > h.

Definition 5.12 (newlabel) For anyi € {1,... ,n}, if i # imax then,
newlabel(i, ;) = next-label(tmaz, h')

where, h' = min{h € {1,... ,n—1} | full;(h) = true}.

98 CHAPTER 5. THE BCTSS ALGORITHM

Function newlabel(i, t;) finds the minimum integer h such that full;(h)
returns frue. That is the minimum A such that at least n — h {-labels,
excluding t;, agree with the prefix of ¢4, up to and including the h’th digit.
Then the new label is the same as t,,,, for the first A — 1 digits, it differs
from #,4, at the h’th digit based on the function nezt, and its remaining
digits are equal to 1. We know that the newlabel function is executed by
a process 1 of automaton M, see Figure 5.1, only in states where i # ipqz-

In such a state there always exist an h € {1,... ,n — 1} such that full;(h)
returns true, since num;(t%.1) > 1 and hence full,(n — 1) = true.

The graph in Figure 5.9 illustrates the < order on the label domain A?
used when the number n of processes is three. For clarity we have omitted
directions on edges and numbering of nodes in the subgraphs. The subgraphs
are all identical to the graph of Figure 5.8.

Figure 5.9: The < order for n =3

Consider the situation in which processes p1, pa2, and p3 have their times-
tamp variables as illustrated in Figure 5.9. That is, ¢; = 3.3, {9 = 3.4, and
t3 = 4.1. Suppose now that processes po and pj starts to alternately pick new
labels. Then they can use the cycle defined by labels with prefix 4 to keep
picking labels ordered above the label of p;. The cycle can accommodate
the two processes, guaranteeing that they are always totally ordered. Let
us examine in detail how the newlabel function will provide the new labels
for processes ps and p3. Suppose ps is the first process to call the newlabel
function. The function first determines the minimum level A € {1,2} such
that fully(h) returns #rue. In terms of the graph in Figure 5.9, full,(h) re-
turns true if the node at level h, holding the maximal timestamp, cannot
accommodate more processes. A node at level 1 is a node in the outer graph,
that is a node defined by a set of labels agreeing in the first digit. A node
at level 2 is a node in some inner graph, that is a node defined by exactly
one label value. In our example, fully(1) returns false. Thus, the node at
level 1 holding the maximal timestamp, that is the node numbered 4, is

5.3. THE BCTSS ALGORITHM 99

not full yet. This node can hold two processes. Also, fully(2) returns true
implying that the node at level 2 that holds the maximal timestamp, that is
the node 4.1, is full. This node can hold only one process. The rule used by
function newlabel() to pick a new label is now to choose lowest node domi-
nating the node 4.1. The new label for py thus becomes next-label(tmaz, 2)
= next-label(4.1,2) = 4.2. Suppose py updates it timestamp variable leaving
to = 4.2. Now, when p3 calls the newlabel function it will see fully(1) = false
and full;(2) = true. Note that even though both p, and ps resides in the
node 4 at level 1, fulls(1) returns false since the timestamp of ps, the calling
process, is not taken into account when determining the full criteria. The
new label for ps becomes nezt-label(4.2,2) = 4.3. Processes ps and ps will if
they continue to pick labels use the cycle in subgraph 4. In here they will
always be totally ordered and also ordered above the label 3.3 of p;. If at
some point p; decides to pick a new label, it will observe that full; (1) = true
which tells p; that no further processes can be accommodated by the sub-
graph numbered 4. Thus, p; will pick as new label the value next-label(4.5,1)
= 5.1, assuming that ¢,,,, = 4.5.

Using Figure 5.9 we can also illustrate the role played by the values 1 and
2 in the label domain. Consider the situation from above, where p; has label
t1 = 3.3, po has label to = 3.4, and p3 has label {3 = 4.1. Then subgraph
4 will be the next graph in which new labels will be picked. Suppose ps
is the next process to pick a new label. It sets nts = 4.2. Now, before po
updates its t-variable, assume that process p; picks a new label and updates
its timestamp variable. Process p; thus picks nt; = 4.2 and subsequently
sets t; = 4.2. Now, processes p3 and p; can continue to pick labels ending
up in the cycle of subgraph 4. At some point ps may complete the update
of its timestamp variable, writing o = 4.2. This value however, will not be
in the cycle of the subgraph. Moreover, any subsequent label operation of
a process will see the subgraph 4 as full and hence move onto subgraph 5,
preventing three processes to occur in the cycle of subgraph 4.

As mentioned earlier, the user automata guarantees well formedness of
the behaviors of BCTSS. This implies for instance, that in any behavior of
BCTSS, for any process 4, no two beginlabel, actions can occur without an
intervening pair of consecutive actions, update;, endlabel;. As a result, the
following simple invariant, used in the later sections, holds for the states of
BCTSS. The proof follows by trivial induction on the length of an execution.

Lemma 5.4 For any reachable state of BCTSS, for any i € {1,... ,n},
M.pc; = snap = t; = nt;

5.3.1 The Total Orderedness Property

The original requirement specification for the BCTSS algorithm, as stated
in [DS89], uses an axiomatic specification formalism of Lamport [Lam86]

100 CHAPTER 5. THE BCTSS ALGORITHM

to define a set of ordering properties with respect to the label and scan
operations of the algorithm. These properties have been widely criticized
as “hard-to-use” and the original proof in [DS89] is long and difficult to
understand. In [GLS92], Gawlick, Lynch, and Shavit provides a proof of
the BCTSS algorithm introduced in previous section, showing that it im-
plements an unbounded concurrent timestamp system (UCTSS) algorithm,
which can remarkably easy be shown to satisfy the original ordering proper-
ties. All the complexity in the (simulation) proof that the BCTSS algorithm
implements the UCTSS algorithm, is centered in the use of a key invariant
of the BCTSS algorithm. This key invariant asserts that in any state of
the algorithm, the set of all timestamps, newly picked as well as already
updated, is totally ordered. The proof in [GLS92] of the invariant uses a
set of subinvariants, some of which are rather technical and unintuitive, and
the proof is somewhat long and detailed. We consider an alternative proof
of this invariant, using abstraction strategies.

In order to define the key property (invariant) that we wish to prove, we
define the notion of a choice vector for any state of automaton BCTSS.

Definition 5.13 (Choice Vector) A choice vector is any vector (£y ... 4y)
such that ¢; € {t;,nt;} for each i.

Our goal is to prove the invariant that for any reachable state of BCTSS,
the set of values in every choice vector is totally ordered by <. Notice that
this invariant implies that the << order used in automaton M defines a
total order. Proving the invariant is equivalent be Lemma 5.2 to proving
the following theorem.

Theorem 5.1 (Total Orderedness) For any reachable state s of BCTSS,
for any h € {1,... ,n—1}, for any choice vector (£1...4,), and for any
indexes 1,7,k such that i # j, i # k, and j # k,

—(s.071 = 3.2_7’7‘71 = 3.22‘71 N {s.ti[h],s.t;[h], s.ly[h]} = {3,4,5})

5.4 The Proof Strategy

Our proof for the Total Orderedness theorem (Theorem 5.1) uses a com-
bination of induction and abstraction. Induction is used as the high-level
proof strategy with abstraction applied in the inductive step.

Consider Theorem 5.1. We will prove the theorem by strong induction on
h (note n is fixed). Forany h € {1,... ,n—1} we let 10(h) denote the property
obtained from Theorem 5.1 by eliminating the universal quantification of h.

5.4. THE PROOF STRATEGY 101

Thus, h occurs free in ¢ (h).

1(h) = For any reachable state s of BCTSS, for any choice vector
(f1,...,4,), and for any indexes i, j, k such that i # j, i # k,
and j # k,

h—1 h—1 h—1
S (sl = sl = sy A

{5.4:[R), 5.4;[h], 5L, h]} = {3,4,5})

Thus, we want to prove that ¢(h) holds for all h, by strong induction on h.
For any state s of BCTSS, we will use the notation (h,s) to denote the
property obtained from (k) by eliminating the universal quantification of s.
Thus, t(h) is the property that for all reachable states s of BCTSS, 1(h, s)
holds. In the proof of 1)(h) we will be using a slightly weaker property o(h),
defined as follows,

@(h) = For any reachable state s of BCTSS, for any choice vector
(41,...,4,), and for any indexes i,j,k such that i # j, i # k,
and j # k,

- (5071 = s.f']’-"fl = s.fzfl =s.th-1 A

{5.0:[R), 5.4;[h], 5L, [h]} = {3,4,5} A

num(s.th-1) <n—h+41)

‘max

For states s of BCTSS, we will use the notation ¢(h,s) to denote the
property obtained from ¢(h) be eliminating the universal quantification of s.
Now, to prove 1(h) we proceed according to the following inductive strategy.

Assume for induction hypothesis,
Vh', 1 <K < h, (h). (5.1)
Prove,

o(h) = ¢(h) and ¢@(h). (5.2)

For the remainder of this chapter we thus consider the proof of (5.2)
under the assumption of hypothesis (5.1). In this section we prove the first
part of (5.2), saying that ¢(h) = 1(h), by a simple inductive argument. The
proof of the second part, ¢(h), will be by the use of abstraction strategies.
This proof is the topic of the rest of this chapter.

102 CHAPTER 5. THE BCTSS ALGORITHM

Lemma 5.5 ¢(h) = ¢ (h)

Proof. Assume ¢(h). We now prove (h) by showing that ¢ (h, s) holds for
all reachable states s of BCTSS. We proceed by induction on the length of
an execution in BCTSS.

Base: For any initial state sg and for any index 4, sg.t; = sg.nt; = 1771
This immediately proves the base case.

Step: Assume that state s satisfies ¢(h, s). For any 7, s’ such that s — s’
we will show that s’ satisfies 1(h, s'). Assume for the sake of contradiction
that for some choice vector (¢;.../¢,), and for some indexes i, j, k such that

i #J,1%#k,and j # k,
SO = L = A (S I]) = {3.4,5) (+)

First suppose, m € {beginlabel;, endlabel;, beginscan;, endscan;}. Since no t-
labels or nt-labels change as a result of 7, (%) immediately leads to a con-
tradiction with the 1 (h, s). Now, suppose m = update;. The only label that
changes as a result of 7 is ¢, so [€ {i,7,k} since otherwise (x) immediately
contradicts 1 (h,s) for s. Assume without loss of generality that [= k& and
s' .4y, = s'.t;. Now, since i # k and j # k we have that s'.4; = s.; and s'.¢;
= s.l;. And since s'.t;, = s.nl; we have from (x),

s = S.E";i] = st A {s.li[h], s.4;[h], s.ntg[h]} = {3,4,5}

which contradicts ¥(h, s). Now, finally suppose that m = snap;. s.op, = label
since otherwise no t-labels or nt-labels change as a result of m and hence (x)
immediately leads to a contradiction with ¢(h, s). By same argument s.t,,4,
—, | # Sdmaz, and [€ {i,75,k}. Assume without loss of generality that
I =k and s'.4; = s'.nty. From (x) then,

s l—efh L= m‘h LA {8]R), 8" 44h), s ntg[h]} = {3, 4,5}

We know that s'.nty = next-label(s.tmar, h') for some b’ € {1,... ., n—1}.
Also by assumption s.t,,, # —. Suppose num(s.t'—1) > n— h+1. Then

max

numy,(s.th—=1) > n—h+1 and full,(h—1) = true. Therefore h' < h—1 and

max

s'.ntg[h] = 1 contradicting that s'.nty[h] € {3,4,5}. Suppose num(s.tl 1)

maxr

< n—h+1. Then numy(s.th.l) < n—h+1. If B < h we reach the same

‘max

contradiction as above. If b’ > h then s’ nth ' = s.th-1. Now, from action,

8" tmaz = S-tmag 50 8"t 1 = s th=1 Hence, s nth '= s th1 contradicting

o(h,s'). |

5.5 The Abstraction

In this section we consider the proof of the invariant ¢(h) from the second
part of (5.2). Recall that h denotes our induction constant. From the

5.5. THE ABSTRACTION 103

induction hypothesis (5.1), if A > 1 then in any state and for any choice
vector, the set consisting of the h — 1 prefixes of the choice vector elements

is totally ordered. Thus, "1 # — for any h > 1 (#) = ¢€). That is, there
exists i € {1,... ,n} such that t/~' = ¢h—1.

Our proof will use the abstraction framework introduced in Chapter 2.
The proof strategy will be as follows. First, consider the path safety property
with state set states (BCTSS) and with path set being the set of sequences of
states s satisfying ¢(h,s). We identify the invariant ¢(h) with this induced
path property. Thus our goal is to show that paths (BCTSS) C paths (¢(h)).

We construct an abstract automaton, BCTSS,(h), as well as an abstract
path property ¢, (h). We establish an abstraction relation, S, between the
states of BCTSS and the states of BCTSS,(h) and we prove that:

BCTSS <P BCTSS,(h) via S, and (5.3)
S~ (paths (pa(h))) C paths (¢(h)).

Then by Theorem 2.8 (Path Safety Preservation) we can conclude that
if BOTSS, (h) satisfies @, (h) then BCTSS satisfies ¢(h). Our abstract au-
tomaton will have a finite state model and we therefore use automatic veri-
fication (model checking) to prove that BCTSS,(h) satisfies ¢4 (h).

In our proof we will make use of the following list of simple invariants
on BCTSS. These invariants allow us to restrict the amount of information
needed to be preserved in the abstraction. Recall that ¢ 1 £ —.

Lemma 5.6 For any reachable state of BCTSS, for any i € {1,...,n},

Lo(Vj i, thtAthd) = 6 =g =k

maxr max

2. th L =gh 1 = - ghe]

‘max ‘max

3.0t =t 1 = ngh] =1

‘max

Proof. See Appendix B. [|

In the following we give an intuitive explanation of the claims of Lemma
5.6. In the following when we mention ¢- or ni-values we will mean their
h—1-prefix. The first invariant states that, if only a single process has its -
value agreeing with ¢/-—1 then this process’ t- and nt-values agree. This will
imply, by total orderedness of the h—1-prefixes of timestamps, that a process
who’s nt-value is greater than 21 will have its t-value agree with ¢ L after
performing an update action. Suppose that s denotes the state before an
update;, of process k and s’ denotes the state after the action. If s.nt’,zfl
> 5.0~ claim 1 for s tells us that there exists i # k such that s.t?*] =

sl Thus for any j # 14, j # k. s.t_’;*] = s.t?il =< s.ntzq. From induction

‘max-*

104 CHAPTER 5. THE BCTSS ALGORITHM

hypothesis (5.1) this implies that s.t;'ffl < s:.ntZ‘f1 and hence for any i # k,
st < s.ntz*]. Now, for any i # k, 5"t/ = 5.t"~! and moreover s’.tzf]

= s.ntﬁ”. This concludes that s'.t/ ' < 5’.tzf] for all 4+ # k and thus
I.th,fl

s’.tzf] = s'.t; .~ The second invariant states that the newly picked label of

a process is greater than or equal to /-1 The third invariant states that, if

a process’ newly picked label is greater than ¢, then the h’th digit of this
label equals 1. This invariant, together with the first invariant, provides us
with information about the relation between processes timestamps and ¢/.-1
after an update action, performed by a process who’s ni-value is greater
than ¢"- 1 Tn this particular situation, we will be able to conclude, that the
updating process will be the only one agreeing with #"—1 after the update,

and moreover its ¢-value will have its A’th digit equal 1.

5.5.1 Abstract State Space

The fundamental requirement to our abstract automaton, BCTSS,(h), is
that it must be property preserving with respect to the concrete path prop-
erty ¢(h). Recall that paths (p(h)) is the set of sequences of states s of
BCTSS in which the predicate ¢(h, s) holds. Hence, this predicate will pro-
vide us with information about the parts of a concrete state that needs to
be preserved in a corresponding abstract state. The predicate can be seen
as a guideline for partitioning the concrete state space into a set of abstract
states. The basis of the abstract state space will be two abstract domains
of views and num-counts, respectively.

Views

Consider any state of BCTSS in which num(t!,.}) < n—h+1. From the
definition of the predicate ¢(h,s), we observe the need to preserve the fol-
lowing information from the concrete state s into a corresponding abstract
state. Forany i € {1,... ,n} and ¢; € {t;, nt;}, we must preserve information
telling us whether £/~' = th—1 “and if so, also whether or not £;[h] equals
3, 4, or 5. We define the information that we will preserve in terms of a

process view.

Definition 5.14 For any state of BCTSS and for any i € {1,... ,n},

(ti[h). nti[h]) if = g A 0l =

view, = (ti[h],0) if t;';] = t?ﬁ;..%: A nt;;] -~ t?ﬁ;..%:

" (0, nt;[R]) —if ti < tiar A 0=t
(0,0) otherwise

That this definition actually provides us with the intended information
follows from the following lemma. Let view?[1] and view!?[2] denote the first
and second component of 7)75671)?‘, respectively.

5.5. THE ABSTRACTION 105

Lemma 5.7 For any state of BCTSS, for any i € {1,... ,n}, and for any
v E A,

Lot b=l At[h] =v & viewl[1] = v.

‘mazx

2.ttt =th-l Antlh) =v & view[2] = v.

max

Proof. Let v be any element of A. Consider 1. Suppose tf*1 = th-1

and #;[h] = v. From Lemma 5.6 part 2, nt’~" = %1 and 1 follows from

‘max

Definition 5.14. Suppose view?[1] = v. Since v # 0 we have directly from
Definition 5.14, tg"fl = th—1 and t;[h] = v. Consider 2. Suppose nt?‘fl =

‘max
th=1 and nt;[h] = v. From definition of t/--1 "~1 < /1 and hence directly
from Definition 5.14, view!’[2] = v. Suppose vieuf’[2] = v. Again, since v #
0 we have from Definition 5.14, nt! ' = t"-1 and nt;[h] = v.]

Notice that for any process ¢, we actually preserve more information in
view! than what we initially motivated. Namely, in case K?” = th—1 we
preserve the actual value of /;[h] - not only when it equals 3, 4, or 5, but also
when it equals 1 or 2. We will see later that this is necessary in order for
our abstract algorithm to be precise enough to satisfy the abstract property

of interest. We now introduce the following state variable for BCTSS,,.

-V C(AU{0})?: A set intended to describe the set of process views
in a corresponding concrete state, initially {(1,1)}.

Since we have not yet fully specified the abstract state space, we cannot
yet define the abstraction relation S between concrete and abstract states.
However, we will at this point state a requirement to S, which describes the
intended interpretation of the abstract set V. The requirement will later be
part of the definition of S. Let s and u be states of BCTSS and BCTSS,,
respectively. At this point all we know about u is that u.V exists. If S(s,u)
then,

num(s.th 1y <n—h+1 = w.V ={(v,w) | Ji: s.view] = (v,w)}

From the definition of predicate ¢, we only need to preserve the informa-
tion about process views from concrete states where num(th. 1) < n—h+1.
This explains the implication in the above requirement to the abstraction
relation S.

Several processes may have identical views, but our abstract set V' does
not preserve information about the number of such processes. We will see
that the only information necessary for property preservation is whether
one or more processes have a particular view, and this information will be
preserved in a different abstract state variable.

