
ISSN 1397{8640AALBORG UNIVERSITYINSTITUTE FOR COMPUTER SCIENCEFredrik Bajers Vej 7E, 9220 Aalborg �st, Denmarkf
Abstraction-Based Veri�cation of DistributedSystemsPhD thesisbyHenrik Ejersbo JensenSupervisor: Kim G. LarsenJune 1999

Pages: 182Number of Copies: 100COPYING PARTS OF THIS REPORT IS PERMITTED PROVIDEDTHE AUTHOR IS ACKNOWLEDGED

ii

AbstractThis thesis presents abstraction-based proof methods and practical abstrac-tion strategies to support the integration of theorem proving and modelchecking methods in veri�cation of distributed systems. The thesis is intwo parts. In the �rst part we present abstraction frameworks for untimedsystems described as I/O automata and for real-time systems described astimed automata. The frameworks provide general conditions for preser-vation of properties from concrete systems to abstract ones. For the I/Oautomaton model we present preservation conditions for safety and live-ness properties stated over actions as well as over states. The preservationconditions are based on simulation relations. The abstraction theory is for-malized using the Larch theorem prover and a scheme for translating I/Oautomata in to the SPIN model checker is examined. For the timed au-tomaton model we provide preservation conditions based on requirementsstated as automaton speci�cations with a satisfaction relation in the form atimed ready simulation relation. Our preservation conditions are based onan action parameterized variant of this simulation relation. The timed ab-straction framework is stated in the input language of the UPPAAL modelchecker for real-time systems providing a close link to automatic veri�ca-tion. In the second part of this thesis we provide abstraction-based proofsfor three nontrivial distributed algorithms all parameterized in the numberof processes: Burns' Mutual Exclusion algorithm, The Bounded ConcurrentTimestamp System (BCTSS) algorithm, and Fischer's Real-Time MutualExclusion algorithm. The proof of Burns' algorithm utilizes an abstractionstrategy based on skolemization and the proof is carried out by support fromthe Larch Prover and the SPIN model checker. The proof of the BCTSSalgorithm is the most advanced in this thesis. The BCTSS algorithm is oneof the most complicated algorithms in the distributed systems literature andexisting proofs are all long and hard to understand. Our abstraction proofexploits a combination of induction and abstraction strategies to delegatemajor proof tasks to automatic veri�cation in the SPIN model checker. Theproof of Fischer's algorithm utilizes a combination of compositionality andabstraction strategies based on network invariants. The UPPAAL modelchecker is used to verify the constructed abstraction.iii

iv

Dansk SammenfatningDenne afhandling pr�senterer abstraktionsbaserede bevismetoder og prak-tiske abstraktionsteknikker til underst�ttelse af en integration af deduktiveog automatiske metoder til veri�kation af distribuerede systemer. Afhand-lingen er i to dele. I den f�rste del pr�senterer vi abstraktionsmetoder forsystemer beskrevet som I/O automater og for realtids systemer beskrevetsom tidsautomater. Metoderne giver generelle betingelser for bevarelse afegenskaber fra konkrete tilstandssystemer til abstrakte tilstandssystemer.For I/O automater gives betingelser for bevarelse af safety og liveness egen-skaber udtrykt over handlinger s�avel som over tilstande. Disse betingelserer baseret p�a simuleringsrelationer. Vores abstraktionsteori er formaliseretved brug af Larch theorem prover, og en overordnet metode for overs�t-telse af I/O automater til SPIN model checkeren unders�ges. For tidsauto-mater giver vi betingelser for bevarelse af egenskaber baseret p�a krav op-stillet som automatspeci�kationer og med en tilfredsstillelsesrelation i formaf en tidssimuleringsrelation. Vores betingelser er baseret p�a en handlings-parametriseret variant af tidssimuleringen. Abstraktionsmetoden er givetfor input-sproget som bruges af UPPAAL model checkeren for realtids sys-temer. Dette giver et direkte link til automatisk veri�kation. I den an-den del af afhandlingen pr�senterer vi abstraktionsbaserede beviser for treikke-trivielle distribuerede algoritmer som alle er parametriseret i antallet afprocesser: Burns' Mutual Exclusion algoritme, Bounded Concurrent Times-tamp System (BCTSS) algoritmen samt Fischers Mutual Exclusion algo-ritme. Beviset for Burns algoritme benytter en abstraktionsstrategi baseretp�a skolemisering og beviset udf�res med st�tte fra Larch Prover og SPINmodel checkeren. Beviset for BCTSS algoritmen er det mest avancerede idenne afhandling. BCTSS algoritmen er en af de mest komplicerede algorit-mer i litteraturen om distribuerede systemer og eksisterende beviser er allelange og sv�rt forst�aelige. Vores abstraktionsbevis udnytter en kombinationaf induktion- og abstraktionsteknikker til at delegere store bevisbyrder tilautomatisk h�andtering i SPIN model checkeren. Beviset for Fischers algo-ritme benytter en kombination af kompositionalitet og abstraktion baseretp�a anvendelse af netv�rks-invarianter. UPPAAL model checkeren anvendestil at veri�cere den konstrurerede abstraktion.v

vi

AcknowledgmentsFirst of all, I would like to thank Kim Larsen, my supervisor, and NancyLynch, my host during a two year stay at M.I.T., for all their wonderfulsupport, suggestions and comments that made this thesis possible. I amgrateful to have enjoyed their constant enthusiasm and encouragements.The Theory of Distributed Systems group at M.I.T. has been a greatplace to visit. I spent two years of my Ph.D. studies there and I havegreatly enjoyed the pleasant environment for doing research. I owe thanksto everyone in the group as well as to my many roommates over time. Mystay has been of great value to me and I hope to visit M.I.T. and the Bostonarea again in the future.At Aalborg University I would like to thank everyone in the DistributedSystems and Semantics group for making this a great place to work. Al-though I have spent most of my time during my Ph.D.-studies away fromAalborg I have always felt welcome here. I look forward to further collabo-rations in the future.My family and friends have always been there for encouragement andsupport. To my wife and best friend, Helle: Thanks for your love andconstant support through all this work, for always listening to me and forkeeping me sane even when things seemed bleak.

vii

viii

Contents
1 Introduction 11.1 Motivation . 11.2 Scope of Thesis . 31.2.1 Formal Models . 41.2.2 Theorem Provers and Model Checkers 61.2.3 Abstraction Frameworks 61.2.4 Applied Abstraction Strategies 91.2.5 Thesis Outline . 10I Abstraction Frameworks 112 Untimed Abstraction Framework 132.1 Preliminaries . 142.1.1 Relations, Functions, and Sequences 142.2 I/O Automata . 152.2.1 Composition . 172.2.2 Precondition-E�ect Language 192.2.3 Properties of I/O Automata 202.3 Abstraction Theory . 242.3.1 Simulations . 252.3.2 Preservation Conditions 282.4 Abstraction Theory in Larch 292.4.1 I/O Automata in LSL 302.4.2 Trace Simulations in LSL 302.5 Input/Output Automata in SPIN 322.5.1 Temporal Logic . 332.5.2 Translating Automata 363 Timed Abstraction Framework 413.1 Timed Labelled Transition Systems 433.1.1 Composition . 443.1.2 Timed Automata . 45ix

x CONTENTS3.1.3 Properties of Timed Labelled Transition Systems . . . 463.2 Timed Abstraction Theory 473.2.1 Timed Simulations . 473.2.2 Preservation Conditions 533.3 Constructing Abstract Timed Automata 533.4 Test Automata for Timed Ready Simulation 56II Applied Abstraction Strategies 634 Burns' Mutual Exclusion Algorithm 654.1 Background an Contributions 654.1.1 Chapter Organization 664.2 Burns' Algorithm . 664.2.1 The Mutual Exclusion Property 674.3 The Abstraction . 674.3.1 Abstract Actions and State Space 694.3.2 The Abstract Property 704.3.3 The Abstract Automaton 724.4 The Simulation Proof . 744.4.1 The Automata in LSL 744.4.2 The Simulation Relation in LSL 764.4.3 The LP Simulation Proof 774.5 The SPIN Veri�cation . 794.5.1 The PROMELA Implementation 794.5.2 The SPIN Veri�cation 795 The BCTSS Algorithm 835.1 Background and Contributions 835.1.1 Chapter Organization 855.2 The UCTSS Algorithm . 865.2.1 An Application . 895.2.2 From Unbounded to Bounded Timestamp Domain . . 915.3 The BCTSS Algorithm . 935.3.1 The Total Orderedness Property 995.4 The Proof Strategy . 1005.5 The Abstraction . 1025.5.1 Abstract State Space 1045.5.2 The Abstract Property 1085.5.3 The Abstract Automaton 1105.6 The SPIN Veri�cation . 1185.6.1 The PROMELA Implementation 1195.6.2 The SPIN Veri�cation 1225.6.3 Further Experiments using SPIN 123

CONTENTS xi6 Fischer's Mutual Exclusion Algorithm 1276.1 Background and Contributions 1276.1.1 Chapter Organization 1286.2 Fischer's Algorithm . 1286.2.1 The Mutual Exclusion Property 1316.3 The Proof Strategy . 1326.4 The Abstraction . 1336.4.1 The Well-Formedness Speci�cation 1336.4.2 The Network Invariant 1346.5 The UPPAAL Veri�cation . 1387 Conclusion 1437.1 Thesis Summary . 1437.2 Future Work . 145A Proof of Theorem 4.2 157B Proof of Lemma 5.6 167

xii CONTENTS

Chapter 1Introduction1.1 MotivationEmbedded Systems. Software systems that form an integral part of thephysical environment in which they operate are called embedded systems.Such systems arise in a still increasing number of application domains, rang-ing from telecommunications and aircraft control to consumer electronics intoys and minor appliances. Embedded systems continuously interact withtheir environment by monitoring events through sensors and reacting ac-cordingly via actuators. Therefore, embedded systems are often said to bereactive, in contrast to the traditional view of a program as something thattakes an input, produces an output and then terminates. Many embeddedsystems are designed for implementation on a physical platform consisting ofa set of interconnected processors. Such embedded systems are in additionsaid to be distributed.Common to embedded systems is that they very often are safety crit-ical, in the sense that failures may have catastrophic e�ects such as lossof human lives and vast economical loses. Hence correctness is one of themost important quality factors of such systems. Ensuring correctness hastraditionally been performed by means of testing techniques where a groupof people are set to work with early releases of programs to report on er-rors when encountered. However, when considering safety critical embeddedsystems this approach is no longer satisfactory as a single means of systemvalidation. Consider for example an air-tra�c control system to be imple-mented on board an aircraft, with the purpose of alerting the aircrafts pilotof any \too-close" neighboring aircrafts. It will most certainly be di�cult to�nd any group of people that would undertake the jobs as \test-pilots" onbeta-releases of such a software system. Testing methods exist that generatesets of test-suites in a structured way trying to explore or simulate as manysystem behaviours as possible. However, exhaustive testing is usually infea-sible due to the vast (possibly in�nite) set of behaviours of an embedded1

2 CHAPTER 1. INTRODUCTIONsystem. Also, by the testing approach errors are not discovered until verylate in the systems development process. This also applies to logical designerrors which it would be more natural to catch before any implementationtakes place.Formal Methods. One way to complement the testing approach in orderto overcome the above problems is to make use of formal methods. This termcovers all approaches to speci�cation and veri�cation based on mathematicalformalisms aiming to establish program correctness by mathematical rigour.Any formal method consists of three basic ingredients: a modelling languageto describe systems, a speci�cation language to state system requirements,and a veri�cation methodology to establish a formal correctness relation be-tween a system model and a corresponding speci�cation. The modellinglanguage provides a mathematically precise behavioural model of systems.The language is typically in the form of some kind of state-transition systemconsisting of a set of states and a binary relation on this set describing aset of transitions. States represent points in a systems behaviour (valuesof variables and program counter) and transitions describe state changes(execution of statements). For a given system its set of possible behavioursor executions are taken to be the set of all the possible transition sequencessatisfying some given initial requirement. Transition systems are usuallydescribed syntactically through some (�rst-order) logical language wherestates and transitions are described using formulas.Veri�cation Methodologies. Formal veri�cation methods can be classi-�ed as either theorem proving methods or model checking methods. Theoremproving methods are based on proving general mathematical theorems aboutsystems using formal deduction in a proof system consisting of a set of ax-ioms and inference rules. The rules of the proof system are used to inferproperties of system models based on their syntactical (logical) description.Theorem proving methods require intelligent user interaction in the sensethat a thorough understanding of the system to be proved as well as themathematical proof system is required in order to establish the right theo-rems and neccessary additional lemmas and to do the proofs. As a resulttheorem proving methods are mainly manual or computer-assisted in a lim-ited way. Tools supporting theorem proving methods are denoted as theoremprovers. There is in general no restrictions on the class of models and prop-erties being amenable to theorem proving methods, and the insight gainedby the user into the behaviour of the model at hand is as high as possible.Model checking methods are fully automatic methods that proves ordisproves properties of systems. In contrast to theorem proving methods,model checking methods do not work on the syntactical description of a tran-sition system but rather on the transition system itself explicitly encoded

1.2. SCOPE OF THESIS 3as a set of transitions. System speci�cations are veri�ed by automaticallyexamining all possible transitions in the encoding. Due to this exhaustiveexamination, model checking methods are sensitive to the so called state ex-plosion problem occurring as a consequence of the asynchronous behavioursamong processes in a distributed system. The number of possible states insuch a system grows exponentially with the number of processes. Therefore,model checking methods are applicable only to systems with a �nite, or atleast �nitely representable, number of states. Automatic model checkingtools are usually denoted as model checkers.Abstraction Based Veri�cation. To bene�t from both the insight andgenerality of theorem proving methods and the automation of model check-ing methods, there has recently been an increasing interest into frameworksaiming for an integration of the two. In this thesis we propose such frame-works for untimed and timed distributed systems based on one of the mainlyinvestigated integration strategies { the use of abstraction methods.The goal of any abstraction method is to replace the problem of verifyinga large, possible in�nite-state, concrete system to the problem of verifying asmaller, hopefully �nite-state, abstract system. The abstract system mustbe safe with respect to the concrete system in the sense that successful veri�-cation of the abstract system carries over to the concrete system. Obviously,the goal is for the abstract system to be smaller in size than the concreteone, and hopefully small enough to be directly model checkable. In general,verifying that the abstract system is safe with respect to the concrete systemcannot be done automatically and hence this step in an abstraction methodis typically performed via theorem proving methods. The non-trivial part ofany abstraction method lies in the problem of �nding the right abstractionof a given concrete problem. Based on the type of concrete problem at handdi�erent abstraction strategies may be useful.A simple and commonly used example of the abstraction idea is the useof the rule of signs to determine the sign of an arithmetic expression. Inorder to say whether �1515 � 17 is positive or negative, we do not have toperform the multiplication on the \concrete" level of numbers and then lookat the sign of the result, but instead we can �rst \abstract" the individualoperands to their signs and then apply �, the rule of signs for multiplication:neg � pos = neg. This rule of signs for the product enjoys the property thatits result always correctly describes the result of any concrete multiplicationon any operands that it abstracts.1.2 Scope of ThesisThis thesis deals with the topics introduced above. In this section we willdescribe in more detail the particular topics and contributions of this thesis.

4 CHAPTER 1. INTRODUCTIONThe overall contribution can be summarized as follows:Abstraction based veri�cation frameworks and practical abstractionstrategies to support the integration of theorem proving and model checkingIn the following we �rst take a look at the formal system models that weuse throughout this thesis. Then we discuss di�erent forms of abstractionframeworks and we introduce the frameworks developed in this thesis. Fi-nally, we classify di�erent practical strategies for obtaining safe abstractionsand we brie
y describe the particular strategies applied for proofs in thisthesis.1.2.1 Formal ModelsIn this thesis we will consider the development of abstraction based veri-�cation frameworks for embedded and distributed systems of two di�erentkinds: timed and untimed systems. A timed system in our sense is a systemwhose behaviours are sensitive to the existence of real-time physical clocks.Such systems are also commonly denoted as real-time systems. In the fol-lowing we brie
y introduce the formal models that we will use to describeuntimed and timed systems.I/O Automata. For untimed systems we will use I/O Automata as theunderlying formal model. This is a general labelled transition system modelwith action labelled transitions distinguished as being either input, outputor internal. The model was originally proposed by Lynch and Tuttle [LT87,LT89] and several subsequent developments have taken place [LV95, LV96,Lyn96, LSVW95, GSSL93, SL95] including extensions for modeling of timed,hybrid, and probabilistic systems. The I/O automaton model and its relatedproof methods have been applied successfully to several non-trivial casestudies [DL97, LLSA94, LMWF94, WLL88].Properties to be proved about I/O automata models are often stated astrace properties. The traces of an automaton consists of the set of actionsequences obtained by removing states and internal actions from its set ofexecutions. Thus the traces represent the externally observable behaviourof an automaton. A trace property is simply a set of action sequences,and an automaton is said to satisfy a trace property if the set of traces ofthe automaton is included in the set of action sequences of the property.Trace properties can be used to specify both safety and liveness propertiesof systems. Informally, a safety property says that some particular badthing never happens and a liveness property expresses that something goodwill eventually happen. Trace properties can be stated indirectly in termsof automata speci�cations and methods based on showing the existence ofsimulations between automata are sound with respect to trace inclusion.

1.2. SCOPE OF THESIS 5A simulation is a formal relationship between the states of two automatarequiring that the transitions of one system can in some sense be mimickedby the other.The I/O automaton model is equipped with a composition operatorused to describe the parallel composition of asynchronously executing sys-tems. The composition operator embodies a synchronization mechanismsbetween composed automata based on joining input{output pairs of identi-cally named transitions in di�erent automata. The I/O automaton model isgeneral enough to describe distributed systems that are based on synchro-nization via shared memory as well as those based on message-passing.Systems modelled as a composed automata can often be proved correctin a modular fashion, based on correctness proofs of its components. Inthe I/O automaton model such compositional reasoning is supported bycompositional de�nitions of properties.Other formal automaton models have been proposed [Kur94, Har87] hav-ing many of the same features as described above for the I/O automatonmodel. Also models based on the process algebras such as CCS [Mil89],CSP [Hoa85], and ACP [BHK86] include analogous modelling and proofmethodologies as those of the I/O automaton model.Timed Automata. For the modeling of timed systems we will use a for-mal timed transition system model. A timed transition system, as used inthis thesis, is a transition system with two separate types of transitions:ordinary action transitions describing discrete state changes and time tran-sitions describing the continuous evolution of system states. A behaviour ofa timed transition system can be understood as a sequence of discrete ac-tion transitions separated by time transitions describing the elapse of timein between actions. This type of behaviour is often denoted as two-phasebehaviour.We will use timed automata to syntactically describe timed transitionsystems. A timed automaton is a standard �nite automaton extendedwith a set of real valued clocks used to impose constraints on when tran-sitions may be executed. The particular timed automaton model used inthis thesis is a variation of the original model introduced by Alur and Dill[AD94]. Timed automata models have been used in several veri�cationframeworks based on theorem proving methods [AL93, LV96] as well asmodel checking methods [DOTY96, BLL+95, AHH96], and for both method-ologies several case-studies on veri�cation of embedded real-time systemshave been carried out. For case-studies using theorem proving see for exam-ple [SA93, LLSA94, HL94, Luc95] and for model checking see for example[DY95, Kri98, HWT95]. Also process algebraic languages have been pro-posed that are capable of modeling real-time systems [Yi91, NSY91, BB89].The veri�cation methodology for timed systems considered in this thesis

6 CHAPTER 1. INTRODUCTIONis based on a notion of timed simulations. A timed simulation is a simulationrelation from an implementation to a speci�cation where both discrete actiontransitions and timed transitions in the implementation can be mimicked bycorresponding transitions in the speci�cation.1.2.2 Theorem Provers and Model CheckersTheorem provers are based on constructing proofs in a logical deduction sys-tem either automatically or user assisted. Examples of widely used theoremproving systems include HOL [GM93], Isabelle [Pau94], PVS [ORR+96],and LP [GG91]. In this thesis we will make use of LP (the Larch Proof as-sistant) to support abstraction based proofs in our untimed I/O automataabstraction framework. LP is a theorem prover for multisorted �rst-orderlogic designed to assist users in employing standard mathematical reasoning.We will formalize parts of our abstraction theory in LSL [GH93] (the LarchShared Language) which is supported by a tool that automatically providesinput for LP.Model checkers are based on constructing proofs of properties speci�ed asformulae in a logic interpreted over the semantic model (transition system)of systems. Typically the logic is some kind of temporal logic like LinearTime Logic (LTL) [MP92], Computation Tree Logic [CES86], �-calculus[Koz82], or Hennesy Milner Logic (HML) [HM85]. Proving correctness of asystem means to checking if a given formula is satis�ed by the system model.For �nite-state systems this can in principle be done automatically by anexhaustive traversal of the reachable system state space. As we mentionedearlier though systems consisting of large numbers of parallel componentsmay run into the state explosion problem making an exhaustive traversalimpossible in practice. In the last decade, several approaches have beenproposed to reduce the e�ects of the state explosion problem [BCM+90,GW94, HP94] resulting in a number of e�cient model checking tools foruntimed systems [Hol91, HK87, McM93, CPS89] as well as real-time andhybrid systems [DOTY96, BLL+95, AHH96]. In this thesis we will makeuse the SPIN [Hol91] model checker in our untimed framework by providinga translation scheme for implementing I/O automata in the input languageof SPIN. In the timed framework we will make use of the UPPAAL [BLL+95]model checker. In our timed framework we use a formal timed automatamodel to describe systems which is the input language of UPPAAL and thusno translation is required.1.2.3 Abstraction FrameworksThe goal of any abstraction method is to reduce the problem of verifyinga large, possible in�nite-state, concrete system to the problem of verifyinga smaller, hopefully �nite-state, abstract system. Given a concrete system

1.2. SCOPE OF THESIS 7together with a concrete requirement speci�cation, one must construct anabstract system and an abstract speci�cation such that the abstract systemis property preserving. Meaning that, if the abstract system satis�es theabstract speci�cation then this implies that the concrete system satis�esthe concrete speci�cation. Abstraction methods can be classi�ed accordingto two types based on the amount of information they intend to preserve inabstract models. The two types are weakly preserving methods and stronglypreserving methods.Weakly Preserving Methods. A weakly preserving method only pre-serves the satisfaction of properties in one direction, namely if the ab-stract model satis�es the abstract requirement speci�cation then the con-crete model satis�es the corresponding concrete speci�cation. To illustratethis, consider again the example abstraction idea of using the rule of signs todetermine the sign of some arithmetic expression. If x is a variable over thenatural numbers, we want to examine the sign of the expression x2+x+1 forall x. It is easy to see, that the sign of this expression is always positive, butthis can actually not be proven using the abstraction idea from before. Thereason for this is the introduction of the + (addition) operator. The rule ofsigns for addition is as follows: pos + pos = pos, neg + neg = neg, pos+ neg = undef, neg + pos = undef, where undef is an abstract valuedescribing that nothing is known about the result of the abstract addition,it is either pos or neg but which is unknown. So when deciding, in theabstract calculus, the sign of the considered expression, we would get (e.g.for x = �3): (neg � neg) + neg + pos, which can be reduced to neg +pos = undef.Weakly preserving methods have been studied in for example [Dam96,DF95, CGL92, Kur89, LGS+95, MN95]. The methods can be divided intotypes based on the kind of mathematical relation required to exist betweenstates of the concrete model and those of an abstraction. The typical kindsof relations are: simulation relations, homomorphic functions and Galoisconnections. These relations all require, that the abstract model can some-how \mimic" the behaviour of the concrete model, but not necessarily theother way round, meaning that the abstraction may have some behaviourwhich is not mimicking any concrete behaviour. Thus weakly preservingabstractions only preserve truth of properties. However, weakly preservingabstractions can be as \abstract" or \small" as one wants still being weaklypreserving, the only problem being that the more \abstract" an abstractionbecomes the fewer properties does it enjoy.Some weakly preserving methods [Dam96, LGS+95] have been proposed,where the abstraction relation is given in the form of a Galois connection.These methods can all be related to a classical framework of Abstract In-terpretation initially developed in [CC77, CC79] and presented in overview

8 CHAPTER 1. INTRODUCTIONin [CC92a, CC92b]. Abstraction methods based on Galois connections canbe seen as attempts to address the question of which of the many possi-ble correctly mimicking abstract models should be the chosen one. Addingsome extra requirement to the structure of the abstract domain, the Galoisconnection framework allows for an ordering of candidate abstract modelswith respect to the number of properties they enjoy. The more propertiesan abstract model enjoys the more precise it is. The structure imposed onabstract states actually guarantees the existence of a most precise abstractmodel which is the natural choice among the many possibly candidates.Strongly Preserving Methods. A strongly preserving abstraction pre-serves properties both ways in the sense that the abstract model satis�es theabstract property if and only if the concrete model satis�es the correspond-ing concrete property. In the example from before, the abstraction to therule of signs is strongly preserving with respect to arithmetic expressionsonly including multiplication but only weakly preserving when allowing ad-dition as well. As a result, strongly preserving abstractions preserve bothtruth and falsehood of properties, so both positive and negative results fromveri�cation of the abstraction carry over to identical results for the concretemodel. However, strongly preserving abstractions are more restricted thanweak ones regarding the amount of behaviour that can be abstracted away,which has the result that a su�ciently small (for model checking) abstractioncannot always be constructed.Strongly preserving abstraction methods have been studied extensivelyin the framework of real-time systems model checking [BLL+95, DOTY96,AHH96, HHK95]. When modeling a real-time system using a dense time do-main its direct semantics (e.g. timed transition system) will have in�nitelymany states and thus it is not directly amenable to model checking. How-ever, when described as a timed automaton it is possible to partition theset of concrete states based on a certain equivalence relation on the timecomponents of states. The equivalence classes of this partitioning forms aset of abstract states. The equivalence relation is induced by a set of linearinequations on automaton clocks obtained from the clock guards in transi-tions. It is important to note that only the time component is abstractedin real-time model checkers based on the above approach - no abstractionof the discrete component takes place.Our Contributions. In this thesis we contribute with weakly preservingabstraction frameworks for untimed as well as timed systems. Our untimedframework is for the general untimed I/O automaton model. Here we pro-vide general conditions for preservation of trace and path properties fromone automaton to another. A path property is analogous to a trace prop-erty except that it describes a property of state sequences rather than action