106 CHAPTER 5. THE BCTSS ALGORITHM

Num-counts

We want the relation S to be a path simulation relation from BCTSS to
BCTSS,(h). Therefore, from the requirement to S stated in the previ-
ous section, BCTSS,(h) must be able to match any view-changing action
of BOTSS that preserves num(t’—1) < n—h+1, such that the concrete
view-changes are preserved in the abstract state variable V. The view of a
concrete process may change as a result of this process either picking a new
nt-value or updating its ¢-value. In the latter case the view change simply
consists of copying the second view element into the first position. Thus, in
this case no additional information beside the view needs to be preserved
from the concrete state. In the former case the view change is determined
by the result of the newlabel function. In order for our abstraction to be pre-
cise enough, we must preserve some information, in abstract states, about
the values, in corresponding concrete states, of the state functions used by
function newlabel. In particular, we must preserve information about the
th=1) and num(tl L v) for any v € A. Actually, it will be
enough to preserve only certain critical ranges of values for these concrete
functions. As we will explain in detail later, these value ranges provide suffi-
cient information to let concrete view changes be matched “closely enough”
in corresponding abstract states. We will represent the critical ranges of
num(tP-1) and num (P! v) by abstract state variables np and n,, respec-

tively. The critical value domain will be represented by a single abstract
domain of num-counts, denoted N.

values of num(

Definition 5.15 A ={0, 1, (1,n—h), n—h, n—h+1, (n—h+1,n]}.

We define a function, g, being the (obvious) mapping from elements of
{1,... ,n} to elements of N.

Definition 5.16 Define function g : {1,... ,n} = N as follows,

(0 if =0
1 if t=1Ah#n—1
) (1,n—h) if ©>1ANz<n—h
9(r) = n—h if x=n—h
n—h+1 if ©=n—h+1
(| (m—h+1,n] if z>n—h+1Az<n

Notice, if h = n—1 then n — h = n — (n—1) = 1. Therefore, g(1) =
g(n—h) = n—h in this case. We now introduce the following abstract state
variables of BCTSS,(h).

h—1
tmam

— np € N : The abstract interpretation of num(). Initially, np =

n—h+1ifh =1, np=(n—h+1,n] otherwise.

5.5. THE ABSTRACTION 107

~ n € N4 : Each n, the abstract interpretation of num(th1 v). Ini-

tially, ny =n—h+1if h =1, n; = (n—h+1,n] otherwise, n, = 0 for
v # 1.

The variables introduced above together with the abstract view set V,
fully characterizes the state space of our abstract automaton BCTSS,(h).
Thus, we can now make precise our intended interpretation of the abstract
state variables, by providing the abstraction relation S from states (BCTSS)
to states (BCTSSa(h)).

Definition 5.17 S(s,u) iff

1. w.np = g(num(s.th-1))

max

2. num(s.th-1y <n—-h+1 =

‘max

L uw.S={(v,w)]|3i:sview = (v,w)}

2. w.n, = g(num(s.th.1 v))

In the following we explain the details behind the information preserved
in abstract state variables np and n.

For any process 7, the snap; action of BCTSS is a potential view-changing
action. Suppose (s, snap;, s') is a step of BCTSS and s.op, = label, $.tymer 7
—, and © # S.imaz- As a result of this action the nt;-label changes, im-
plying that view!?[2] may change. Suppose that u is a state of BCTSS,(h)
corresponding to s. We want BCTSS,(h) to match the concrete snap,; ac-
tion by a corresponding abstract action from wu to some state u’, such that
s' and v correspond by S. Suppose num(s.t!1) < n—h+1. No t-labels

‘max

change as a result of the snap; action, so 'tz = 5.tmaee and num(s'.t0-1)
< n—h~+1. Thus, s'.?)iewf must be an element of v’.V. If the abstract action
non-deterministically adds some element of (AU {0})? to the set u.V, it will
obviously allow s'.?)iewf € u'.V. However, this strategy will make BCTSS,
too abstract to satisfy the abstract property of interest. In order to make
the abstract action more precise we will preserve information, in u, from the
concrete state s, used to determine the new value of nt;. We are interested
in information determinining the new 7)75671)?‘; i.e. information determining
whether s'.nt?‘fl = s'.th—1 and if so, also information determining the value
of s'.nt;[h).

Assume that full,(h') = false in s for all A’ < h — 1. Then S'.ntg"fl =
s'.th—1 and the value of full;(h) in s determines the value of s'.nt;[h]. If
full;(h) = true then s'.nt;[h] = next(s.tmaz[h]), and if full;,(h) = false then
s'.nt;[h] = s.tyaz[h]. We will preserve in u the information determining
full;(h) in s.

From definition we have that full;(h) = true if num;(s.th) > n—h,

and full,(h) = false, otherwise. From the definition of num;, num;(s.t%,.)

108 CHAPTER 5. THE BCTSS ALGORITHM

> n—h if either num(s.th

) > n—h, or num(s.th,,,) =n—h and s.t} #

max

s.tl .. Furthermore, num;(s.th,,) < n—h if either num(s.th) < n—h,
or num(s.th) =n—hand s.t? = sl . We already preserve in u.V the
h

value of s.view;, and we will see later that the value of s.t,,45[h] is preserved

in u.V as well. We therefore preserve enough information to determine
whether s.t? = s.t! holding if s.view[1] = 5.t;nqz[h]. Therefore, in order

max’ 2
to preserve in u the information determining full;(h) in s we only need, in

addition, to preserve whether num(s.t?) < n—h, num(s.t")= n—h, or

max max
num(s.th) > n—h. From the abstract property of interest, we will see,

that we also need to preserve, for any v € A, whether num(s.th,.1 v) = 1.

If 5.tmaw # —, then by Definition 5.9, num(s.t2) = num(s.th--1 s.t,..[h])

= num(s.th—1 v) for some v € A. We therefore just preserve, for any v €

A, which of the following ranges of naturals, 0, 1, (1,n—h), n—h, or (n—h,n]

. h—1
includes the value of num(s.t}, ., v).

In s, >, num(s.th L v) = num(s.th 1) and the value of num(s.th 1) de-

termines whether full;(h — 1) is true in s. If full;(h — 1) is true then s'.nt} !
= s'th—1 We know that full,(h —1) = true if num;(s.th-1) > n—h+1.

max-: max

Furthermore, num;(s.t 1) > n—h+1 if either num(s.t%1) > n—h+1, or
num(s.thl) = n—h+1 and 5.t ' # s.th"1 We will preserve in u which

of the ranges [0,n—h+1), n—h+1, or (n—h+1,n] includes the value of
num(s.th—1). Notice, that we do not preserve information about the value
of full;(h') for any h' < h — 1. We add non-determinism to the abstract
action allowing it to “assume” any value of full;(h') for h' < h — 1.

The above discussion has motivated the particular value ranges preserved

by the abstract variables np and n.

5.5.2 The Abstract Property

Having defined the abstract state space, we can now define the abstract path
property o (h), and show that ¢, (h) “implies” the concrete path property
@(h) as required in condition (5.4), i.e. S~ !(paths (ps(h))) C paths (p(h)).

Definition 5.18 For any state u of BCTSSa(h), wa(h,u) = true iff for all
distinct x,y,z € u.V and for all i,j,k € {1,2},

{TMUJaZk} ?é {3a4a5} A {mlam%yi} = {3’4?5} = Ng = one

where one = n—h if h = n — 1 and one = 1 otherwise. Let pq(h) be
the path safety property with states (pq(h)) = states (BCTSS,(h)) and with
paths (wa (h)) the set of sequences of states u such that pq(h,u) holds.

Consider any pair of concrete and abstract states s and w such that
S(s,u), it its our intention that ¢, (h, u) implies ¢(h, s). Intuitively, @4 (b, u)
states as follows. First, there must not be three distinct views in ».V, from
which we can generate the set {3,4,5} by choosing either the first or the

5.5. THE ABSTRACTION 109

second view element from each view. This will imply that in s, no three
distinct processes with distinct views can be used to construct a choice vector
violating ¢(h, s). However, we do not know whether three distinct processes
with overlapping views can construct a violating choice vector. This may
occur if two processes in state s have the same view, with both view elements
in {3,4,5} and with the first element different from the second. In this case
num(s.t’,%;, v) # 1, where v denotes the first view element. The second part
of wq(h,u) implies that in s, three processes with overlapping views cannot
construct a violating choice vector.

Notice that ¢, (h) is equivalent to the conjunction of the two nonpa-
rameterized properties obtained from the cases h = n — 1 and h #n — 1.
Similarly, we shall see, that the abstract automaton BCTSS,(h) describes
exactly two distinct nonparametrized automata, namely for the cases of
h =1 and h # 1. Thus, our abstract verification problem consisting of
showing, paths (BCTSS,(h)) C paths (pq(h)), gives rise to only four non-
parametrized problem instances.

Lemma 5.8 S~ !(paths (o (h))) C paths (o(h)).

Proof. We show that if S(s,u) and ¢4 (h,u) holds then (h, s) holds. The
Lemma then follows immediately. Assume for the sake of contradiction
that ¢(h,s) does not hold. Then there exists a choice vector (¢; ...%,) and
distinct indexes 1, 7, k such that,

(#) st =stht = sop Tt = sth LA

{s.l;[h], s.t;[h],s.lx[h]} = {3,4,5} A

num(s.t'-1) <n—h41

max

Suppose that ¢;, ¢;, and ¢, all denote the same type of label (¢ or nt). Let

¢ = 1 if the type is ¢t and let ¢ = 2 if the type is nt. From (%) and Lemma 5.7

we have that s.view?[c] = s.4;[h], 3.1)71611)"7-‘[0} = s.;[h], and s.view}lc] =

s.lg[h]. Hence, {s.fuiewf[c],s.’uiew_’j‘[c],s.viewﬁ[c}} = {3,4,5}. This implies

that s.’uiew?, s.fuiew’; and s.mﬁewﬁ are all distinct, and from S there exists

distinct z,y, 2z € u.V such that z = 3.1)71611)?, Yy = 3.1)71611)’7-‘, and z = s.viewﬁ.

Hence, {z¢,yc, 2.} = {3,4,5} which contradicts pq,(h,u).

Now, suppose that /; and £; denote the same type of label, different from
the type denoted by ¢;. Let ¢ = 1 if /; and /; denote label type ¢ and let
¢ = 2 if they denote type nt. Let ¢ =1if c=2 and ¢ = 2 if ¢ = 1. From (%)
and Lemma 5.7 we have that {s.view![c], s.viewg[c], s.viewple]} = {3,4,5}.

i

s T o h o h oh o h
This implies that s.viewy # s.view. Suppose that s.view} # s.view; and

J°
s.mﬁewz # s.view’;. Then from S there exists distinct z,y,z € u.V such x =

ol _ U}
S.view; , Yy = S.VIew;

7y and z = s.’uiewg. Hence, {z¢,yc, 2z} = {3,4,5} which

110 CHAPTER 5. THE BCTSS ALGORITHM

contradicts ¢, (h,u). Therefore, suppose that s.viewZ = s.view! or s.viewZ

= s.vieu/;?‘. We assume without loss of generality the former case. We know
that s.view?[c], s.viewl[e] € {3,4,5}, and since {c,e} = {1,2} and s.viewﬁ’;l

= s.viewz,] we get from Lemma 5.7 that s.tg"*l = s.tzfl = 5.0 and s.t;[h]

= s.tg[h]. Let v = s.t;[h] = s.ty[h]. Then num(s.t—1) # 1. Now, from

‘max)

S there exists distinct z,y € u.V such that z = s.view? = s.viewZ and y =

3.1)71611)’77‘. Hence, {z.,zz 9.} = {3,4,5}. Furthermore, since z; = v we get

from S that w.n,, # one. This however contradicts o, (h,u).]

5.5.3 The Abstract Automaton

We first define a set of operators used in the actions of the abstract automa-
ton BCOTSS,(h). These operators can all be seen as abstract counterparts
of corresponding concrete operators. We show for each abstract operator,
that it preserves (is homomorphic w.r.t.) its concrete counterpart in a sense
to be made precise later.

The following two definitions provide abstract successor and predecessor
functions on elements of A/. For each abstract function we provide a lemma
stating that the function preserves its concrete counterpart, defined on the
concrete domain of naturals. Due to the abstraction of information, the
abstract functions return sets of elements from N. In the following we still
assume that one =n—h if h =n—1 and one = 1 otherwise.

Definition 5.19 For z € N,

{1} if ©=0 ANone=1

{n—h} if =0 ANone=n—h
z+1=< {(1,n—h), n—h} if z€{1, (1,n-h)}

{n—h+1} if =n—h

{(n—h+1,n]} if x€{n—h+1, (n—h+1,n]}
Lemma 5.9 For all z € {0,... ,n—1}, g(x + 1) € g(z)+1.
Proof. By definition of +1 and g. [

Definition 5.20 For z € N,

({0} if xt=0V z=1V
x=n—h Aone=n-h
o1 — 4 {1, (1,n—h)} if = (1,n—h)V
r=n—h Aone=1
{n—h} if *=n—h+1
({n—h+1, (n—-h+1,n]} if z=(n—h+1,n]

Lemma 5.10 For all x € {1,... ,n}, g(x — 1) € g(z)—1.

5.5. THE ABSTRACTION 111

Proof. By definition of —1 and g. [

The following two definitions provide predicates on the abstract state
variables n, np, and V describing when a valuation of these three variables
is walid. The validity predicates preserve information in an abstract state
about the relationship, in a corresponding concrete state, between the values
of num(th-1) and num(t! 1,
and the timestamp values.

v), for any v, and between these num-values

Definition 5.21 walid(n, np) iff for all v € A,

np=n—-h+1= (n,=n-h& \/(nwzone/\ /\ ny, = 0))
WHY UFV, UFW

The intuition behind the predicate valid(n, np) is as follows. Consider
a situation in which concrete processes may potentially move into the cycle
defined by the set of labels agreeing with 1 and having their h’digit
in {3,4,5}. Such movement can only occur if a process picks a new nt
label directly into the cycle. This can only occur if num(ti; 1) = n—h+1
and if the process picking the new nt-value agrees with %1, Moreover, if
num(th—1) = n—h41 then num(th.l v) = n—h if and only if there exists

exactly one w # v such that num(t!.! w) =1 and num(ti,.1 u) = 0 for all
other u. Preserving this information in abstract states will be used to ensure
that old elements of the abstract view set V must eventually be removed

during any continuous addition of new elements.

Lemma 5.11 If S(s,u) and num(s.t! 1) <n—h+1 then valid(u.n,u.np).

‘mazx

Proof. Consider the case that h # n—1. Then one = 1. The case h = n—1
is completely analogous. Let v be any element of A. Suppose u.np =
n—h+1. From S, num(s.t~1) = n—h+1. Suppose u.n, = n—h. From S,

‘max
num(s.th—1) = n—h and from the definition of num, there exists w # v
such that num(s.th—1 w) = 1 and for each z # v, z # w, num(s.th . 2)
= (0. Hence from S, u.n, = 1 and u.n, = 0 proving the = direction of
the biimplication. Now, suppose there exists w # v such that u.n, =1
and for each z # v, z # w, u.n, = 0. From S, num(s.t-1 w) = 1 and
num(s.th—1 2) = 0, and by definition of num, num(s.th 1 v) = n—h. Now,
from S, u.n, = n—h proving the < direction. [|

Definition 5.22 wvalid(V, n, np) iff valid(n,np) and for all v € A,

1. dzeViri=v & n, #0

2. dr,yeV =y =vANxo #yas = n, 7# one

112 CHAPTER 5. THE BCTSS ALGORITHM

The intuition behind 1 and 2 in the definition of valid(V,n, np) is rather
obvious. Part 1 preserves the fact that in any concrete state, if some process i
has t771 = 01 and t;[h] = v, i.e. viewf[1] = v, then num(th! v) # 0. Part

‘max ‘max’

2 preserves the fact that, if two distinct processes i and j have ¢! = t’j" =th
and nt! # nt’j", ie. view[l] = view’j"[l] and viewf[2] # viewé"[?], and if
viewl[1] = 1)71611)’77‘[1] = o, then num(tl 1, v) # 1.

Lemma 5.12 If S(s,u) and num(s.th—1) < n-htl then valid(u.V,u.n,u.np).

‘max

Proof. Consider the case that h # n—1. Then one = 1. The case h =n—1
is completely analogous. From Lemma 5.11 we have that wvalid(u.n,u.np)
holds so we consider the two additional requirements. Let v be any element
of A. Consider 1. Suppose z € u.V and 1 = v. From S there exists ¢
such that s.t?‘fl = 5.t"~1 and s.t;[h] = v. Now, from the definition of num,

‘max
num(s.th—1 v) # 0 and from S and g, u.n, # 0. Suppose u.n, # 0. From
S, num(s.th.l v) # 0 and hence there exists i such that s.t!~' = 5.1

and s.tj[h] = v. Hence from S there exists z € u.V such that z; = v.
Consider 2. Suppose z,y € u.V, 1 = y1 = v and z9 # yo. Then
from S there exists 4,4 such that s.t/~' = s.t?il = s.th=l and s.t;[h] =

s.tj[h] = v and s.ntf #+ S.nt?. Hence 7 # j and from the definition of num,
num(s.t!~1 4) # 1. Now, from S, u.n, # 1. [

‘max?

The following definition and corresponding preservation lemma shows,
that enough information is preserved in abstract states to deduce the value
of tmax|h] in corresponding concrete states where tp,q, # —.

Definition 5.23

maz< {x1 |z €V ANz #0} if {3,4,5} €
max = {z1]x eV ANz #0}
— otherwise

Lemma 5.13 If S(s,u), S.tmax # —, and num(s.th-1) < n—h+1 then
u.max = S.tmaz|h]

Proof. From the definition of s.t,,,, it follows that for any 4, if s.t?*] =
st then s.t;[h] <4 S.tmax[h]. Hence s.tmax[h] = mazs , {s.t;[h] | s.t7 " =
s.t"=11 From S we have that for any v € A there exists i such that s.t?*]
= s.th-1 and s.t;[h] = v iff there exists # € u.V such that z; = v. Now,
since S.tqr # — it follows directly from the definition of w.maz that u.max
= S.tmaz|h]-]

In the following we assume that maz # —. We define abstract functions
full-level and newlabel. The full-level function takes an element of V and
returns a subset of abstract values from a set {smlh, h,lrgh}. The newlabel

5.5. THE ABSTRACTION 113

function takes a view z from V and an abstract element in {smlh, h,lrgh}
and returns a new view.

The idea behind the functions is as follows. Suppose in any state of
BCTSS, that process k determines a new nig-value. It does so by performing
a snapg-action with op, = label. If t;,0, # — and k # ipqeq, then k uses
function full, to determine the A’ such that the new ni#; will be equal to
next-label(tmaz, h'). The h' will be the minimal h"” such full, (h") = true.
The abstract function full-level(x) with z = view? is intended to preserves
the order of h' with respect to h. Based on the result of full-level(x), the

newlabel function returns the new view of k.

Definition 5.24 For x € V,

({h,smlh} if 1 #0Anp=n—h+1 A

(£1 = max A gy =n—h+1V
1 # max A Ny = n—h) V
full-level(x) = <
z1=0Anp=n—hAny,,; =n—h

{Irgh, smlh} otherwise

Lemma 5.14 Let S(s,u), S.tymee # — and num(s.tP-1) < n—h+1. For any

max
k # Siimaz, if h' = min{h" | full,(h") = true} then for x = view}:

1. If b’ < h then smlh € full-level(z).
2. If h' = h then h € full-level(z).
3. If k' > h then lrgh € full-level(z).

Proof. Let k € {1,...,n} be such that k # s.imer. Let A’ be min{h" |
full,(K") = true} and let z = view!.

Suppose h' < h. Directly from the definition of full-level we have that
smlh € full-level(x).

Suppose h' = h. From the definition of full,, numy(s.th,.) > n—h

and numy,(s.t"~1) < n—h+1. From the definition of num, num(s.t!-1) >

max max
num(s.tl) and also, if num(s.th-1) = num(s.t!,) and s.tzf] = s.th-!

‘max ‘max ‘max
then s.t? = s.th . Hence, numy(s.th.1) > numy(s.th), and from above

‘max ‘max
numg (s.t0-1) = numy,(s.th) = n—h. Assume that s.thl = 5.th=1 Then

max-:

num(s.th—-1) = n—h+1. From S, 1 # 0 and u.np = n—h+1. Now, if s.t;[h]
= S.tmazlh] then num(s.th) = n—h+1. From Lemma 5.13, s.t;.[h] =
u.maz so by S, 1 = u.mazr and u.npe, = n—h+1. Directly from definition,
h € full-level(z). Tf s.tp[h] # s.tmaz[h] then num(s.th) = numg(s.th,,.)
=n—h. From S, z; # uw.maxr and u.ny,., = n—h, and from definition,
h € full-level(z). Assume now that s.tzf] < s.tP=l Then num(s.th—1) =

max* max
numg (s.th-1) = n—h and num(s.th) = numy(s.th,.) = n—h. From S,

‘max

114 CHAPTER 5. THE BCTSS ALGORITHM

21 =0, u.np = n—h, and u.ny,, = n—h, and again directly by definition,
h € full-level(x).
Suppose h' > h. Then numg(s.t!) < n—h, hence num(s.th) < n—h.

Suppose num(s.th) < n—h. Since u.nmez = 5.tmaez[h], we have from S,

UNmar € {n—h,n—h+1} and Irgh € full-level(z). Suppose num(s.t")
= n—h. Then s.t§ = s.t!, . From S, u.n., = n—h and z; = u.maz, and
directly from definition lrgh € full-level(x). [

Definition 5.25 For z € V and | € {smlh. h,Irgh}

(21,0) if 1 =smlh
newlabel(x,l) = < (z1, next(mazx)) if | =h
(21, mazx) if | =Irgh

We finally define an abstract function update, which takes as parameters
the set V, an element x of V, and a iy in (AU{0})2. The function is intended
to describe changes to the set V', resulting from abstract counterparts of
concrete view-changing actions. The parameter z is intended to describe
the view of the process k performing the view-changing action. The action
may result in a state where no processes has a view equal to the old view of
k. The parameter y is intended to describe the new view of k.

Definition 5.26 For any v € V, and y € (AU {0})?,

update(V, z,y) = {V U {y}, (V\{z}) U{y}}

We now define the abstract automaton BCTSS,(h). Given a variable x
and a set M of values in the range of . We use the notation z :€ M to
denote that x is set nondeterministically to some element of M.

Automaton BCTSS, (h) has three internal actions, newlabel(z), update(x),
and updatemaz.

The newlabel(x) action is the abstract counterpart of a concrete view-
changing snap; action, within the label operation, of a process ¢ with m’ew?
= . If the concrete snap; action is performed in a state where num(t?!)

‘max

> n—h+1, then num(t"1) > n—h+1 in the resulting state as well. From S,

max
we only require a correspondence between the concrete set of process views

and the abstract set V whenever num(t?1) < n—h+1 in the concrete state.
Thus, np # (n—h+1,n] is part of the precondition for action newlabel(z).
If the concrete snap; action is performed in a state where view? = (0,0)
th-1) = n—h+1, then view! does not change as a result of the
action. Thus, 21 = 0 = np # n—h+1 is part of the precondition for
newlabel(xz). The effect of newlabel(x) computes, based on the abstract
newlabel(x) function, a new abstract view corresponding to the new wview/.
The abstract set S is updated by adding the new view and possibly removing
x, based on the wvalid predicate.

and num(

5.5. THE ABSTRACTION 115

internal: newlabel(z) internal: update(x)
Pre: x €V Pre: x €V
r1 = I2 T17éT2/\T27é0
maz # — np # (n—h+1,n]
np # (n—h+1,n] Eff: ifz1 =0 A np=n—h+1 then
21 =0=>np#n—h+1 np:=mnp+1
Eff: 1:€ full-level(x) else
x' := newlabel(x,1) x' = (T2, T2)
V' :€ update(V,z,z") V' :€ update(V,z,z")
if valid(V', n, np) then if z1 = 0 then
V.=V np' :€ np+1
else
internal: updatemaz np' = np
Pre: true Ny, 1€ Mgy —1
Eff: V' :€ P{(0,0),(0,1)}\0 Mgy 1€ Ny +1
V=V U{(1,1)} Vy & {1, 22} ny :=ny
n1 = one if walid(V', n', np’) then
Vy7é].,ny =0 (Va n, np) = (Vlanlvnp’)
np 1= one

Figure 5.10: Precondition-Effect code for automaton BCTSS, (h)

The update(x) action is the abstract counterpart of a concrete view-
changing update; action of a process i with mlewg" =z and nt?‘*1 =th=1je.
m’ewﬁ2 # 0. Hence, t'~1 does not change as a result of the update; action.
The effect of update(z) computes a new abstract view, corresponding to the
new 7)7:671)5:1.
and n. The wvalid predicate guarantees validity of the updated variables.

Furthermore, it updates the abstract num-count variables np

The updatemaz action is the abstract counterpart of a concrete view-
changing wupdate; action of a process ¢ with nt?‘71 = th=1 je. ’1)7:6’11)?2 = 0.

‘max
Induction hypothesis (5.1) will prove that the action leads to a state with
a new value for "1 this value being the value of nt?‘fl; i.e. the new value

of tf”. Furthermore, in this new state, for all processes j # 1, t?*1 =<

t"~1. Lemma 5.6 will prove that #;[h] = 1 and hence that view? = (1,1).
Lemma 5.6 will also prove that all processes 7 # i will have view; either
(0,0) or (0,1) in the new state.

Lemma 5.15 BCTSS <P BCTSS.(h) via S

Proof. The proof is by induction on the length of an execution. If sy €
start (BCTSS) then for any 4, sq.t; = sg.nt; = 1"~ ! and hence 80.1)7:6’11)? =
(1,1). Moreover, we have that num(sg.t"—-1) = n, num(sg.th-1 1) = 1, and
num(so.th-1 v) = 0 for all v € A — {1}. Suppose h = 1. Then n =n—h+1
and for any ug € start (BCTSS,(h)), ug.V = {(1,1)}, u.np = n—h+1, u.n,

=n—h+1, and u.n, = 0 for all v € A — {1}. Hence S(s¢,up) in the case

116 CHAPTER 5. THE BCTSS ALGORITHM

h = 1. Suppose h > 1. Then n > n—h+1 and for uy € start(BCTSS,(h)),
the values of abstract variables are as for the case h = 1 except from wug.np
and ug.n1, both of which equals (n—h+1,n]. Thus S(sg,ug) in the case
h > 1.

Now, let s € states (BCTSS) and let u € states (BCTSS,(h)) such that
S(s,u). We then consider cases based on the type of action 7 performed by
s on a transition s — s'.

Case 1 (m € {beginscany, endscan(s),, beginlabel,, endlabel,}) : The

corresponding action! is u = w. No t-labels or nt-labels change as a result
of ms0 S(s',u).

Case 2 (7 = snapy) : Suppose S.tyey = — OF S.0p), = SCAN OF S.ipmay = k.
Then no t-labels or nt-labels change as a result of 7. We let the correspond-
ing step be u —— » and S(s’,u) holds since S(s, u) does so.

For the remainder of the case we assume that s.tp0, # —, s.0p, = label,
and $.4,,40 # k. From 7w we have that ni;, is the only label changing and hence
all of the state functions of S, except from possibly viewg‘, have the same
value in s’ as they do in s. More precisely, s'.tmaz = S.tmaz, num(s'.th-1) =

‘max
num(s.t0- 1), num(s' 481 v) = num(s.th1 v) for allv € A, and s .view! =
s.viewf for all i # k. Suppose that num(s.t" 1) > n—h+1. Then num(s'.t21)

> n—h+1. In this case we let the corresponding step be u — w. From
S(s,u) we have that u.np = (n—h+1,n] and hence S(s',u) holds.

For the remainder of the case we assume that num(s.t?—-1) < n—h+1. Let

h' be such that s'.nty = nest-label(s.tmaz, h'). Suppose .t~ < 5.t 1 and
num(s.th—-1) = n—h+1. From Lemma 5.4, 5.t = s.nf; and hence s.ntzf]

< sl 1 Thus s.wiew! = (0,0). From the definition of next-label, ' < h.
Hence, s'.nt) ' = s.th. 1 and so s'.nt! ' = s'.th- 1. Since no t-labels changes
we also have that s'.t! ' < s'.th-1. Now from definition, s'.view? = (0,0)
= s.’uiewz. In this case we again let u —— u be the corresponding step, and
S(s',u) holds since S(s,u) does so.

For the remainder of the case assume that num(s.th-1) # n—h+1 or s.tZ‘fl

b . newlabel(x) o
£ s.tp . Let the corresponding step be u —————— ' where z = s.viewy,.

‘max*
From S(s,u) we have that x € u.V, u.np # (n—h+1,n], and z; = 0 implies
u.np # n—h+1. From Lemma 5.13, u.mazr = s.tmez[h] (# —) and since
s.ty = s.nly we have that 7 = z9. Hence action newlabel(z) is enabled
in u. Let u” be the intermediate state resulting from performing all but
the last line in the effect clause of action newlabel(z). Then u".np = u.np,
u".ny, = u.n, for all v € A, u".V? € update(u.V, x, newlabel(x,1)) where [€

full-level(x). Let | be the result of resolving the nondeterministic assignment

- €
'We assume an always enabled stutter action € s.t. for any state u, u —— u
*We write u''.V for u'.V'.

5.5. THE ABSTRACTION 117

in action newlabel(z) such that, [= smlh if b’ < h, | = h if b’ = h, and
I =1rghif b’ > h. According to Lemma 5.14 we can resolve in this manner.
Recall that s'.tee = S-tmaz. If B' < h then s’.ntzfl = s'.th-1 Hence

‘max*
s'.viewl[2] = 0. Let ' = newlabel(z,l). From definition, =, = 0. If b’ = h
then s'.nty ' = s'.t0 1 and s'.nty[h] = newt(s' timaz[h]) and so s'.view][2] =

‘max
next(s' tmaz[h]). Now, since u.maz = ' .t,,q,[h] we have from newlabel(z,1),

hy = next(u.maz) = newt(s' tmaz[h]). If B > h then s'.nth ! = 5"tk 1 and

‘max
s'.ntr[h] = 8" timaz[h], and so s'.view?[2] = 8" tmaz[h]. From newlabel(z,1), !
= u.max = 8.ty [h]. Since no t-labels change by , s'.fmlewz] = 3.1)71611)21,

and from newlabel(z,1),) = z1. This concludes that 2’ = s'.view}. Now,
finally we resolve the last nondeterministic assignment in action newlabel(x)

such that = € «”.V iff there exists ¢ such that s'.view;’ = s.'uiewz. Then

from S, S(s',u”) and hence by Lemma 5.12, valid(u".V,u" .n,u".np). Now
let v’ = 4" and we have that S(s',u').

Case 3 (7 = update;,) : We consider cases based on the value of s.nt’,z*].

Case 3.1 (s.ntzf1 < s.th-1): Let the corresponding action be u —— .

‘max

From Lemma 5.6 part 2, 3.th1 # 5.t"~1 and hence from the definition of

‘max

th-1 s.tzfl < sl 1 Thus s.vieuff = (0,0). From 7, s'.tx = s.n# and since

‘max? ‘max*
tx is the only label changing we have that s'.t% 1 = s L Hence, s’ view}

= (0,0) = s.'mlewz. Furthermore, the rest of the state functions of f do not

change their value from s to s'. To be precise, num(s'.t'-1) = num(s.th-1),

1 4h—1 — h—1 D pvioanft — ol
num(s' .tynay,v) = num(s.t) o v) for all v € A, and §'.view; = s.view; for

all i # k. Now, S(s',u) holds since S(s,u) does so.

Case 3.2 (S.ntzfl = s.tl-1) . Since t; is the only label changing and since

‘max

s'.t;, = s.nty, we have that 5'.t,’§fmln = s.tﬁfa}v and num(s'.tﬁfai) > num(s.tfr’;l!;).

Also, for all i # k, s'.view! = s.view!. Suppose num(s.t"--1) > n—h+1. Then

num(s'.t"—-1) > n—h+1. In this case we let u —— u be the corresponding

step. From S(s,u), u.np = (n—h+1,n] and hence S(s’, u).

For the remainder of the case we assume num(s.t!-1) < n—h+1. Now,

suppose s.tZ*] = s.tl-1 and s.ty[h] = s.nty[h]. Again we let the corre-
. € . . —

sponding step be u — u. From 7, s'.view! = s.view!, num(s'.th 1) =

num(s.ti-1), and num(s.th. 1. v) = num(s.th.1 v) for all v € A. There-

fore S(s',u) holds since S(s,u) does so. For the remainder of the case we
therefore also assume that s.t',zfl # sth—1 or s.ty[h] # s.nty[h]. We let

maxr
update(z) 5
the corresponding action be 4 —————— o' where z = s.view}. From S,

z € u.V, zg = s.ntglh] (# 0), and z1 # zo. Also, u.np # (n—h+1,n].

Hence update(z) is enabled in u. Suppose s.tzfl # s.th—1 and num(s.th-1)

= n—h+1. Then num(s'.t'-1) > n—h+1. From S, z; = 0 and u.np =

max

n—h+1, and from action update(z), u'.np = (n—h+1,n]. Hence S(s',u’).

118 CHAPTER 5. THE BCTSS ALGORITHM

Now, suppose sth V= sith=1 or num(s.th-1) < n—h+1. From S,

max max
0 or w. np # n—h+1. From 7 we have as follows. If s. th < osth 1
then num(s'.th—1) = num(s f’}nal,) + 1, num(s'th1 29) = num(f’,‘nal,, T2)
+ 1, and for all v # xa, num(s".tl,.} v) = num(s.th. 1 v). sth ™t = sth 1

then num(s A1) = pum(s.tP-1Y, num(s’ 21 20) = num(s. tmm,,x]) 1,

max max max?
num(s' .th-—!

th L o) = num(s.th. 1 29)+1, and for allv € {x1, 72}, we have ‘rhat
h

num(s't L v) = num(s.th L v). Furthermore, s'.view = (z2,72). Let u”

be the intermediate state resulting from performing all but the last line in
the effect clause of action update(x).

If s. fh U< s.4"-1 we have from S, 2, = 0. In this case, u".np € u.np+1

max
and v".ng, € ung,+1. If s. fh = sl we have from S, z; # 0. In
this case, u'.n;, € ung, —1, u".np = u.np, and u".ng, € ung,+1. In ei-
ther of the above cases we can, by Lemma 5.9 and Lemma 5.10, resolve
the nondeterministic assignments of action update(z) such that u’.np =
g(num(s' 1)), u" g, = g(num(s' th-1 21)), u"ng, = g(num(s' 01 x9)).
Furthermore, u".n, = u.n, for all v & {1, 22} and "V € update(u.V,z,z")
where ' = (z2,72). Resolve the update aqqignmen‘r such that z € «".V iff
there exists 4 such that s'.vieuwf = s. mewk Now dlre(“rly from S, S(s',u")
and by Lemma 5.12, valid(u”.V,u n,u".np). Now, let v’ = u” and S(s’ ,u)

holds.

Case 3.3 (s. nth s sth=1y: 1In this case let the corresponding step be

max
updatemarx . . .
u — > u'. This action is always enabled. From Lemma 5.6 part 1,

there exists i # k such that s. th ' — s.th—~1 Hence for any j such that

!

max-
j#i, 7 £k, s. th T<s. th ' <os nth ', From induction hypothesis (5.1)
this implies that s. fh L<s. m‘h ! and hence for any i # k, s. fh L<s. m‘h L

Consider any i # k Since s th T =g th "and s th T— g nth ! we now

have that s'.t"~' < s'.t#~'. Hence s th T=s tﬁmi and num(s 1y =

1. From Lemma 5. 6 part 3, s.ntg[h] = 1 so num(s'.tmaz, 1) = 1, and for all
v #£ 1, num(th L v) =0. Also, s'.view! = (1,1). If there exists j # k such

max?
that s. m‘h = s.nt! ", then from Lemma 5.6 part 3, s.nt;[h] = 1. Thus,
since s. fh I« S.nt?’ ! we have that s'. mewj (0,1). Let u'.V be such that

(0,1) € u'.V iff there ex1sts j 76 k as above. If there exists j # k such that
s. m‘h ! ;é s. m‘h ! then s’ 7)7911) = (0,0). Therefore, let u'.V be such that
(0, 0) eu.V 1ff there exists j 76 k as above. Then directly from S, S(s',u).
|

5.6 The SPIN Verification

In this section we describe the automatic verification of our abstract algo-
rithm using the SPIN model checker. Besides verifying the abstract total
orderedness property of interest, we also present a few experiments on the

5.6. THE SPIN VERIFICATION 119

abstract model performed using SPIN. These experiments demonstrate how
SPIN can be used to automatically provide further insight into the workings
of the concrete algorithm - in particular into the workings of the bounded
timestamp domain.

5.6.1 The PROMELA Implementation

In the following we present the implementation of the abstract automaton
BCTSS,(h) in the input language PROMELA used by the SPIN model
checker. The implementation follows the translation scheme presented in
Chapter 2.

Views and Num-counts

In automaton BCTSS,(h) we use the state variable V' to describe sets of
process views. Variable V is a set of elements from (AU{0})2. In PROMELA
there is no built in support for a general set-datatype. We thus implement
the variable V using a two-dimensional array as described in Figure 5.11.
The PROMELA code declares a two dimensional bit-array where a bit-value

typedef al {bit nt[6]};
al t[6];

Figure 5.11: Views

in position (7,) is indexed t[i] .nt [j]. The interpretation of t[i] .nt [j]
having value 1 is the obvious one, namely that (7, j) is an element of variable
V.