1.2. SCOPE OF THESIS 9sequences. Our preservation conditions are provided for safety as well as live-ness properties. The preservation conditions are based on certain notions ofparameterized simulations that we introduce as well. We formalize parts ofour trace based abstraction theory in the Larch tool set to support in dis-charging preservation conditions, and we provide a rudimentary scheme fortranslating �nite state I/O automata into the input language for the SPINmodel checker. This includes a way of stating trace and path properties viaLTL formulas.Our timed framework is for a timed automaton model which is essentiallythe one used as input language for the UPPAAL real-time model checker.Thus, we can make use of the time abstraction method implemented inthe tool. We provide general conditions stating when an abstract timedsimulation problem is safe with respect to a concrete problem. The condi-tions are based on certain parameterized timed simulations. Checking forthe existence of a timed simulation relation between two timed automatais not directly implemented in the UPPAAL tool which is based on per-forming reachability analysis. However, we provide a method for translatingthe problem of checking for timed simulations into a reachability problemamenable to veri�cation in UPPAAL.1.2.4 Applied Abstraction StrategiesPractical abstraction strategies are often classi�ed as either data abstractionsor control abstractions depending on the source of complexity in the concretesystem of interest. The �rst class is where the unboundedness (or largesize) of the system results from data variables which range over unboundeddomains. The second class is where the complexity results from the structureof the system. Systems of the latter kind are typical parameterized systemsconsisting of a parallel composition of subsystems, whose number is a varyingparameter.Most data abstraction strategies are based on the method of abstractinterpretation originally introduced in [CC77, CC79]. Most of the weaklypreserving frameworks cited in the previous section are of this kind. Theconcrete data domain is abstracted into an abstract domain and all oper-ations of the concrete system are replaced by abstract versions over theabstracted domain. The abstract domain is typically based on a partition-ing of the concrete data domain induced by the set of conditions (guards) inthe concrete system description and the concrete property. This is in somesense analogous to the time abstraction strategy for real-time systems.Several control abstraction strategies have been proposed for the ver-i�cation of parameterized systems. Many of these are based on the useof network invariants [KM89, WL89a, HLR92]. A network invariant is anabstract system intended to simulate the composition of concrete subsys-tems for any number of elements in the composition. Using induction and

10 CHAPTER 1. INTRODUCTIONproperties of compositionality the simulation proof task can be reduced toa problem of showing simulation relations between a few unparameterizedsystems.Our Contributions. In this thesis we present practically applied abstrac-tion strategies for three nontrivial distributed algorithms. First we considera proof of Burn's mutual exclusion algorithm parameterized in the number ofprocesses. The control abstraction applied for the proof utilizes a skolemiza-tion strategy to extract a simple two-process abstraction representing anypair of concrete processes including the e�ects of the environment (otherprocesses). Our proof is within the untimed I/O automaton abstractionframework and it makes use of the LP theorem prover as well as the SPINmodel checker.Second, we provide a proof of one of the most complicated algorithmsin the distributed systems literature, the Bounded Concurrent TimestampSystem (BCTSS) algorithm. The algorithm is parameterized in the numberof processes and in addition it has data variables over unbounded domains.Thus our abstraction makes use of both control and data abstraction strate-gies. Existing proofs for the algorithm are all long and hard to understand.Our abstraction proof reduces the proof task by automating a substantialproof e�ort via abstraction. Our proof exploits a combination of inductionand abstraction and it is the most advanced proof in this thesis.Finally, we provide a proof Fischer's mutual exclusion algorithm pa-rameterized in the number of processes. Fischer's algorithm is a real-timealgorithm and thus our proof is within the timed abstraction framework.Our proof uses a combination of parameterized network invariants and com-positionality.1.2.5 Thesis OutlineThis thesis consists of two parts. Part I (Abstraction Frameworks) presentsthe untimed and timed abstraction frameworks in chapters 2 and 3, respec-tively. Part II (Applied Abstraction Strategies) presents our three practicalapplications of abstraction strategies. Chapter 4 presents the proof of Burn'salgorithm, Chapter 5 presents the proof of the BCTSS algorithm, and �nallyChapter 6 presents the proof of Fischer's algorithm.

Part IAbstraction Frameworks

11

Chapter 2Untimed AbstractionFrameworkThis chapter presents our untimed abstraction framework. We consider un-timed systems speci�ed in the general I/O automaton model of Lynch andTuttle [LT87, LT89] and we assume that properties to be veri�ed over au-tomata are stated as either trace or path properties. A trace property isa property about the actions of an automaton and a path property is aproperty about states. Our abstraction theory provides safe conditions forreplacing one veri�cation problem (the concrete one) (A;P), consisting of anI/O automaton A and a property P , by another problem (the abstract one)(A0; P 0). That is conditions allowing us to conclude that if A0 satis�es P 0then also A satis�es P . We provide conditions for preservation of trace prop-erties as well as path properties and for both safety and liveness properties.Our conditions provide basis for a weakly preserving abstraction methodintegrating theorem proving and model checking techniques in two steps:First, given a concrete problem (A;P), too large to be handled immediatelyby model checking, an abstract problem (A0; P 0) is constructed and shownto satisfy conditions for property preservation. This step in general requirestheorem proving methods. Second, the abstract problem is automaticallyanalyzed using model checking, provided it is �nite state and small enough.Our preservation conditions are based on variants of the forward simula-tion preorder which constitutes a corner stone proof method in the generalI/O automaton model. We propose two variations of the standard forwardsimulation useful for providing preservation conditions for trace propertiesand path properties, respectively.We formalize parts of our abstraction theory using the Larch tool set[GG91, GH93] to provide support for discharging the proof obligations forproperty preservation. We use the Larch Shared Language (LSL) [GH93]to formalize the notion of I/O automata and the notions of simulation thatwe use as conditions for property preservation. LSL is supported by a tool13

14 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORKthat automatically provides input for the Larch Prover (LP) [GG91]. LPis a theorem prover for multi-sorted �rst-order logic. Our formalization ex-tends a framework for reasoning about I/O automata in the Larch tool setintroduced in [SAGG+93]. We also provide a rudimentary scheme for trans-lating �nite state I/O automata models into the input language PROMELAused by the SPIN model checker [Hol91]. SPIN is capable of model checkingproperties in Linear Time Logic (LTL) and our scheme includes a strategyfor specifying trace and path properties using LTL formulas.Chapter Organization. We begin in Section 2.1 by a few mathematicalpreliminaries on relations, functions and sequences. Then in Section 2.2we introduce the underlying formal model of I/O automata as well as thenotions of trace and path properties. In Section 2.3 we present our generalconditions for property preservation between veri�cation problems basedon our variations of the forward simulation preorder. In Section 2.4 weformalize part of our abstraction theory using the Larch tool set and �nallyin Section 2.5 we examine the translation of I/O Automata and trace/pathproperties into a representation suitable for the model checker SPIN.2.1 PreliminariesThe following mathematical preliminaries de�nes notions of relations, func-tions, and sequences. The notions introduced here will be used for both theuntimed and the timed abstraction frameworks of this thesis.2.1.1 Relations, Functions, and SequencesA relation over sets X and Y is de�ned to be any subset of the cartesianproductX�Y . If R is a relation over X and Y , then we de�ne the domain ofR to be dom (R) = fx 2 X j (x; y) 2 R for some y 2 Y g, and the range ofR to be ran (R) = fy 2 Y j (x; y) 2 R for some x 2 Xg. If dom (R) = X wesay that R is total (on X). For x 2 X, we de�ne R[x] = fy 2 Y j (x; y) 2 Rg.A function f from X to Y is a relation with dom (f) = X satisfying thatfor any x there exists exactly one y such that (x; y) 2 f . We write f(x) = yto denote (x; y) 2 f . If f and g are functions with disjoint domains, thenf [g denotes the function from dom (f) [dom (g) to ran (f) [ran (g) suchthat (f [g)(x) = f(x) if x 2 dom (f) and (f [g)(x) = g(x) if x 2 dom (g).Let S be any set. The set of �nite and in�nite sequences of elementsfrom S is denoted seq (S). The symbol � denotes the empty sequence and thesequence containing one element s 2 S is denoted by s. Concatenation of a�nite sequence with a �nite or in�nite sequence is denoted by juxtaposition.Let � and �0 denote sets of sequences such that all sequences in � are �nite.The concatenation of sets � and �0 is the set ��0 of sequences ��0 such

2.2. I/O AUTOMATA 15that � 2 � and �0 2 �0. A sequence � is a pre�x of a sequence �, denotedby � � �, if either � = �, or � is �nite and � = ��0 for some sequence �0.A set � of sequences is pre�x closed if, whenever some sequence is in �, allits pre�xes are as well. A set � of sequences is limit closed if, an in�nitesequence is in � whenever all its �nite pre�xes are.A block over S is a sequence of identical elements from S. Any sequence� of elements from S can be viewed as a sequence of blocks over S. Forany sequence � we assume a partial function � : N ! S � N such that�(i) = hs; ni i� the i'th block of � is the sequence consisting of n s-states.We assume that �s(i) and �n(i) returns the �rst and second component of�(i), respectively. We further assume that �s(i) 6= �s(i+1) for every i suchthat � is de�ned for i and i + 1. Thus, consecutive blocks are of di�erentstates. We let lb(�) = i if the i'th block is the last block of �. If no lastblock exists we let lb(�) = !. Let � and �0 be sequences over S. We saythat � is a block-pre�x of �0, written � E �0, if lb(�) = lb(�0) and for all1 � i � lb(�), �s(i) = �0s(i) and �n(i) � �0n(i).If � is a nonempty sequence then �rst (�) denotes the �rst element of�, and tail (�) denotes the sequence obtained from � by removing �rst (�).Also, if � is �nite, last (�) denotes the last element of �.If � 2 seq (S), and S0 � S, then �jS0 denotes the restriction of � toelements in S0, i.e. the subsequence of � consisting of the elements of S0. IfS0 = ; then �jS0 = �. If � � seq (S), then �jS0 is the set f�jS0 j � 2 �g.Assume R � S � S0 is a total relation between sets S and S0. If � =s0s1s2 : : : is a nonempty sequence in seq (S) then R(�) is the set of sequencess00s01s02 : : : over ran (R) such that for all i, s0i 2 R[si]. If � = � then R(�) =f�g. If � � seq (S), then R(�) = S�2�R(�)2.2 I/O AutomataIn this section we present the basic I/O automaton model used to describeuntimed distributed systems.An I/O automaton is an action labelled transition system where actionsare classi�ed as either input, output, or internal. The inputs and outputsare used by an automaton to communicate with its environment, while theinternal actions are visible only to the automaton itself. An I/O automatoncannot guard its input actions. This means, that input actions can arrivefrom the environment at any time. We say that I/O automata are input-enabled. Only the output and internal actions of an automaton can becontrolled by the automaton itself.De�nition 2.1 (I/O Automaton) An I/O automaton, or simply an au-tomaton, A is a tuple consisting of components sig (A), states (A), start (A),trans (A), and tasks (A) where,

16 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK� sig (A) is a signature, which is a tuple consisting of components in (A),out (A), and int (A), being disjoint sets of input, output and internalactions, respectively. The set ext (A) of external actions of A is in (A)[out (A) and the set of locally controlled actions local (A) is the setout (A) [int (A). The set acts(A) of actions of A is the set ext (A) [int (A).� states (A) is a set of states.� start (A) � states (A) is a nonempty set of start states.� trans (A) � states (A)� acts(A)� states (A) is a state transition rela-tion.� tasks (A) is a task partition, which is an equivalence relation on theset local (A) having at most countably many equivalence classes.We let s; s0; u; u0; : : : range over states, and a; a0; b; b0 : : : over actions. Wecall an element (s; a; s0) of trans (A) a transition, or step, of A. We writes a�!A s0, or just s a�! s0 if A is clear from the context, as a shorthand for(s; a; s0) 2 trans (A). We write s �!A s0, or just s �! s0 if A is clear fromthe context, to denote that s a�!A s0 for some action a.An action a of an automaton A is said to be enabled in a state s if thereexists a state s0 such that the transition (s; a; s0) is an element of trans (A).Every input action is required to be enabled in any state.Executions, Traces, and PathsAn execution fragment � = s0a1s1a2s2 : : : of an automaton A is a �nite orin�nite sequence of alternating states and actions beginning with a state,and if it is �nite also ending with a state, such that for all i, (si; ai+1; si+1)is an element of trans (A). An execution of A is an execution fragment �where �rst(�) 2 start (A). A state s of A is reachable if s = last (�) for some�nite execution � of A.Let � = s0a1s1a2s2 : : : be an execution fragment. The length of �,written j�j, is de�ned as follows. If � is �nite, j�j is the number of actionsoccurring in �. If � is in�nite, j�j = !. We de�ne the ith su�x of �, for0 � i � j�j, as ij� = siai+1si+1 : : : if i < j�j; sj�j if � is �nite and i = j�j.The trace of an execution fragment � of an automaton A, written astraceA (�), or just trace (�) when A is clear from context, is the subsequenceconsisting of all the external actions occurring in �. Let � be a sequence ofactions from acts(A). Then, traceA (�), or just trace (�) when A is clear fromcontext, denotes the subsequence of consisting of all the external actionsoccurring in �. We say that � is a trace of an automaton A if there is anexecution � of A with � = trace (�). We denote the set of traces of A bytraces(A).

2.2. I/O AUTOMATA 17The path of an execution � of an automaton A, written pathA (�), orjust path (�) when A is clear from context, is the subsequence consisting ofall the states in �. We say that
 is a path of A if there is an execution �of A with
 = path (�). We denote the set of paths of A by paths (A).Fair Executions, Fair Traces, and Fair PathsThe task partition tasks (A) of an automaton A, can be thought of as anabstract description of \tasks" or \threads of control" within A. The parti-tion is used to specify fairness conditions on A. Such conditions state thatduring execution A must give fair turns to each of its tasks. The fairnessconditions considered in this section are sometimes denoted as weak fairnessconditions. We say that a task C is enabled in a state s if some action in Cis enabled in s.An execution fragment � of an automaton A is said to be fair if thefollowing conditions hold for each task C of tasks (A):� If � is �nite, then C is not enabled in the �nal state of �.� If � is in�nite, then � contains either in�nitely many occurrences ofactions from C or in�nitely many occurrences of states in which C isnot enabled.We denote the set of fair executions of A by fairexecs (A). We say that� is a fair trace of A if � is the trace of a fair execution of A, and we denotethe set of fair traces of A by fairtraces (A). We say that
 is a fair path of Aif
 is the path of a fair execution of A, and we denote the set of fair pathsof A by fairpaths (A).2.2.1 CompositionWe can compose individual automata to represent complex systems of in-teracting components. We impose certain restrictions on the automata thatmay be composed.Formally, we de�ne a countable collection fSigi2I of signatures to becompatible if for all i; j 2 I, i 6= j, all of the following hold: int (Si)\acts(Sj)= ;, out (Si) \ out (Sj) = ;, and no action is contained in in�nitely manysets acts(Si).De�nition 2.2 (Composition of Signatures) De�ne the composition S= �i2ISi of a countable compatible collection of signatures fSigi2I as thesignature with� out (S) = [i2Iout (Si)� int (S) = [i2I int (Si)

18 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK� in (S) = [i2I in (Si)� [i2Iout (Si)We say that a collection of automata is compatible if their signatures arecompatible.De�nition 2.3 (Composition of Automata) De�ne the composition A= �i2IAi of a countable, compatible collection of I/O automata fAigi2I asthe automaton with� sig (A) = �i2Isig (Ai)� states (A) = �i2Istates (Ai)� start (A) = �i2Istart (Ai)� trans (A) is the set of triples (s; �; s0) such that, for all i 2 I, if � 2acts(Ai), then (si; �; s0i) 2 trans (Ai); otherwise si = s0i� tasks (A) = [i2Itasks (Ai)The � in the de�nition of states (A) and start (A) refers to ordinaryCartesian product. Also, si in the de�nition of trans (A) denotes the ithcomponent of state vector s.Notice, that the task partition of the compositions locally controlledactions is formed by taking the union of the components task partitions;that is, each equivalence class of each component automaton becomes anequivalence class of the composition. This means that the task structureof individual components is preserved when the components are composed.Notice also, that since the automata Ai are input-enabled, so is their com-position. It follows that �i2IAi is indeed an I/O automaton.We end this section with a basic result that relates the executions,traces and paths of a composition to those of the component automata.Let A = �i2IAi be a composition of automata. Given an execution � =s0a1s2a2s2 : : : of A, we let �jAi be the sequence obtained by deleting eachpair ar; sr for which ar is not an action of Ai and replacing each remainingsr by (sr)i, that is, automaton Ai's piece of the state sr. Given a trace �of A, we let �jAi be the subsequence of � consisting of all the actions of Aiin �. Also, given a path
 = s0s1s2 : : : of A, we let
jAi be the sequenceobtained by replacing each sr by (sr)i.Theorem 2.1 Let fAgi2I be a compatible collection of automata and let A= �i2IAi.1. If � 2 execs (A), then for every i 2 I, �jAi 2 execs (Ai).2. If � 2 traces(A), then for every i 2 I, �jAi 2 traces(Ai).3. If
 2 paths (A), then for every i 2 I, there exists
0 E
jAi such that
0 2 paths (Ai).

2.2. I/O AUTOMATA 194. If � 2 fairexecs (A), then for every i 2 I, �jAi 2 fairexecs (Ai).5. If � 2 fairtraces (A), then for every i 2 I, �jAi 2 fairtraces (Ai).6. If
 2 fairpaths (A), then for every i 2 I, there exists
0 E
jAi suchthat
0 2 fairpaths (Ai).Proof. The statements 1-2 and 4-5 are Theorem 8.1 and Theorem 8.4,respectively, in [Lyn96]. Consider 3. Suppose that
 2 paths (A). Then thereexists � 2 execs (A) such that
 = path (�). Thus
jAi = path (�)jAi. Fromthe de�nition of block pre�x E (see Section 2.1) we have that, path (�jAi) Epath (�)jAi and from 1, �jAi 2 execs (Ai). Let
0 = path (�jAi). Then,
0 2 paths (Ai) and
0 E
jAi. Consider 6. Suppose that
 2 fairpaths (A).Then there exists � 2 fairexecs (A) such that
 = path (�). Thus
jAi =path (�)jAi. From de�nition, path (�jAi) E path (�)jAi and from 4, �jAi 2fairexecs (Ai). Let
0 = path (�jAi). Then,
0 2 fairpaths (Ai) and
0 E
jAi.2.2.2 Precondition-E�ect LanguageIn this thesis we will describe automata using a precondition-e�ect style,which is the standard description style for I/O automata [Lyn96].The precondition-e�ect style basically provides a compact description ofthe transition relation of an automaton. The style groups together all thetransitions that involve each particular type of action into a single piece ofcode. The code speci�es the conditions under which the action is permittedto occur, as a predicate (precondition) on the pre-state. Then it describesthe changes (e�ects) that occur as a result of the action. These changes aredescribed either as an assertion relating pre- and post-state or as a sequenceof operations that is applied to the pre-state in order to yield the post-state.Example 2.1 (Channel I/O Automaton) As an example of an I/O au-tomaton described in the precondition-e�ect style, consider a communica-tion channel automaton C as shown below. We assume that M is a �xedmessage alphabet. First the signature, sig (C), of automaton C is given. Inthis example the signature only contains input and output actions, i.e. theset of internal actions is empty. Next the states, states (C), and the startstates, start (C), are given as a list of state variables and their initial val-ues. The transitions of C are described in the precondition-e�ect style. Thesend(m) action is allowed to occur at any time and has the e�ect of addingthe message m to the end of queue. The receive(m) action can only occur ifm is at the head of queue, and the e�ect of the action simply consists of mbeing removed from queue. Finally, the task partition, tasks (C), groups allthe receive actions into a single task.

20 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORKAutomaton: CSignature:Input:send(m);m 2MOutput:receive(m);m 2MStates:queue, a FIFO queue of elements from M , initially emptyTransitions:input: send(m)E�: enqueue(m; queue) output: receive(m)Pre: head(queue) = mE�: dequeue(queue)Tasks:freceive(m) : m 2Mg2.2.3 Properties of I/O AutomataIn this section we de�ne the types of properties that we will use to reasonabout automata. We consider properties stated over either the externalactions or the states of an automaton, and we denote such properties astrace properties and path properties, respectively. A trace property for anautomaton A is basically a set of sequences of actions from a subset ofext (A), and a path property for A is basically a set of sequences of statesfrom states (A).De�nition 2.4 (Trace Property) A trace property P is a pair of compo-nents sig (P) and traces(P), where� sig (P) is a signature, which is a pair (in (P); out (P)) consisting ofdisjoint sets of input and output actions, respectively. Let acts(P) bethe set in (P) [out (P).� traces(P) is a set of �nite or in�nite sequences of actions in acts(P).De�nition 2.5 (Path Property) A path property Q is a pair of compo-nents states (Q) and paths (Q), where� states (Q) is a set of states.� paths (Q) is a set of �nite of in�nite sequences of states in states (Q).Two important special types of trace and path properties { safety prop-erties and liveness properties { are de�ned.De�nition 2.6 (Safety and Liveness Properties) A trace (path) prop-erty P is said to be a trace (path) safety property provided that all of thefollowing holds:

2.2. I/O AUTOMATA 21� traces(P) (paths (P)) is nonempty.� traces(P) (paths (P)) is pre�x-closed.� traces(P) (paths (P)) is limit-closed.A trace (path) property P is said to be a trace (path) liveness property pro-vided that:� Every �nite sequence over acts(P) (states (P)) has some extension intraces(P) (paths (P)).A safety property can informally be interpreted as saying that no \badthing" ever happens. A liveness property can be interpreted as saying thatsome \good thing" eventually happens. Thus, the intuition behind the con-ditions of the above de�nition can be understood as follows. For the safetyconditions, nonemptiness is a reasonable condition since no \bad thing" canever happen in the empty sequence. Pre�x-closure is reasonable since, ifnothing bad happens in a sequence (trace or path), then nothing bad hap-pens in any pre�x of that sequence. Finally, limit-closure is reasonable since,if something bad happens in a sequence, then it happens at some particular\point" in the sequence, i.e. in some �nite pre�x of the sequence. The in-tuition behind the liveness condition is simply that regardless of what hasoccurred in a sequence up to some point, it is still possible for the \goodthing" to occur at some later point in time.De�nition 2.7 (Satisfying Trace Properties) An automaton A satis-�es a trace property P i� the following conditions hold.� in (P) � in (A) and out (P) � out (A).� If P is a safety property, then traces(A)jacts(P) � traces(P).� If P is a liveness property, then fairtraces (A)jacts(P) � traces(P).Intuitively, automaton A satis�es trace property P , if P is stated overa subset of the external actions of A, and the set of traces (fairtraces) ofA projected on to the actions of this subset, is a subset of the traces ofP . This notion of satisfaction of trace properties is a slight generalizationof the standard notion in [Lyn96]. In the standard notion, A satis�es P ifP is stated over the full set of external actions of A, and the set of traces(fairtraces) of A is a subset of the traces of P . Note, this is a special caseof our de�nition. The motivation for our de�nition is related to the easeat which we can show that one veri�cation problem is property-preservingwith respect to another problem.Let A be an automaton and let P be a trace (path) property. We willdenote the pair (A;P) a trace (path) veri�cation problem. Given two veri�ca-tion problems (A;P) and (B;P 0), we say that (B;P 0) is property-preserving

22 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORKwith respect to (A;P) i� B satis�es P 0 implies A satis�es P . Proving thisproperty-preservation partly relies on showing that the behavior of A withrespect to actions of P can be simulated by B. Now, most likely P does notimpose restrictions on all the external actions of A. However, the standardinterpretation of A satisfying P does not allow for explicit mentioning ofthe interesting subset of external actions. Thus, automaton B need to have\dummy" actions to \match" (in the simulation) the external actions of Athat are outside the interesting subset. Otherwise, we cannot show thatB simulates A with respect to the actions of P . Our interpretation of Asatisfying P allows for an explicit mentioning of the interesting subset ofexternal actions of A. Thus, using our interpretation, automaton B neednot to have any dummy actions to match uninteresting external actions ofA. Such uninteresting actions can simply be matched by B doing nothing.In Section 2.3 we formally de�ne the notion of \trace" simulation in-tuitively introduced in the above. We also formalize the precise conditionsfor an abstract trace problem to be property-preserving with respect to aconcrete problem.De�nition 2.8 (Satisfying Path Properties) An automaton A satis�esa path property Q i� the following conditions hold.� states (Q) = states (A).� If Q is a safety property, then paths (A) � paths (Q).� If P is a liveness property, then fairpaths (A) � paths (Q).Note, that the above de�nition is not quite \symmetric" to the one fortrace properties. We can make the de�nition symmetric by �rst imposing astructure on to the states of an automaton. We can e.g. de�ne a state as atuple of elements from a list of component sets. This will allow us to statea path property over a subset of the component sets. An automaton A thensatis�es a path property Q if both of the following conditions are satis�ed.First, states (Q) equals the set states (A) restricted to a certain subset ofcomponent sets in states (A). Second, any path of A in which each state isrestricted to the components of Q is included in the paths of Q.We use the less general (but simpler) de�nition for satisfaction of pathproperties, since the more general de�nition will not, as was the case in thetrace setting, simplify the proof obligations for property-preservation in thepath setting. We explain this intuitively as follows.Let A be an automaton and let Q be a path property. We denote thepair (A;Q) a path veri�cation problem. The notion of property-preservationbetween path veri�cation problems is analogous to the one for trace veri�ca-tion problems. The condition for property-preservation however, is slightlydi�erent in the path setting. Suppose we want to show that a path problem

2.2. I/O AUTOMATA 23(B;Q0) is property-preserving with respect to a path problem (A;Q). Weneed to show that any transition of A can be \matched" by a transitionof B, where \matched" now refers to states. I.e. the start states of eachtransition must \match" and so must the end states. (whether the actionsmatch is irrelevant). Even transitions of A that do not change the statewith respect to components of Q need to be matched by B. This is becauseQ may be sensitive to the number of certain states successively occurring ina path. In Section 2.3 we formally de�ne the notion of \path" simulationintuitively introduced in the above.Compositional ReasoningWe can sometimes state a property (trace or path) of a composition of au-tomata as a composition of properties, one for each component automaton.We show that under the right interpretation of property composition, wecan infer that a composition of automata satis�es a composition of proper-ties from the fact that each component automata satis�es a correspondingcomponent property.We de�ne a composition operation for trace properties as follows. Wesay that a countable collection fPigi2I of trace properties is compatible iftheir signatures are compatible.De�nition 2.9 (Composition of Trace Properties) De�ne the compo-sition P = �i2IPi of a countable, compatible collection of trace propertiesfPigi2I as the trace property such that:� sig (P) = �i2Isig (Pi)� traces(P) is the set of sequences � of actions of P such that for alli 2 I, �jacts(Pi) 2 traces(Pi)Analogously, we de�ne a composition operation for path properties asfollows.De�nition 2.10 (Composition of Path Properties) De�ne the compo-sition P = �i2IPi of a countable collection of path properties fPigi2I as thepath property such that:� states (P) = �i2Istates (Pi)� paths (P) is the set of sequences
 of states of P such that for all i 2 I,there exists
0 E
jstates (Pi) such that
0 2 paths (Pi)Theorem 2.2 (Compositionality of Trace Properties) Let fAigi2I bea compatible collection of automata and let A = �i2IAi. Also, let fPigi2I bea compatible collection of trace properties and let P = �i2IPi. Furthermore,assume that in (P) \ out (A) = ;.

24 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK1. If in (Pi) � in (Ai), out (Pi) � out (Ai), and traces(Ai)jacts(Pi) �traces(Pi) for every i, then in (P) � in (A), out (P) � out (A), andtraces(A)jacts(P) � traces(P).2. If in (Pi) � in (Ai), out (Pi) � out (Ai), and fairtraces (Ai)jacts(Pi) �traces(Pi) for every i, then in (P) � in (A), out (P) � out (A), andfairtraces (A)jacts(P) � traces(P).Proof. Consider 1. First we show that in (P) � in (A) and out (P) �out (A). From the hypothesis, in (Pi) � in (Ai) and out (Pi) � out (Ai) forevery i. Since out (P) = [i2Iout (Pi) and out (A) = [i2Iout (Ai), we imme-diately have that out (P) � out (A). By de�nition, in (P) = [i2I in (Pi) �[i2Iout (Pi) and in (A) = [i2I in (Ai) � [i2Iout (Ai). From assumption wehave that in (P) \ out (A) = ;. Hence, in (P) � in (A).We now show that traces(A)jacts(P) � traces(P). Suppose that � 2traces(A). From Theorem 2.1(2) we have that for every i, �jAi 2 traces(Ai)and by hypothesis we have that (�jAi)jacts(Pi) 2 traces(Pi). Since acts(Pi) �ext (Ai), (�jAi)jacts(Pi) = �jacts(Pi). Thus, �jacts(Pi) 2 traces(Pi) for ev-ery i. Since acts(Pi) � acts(P) we have that �jacts(Pi) = (�jacts(P))jacts(Pi).Thus, from the de�nition of P , �jacts(P) 2 traces(P).The proof of 2 is analogous to the above, using Theorem 2.1(5).Theorem 2.3 (Compositionality of Path Properties) Let fAigi2I bea compatible collection of automata and let A = �i2IAi. Also, let fPigi2Ibe a collection of path properties and let P = �i2IPi.1. If states (Pi) = states (Ai) and paths (Ai) � paths (Pi) for every i, thenstates (P) = states (A) and paths (A) � paths (P).2. If states (Pi) = states (Ai) and fairpaths (Ai) � paths (Pi) for every i,then states (P) = states (A) and fairpaths (A) � paths (P).Proof. Consider 1. Since states (P) = �i2Istates (Pi) and states (A) =�i2Istates (Ai) we have from the hypothesis that states (P) = states (A).Suppose that
 2 paths (A). From Theorem 2.1(3) we have that for everyi, there exists
0 E
jAi such that
0 2 paths (Ai) and thus, by hypothesis,
0 2 paths (Pi). Now, directly from the de�nition of P ,
 2 paths (P).The proof of 2 is analogous to the above, using Theorem 2.1(6).2.3 Abstraction TheoryIn this section we formalize the conditions required in order for one (theabstract) veri�cation problem (B;P 0) to be property-preserving with respectto another (the concrete) problem (A;P). That is we provide conditions forthe following to hold:B satis�es P 0 implies A satis�es P

2.3. ABSTRACTION THEORY 25Our conditions for property-preservation for trace problems and pathproblems are the existence of trace simulations and path simulations, respec-tively, between the automata in the involved veri�cation problems. Thesesimulations can be seen as generalizations of standard forward simulations[Lyn96]. In Section 2.3.1 we de�ne the notions of trace and path simulationsand we show that the simulations are sound with respect to generalized no-tions of trace and path inclusion. These soundness results provide the basisfor our theorems of Section 2.3.2, which provide conditions for property-preservation between veri�cation problems in both the trace and the pathsetting and with respect to safety as well as liveness properties.2.3.1 SimulationsWe �rst de�ne the notion of a trace simulation between two automata. Thenotion is relative to a relation between the external actions of the automata.Intuitively, this relation de�nes an action abstraction. Let A and B be twoautomata and let R be a relation from ext (A) to ext (B). In a trace sim-ulation from A to B parameterized by R, we require that any transition ofA on an action a in the domain of R can be matched in B by an execu-tion fragment with a single external action b in the range of R, such that(a; b) 2 R. We will see that the existence of a trace simulation from A to Bparameterized by R is a sound condition for trace inclusion, relative to R.Let A and B be two automata and let R be a relation from ext (A) toext (B). We write, u b=)B u0, or simply u b=) u0 when B is clear from thecontext, to denote that B has a �nite execution fragment � with �rst(�)= u, last(�) = u0 and trace (�)jran (R) = b.De�nition 2.11 (Trace Simulation) Let A and B be two I/O automataand let R be a relation from ext (A) to ext (B). A relation S from states (A)to states (B) is a trace simulation from A to B parameterized by R provided,1. If s 2 start (A) then S[s] \ start (B) 6= ;.2. If s a�! s0, (s; u) 2 S, and s and u are reachable states of A and Brespectively, then(a) If a 2 dom (R), then 9b; u0 such that u b=) u0, (a; b) 2 R and(s0; u0) 2 S.(b) If a 62 dom (R), then 9u0 such that u �=) u0 and (s0; u0) 2 S.We write A �tR B, if there exists a trace simulation from A to B parame-terized by R. We write A �tR B via S, if S is a trace simulation from A toB parameterized by R.We now de�ne the notion of a path simulation between two automata.Our notion of path simulation can be seen as a generalization of the notion

26 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORKof homomorphic abstraction functions used in for example [CGL92]. Wewill show that the existence of a path simulation from an automaton A toan automaton B via a state relation S, will be a sound condition for pathinclusion, relative to S.De�nition 2.12 (Path Simulation) Let A and B be two I/O automata.A relation S from states (A) to states (B) is a path simulation relation fromA to B provided, dom (S) = states (A) and ran (S) = states (B) and,1. If s 2 start (A) then S[s] \ start (B) 6= ;.2. If s �! s0, (s; u) 2 S, and s and u are reachable states of A and Brespectively, then 9u0 such that u �! u0 and (s0; u0) 2 S.We write A �p B, if there is a path simulation from A to B. We writeA �p B via S, if S is a path simulation from A to B.Soundness of SimulationsIn the following we �rst introduce an Execution Correspondence Theorem.This theorem states that if any of the simulations de�ned in the previ-ous subsection has been proven from a concrete automaton to an abstractautomaton, then for any execution of the concrete automaton, there is a\corresponding" execution of the abstract automaton. Our theorem is aminor variation of one in [GSSL93]. In order to formalize our notion of cor-respondence, the notions of (S;R)-relation, S-relation, and index mappingare introduced.De�nition 2.13 ((S;R)-relation and index mappings) Let A and B beautomata, and let S be a relation from states (A) to states (B) and R a re-lation from ext (A) to ext (B). Furthermore, let � and �0 be executions of Aand B, respectively, such that � = s0a1s1a2s2 : : : and �0 = u0b1u1b2u2 : : : .We say that � and �0 are (S;R)-related, written (�; �0) 2 (S;R), if thereexists a total, nondecreasing mapping m : f0; 1; : : : ; j�jg 7! f0; 1; : : : ; j�0jgsuch that1. m(0) = 0,2. (si; um(i)) 2 S for all i, 0 � i � j�j,3. trace (ai)jdom (R) 2 R�1(trace (bm(i�1)+1 : : : bm(i))jran (R)) for all i,0 < i � j�j, and4. for all j, 0 � j � j�0j, there exists an i, 0 � i � j�j, such thatm(i) � j.

2.3. ABSTRACTION THEORY 27The mapping m is referred to as an index mapping from � to �0 with respectto (S;R). We write (A;B) 2 (S;R) if for every execution � of A, thereexists an execution �0 of B such that (�; �0) 2 (S;R).If R = ; and m is the identity, we say that � and �0 are S-corresponding,written (�; �0) 2 S, and we refer to m as an index mapping from � to �0with respect to S. We write (A;B) 2 S if for every execution � of A, thereexists an execution �0 of B such that (�; �0) 2 S.Given the above notions of (S;R)-relation and S-relation we can nowstate the Execution Correspondence Theorem as follows.Theorem 2.4 (Execution Correspondence Theorem) Let A and B beautomata. Assume that A �tR B via S (or A �p B via S). Then (A;B) 2(S;R) ((A;B) 2 S).Proof. Analogous to the proof of Theorem 6.11 in [GSSL93].The Execution Correspondence Theorem can be used to prove the fol-lowing soundness results of the trace and path simulations with respect torelativized trace and path inclusion. The soundness results relies on thefollowing lemma.Lemma 2.1 Let A and B be automata and let S be a relation from states (A)to states (B) and R a relation from ext (A) to ext (B). Assume that (�; �0) 2(S;R) (or (�; �0) 2 S and ran (S) = states (B)) and let m be an index map-ping from � to �0 with respect to (S;R) (with respect to S). Then, for all0 � i � j�j, trace (ij�)jdom (R) 2 R�1(trace (m(i)j�0)jran (R))(path (ij�) 2 S�1(path (m(i)j�0)))Proof. Analogous to the proof Lemma 6.14 in [GSSL93].We can now prove the following soundness results for trace and pathsimulations.Theorem 2.5 (Soundness of Trace Simulations) Let A and B be au-tomata.If A �tR B viaS then, traces(A)jdom (R) � R�1(traces(B)jran (R))Proof. Let � 2 traces(A)jdom (R) and let � be an execution of A suchthat � = trace (�)jdom (R). Then, by Theorem 2.4, there exists an exe-cution �0 of B such that (�; �0) 2 (S;R). For any execution �00 we havethat 0j�00 = �00, and for any index mapping m, m(0) = 0. Thus, fromLemma 2.1, trace (�)jdom (R) 2 R�1(trace (�0)jran (R)). We thus have that� 2 R�1(traces(B)jran (R)) as required.

28 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORKTheorem 2.6 (Soundness of Path Simulations) Let A and B be au-tomata. If A �p B viaS then, paths (A) � S�1(paths (A0))Proof. Analogous to proof of Theorem 2.5.2.3.2 Preservation ConditionsWe end this section by stating our conditions for property preservation inthe following four theorems. The theorems provide preservation conditionsfor properties of type: trace safety, path safety, trace liveness, and pathliveness.Theorem 2.7 (Trace Safety Preservation) Let (A;P) and (B;P 0) betwo trace safety veri�cation problems. Let R be a relation with dom (R)= acts(P) and ran (R) = acts(P 0), such that R�1(traces(P 0)) � traces(P).If, 1. A �tR B, and2. B satis�es P 0then, A satis�es P .Proof. From 1 we have that, traces(A)jdom (R) � R�1(traces(B)jran (R)).By assumption dom (R) = acts(P) and ran (R) = acts(P 0). Thus, we havethat traces(A)jacts(P) � R�1(traces(B)jacts(P 0)). From 2 we have thattraces(B)jacts(P 0) � traces(P 0) and since ran (R) = acts(P 0) this implies,R�1(traces(B)jacts(P 0)) � R�1(traces(P 0)). By assumption we have thatR�1(traces(P 0)) � traces(P). Thus, by transitivity of �, we conclude thattraces(A)jacts(P) � traces(P).Theorem 2.8 (Path Safety Preservation) Let (A;Q) and (B;Q0) be twopath safety veri�cation problems. Let S be a relation with dom (S) = states (Q)and ran (S) = states (Q0) such that S�1(paths (Q0)) � paths (Q). If,1. A �p B via S, and2. B satis�es Q0then, A satis�es Q.Proof. Analogous to proof of Theorem 2.7.Theorem 2.9 (Trace Liveness Preservation) Let (A;P) and (B;P 0) betwo trace liveness veri�cation problems. Let R be a relation with dom (R) =acts(P) and ran (R) = acts(P 0), such that R�1(traces(P 0)) � traces(P). If,

2.4. ABSTRACTION THEORY IN LARCH 291. A �tR B via S,2. for all (�; �0) 2 (S;R) : � 2 fairexecs (A)) �0 2 fairexecs (B), and3. B satis�es P 0then, A satis�es P .Proof. First prove fairtraces (A)jdom (R) � R�1(fairtraces (B)jran (R)).Let � 2 fairtraces (A)jdom (R). Then there is an execution � of A suchthat � 2 fairexecs (A) and � = trace (�)jdom (R). From 1 and Theorem 2.4(ECT), there exists an execution �0 of B such that (�; �0) 2 (S;R). From2, �0 2 fairexecs (B) and from Lemma 2.1 we get that, trace (�)jdom (R)2 R�1(trace (�0)jran (R)). This implies that � 2 R�1(trace (�0)jran (R))and since �0 2 fairexecs (B), we have that � 2 R�1(fairtraces (B)jran (R)).Thus, fairtraces (A)jdom (R) � R�1(fairtraces (B)jran (R)). Since dom (R)= acts(P) and ran (R) = acts(P 0) we have that fairtraces (A)jacts(P) �R�1(fairtraces (B)jacts(P 0)). From 3, fairtraces (B)jacts(P 0) � traces(P 0)and since ran (R) = acts(P 0) this implies, R�1(fairtraces (B)jacts(P 0)) �R�1(traces(P 0)). By assumption we have that, R�1(traces(P 0)) � traces(P)and by transitivity of�, we conclude that fairtraces (A)jdom (R)� traces(P).Theorem 2.10 (Path Liveness Preservation) Let (A;Q) and (B;Q0) betwo path liveness veri�cation problems. Let S be a relation with dom (S) =states (Q) and ran (S) = states (Q0) such that S�1(paths (Q0)) � paths (Q).If, 1. A �p B via S,2. for all (�; �0) 2 S : � 2 fairexecs (A)) �0 2 fairexecs (B), and3. B satis�es Q0then, A satis�es Q.Proof. Analogous to proof of Theorem 2.9.2.4 Abstraction Theory in LarchIn this section we present a formalization using the Larch tool set of thesafety part of the trace abstraction framework introduced in the preced-ing section. In [SAGG+93] a framework is introduced for specifying andreasoning about I/O Automata using the Larch tool set. We extend thisframework to include a formalization of our trace abstraction theory. Thetheory is formalized in the Larch Shared Language (LSL) [GH93] which is

30 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORKsupported by a tool that produces input for LP, the Larch Prover. LP isa theorem prover for multi-sorted �rst-order logic designed to assist userswho employ standard proof techniques such as proofs by cases, induction,and contradiction.2.4.1 I/O Automata in LSLLSL speci�cations de�ne two kinds symbols, operators and sorts. Operatorsname total functions from tuples of values to values. Sorts name disjointnon-empty sets of values indicating the domains and ranges of operators.Operators and sorts are introduced in traits. A trait is the basic unit ofspeci�cation in LSL and it can be seen as somewhat similar to the de�nitionof an abstract data type in many algebraic speci�cation languages. However,traits need not fully de�ne a type.Figure 2.1 shows the trait specifying an I/O automaton A. The traitbegins with the introduces clause, declaring a set of operators by providinga signature for each. Signatures implicitly de�nes sorts for domains andranges of operators and they are used to sort-check terms. For example, thesignature for operator start implicitly de�nes the sort States[A] of statesof A. The body of a trait follows the reserved word asserts. In the assertsclause the introduced operators are constrained by equations. For example,the execution fragments of automaton A are de�ned to be those elementsof sort StepSeq[A] that satisfy the predicate execFrag, which is de�nedinductively in the asserts clause.Each trait de�nes a theory (a set of sentences closed under logical conse-quences) in multisorted �rst-order logic with equality. Each theory containsthe trait's assertions, the conventional axioms of �rst-order logic, every-thing that follows from them, and nothing else. The basic theory associatedwith Automaton (A) consists of the set of sentences that can be obtainedfrom the assertions by equational rewriting. The equational theory is fur-ther strengthened by the generated by clause, that asserts that operatorsempty and ^ constitute a complete set of generators for sort Traces[A]. Thisjusti�es a generator induction scheme for proving things about the sort.2.4.2 Trace Simulations in LSLIn order to complete our formalization of the trace based abstraction theory,we introduce two traits specifying the required theory of action parameter-ized simulation relations.In Figure 2.2 the trait ActRel formalizing the notion of a relation be-tween the external actions of automata and related operators is presented.The trait begins by an includes clause which is a means of combining the-ories. The theory associated with ActRel is the theory associated with theunion of theories from the included traits, Automaton(A) and Automaton(B),

2.4. ABSTRACTION THEORY IN LARCH 31
Automaton (A): traitintroducesstart : States[A] -> Boolenabled : States[A], Actions[A] -> Booleffect : States[A], Actions[A], States[A] -> BoolisExternal : Actions[A] -> BoolisInternal : Actions[A] -> BoolisStep : States[A], Actions[A], States[A] -> Boolnull : States[A] -> StepSeq[A]__{__,__} : StepSeq[A], Actions[A], States[A] -> StepSeq[A]execFrag : StepSeq[A] -> Boolfirst, last : StepSeq[A] -> States[A]empty : -> Traces[A]__ ^ __ : Traces[A], Actions[A] -> Traces[A]trace : Actions[A] -> Traces[A]trace : StepSeq[A] -> Traces[A]inv : States[A] -> Boolassertssort Traces[A] generated by empty, ^\forall s, s': States[A], a, a': Actions[A], ss: StepSeq[A]isInternal(a) <=> ~isExternal(a);isStep(s, a, s') <=> enabled(s, a) /\ effect(s, a, s');execFrag(null(s));execFrag(null(s){a,s'}) <=> isStep(s, a, s');execFrag((ss{a,s}){a',s'}) <=> execFrag(ss{a,s}) /\ isStep(s, a', s');first(null(s)) = s;last(null(s)) = s;first(ss{a,s}) = first(ss);last(ss{a,s}) = s;trace(null(s)) = empty;trace(ss{a,s}) = (if isExternal(a) then trace(ss) ^ a else trace(ss));trace(a) = (if isExternal(a) then empty ^ a else empty)Figure 2.1: Automaton.lsl

32 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORKActRel(R,A,B): traitincludes Automaton(A), Automaton(B)introducesR : Actions[A], Actions[B] -> BoolproR : Traces[B] -> Traces[B]inR : Actions[A] -> Boolassertswith a: Actions[A], a': Actions[B]inR(a) <=> (\E a' (R(a,a')));with tr: Traces[B], a': Actions[B], a: Actions[A]proR(empty) = empty;proR(empty^a') = (if \E a R(a,a') then empty^a' else empty);proR(tr^a') = (if \E a R(a,a') then proR(tr)^a' else proR(tr));Figure 2.2: ActRel.lsland the assertions of ActRel itself. Note that Automaton(B) de�nes a the-ory disjoint (disjoint sorts with new operators) from that of Automaton(A)by renaming the parameter A by B. The trait introduces a relation R as arelation from the actions of automaton A to those of automaton B. It furtherde�nes operators proR on traces of B and inR on actions of A. Operator proRprojects a trace of B on to the actions in the range of relation R. OperatorinR is a predicate telling whether or not an action of A is in the domain ofrelation R.In Figure 2.3 we show the trait Simulation specifying the theory of tracesimulation relations. The trait assumes (similar to includes) the theory oftwo automata A and B as well as a relation R from the actions of A to thoseof B. The trait further introduces an operator S to denote a relation amongstates of A and B. The assertions of the trait are simply a formalization ofthe conditions in the de�nition of a trace simulation relation. The theorycan be used to assist in proving that a given state relation S between twoautomata A and B is a trace simulation parameterized by relation R from Ato B. In Chapter 4, in the second part of this thesis, we demonstrate theuse of LP to discharge preservation conditions in an abstraction proof forBurns' mutual exclusion algorithm.2.5 Input/Output Automata in SPINAn abstract veri�cation problem which is �nite-state is directly amenableto automatic veri�cation. We end this chapter on our untimed abstraction

2.5. INPUT/OUTPUT AUTOMATA IN SPIN 33Simulation(A,B,R,S): traitassumes Automaton(A), Automaton(B), ActRel(R,A,B)introducesS : States[A], States[B] -> Boolassertswith s, s' : States[A], u: States[B], a: Actions[A], a',a'': Actions[B],alpha: StepSeq[B]start(s) => \E u (start(u) /\ S(s, u));S(s, u) /\ isStep(s, a, s') /\ inR(a) =>(\E alpha \E a' (execFrag(alpha) /\ first(alpha) = u /\S(s', last(alpha)) /\ proR(trace(alpha)) = empty^a'/\ R(a,a')));S(s, u) /\ inv(s) /\ isStep(s, a, s') /\ ~inR(a) =>(\E alpha (execFrag(alpha) /\ first(alpha) = u /\ S(s', last(alpha))/\ proR(trace(alpha)) = empty))Figure 2.3: Simulation.lslframework by examining a translation scheme for representing �nite-stateveri�cation problems from the I/O automata framework in the model checkerSPIN [Hol91]. The SPIN model checker supports automatic veri�cation ofnext-time-free LTL properties over �nite-state transition systems describedin the PROMELA language. We begin in Section 2.5.1 by examining amethod for specifying trace and path properties using LTL. Then in Sec-tion 2.5.2 we present a rudimentary scheme for translating �nite-state I/Oautomata into the PROMELA input language for SPIN.2.5.1 Temporal LogicIn this section we present a method for specifying trace and path propertiesusing Linear Time Temporal Logic (LTL). We will assume, that any I/Oautomaton A has a set of state variables VA over some domain. We willinterpret a state of A as a mapping s from VA to its domain. We write s(v)to denote the value of v in state s. We will further assume a reserved actionvariable vact ranging over acts(A) [f�g, where � is a distinct \no-action"symbol. We assume a basic assertion language over variables VA [fvactg.Assertions are constructed from basic expressions v = x (x in the domain ofv) using only standard boolean connectives.For an assertion p and a function s that interprets all free variables inp, we write s jj= p to denote that s satis�es p. Meaning, that the formula

34 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORKobtained by substituting in p all variables v by s(v), is true.De�nition 2.14 (Temporal Formulae) Let A be an automaton. A tem-poral formula of A is a formula constructed from assertions of A to whichwe apply the boolean connectives : and _ and the basic temporal operator Udenoted (Strong) Until.For an I/O automaton A, we let seq (A) denote the set of all �nite andin�nite alternating sequences of states and actions in A. Any sequence mustbegin with a state and if it is �nite it must also end with a state. Note, thatthe set of executions execs (A) is a subset of the set seq (A). The trace of asequence � 2 seq (A) consists of the subsequence of external actions in �.De�nition 2.15 (Stutter Extending Sequences) Let � be a �nite se-quence in seq (A) such that � = s0a1s1 : : : aksk. We de�ne the stutter ex-tension of � as the in�nite sequence,�st = s0a1s1 : : : aksk�sk�sk : : :obtained by concatenating � with the sequence consisting of an in�nite al-ternation of the \no-action" � and the last state sk of �. For an in�nitesequence � we de�ne �st = �.De�nition 2.16 (Encoding Actions in State Sequences) Let � be asequence in seq (A) such that � = s0a1s1a2s2 : : : . Then ~� denotes the se-quence obtained from � by encoding in any state the information of theimmediate preceding action in the reserved action variable vact. Formally,~� = (s0 [[vact 7! �])(s1 [[vact 7! a1])(s2 [[vact 7! a2]) : : :where � denotes a distinct \no-action" not in acts(A).De�nition 2.17 (Sequences Satisfying Formulae (j=)) Let A be an au-tomaton and let p be a temporal formula of A. Furthermore, let � 2 seq (A).We de�ne inductively the notion of p holding at a position j � 0 in ~�st,denoted by (~�st; j) j= p, as follows.If p assertion:(~�st; j) j= p () sj jj= pOtherwise:(~�st; j) j= :p () (~�st; j) 6j= p(~�st; j) j= p _ q () (~�st; j) j= p or (~�st; j) j= q(~�st; j) j= pU q () there exists k � j; (~�; k) j= q andfor all i; j � i < k; (~�; i) j= pWe say that � satis�es p i� (~�st; 0) j= p. We will write � j= p in this case.