In BCTSS,(h) we furthermore use the num-count variables np and n.
Variable np ranges over elements of the abstract domain of num-counts A
and n is an array ranging over N4, The abstract domain A is implemented
as a PROMELA message type and we declare variables np and n to represent
np and n, see Figure 5.12.

mtype = {zero, one, onh, nh, nho, nhon}

mtype np;
mtype n[6];

Figure 5.12: Num-counts

120 CHAPTER 5. THE BCTSS ALGORITHM

The Automaton

Based on the above declarations, the PROMELA implementation of au-
tomaton BCTSS, (h) is constructed as a single proctype declaration with a
skeleton as presented in Figure 5.13.

proctype BCTSS-alpha()

{

do

10 t[i] .nt[jl==1 && i==j && /* newlabel(i,j) */
(i!'=0 || np'!=nho) && np!=nhon ->

: t[i]l.nt[jl==1 && i'=j && /* update(i,j) */

j!=0 && np'!=nhon ->

1 true -> ... /* updatemax */

od

}

Figure 5.13: Process BCTSS-alpha()

Each action newlabel(z), update(x), and updatemaz from automaton
BCTSS,(h) is described by a separate entry in the do: :od loop construc-
tion of proctype BCTSS-alpha(). In Figure 5.13 only the precondition for
each action is presented. The first entry in the loop implements action
newlabel(x) with x = (i, 7). The second entry implements action update(x)
and the third entry implements action updatemnaz. The code in Figure 5.13
relies on a simple scheme for picking a random view, i.e. picking i and
j. The preconditions are obtained by a direct translation from automaton
BCTSS,(h) in Figure 5.10.

In the following we describe the PROMELA implementation of the effect-
code for action newlabel(x), i.e. the code that is to follow the -> symbol in
the first entry of the do::od loop. We assume that x = (i,7). The code
consists of a sequence of four code fragments implementing the separate
function calls in the effect clause of action newlabel(x), see Figure 5.10.
The code in Figure 5.14, implements the result of the first line in the effect
of action newlabel(xz). The variable flevel implements variable [. The
nondeterministic assignment, :€, is implemented by the nondeterminstic
if::fi structures having all selections guarded by true (1). The code uses
a value max which implements the value of maz from Definition 5.23. The
code follows directly from the definition of full-level(x), Definition 5.24. The

5.6. THE SPIN VERIFICATION 121

abstract values smlh, h, and Irgh from Definition 5.24 are represented by
values 0, 1, and 2, respectively.

/* compute flevel */

if

:: ((i!=0 && np==nho) && ((i==max && n[max]==nho)
Il (i!'=max && nl[max]==nh))) ||
(i==0 && np==nh && n[max]==nh) ->

if
:: 1 -> flevel=0
:0 1 -> flevel=1
fi

:: else ->
if
:0 1 -> flevel=0
0 1 > flevel=2
fi

fi;

Figure 5.14: Code computing flevel

Based on the value of flevel the next code fragment, see Figure 5.15,
computes the result of the second line in the effect of action newlabel(z).
Variable nl implements the value of z'[2]. Note, that z'[1] = z[1] and the
value of z[1] is already implemented in i. The code follows immediately
from Definition 5.25.

/* compute newlabel */

if

:: flevel==0 -> nl=0

1 flevel==1 -> if
:: max<b -> nl=max+1
:: max==5 -> nl=3
fi

: flevel==2 -> nl=max
fi;

Figure 5.15: Code computing nl

Now, the final code fragment, see Figure 5.16, implements the last two
lines in the effect of action newlabel(xz). The result of performing these
last two lines is simply that the new view z’ is added to V and the old
view z is either removed from V or kept, based on the value of the wvalid

122 CHAPTER 5. THE BCTSS ALGORITHM

predicate. Assuming that the valid predicate holds in the pre-state of action
newlabel(x), the only way the predicate can be violated in the post-state is
if the value of ny;, equals one. Note, that this value does not change by the
action. Thus in case ng;, = one we must make sure to remove the old view
z from V in order not to violate condition 2 in Definition 5.22. If n,, # one
the old view x can nondeterministically be removed or kept without causing
violations. Having decided whether the old view should be kept or removed,
the code then adds the new view to the viewset by setting t[i] .nt [n1]=1.

/* make valid (S,n,np) */

if
: n[il==one -> t[i].nt[jl=0
: else -> if
:: 1 -> t[i].nt[j1=0
i1 > t[i]l.nt[jl=1
fi
fi;

t[i] .nt[nl]=1

Figure 5.16: Code guaranteeing validity

The code for actions update(x) and updaternaz is implemented in a sim-
ilar straightforward manner.

5.6.2 The SPIN Verification

The abstract path property ¢, (h) that we wish to verify describes an invari-
ance property. Namely the property that the predicate ¢4 (h,u) must hold
in all reachable states u of BCTSS,(h). Thus, the property can be stated
directly in terms of an LTL invariant. In the PROMELA implementation
we maintain a boolean state variable violate which implements the above
state predicate. Variable violate is updated at the end of each entry in the
do: :od construction in BCTSS-alpha(), and our goal is then to verify that
the BCTSS-alpha() satisfies the LTL property []1(violate==0).

The updating of variable violate is performed as shown in Figure 5.17.
The boolean variables three, four, and five are all set if there exists three
distinct views spanning the set {3,4,5}. The variables ethree, efour, and
efive are all set if there exists three, not necessarily distinct, views spanning
{3,4,5}. In this last situation variable countl will be nonzero if there
exists a view z with z1,29 € {3,4,5}, x1 # m9, and n,, # one. Thus
variable violate is set to 1 exactly in the case that the state predicate from
Definition 5.18 is false.

5.6. THE SPIN VERIFICATION 123

if
:: (three==1 && four==1 && five==1) ||
(ethree==1 && efour==1 && efive==1 && count1!=0) -> violate=1
:: else -> violate=0
fi;

Figure 5.17: Predicate violate

We have successfully verified the property [](violate==0) for pro-
cess BCTSS-alpha(). As mentioned earlier, the parameter h in automaton
BCTSS,(h) and in the property ¢, (h) splits the verification into four cases.
The initial values of the num-count variables are defined based on the two
cases h = 1 and h # 1, and for each of these cases the code for automa-
ton BCTSS,(h) and the property ¢, (h) distinguishes two cases, based on
h=mn—1and h # n — 1. In the former case variable one = n—h and in the
latter case one = 1. Our verification has been carried out successfully for
all cases. We can thus conclude, that the concrete invariant ¢(h) holds for
the concrete automaton BCTSS for all possible values of A. This concludes
the proof of the Total Orderedness theorem, Theorem 5.1.

5.6.3 Further Experiments using SPIN

In the following we describe how SPIN can be used to experiment with the
abstract model in order to support our understanding of the bounded times-
tamp domain used in the concrete model. We first use SPIN to demonstrate
the need for values 1 and 2 in the set 4 that forms the basis of the bounded
timestamp domain. The values 1 and 2 are required to guarantee total
orderedness of timestamp values in the concurrent setting where processes
pick and update new labels nonatomically. Changing the concrete algorithm
such that any process picks and updates a new label in an atomic step re-
moves the need for values 1 and 2. We use SPIN to demonstrate this fact
by changing our abstract model correspondingly. We can basically reuse
our earlier proofs of property preservation to apply for the slightly changed
models. Thus, we actually prove that the changed concrete algorithm has
no need for values 1 and 2.

In the following we use SPIN to demonstrate the need for the value 1
in the set A. A similar demonstration can be done for value 2. Consider
the concrete automaton BCTSS changed to run on the bounded timestamp
domain (A—{1})" ! instead of A" !. The only changes to BCTSS occur in
the definition of function next-label, Definition 5.11, and in the initial values
of timestamp variables. Definition 5.11 is changed such that ¢5[h'] = 2 for
all ' > h, and the initial value of all ¢- and nt variables is changed from

124 CHAPTER 5. THE BCTSS ALGORITHM

11 to 27!, Changing the abstract automaton BCTSS,(h) to “match” the
changes in BCTSS is quite simple. The initial value of the abstract view set
V' is changed from {(1,1)} to {(2,2)} and in the effect of action updatemaz all
occurrences of the value 1 are replaced by the value 2. Now, upon verifying in
SPIN the same abstract total orderedness property as before but now for the
slightly changed model, immediately leads to an unsuccessful verification.
Furthermore, SPIN provides us with a counter example, which can easily
be used to construct an example behavior of the concrete automaton that
leads to a violation of the concrete total orderedness property.

The counter example produced by SPIN is illustrated in Figure 5.18. The

Action State State nr.

vV ={(0,0),(2,2)}, (1)

newlabel(0, 0)

newlabel(0, 0)
V= {(Oa 3)5 (25 2)}7

update(0, 3)
V =4(0,3),(2,2),(3,3)}, 4
np=n—h+1, n]2] =n[3] =n—h (4)
newlabel(2, 2)
V= {(0.3),(2,4), (3.3)}. o)
np=n—h+1, n[2] =n[3] =n—h
update(2,4)
V= {(05 3)a (3a 3)7 (47 4)}7
np=n—h+1, n[3] =n[4 =n—h
newlabel(3, 3)
V= {(05 3)a (3a 5)7 (47 4)}7
np=n—h+1, n[3] =n[4 =n—h

Figure 5.18: Counter example produced by SPIN

counter example is in the form of an execution of automaton BCTSS, (h).
The execution starts in state 1 and ends in state 7. For each state, the
contents of the abstract variables V', np, and n are shown. For the array
n, we only show the components with a content different from 0. Thus, in
state 1, n[i] = 0 for all i € A — {1,2}. The action leading from one state to
the next in the execution is shown in between the states. The final state,

5.6. THE SPIN VERIFICATION 125

state 7, of the execution violates the abstract state property since the view
set V' contains three distinct views spanning the set {3,4,5}.

Even though our new abstract automaton might be property preserving
with respect to the new concrete automaton, we do not know whether the
above negative verification result carries over to the concrete automaton.
Our preservation conditions, stated in Chapter 2, only guarantees positive
results to carry over. However, the counter example from above can eas-
ily be used to construct a concrete execution violating the concrete total
orderedness property.

Consider the concrete automaton running on timestamp domain (A —
{1})" ! in the situation where n = 3. The timestamp domain can be repre-
sented by the graph obtained from Figure 5.9 by removing all nodes (both
at level 1 and level 2) defined by labels including the digit 1. Now, consider
the situation in which three processes pi, ps, and ps have their timestamps
variables as follows: t; = nt; = 2.2, t9 = nity = 2.2, and t3 = nity = 3.2.
This situation does describe a reachable state in the concrete automaton.

Now, consider the case h = 2. From the concrete state we have that
th=1 =l =3 and thus from Definition 5.14 the set of concrete process

views for h = 2 is described exactly by the set V' in the abstract state 1 of
Figure 5.18. Processes p; and py have mew’l‘ = 1)71611)’2‘ = (0,0) and process p3
has wview? = (2,2). Moreover, in the concrete state, num(t}l,,.) =n—h =1,
num(t),,s2) = n—h =1, and num(t), ,.,v) = 0 for all v # 2. The abstract
state 1 abstracts these values in variables np and n. Now, in the concrete
state suppose process p; picks a new label. It will pick its new n#; label
as 3.3 thus changing wview! from (0,0) to (0,3). This step is represented
in Figure 5.18 as the transition from state 1 to state 2 via abstract action
newlabel(0,0). Continuing the generation of the concrete counter example
based on the abstract example leads to the following behavior.

After p; has picked its new label it delays its update. Now process pg
picks a new label choosing nty; = 3.3 as well. Having picked its new label,
p2 immediately updates its timestamp t9 = nts = 3.3. Now, process p3
picks a new label nt; = 3.4 and then updates its timestamp t3 = niz3 = 3.4.
Finally, process p2 picks a new label resulting in nty = 3.5. Now, in this
situation variables nt; = 3.3, nty = 3.5, and t3 = 3.4 generates a choice
vector violating the concrete total orderedness property. If process p; had
not delayed its update, the above situation could not have occurred.

Consider the concrete automaton BCTSS changed to run on the times-
tamp domain (A — {1,2})"!. Moreover, suppose additional changes that
guarantees that processes pick new ni-labels and update corresponding t-
labels atomically. A few changes to the abstract automaton BCTSS,(h) can
be made such that the resulting automaton path simulates the new concrete
automaton. Moreover, the simulation proof can be done almost entirely
by reusing the proof that BCTSS,(h) path simulates BCTSS. We verify
using SPIN that the new abstract automaton satisfies the abstract total

126 CHAPTER 5. THE BCTSS ALGORITHM

orderedness property and thus by property preservation the new concrete
automaton satisfies the concrete total orderedness property. Thus values 1
and 2 are not needed in the timestamp domain in the setting where processes
pick and update new labels in an atomic sequence.

Chapter 6

Fischer’s Mutual Exclusion
Algorithm

This chapter presents an application of abstraction techniques to prove cor-
rectness of a timing-based distributed algorithm. The considered algorithm
is Fischer’s mutual exclusion algorithm [AL93]. We prove that the parame-
terized algorithm satisfies the mutual exclusion property, where the param-
eter is the number of processes running the algorithm. Our proof exploits
both induction, compositionality, and abstraction to reduce the unbound-
edness of the input problem. The proof is within the timed framework
presented in Chapter 3. The algorithm and the the mutual exclusion spec-
ification are formalized as timed transition systems and our proof relies on
showing the existence of a timed ready simulation between these systems.
The algorithm is specified as a composition of timed automata and a proof
requires reasoning for any number of automata in the composition. Our
proof strategy first reduces the required amount of reasoning to involve only
three automata. The reduction strategy is based on the construction of an
abstract network invariant that correctly represents the behaviour of the
algorithm regardless of the number of components in its specification. The
reduced problem is translated into a reachability problem using the testing
approach of Chapter 3 and the resulting problem is directly verifiable using
the UPPAAL tool.

6.1 Background and Contributions

For any distributed system it is essential that the applied proof methods
supports compositionality. It should be possible to deduce properties of a
composed system based on reasoning about its components. Moreover, any
method of abstraction must be compositional as well. Meaning that the ab-
straction method can be applied independently to components of a system
“before” they are composed together, as even defining the abstraction rela-

127

128 CHAPTER 6. FISCHER’S MUTUAL EXCLUSION ALGORITHM

tion directly on the full composed system may very well be intractable. In
this chapter we show how our timed abstraction framework from Chapter 3
supports compositional reasoning by considering a proof of Fischer’s mutual
exclusion algorithm parameterized in the number of processes.

Besides compositionality our proof relies on the use of network invariants
and induction strategies. We construct an abstract model serving as an in-
variant for the compositionally defined concrete model of the algorithm. The
invariant is shown to correctly simulate the concrete model independently
of its number of components. Proving that the abstract model is indeed an
invariant is done by induction on the number of components of the concrete
model. The seperate steps in the inductive proof only requires reasoning
about a small number of processes and therefore model checking can be
used to establish the subgoals. We use the testing approach of Chapter 3 to
obtain input problems suitable for the UPPAAL model checker.

The idea of reasoning about parameterized systems using network in-
variants and induction on processes is not a new one. See [WL89b| and
[KM89] for some early applications in the untimed setting. The novelty of
our strategy is the adaption to a real-time setting and the use of parame-
terized network invariants.

Fischer’s algorithm has been analyzed for a finite number of processes
by real-time model checking tools [KLL197] and theorem proving methods
have been applied for the parameterized problem [Luc95]. Methods have
also been considered to automatically verify the parameterized algorithm
[AJ98].

6.1.1 Chapter Organization

This chapter is organized as follows. In section 6.2 we present Fischer’s algo-
rithm formalized in our timed automaton language. We also introduce the
method used to specify the mutual exclusion property. Section 6.3 presents
the high-level proof strategy that we use to prove the mutual exclusion prop-
erty. In section 6.4 we present the details of the network invariant and we
use it to extract our final proof obligations. Finally, in section 6.5 we show
how UPPAAL is used to discharge the obtained proof obligations.

6.2 Fischer’s Algorithm

In this section we present Fischer’s n-process distributed mutual exclusion
algorithm. The algorithm provides asynchronously executing processes with
mutually exclusive access to their critical regions based on local timing in-
formation. The algorithm usually runs on a shared memory model with a
single shared variable. We model the algorithm using our notion of timed
automata from Chapter 3 and in this model we have no shared variables.
Thus, we use a set of local variables, one per process, to model the single

6.2. FISCHER’S ALGORITHM 129

shared variable of the algorithm. Each local variable maintains a copy of
the shared variable. Whenever some process wants to update the shared
variable, it updates its local copy and synchronizes with all other processes,
initiating an identical setting of the local variables in these processes. The
synchronization will be atomic, guaranteeing consistency among the local
copies of the shared variable. A process wanting to read the shared variable
simply reads its local copy.

We assume that processes are indexed by the natural numbers N. Each
process 4 is modelled by a timed automaton P; as shown in Figure 6.1. Au-
tomaton P; has a local variable turn; € N U {0}, initially having the value
0. This variable models the shared variable as mentioned above. Further-
more, P; has a clock variable x; used to guard access to its critical region.
Automaton P; has actions test;!, set;!, enter;!, exit;!, and fail;!, and for each
J # 4 actions exit;? and set;?. Actions test;!, set;!, enter;!, exit;!, and fail;!
constitute the set of actions that P; performs in its protocol for entering
and leaving its critical region. We say that these actions are controlled by
P;. Actions ezit;? and set;? are used by process FP; to observe that some
other process P; sets its local variable turn;. This observation initiates an
identical setting in P; of variable turn;. Actions ezit;? and set;? are said
to be observed by P;. For any action test;!, set;!, enter;!, exit;!, and fail;!,
we assume a unique complementary action test;?, set;?, enter;?, exit;?, and
fail;?, respectively. The behaviour of P; is as follows. First note that P
is always ready to observe actions set;? and ezit;? for any j # i. That is,
these actions are enabled in any state of P;. An action set;? sets turn; to j
and an action ewit;? sets turn; to 0. Let j denote the set of process indices
{717 >1Aj#i}. In Figure 6.1 an edge labelled (set;?, turn; := j) denotes
a set of edges, one for each j € j. Any edge in this set is labelled uniquely
by a label (set;?, turn; := j) for some j € j. Analogously for edges labelled
(exit;?, turn; := 0). We will use this notational simplification in following
automaton descriptions as well.

Process P; starts in location /g with all variables set to 0. In [y, P; tests
the turn; variable. If turn; = 0, P; resets clock z; and enters location [;.
In this location, if P; delays no longer than one time unit it can set its
turn; variable (and hence all turn variables) to its own index i and then
enter location ly. Here P; will wait at least two time units before testing
the condition turn; = 4, which if it holds will grant P; access to its critical
region /3. Note, that we consider the upper and lower bounds on clock z;
to be constants 1 and 2, respectively. Fischer’s algorithm does not demand
these exact bounds in order to work correctly. It works for any upper bound
a and lower bound b satisfying that @ < b. We consider the exact bounds
1 and 2 in order to simplify matters. Our focus is an abstraction strategy
that reduces the unboundedness of the parameterized algorithm where the
parameter is the number of processes running the algorithm rather than the
clock bounds. Mutual exclusion will be insured since P; waits longer in [y

130 CHAPTER 6. FISCHER’S MUTUAL EXCLUSION ALGORITHM

! exit;? set;?
0 turn; :== 0/ turn; :== J

turn; = 0
test;!
z;:=0

) exit;? set;?
1 turn; := 0/ turn; :== J

Zq S 1
set;!
turn; 1= 1
;=0

I exit;? set;?
turn; := 0/ turn; :== j

ZTq Z 2
turn; =1
enter;!

exit;!
turn; :

exit;? set;?
turn; :== 0] turn; :== J
Figure 6.1: Automaton P;, g ={j|j>1Aj#1i}

before testing turn; than any process will delay in [y before setting the turn
variables. Whenever F; is in location ly and it sees the turn; variable having
a value different from i, it will not be able to enter /3 and thus it returns
to node ly. Finally, upon leaving I3 process P; resets the turn variables and
enter the initial node [.