2.5. INPUT/OUTPUT AUTOMATA IN SPIN 35We can introduce additional derived operators. Boolean operators ^and ! may be de�ned in the usual way, using the basic _ and : operators.Additional temporal operators are de�ned by:3p = trueU p { Eventually p2p = :3:p { Always ppW q = 2p _ pU q { p Waiting-for (Unless) qDe�nition 2.18 (Induced Trace and Path Properties) Let A be an au-tomaton. Let p be an arbitrary temporal formula of A. De�ne,1. tracesA(p) = ftrace (�) j � 2 seq (A) ^ � j= pg2. pathsA (p) = fpath (�) j � 2 seq (A) ^ � j= pgThe trace property induced by p, written TA(p), is the trace property withsignature sig (TA(p)) = (in (A); out (A)) and set of traces traces(TA(p)) =tracesA(p). The path property induced by p, written PA(p), is the path prop-erty with signature sig (PA(p)) = states (A) and set of paths paths (PA(p))= pathsA (p).We say that a temporal formula p of A is a trace (path) safety formulaif TA(p) (PA(p)) is a trace (path) safety property. Analogously, p is said tobe a trace (path) liveness formula if TA(p) (PA(p)) is a trace (path) livenessproperty. In [Pnu86] is a characterization of temporal logic properties ac-cording to notions of safety and liveness. Our notion of liveness correspondsto temporal properties commonly called pure liveness properties.Usually, a temporal formula intended to specify a trace property of anautomaton A, will only contain assertions over the action variable vact. Anal-ogously, a temporal formula intended to specify a path property, will usuallycontain only assertions over the state variables VA of A.De�nition 2.19 (Fairness Condition in Temporal Logic) Let A be anautomaton. The fairness property for A is the property FA de�ned as,FA = ^C2tasks(A)(32EA(C)! 23(vact 2 C))where EA(C) is a predicate describing states of A in which some action fromC is enabled.Lemma 2.2 Let A be an automaton and let � be any execution of A. Then,� j= FA () � 2 fairexecs (A)

36 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORKProof. =): Suppose � is in�nite and � 62 fairexecs (A). Then � containsonly �nitely many occurrences of actions from C and only �nitely manyoccurrences of states in which C is not enabled. Thus � satis�es the hy-pothesis of FA but not the conclusion. Hence, � 6j= FA. Suppose � is �nite.Assume for the sake of contradiction that an action a 2 C (for some taskC) is enabled in the last state sk of �. Then (~�st; 0) j= 32EA(C) since sk isrepeated in�nitely in �st. Therefore, since � j= FA ((~�st; 0) j= FA), it mustbe that in�nitely often in ~�st there exists a state in which the vact 2 C.This, however contradicts the fact that by construction ~�st has an in�nitesu�x of states in which vact = �. Thus, no C is enabled in sk.(=: Suppose � is in�nite and � 2 fairexecs (A). Suppose � containsin�nitely many occurrences of action from some task C. Then the conclu-sion of FA holds and thus � j= FA. Suppose � contains in�nitely manyoccurrences of states in which C is not enabled. Then the hypothesis ofFA is false and � j= FA vacuously. Suppose � is �nite. Then no task Cis enabled in the last state sk of �. Since sk is repeated in�nitely in �st,(~�st) 6j= 32EA(C) for any C. Hence, � j= FA vacuously.We now formally de�ne the notion of an I/O automaton A satisfying atemporal formula as follows.De�nition 2.20 (Automata Satisfying Formulae) Let A be an automa-ton and let p be any safety formula and q any liveness formula. Then,A j= p () 8� 2 execs (A): � j= pA j= q () 8� 2 execs (A): � j= FA ! qIt follows from the de�nition that, if A j= p then A satis�es TA(p) andPA(p).2.5.2 Translating AutomataOur translation scheme is based on the representation of I/O automata in theprecondition-e�ect language described in Section 2.2.2. We will assume thatthe state types, predicates, and operations used to describe states, precondi-tions and e�ects of I/O automata are all implementable in the PROMELAlanguage. Thus, our translation scheme is relative to a correct translationof the above elements. In theory, only a fragment of the very general metaI/O automata language is implementable in the PROMELA language. Inpractice however, many nontrivial algorithms are describable in a fragmentof the I/O automata language that allows for translation.We consider the general translation of a composition A = �i2IAi ofautomata. Figure 2.4 presents the generic code for any automaton Ai in thecomposition. We assume that pre(Ai; a) de�nes the precondition for actiona of automaton Ai. Analogously, we assume that e�(Ai; a) de�nes the e�ectof action a.

2.5. INPUT/OUTPUT AUTOMATA IN SPIN 37

Automaton: AiSignatureInputs:ai1; ai2; : : :Internals:bi1; bi2; : : :Outputs:ci1; ci2; : : :States:xi1 : Ti1; xi2 : Ti2; : : :Transitions:: : :input: aijE�: e�(Ai; aij): : :internal: bikPre: pre(Ai; bik)E�: e�(Ai; bik)
: : :output: cilPre: pre(Ai; cil)E�: e�(Ai; cil): : :Tasks:fCi1; Ci2; : : : g Figure 2.4: I/O Automaton Ai

38 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORKproctype A ()fmtype =fin (A); int (A); out (A)g;mtype vact;T11 x11; : : : ;Tnm xnmdo� � �:: atomic ftrue � > vact = aij ; e�(Ai; aij)g� � �:: atomic fpre(Ai; bik) � > vact = bik; e�(Ai; bik)g� � �:: atomic fpre(Ai; cil) � > vact = cil; e�(A1; cil); : : : ; e�(An; cil)g� � �:: else � > vact = � ; breakodg Figure 2.5: PROMELA code for automaton AWe translate the composition A into a single PROMELA proctype dec-laration as shown in Figure 2.5. We use typewriter font for PROMELAsyntax. We use the syntax of the precondition-e�ect code to describe thePROMELA implementations of state and action variables of A. We also usethe notions pre(Ai; a) and e�(Ai; a) to denote the PROMELA implementa-tions of the identically named predicates and operations of the precondition-e�ect code. Recall, that we assume that a correct translation of these entitiesexists.The PROMELA code starts by declaring a processA with no parameters.The process declaration is divided into two parts. The �rst part consistsof the �rst three lines inside the proctype declaration and it declares thevariables to be used in process A. In the �rst line we declare a messagetype mtype to be a list of all the actions of the composition A, and in thenext line we declare the variable vact to be of this type. The variable vactimplements the action variable described in Section 2.5.1 and is used to keeptrack of the latest action performed by A. Recall from Section 2.5.1 that weuse vact to describe trace properties by LTL properties. The third line endsthe declaration part of the translation. Here we simply declare all the statevariables of the composition A.The transitions of automaton A are described in a single do::od loopconstruction. The loop has an entry for any action in the compositionA. Consider the actions of automaton Ai and let us see how these arerepresented in the PROMELA description of the composition A.Consider an input action aij of Ai. If no other process Ak contains aijas an output action, aij becomes an input in the composition A. In thiscase the e�ect of aij in A becomes the e�ect of aij in Ai. This situation isthe one described for action aij in Figure 2.5. The precondition and e�ect

2.5. INPUT/OUTPUT AUTOMATA IN SPIN 39of the action is encapsulated in an atomic sequence which guarantees theexecution of precondition and e�ect as a single indivisible statement. Theatomic sequence is divided into two parts, a guard and an e�ect. The guardin this case in the statement true, describing the input-enabledness of actionaij. The e�ect consists of assigning to vact the name of the action performed,as well as performing the e�ect of aij in Ai.If some process Ak contains aij as output action, aij becomes an outputin A. This situation is described in Figure 2.5 for an output action cij ofautomaton Ai. Since Ai is the only automaton controlling cij in A, theprecondition in A becomes the precondition from Ai. The e�ect howeverbecomes the sequence of e�ects that action cij may have by virtue of beingan input action in other automata than Ai, as well as the e�ect of cij in Ai.As before, the e�ect also contains the assignment to action variable vact ofthe name of the action cij performed.Finally, consider an internal action bik of Ai. This action becomes aninternal action of A with preconditions and e�ects identical to those of Ai.The PROMELA code for A contains a �nal entry in the loop construc-tion. This entry, guarded by the statement else, is executable exactly ifnone of the other entries are. The e�ect of the entry simply consists of as-signing the \no-action" � to the action variable vact and then breaking outof the loop construct. We use this entry to guarantee the correct stutter se-mantics of automata as it is described in Section 2.5.1. When verifying LTLproperties, SPIN automatically stutters the last state in any �nite executionto obtain an in�nite execution. The entry described above guarantees thatvact = � in any stutter extension of a �nite execution.The tasks of automaton A are not directly code into the PROMELAcode for A. Rather, we code the fairness conditions induced by the taskpartition into liveness properties as described in Section 2.5.1.

40 CHAPTER 2. UNTIMED ABSTRACTION FRAMEWORK

Chapter 3Timed AbstractionFrameworkIn this chapter we present our timed abstraction framework. Analogousto the untimed framework, presented in the previous chapter, the timedframework provides general conditions for one veri�cation problem to beproperty preserving with respect to another problem. However, the systemsthat we consider in this framework are timed systems, and so the propertiesthat interests us include timing information as well.The timed framework developed in this thesis is motivated by practicalexperience with the UPPAAL real-time model checker [BLL+95]. UPPAALcan e�ciently deal with veri�cation of real-time systems (over a dense timedomain) speci�ed as networks of timed automata. A timed automata isbasically an extension of a classical automaton with real-valued clocks. Thetimed automaton model constrains the allowed conditions on clock variablesin a way that makes it possible to obtain a �nite abstract semantic model.The abstract model preserves (strongly) enough information to allow it to beused for veri�cation about properties of the concrete system. Thus, the toolperforms an automatic abstraction of the timing component of any properlydescribed real-time system.We provide an abstraction framework that in addition allows for the ab-straction of untimed information like control and data. Thus our frameworkprovides a link to the UPPAAL tool providing support for veri�cation of e.g.parameterized real-time systems consisting of a number of composed pro-cesses, the particular value of the number being the parameter, or processeswith unbounded number of actions or unbounded data domains.The properties that can be directly veri�ed in UPPAAL are simple reach-ability properties. However, based on the use of test automata veri�cationof properties other than plain reachability ones may be carried out as well.In [ABL98] the authors describe the testing approach for properties ex-pressed in a dense-time temporal logic suitable for specifying safety and41

42 CHAPTER 3. TIMED ABSTRACTION FRAMEWORKbounded liveness properties. Given a property � to model check, the userprovides a test automaton T� for it. The test automaton must be such thatthe original system S has the property expressed by � precisely when nobad states of T� can be reached in the composition of S and T�. In [ABL98]it is also presented how the logical property language of that paper can beused to provide characteristic properties [IS94] for timed automata with re-spect to a timed version of the ready simulation preorder [LS91, BIM95].This provides for an indirect veri�cation of timed ready simulation using thetesting approach.Our abstraction framework is based on a variant of the timed ready sim-ulation preorder. We consider veri�cation problems consisting of a pair oftimed systems, an implementation and a speci�cation, and our goal is toverify whether the implementation is timed ready simulated by the speci-�cation. Given two veri�cation problems, a concrete one and an abstractone, we provide conditions for the abstract problem to be property pre-serving with respect to the concrete problem. Meaning that under theseconditions, if the abstract implementation is timed ready simulated by theabstract speci�cation then the concrete implementation is timed ready sim-ulated by the concrete speci�cation. The condition for property preservationis based on an action parameterized version of the timed ready simulation.We will see that this simulation has nice properties like e.g. preservationunder system composition which supports hierarchical veri�cation.We furthermore provide a method for translating the problem of check-ing for the existence of timed ready simulations into a reachability questionamenable to veri�cation by UPPAAL. Given two systems S1; S2 we writeS1 � S2 if S1 is timed ready simulated by S2. By our testing approach, weconstruct a test automaton TS2 for S2 such that no bad states of the compo-sition of S1 and TS2 can be reached precisely when S1 � S2. Our approachis more direct than the one presented in [ABL98] in which a characteristicproperty of system S2 must �rst be constructed and then in a second stepa test automaton for this property must be constructed.Chapter Organization. We begin in Section 3.1 by presenting the un-derlying formal model used to describe timed systems. We use a notion oftimed labelled transition systems commonly used to provide semantics fortimed automata. The timed automata language is presented in this sectionas well. In Section 3.2 we present the general conditions for property preser-vation between veri�cation problems based on the notion of parameterizedtimed ready simulation. We also prove properties like compositionality andtransitivity of parameterized timed ready simulations. Section 3.3 presents amethod for constructing abstract veri�cation problems from concrete prob-lems such that the required conditions for property preservation are guar-anteed to hold. Finally, in Section 3.4 we present the method of translating

3.1. TIMED LABELLED TRANSITION SYSTEMS 43checks for the existence of timed ready simulations into a reachability prob-lem.3.1 Timed Labelled Transition SystemsIn this section we present the basic model of timed labelled transition sys-tems as well as the timed automaton language used to describe these tran-sition systems syntactically.A timed labelled transition systems has two types of labels: atomicactions and delays, representing discrete and continuous changes of real-time systems. We will assume that Au and Al are universal and disjointsets of urgent actions and lazy actions, respectively. Urgent actions areused to enforce immediate synchronization among transition systems, in thesense that no delay can occur beyond a point in time at which an urgentsynchronization becomes enabled. Lazy actions are simply all non-urgentactions. We let A = Au [Al.We will assume the existence of a special internal action � distinct fromany action in A and we de�ne A� = A [f�g, Au;� = Au [f�g and Al;� =Al [f�g. We use D to denote the set of delay actions f�(d) j d 2 R�0gwhere R�0 denotes the set of non-negative real numbers. We denote the0-delay action �(0) by 0 and we de�ne A�;0 = A� [f0g, Au;0 = Au [f0gand Al;0 = Al [f0g. We use a; b to range over A�;0.De�nition 3.1 (Timed Labelled Transition System) A timed labelledtransition system is a tuple T = hS; s0;�!i where S is a set of states, s02 S is the initial state, and �! � S � A� [D � S is a transition relationsatisfying the following properties:{ (time determinism) For every s; s0; s00 2 S, if s �(d)�! s0 and s �(d)�! s00,then s0 = s00.{ (time additivity) For every s; s00 2 S, s �(d1+d2)�! s00 i� s �(d1)�! s0 �(d2)�! s00,for some s0 2 S.{ (0-delay) For every s; s0 2 S, s 0�! s0 i� s = s0We say that a timed labelled transition system is deterministic if, in addition,the transition relation satis�es the following property:{ (determinism) For every s; s0; s00 2 S and a 2 A� , if s a�! s0 ands a�! s00, then s0 = s00.Following [ABL98, Yi90], we now de�ne versions of the transition re-lations that abstract away from the internal evolution of states. Let ��!�denote the re
exive and transitive closure of ��!. For any states s and s0

44 CHAPTER 3. TIMED ABSTRACTION FRAMEWORKof a timed labelled transition system and for any action a 2 A� , we writes a�! i� there exists s0 such that s a�! s0, and we write s a=) s0 i� thereexists s00; s000 such that s ��!� s00 a�! s000 ��!� s0. Analogously, we writes �(d)�! i� there exists s0 such that s �(d)�! s0, and we write s �(d)=) s0 i� thereexists a �nite transition sequence s = s0 �1�! s1 �2�! � � � �n�! sn = s0 suchthat for all i 2 f1; : : : ; ng, �i = � or �i 2 D, and d = Pfdi j �i = �(di)g.By convention, if the set fdi j �i = �(di)g is empty, then Pfdi j �i = �(di)gis 0. With this convention, the relation 0=) coincides with ��!�. We saythat a state s of T is reachable if there exists a �nite transition sequences0 �1�! s1 �2�! s2 : : : �n�! sn of T such that for all i 2 f1; : : : ; ng, �i 2 A�[D,s0 is the initial state of T , and sn = s. By acts(T) we denote the setfa 2 A�;0 j 9s; s0 : s a�! s0g. Note that 0 is an element of acts(T).3.1.1 CompositionTo describe concurrency and synchronization between timed labelled transi-tion systems we use synchronization functions. Assume a special \unde�ned"-symbol ? 62 A� [D.De�nition 3.2 (Synchronization Function) A synchronization functionf is a function from (A�;0 [f?g) � (A�;0 [f?g) to A�;0 [f?g satisfyingthe following conditions:1. If a; b 2 Au;0 and a 6= 0 or b 6= 0, then f(a; b) 2 Au;� [f?g.2. If a; b 2 Al;0 and a 6= 0 or b 6= 0, then f(a; b) 2 Al;� [f?g.3. If a 2 Au and b 2 Al then f(a; b) = ?.4. f(0;0) = 05. f(�;0) = f(0; �) = � .6. If a 2 A� , then f(a; �) = f(�; a) = ?.7. If a 2 A�;0, then f(a;?) = f(?; a) = f(?;?) = ?Condition 1 states that the synchronization of two urgent actions, or asingle urgent action combined with the 0-action, must result in either an ur-gent action, the internal action � , or the \unde�ned" symbol ?. Condition2 states the analogous preservation condition for lazy actions, and condition3 prohibits joint synchronization of urgent and lazy actions. Condition 4implies that the 0-delay property of timed labelled transition systems is pre-served by parallel composition. Condition 5 states that � -actions can occurasynchronously in a composition, and condition 6 says that � -actions cannot synchronize with any other actions than the 0-action. Finally, condition7 prohibits any synchronization with the unde�ned symbol ?.

3.1. TIMED LABELLED TRANSITION SYSTEMS 45De�nition 3.3 (Composition) Let Ti = hSi; s0;i;�!ii, i = 1; 2 be twotimed labelled transition systems and let f be a synchronization function.The parallel composition T1
f T2 is the timed labelled transition systemhS; s0;�!i where S = S1 � S2, s0 = hs1;0; s2;0i, and �! is de�ned asfollows for all a 2 A�;0 and d > 0:{ hs1; s2i a�! hs01; s02i i� s1 a1�!1 s01; s2 a2�!2 s02; and f(a1; a2) = a{ hs1; s2i �(d)�! hs01; s02i i� s1 �(d)�!1 s01; s2 �(d)�!2 s02; and8t 2 [0; d[; a1; a2 2 Au; s001; s002;:(s1 �(t)�!1 s001 a1�!1 ^ s2 �(t)�!2 s002 a2�!2 ^f(a1; a2) 6= ?)Note that the 0-delay property is preserved by the �rst of the two rules sinceby De�nition 3.2, f(0;0) = 0. The de�nition forces the composed transitionsystems to synchronize on actions that correspond via f and on delays, butwith the restriction that delaying is only possible when no synchronizationon urgent actions is. Thus synchronizations on urgent actions must happenimmediately.3.1.2 Timed AutomataTimed labelled transition systems are described syntactically by timed au-tomata. The timed automata model considered is the one used by the UP-PAAL tool and described e.g. in [BLL+95, Kri98]. A timed automaton isa standard automaton extended with �nite collections of real-valued clocksand integer-valued data variables. We consider general automata where ac-tions are taken from the in�nite set A� and data variables are over theunbounded set of integers. However, when providing input for UPPAALwe are restricted to �nite sets of actions and integers in order to obtaindecidability. Assume C is a �nite set of clocks and V is a �nite set of datavariables. We use G(C; V) to stand for the set of guards g generated aslogical combinations of constraints p on the form: x � n or i � n for x 2C, i 2 V , � 2 f<;>;=g, and n being a natural number. A guard g can bedivided into two parts: a conjunction gc of constraints of the form x � nover clock variables x, and a conjunction gv of constraints of the form i � nover data variables i. To manipulate clock and data variables we use resetset of the form: w := e, which is a set of assignment operations of the formw := e for w a clock or data variable and e an expression. We use R todenote the set of all possible reset operations. A reset operation on a clockvariable x must be of the form x := n, n being a natural number, and a resetoperation on a data variable i must be of the form i := c� i+c0, where c andc0 are integer constants. For a reset set r 2 2R we let rv be the subset of rconsisting of reset operations on data variables and rc the subset consistingof reset operations on clock variables.

46 CHAPTER 3. TIMED ABSTRACTION FRAMEWORKDe�nition 3.4 (Timed Automaton) A timed automaton A is a tuplehN; l0; C; V;Ei where N is a �nite set of locations, l0 2 N is the initiallocation, C is a �nite set of clocks, V is a �nite set of data variables, andE � N �G(C; V)�A� � 2R �N is a set of edges.For a timed automaton A, we sometimes write l g;a;r�!A l0, or simplyl g;a;r�! l0 when A is clear from the context, to denote that hl; g; a; r; l0i is anedge of A.Suppose that C and V are sets of clock variables and data variables,respectively. A variable assignment is a mapping from C to R�0 and fromV to integers. For a variable assignment v and a delay d 2R�0, v+d denotesthe variable assignment such that (v + d)(x) = v(x) + d for any x 2 C, and(v + d)(i) = v(i) for any integer variable i. For a reset set r, we use r(v) todenote the variable assignment v0 with v0(w) = val(e; v) whenever w := e 2r and v0(w) = v(w) otherwise, where val(e; v) denotes the values of e in v.Given a guard g 2 G(C; V) and a variable assignment v, g(v) is a booleanvalue describing whether or not g is satis�ed by v.A state of an automaton A is a pair hl; vi where l is a node of A and v isa variable assignment. The initial state of A is hl0; v0i, where l0 is the initialnode of A and v0 is the initial assignment that maps all variables to 0.De�nition 3.5 (Timed Automaton Semantics) The operational seman-tics of a timed automaton A is given by the timed labelled transition system,TA = hS; s0;�!i, where S is the set of states of A, s0 is the initial state ofA, and �! is the transition relation de�ned as follows:{ hl; vi a�! hl0; v0i i� 9r; g: l g;a;r�! l0 ^ g(v) ^ v0 = r(v){ hl; vi �(d)�! hl0; v0i i� l = l0 ^ v0 = v + dwhere a 2 A� and �(d) 2 D.For any timed automata A and B, we de�ne A
f B i� TA
f TB, andway say that B is deterministic i� TB is deterministic.3.1.3 Properties of Timed Labelled Transition SystemsWhen reasoning about a timed labelled transition system T , we will specifythe requirements to T using a speci�cation T 0, and we will say that Tsatis�es T 0 provided there exists a timed ready simulation relation from Tto T 0. The relation is a special case of a more general parameterized timedready simulation, where the parameter is a certain action relation. Thisparameterized timed ready simulation will play a central role in our laterconditions for property preservation. The general simulation relation willbe introduced in the following section.

3.2. TIMED ABSTRACTION THEORY 473.2 Timed Abstraction TheoryIn this section we present our abstraction theory for timed labelled transitionsystems. We will denote a pair (T1;T2) of timed labelled transition systemswith acts(T1) = acts(T2) as a veri�cation problem and it is our intentionto verify whether T1 is timed ready simulated by T2, to be written T1 �T2. Given another (abstract) veri�cation problem (T 01 ;T 02) we will provideconditions for the following to hold:T 01 � T 02 implies T1 � T2We begin in Section 3.2.1 by introducing a notion of parameterized timedready simulation, where the parameter is a certain action relation. This isquite analogous to the parameterized simulations of the untimed framework.The above notion � of unparameterized timed ready simulation will bea special case of the parameterized relation, where the parameter is theidentity relation. We will prove several nice properties of the parameterizedsimulation relation such as e.g. preservation under composition of timedlabelled transition systems. Then in Section 3.2.2 we present the conditionsfor property preservation between veri�cation problems.3.2.1 Timed SimulationsThe parameter of a parameterized timed ready simulation will be a relationon the actions of the involved transition systems. The intention is, as inthe untimed framework, to allow for abstraction of a large set of concreteactions by a smaller set of abstract actions. Formally, an action relation isde�ned as follows.De�nition 3.6 An action relation R is a relation over A2�;0 such that forall (a; b) 2 R, a; b 2 Au, a; b 2 Al, or a; b 2 f0; �g and a = b.We require that urgency and laziness of actions is preserved by abstraction.Note that if R is an action relation then so is R�1.De�nition 3.7 Let T1, T2 be two timed labelled transition systems and letR be an action relation. We say that R is total on T1 and T2 provided,� for all a 2 acts(T1) there exists b 2 acts(T2) such that (a; b) 2 R� for all b 2 acts(T2) there exists a 2 acts(T1) such that (a; b) 2 RWe now de�ne the notion of a parameterized simulation relation as fol-lows. The de�nition is variant of the one in [ABL98] parameterized with anaction relation.

48 CHAPTER 3. TIMED ABSTRACTION FRAMEWORKDe�nition 3.8 Let Ti = hSi; s0;i;�!ii, i = 1; 2 be two timed labelled tran-sition systems. Let R be an action relation total on T1 and T2, and let Q bea relation from S1 to S2. We say that Q is a timed ready simulation fromT1 to T2 parameterized by R provided,1. (s0;1; s0;2) 2 Q2. whenever s1; s2 are reachable states of T1 and T2, respectively, and(s1; s2) 2 Q:(a) if s1 a=)1 s01 for some a 2 A, then for all b 2 acts(T2)\R[a] thereexists s02 such that s2 b=)2 s02 and (s01; s02) 2 Q(b) if s1 �(d)=)1 s01 for some d � 0, then s2 �(d)=)2 s02 for some s02 suchthat (s01; s02) 2 Q(c) if s2 b�!2 s02 for some b 2 Au, then for all a 2 acts(T1) \R�1[b]there exists s01 such that s1 a�!1 s01We write T1 �R T2 if there exists a timed ready simulation from T1 to T2parameterized by R.Conditions 2(a) and 2(b) state that concrete action and delay moves mustbe matched by abstract moves with related actions and identical delays,respectively. Condition 2(c) is required in order to obtain preservation ofthe simulation under system composition.Consider two timed labelled transition systems T1 and T2 with acts(T1) =acts(T2). The identity relation id is trivially an action relation total on T1and T2. We write T1 � T2 in case T1 �id T2. Thus we have identi�ed thenotion of unparameterized timed ready simulation as a special case of theparameterized one.In the following we state and prove several results about the parameter-ized timed ready simulation. Some of these results will form the basis forthe preservation condition in Section 2.3.2.The following proposition states an alternative characterization of atimed ready simulation, which is useful when proving results about it. Forany a 2 A�;0, let â = 0 if a = � and â = a otherwise.Proposition 3.1 If Ti = hSi; s0;i;�!ii, i = 1; 2 are two timed labelledtransition systems, R is an action relation total on T1 and T2, and Q is arelation from S1 to S2, then Q is a timed ready simulation from T1 to T2parameterized by R i�,1: (s0;1; s0;2) 2 Q2: whenever s1; s2 are reachable states of T1 and T2, respectively, and(s1; s2) 2 Q:

3.2. TIMED ABSTRACTION THEORY 49(a) if s1 a�!1 s01 for some a 2 A� , then for all b 2 acts(T2) \ R[a]there exists s02 such that s2 b̂=)2 s02 and (s01; s02) 2 Q(b) if s1 �(d)�!1 s01 for some d > 0, then s2 �(d)=)2 s02 for some s02 suchthat (s01; s02) 2 Q(c) if s2 b�!2 s02 for some b 2 Au, then for all a 2 acts(T1) \ R�1[b]there exists s01 such that s1 a�!1 s01Proof. In the following 10 and 20 refers to 1 and 2 of Proposition 3.1, and1 and 2 refers to 1 and 2 of De�nition 3.8.Assume that Q is a timed ready simulation from T1 to T2 parameterizedby R. That is 1 and 2 hold. We show that 10 and 20 hold. Trivially 10 holdssince it is identical to 1. Now, assume s1 and s2 are reachable states of T1and T2, respectively, and (s1; s2) 2 Q. Suppose s1 a�!1 s01 for some a 2 A� .Then s1 â=)1 s01 and from 2(a) (case a 6= �) and 2(b) (case a = �) we havethat for any b 2 acts(T2) \ R[a] there exists s02 such that s2 b̂=)2 s02 and(s01; s02) 2 Q. Thus 20(a) holds. Suppose s1 �(d)�!1 s01. Then s1 �(d)=)1 s01 andfrom 2(b) there exists s02 such that s2 �(d)=)2 s02 and (s01; s02) 2 Q. Thus 20(b)holds. Finally, 20(c) holds trivially since it is identical to 2(c).Now, assume that Q and R are relations satisfying 10 and 20. We showthat 1 and 2 hold. Trivially 1 holds since it is identical to 10. Now, assumes1 and s2 are reachable states of T1 and T2, respectively, and (s1; s2) 2 Q.It can trivially be shown that if s1 ��!�1 s01 then s2 ��!�2 s02 for some s02 suchthat (s01; s02) 2 Q. Let (�) denote this fact.Now, suppose s1 a=)1 s01 for some a 2 A. Then s1 ��!�1 s001 a�!1 s0001 ��!�1s01 for some s001; s0001 . From (�) and 20(a) we have that for any b 2 acts(T2) \R[a], there exists s02 such that s2 b=)2 s02 and (s01; s02) 2 Q. Note that b 6= �so b̂ = b. Thus 2(a) holds. Suppose s1 �(d)=)1 s01. If d = 0 then s1 ��!�1 s01.From (�), s2 ��!�2 s02 for some s02 such that (s01; s02) 2 Q. Since ��!�= 0=)this proves 2(b) in the case d = 0. If d > 0 then s1 = s1;0 ��!�1 s01;0 �(d1)�!1s1;1 ��!�1 s01;1 �(d2)�!1 s1;2 ��!�1 � � � ��!�1 s01;n�1 �(dn)�!1 s1;n = s01 (n � 0) suchthatPfdi j 1 � i � ng = d. From (�) and 20(b) we have that there exists s02such that s2 �(d)=)2 s02 and (s01; s02) 2 Q. Thus 2(b) holds. Finally, 2(c) holdstrivially since it is identical to 20(c).Let � denote the synchronization function such that �(a; a) = a for alla 2 A. For any two timed labelled transition systems T1 and T2, we denotethe parallel composition T1
� T2 the synchronous composition of T1 andT2. Note, that this composition is synchronous only with respect to non-�actions. It still allows for asynchronous execution of � -transitions from T1and T2. This follows directly from condition 5 in De�nition 3.2.

50 CHAPTER 3. TIMED ABSTRACTION FRAMEWORKTheorem 3.1 (Idempotency of Synchronous Composition) If T hasno urgent actions, then T � T
� T and T
� T � T .Proof. We �rst show that T � T
� T . Let Q be the relation from statesof T to states of T
� T such that (s1; hs2; s3i) 2 Q i� s1 = s2 = s3. Weshow that Q is a timed ready simulation parameterized with the identityaction relation. Let s0 be the initial state of T . Then hs0; s0i is the initialstate of T
� T and trivially (s0; hs0; s0i) 2 Q.Consider reachable states s and hs; si of T and T
� T , respectively.Then (s; hs; si) 2 Q. Suppose s a�! s0 for some a 2 A� . Consider �rstthe case that a = � . From condition 5 in De�nition 3.2 we have that�(�;0) = �(0; �) = � . Thus, hs; si ��! hs0; si ��! hs0; s0i. Consider nowa 6= � . Since �(a; a) = a, we have that hs; si a�! hs0; s0i. Suppose thats �(d)�! s0. Since T has no urgent actions, hs; si �(d)�! hs0; s0i. This concludesthe �rst part of the proof.We now show that T
� T � T . Let Q be the relation from states ofT
� T to states of T such that (hs1; s2i; s3) 2 Q i� s1 = s3 or s2 = s3. Theinitial condition holds by identical argument to the one above.Consider reachable states hs1; s2i and s3 of T
� T and T , respectively.Assume without loss of generality that s1 = s3. Then (hs1; s2i; s1) 2 Q.Suppose hs1; s2i a�! hs01; s02i for some a 2 A� . Then s1 a1�! s01 and s2 a2�! s02for some a1; a2 such that �(a1; a2) = a. Three cases exist. Case 1: a1 =a2 = a. Trivially, s1 a�! s01. Case 2: a1 = 0; a2 = a = � . Trivial sinces01 = s1. Case 3: a1 = a = �; a2 = 0. Trivially, s1 ��! s01. Now, supposethat hs1; s2i �(d)�! hs01; s02i. Then s1 �(d)�! s01 and s2 �(d)�! s02. This concludes theproof.An important property of parameterized timed ready simulation is preser-vation under composition of timed labelled transition systems. In the ver-i�cation of realistic distributed systems, it is often useful to replace theindividual components of the system under veri�cation with more abstractversions before building the model of the complete system. The follow-ing compositionality theorem supports this type of hierarchical approach toveri�cation. In the second part of this thesis we present an application ofthis compositionality principle in an abstraction based veri�cation of theparameterized Fischer distributed mutual exclusion algorithm.De�nition 3.9 Let R be an action relation and f a synchronization func-tion. We say that R is closed with respect to f provided that, if f(a1; a2) = a,f(b1; b2) = b, and (a; b) 2 R then (a1; b1) 2 R and (a2; b2) 2 R.Theorem 3.2 (Compositionality) Let R be an action relation closed withrespect to f and total on T1
f T3 and T2
f T4. If T1 �R T2 and T3 �R T4,and T2;T4 are � -free, then T1
f T3 �R T2
f T4

3.2. TIMED ABSTRACTION THEORY 51Proof. Assume that Q1 and Q2 are timed ready simulations from T1 to T2and from T3 to T4, respectively, both parameterized with action relation R.De�ne Q to be the relation from states of T1
f T3 to states of T2
f T4 suchthat (hs1; s3i; hs2; s4i) 2 Q i� (s1; s2) 2 Q1 and (s3; s4) 2 Q2. We will showthat Q is a timed ready simulation parameterized with R.The initial state (hs0;1; s0;3i; hs0;2; s0;4i) 2 Q since s0;i is the initial stateof Ti for any i, and by assumption (s0;1; s0;2) 2 Q1 and (s0;3; s0;4) 2 Q2.Now assume that (hs1; s3i; hs2; s4i) 2 Q and that hs1; s3i and hs2; s4i arereachable states of T1
f T3 and T2
f T4, respectively.Suppose hs1; s3i a�! hs01; s03i for some a 2 A� . Then s1 a1�! s01 ands3 a2�! s03 for some a1; a2 2 A�;0 such that f(a1; a2) = a. Let b be anyaction in acts(T2
f T4) \ R[a]. Note that such an action exists since Ris total on T1
f T3 and T2
f T4. By de�nition there exists b1 2 acts(T2),b2 2 acts(T4) such that f(b1; b2) = b and since R is closed wrt. f , (a1; b1) 2 Rand (a2; b2) 2 R. Thus by simulation def. we have that s2 b̂1=) s02 ands4 b̂2=) s04 for some s02; s04 such that (s01; s02) 2 Q1 and (s03; s04) 2 Q2. Thushs2; s4i b̂=) hs02; s04i and (hs01; s03i; hs02; s04i) 2 Q.Suppose hs1; s3i �(d)�! hs01; s03i. Then s1 �(d)�! s01, s3 �(d)�! s03, and for allt 2 [0; d[, a1; a2 2 Au, and s001; s003: :(s1 �(t)�! s001 a1�! ^ s3 �(t)�! s003 a2�! ^f(a1; a2) 6= ?) (�). Since (s1; s2) 2 Q1, (s3; s4) 2 Q2, and T2 and T4 are� -free, we have that s2 �(d)�! s02 for some s02 such that (s01; s02) 2 Q1 ands4 �(d)�! s04 for some s04 such that (s03; s04) 2 Q2. Now, assume for the sake ofcontradiction that there exists t 2 [0; d[, b1; b2 2 Au, and s002; s004 such thats2 �(t)�! s002 b1�!, s4 �(t)�! s004 b2�!, and f(b1; b2) 6= ?. From time additivitythere exists s001; s003 such that s1 �(t)�! s001 and s3 �(t)�! s003, and due to timedeterminism (s001; s002) 2 Q1 and (s003; s004) 2 Q2. Suppose f(b1; b2) = b and leta be any action in acts(T1
f T3) \R�1[b]. Note that such an action existssince R is total on T1
f T3 and T2
f T4. By def. there exists a1 2 acts(T1)and a2 2 acts(T3) such that f(a1; a2) = a, and since R is closed wrt. f ,(a1; b1) 2 R, (a2; b2) 2 R, and a1; a2 2 Au. Thus from simulation def.s001 a1�! and s003 a2�! contradicting (�).Suppose hs2; s4i b�! hs02; s04i for some b 2 Au. Then s2 b1�! s02 ands4 b2�! s04 for some b1; b2 2 Au [f0g such that f(b1; b2) = b. Let a be anyaction in acts(T1
f T3) \ R�1[b]. By def. there exists a1 2 acts(T1), a2 2acts(T3) such that f(a1; a2) = a, and since R is closed wrt. f , (a1; b1) 2 Rand (a2; b2) 2 R. Thus s1 a1�! s01 and s3 a2�! s03 for some s01; s03 and hencehs1; s3i a�! hs01; s03i and (hs01; s03i; hs02; s04i) 2 Q.Theorem 3.3 (Transitivity) Suppose T1 �R1 T2 and T2 �R2 T3. ThenT1�R1R2 T3

52 CHAPTER 3. TIMED ABSTRACTION FRAMEWORKProof. Note that by de�nition R1R2 is total on T1 and T2. Assume that Q1is a timed ready simulation from T1 to T2 parameterized by R1 and Q2 is atimed ready simulation from T2 to T3 parameterized by R2. Let Q = Q1Q2.We show that Q is a timed ready simulation from T1 to T3 parameterizedby R1R2. We consider each of the conditions in De�nition 3.8 seperately.By assumption (s0;1; s0;2) 2 Q1 and (s0;2; s0;3) 2 Q2 for s0;1; s0;2 theinitial states of T1 and T2, respectively. Thus (s0;1; s0;3) 2 Q and condition1 is satis�ed. Now, assume that (s1; s2) 2 Q1 and (s2; s3) 2 Q2 and s1; s2and s3 are reachable states of T1, T2 and T3, respectively.Suppose s1 a=) s01 for some s01 and a 2 A. Consider any b 2 acts(T3) \R1R2[a]. Then for some c 2 acts(T2), (a; c) 2 R1 and (c; b) 2 R2. Since(s1; s2) 2 Q1, s2 c=) s02 for some s02 such that (s01; s02) 2 Q1, and since(s2; s3) 2 Q2, s3 b=) s03 for some s03 such that (s02; s03) 2 Q2. Hence (s01; s03) 2Q and 2(a) holds.Suppose s1 �(d)=) s01 for some s01 and �(d) 2 D. Since (s1; s2) 2 Q1,s2 �(d)=) s02 for some s02 such that (s01; s02) 2 Q1, and since (s2; s3) 2 Q2,s3 �(d)=) s03 for some s03 such that (s02; s03) 2 Q2. Hence (s01; s03) 2 Q and 2(b)holds.Finally, suppose s3 b�! s03 for some s03 and b 2 Au. Consider any a 2acts(T1) \ R1R�12 [b]. Then for some c 2 Au, (a; c) 2 R1 and (c; b) 2 R2.Since (s2; s3) 2 R2, s2 c�! s02 for some s02, and since (s1; s2) 2 R1, s1 a�! s01for some s01. Hence 2(c) holds.Theorem 3.4 (Subset Closure) If T1 �R T2 then for all action relationsR0 � R such that R0 is total on T1 and T2, T1 �R0 T2Proof. Assume Q is a timed ready simulation from T1 to T2 parameterizedby R. Let R0 be any action relation from T1 to T2 such that R0 � R and R0 istotal on T1 and T2. We show that Q is a timed ready simulation from T1 toT2 parameterized by R0. We consider each of the conditions in De�nition 3.8.Condition 1 holds trivially. Asumme that s1 and s2 are reachable states ofT1 and T2, respectively, and (s1; s2) 2 Q.Suppose s1 a=) s01 for some s01 and a 2 A. Consider any b 2 acts(T2) \R0[a]. Then b 2 acts(T2)\R[a] and since (s1; s2) 2 Q, s2 b=) s02 for some s02such that (s01; s02) 2 Q. Hence 2(a) holds.Condition 2(b) holds directly by De�nition 3.8 since (s1; s2) 2 Q.Suppose s2 b�! s02 for some s02 and b 2 Au. Consider any a 2 acts(T1) \(R0)�1[b]. Then a 2 acts(T1) \ R�1[b] and since (s1; s2) 2 Q, s1 a�! s01 forsome s01, so 2(c) holds.We now proceed to provide su�cient conditions for an abstract veri�ca-tion problem to be property preserving with respect to a concrete problem.

3.3. CONSTRUCTING ABSTRACT TIMED AUTOMATA 533.2.2 Preservation ConditionsFor any two veri�cation problems (T1;T2) and (T 01 ;T 02), we will state andprove a su�cient condition for the following to hold:T 01 � T 02 implies T1 � T2The condition is based the existence of parametarized timed simulation re-lations from T1 to T 01 and from T 02 to T2, respectively.Theorem 3.5 Let (T1;T2) and (T 01 ;T 02) be two veri�cation problems. Also,let R be an action relation total on T1 and T 01 (R�1 is an action relationtotal on T 02 and T2). If, T1 �R T 01 and T 02 �R�1 T2then T 01 � T 02 implies T1 � T2Proof. Assume that T1 �R T 01 , T 02 �R�1 T 01 , and T 01 � T 02 . By transitivity,Theorem 3.3, T1 �RR�1 T2 and since id � RR�1 and since id is an actionrelation total on T1 and T2, subset closure, Theorem 3.4, implies that T1 �T2.3.3 Constructing Abstract Timed AutomataIn this section we consider the problem of constructing a special and use-ful abstract timed automaton directly from the description of a concreteautomaton together with a set of abstract actions and an abstract datavariable domain. The abstraction is constructed such that it timed simu-lates, up to the action relation, the concrete automaton, and the concreteautomaton timed simulates, up to the inverse action relation, the abstractautomaton. The construction here will be used in the abstraction proof ofFischer's mutual exclusion algorithm presented in Chapter 6 of the secondpart of this thesis.Let A = hN; l0; C; V;Ei be a timed automaton and let h : Z 7! Z be afunction. For any guard g 2 G(C; V) we denote by gh the guard obtainedfrom g by replacing all occurrences of natural numbers n in gv by h(n).Similarly, for any reset set r 2 2R we denote by rh the set obtained from rby replacing all occurrences of integers c in reset operations of rv by h(c).For any variable assignment v we let h(v) denote the assignment such thath(v)(i) = h(v(i)) for any data variable i and h(v)(x) = v(x) for any clockvariable x. A guard g is said to be preserved by h i� for any assignment v,g(v) i� gh(h(v))

54 CHAPTER 3. TIMED ABSTRACTION FRAMEWORKA reset set r is said to be preserved by h i� for any assignment v,h(r(v)) = rh(h(v))An abstract data domain for A is a pair (�; h), where � � Z such that0 2 �, and where h is a function from Z to � such that h is preservingany guard and any reset operation of A and h(0) = 0. An abstract actiondomain for A is a pair (�; R), where R is an action relation total on acts(TA)and �. An abstract domain for A is a pair consisting of a data abstractionfor A an action abstraction for A. Given an automaton A and and abstractdomain F for A we now de�ne an abstract automaton AF which we canshow will timed ready simulate automaton A. The abstract automaton isobtained simply by replacing transition labels of A (guards, actions, resets)with their abstracted counterparts.De�nition 3.10 Let A be a timed automaton and F = ((�; h); (�; R)) anabstract domain for A. The abstraction of A with respect to F is the timedautomaton AF over nodes and variables of A and with transition relationsuch that: l g;b;r�!AF l0 i� l g0;a;r0�! A l0for some g0; r0; a such that g0h = g; r0h = r, and (a; b) 2 R.We say that A is closed under R i� l g;a;r�!A l0 and (a; b) 2 R implies thatfor all a0 such that (a0; b) 2 R, l g;a0;r�!A l0. If we restrict a; a0 to be urgentactions, we say that A is urgent closed under R. For timed automata A,Bwe de�ne A �R B i� TA �R TB.Theorem 3.6 If A is a timed automaton and F is an abstract domain forA with action relation R, and if A is urgent closed under R. Then A �R AF .Proof. Let F = ((�; h); (�; R)). Let Q be the relation from states of TAto states of TAF such that (hl; vi; hl0; v0i) 2 Q i� l0 = l and v0 = h(v). Weshow that Q is a timed ready simulation from TA to TAF parameterized byR. We consider each of the conditions in De�nition 3.8.Let hl0; v0i be the initial state of TA. Directly from the de�nition ofAF we have that hl0; v0i is the initial state of TAF and since h(0) = 0 wehave that h(v0) = v0 and hence (hl0; v0i; hl0; v0i) 2 Q. Now, assume that(hl; vi; hl; h(v)i) 2 Q and that hl; vi and hl; h(v)i are reachable states of TAand TAF , respectively.Suppose that hl; vi a�! hl0; v0i for some a 2 A� . Then there exists g; rsuch that l g;a;r�!A l0, g(v), and r(v) = v0. From de�nition of AF we have thatfor any b such that (a; b) 2 R, l gh;b;rh�! AF l0. Thus, since g(v) implies gh(h(v))and rh(h(v)) = h(r(v)) = h(v0), we have that hl; h(v)i b�! hl0; h(v0)i and(hl0; v0i; hl0; h(v0)i) 2 Q.

3.3. CONSTRUCTING ABSTRACT TIMED AUTOMATA 55Suppose that hl; vi �(d)�! hl0; v0i for some �(d) 2 D. Then l0 = l andv0 = v + d. Since h(v) + d = h(v + d) = h(v0) we have directly from theoperational semantics of a timed automaton that hl; h(v)i �(d)�! hl; h(v0)i and(hl0; v0i; hl0; h(v0)i) 2 Q.Suppose that hl; h(v)i b�! hl0; v0i and b 2 Au. Then there exists g; rsuch that l g;b;r�!AF l0, g(h(v)), and r(h(v)) = v0. From the de�nition of AFand since A is urgent closed under R there exists g0; r0 such that g0h = gand r0h = r and for any a 2 Au such that (a; b) 2 R, l g0;a;r0�! A l0. Now,since g(h(v)) implies g0(v) and r(v0) = r(h(v)) = h(r0(v)) we have thathl; vi a�! hl0; r0(v)i and (hl0; r0(v)i; hl0; h(r0(v))i 2 Q. This ends the proofthat A �R AF .Theorem 3.7 If A is a timed automaton and F is an abstract domain forA with action relation R, and if A closed under R. Then AF �R�1 A.Proof. Let F = ((�; h); (�; R)). Let Q be the relation from states of TAFto states of TA such that (hl; vi; hl0; v0i) 2 Q i� l0 = l and v = h(v0). Weshow that Q is a timed ready simulation from TA to TAF parameterized byR. We consider each of the conditions in De�nition 3.8.Let hl0; v0i be the initial state of TAF . Directly from the de�nition ofAF we have that hl0; v0i is the initial state of TA and since h(0) = 0 wehave that h(v0) = v0 and hence (hl0; v0i; hl0; v0i) 2 Q. Now, assume that(hl; h(v)i; hl; vi) 2 Q and that hl; h(v)i and hl; vi are reachable states of TAFand TA, respectively.Suppose that hl; h(v)i a�! hl0; v0i for some a 2 A� . Then there existsg; r such that l g;a;r�!AF l0, g(h(v)), and r(h(v)) = v0. From de�nition of AFand since A is closed under R there exists g0; r0 such that g0h = g and r0h = rand for any b such that (a; b) 2 R�1, l g0;b;r0�! A l0. Thus, since g(h(v)) impliesg0(v) and v0 = r(h(v)) = h(r0(v)), we have that hl; vi b�! hl0; r0(v)i and(hl0; h(r0(v))i; hl0; r0(v)i) 2 Q.Suppose that hl; h(v)i �(d)�! hl0; v0i for some �(d) 2 D. Then l0 = l andv0 = h(v)+d. Since h(v)+d = h(v+d) we have directly from the operationalsemantics of a timed automaton that hl; vi �(d)�! hl; v + di and (hl0; h(v +d)i; hl0; v + di) 2 Q.Suppose that hl; vi b�! hl0; v0i and b 2 Au. Then there exists g; r suchthat l g;b;r�!A l0, g(v), and r(v) = v0. Directly from the de�nition of AF , forany a 2 Au such that (a; b) 2 R�1, l gh;a;rh�! AF l0. Now, since g(v) impliesgh(h(v)) and h(v0) = h(r(v)) = rh(h(v)) we have that hl; h(v)i a�!h l0; h(v0)iand (hl0; h(v0)i; hl0; v0i 2 Q. This ends the proof that AF �R�1 A.