To describe the parallel composition of automata we define a synchro-
nization function f as follows.

Definition 6.1 Let f be a synchronization function such that for all i € N,
test;!,0) = f(0, test;!) = test;!

enter;!,0) = f(0, enter;!) = enter;!

I
- f(
- f(
- f(sety!, set;?) = f(set;?, set;!) = set;!
- f(set;?, set;?) = set;?

— flexity!, exit;?) = f(exit;?, exit;!) = exit;!
- f(

exit;?, exit;?) = exit;?

and f takes value — for all other inputs.

6.2. FISCHER’S ALGORITHM 131

Proposition 6.1 f is associative and commutative.

For any n € N, we now define the composition F;, of processes Py, ... , P,
as follows.

Definition 6.2 For any n € N define F,, as, F;, = P, ®; --- Q5 P,.

Note that ®; is associative and commutative since by Proposition 6.1 f is
so. Consider any processes P; and P; in the composition F,,. Then P; can
perform actions set;! and ezit;! only if process P; synchronizes on actions
set;? and exit;?, respectively. This follows from the fact that f(set;!, set;?)
= f(set;?, set;!) = set;!, and f(set;!, 0) = f(0, set;!) = —. Analogously for ac-
tion exit;!. We thus have atomicity of actions setting the local turn variables,
ensuring consistency among these local copies. Furthermore, for process P;
actions set;? and exit;? are always enabled, ensuring that P; is always ready
to observe an update of the turn variables by P;.

We have defined F,, as an open system always ready to observe actions
from possible processes in the environment. More precisely, for any m > n
the actions set,,,? and exit,;,? are enabled in any state of F,,. When proving
mutual exclusion we are interested in Fj, as a closed system without any
processes in its environment. Therefore, we define a closed version of Fj,,
where the above actions are no longer enabled. We assume a special automa-
ton nil consisting of a single location (the initial location), a single clock,
no data variables, and no edges. Thus, the only behaviours of nil are delay
transitions. We define a synchronization function p,, as follows: p,(a,0) = a
for all a € {test;!, set;!, enter;!, fail,!, exit;!}, i < n, and p, takes value — for
all other inputs. Now, we define the closed version of F),, denoted F,, as
follows.

Definition 6.3 Define F,, as, F,, = F,, ®,, nil.

6.2.1 The Mutual Exclusion Property

Our goal is to prove the mutual exclusion property for F,, for all n > 1. For
any n, the property states that no reachable state of F,, exists in which more
than one process (in F,,) is in its critical region. Formally, we will state the
property using an abstract specification automaton. For any n > 1, we will
define a specification M,, that will specify the mutual exclusion condition
for F,,. Analogous to F,,, we will define M,, as the closed version of an open
specification M,,. We postpone the precise definition of M,, until section 6.4,
but assuming its existence we define as follows.

Definition 6.4 Define M,, as, M,, = M,, ®,, nil.
Our goal is now to prove the following,

Fpn =M, forall n>1 (6.1)

132 CHAPTER 6. FISCHER’S MUTUAL EXCLUSION ALGORITHM

That is, for any n > 1, there exists a timed ready simulation from F,, to
M, parameterized with the identity action relation id. The specification
M, will be stated over the same actions as those of F,,. Therefore, the re-
quirement of the identity action relation. By definition, proving 6.1 amounts
to showing that F,, ®,, nil < M, ®,, nil, for any n > 1. Using the com-
positionality principle, stated as Theorem 3.2 of Chapter 3, it will suffice
to show separately that F,, =< M, and nil < nil. The latter is trivial since
the < relation is reflexive. The compositionality theorem imposes a few
technical requirements on processes. It requires M,, and nil to be 7-free and
the identity action relation id must be closed with respect to the synchro-
nization function p,. Neither M,, nor nil will have any 7-transitions, and
by definition id is closed with respect to p,. Thus, proving 6.1 reduces to
proving,

F, <M, forall n>1 (6.2)

The proof of 6.2 will be the topic of the rest of this chapter. Recall, that
we still have not precisely defined the specification M,,. We merely assume
that it exists and that it correctly specifies the mutual exclusion property.

6.3 The Proof Strategy

In this section we come a few steps closer to the precise definition of the spec-
ification M,,. We will define M,, as a composition of a network invariant and
a well-formedness specification, and we will provide the overall proof strat-
egy for showing that this composition timed ready simulates process F), as
required in equation 6.2. The precise definition of the network invariant and
the well-formedness specification will be postponed until the next section.
For any n > 1, we will assume the existence of timed automata I,, and
WF,, denoted as the n’th network invariant and the n’th well-formedness
specification, respectively. Based on these automata we define the mutual
exclusion specification M,, as the synchronous composition of I, and WF,.

Definition 6.5 Define M,, as M, = I,, ®, WF,

Now, to prove equation 6.2 we can once again apply the compositionality
principle. To prove F,, < M,, it suffices to prove separately,

F, <1, forall n>1 (6.3)
and

F, X WF, forall n>1 (6.4)

The reasoning is valid due to the following argument. If 6.3 and 6.4 hold
then by Theorem 3.2 (Compositionality) we have for any n > 1, F,, ®, F,, =

6.4. THE ABSTRACTION 133

a € acts(P;) — {enter;!, exit;!}

exit;! enter;!

a € acts(P;) — {enter;!, exit;!}

Figure 6.2: Automaton W;

I, ®, WF,. By Theorem 3.1 (Idempotency of Synchronous Composition)
we have that F,, <= F, ®, F},,. Thus, from Theorem 3.3 (Transitivity) we
can conclude that F,, < I,, ®, WF,, i.e. F,, < M,. The additional technical
requirements of the involved theorems are all satisfied since none of our
processes include neither 7 nor urgent actions.

We have now reduced our overall proof goal to the two subgoals of equa-
tions 6.3 and 6.4. In the next section we will formally define the network
invariant I,, and the well-formedness specification WF;,, and we will consider
the proofs of equations 6.3 and 6.4.

6.4 The Abstraction

In this section we formally define the components I,, and WF,, of the mutual
exclusion specification M,, and we prove that these components satisfy the
equations 6.3 and 6.4 from the previous section. The proof of 6.4 will be
by a simple application of the compositionality principle. The proof of 6.3
will be using a combination of induction, compositionality, and abstraction.
This proof will constitute the main part of the rest of this chapter.

6.4.1 The Well-Formedness Specification

The purpose of the specification WF,, is to specify a certain well-formedness
requirement on any process P; in F;,. The requirement simply says that
any behaviour of F;, restricted to the actions enter;! and exit;! of P; is an
alternating sequence of these two actions beginning with enter;!.

For any ¢+ > 1 we define an automaton W; as shown in Figure 6.2. It
is obvious that any behaviour of W; restricted to actions enter;! and ezit;!
is an alternating sequence of these two actions beginning with enter;!. We
now define the well-formedness specification as follows.

134 CHAPTER 6. FISCHER’S MUTUAL EXCLUSION ALGORITHM

Definition 6.6 For any i > 1, define WF; as WF; = W1 @ --- ®; W;.

The specification WF,, provides the required well-formedness specifica-
tion for any process P; in F), as follows. First observe that actions enter;!
and ezit;! are not in acts(W;) for any W; such that j # i. Moreover, no such
W can prevent the execution of any action in W;. From the definition of f,
the only action of W; that needs synchronization is action ezit;!. However,
the complementary action ezit;? is always enabled in any W, j # 1.

Proving that for all n > 1, F,, < WF, (6.4) is simple. Recall that
F,=P®s-®;FP,and WF,, = W1 ®;---®;W,. Thus, due to Theorem 3.2
(Compositionality) we simply need to show that for every i > 1, P, < W;.
But this is obvious directly by inspection of Figure 6.1 and Figure 6.2.

6.4.2 The Network Invariant

The overall purpose of the network invariant I, is to serve as a weak mutual
exclusion specification for the set of processes in F,. The idea is that the
composition, M,,, of this weak specification, I,,, and the well-formedness
specification, WF,, will serve as the correct mutual exclusion specification.
We may say that WF, is used to strengthen [, in order to obtain the
correct specification. I, will specify, that for any indices 4, 7,k < n, no two
enter;!, enter;! actions can occur without an intervening exzit;! action. This
specification is weak in the sense that it does not require that £ = i. We
strengthen I,, to obtain the stronger specification requiring that k& = 4 by
composing it synchronously with the well-formedness specification WF,,.

We want to prove that I, satisfies equation 6.3, that is F,, < I,, for all
n > 1. To prove this we will use induction on n. The strategy will be as
follows: Assume that,

F, =<1, forall 1<m<n (6.5)
Prove that,

Fi <L and I, ®f P, <1, whenn >1 (66)

Then, F,, < I, for all n > 1 and equation 6.3 holds. The soundness of this
strategy is established as follows. Assume that 6.6 has been proved under
the assumption of 6.5. We will see how this can be used to conclude that
F, =< I, for all n > 1. The case n = 1 is trivial. Suppose n > 1. By
definition we know that F,, = F, ; ® P,. By induction hypothesis 6.5
we know that F,, 1 < I, 1 and thus by Theorem 3.2 (Compositionality),
F, 21, 1 ®; P,. From 6.6 we have that I,, 1 ®s P, = I, and thus by
Theorem 3.3 we can conclude that F;,, < I,,.

Using the term network invariant for I, is motivated by the fact that
the automaton satisfies equation 6.6. Intuitively, I, serves as an abstract
representation of all the processes in F,.

6.4. THE ABSTRACTION 135

o r; <1 .
?:Z?-zi =0 sét;! fail,! exite? setp? exit;!
7'1 2 0 turn; := j 3" turn; ;=0 [turn; ;= k [turn; :==0

yi ::0

Yi 22
1 < turn; <1

ezitj! exity?
turn; :=0 [turn; :=0
enter;!

0 setr?
f{”lJ' turn; = k

Figure 6.3: Invariant I;, j ={j |1 <j<i}, k={k| k> i}

We now present the automaton I; for any 4+ > 1. The automaton is
shown in Figure 6.3. It has actions test;!, set;!, enter;!, exit;!, and fail;! for
all 1 < 5 <4, and sety?, exity? for any £ > 4. This is exactly the action
interface of F;. Automaton I; has a single data variable turn; and two clock
variables x; and y;. Variable turn; ranges over the naturals including 0, and
it is used to represent the (unique) value held by the concrete set of turn
variables in F;. Clock variable x; will represent the local clock value of the
process in F; having performed the most recent test! action, and the clock
y; will represent the clock value of the process in F; having performed the
most recent set! action.

It is obvious directly from Figure 6.3 that automaton I,, specifies the
required weak mutual exclusion property for any n > 1. Recall that this
property states that for all 7, j, k < n, no two enter;!, enter;! can occur with-
out an intervening ezit;! action. If we let enter! denote any enter;! action,
i < n and ezit! denote any ezit;! action, i < n, then the above property
simply says that no two enter! actions can occur without an intervening
exit! action. We might say that the property is independent of the indices
of actions. If the only purpose of automaton I,, was to specify the above
property, a much simpler implementation than the one of Figure 6.3 is pos-
sible. However, our inductive strategy for proving that F,, =< I, imposes
restrictions on I,,. In particular, we must be able to prove the conditions of
equation 6.6 which implies that I,, cannot be too abstract.

In the following we make an attempt to create some intuition for au-
tomaton I; as it is defined in Figure 6.3 for any 1 > 1. We examine how
I; is intended to represent the behavior of processes in F;. In the initial

136 CHAPTER 6. FISCHER’S MUTUAL EXCLUSION ALGORITHM

state of Fj, as long as the turn variables have the value 0, any process in F;
can perform a test! action, and thereby reset its local clock to 0 and enter
location /1. In I; such an action is represented by a test! action from my
to itself. This action resets clock z;, thereby letting x; represent the local
clock of the concrete process having performed the most recent test! action.
In F;, any process being in location [y may perform a set! action no later
than one time unit from when the process entered /1. This also implies, that
any set! action may be performed no later than one time unit from when
the most recent process entered ;. Since the abstract clock z; preserves the
clock value of the most recent process to enter [y, we have that z; < 1 is a
safe weakening of the guard for any set! action in F;. Thus, z; < 1 serve as
guard in I; for the abstract set! action from my to itself. This abstraction
may of course allow I; to perform a set;! action, for some j <4, much later
than one time unit from the corresponding test;!. However, in I; all we want
to preserve is the fact that any set! action occurs no later than one time unit
from the most recent test! action. Any process in F; being in location Iy can
enter the critical region I3 provided it has spent at least two time units in [y
and provided the turn variable holds the index of the process. Due to the
overwriting of the turn variables on set! actions, a process entering I3 will be
the most recent process having performed a set! action. In I; we preserve, in
y;, the local clock of the concrete process having performed the most recent
set! action. Thus, in I; an enter! action is guarded by the condition y; > 2
combined with the condition that the turn variable must have some value
less than or equal to 4.

In the remainder of this chapter we present our proof that F, =< I,
for all n > 1. We use our inductive proof strategy presented in 6.6 and
6.7. Using the inductive strategy simplifies our proof from a task involving
an unbounded number of automata to a task involving only the automata
explicitly mentioned in proof obligation 6.7. However, all the automata of
6.6 contains an unbounded number of actions. In the following we construct
further abstractions of the automata in 6.6 in order to reduce the number
of actions. The resulting automata will allow for an automatic verification
of proof obligation 6.7.

Further Abstraction

In the remainder of this section n will denote the induction constant from 6.7.
We will use the technique of Section 3.3 to construct finite state abstractions
for the automata in 6.7.

Let A ={0,1,2,3} and let h: N — A be such that:

0if =0
if 1<z<n
if £=n
if ©>n

h(z) =

W N =

6.4. THE ABSTRACTION 137

It can easily be seen that (A, h) is an abstract data domain for I, 1, I,
and P, (If n = 1, I,,_1 is undefined). That is, h preserves, according to
the definitions of Section 3.3, the guards and the reset operations of each of
these automata.

Assume that actions consist of a nmame part and an indez part, and
that there exists functions index() and name() extracting the correspond-
ing information in the obvious way. For example name(test;!) = test! and
index(test;!) = i. Let R be the relation from AU {0} to AU {0} such that
(0,0) € R and for any actions a,b # 0, (a,b) € R iff name(a) = name(b)
and h(index(a)) = index(b). We now define sets of abstract actions. We
define sets ¥(1;) and X (P;) of abstract actions as follows: ¥(I;) = {b | Ja €
acts(l;). (a,b) € R} and X(P;) = {b | Ja € acts(P;). (a,b) € R}. Then
R is an action relation total on acts(l;) and X(I;) and total on acts(F;)
and X(P;). This implies that (X(;), R) and (X(F;), R) are abstract action
domains for I; and P;, respectively. Let S1 = ((A,h), (X(I,_1),R)), Sy =
((A,h),(2(In),R)), and Sg = ((A,h), (X(Pn), R)). Then S, So, and S5 are
abstract domains for I, 4, I, and P,, respectively. Automata (I, 1)g,,
(In)s,, and (P,)s, will be our abstractions of I,,_1, I,,, and P,.

In the case n = 1, (I,)g, will be identical to I, with indices of actions
ranging over the set {2,3}. Also, (P,)s, will be identical to P, with indices
of actions ranging over {2, 3} as well. In the case n > 1, (I,,_1)s, and (I,)s,
will be identical to I; and Iy, respectively, with indices ranging over the
set {1,2,3}. Analogously (P,)s, will be identical to P, with indices over
{1,2,3}. In the following we assume that I1, I, and P, have index sets as
described above.

It can easily be observed that each of the abstract automata are closed
under the action relation R. Thus, from Theorem 3.6(3.7) we have that
P, =R P, (P, <R P,)and I,_; <R I, (I, =® " I,_,). By Theorem 3.2
(Compositionality), and since R (R™!) is closed with respect to f, we have
that P, @I, 1 =B Py@; 1) (Pa®; 1 =% P, ®f I, 1). We further have,
from Theorem 3.7(3.6) that Io <RI, (I, =f I). Thus by Theorem 3.5
we have as follows:

P=<I iff P, <1, forn=1 (6.7)

and
Ly, =1, iff I, ®;P, <1, forn>1 (6.8)
We can thus conclude that our proof obligations stated in equation 6.6
can be replaced by the lefthand sides of equations 6.7 and 6.8. All the

automata of the new proof obligations have finite sets of actions. We can
now use the testing approach presented in Chapter 3 to verify the lefthand

138 CHAPTER 6. FISCHER’S MUTUAL EXCLUSION ALGORITHM

= z; <1 .)
igﬂlf?_ 0 Sé,g;? fail,? exity! setr! exit;?
€T; :J: 0 turn; 1= j 7’ turn; :== 0 |turn; == k turn; := 0

’IJIZO
O turn; # 0 /.Ti>]. /—|(in2/\

mo test;? set;? 1 <turn; <i) /5o
| enter;? ~
. i > 2
exity! exit;? 11/Z<7turni <i
turn; := 0 turn; := 0 en?erj? -
test;? /setﬂ /enterj? 59
/ / N

fail;? /f?f?;; =k
Figure 6.4: Test Automaton 17, j ={j |1 <j<i}, k={k |k > i}

sides of equations 6.7 and 6.8. This approach translates the checks for timed
ready simulations into reachability questions directly analyzable using the
UPPAAL tool. We consider the UPPAAL verification in the next section.

6.5 The UPPAAL Verification

We first consider how the lefthand sides of equations 6.7 and 6.8 are trans-
lated into reachability problems. For this we use the testing approach pre-
sented in Chapter 3.

Since automaton I; is 7-free and deterministic, for any z, we have from
Theorem 3.9 that,

P, passes the Io-test iff Py < I (6.9)
and

Iy @ Py passes the Ix-test iff Iy @y Py < Iy (6.10)

We thus construct the test automaton 77, for I such that in case n =1
we use the set {2,3} as index domain and in case n > 1 we use the set
{1,2,3}. We assume that any action a!(?) of Iy has a unique complemen-
tary action a?(!). Let s be the synchronization function defined as follows
for any 7 € {1,2}: s(test;!, test;?) = s(set;!, set;?) = s(enter;!, enter;?) =
s(setg?, set3!) = 7, and s takes value — for all other inputs. The test au-
tomaton 77, is shown in Figure 6.4. We will verify the lefthand sides of

6.5. THE UPPAAL VERIFICATION 139

equations 6.9 and 6.10 using the automatic verification tool UPPAAL which
allows for reachability analysis upon networks of timed automata. The au-
tomata of 6.9 and 6.10 are, with a few modifications, typed directly into the
graphical input language provided by the UPPAAL tool. The input for UP-
PAAL for 6.9 is shown in Figure 6.5 and for 6.10 in Figure 6.6. For simplicity
we have denoted I; by invariant, P by proc, and T}, by tester.