56 CHAPTER 3. TIMED ABSTRACTION FRAMEWORKThe following corollary follows directly from Theorems 3.5, 3.6, and3.7.Corollary 3.8 Let (A;B) be a veri�cation problem and F an abstract do-main for A and B with action relation R.1. If A is urgent closed and B is closed, under R, thenAF � BF implies A � B2. If A and B are closed under R, thenAF � BF i� A � B3.4 Test Automata for Timed Ready SimulationWe end this chapter by considering the problem of testing for the existenceof a timed ready simulation between two timed automata. For any deter-ministic and � -free timed automaton B we will de�ne the notion of a testautomaton TB for B. Test automaton TB will have the property that it canbe used to determine whether B timed ready simulates any timed automa-ton A (A � B), by performing reachability analysis in the composition of Aand TB . In the following we will assume that A is equipped with a mapping� : A 7! A such that a = a for every a 2 A. Let A = hN; l0; C; V;Ei be atimed automaton. We let GE;l;a denote the set of guards fg j 9r; l0: l g;a;r�!l0 2 Eg. We let UE;l denote the set fa 2 Au j 9g; r; l0: l g;a;r�! l0 2 Eg.For any node l 2 N and urgent action a 2 UE;l we assume the existenceof distinguished nodes l1a and l2a such that l1a; l2a 62 N . We let NE denotethe set Sl2N Sa2UE;lfl1a; l2ag. For any l 2 N , we also assume the existenceof a distinguished nodes lr; l� 62 N [NE , lr 6= l� . We let Nr;� denote theset Sl2Nflr; l�g. Finally, for any urgent action a 2 Sl2N UE;l we assumethe existence of a distinguished clock xa 62 C. We let CE denote the setSl2N Sa2UE;lfxag.De�nition 3.11 Let A = hN; l0; C; V;Ei be a � -free deterministic timedautomaton. The test automaton for A is the timed automaton TA = hNT ; lT0 ;CT ; V T ; ET i where NT = N [NE [Nr;� , lT0 = l0, CT = C [CE, V T = V ,and where lT gT ;aT ;rT�! l0T 2 ET i� one of the following holds:1. lT = l ^ l0T = l� ^ gT = true ^ aT = � ^ rT = ;2. lT = l� ^ l0T = l0 ^ gT = g ^ aT = a ^ rT = r ^ l g;a;r�! l0 2 E3. lT = l� ^ l0T = lr ^ gT = Vg2GE;l;a :g ^ aT = a ^ rT = ;4. lT = l ^ l0T = l1a ^ gT = Wg2GE;l;a g ^ aT = � ^ rT = fxa := 0g

3.4. TEST AUTOMATA FOR TIMED READY SIMULATION 575. lT = l1a ^ l0T = l2a ^ gT = true ^ aT = a ^ rT = ;6. lT = l1a ^ l0T = lr ^ gT = fxa > 0g ^ aT = � ^ rT = ;We will write a variable assignment over C [V [CE as a compositionv�w of variable assignments v and w over C [V and CE, respectively, suchthat (v � w)(x) = v(x) if x 2 C [V and (v � w)(x) = w(x) if x 2 CE. InFigure 3.1 we have illustrated the general test automaton construction ofDe�nition 3.11. Note that we assume that l false;a;;�! A l0 for any l0 i� l 6 a�!A.We now de�ne the notion of testing. First, let s denote the synchroniza-tion function de�ned as follows. For any a 2 A, s(a; a) = � , and s(a;0) =s(0; a) = ?. In the following we will write
 to denote the composition op-erator
s. This operator will be the one used to combine a test automaton(its semantics) with a given system to be tested.De�nition 3.12 Let T be a TLTS and TA the test automaton for sometimed automaton A.{ A node l of TA is reachable from a state hs; ti of T
TTA i� there existsa state hs0; t0i of T
 TTA such that hs0; t0i is reachable from hs; ti andt0 = hl; vi for some variable assignment v.{ We say that T fails the A-test i� a reject node lr of TA is reachablefrom the initial state of T
TTA. Otherwise, we say that T passes theA-test.If B and A are timed automata, we say that B passes the A-test i� TBpasses the A-test.Theorem 3.9 If T is a TLTS and A is a � -free and deterministic timedautomata, then T passes the A-test i� T � TA.Proof. We will assume that E denotes the set of edges of automaton A.Assume that T passes the A-test. De�ne R to be the relation fromstates of T to states of TA such that (s; hl; vi) 2 R i� there exists w suchthat hs; hl; v � wii is reachable from the initial state of T
 TTA . We willshow that R is a timed ready simulation relation from T to TA. We showthat R satis�es the conditions of Proposition 3.1. Consider �rst condition 1.Let s0 and hl0; v0i be the initial states of T and TA, respectively. From thede�nition of TTA , hl0; v0�w0i is the initial state of TTA , where w0 is assigningthe value 0 to all elements of CE. Thus, from the de�nition of T
 TTA ,hs0; hl0; v0 �w0ii is the initial state of T
 TTA and hence (s0; hl0; v0i) 2 R.Now assume that (s; hl; vi) 2 R and s and hl; vi are reachable statesof T and TA, respectively. Then there exists w such that hs; hl; v � wii isreachable in T
 TTA . Fix w. We consider each of the conditions 2(a)-2(d).

58 CHAPTER 3. TIMED ABSTRACTION FRAMEWORK
gkmgk1g1na1r1n akrk1 akrkml

l011 l01n l0k1 l0kmg11a1r11
l xau1 := 0 l1au1 au1

aurl1aurWj gurjxaur := 0� xau1 > 0xaur > 0
�;Wj gu1j ;

lrVj :gkj ; akVj :g1j ; a1�l�r11 g11 g1na1r1n gk1rk1 gkmak akrkma1l011 l01n l0k1 l0km

l2au1l2aur

Figure 3.1: Timed Automaton A and Test Automaton TA

3.4. TEST AUTOMATA FOR TIMED READY SIMULATION 59Suppose s a�! s0 for some a 2 A. From condition 1 in the de�nition ofTA, hl; v�wi ��! hl� ; v�wi, and from condition 3, hl� ; v�wi a�! hlr; v�wiif gT (v � w) where gT = Vg2GE;l;a :g. Thus, since T passes the A-test itmust be that :gT (v�w) i.e. Wg2GE;l;a g(v�w). This implies Wg2GE;l;a g(v).Fix g. Then, there exists r; l0 such that l g;a;r�! l0 2 E and g(v) impliesthat hl; vi a�! hl0; v0i, v0 = r(v). From condition 2 in the de�nition of TA,hl� ; v � wi a�! hl0; v0 � wi and thus hs0; hl0; v0 � wii is reachable in T
 TTAand so (s0; hl0; v0i) 2 R.Suppose s ��! s0. Then hs; hl; v�wii ��! hs0; hl; v�wii and hs0; hl; v�wiiis reachable in T
 TTA . Hence (s0; hl; vi) 2 R.Suppose s �(d)�! s0. We know that hl; vi �(d)�! hl; v0i where v0 = v + d, andhl; v � wi �(d)�! hl; v0 � w0i where w0 = w + d. Now, assume for the sake ofcontradiction that hs; hl; v�wii 6 �(d)�!. Then from De�nition 3.3, there existst 2 [0; d[, a 2 Au, such that hl; v�wi �(t)�! hl; (v�w)+ ti a�!. However, thiscontradicts conditions 1 and 4 in the de�nition of TA according to which, only� -actions are possible from states with node component l. Thus, hs; hl; v�wii�(d)�! hs0; hl; v0 � w0ii and so (s0; hl; v0i) 2 R.Suppose hl; vi a�! hl0; v0i for some a 2 Au. Then there exists g; r suchthat l g;a;r�! l0 2 E and g(v). Since no variables from CE occurs in g, g(v)implies g(v�w). Since g 2 GE;l;a we have from condition 4 in the de�nitionof TA that hl; v � wi ��! hl1a; v � w0i where w0 = wfxa := 0g. Hence,hs; hl; v�wii ��! hs; hl1a; v�w0ii. Now, assume for the sake of contradictionthat hs; hl1a; v � w0ii �(d)�! for some d > 0. Then hl1a; v � w0i �(d)�! hl1a; (v +d) � (w0 + d)i and since (w0 + d)(xa) > 0 we get from condition 6 in thede�nition of TA that hl1a; (v+d)� (w0+d)i ��! hlr; (v+d)� (w0+d)i. Hencehs; hlr; (v + d) � (w0 + d)ii is reachable in T
 TTA which contradicts thefact that T passes the A-test. Therefore, hs; hl1a; v �w0ii 6 �(d)�! for any d > 0.Hence, there exists a1; a2 2 Au such that s a1�! and hl1a; v � w0i a2�! anda1 = a2. From part 5 in the de�nition of TA, hl1a; v � w0i a�! hl2a; v � w0i isthe only urgent transition possible from this state and hence s a�!.Assume now that T � TA. In the following we let N , C, and V denotethe node set, clock set, and data variable set, respectively, of A. Let R be atimed ready simulation from T to TA. We will prove the following invariantsfor any reachable state hs; hn; u� wii in T
 TTA :P1. n 6= lr for any l 2 NP2. if n = l1a for some l 2 N , a 2 UE;l then w(xa) = 0P3. if n 2 fl1a; l; l�g for some l 2 N , a 2 UE;l then (s; hl; ui) 2 R and s andhl; ui are reachable in T and TA, respectively

60 CHAPTER 3. TIMED ABSTRACTION FRAMEWORKInvariant P1 implies that T passes the A-test. Invariants P2 and P3are used to strengthen the inductive hypothesis enough to prove P1. Weprove P1, P2, and P3 by induction on the length of a transition sequence inT
 TTA starting in the initial state.Let hs0; hn0; u0 � w0ii be the initial state of T
 TTA . Then n0 = l0where l0 is the initial node of A. Thus n0 62 flr; l1ag for any l 2 N anda 2 UE;l. Hence both P1 and P2 holds for the initial state. Finally, u0 = v0where v0 is the initial assignment over C and V and from the de�nition ofR, (s0; hl0; v0i) 2 R.Now, assume that hs; hn; u � wii is reachable in T
 TTA and that P1,P2, and P3 holds in this state.Suppose hs; hn; u � wii ��! hs0; hn0; u0 � w0ii. Then exactly one of thefollowing three cases hold:a. s ��! s0 and hn0; u0
 w0i = hn; u
 wib. s0 = s and hn; u� wi ��! hn0; u0 � w0ic. s a�! s0 and hn; u� wi a�! hn0; u0 � w0i for some a 2 AConsider case a. In this case P1 and P2 holds vacuously in hs0; hn0; u0 �w0ii since hn0; u0 � w0i = hn; u� wi and by hypothesis P1 and P2 holds forhn; u�wi. Consider P3. Suppose n 2 fl1a; l; l�g for some l 2 N and a 2 UE;l.By hypothesis (s; hl; ui) 2 R. Thus, since A is � -free, (s0; hl; ui) 2 R andsince n0 = n and u0 = u this proves P3 in the case that n 2 fl1a; l; l�g.Suppose n 62 fl1a; l; l�g for any l 2 N , a 2 UE;l. Since n0 = n, P3 holdsvacuously.Consider case b. Assume for the sake of contradiction that n0 = lr forsome l 2 N . From condition 6 in the de�nition of TA we have that theonly way a state with node component lr can be reached via a � -action isif n = l1a for some a 2 UE;l, and w(xa) > 0. This however contradicts P2for state hs; hn; u� wii and thus n0 6= lr for any l 2 N and hence P1 holds.Now, assume that n0 = l1a for some l 2 N , a 2 UE;l. From condition 4 in thede�nition of TA it must be that w0(xa) = 0. Hence P2 holds. Finally, fromconditions 1 and 4 in the de�nition of TA, we have that n = l and eithern0 = l1a or n0 = l� for some l 2 N , a 2 UE;l. Furthermore, u0 = u and fromhypothesis (s; hl; ui) 2 R. Hence P3 holds.Consider case c. Assume for the sake of contradiction that n0 = lr forsome l 2 N . Then from condition 3 in the de�nition of TA, n = l� , gT (u�w)where gT = Vg2GE;l;a :g, u0 = u, and w0 = w. From hypothesis (s; hl; ui) 2R. Thus, since A is � -free and deterministic there is a unique state hl0; visuch that hl; ui a�! hl0; vi. Thus there exists g; r such that l g;a;r�! l0 2 E andg(u). Now, g(u) implies g(u � w) since no variables from CE occurs in g.However, g(u � w) contradicts gT (u � w) since g 2 GE;l;a. Hence n0 6= lrand P1 holds. From condition 4 in the de�nition of TA we can only reach

3.4. TEST AUTOMATA FOR TIMED READY SIMULATION 61a state with node component l1a by a � -transition. Thus n0 6= l1a for anyl 2 N , a 2 UE;l and hence P2 holds vacuously. Now, suppose that n0 2fl1a; l; l�g for some l 2 N , a 2 UE;l. From condition 2 in the de�nition of TAwe then have that n0 = l and that there exists l0; g; r such that l0 g;a;r�! l 2 E,n0 = l0� , g(u), r(u) = u0, and w0 = w. Now, since (s; hl0; ui) 2 R and sinceA is deterministic and � -free, hl0; ui a�! hl; u0i is the only a-transition fromthis state and hence (s0; hl; u0i) 2 R. Thus P3 holds.Now, suppose hs; hn; u � wii �(d)�! hs0; hn; u0 � w0ii for some d > 0. ThenP1 holds vacuously in hs0; hn; u0�w0ii since by hypothesis P1, n 6= lr for anyl 2 N . Consider P2. We know that s �(d)�! s0 and hn; u�wi �(d)�! hn; u0 �w0i.Now, assume for the sake of contradiction that n = l1a for some l 2 N ,a 2 UE;l. Then from condition 5 in the de�nition of TA, hn; u�wi a�!. Fromcondition 4 in the same de�nition, l gT ;�;fxa:=0g�! l1a where gT = Wg2GE;l;a gis the only edge leading to node l1a. Since hs; hn; u � wii is reachable andsince by hypothesis w(xa) = 0, there exists w00 such that hl; u � w00i ��!hn; u � wi. Thus there exists g 2 GE;l;a such that g(u). Thus hl; ui a�!and since (s; hl; ui) 2 R we have that s a�!. This however contradictsour assumption that hs; hn; u � wii �(d)�!. Hence n 6= l1a for any l 2 N ,a 2 UE;l and P2 holds. Finally, suppose n 2 fl1a; l; l�g for some l 2 N ,a 2 UE;l. By hypothesis (s; hl; ui) 2 R. Now, since A is � -free and due totime determinism hl; ui �(d)�! hl; u + di and (s0; hl; u + di) 2 R. Now, sinceu+ d = u0, this proves P3.

62 CHAPTER 3. TIMED ABSTRACTION FRAMEWORK

Part IIApplied AbstractionStrategies

63

Chapter 4Burns' Mutual ExclusionAlgorithmThis chapter presents our �rst application of abstraction techniques to provecorrectness of distributed systems. We consider as case study, the Burns dis-tributed mutual exclusion algorithm [Bur78]. We prove that the parameter-ized algorithm guarantees mutual exclusion between any pair of processes,where the parameter is the number of processes running the algorithm. Ourproof exploits abstraction, by using a certain skolemization strategy to con-struct a simple 2-process abstract model preserving the required propertiesfrom the concrete n-process model. The abstract model preserves not onlythe behavior of any pair of concrete processes, but also the possible e�ectson such a pair by processes in its environment. Our proof is within theI/O automaton framework and it uses the theory of Chapter 2 to obtainconditions for property preservation. In particular, our notion of param-eterized trace simulations will provide preservation conditions that nicelysupports the skolemization abstraction strategy. The conditions for prop-erty preservation are easily discharged using support from the LP theoremprover, and the abstract algorithm is automatically veri�ed using the SPINmodel checker. The results of this chapter have previously been publishedin [JL98].4.1 Background an ContributionsMutual exclusion algorithms are intended to guarantee a set of concurrentprocesses mutually exclusive access to a single unshareable resource. Theexclusion condition to be satis�ed by such algorithms states that for anyreachable system state there cannot be two processes both in their criti-cal regions. We can interpret the exclusion condition as a simple logicalconjunction over the collection of process index pairs.The skolemization strategy that we apply in the proof for the Burns al-65

66 CHAPTER 4. BURNS' MUTUAL EXCLUSION ALGORITHMgorithm utilizes exactly this conjunctive form of properties. Proving mutualexclusion between all pairs of processes can be done by considering an arbi-trary pair of Skolem processes and our abstract model essentially consists ofsuch an arbitrary pair of processes, with additional information representingthe e�ects on such a pair by other processes. We show that this abstrac-tion does indeed preserve the mutual exclusion property between any pairof concrete processes. The preservation proof consists of showing that theabstract model correctly simulates the behaviors of any two processes inthe concrete model. Our notion of parameterized trace simulation nicelysupports this kind of proof. We formalize our preservation proof in the LPtheorem prover, and the proof is carried out with almost no user assistance.Finally, we verify the abstract model using the SPIN model checker.In [LSW95] the authors apply a skolemization strategy related to ours togive a proof of a timing based mutual exclusion protocol. In their approach,the protocol model as well as the exclusion speci�cation is described as aconjunction of aspects or projective views, one for each pair of process indices.4.1.1 Chapter OrganizationThis chapter is organized as follows. In section 4.2 we introduce the Burnsalgorithm as well as the mutual exclusion property to be proved. Section 4.3presents our skolemization abstraction strategy as well as the abstract algo-rithm and abstract property resulting from its use. In section 4.4 we presentthe LP supported proof of property preservation and �nally in section 4.5we describe the automatic veri�cation in SPIN of our abstract algorithm.4.2 Burns' AlgorithmIn this section we present Burns n-process mutual exclusion algorithm. Thealgorithm runs on a shared memory model consisting of n processes togetherwith n shared variables
ag1; : : : ;
agn, each
agi writable by process i andreadable by all other processes. Each process i is acting on behalf of a userprocess which can be thought of as some application program. The processescompetes for mutually exclusive access to a shared resource by reading andwriting the shared variables in a way determined by the algorithm.We model the algorithm formally as an I/O automaton Burns, whichis the composition of a shared memory automaton M and a set of userautomata U1; : : : ; Un. Automaton M models the n processes together withthe set of shared variables
ag1; : : : ;
agn, and it is modelled as one big I/Oautomaton, where the process and variable structure is captured by means ofsome locality restrictions on transitions. Each state in M consists of a statefor each process i, plus a value for each shared variable
agi. We specifythe transitions of M by giving preconditions and e�ects for all the actions.For any i 2 f1; : : : ; ng automaton M has actions as shown in Figure 4.1.

4.3. THE ABSTRACTION 67The inputs to M are (for all 1 � i � n) actions tryi, which models a requestby user i to process i for access to the shared resource, and actions exiti,which models an announcement by user i to process i that it is done withthe resource. The outputs of M are criti, which models the granting fromprocess i of the resource to user i, and remi, which models process i tellinguser i that it can continue with the rest of its work.Each process i executes three loops. The �rst two loops involve checkingthe
ags of all processes with smaller indices, i.e. all
agj , 1 � j < i. The�rst loop is actually not needed for the mutual exclusion condition, butis important to guarantee progress. The two loops are modelled in M byinternal actions test-sml-fst(j)i and test-sml-snd(j)i, where j is a parameterdenoting the index of the
ag to be read by process i. In between the �rsttwo loops process i sets its own
agi to 1, modelled in M by internal actionset-
g-1i. If both loops are successfully passed, meaning all the considered
ags have value 0, then i can proceed to the third loop, which involveschecking the
ags of all processes with larger indices, i.e.
agj, i < j � n.This is modelled by internal action test-lrg(j)i. If process i passes all threeloops successfully, it proceeds to its critical region. Process i keeps the valueof its
agi to 1 from when it starts testing
ags with larger indices and untilit leaves its critical region. The state of each process i in M is modelled bytwo state variables local to M : a program counter pci initially having thevalue rem, and a set Si of process id's initially empty, used to keep track ofthe indices of all shared
ags that have successfully been checked in one ofthe three loops.Each user automaton Ui has as single state variable a program counterpci, local to Ui and initially having the value rem, indicating that Ui startsin its remainder region ready to make a request for access to the sharedresource. We specify the transitions of Ui by giving preconditions and e�ectsfor all the di�erent actions of Ui as shown in Figure 4.2.4.2.1 The Mutual Exclusion PropertyWe state the mutual exclusion property for Burns as a conjunction of traceproperties Pfi;jg, one for each subset fi; jgi6=j in the set of process indicesf1; : : : ; ng. The set sig (Pfi;jg) has as its only actions the set of outputactions from Burns with indices i and j, and traces(Pfi;jg) is the set ofsequences such that no two criti, critj events occur (in that order) withoutan intervening exiti event, and similarly for i and j switched.4.3 The AbstractionTo prove the mutual exclusion property we will construct a single �nite-stateabstract model which preserves the external behavior of any two concrete

68 CHAPTER 4. BURNS' MUTUAL EXCLUSION ALGORITHMinput: tryiE�: pci := set-
g-0internal: set-
g-0iPre: pci = set-
g-0E�:
agi := 0if i = 1 thenpci := set-
g-1elsepci := test-sml-fstinternal: test-sml-fst(j)iPre: pci = test-sml-fstj 62 Si1 � j � i� 1E�: if
agj = 1 thenSi := ;pci := set-
g-0elseSi := Si [fjgif jSi j= i� 1 thenSi := ;pci := set-
g-1internal: set-
g-1iPre: pci = set-
g-1E�:
agi := 1if i = 1 thenpci := test-lrgelsepci := test-sml-sndinternal: test-sml-snd(j)iPre: pci = test-sml-sndj 62 Si1 � j � i� 1E�: if
agj = 1 thenSi := ;pci := set-
g-0elseSi := Si [fjgif jSi j= i� 1 thenSi := ;if i = n thenpci := leave-tryelsepci := test-lrg

internal: test-lrg(j)iPre: pci = test-lrgj 62 Sii+ 1 � j � nE�: if
agj = 1 thenSi := ;elseSi := Si [fjgif jSi j= n� i thenpci := leave-tryoutput: critiPre: pci = leave-tryE�: pci := critinput: exitiE�: pci := resetinternal: resetiPre: pci = resetE�:
agi := 0Si := ;pci := leave-exitoutput: remiPre: pci = leave-exitE�: pci := rem

Figure 4.1: Precondition-E�ect code for automaton M

4.3. THE ABSTRACTION 69output: tryiPre: pci = remE�: pci := tryinput: critiE�: pci := crit output: exitiPre: pci = critE�: pci = exitinput: remiE�: pci := remFigure 4.2: Precondition-E�ect code for automaton Uiprocesses running in the environment of all other processes and users. For-mally, we construct an abstract automaton Burns�, which is the compositionof a shared memory automaton, M�, with two user automata. AutomatonM� models two abstract processes 0 and 1 together with two shared vari-ables
ag0 and
ag1. Processes 0 and 1 are abstract representations of anypair of concrete processes i and j within the environment of all other con-crete processes. Assuming that i < j, the abstract process 0 represents thesmaller concrete process i and abstract process 1 represents the larger con-crete process j, both within the environment of all other processes. We alsoconstruct an abstract trace property P� over the external actions of Burns�.This property is basically obtained from the concrete property Pfi;jg by achange of action indices, 0 for i and 1 for j. We will de�ne relations, Rfi;jgfrom the external actions of Burns to the external actions of Burns� andSfi;jg from the states of Burns to the states of Burns�, and we will provethat for any subset fi; jg:Burns �tRfi;jg Burns� via Sfi;jg; and (4.1)R�1fi;jg(traces(P�)) � traces(Pfi;jg): (4.2)Then from Theorem 2.7 (Trace Safety Preservation) we can concludethat if Burns� satis�es P� then Burns satis�es Pfi;jg for any fi; jg.4.3.1 Abstract Actions and State SpaceThe external actions of automaton M� are the actions tryk, critk, exitk,remk for any k 2 f0; 1g. This set of actions also forms the interface ofthe two user automata to be composed with automaton M�. These twoautomata are obtained from the concrete user automaton Ui by changing alloccurrences of index i in actions and states to values 0 and 1, respectively.The abstract user automata are denoted U0 and U1. In the following we leti; j be any pair of indices in f1; : : : ; ng such that i < j. We de�ne a relationRfi;jg from the external actions of Burns to the external actions of Burns�relating actions in the obvious way.

70 CHAPTER 4. BURNS' MUTUAL EXCLUSION ALGORITHMDe�nition 4.1 Rfi;jg is a relation from ext (Burns) to ext (ABurns) suchthat: Rfi;jg = f(tryi; try0); (tryj; try1); (criti; crit0); (critj; crit1);(exiti; exit0); (exitj; exit1); (remi; rem0); (remj ; rem1)gThus, abstract actions with index 0 represent the external actions of the(smaller) concrete process i and actions with index 1 represent the externalactions of the (larger) concrete process j.A state of automaton M� consists of a state for each of the abstractprocesses 0 and 1 together with values for each of the shared variables
ag0and
ag1. The states of the abstract processes 0 and 1 are modelled byvariables pck and Sk for k 2 f0; 1g. Variable pck is a program counterand Sk is a set of elements from f0; 1g. The intended interpretation of theintroduced state variables is represented in the following de�nition of thestate abstraction relation Sfi;jg.De�nition 4.2 Sfi;jg is a relation from states (Burns) to states (Burns�)such that Sfi;jg(s; u) i� :� u:upc0 = s:upci and u:upc0 = s:upc1� u:ppc0 = s:ppci and u:upc1 = s:ppcj� u:
ag0 = s:
agi and u:
ag1 = s:
agj� u:S0 = f1g if j 2 s:Si and u:S1 = f0g if i 2 s:SjWe use notation upci to denote the value of program counter pci in userautomaton Ui, and ppci to denote the value of the program counter pci inautomata M and M�.4.3.2 The Abstract PropertyThe abstract mutual exclusion property for Burns� is the trace property P�with sig (P�) having as its actions the external actions of Burns� and havingtraces(P�) as the set of sequences such that no two crit0 and crit1 eventsoccur (in that order) without an intervening exit0 event, and similarly for 0and 1 switched. Thus, directly by de�nition we have the following theorem,proving condition (4.2).Theorem 4.1 For all i; j, i 6= j, R�1fi;jg(traces(P�)) � traces(Pfi;jg)

4.3. THE ABSTRACTION 71
input: try0E�: pc := set-
g-0internal: set-
g-00Pre: pc = set-
g-0E�:
ag0 := 0pc := test-sml-fstinternal: set-
g-0-sml0Pre: pc = set-
g-0E�:
ag0 := 0pc := set-
g-1internal: test-sml-fail0Pre: pc 2 ftest-sml-fst ; test-sml-sndgE�: pc := set-
g-0internal: test-sml-fst-succ0Pre: pc = test-sml-fstE�: pc := set-
g-1internal: set-
g-10Pre: pc = set-
g-1E�:
ag0 := 1pc := test-sml-sndinternal: set-
g-1-sml0Pre: pc = set-
g-1E�:
ag0 := 1pc := test-lrginternal: test-sml-snd-succ0Pre: pc = test-sml-sndE�: pc := test-lrg

internal: test-other-
g0Pre: pc = test-lrgS = ;E�: if
ag1 = 0 thenS := S [f1ginternal: test-lrg-fail0Pre: pc = test-lrgE�: S := ;internal: test-lrg-succ0Pre: pc = test-lrgS = f1gE�: pc := leave-tryoutput: crit0Pre: pc = leave-tryE�: pc := critinput: exit0E�: pc := resetinternal: reset0Pre: pc = resetE�:
ag0 := 0S := ;pc := leave-exitoutput: rem0Pre: pc = leave-exitE�: pc := rem
Figure 4.3: Transitions of abstract process 0 in M�

72 CHAPTER 4. BURNS' MUTUAL EXCLUSION ALGORITHM4.3.3 The Abstract AutomatonWe now present the abstract automaton M� by considering the transitionsfor each of the abstract processes 0 and 1 modelled by M�. The transitionsof process 0 are shown in Figure 4.3.One of the consequences of having abstract process 0 represent the be-havior of any smaller process is that the abstract process has two actionsfor setting its own
ag to 0 (1): set-
g-0-sml0 (set-
g-1-sml0) and set-
g-00(set-
g-10). The �rst representing that the concrete process 1 (the one withsmallest index) sets its
ag to 0 (1), where after it skips the test of
ags withsmaller indices, as there are none, and sets it program counter to set-
g-1(test-lrg). The second representing that any other smaller process sets it
ag to 0 (1) and thereafter tests
ags with smaller indices, which do existin this case. The abstract process represents that a smaller process fails orsucceeds a test of smaller
ags by allowing abstract fail or succeed actionswhenever its program counter is test-sml-fst or test-sml-snd. No furtherpreconditions apply to these actions since all information about the actualvalues of smaller
ags have been abstracted away.In order for abstract process 0 to succeed its test of
ags with largerindices, it must test the
ag of abstract process 1 since this process rep-resent some larger concrete process. This test is modelled by the actiontest-other-
g0. Having read this
ag successfully (i.e. as 0) abstract process0 can now enter its critical region. Also, as long as the process has programcounter test-lrg it can at any time perform an abstract action test-lrg-fail.Abstract process 1 is modelled analogously and its transitions are shownin Figure 4.4. Process 1 di�ers from process 0 only in the implementation ofthe test-actions. In order for process 1 to perform actions test-sml-fst-succ1and test-sml-snd-succ1 it must have seen
ag0 = 0 since process 0 representsa concrete process having a smaller index than that of the process repre-sented by 1. In contrast, process 0 can perform actions test-sml-fst-succ0and test-sml-snd-succ0 without knowing anything about
ag1 since process1 represents a concrete process with an index larger than that of the processrepresented by 0. Analogously, process 1 can perform action test-lrg-succ1without knowing anything about
ag0, whereas process 0 must have seen
ag1 = 0 to perform test-lrg-succ0.That our abstract automaton preserves the behaviour of any two concreteprocesses is stated in the following theorem, which proves condition (4.1).Theorem 4.2 For all i; j, i 6= j, Burns �tRfi;jg Burns� via Sfi;jgThe proof of Theorem 4.2 is the topic of the following section.

4.3. THE ABSTRACTION 73
input: try1E�: pc := set-
g-0internal: set-
g-01Pre: pc = set-
g-0E�:
ag1 := 0pc = test-sml-fstinternal: test-other-
g1Pre: pc 2 ftest-sml-fst ; test-sml-sndgS = ;E�: if
ag0 = 0 thenS := S [f0ginternal: test-sml-fail1Pre: pc 2 ftest-sml-fst ; test-sml-sndgE�: S := ;pc := set-
g-0internal: test-sml-fst-succ1Pre: pc = test-sml-fstS = f0gE�: S := ;pc := set-
g-1internal: set-
g-11Pre: pc = set-
g-1E�:
ag1 := 1pc := test-sml-sndinternal: test-sml-snd-succ1Pre: pc = test-sml-sndS = f0gE�: pc := test-lrg

internal: test-sml-snd-succ-lrg1Pre: pc = test-sml-sndS = f0gE�: pc := leave-tryinternal: test-lrg-fail1Pre: pc = test-lrgE�: pc := test-lrginternal: test-lrg-succ1Pre: pc = test-lrgE�: pc := leave-tryoutput: crit1Pre: pc = leave-tryE�: pc := critinput: exit1E�: pc := resetinternal: reset1Pre: pc = resetE�:
ag1 := 0S := ;pc := leave-exitoutput: rem1Pre: pc = leave-exitE�: pc := rem
Figure 4.4: Transitions of abstract process 1 in M�

74 CHAPTER 4. BURNS' MUTUAL EXCLUSION ALGORITHM4.4 The Simulation ProofTo prove Theorem 4.2 for all i; j we prove it for any i; j with i and j treatedas Skolem constants. For the remaining part of this section we assume thati and j are Skolem constants with i < j. To prove the theorem, we need tocheck the two conditions in the Trace Simulation de�nition, De�nition 2.11.We use our formalization from Chapter 2 of the trace abstraction theoryin Larch to discharge the proof obligations. We begin by describing theformalization of automata Burns and Burns� in the Larch Shared Language.4.4.1 The Automata in LSLThe formalization of automata Burns and Burns� in LSL is a rather straight-forward translation from the precondition-e�ect descriptions given in thepreceding sections. In the following we present in detail the translation ofthe concrete automaton Burns.Recall that automaton Burns is de�ned as the composition of the sharedmemory automatonM and the set of user automata U1; : : : ; Un. We formal-ize automaton Burns as a single trait called AutomatonBurns representingthe above composition. A part of the trait is shown in Figure 4.5. The traitconsists of a declaration part in which sorts and operator signatures are de-clared, and a body part in which the introduced operators are constrainedby equations.The trait begins with an includes clause that includes in the theoryof trait AutomatonBurns the union of theories from the included traits.AutomatonBurns specializes the state and action sorts from the generalAutomaton trait introduced in Chapter 2. A state of AutomatonBurns isa tuple of integer indexed arrays upc, ppc, flag and S. For any integeri, the elements upc[i], ppc[i], flag[i], and S[i] together describe thecombined state for user automaton Ui and process i in automaton M .Actions of AutomatonBurns are of two types depending on the number ofparameters. The test-actions have two parameters, the index of the processperforming the test and the index of the
ag to be tested. All other actionshave a single parameter, being the index of the performing process.Besides introducing state and action sorts, trait AutomatonBurns alsointroduces a constant N denoting the total number of processes and a fewoperators implementing predicates on integers.The body of trait AutomatonBurns is contained in the asserts clausewhich constrains the operators of the trait. The clause de�nes the initialstate and the actions of the automaton by constraining predicates start,enabled and effect. Figure 4.5 only shows the equations de�ning the tryiaction. The enabled predicate states that action tryi is enabled in states only if the user automaton Ui has its program counter equal rem. Theeffect predicate states that as a result of performing action tryi in state s,

4.4. THE SIMULATION PROOF 75
AutomatonBurns (B): traitincludes Automaton(B), Integer1(Int), Array1(PPC, Int, PPCs),Array1(UPC, Int, UPCs), Array1(Int, Int, FLGs),Set1(Int, UIDSET), Array1(UIDSET, Int, UIDSETs)PPC enumeration of rem, setflg0, testsmlfst,testsmlsnd, setflg1, testlrg, leavetry, crit, reset, leaveexitUPC enumeration of rem, try, crit, exitStates[B] tuple of upc: UPCs, ppc: PPCs, flag: FLGs, S: UIDSETsActionTypes1[B] enumeration of try, setflg0, setflg1, crit, exit,reset, remActionTypes2[B] enumeration of testsmlfst, testsmlsnd, testlrgintroduces__[__] : ActionTypes1[B], Int -> Actions[B]__[__,__] : ActionTypes2[B], Int, Int -> Actions[B]unchangedB : States[B], States[B], Int -> BoolN : -> IntisIndxB : Int -> BoolisSmlIndx : Int, Int -> BoolisLrgIndx : Int, Int -> Boolassertssort Actions[B] generated freely by __[__], __[__,__]with s: States[B], i: Intstart(s) <=> \A i (isIndxB(i) =>((s.upc[i] = rem) /\ (s.ppc[i] = rem) /\(s.flag[i] = 0) /\ (s.S[i] = {})));with s,s': States[B], i,j: IntunchangedB(s, s', i) <=> \A j ((isIndxB(j) /\ j ~= i) =>((s'.upc[j] = s.upc[j]) /\(s'.ppc[j] = s.ppc[j]) /\(s'.flag[j] = s.flag[j]) /\(s'.S[j] = s.S[j])));enabled(s, try[i]) <=> isIndxB(i) /\s.upc[i] = rem;effect(s, try[i], s') <=> s'.upc[i] = try /\ s'.ppc[i] = setflg0 /\s'.flag[i] = s.flag[i] /\ s'.S[i] = s.S[i]/\ unchangedB(s, s', i);Figure 4.5: Trait AutomatonBurns.lsl

76 CHAPTER 4. BURNS' MUTUAL EXCLUSION ALGORITHMBurnsSimulation: traitincludes AutomatonBurns(B), AutomatonABurns(C), ActRel(R,B,C)introducesI : -> IntJ : -> IntS : States[B], States[C] -> Boolassertswith s: States[B], u: States[C]S(s, u) <=> ((u.upc[0] = s.upc[I] /\ u.upc[1] = s.upc[J]) /\(u.ppc[0] = s.ppc[I] /\ u.ppc[1] = s.ppc[J]) /\(u.flag[0] = s.flag[I] /\ u.flag[1] = s.flag[J]) /\(J \in s.S[I] => u.S[0] = {1}) /\(I \in s.S[J] => u.S[1] = {0}))with a: Actions[B], a': Actions[C]R(a,a') <=>((a = try[I] /\ a' = try[0]) \/ (a = try[J] /\ a' = try[1]) \/(a = crit[I] /\ a' = crit[0]) \/ (a = crit[J] /\ a' = crit[1]) \/(a = exit[I] /\ a' = exit[0]) \/ (a = exit[J] /\ a' = exit[1]) \/(a = rem[I] /\ a' = rem[0]) \/ (a = rem[J] /\ a' = rem[1]));with i: Int isLrgIndx(J,I);impliesSimulation(B,C,R,S)Figure 4.6: Trait BurnsSimulation.lslthe user Ui changes its program counter to try and process i inM changes itsprogram counter to set-
g-0. All other state components are unchanged bythe action. The parts of the asserts clause not shown in Figure 4.5 consistsof a direct translation of remaining transitions in automaton Burns.In a manner completely analogous to the above, we formalize automa-ton Burns� into an LSL trait AutomatonABurns. Having de�ned the twoautomata Burns and Burns� in LSL we now proceed to de�ne the LSL ver-sion of relations Rfi;jg and Sfi;jg from De�nitions 4.1 and 4.2, respectively.4.4.2 The Simulation Relation in LSLThe LSL formalization of relations Rfi;jg and Sfi;jg takes place in the traitBurnsSimulation shown in Figure 4.6. The trait �xes the Skolem constantsi and j as the integers I and J, respectively. The LSL de�nitions of therelations follows directly from De�nitions 4.1 and 4.2.Trait BurnsSimulation ends with an implies clause, where we state a

4.4. THE SIMULATION PROOF 77claim that the theory of trait BurnsSimulation logically implies the theoryof trait Simulation. Trait Simulation states the requirements for a tracesimulation relation. The trait is de�ned is de�ned in Figure 2.3 of Chapter 2and it implements the requirements from the Trace Simulation de�nition,De�nition 2.11. In the next section we describe how we prove the theorycontainment claim using the Larch Prover.4.4.3 The LP Simulation ProofLSL is supported by a tool, the LSL Checker, which can be used to syntax-check and type-check LSL traits and to extract proof required to check thesemantic claims from traits. When running the LSL Checker with inputtrait BurnsSimulation, an input for LP is generated that initiates a proofof the claim from the trait. The �rst proof obligation to be discharged isthe start condition from the Trace Simulation de�nition, De�nition 2.11.The start condition is trivial, because the initial states of Burns andBurns� have the value of pc set to rem for all processes and users, and theyhave all
ags set to 0 and all sets of indices empty.The second proof obligation is the step condition, condition 2, from theTrace Simulation de�nition. For the step condition suppose that s and uare states of Burns and Burns�, respectively, such that Sfi;jg(s; u). We thenconsider cases based on the type of action �x performed by s on a transitions �x�! s0. For each action �x we consider x = i, x = j and x 62 fi; jg. Theproof is relatively simple, since the execution fragment corresponding to acertain concrete action �x for the most cases can be picked to be the abstractversion of the concrete action. So the proof is a rather straightforwardmatching up of concrete actions with their abstract counterparts. The mainuser assistance that LP needs for the proof is the input of the correspondingabstract execution fragment for each concrete action. The rest of the userguidance consists of directing LP to break some proof parts into cases, anddirecting LP to use whatever information it has already got to try and dosome rewriting to complete proof subgoals. Figures 4.7 and 4.8 illustratesthe proof in case �x = test-sml-fst(y)x, x = j, y = i, s:
agi = 0, ands:jSjj < j � 2. Figure 4.7 shows the manual proof and Figure 4.8 shows theproof as it is computer-assisted by LP.The two proofs in Figures 4.7 and 4.8 have the exact same overall struc-ture. The LP proof contains no further user assistance than what is shown.Line 0 shows the overall proof subgoal that leads to the considered case.The subgoal is generated by running the LSL Checker with input trailBurnsSimulation. It states as follows. If s and u are states of Burns andBurns�, respectively, such that s and u are related by Sfi;jg, and if s a�! s0 isa step of Burns with a 62 dom (R). Then, there exists an execution fragment� of Burns� with �rst (�) = u, last (�) = u0, and trace (�)jran (Rfi;jg) = �.The proof proceeds by considering the various cases of action a. In Figure

78 CHAPTER 4. BURNS' MUTUAL EXCLUSION ALGORITHM
Case �x = test-sml-fst(y)x, x = j, y = i, s:
agi = 0, js:Sj j = j � 2If u:S1 = f0g the corresponding fragment is u test-sml-fst-succ1�������������! u0. The fragmentis enabled since by de�nition of state relation Sfi;jg, u:ppc1 = s:ppcj = test-sml-fstand u:S1 = f0g. From Burns the only changes resulting from performing action �xare s0:Sj = ; and s0:ppcj = set-
g-1 . From Burns� the only changes are u0:S1 = ;and u0:ppc1 = set-
g-1 , so Sfi;jg(s0; u0).If u:S1 = ; we let the corresponding execution fragment be the following fragment:u test-other-
g1�������������! u00 test-sml-fst-succ1�������������! u0. Action test-other-
g1 is enabled in usince by de�nition of Sfi;jg, u:ppc1 = s:ppcj = test-sml-fst and u:S1 = ;. FromBurns�, u00:ppc1 = test-sml-fst and u00:S1 = f0g since u:
ag0 = s:
agi = 0. There-fore, test-sml-fst-succ1 is enabled in u00. From Burns the changes resulting fromperforming action �x are s0:Sj = ; and s0:ppcj = set-
g-1 , and from Burns� thechanges are, u0:S1 = ; and u0:ppc1 = set-
g-1 , so Sfi;jg(s0; u0).Figure 4.7: Manual proof
(0) prove((S(s, u) /\ inv(s) /\ isStep(s, a, s') /\ ~inR(a) =>\E alpha (execFrag(alpha) /\ first(alpha) = u /\S(s', last(alpha)) /\ proR(trace(alpha)) = empty))..%% Case a = a3[i1c,i2c], a3 = testsmlfst, i2c = J, i1c = I,sc.flag[i1c] = 0, size(sc.S[J] \U {I}) = pred(J)(1) resume by case u.S[1] = {0}(2) resume by specializing alpha to null(uc){testsmlfstsucc[1], u'c}(3) instantiate j by I in *ImpliesHyp*(4) instantiate j by 0 in SimulationTheorem* ~ (*Hyp*)(5) resume by specializing alpha to(null(uc){testotherflg[1], u''c}){testsmlfstsucc[1], u'c}(6) instantiate j by I in *ImpliesHyp*(7) instantiate j by 0 in SimulationTheorem* ~ (*Hyp*)Figure 4.8: LP proof

4.5. THE SPIN VERIFICATION 794.8 we show the proof case indicated in the remark. In line 1, we tell LPto break the proof into cases based on the value of u:S1. We start by thecase u:S1 = f0g and LP automatically provides proof obligations for theother case, u:S1 6= f0g, i.e. u:S1 = ;, as well. The two cases are proved inlines 2{4 and 5{7, respectively. In lines 2 and 5 we direct LP to specializethe execution fragment of automaton Burns� that we want to correspondto the concrete step of automaton Burns. In the LP proof, uc, u'c, andu''c are constants corresponding to u, u0, and u00 in the manual proof. Theinstantiate command replace variables by appropriate constants in de�-nitions and case hypotheses, and LP uses the created facts to rewrite thestated conjectures to true. Thus, LP automatically checks that the proposedabstract execution fragment is indeed enabled in state u and also that thestates s0 and u0 are related by Sfi;jg. The complete proof of Theorem 4.2 isshown in Appendix A.4.5 The SPIN Veri�cationIn this section we present the automatic veri�cation of the abstract automa-ton Burns� in the SPIN model checker. We translate automaton Burns�into a PROMELA model and we translate the trace property P� into anLTL formula suitable for SPIN.4.5.1 The PROMELA ImplementationAutomaton Burns� is translated into a single PROMELA process calledBurnsAlpha(). The process has variables representing
ags, program coun-ters and index sets of automaton Burns�. Figure 4.9 shows the PROMELAimplementation of the state variables. The code should be self-explanatory.Process BurnsAlpha is shown in Figure 4.10. The �gure only shows theentries in the do::od construction that implements transitions of abstractprocess 0. Additional entries exist that implements the transitions of process1. The translation follows the scheme introduced in Chapter 2.4.5.2 The SPIN Veri�cationRecall the de�nition of the abstract trace property P�. The set traces(P�)consists of all the sequences of actions in ext (Burns�) such that no two crit0and crit1 actions occur (in that order) without an intervening exit0 action,and similarly for indices 0 and 1 switched. Assuming that Burns� has astate variable vact used to track the most recent action performed by theautomaton, we can rephrase the above trace property as the following LTLinvariant property:2((vact = crit0)! (((vact 6= crit1)U(vact = exit0)) _2(vact 6= crit1)))^2((vact = crit1)! (((vact 6= crit0)U(vact = exit1)) _2(vact 6= crit0)))

80 CHAPTER 4. BURNS' MUTUAL EXCLUSION ALGORITHMmtype = {rem, try, setflag0, testsmallerfirst, testsmallersecond,setflag1, testlarger, leavetry, crit, reset, exit,leaveexit, empt, one, zero}mtype pcP0 = rem;mtype pcP1 = rem;mtype pcU0 = rem;mtype pcU1 = rem;mtype S0 = empt;mtype S1 = empt;bit flag0 = 0;bit flag1 = 0; Figure 4.9: States of process BurnsAlpha
proctype BurnsAlpha(){do:: atomic{ pcU0==rem -> pcU0=try; pcP0=setflag0 }:: atomic{ pcP0==setflag0 -> flag0=0; pcP0=setflag1 }:: atomic{ pcP0==setflag0 -> flag0=0; pcP0=testsmallerfirst }:: atomic{ pcP0==testsmallerfirst -> pcP0=setflag0 }:: atomic{ pcP0==testsmallersecond -> pcP0=setflag0 }:: atomic{ pcP0==testsmallerfirst -> pcP0=setflag1 }:: atomic{ pcP0==setflag1 -> flag0=1; pcP0=testlarger }:: atomic{ pcP0==setflag1 -> flag0=1; pcP0=testsmallersecond }:: atomic{ pcP0==testsmallersecond -> pcP0=testlarger }:: atomic{ (pcP0==testlarger && S0==empt) ->if:: flag1==0 -> S0=one:: else -> skipfi }:: atomic{ pcP0==testlarger -> S0=empt }:: atomic{ (pcP0==testlarger && S0==one) -> pcP0=leavetry }:: atomic{ pcP0==leavetry -> pcP0=crit; pcU0=crit }:: atomic{ pcU0==crit -> pcU0=exit; pcP0=reset }:: atomic{ pcP0==reset -> flag0=0; S0=empt; pcP0=leaveexit }:: atomic{ pcP0==leaveexit -> pcP0=rem; pcU0=rem }..od} Figure 4.10: Process BurnsAlpha

4.5. THE SPIN VERIFICATION 81#define p (pcP0==crit)#define q (pcP1==crit)#define r (pcP0==reset)#define s (pcP1==reset)/* Formula verified:([](p -> (((!q) U r) || ([](!q))))) &&([](q -> (((!p) U s) || ([](!p)))))*/ Figure 4.11: The LTL propertyWe can easily extend process BurnsAlpha with a variable representing vact.In fact, our general translation scheme introduced in Chapter 2 insists thatwe do so. However, to simplify our PROMELA code slightly we use the exist-ing state variables of process BurnsAlpha to implement the above property.It can easily be observed, that variable pcP0=crit whenever vact = crit0and pcP0=reset whenever vact = exit0. Analogously, pcP1=crit whenevervact = crit1 and pcP1=reset whenever vact = exit1. Thus we verify the LTLproperty de�ned in Figure 4.11. SPIN successfully veri�es the property fromFigure 4.11 of process BurnsAlpha. We thus conclude, that the concrete au-tomaton Burns satis�es the mutual exclusion property Pfi;jg for all distinctindices i; j.

82 CHAPTER 4. BURNS' MUTUAL EXCLUSION ALGORITHM

Chapter 5The BCTSS AlgorithmIn this chapter we present a formal proof, using abstraction, of one the mostcomplicated algorithms in the distributed systems literature: the BoundedConcurrent Timestamp System (BCTSS) algorithm of Dolev and Shavit[DS89]. We prove a key invariant of the parameterized BCTSS algorithm,where the parameter is the number of processes running the algorithm. Ourproof is based on the construction of a �nite-state abstraction, that preservesthe behavior of the concrete algorithm with respect to the key invariant.The proof is within the I/O automaton framework, and it uses the theoryof Chapter 2 to obtain proof obligations for property preservation from theabstract to the concrete algorithm. The proof obligations are dischargedmanually and the abstract algorithm is automatically veri�ed in the SPINmodel checker, using the translation scheme of Chapter 2.5.1 Background and ContributionsA timestamp system works somewhat like a ticket machine at a bakery,where customers draw tickets when they enter and are served in the order oftheir ticket numbers. The ticket machine provides a newly arrived customerwith a ticket numbered above that of any earlier arrived customer. A personworking in the bakery, in order to decide the order customers must be served,need only scan through all the numbers and observe the order among them.A concurrent timestamp system (CTSS) is a timestamp system in whichany process can either take a new ticket or scan the existing tickets simul-taneously with other processes. An algorithm implementing a CTSS runson an asynchronous shared memory model with a set of processes and a setof timestamps, one per process. Each process repeatedly performs either alabel or a scan operation. A label operation consists of a sequence of reads ofall timestamps, followed in a separate step by a write (update) to the processown timestamp of a value greater than the maximal value read. The valueswritten establish a total order on the label operations with ties broken by83

84 CHAPTER 5. THE BCTSS ALGORITHMprocess identi�ers. A scan operation consists of a sequence of reads of alltimestamps, returning a sequence of process indexes ordered consistentlywith the above total order.A CTSS is the core in several algorithms for solving fundamental prob-lems in multiprocessor concurrency control. Examples of such algorithmsinclude Lamport's �rst come �rst served mutual exclusion [Lam74], Vitanyiand Awerbuch's construction of a multi-reader multi-writer atomic regis-ter [VA95], Abrahamson's randomized consensus [Abr88], and Afek, Dolev,Gafni, Merritt, and Shavit's �rst come �rst enabled `-exclusion [ADG+94].These algorithms are all based on the use of an unbounded concurrent times-tamp system (UCTSS), a CTSS in which the timestamps are taken from anunbounded domain, usually the nonnegative reals. This unboundedness isunrealizable in practical implementations of the algorithms, since it allowsfor behaviours in which timestamp values can grow arbitrarily large. Thisproblem cannot be solved by any simple scheme of cycling through a �niteset of integers. Much in analogy with the Year 2000 Problem (Y2K), prob-lems can occur when a new timestamp wraps around and starts reusing thesmallest value of the domain.In [DS89], Dolev and Shavit showed that a bounded concurrent times-tamp system (BCTSS), a CTSS in which the timestamps are taken from abounded domain, is constructible. The BCTSS algorithm from [DS89] thusallows for bounded solutions to the concurrency problems referenced above.The particular bounded domain used in the BCTSS algorithm is a certainnested graph, nested to depth n� 1, where n is the number of processes.The BCTSS algorithm is widely considered as one the most complicatedalgorithms in the distributed systems literature. The correctness proof byDolev and Shavit [DS89], based on ordering relations de�ned by Lamport[Lam86], is long, detailed, and hard to understand. In [GLS92], Gawlick,Lynch, and Shavit give a correctness proof for a slight simpli�cation of theoriginal BCTSS algorithm, using atomic snapshots of the shared memory.Their proof has a nicer structure than the original proof. It is based onthe Input/Output Automaton model [LT89, Lyn96] and uses a set of invari-ant assertions and a forward simulation mapping [LT87, Lyn96] from theBCTSS model to a model of a UCTSS algorithm. All the complexity oftheir simulation proof is centered in the use of a key invariant of the BCTSSalgorithm. This invariant asserts that in any state, certain sets of times-tamps are totally ordered (wrt. a de�ned timestamp ordering). The proof ofthe key invariant uses a set of subinvariants, some of which are rather tech-nical and unintuitive, and the proof is somewhat long and detailed (about10 pages).We present an alternative proof of the key invariant from [GLS92], usingabstraction to combine deductive reasoning with automatic veri�cation. Al-though it uses a bounded timestamp domain, the BCTSS algorithm is stillparameterized in the number n of processes. This implies not only the exis-

5.1. BACKGROUND AND CONTRIBUTIONS 85tence of n timestamps, but also that the domain for these is parameterizedby n. We construct a property preserving �nite-state abstraction ABCTSSof the n-process BCTSS algorithm. As in [GLS92], our proof is based onthe I/O automaton model.Our abstract ABCTSS algorithm can intuitively be seen as the BCTSSalgorithm running on an abstract shared memory model, where the set of nconcrete timestamps has been replaced with a �nite and nonparameterizedset of abstract timestamp views, each view having a �nite and nonparame-terized domain. The timestamp views can be seen as a partitioning of theset of concrete timestamps with respect to a certain equivalence relation. Alloperations of BCTSS on timestamp variables are replaced in ABCTSS withabstract counterparts operating on the abstracted domains. Our simulationproof, showing property preservation, essentially consists of showing thateach of the abstract operators is homomorphic with respect to its concretecounterpart. These proofs are easy, since we have intentionally de�ned theabstract operators with only this one purpose. Only a few subinvariants areused in our simulation proof, all relatively high-level and the proof of theseis short (about 3 pages).5.1.1 Chapter OrganizationThis chapter is organized as follows. In section 5.2 we introduce an algo-rithm that implements a UCTSS. The algorithm is simple to understand,and we use it to explain the basic functionality of any CTSS. We illustratehow a CTSS can be used as the core in an algorithm for multiprocessorconcurrency control. We end the section with a discussion of the prob-lems involved in going from an unbounded timestamp domain to a boundeddomain. In section 5.3 we present the BCTSS algorithm used in the restof this chapter. The algorithm di�ers from the UCTSS algorithm only inthe underlying timestamp domain and in the implementation of a functionthat picks new labels for processes. Section 5.3.1 presents the key invariantthat we wish to prove about the BCTSS algorithms and section 5.4 presentsthe high-level proof strategy that we apply for the invariant. The strat-egy is a combination of induction and abstraction techniques. Section 5.5provides the bulk of this chapter. Here we present our abstracted versionof the BCTSS algorithm as well as our abstracted version of the concretekey invariant and we show that these abstractions satisfy the conditions forproperty preservation with respect to their concrete counterparts, as statedin the abstraction framework of Chapter 2. Finally, section 5.6 describesthe automatic veri�cation in SPIN of our abstract algorithm. Besides veri-fying the key invariant of interest, we also present a few experiments on theabstract model performed using SPIN. These experiments are used to auto-matically provide further insight into the workings of the concrete algorithm{ in particular into the workings of the bounded timestamp domain.