The timed automata input language for UPPAAL only allows for bi-
nary synchronization between processes in a composition (network). Since
all three automata in 6.10 synchronize on actions set and exit, we have to
somehow implement this using only binary synchronization. Fortunately,
the input language for UPPAAL allows us to do this using a special form of
location called committed locations. Consider for example the synchroniza-
tion consisting of automaton I; performing a set;! action and automata P
and Ty, both performing a sef;?. In the UPPAAL model, see Figure 6.6,
this is implemented as follows. Automaton invariant synchronizes in turn
with automata proc and automata tester. First, invariant performs a
set12! action synchronizing with action set12? of proc. Then invariant
performs a set13! action synchronizing with action set13? of tester.
Atomicity of the synchronization sequence is ensured by labelling the inter-
mediate node i2 of automaton invariant with a prefix c:, marking the
node as committed. This guarantees that once invariant enters location
i2, the next transition taken in the complete system will be from this lo-
cation. More precisely, no actions, including time-passage actions, can be
taken until invariant has left the committed location. Using the same ap-
proach, we implement synchronizations on the remaining set and exit actions
as well. No further modifications are made upon translation to UPPAAL
model.

The reject nodes of test automaton 77, correspond to locations (nodes)
t1 and t3 in tester. Thus, we want to verify that none of these locations
are reachable in the composition of invariant, proc, and tester. Stated
as a property in the logical property language of UPPAAL, this becomes:

A[] not (tester.tl or tester.t3)

We have verified the above property successfully in UPPAAL for both
inputs (cases n = 1 and n > 1). The verification taking less than 2 seconds.
We can therefore conclude that I, is an invariant for F), for any n.

140

CHAPTER 6. FISCHER’S MUTUAL EXCLUSION ALGORITHM

x3<=1
" set23?
Egg\;)::o fail2? turn3:=2

x3:=0

turn

set32!
turn3:=3

exit32!
turn3:=0

exit32!
turn3:=0

tester

exit23?

3:=0

turn3==2
test2?.

1
Il fischer
1

clock x2,x3,y3;
int turn2, turn3;
chan test2, test3,
set23, set32,
fail2, fail3,
enter2, enter3,
exit23, exit32;
system proc, tester;

config

turn2>2
ili2!
exitz3! fail
turn2:=0
turn2<2

fail2!

proc

exit32?
turn2:=0

Oy

Set32?
turn2:=3

x2<=1
set23!
turn2:=2
x2:=0

exit32?

turn2:=0
pZ\J

Set32?
turn2:=3

—
et32?
turn2:=3

Figure 6.5: Automata P, and Ty, in case n =1

6.5. THE UPPAAL VERIFICATION

141

set12?
turn2:=1
x1<=1 ci2 .
set12! exn::éZ?O
turnl:z1 | turn2:=|
eit3l? yltg S 9
aitz1? "L oiti2t B2
0 urni:= Cid
<iT1al exit12?
— — & ‘Ufn2|>2 turn2:20
turn1==0 fail2l w127
| ?
teg.i‘b turn2:=1
' exit23!
exit32?
turn2:=
turn2:=3
ci3 cpa
turnl:=0, turnl:=0
exit12?
exitL2l JnZ=0 12
turnl:=0 L
cps turn2:=1
exit32?
PZ— turn2:=0
Xx2>=2
turn2==2 tset32?_
enter2! urn2:=3
i i exitl2?
invariant eitlze
set12?
turn2:=1
Il exit32?
. turn2:=0
Z fischer 1327
clock x1,y1,x2,x3,y3; proc turn2:=3
inht turnl, turn2, turn3,;
chan testl, test2, test3, _
setl2, setl3, x3§5’% x3<:;|).
set21, set23, Setl3? - set237
set31, set32, . turn3:=1 turn3:=2
fail1, fail2, fail3, - fail2? y3=0 y3=0
enterl, enter2, enter3, wmn3==0 _ 1o)
exit12, exit13, test2? X exitl3?
exit21, exit23, x3:=0 tuirn3:=0
exit31, exit32; exit23?
system invariant, proc, tester; turn3==0 turn3:=0
test1? turn3==1
x3:=0 turn3==2 testl?
set32! W, test1? —
S turn3== 3
set31 [OF: e @
. cts (C—umazi AN uma==1 ,
config . test2? o
I \ turn3==2
exit32! o=
exit3i! \ turn3==3)
turn3;~0 \ test2?
cts x321-
x3>1 Set13?
SEt23?
35dp y3s2-7
. > enterl?
exit32! %’um%x% %,;%:.7:0
exit13? | WM3<= i ==
turn3:=0| enterl? %%?b 3
cit4 Va<2_
y3>=2 enter2? (Um3==0
el | exdzz? | lun>=1 s
turh3:=0 \ turn3:=0 | WnN3<= __
enter2? turn3==3
ct?
tester

Figure 6.6: Automata Iy, P, and Ty, in case n > 1

142 CHAPTER 6. FISCHER’S MUTUAL EXCLUSION ALGORITHM

Chapter 7

Conclusion

7.1 Thesis Summary

Abstraction Frameworks. In this thesis we have provided weakly pre-
serving abstraction frameworks for untimed as well as timed systems. The
untimed framework is based on I/O automata and it extends the standard
I/O automata theory with sound conditions for property preservation from
one automaton (the abstract one) to another (the concrete one). We provide
conditions for both action-based abstractions and state-based abstractions.
The action setting is based on properties expressed as sequences of actions
(trace properties) and the state setting is based on properties expressed as
sequences of states (path properties). For both settings we provide preser-
vation conditions for safety as well as liveness properties. Our preservation
conditions are based on variants of the forward simulation preorder tailored
for abstractions based on actions and states, respectively, and the condi-
tions therefore fits well into the existing I/O automata theory. To provide
tool support for doing abstraction-based verification in the I/O automaton
setting we have formalized parts of our abstraction theory in the Larch tool
set and we have examined a rudimentary scheme for translating finite-state
I/O automata and trace/path properties into the SPIN model checker.

In the timed setting we have provided an abstraction framework for real-
time systems described as timed automata. Our framework provides a link
to the UPPAAL real-time model checker. The verification engine of UP-
PAAL is based on efficient techniques for abstracting (strongly) the dense
time domain of real-time systems into a finite representation. These tech-
niques rely on certain restrictions imposed by the timed automaton model
on the allowed clock conditions in system descriptions. Thus, UPPAAL can
efficiently abstract the timing component of properly described real-time sys-
tems. However, it does not allow systems with unbounded control or data
information such as for example parameterized systems consisting of a num-
ber of composed processes, where the value of the number is the parameter,

143

144 CHAPTER 7. CONCLUSION

or systems with unbounded number of actions or unbounded data domains.
We provide conditions for sound abstractions of such systems. We rely on
system requirements expressed as abstract automata and a satisfaction re-
lation in the form of a timed ready simulation relation. Our preservation
conditions are based on a variant of this timed ready simulation as well.
We show that this variant enjoys properties such as preservation under sys-
tem composition thus supporting hierarchical verification. The UPPAAL
tool is based on verifying simple reachability properties and thus it does not
directly implement methods for checking the existence of timed ready sim-
ulations between automata. However, we provide a method for translating
the check for timed ready simulations into a reachability problem suitable
for the UPPAAL tool.

Applied Abstraction Strategies. A main result of this thesis is the
demonstration, through case studies, that our abstraction frameworks are
indeed useful in practice. The difficult part in using the frameworks is
finding suitable abstractions for given concrete systems. Useful abstraction
strategies depend on the concrete problem at hand. We have presented
useful abstraction strategies for the proofs of three nontrivial distributed al-
gorithms. All our proofs have the advantage that the essential functionality
of the considered algorithms is preserved in their finite-state abstractions.
Thus, proving properties about this functionality is performed by model
checking.

In our proof of the parameterized version of Burns’ mutual exclusion
algorithm we use a skolemization abstraction strategy to construct an ab-
stract interpretation of any pair of concrete processes including the possible
effects of processes in the environment. The skolemization strategy utilizes
that the mutual exclusion property is stated as a conjunction over pairs of
process indices. We have used the LP theorem prover to show that our
abstraction is indeed property preserving and the SPIN model checker to
verify the abstraction.

Our abstraction-based proof of the Bounded Concurrent Timestamp Sys-
tem (BCTSS) algorithm is the most advanced in this thesis. The BCTSS
algorithm is one of the most complicated algorithms in the distributed sys-
tems literature and existing proofs are all long and hard to understand. We
provide an abstraction-based proof of a key invariant of this algorithm es-
tablished and proved by hand within the I/O automaton model in [GLS92].
Our proof exploits a combination of induction and abstraction strategies
and it reduces the required amount of manually proven subinvariants from
the original proof.

Our proof of the parametrized version of Fischer’s mutual exclusion al-
gorithm utilizes a combination compositionality and abstraction strategies.
Our abstraction strategy involves the use of a network invariant. This invari-

7.2. FUTURE WORK 145

ant is shown to timed ready simulate the concrete system independently of
its number of component processes. Our network invariant is parametrized
(in the number of components it simulates) and has an unbounded num-
ber of transitions, but only finitely many locations. Using data abstraction
techniques we reduce the parameterized invariant to a simple finite-state
system.

7.2 Future Work

Case Studies — Liveness. All case studies considered in this thesis deals
with abstraction-based verification of safety properties. For real-time sys-
tems most interesting “liveness” properties are bounded liveness properties,
stating that something good happens within a certain time bound, and such
properties are actually safety properties. However, for untimed systems
real liveness properties do exist. Our untimed abstraction framework pro-
vides preservation conditions for liveness properties but we have not yet had
any practical experience in using these conditions to prove liveness under
abstraction. In the I/O automaton model used in this thesis liveness it actu-
ally treated in a restricted form called fairness. In [GSSL93| a generalized
I/O automaton model is considered permitting the verification of general
liveness properties. Further research may investigate how our abstraction
conditions can be generalized to this setting.

We believe that further case studies, regarding safety as well as liveness
properties and for timed as well as untimed systems, are of importance to
further investigate common abstraction patterns for classes of systems.

Integrated Tool Support. In this thesis we have only presented a rudi-
mentary scheme for translating I/O automata into the SPIN model checker.
Thus we have not actually integrated SPIN with the I/O automata frame-
work. Recent research has taken place that defines a specification language
IOA [GLVY7] for I/O automata supported by a parser and syntax checker.
Interesting future research aims at tools for extracting proof obligations from
algorithm descriptions and presenting them to theorem provers like LP and
model checkers like SPIN. This work is already in progress at the Laboratory
for Computer Science at M.I.T.

Further tool support integrating our timed abstraction framework with
the UPPAAL model checker also remains to be investigated.

146 CHAPTER 7. CONCLUSION

Bibliography

[ABL9S]

[Abr8s]

[ADY4]

[ADGT94]

[AHHY6]

[AJO8]

[AL93]

[BBSY]

[BCM*90]

Luca Aceto, Augusto Burgueno, and Kim G. Larsen. Model
checking via reachability testing for timed automata. In
Bernhard Steffen, editor, Proc. 4th In.t Conference on Tools
ans Algorithms for the Construction and analysis of Systems
(TACAS’98), volume 1384 of Lecture Notes in Computer Sci-
ence, pages 263 280. Springer, 1998.

K. Abrahamson. On Achieving Consensus using a Shared Mem-
ory. In Proceedings of 7th ACM Symposium on the Principles
of Distributed Computing, Toronto, Ontario, Canada, 1988.

R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183-236, 1994.

Y. Afek, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. A
Bounded First-in, First-enabled Solution to the /f-exclusion
Problem. In ACM TOPLAS, pages (16)3:939-953, 1994.

R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic
verification of embedded systems. IEEE Transactions on Soft-
ware Engineering, pages 22:181-201, 1996.

Parosh Aziz Abdulla and Bengt Jonsson. Verifying networks of
timed processes. In Bernhard Steffen, editor, TACAS’98, Tools
and Algorithms for the Construction and Analysis of Systems,
volume 1384 of Lecture Notes in Computer Science, pages 298—
312, Lisbon, Portugal, March/April 1998. Springer.

Martin Abadi and Leslie Lamport. An Old-Fashioned Recipe
for Real Time. Lecture Notes in Computer Science, 600, 1993.

J.C.M. Baeten and J.A. Bergstra. Real time process algebra.
Technical Report P8916, University of Amsterdam, 1989.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic Model Checking: 10?° states and beyond.
Logic in Computer Science, 1990.

147

148

[BHKS6]

[BIMY5]

[BLLT95]

[Bur78]

[CC77]

[CCT9]

[CC92a]

[CC92b]

[CES86]

[CGLY2]

[CPS89]

BIBLIOGRAPHY

J.A. Bergstra, J. Heering, and P. Klint. Algebra of commu-
nicating processes. In CWI Symposium on Mathematics and
Computer Science, pages 89 138. North-Holland, 1986.

B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be
traced. Journal of the Association for Computing Machinery,
pages 42(1):232-268, 1995.

Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pet-
tersson, and Wang Yi. Uppaal a Tool Suite for Auto-
matic Verification of Real-Time Systems. In Proc. of the
4th DIMACS Workshop on Verification and Control of Hy-
brid Systems, Lecture Notes in Computer Science, pages 22 24.
Springer Verlag, October 1995.

James E. Burns. Mutual exclusion with linear waiting using
binary shared variables. ACM SIGACT News, 1978.

P. Cousot and R. Cousot. Abstract Interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints, 1977.

P. Cousot and R. Cousot. Systematic design of program anal-
ysis frameworks, 1979.

P. Cousot and R. Cousot. Abstract Interpretation and Applica-
tion to Logic Programs. Journal of Logic Programming, pages
13:103 179, 1992.

P. Cousot and R. Cousot. Abstract Interpretation Frameworks.
Journal of Logic and Computation, pages 2(4):511 547, 1992.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite state concurrent system using temporal

logic. ACM Trans. on Programming Languages and Systems,
8(2):244 263, 1986.

E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and
abstraction. In Nineteenth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 1992.

R. Cleaveland, J. Parrow, and B. Steffen. The edinburgh con-
currency workbench: A semantics-based verification tool for
finite-state systems. In Proceedings of the Workshop on Auto-
mated Verification Tools for Finite-State Systems, volume 407
of Lecture Notes in Computer Science. Springer Verlag, 1989.

BIBLIOGRAPHY 149

[Dam96]

[DF95]

[DLY7]

[DOTY96]

[DS8Y]

[DY95]

[Gaw92]

[GGO1]

[GHY3]

[GLS92]

[GLV97]

D. Dams. Abstract Interpretation and Partition Refinement for
Model Checking. PhD thesis, Eindhoven University of Technol-
ogy, 1996.

Jiirgen Dingel and Thomas Filkorn. Model checking for infinite
state systems using data abstraction, assumption-commitment
style reasoning and theorem proving. In Proc. of CAV’95, vol-
ume 939 of Lecture Notes in Computer Science, pages 54—69,
1995.

Ekaterina Dolginova and Nancy Lynch. Safety verification for
automated platoon maneuvers: A case study. In Proceedings
Int. Workshop on Hybrid and Real-Time Systems (HART’97),
volume 1201 of Lecture Notes in Computer Science, pages 154—
170. Springer Verlag, 1997.

C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool
kronos. In Hybrid Systems I1I, Verification and Control, volume
1066 of Lecture Notes in Computer Science. Spinger Verlag,
1996.

Danny Dolev and Nir Shavit. Bounded Concurrent Time-Stamp
Systems Are Constructible. In Prooceedings of the 21st ACM
Symposium on Theory of Computing. Also in SIAM Journal of
Computing, pages (26)2:418-455, 1989.

C. Daws and S. Yovine. Two examples of verification of multi-
rate timed automata with KRONOS. In Proc. of the 16th IEEE
Real-Time Systems Symposium, pages 66—75, December 1995.

Rainer Gawlick. Concurrent timestamping made simple. Mas-
ter’s thesis, Massachusetts Institute of Technology, 1992.

S.J. Garland and J.V. Guttag. A Guide to LP, the Larch
Prover. Technical Report Research Report 82, Digital Systems
Research Center, 1991.

J.V. Guttag and J.J. Horning. Larch: Languages and Tools for
Formal Specification. Springer Verlag, 1993.

Rainer Gawlick, Nancy Lynch, and Nir Shavit. Concurrent
Timestamping Made Simple. In Israel Symposium on Theory
and Practice of Computing, 1992.

Stephen Garland, Nancy Lynch, and Mandana Vaziri. T0A:
A language for specifying, programming, and validating dis-
tributed systems. Technical report, Massachusetts Institute

150

[GM93]

[GSSL93]

[GW94]

[Har87]

[HHK95)]

[HKS7]

[HL94]

[HLRY2]

[HMS85]

[Hoa85]

[Hol91]

BIBLIOGRAPHY

of Technology, Laboratory for Computer Science, Cambridge,
1997.

M.C.J. Gordon and T.F. Melham. Introduction to HOL: a
theorem-proving environment for higher-order logic. Cambridge
University Press, 1993.

Rainer Gawlick, Roberto Segala, Jgrgen Sggaard-Andersen,
and Nancy Lynch. Liveness in timed and untimed systems.
Technical Report MIT/LCS/TR-587, Massachusetts Institute
of Technology, Laboratory for Computer Science, December
1993.

P. Godefroid and P. Wolper. A partial approach to model check-
ing. Information and Computation, pages 110:205 326, 1994.

D. Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, pages 8:231 274, 1987.

Monika R. Henzinger, Thomas A. Henzinger, and Peter W.
Kopke. Computing Simulations on Finite and Infinite Graphs.
In 36th Annual Symposium on Foundations of Computer Sci-
ence, pages 453 462. IEEE Computer Society Press, 1995.

7. Har’El and R.P. Kurshan. The cospan user’s guide. Technical
report, AT&T Bell Laboratories, 1987.

Constance Heitmeyer and Nancy Lynch. The generalized rail-
road crossing: A case study in formal verification of real-time
systems. Technical Report MIT/LCS/TM-511, Massachusetts
Institute of Technology, Laboratory for Computer Science,
Cambridge, November 1994.

N. Halbwachs, F. Lagnier, and C. Ratel. An experience in prov-
ing regular networks of processes by modular model checking.
Acta Informatica, pages 29(6/7):523 543, 1992.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism
and concurrency. Journal of the Association for Computing
Machinery, pages 32(1):137-161, 1985.

C.A.R. Hoare. Communicating Sequential Processes. Prentice—
Hall, 1985.

Gerard Holzmann. The Design and Validation of Computer
Protocols. Prentice Hall, 1991.

BIBLIOGRAPHY 151

[HP94]

[HWTY5]

[1594]

[J1.98]

[KLLT97]

[KMS9]

[Koz82]

[Kri98]

[Kur89]

G.J. Holzmann and Doron Peled. An improvement in formal
verification. In Proc. 7th Int. Conf. on Formal Description
Techniques (FORTE’9}), pages 177 194, Berne, Switzerland,
1994.

Pei-Hsin Ho and Howard Wong-Toi. Automated analysis of an
audio control protocol. In Proceedings of CAV’95, volume 939
of Lecture Notes in Computer Science, 1995.

A. Ingolfsdottir and B. Steffen. Characteristic formulae for pro-
cesses with divergence. Information and Computation, pages
110(1):149 163, 1994.

Henrik E. Jensen and Nancy A. Lynch. A Proof of Burns N-
Process Mutual Exclusion Algorithm Using Abstraction. In
Bernhard Steffen, editor, TACAS’98, Tools and Algorithms

for the Construction and Analysis of Systems, volume 1384

of Lecture Notes in Computer Science, Lisbon, Portugal,
March/April 1998. Springer.

K.J. Kristoffersen, F. Larroussinie, K.G. Larsen, P. Petterson,
and W. Yi. A compositional proof of a real-time mutual exclu-
sion protocol. In TAPSOFT’97 7th International Joint Con-

ference on the Theory and Practice of Software Development,

Lecture Notes in Computer Science, Lille, France, April 1997.
Springer Verlag.

R.P. Kurshan and K. McMillan. A Structural Induction The-
orem for Processes. In Proceedings of the 8th Annual ACM
Symposium on Principles of Distributed Computing, 1989.

D. Kozen. Results on the propositional mu-calculus. In Proc. of
International Colloguium on Algorithms, Languages and Pro-
gramming 1982, volume 140 of Lecture Notes in Computer Sci-
ence, Springer Verlag, Berlin, 1982.

Kare Jelling Kristoffersen. Compositional Verification of Con-
current Systems. PhD thesis, Aalborg University, Department
of Computer Science, Institute for Electronic Systems, Aalborg,
Denmark, August 1998.

R.P. Kurshan. Analysis of Discrete Event Coordination. In
J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, edi-
tors, Proceedings of the Workshop on Stepwise Refinement of
Distributed Systems: Models, Formalisms, Correctness, vol-
ume 430 of Lecture Notes in Computer Science, pages 414-454.
Springer Verlag, 1989.

152

[Kur94]

[Lam74]

[Lam86]

[LGS*95]

[LLSA94]

[LMWF94]

[LS91]

[LSVW95]

[LSWY5]

[LT87]

BIBLIOGRAPHY

R.P. Kurshan. Computer-Aided Verification of Coordinating
Processes - The Automata-Theoretic Approach. Princeton Uni-
versity Press, 1994.

Leslie Lamport. A New Solution of Dijkstra’s Concurrent Pro-
gramming Problem. Communications of the ACM, pages 78(8):
453 455, 1974.

Leslie Lamport. On Interprocess Communication. Parts I and
II. Distributed Computing, pages 1, 77 101, 1986.

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Ben-
salem. Property Preserving Abstractions for the Verification of
Concurrent Systems. Formal Methods in System Design, pages
6:11-44, 1995.

Butler W. Lampson, Nancy A. Lynch, and Jergen F. Sggaard-
Andersen. Correctness of at-most-one message delivery proto-
cols. In Richard L. Tenney, Paul D. Amer, and M. Umit Uyan,
editors, Formal Description Techniques VI (Proceedings of the
IFIP TC6/WG6.1 Sixth International Conference on Formal
Description Techniques, FORTE’93, Boston, October, 1993)
IFIP Transactions C, pages 385 400. North Holland, Amster-
dam, 1994.

Nancy Lynch, Michael Merrit, William Weihl, and Alan Fekete.
Atomic Transactions. Morgan Kaufmann, San Mateo, Calif.,
1994.

K.G. Larsen and A. Skou. Bisimulation through probabilistic
testing. Information and Computation, pages 94(1):1-28, 1991.

Nancy Lynch, Roberto Segala, Fritz Vaandrager, and H.B.
Weinberg. Hybrid 1I/O Automata. In R. Alur, T. Hen-
zinger, and E. Sontag, editors, Hybrid Systems III: Verification
and Control (DIMACS/SYCON Workshop on Verification and
Control of Hybrid Systems, New Brunswick, New Jersey, Octo-
ber 1995), volume 1066 of Lecture Notes in Computer Science,
pages 496 510. Springer Verlag, 1995.

K.G. Larsen, B. Steffen, and C. Weise. Fischer’s protocol revis-
ited: A simple proof using modal constraints. In 4th DIMACS
Workshop on Verification and Control of Hybrid Systems, New
Brunswick, New Jersey, 1995.

N. Lynch and M. Tuttle. Hierarchical correctness proofs for
distributed algorithms. In Proc. of the 6th ACM Symposium on
Principles of Distributed Computation, pages 137 151, 1987.

BIBLIOGRAPHY 153

[LT8Y]

[Luc95]

[LV95]

[LV6]

[Lyn96]

[McM93]

[Mil89]

[MNY5]

[MP92]

[NSY91]

[ORR*96]

Nancy Lynch and Mark Tuttle. An Introduction to In-
put/Output Automata. CWI-Quarterly, pages 2(3)219 246,
1989.

Victor Luchangco. Using simulation techniques to prove timing
properties. Master’s thesis, Massachusetts Institute of Tech-
nology, Department of Electrical Engineering and Computer
Science, Cambridge, June 1995.

N.A. Lynch and F. Vaandrager. Forward and backward simula-
tions - part i: Untimed systems. Information and Computation,
pages 121(2):214-233, 1995.

N.A. Lynch and F. Vaandrager. Forward and backward simu-
lations - part ii: Timing-based systems. Information and Com-
putation, 1996.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers, 1996.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

R. Milner. Communication and Concurrency. Prentice Hall,
Englewood Cliffs, 1989.

Olaf Miiller and Tobias Nipkow. Combining Model Checking
and Deduction for I/O-Automata. In Tools and Algorithms for
the Construction and Analysis of Systems, volume 1019 of Lec-

ture Notes in Computer Science, pages 1-16. Springer Verlag,
1995.

Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive
and Concurrent Systems: Specification. Springer-Verlag, New
York, 1992.

X. Nicollin, J. Sifakis, and S. Yovine. From atp to timed graphs
and hybrid systems. In Real-Time: Theory in Practice, volume
600 of Lecture Notes in Computer Science. Springer-Verlag,
1991.

S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas.
Pvs: combining specification, proof checking and model check-
ing. In R. Alur and T.A. Henzinger, editors, Computer Aided
Verification, volume 1102 of Lecture Notes in Computer Sci-
ence. Springer Verlag, 1996.

154

[Pau94]

[Pnu86]

[SA93]

[SAGG+93)

[SL95]

[VA95]

[WL89a]

[WL89b]

[WLLS8]

BIBLIOGRAPHY

Lawrence C. Paulson. Isabelle: A generic theorem prover. In
Lecture Notes in Computer Science, volume 828. Springer Ver-
lag, 1994.

Amir Pnueli. Applications of Temporal Logic to the Specifica-
tion and Verification of Reactive Systems: A Survey of Current
Trends. In Current Trends in Concurrency, J.W. de Bakker,
W.-P. de Roever, and G. Rozenberg (editors). Lecture Notes
in Computer Science, 224, Springer-Verlag, Berlin, pages 510

584, 1986.

Jorgen Sggaard-Andersen. Correctness of Protocols in Dis-
tributed Systems. PhD thesis, Department of Computer Sci-
ence, Technical University of Denmark, Lyngby, Denmark, De-
cember 1993. ID-TR: 1993-131.

Jorgen Sggaard-Andersen, Stephen J. Garland, John V. Gut-
tag, Nancy A. Lynch, and Anna Pogosyants. Computer-
Assisted Simulation Proofs. In Costas Courcoubetis, edi-
tor, Computer-Aided Verification (5th International Confer-
ence, CAV’93, Elounda, Greece, June/July 1993), volume 697
of Lecture Notes in Computer Science, pages 305—319. Springer
Verlag, 1993.

Roberto Segala and Nancy Lynch. Probabilistic simulations for
probabilistic processes. Nordic Journal of Computing, pages
2(2):250 273, August 1995.

P. Vitianyi and B. Awerbuch. Shared Register Access by Asyn-
chronous Hardware. In 27th Symposium on the Foundations of
Computer Science, Tel-Aviv, 1995.

P. Wolper and V. Lovinfosse. Verifying poperties of large sets of
processes with network invariants. Lecture Notes in Computer
Science, Springer Verlag, 407, 1989. Proc. of Workshop on
Automatic Verification Methods for Finite State Systems.

Pierre Wolper and Vincianne Lovinfosse. Verifying Properties
of Large Sets of Processes with Network Invariants, 1989.

Jennifer Lundelius Welch, Leslie Lamport, and Nancy Lynch. A
lattice-structured proof technique applied to a minimum span-
ning tree algorithm. In Proceedings of the Seventh Annual ACM
Symposium on Principles of Distributed Computing, Toronto,
Ontario, Canada, 1988.

BIBLIOGRAPHY 155

[Yi90]

[Yi91]

Wang Yi. Real-time behaviour of asynchronous agents. In
J.C.M. Baeten and J.W. Klop, editors, Proc. of the Confer-
ence on Theories of Concurrency: Unification and Extension,
CONCUR’90, volume 458 of Lecture Notes in Computer Sci-
ence, pages 502 520. Springer-Verlag, 1990.

Wang Yi. A Calculus of Real Time Systems. PhD thesis,
Chalmers University of Technology, Goteborg, Sweden, 1991.

156 BIBLIOGRAPHY

Appendix A

Proof of Theorem 4.2

Proof. If sy € start (Burns) then,

80-Upc; = So.upc; = rem
80.ppC; = S0.ppcj = rem
so-flag; = So-ﬂ(l!}j =0
SU.Si == S[).Sj — @

and if ug € start (Burns,) then,

UQ.UPCy = 1. UPC; = rem
UQ.ppcy = So.ppc, = rem
ug.flagy = uo-flag; =0
’LL[).SO = UO.S] = @

SO S{i,j} (50, UO).

Now, let s € states (Burns) and let u € states (Burnsa) s.t. Sy j3(s,u).
We consider cases based on the type of action m, performed by s on a
transition s &Burns s'. For each action 7, we consider z = i, z = j and
x & {i,7}. W & {i,j}, it is obvious from Burns that no shared or local
variables in processes or users with indices 7 or j change. So any transition
s % ' in Burns, with z ¢ {i,j}, can be matched by Burns, doing no
action and we still have Sy; j3(s', u).

Case 1 (7w, = try,):
Case a (z =1i):
. . . try, .
The corresponding execution fragment is u — . try, is enabled
in u as u.upcy = s.upc; = rem. From Burns the only changes are,

s'upe; = try and s'.ppc; = set-flg-0, and from Burns, the only
changes are, u'.upcy = try and u'.ppcy = set-flg-0 so Sg; j1(s',u').

Case b (z =j):

t
The corresponding execution fragment is u LIS Analogous to
above.

157

158 APPENDIX A. PROOF OF THEOREM 4.2

Case 2 (m, = set-flg-0,):

Case a (z =1):

Casei (i=1):
. . . set-flg-0-smiy
The corresponding execution fragment is u — u'.

set-flg-0-sml, is enabled in u as u.ppcy = s.ppc; = set-flg-0.
From Burns the only changes are s'.flag; = 0 and s'.ppc; =
set-flg-1. From Burns, the only changes are, u'.flagy, = 0 and
u'.ppcy = set-flg-1 so Sy; j1(s',u').

Case ii (1 # 1):

set-flg-0g
The corresponding execution fragment is u —— .

Fragment is enabled in w as u.ppcy, = s.ppc; = set-flg-0.
From Burns the only changes are s'.flag; = 0 and s'.ppc; =
test-sml-fst. From Burns, the only changes are, u'.flagy = 0
and u'.ppey = test-sml-fst so Sy; jy (s, u').

Case b (z = j):

set-flg-0,
The corresponding execution fragment is u —— u'. set-flg-0,

is enabled in u as u.ppc; = s.ppe; = sei-fig-0. As j >iandi>1
we know that 7 > 1 and hence from Burns the only changes
are s'.ﬂagj =0 and S’.ppcj = test-sml-fst. From Burns, the only
changes are, u'.flag; = 0 and u'.ppc, = test-smi-fst so Sy; j1(s',u').

Case 3 (7, = test-sml-fst(y),):

Case a (z =1):
Case i (s.flag, =1):

test-sml-faily .
The corresponding fragment is u ——— ', test-smi-fail,

is enabled in u as u.ppcy = s.ppc; = test-sml-fst. From Burns
the only changes are s'.S; = 0 and s'.ppc; = set-flg-0, and
from Burns, the only changes are u'.ppc, = set-flg-0, so
Sip (s u)-
Case ii (s.flag, =0, |5.5;] <i —2):
The corresponding fragment is u. From Burns the only change
is s'.5; = 5.5; U {y} and as y # j, we have Sy; ;3 (s, u).
Case iii (s.flag, =0, [s.5i] =i —2):

test-smi-fst-succy
The corresponding fragment is u u'. Frag-

ment enabled as u.ppcy = s.ppc; = test-sml-fst. From Burns
the only changes are §'.S; = 0 and s'.ppc; = set-flg-1. From
Burns, the only change is u'.ppcy = set-flg-1, so Sg; j1(s", u').

Case b (z =7, y=1):

159

Case i (s.flag; = 1):
test-smi-fail;
The corresponding fragment is u ——— u'. test-smi-fail,

is enabled in u as u.ppc; = s.ppc; = test-smi-fst. From Burns
the only changes are s'.S; = 0 and s".ppc; = set-flg-0, and
from Burns, the only changes are «'.S7 = () and u'.ppc, =
set-flg-0, so Sg; j1(s',u').
Case ii (s.flag; =0, |s.5;] <j—2):

If u.S7 = {0} the corresponding fragment is u. From Burns
the only change is s'.S; = s.5; U {i} and as u.P;.S = {0},
we have Sy; j1(s', u).

If u.P;.S = 0 let the corresponding execution fragment be
test-other-flg,
u —— u'. Fragment is enabled as u.P;.pc = s.ppcj =

test-smil-fst, and u.P;.S = (). From Burns the only change is,
as above, s'.5; = s.5; U {i}. From Burns, the only change
is u'.P.S = {0}, as u.flagy = s.flag;, so Sg; j(s',u').

Case iii (s.flag; =0, |s.5;| =75 —2):
If u.P.S = {0} the corresponding execution fragment is

test-smi-fst-succ,
u u’. Fragment is enabled as u.P;.pc =

s.ppc; = test-sml-fst and u.P;.S = {0}. From Burns the only
changes are s'.5; = () and s’.pp(:j = set-flg-1. From Burns,
the only changes are u'.P;.S = () and u'.Py.pc = set-flg-1, so
Sti (s’ uh).

If u.P;.S = () then let the corresponding execution fragment

test-other-flg, test-smli-fst-succ,
be u > u u'. test-other-flg; is

enabled in u as u.Py.pc = s.ppc; = test-sml-fst and u.P;.S =
(. From Burns,, u".Py.pc = test-sml-fst and v".P,.S = {0}
as u.flagy = s.flag;. Therefore, test-sml-fst-succ, is enabled
in ", From Burns the changes are s'.S; = () and s'.ppc; =
set-flg-1, and from Burns, the changes are, v'.P;.S = () and
u'.Py.pc = set-flg-1, so S jy (s, u').

Casec (z=j,y#£i):
Case i (s.flag, =1):
test-smi-fail;
The corresponding fragment is u ——— u'. test-smi-fail,

is enabled in u as u.ppc; = s.ppc; = test-smi-fst. From Burns
the only changes are s'.S; = 0 and s".ppc; = set-flg-0, and
from Burns, the only changes are «'.S7 = () and u'.ppc, =
set-flg-0, so Sg; j1(s",u').
Case ii (s.flag, =0, [5.5j| <j —2):
The corresponding fragment is u. From Burns the only change
is s'.5; = 5.5; U {y} and as y # i, we have Sy; j,(s',u).
Case iii (s.flag, =0, [s.5;| =7 — 2):

160

APPENDIX A. PROOF OF THEOREM 4.2

test-smi-fst-succ,
The corresponding fragment is u u'. Frag-

ment enabled as u.ppcy = s.ppc; = test-smi-fst and u.P.S =
{0} as i € s.S;'. From Burns the only changes are s'.S; =
(0 and s'.ppc; = set-flg-1. From Burns, the only changes are
u'.P.S = 0 and u'.P.pc = set-flg-1, so S; j3 (s, u').

Case 4 (7, = set-flg-1,,):

Case a (z =1):
Casei (i =1):

set-flg-1-smiy ,
The corresponding execution fragment is u — '

set-flg-1-sml, is enabled in u as u.ppcy = s.ppc; = set-flg-1.
From Burns the only changes are s'.flag; = 1 and s'.ppc; =
test-lrg. From Burns, the only changes are, u'.flag, = 1 and
u'.ppcy = test-lrg so Sy (s’ u').

Case ii (1 # 1):

set-flg-1g
The corresponding execution fragment is u —— /.

Fragment is enabled in w as u.ppcy, = s.ppc; = set-flg-1.
From Burns the only changes are s'.flag; = 1 and s'.ppc; =
test-sml-snd. From Burns, the only changes are, u'.flagy = 1
and u'.ppcy = test-sml-snd so Sg; jy(s', u').

Case b (z = j):

set-flg-1,

The corresponding execution fragment is u ——— u'. set-flg-1;
is enabled in u as u.ppe; = s.ppc; = sel-flg-1. As j > i and
1 > 1 we know that 7 > 1 and hence from Burns the only
changes are s'.flag; = 1 and s'.ppc; = test-sml-snd. From Burns,
the only changes are, u'.flagy = 1 and u'.ppe; = test-smi-snd so

S{“]} (Sl, U’).

Case 5 (m, = test-sml-snd(y),):

Case a (z =1):
Case i (s.flag, = 1):

. . test-smi-faily)
The corresponding fragment is u —— ', test-smi-fail,

is enabled in u as w.ppcy = s.ppc; = test-sml-snd. From
Burns the only changes are s'.S; = () and s'.ppc; = set-flg-0,
and from Burns, the only changes are u'.ppcy, = set-flg-0, so

S{“]} (Sl, U’).

Case ii (s.flag, =0, |5.5;| <i —2):

The corresponding fragment is u. From Burns the only change
is s'.5; = 5.5; U {y} and as y # j, we have Sy; ;3 (s, u).

'Relies on invariant: pc; = test-sml-fst A j €S = 1< j < i

161

Case iii (s.flag, =0, [5.5;| =1 —2):

. . test-sml-snd-succy)
The corresponding fragment is u > u . Frag-

ment enabled as u.ppcy = s.ppc;, = test-smil-snd. From Burns
the only changes are s'.S; = () and s'.ppc; = test-lrg, as i <
j < n. From Burns, the only change is u'.ppc, = test-Irg, so
Stigy (s’ u')-
Case b (z =7,y =1):
Case i (s.flag; =1):

test-smi-fail;)
The corresponding fragment is u ——— u'. test-smi-fail,

is enabled in w as u.ppc; = s.ppc; = test-smi-snd. From
Burns the only changes are s'.S; = () and s'.ppc; = set-flg-0,
and from Burns, the only changes are u'.S1 = () and u'.ppc,
= set-flg-0, so Sg; j1(s",u').
Case ii (s.flag; =0, |s.5;] <j—2):

If u.S7 = {0} the corresponding fragment is u. From Burns
the only change is s'.S; = s.5; U {i} and as u.P;.S = {0},
we have Sy, j1(s', u).

test-other-flg,
If u.P.S =0 let u > u' be the correspond-

ing fragment. Fragment is enabled as u.Py.pc = s.ppc; =
test-sml-snd, and u.P;.S = (). From Burns the only change
is, as above, s'.5; = 5.5; U {i}. From Burns, the only change
is u'.P.S = {0}, as u.flagy = s.flag;, so Sg; j(s',u').
Case iii (s.flag; =0, |s.5;| =75 —2):
Case A (j =n):
If u.P;.S = {0} the corresponding execution fragment is

test-sml-snd-succ-lrg, ,
U u'. Fragment is enabled as u.P;.pc

= s.ppcj = test-sml-snd and u.Py.S = {0}. From Burns
the only changes are s'.5; = () and s'.ppc; = leave-try.
From Burns, the only changes are u'.Py.pc = leave-try,
S0 S{Z‘J‘}(SI,U’)-

If u.P;.S = () let the corresponding execution fragment be

test-other-flg, test-sml-snd-succ-lrg,
" ! :
U U u'. test-other-flg, is en-

abled in u as u.P1.pc = s.ppc; = test-sml-snd and u.P,.S
= (. From Burnsg, u".Pi.pc = test-sml-snd and u".P;.S
= {0} as u.flagy = s.flag;. Therefore, test-sml-snd-succ-lrg,
is enabled in u”. From Burns the changes are s'.S; = 0)
and s’.pp(:j = leave-try. From Burns, the changes are,
u'.Py.pc = leave-try, so Sy; jy(s',u').

Case B (j #n):

If u.P;.S = {0} the corresponding execution fragment is
test-sml-snd-succy , .
U — u'. Fragment is enabled as u.P;.pc

162

APPENDIX A. PROOF OF THEOREM 4.2

= s.ppc; = test-smil-snd and u.P;.S = {0}. From Burns
the only changes are s'.S; = () and s'.ppc; = test-Irg.
From Burns, the only changes are u'.P;.pc = test-Irg, so
Sqig (s u').

test-other-flg, " test-smi-snd-succy

fuP.S=0letu —— u s u' be
the corresponding fragment u'. test-other-flg, is enabled
in u as u.Pr.pc = s.ppc; = test-sml-snd and u.P,.S5 =
(. From Burns,, u".P.pc = test-sml-snd and u".P;.S =
{0} as u.flagy = s.flag;. Therefore, test-sml-snd-succy is
enabled in «”. From Burns the changes are s'.5; = () and
s’.ppcj = test-Irg. From Burns, the changes are, u'.P;.pc

= test-Irg, so Sy; ;3 (s, u').

Casec (z=j,y#i):
Case i (s.flag, = 1):

test-smli-fail,

The corresponding fragment is u ——— u'. test-sml-fail,
is enabled in u as u.ppc; = s.ppc; = test-sml-snd. From
Burns the only changes are s'.5; = () and s’.pp(:j = set-flg-0,
and from Burns, the only changes are u’.S; = () and v’.ppc,
= set-flg-0, so Sg; j3(s',u').

Case ii (s.flag, =0, |5.5;| < j —2):

The corresponding fragment is u. From Burns the only change
is s'.5; = 5.5; U {y} and as y # i, we have Sy, j1(s',u).

Case iii (s.flag, =0, [s.5;] =j — 2):

Case A (j =n):
test-sml-snd-succ-lrg;
The corresponding fragment is u — .

Fragment enabled as u.ppe; = s.ppc; = test-smil-snd and
u.P;.S = {0} as i € 5.5;%. From Burns the only changes
are s'.5; = 0 and s’.pp(:j = leave-try, and from Burns,
the only changes are u'.Py.pc = leave-try, so Sy, jy(s',u').

Case B (j #n):

. . test-sml-snd-succy ,
The corresponding fragment is u — u'.

Fragment enabled as u.ppc; = s.ppc; = test-smil-snd and
u.Py.S = {0} as i € 5.5;%. From Burns the only changes
are s'.8; = () and s'.ppc; = test-lrg, and from Burns, the
only changes are u'.Py.pc = test-lrg, so Sy; jy(s',u').

Case 6 (m, = test-Irg(y),):

Casea (z=1i,y=17):

Relies on invariant: pe; = test-sml-snd AN j € S; = 1< j <.

3As above.

163

Case i (s.flag; =1):
test-lrg-fail,
The corresponding fragment is u ——— ', test-lrg-fail,

is enabled in u as u.ppcy = s.ppc; = test-lrg. From Burns
the only changes are s'.S; = 0, and from Burns, the only
changes are u'.Sy = (), so Sg; j1(s',u').

Case ii (s.flag; =0, [5.5i| <n —i—1):
If u.Sy = {1} the corresponding fragment is u. From Burns
the only change is §'.S; = s.5; U {j} and as u.Py.S = {1},
we have Sy; j1(s', u).

test-other-flg,
If u.Py.S = 0 let u ———— ' be the corresponding frag-

ment. Fragment is enabled as u.FPy.pc = s.ppc; = test-lrg,
and u.Py.S = (. From Burns the only change is, as above,
§'.S; = s.5; U {j}. From Burns, the only change is u'.Py.S
= {1}, as u.flag; = s.flag;, so S; j1(s",u').

Case iii (s.flag; =0, [s.5;)| =n—1i—1):

test-lrg-succy
If u.Py.S = {1} let u —— u' be corresponding frag-

ment. Fragment is enabled as u.Py.pc = s.ppc; = test-lrg and
u.Py.S = {1}. From Burns the changes are s'.5; = s.5; U
{j} and s'.ppc, = leave-try. From Burns, the only changes
are u'.Py.pc = leave-try, so Sg; jy (s, u').

If u.Py.S = 0 let the corresponding execution fragment be
test-other-flg, test-lrg-succy .
u u” u'. test-other-flg, is

enabled in u as u.Py.pc = s.ppc; = test-lrg and u.Py.S =
0. From Burns,, u".Py.pc = test-lrg and u".Py.S = {1} as
u.flagy = s.flag;. Therefore, test-Irg-succ; is enabled in u'.
From Burns the changes are s'.S; = s.5; U {j} and s'.ppc; =
leave-try, and from Burns, the changes are, u'.Py.S = {1}
and u'.Py.pc = leave-try, so S; j(s',u').
Case b (x =i,y #j):
Case i (s.flag, =1):

. . test-lrg-fail,)
The corresponding fragment is u ——— u'. test-sml-fail,

is enabled in u as u.ppcy = s.ppc; = test-lrg. From Burns
the only changes are s'.S; = (), and from Burns, the only
changes are u'.Sy = (), so Sy; j1(s",u').
Case ii (s.flag, =0, [s.5;] <n—i—1):
The corresponding fragment is u. From Burns the only change
is s'.8; = 5.5; U {y} and as y # j, we have Sy; ;1(s', u).
Case iii (s.flag, =0, [s.5i|=n —i—1):

. . test-lrg-succy
The corresponding fragment is v —— «'. Fragment

enabled as u.ppcy = s.ppe; = test-lrg and u.Py.S = {1} as j

164 APPENDIX A. PROOF OF THEOREM 4.2

€ 5.5;*. From Burns the only changes are s'.ppc; = leave-try.
From Burns, the only changes are u'.Py.pc = leave-try, so
Stijy (s’ u').
Case ¢ (z =j):
Case i (s.flag, =1):

. . test-lrg-fail, .
The corresponding fragment is u ——— u'. test-lrg-fail; is

enabled in u as u.ppc, = s.ppc; = test-lrg. From Burns there

are no changes, and from Burns, neither, so S{,;yj}(s’,u').
Case ii (s.flag, =0, [s.5;] <n —j —1):

The corresponding fragment is u. From Burns the only change

is s'.5; = 5.5 U {y} and as y # i, we have Sy, j1(s',u).
Case iii (s.flag, =0, [s.Sj|=n—j —1):

test-lrg-succ,
The corresponding fragment is u — u'. Frag-

ment enabled as u.ppc, = s.ppc; = test-lrg. From Burns the
only changes are s’.ppcj = leave-try. From Burns, the only
changes are u'.ppc, = leave-try, so Sy; j1(s',u').

Case 7 (m, = crity):

Case a (z =1):

. . . CTitO . .
The corresponding execution fragment is u ——— u'. crity is

enabled in u as u.ppcy = s.ppc; = leave-try. From Burns the only
changes are, s'.ppc; = crit, and from Burns, the only changes
are, u'.ppcy = crit, so Sg; ;3 (s', u').

Case b (z = j):

crity
The corresponding execution fragment is u —— u’. Analo-

gous to above.

Case 8 (m,; = exity):

Case a (z =1):
. . . exity , .
The corresponding execution fragment is u —— u'. exify

is enabled in u as u.upcy = s.upc; = crit. From Burns the only
changes are, s'.ppc; = reset, and from Burns, the only changes
are, u'.ppcy = reset, so Sg; j1(s",u').

Case b (z =7):

. . . exity
The corresponding execution fragment is u ——— «'. Analo-

gous to above.

Case 9 (m, = reset,):

“Relies on invariant: pe; = test-lrg A j € S; = i < j < n.

165

Case a (z =1i):
. . i reseto ,
The corresponding execution fragment is u —— u'. resety

is enabled in u as u.ppcy = s.ppc; = reset. From Burns the only
changes are, s'.flag; = 0, §.S; = 0, and s'.ppc; = leave-exit.
From Burns, the only changes are, u'.flagy = 0, u'.Sy = 0, and
u'.ppey = leave-exit, so Sy; jy (s, u').

Case b (z =j):

resety
The corresponding execution fragment is u —— «'. Analo-

gous to above.

Case 10 (7, = remy):

Case a (z =1i):
. . . remo /
The corresponding execution fragment is u —— u'. remyg

is enabled in w as u.ppcy = s.ppc; = leave-exit. From Burns
the only changes are, s'.ppc; = rem, and from Burns, the only
changes are, u'.ppcy = rem, so Sy; j1(s',u').

Case b (z =j):

. . . remi
The corresponding execution fragment is u —— u'. Analo-

gous to above.

166 APPENDIX A. PROOF OF THEOREM 4.2

Appendix B

Proof of Lemma 5.6

Proof. The proof is by induction on the length of an execution and it is
organized as the following sequence of Lemmas and Claims.

Lemma B.1 The initial state satisfies 1, 2 and 3.

Proof. 1, 2 and 3 holds in the initial state sg since for any i, sg.t; = sg.nt;
=1L [

Now, assume that 1, 2 and 3 holds in s. Consider cases s — s’ based
on the type of action .

Lemma B.2 If m = update;, then s' statisfies 1, 2 and 3.
Proof. The following claims prove Lemma B.2.

Claim B.1 If s.ntZ’*1 < st 1 then s’ th-1 = g.th1

max ‘max ‘max *

max

the definition of ! s.t};’*l =< s.tzfl. By 1, s.tzfl = s.ntzfl and as a

Proof. Suppose s.t"j‘*] #+ s.th=1 for all j # k. Consider any j # k. From

‘max?
result of the action 5’.t2‘71 = s.ntzfl. Hence 5’.t2‘71 = s.tZ‘fl. Since t, is the
only label changing, s’.t"j”*l = s.t;’.‘*l. Hence, 5’.t;’-‘71 =< 5’.t2‘71 and from the

th71 S’.thil — h—1

definition of s’.tZ*]. Now since 5’.tzf] = s.tz*] = s.t

max? maxr max’
we have s'.t0—1 = g ¢h-1.

Suppose j # k is such that s.t"j‘*] = s.tP—1 Consider any i # k. Since t
is the only label changing, s’.t?‘fl = S.tf‘fl. From definition of #?1. s.t?’fl
< 5.0l Hence 5.t/ < s.t"j‘*] and s .t < s’.t"j‘*]. By action, .t/ =
s.ntzq and by assumption, s.ntzq = s.t’;*]. Hence s’.tzf1 = s’.t?*]. Now,

from the definition of t?~1 §'¢h-1 — S'.t’j”*l, and since s’.t;"fl = s.t’j”*l =

‘max? ‘max
h—1 tph—1 _ . th—1
Sty an, We have that s'.&) . = st} . |

Claim B.2 If s.ntzf] < 5.1 then s’ satisfies 1.

‘max

167

168 APPENDIX B. PROOF OF LEMMA 5.6

Proof. Suppose for all j # i, s’.t"j"*l # s'.th—-1 By Claim B.1, s'.th—!

max-* max
= s.th—1 and since s.th.L # — we have s'.t" "' = s'.tI-"1 . Suppose i # k.
Since 1y is the only label changing, s’.t?‘*l = s.tg"*l. Hence s.t?‘fl = s.th-1,
Also, for all j # i, j # k, s’.t"j‘*] = s.t?il and hence s.t?il # sth-1

By assumption s’.tZ*l # s'.th—1 and since s’.tzfl = s.ntzfl and s'.th-1 =

s.t"~1 we have that s.ntzfl # s.4"1 and by hypothesis then .9.77,th1 <

‘max ‘max
s.th=1_ Thus, by 2 for s, s.tzfl # 5.1 and hence by 1 for s, s.t?‘fl =

h—1 _ . th—1
s.nt; " = Stpog-

i change we have that s’.t?*] = s’.nt?*] = ' th—1 Suppose i = k. Then

Now, since s".tP~1 = g #"~1 and since no labels with index
bl maxr maxr

L max-
y th—1 1 4h—1 : 1 h—1 _ h—1 i -1 _ h—1
st = sh.t,],mm. From action, s'.t," " = s.nf, ~ and s nfz = s.nt, .
Hence s'.nty ' = s'.th 1. |

Claim B.3 If s.ntzf] < 5.1 then s' satisfies 2.

max

Proof. Suppose s’.t?‘*l = s'.t"—1 Suppose i # k. From action, s’.t?‘*l =

‘max*

s.t"~ ! and by Claim B.1, s'.t"-1 = s.th—1 Now by 2 for s, s.nt] ' = s.th--1
and since §'.nt? ! = s.nt?q, s'.nt?f] > s'.th—1 Suppose i = k. By action,
s'nth 1 = s'.t; ! hence s'.ntl 1 = sl 1. |
Claim B.4 If s.ntZ‘*1 =< 5.1 then s' satisfies 3.

Proof. Since s'.t01 = 5./ and since no nt-labels change as a result of
the action, s’ satisfies 3 since s does so. [|

max max

Claim B.5 If s.nfl ! = sth L then o' th 1 = o/ 401,

Proof. By 1 for s there exists j # k such that s.t’;‘*l = s.t"~1 Consider

‘max*

any 1 # k. Then s.t?‘fl = s.t"j"*l and since s.ntzf1 > s.t"j"*l we have by
induction hypothesis (5.1) that s.t?*] =< s.nt’,z*]. Now since 5’.tf*] = s.t?*]
and 5’.tzf] = s.ntz*] we conclude that st/ < 5’.tzf] and from definition
of thl s'ghl = g g1 n

max’ maxr

Claim B.6 If s.ntzfl > s.th—1 then s' satisfies 1.

‘max

Proof. From Claim B.5, s’.tzf] = §'.t"~1 1f there exists j # k such that

max-

s’.t_’j‘*] = 5"l 1 then 1 vacously. Otherwise, from action, s'.t! ' = s'.nt} "
|

Claim B.7 If s.ntzfl = s.th—1 then s' satisfies 2.

‘max

h—1
!

Proof. Suppose s’ = s th=1 We first show that i = k. Assume for the

sake of contradiction that i # k. From Claim B.5, s'.th—1 = s’.tzfl and by

‘max
action s’.tzfl = s.ntzf1 and s’.t?‘*l = s.t?‘fl. Hence s.tg"*l = s.ntzfl. Since

by assumption s.ntzf1 = s.tl-1 we have s.t?‘fl = s.tl1 which contradicts

the definition of t?~1 Therefore i = k. From action s'.ntzfl = s’.tzfl and

‘max*

I ogh=1 _ o1 th—1
hence s'.nt, = = st ... |

169

Claim B.8 If s.ntzfl > s.t~1 then s' satisfies 3.

max

1 4h—1 1 th—1 : 1 ph—1 1 4h—1
Proof. Suppose s'.nt/"" >~ s'.1 Then by Claim B.5 s'.nt/™" > s'.t;

‘max-”
and since s’.tzfl = s'.ntZ‘fl, s'.nt?‘fl - s’.ntzfl. Hence 7 # k. By action,
no ni-labels change and hence s.nt?‘fl > s.ntZ‘fl. By assumption, s.ntzfl
> s.t"~1 and from 1 for s, there exists j # k such that s.t;"fl = s.th1

‘max ‘max*

Suppose s:.tf‘*1 = s.th-1 From 2 for s, s.ntﬁ"fl > s.th-1 and since s:.ntf‘*1
- s.ntzq and s.ntzq = s.th—1 we have that s.nt?” > s.th—1 and by 3 for

s, s.nt;[h] = 1. Thus, since s'.nt; = s.nt;, s'.nt;[h] = 1. Suppose s.t?f] #
s.th=1_ Then j # i and by induction hypothesis (5.1) for s we have that

‘mazx*

santl ! = s.th-l and from 3, s.nt;[h] = 1. From action s'.nt; = s.nt; and

hence s'.nt;[h] = 1. |
This ends the proof of Lemma B.2. [|

Lemma B.3 If m = scany then s’ satisfies 1, 2 and 3.

Proof. The proof follows from the following claims. We assume that s.t,,4,

—, k # S.maz, and s.op, label since otherwise no t-labels or ni-labels

change and s’ satisfies 1, 2 and 3 since by hypothesis s does so.

Claim B.9 s’ satisfies 1.

Proof. Suppose for all j # 1, s’.t;"*1 # s'.th=1 From action no #-labels

; ‘max*
change. Hence, for all j # 1, s.t"j‘*] # sth-l and s.t"7' = sth-1 This

implies that ¢ = 5.4, and hence by assumption 7 # k. From 1 for s, s.t?f]
= s.nt?~! and since no i labels change, s".t" ! = .t 1. []

Claim B.10 s’ satisfies 2.

Proof. Suppose i # k. By action, neither ni; nor any t-labels change

so s’ satisfies 2 since s does so. Suppose i = k. By action, s'.nt; =
next-label(s.tmaz, h') for some h' € {1,... ,n—1} and since §'.tmar = S-tmaz,
s'.nt; = next-label(s' tmaz, h'). From definition of next-label, s'.nt; = ' tmas
hence s'.ntl ! = st 1. |

Claim B.11 s’ satisfies 3.

Proof. Suppose s'.nt! "' = s/l Since no t-labels change, s'.th-1 =

s.t"~1 and hence s'.nt?‘fl > s.t"~1 Suppose i # k. Then s'.nt; = s.nt; and

‘mazx ‘mazx*

st sth-1 By 3 for s, s.nt;[h] = 1 and hence s'.nt;[h] = 1. Suppose

max-

i = k. Then s'.nt; = next-label(s.tpaz, ') for some b’ € {1,... ,n—1}. If b’

> h — 1 then by definition of nezt-label, s'.nt" " = s.th-1 and since s'.t.-1

= s.t"~1 '3 holds vacoulsy in s in this case. If A’ < h — 1 then by definition

‘max’

170 APPENDIX B. PROOF OF LEMMA 5.6

of next-label, s'.nt! ' = st 1 ie s'ntl 7! = s'tl1 and for all b > b/,
s'.nt;[h""] = 1. Now, since b’ < h — 1 this implies that s'.nt;[h] = 1. |
This ends the proof of Lemma B.3. [|

Lemma B.4 Ifr € {beginlabely,, endlabely, beginscan,,, endscany} then s’ sat-
isfies 1, 2 and 3.

Proof. No t-labels or nt-labels change so s’ satisfies 1, 2 and 3 since s does
SO. [

This ends the proof of Lemma 5.6. [|