86 CHAPTER 5. THE BCTSS ALGORITHM5.2 The UCTSS AlgorithmIn this section we present the UCTSS algorithm from [GLS92]. This un-bounded algorithm is simple to understand and use, and it di�ers from themore complicated BCTSS algorithm, to be introduced later, only in thechoice of timestamp domain and in the implementation of a function thatpicks new timestamps.The UCTSS algorithm uses as unbounded timestamp domain the set ofnonnegative reals, R�0, and it is modeled as an I/O automaton UCTSS.Automaton UCTSS is the composition of a shared memory automaton anda set of user automata. The shared memory automaton, denotedM , modelsthe n processes in the concurrent timestamp system together with the setof shared timestamp variables. It is modeled as one big I/O automaton,where the process and variable structure is captured by means of some lo-cality restrictions on transitions. For any process index i there exists a userautomaton Ui, providing the environment for process i in M .Each process i in M can perform two operations, a scan operation anda label operation, both performed upon request from its user Ui. A scanoperation of process i consists of an input action beginscani and an outputaction endscan(s)i. The operation performs an atomic snapshot of the setof timestamp variables and returns to user Ui a total ordering of processindexes induced by the order of timestamp values. A label operation of pro-cess i consists of an input action beginlabeli and an output action endlabeli.This operation also performs an atomic snapshot of the set of timestampvariables and then computes a new timestamp value for i, greater than themaximal value read. The updating of process i's timestamp variable withthe newly computed value is performed in a separate step. In the followingwe present the shared memory automaton as well as the user automata. Inthe presentation we will use the words timestamp and label interchangeably.Automaton M models the n processes as well as the shared variables.The state of M has the following components, for each i 2 f1; : : : ; ng:{ ti 2 R�0 : The current label associated with process i. Initially ti = 0.{ nti 2 R�0 : The new label for i determined by a function newlabel.Initially nti = 0.{ ti 2 Rn�0 : An array of labels returned by an action snapi. Initiallyti = 0n.{ oi 2 f1; : : : ; ngn : An array of process indexes ordered based on anorder <<. Initially oi = (1 : : : n).{ pci 2 fnil; snap; update; endscan; endlabelg : The non-input action cur-rently enabled. Initially pci = nil.

5.2. THE UCTSS ALGORITHM 87input: beginscaniE�: opi := scanpci := snapinternal: snapiPre: pci = snapE�: ti := (t1 : : : tn)if opi = scan thenoi := sequence of indexes s.t.j <o k i� (tj ; j) << (tk; k)pci := endscanif opi = label thenif imax = ? _ i = imax thenpci := endlabelelsenti := newlabel(i; ti)pci := updateoutput: endscan(s)iPre: pci = endscans = oiE�: pci := nil

input: beginlabeliE�: opi := labelpci := snapinternal: updateiPre: pci = updateE�: ti := ntipci := endlabeloutput: endlabeliPre: pci = endlabelE�: pci := nil

Figure 5.1: Precondition-E�ect code for automaton M{ opi 2 fnil; scan; labelg : The current operation. Initially opi = nil.All of the above variables are local to automaton M . For any i, the vari-ables with this index models the variables \belonging to" process i. Variableti, models the current timestamp of process i. The ti models a shared vari-able, writable by process i and readable by all processes. Any other variablewith index i models a variable local to process i.We specify the transitions of M by giving preconditions and e�ects forall the actions. For any i 2 f1; : : : ; ng automaton M has actions as shownin Figure 5.1.Action beginscani just sets the operation counter opi to scan and then en-ables the atomic snapshot action snapi. The snapi action �rst reads (atom-ically) the value of all timestamp variables into variable ti. Then, withinthe scan operation, the snapi action sets oi to the total ordering of processindexes given by the timestamp labels in the atomic snapshot, with ties bro-ken by process index (the << order). Notice, that in the snapi action, werefer directly to a shared variable tj rather than its local copy tij in vectorti. This is safe due to the fact that e�ects are atomic and ti = (t1 : : : tn)in the e�ect of snapi. Action endscan(s)i resets the pci variable to nil andreturns the current oi to user Ui.Action beginlabeli sets the operation counter opi to label and then enables

88 CHAPTER 5. THE BCTSS ALGORITHMoutput: beginscaniPre: pci = nilE�: pci := snapinput: endscan(s)iE�: pci := nil output: beginlabeliPre: pci = nilE�: pci := snapinput: endlabeliE�: pci := nilFigure 5.2: Precondition-E�ect code for automaton Uithe snapshot action snapi. Within the label operation, the snapi action setsthe \local" variable nti to the new timestamp value for i, computed by thenewlabel function. The updating of the \shared" variable ti is performed ina separate step by action updatei. Action endlabeli ends the label operationby simply resetting the program counter pci to nil. Notice, that a new labelfor i is only computed, in action snapi, under the condition that: imax 6= ?and i 6= imax. In any state of UCTSS we have derived variables tmax andimax. Variable tmax is the maximal value held by any timestamp variable,tmax = max(t1; : : : ; tn), and imax is the largest process index i such thatti = tmax. The value ? is used to denote that imax is \unde�ned" in thecase that no maximal timestamp value tmax exists. For the unboundeddomain, R�0, used in UCTSS such a maximal value always exists, sincethe usual < relation on R�0 is a total ordering. For the bounded domain,to be introduced later, the timestamp relation, also to be introduced later,only de�nes a total ordering on a subset of the domain. Thus, we cannotimmediately conclude that a maximal timestamp value exists in any stateof the bounded algorithm.We now formally de�ne the << order and the newlabel function used inUCTSS. For any state of UCTSS de�ne as follows.De�nition 5.1 (<< order) (ti; i) << (tj ; j) i� either ti < tj or ti = tjand i < j.De�nition 5.2 If i 6= imax then,newlabel(i; ti) = tmax +Xwhere X is nondeterministically selected from R>0Each automaton Ui has a single local variable, pci, a program counter,initially having the value nil. We specify the transitions of Ui by givingpreconditions and e�ects for all the di�erent actions of Ui as shown in Fig-ure 5.2.The parameter s of input action endscan(s)i is the array of process in-dexes returned by the scan operation of process i in M .

5.2. THE UCTSS ALGORITHM 89Process i :(1) choosing(i) := 1(2) number(i) := 1 +maxj 6=i number(j)(3) choosing(i) := 0(4) for j 6= i do(5) if choosing(j) 6= 0 then goto (5)(6) if number(j) 6= 0 and (number(j); j) < (number(i); i) then goto (6)(7) ** critical region **(8) number(i) := 0(9) ** noncritical region **(10) goto (1)Figure 5.3: Pseudo-code for process i in Bakery algorithm5.2.1 An ApplicationAs we have mentioned before, a CTSS is the core in several algorithms formultiprocessor concurrency control. The UCTSS algorithm presented sofar provides the service of a CTSS. To better understand the use of thealgorithm, we now present an application using it as underlying service.The application is Lamport's �rst-come �rst-serve mutual exclusion algo-rithm [Lam74], better known as the Bakery algorithm. We �rst present theBakery algorithm without the explicit use of the UCTSS algorithm. Ourpresentation follows closely the original presentation in [Lam74]. We thenpresent the Bakery algorithm rewritten to make use of the UCTSS algo-rithm as underlying service. This presentation follows closely a presentationof Gawlick in [Gaw92]. Actually, the latter algorithm merely assumes an un-derlying CTSS with an action interface identical to the one for the UCTSSalgorithm. Thus, it is independent of the underlying timestamp domain be-ing unbounded or bounded, and the BCTSS algorithm to be presented canreplace the UCTSS algorithm without causing any changes.The presentation of the standard Bakery algorithm as well as the Bakeryalgorithm using a CTSS service, called Bakery-CTSS, will be in informalpseudo-code style rather than in I/O automaton language. Our intention isto provide a high-level understanding of the use of a CTSS as service for anapplication, not to prove properties of the Bakery algorithm.The Bakery algorithm runs on a shared memory model, where pro-cesses communicate using single-writer/multi-reader shared variables. Be-sides guaranteeing mutual exclusion between any pair of processes, the Bak-ery algorithm also guarantees a certain FIFO (�rst-in �rst-out) propertyamong processes waiting to enter their critical regions. Any process i con-trols two variables, choosing(i) 2 f0; 1g and number(i) 2 N, both writableby i and readable by all j 6= i, and both initially 0. The algorithm run byany process i is presented in Figure 5.3.

90 CHAPTER 5. THE BCTSS ALGORITHMProcess i : (1) choosing(i) := 1(2) beginlabeli(3) endlabeli(4) choosing(i) := 0(5) for j 6= i do(6) if choosing(j) 6= 0 then goto (6)(7) beginscani(8) endscan(s)i(9) if choosing(j) = 0 and j < i in s then goto (7)(10) ** critical region **(11) choosing(i) := nil(12) ** noncritical region **(13) goto (1)Figure 5.4: Pseudo-code for process i in Bakery-CTSS algorithmProcess i is said to be in the doorway while choosing(i) = 1, i.e. whilein lines (1)-(2). While in the doorway, process i chooses a number thatis greater than all the numbers that it reads for the other processes. Itreads the other processes' numbers one at a time, in any order, then writesits own number. While it is reading and choosing numbers, i makes surethat choosing(i) = 1, as a signal to the other processes. It is possible fortwo processes to be in the doorway at the same time, which can causethem to choose the same number. To break such ties, processes comparetheir (number; index) pairs. The comparison it done lexicographically, thusbreaking ties in favor of the process with the smaller index. In the remainingpart of the trying region, the process waits for the other processes to �nishchoosing and also waits for its (number; index) pair to become the lowest.Mutual exclusion follows from an easily proved invariant, stating that forany two processes i and j, i 6= j, if i is in the critical region (line (7)) andj is in either the critical region (line (7)) or in the part of the trying regionoutside the doorway (lines (3)-(6)), then (number(i); i) < (number(j); j).In the Bakery-CTSS algorithm we assume that each process i can use theservice provided by the the shared memory automaton M from the UCTSSalgorithm. That is, process i has output actions beginscani and beginlabeli,and input actions endscan(s)i and endlabeli. The CTSS will take care of thehandling of timestamps. Hence, there is no need in the Bakery algorithm,running on top of the CTSS, to deal with this. Therefore, process i willnot need the number variable anymore. Only variable choosing(i) is needed.The pseudo-code for algorithm Bakery-CTSS is shown in Figure 5.4.To compare with the Bakery algorithm in Figure 5.3, the following havechanged. In Bakery-CTSS, lines (2)-(3) take the place of line (2) in Bakery,and lines (7)-(9) take the place of line (6). Moreover, since the number

5.2. THE UCTSS ALGORITHM 91variable no longer exists in Baker-BCTSS, the choosing variable, with anextension of its domain to include a special nil value, is used to replacethe �rst condition in line (6). The condition number(j) 6= 0 is replace bychoosing(j) = 0.Note, that Bakery-CTSS is independent of the implementation of thetimestamp domain in the underlying CTSS service. Thus, the BCTSS algo-rithm, to be introduced later, can provide the underlying service. This givesa bounded version of the Bakery algorithm.5.2.2 From Unbounded to Bounded Timestamp DomainIt is easy to see, that the unbounded timestamp domain of the UCTSSalgorithm always allows processes to pick new timestamps ordered abovethe timestamps of all other processes. However, it is not obvious how thesame property can be obtained within a bounded domain. A �rst intuitiveidea might be to use a simple wrap around strategy to cycle through somebounded domain. In the following we will examine the inadequacies of thissimple strategy, thereby hopefully providing some intuition for the morecomplicated bounded timestamp domain used in the BCTSS algorithm ofthe next section.Consider a system of n processes and assume that the timestamp domainconsists of the natural numbers from 0 to n with the usual < ordering. Asbefore, ties between processes are broken based on process index. The obvi-ous problem with this label set is deciding what happens when some processhas the label n and another process needs a new, bigger label. According tothe simple wrap around strategy, the latter process would pick the number0 as new label. Thus, the ordering among labels would have the additionalfeature that n < 0.Using this strategy provides a good solution for two processes. In par-ticular consider two processes p1 and p2 with label set f0; 1; 2g. The wraparound strategy obviously works in this case since there will always be anextra number between the labels of p1 and p2 to make sure that they aretotally ordered. Figure 5.5 illustrates the above label set with the extended< order, in the situation where p1 has label 1 and p2 has label 2.
0 12

p1
p2Figure 5.5: The extended < order on f0; 1; 2g

92 CHAPTER 5. THE BCTSS ALGORITHMThe wrap around strategy does however not work for three processes.Consider the following situation for three processes. Let each pi have labeli and assume that process p2 with label 2 wants a new label that is biggerthan the label 3 of p3. The situation is illustrated in Figure 5.6.
0 3 21 p1 p2p3Figure 5.6: The extended < order on f0; 1; 2; 3gUsing the wrap around strategy, the new label for p2 would be 0. How-ever, now process p2's label is ordered below that of p1 which has label 1.This violates the ordering properties of a timestamp system since p1's cur-rent label was acquired before p2 acquired the label 0. One solution mightbe to extend the set of numbers from which the labels are chosen so thatthe wrap around happens later. However, it is easy to see that this will nothelp. In particular, processes p2 and p3 can ask for new labels alternatelyuntil one of them reaches the highest label. The �rst process to wrap aroundwill encounter the same problem as identi�ed above. What is needed is theability to create a cycle of numbers for processes p2 and p3 such that allnumbers in that cycle are ordered above the label of p1.Consider as alternative label domain the set f0; 1; 2g2 equipped with alabel ordering being the lexicographical order based on the the usual < orderwith the additional feature that 2 < 0. This new ordering can be representedas a nested version of the graph in Figure 5.5. Figure 5.7 illustrates thisrepresentation. For clarity we have omitted directions on the edges as wellas numbering of the nodes on the subgraphs, but these graphs are merelycopies of the graph in Figure 5.5. Figure 5.7 illustrates a situation whereprocesses p1, p2, and p3 have labels 0:0, 0:1, and 1:1, the labels being orderedin the order of process indexes.Consider again now the situation in which processes p2 and p3 alternatelyasks for new labels. Starting with p2, they can pick labels alternately in thefollowing sequence: 1:1, 1:2, 1:0, 1:1, 1:2, 1:0, : : : . In other words, they canuse the size three cycle de�ned by labels with pre�x 1. The size three cycleis large enough to accommodate the two processes since there will always bean extra number between the labels of p2 and p3 to make sure that they aretotally ordered. Moreover, the labels of p2 and p3 are always ordered abovep1's label of 0:0. If at some point p1 becomes active, it can pick a new label

5.3. THE BCTSS ALGORITHM 93p2p1 p30 1
2Figure 5.7: The lexicographical order based on the extended < order2:0 which will be higher than the two labels of p2 and p3, both having pre�x1. The label set from above can be generalized to work for any number n ofprocesses. The generalized label set being f0; 1; 2gn and the label orderingbeing the lexicographical order based on the extended < order on the setf0; 1; 2g. The label ordering can be represented as the graph in Figure 5.5nested to depth n� 1.In the above discussion, we have implicitly assumed that processes com-pute new labels and update their timestamp variables in a single atomicstep. When considering the more general setting in which the above atom-icity cannot be guaranteed, the label set from above needs further general-ization. The generalized domain is the topic of the next section in which wepresent the BCTSS algorithm.5.3 The BCTSS AlgorithmIn this section we present the BCTSS algorithm from [GLS92]. The algo-rithm di�ers from the UCTSS algorithm from the previous section only inthe underlying timestamp domain and in the implementation of the newlabelfunction. We denote by BCTSS the automaton obtained from automatonUCTSS by changing the timestamp domain and the newlabel function aspresented in this section.The timestamp domain is a generalization of the nested cycle structureintroduced in section 5.2.2. The generalization is required to guaranteethat the set of process timestamps is always totally ordered in the settingwhere processes can pick and update new labels non-atomically. To providesome intuition for the timestamp domain, we examine the inadequacies ofthe nested cycle structure from section 5.2.2 in this setting. Consider thesituation illustrated in Figure 5.7, in which processes p1, p2, and p3 havelabels 0:0, 0:1, and 1:0, respectively. More precisely, in terms of the variablesin the shared memory automaton M of BCTSS, t1 = 0:0, t2 = 0:1, and

94 CHAPTER 5. THE BCTSS ALGORITHMt3 = 1:0. Now, suppose that p2 and p1 both want to pick a new label.Observing the maximal label having the value 1:0, they can both pick asnew value, 1:1. Thus, p1 and p2 set their \local" variables nt1 and nt2 tothe value 1:1. Now, p2 can update its timestamp variable, i.e. it can sett2 = nt2 = 1:1 and p2 and p3 can start to alternately pick new timestampswithin the cycle having pre�x 1. At some point they may end up in asituation where t2 = 1:0 and t3 = 1:2. Notice, they are still ordered abovethe timestamp t1 = 0:1 of process p1. However, at this point p1 may chooseto update its timestamp variable, thus setting t1 = nt1 = 1:1. Now the threeprocesses have picked labels on each of the nodes in the size three cycle withpre�x 1 which implies that the labels are no longer totally ordered. Nomaximal timestamp exists. This unwanted behavior can be removed byenforcing processes to move through a few nodes not occurring in any cycle,before they enter a cycle.We now present the label domain and ordering used by automatonBCTSS. We introduce the set A = f1 : : : 5g and we de�ne an order �Aon the elements of A as follows.De�nition 5.3 (�A order) De�ne �A as,1 �A 2; 3; 4; 5; 2 �A 3; 4; 5; 3 �A 4; 4 �A 5; 5 �A 3:The graph in Figure 5.8 represents the order �A, where a �A b i� thereis a directed edge from b to a. Note that the ordering is not a partialorder, since it is not transitive { it only gives pairwise ordering relationshipsbetween nodes. In comparison with the graph of Figure 5.5 we observe thatthe graph of Figure 5.8 also has a size three cycle. This cycle consists ofnodes 3, 4, and 5. Moreover, the graph also has two additional nodes 1 and2 ordered below any node within the cycle.
321 45Figure 5.8: The �A orderWe de�ne a function next on the elements of A. For any k, next(k)returns the least k0 such that k �A k0.De�nition 5.4 (next) For k 2 A de�ne the function next as,next(k) = � k + 1 if k 2 f1; 2; 3; 4g3 if k = 5

5.3. THE BCTSS ALGORITHM 95A label is an element of An�1 where n is the number of processes inthe system. All t- and nt-variables of BCTSS are initially set to 1n�1. Theorder between labels that is used in the BCTSS algorithm is based upon thefollowing order �, de�ned between elements of Am for any natural numberm. This order is the lexicographic ordering on Am based on the �A order.We refer to elements of Am using array notation. Speci�cally, the h'th digitof ` 2 Am will be denoted by `[h]. In the following let m be any naturalnumber.De�nition 5.5 (� order) Let `1; `2 be elements of Am. Then, `1 � `2i� there exists h 2 f1 : : : mg such that `1[h0] = `2[h0] for all h0 < h and`1[h] �A `2[h].The order between labels used by BCTSS is the � order on elements ofAn�1, where n is the number of processes. This order can be seen as thenesting of the graph in Figure 5.8 to depth n� 1.In the following we will state and prove a lemma that gives a necessaryand su�cient condition for a set of elements from Am, m any natural num-ber, to be totally ordered. This condition will later serve as the basis in ourde�nition of the concrete key invariant that we want to prove of BCTSS.The following lemma shows that any two elements of Am are always totallyordered by the � order.Lemma 5.1 If `1 and `2 are elements of Am, then exactly one of the fol-lowing is true: `1 � `2 ,`2 � `1, or `1 = `2.Proof. If a; b 2 A, then by de�nition of �A exactly one of the followingis true: a �A b, b �A a, or a = b. The lemma now follows since � is alexicographical order de�ned by �A.De�nition 5.6 If ` 2 Am and h 2 f1; : : : ;mg, then `h is the pre�x of ` upto and including digit h; `0 is the empty pre�x denoted �.We can now state and prove the lemma giving a necessary and su�cientcondition for a set of elements from Am to be totally ordered.Lemma 5.2 A set L of elements from Am is totally ordered by � i� for all`1; `2; `3 in L and for all h 2 f1; : : : ;mg,:(`h�11 = `h�12 = `h�13 ^ f`1[h]; `2[h]; `3[h]g = f3; 4; 5g)Proof.): Assume for the sake of contradiction that there exists `1, `2, `32 L and h 2 f1; : : : ;mg such that `h�11 = `h�12 = `h�13 and f`1[h]; `2[h]; `3[h]g= f3; 4; 5g. By de�nition of A we can conclude without loss of generalitythat `1[h] �A `2[h] �A `3[h] and `1[h] 6�A `3[h]. Since `h�11 = `h�12 = `h�13

96 CHAPTER 5. THE BCTSS ALGORITHMand � is a lexicographical order, `1 � `2 � `3, and `1 6� `3. Hence � is nottransitive, contradicting our hypothesis that � is a total order.(: Assume for the sake of contradiction that � is not total. By de�-nition � is irre
exive and by Lemma 5.1 it is antisymmetric. Therefore, itmust be that transitivity does not hold. Speci�cally, there must exist `1,`2, `3 2 L such that `1 � `2 � `3, and `1 6� `3. Suppose, for the sake ofcontradiction, that `1 = `3. We then have `1 � `2 and `2 � `1 which directlycontradicts Lemma 5.1. Thus, `3 � `1. Knowing, that `1 � `2, `2 � `3, and`3 � `1, we now show that there exists h 2 f1; : : : ;mg such that `h�11 =`h�12 = `h�13 and `1[h] �A `2[h], `2[h] �A `3[h] and `3[h] �A `1[h]. Assumefor the sake of contradiction that no such h exists. By de�nition of �, weknow that there exists h, h0, and h00 such that all of the following three hold.(1): `h�11 = `h�12 and `1[h] �A `2[h]. (2): `h0�12 = `h0�13 and `2[h0] �A `3[h0].(3): `h00�13 = `h00�11 and `3[h00] �A `1[h00]. Furthermore, by assumption notall of h, h0, and h00 can be equivalent. Assume without loss of generality thath < h0. From (2), `h0�12 = `h0�13 and since h < h0 we can conclude from (1)that `h�11 = `h�13 and `1[h] �A `3[h], i.e. `1 � `3. This however contradicts(3) by which `3 � `1. Thus, there exists h 2 f1; : : : ;mg such that `h�11 =`h�12 = `h�13 and `1[h] �A `2[h], `2[h] �A `3[h] and `3[h] �A `1[h]. Now, byde�nition of �A, f`1[h]; `2[h]; `3[h]g = f3; 4; 5g contradicting our hypothesisthat : (`h�11 = `h�12 = `h�13 ^ f`1[h]; `2[h]; `3[h]g = f3; 4; 5g).Having de�ned the notions of labels and orderings used by automatonBCTSS, we can now present the new implementation of the << order andthe newlabel function.De�nition 5.7 (<< order) (ti; i) << (tj ; j) i� either ti � tj or ti = tjand i < j.To de�ne the new newlabel we require a set of preliminary de�nitions.De�nition 5.8 (thmax) For any h 2 f1; : : : ; n� 1g, if for some index i,thj � thi for all j 6= i then thmax = thi ; Otherwise, thmax = ?. We de�net0max = �. We write tmax for tn�1max. If tmax 6= ? then imax is the largestindex i such that ti = tmax; Otherwise, imax = ?.In any state, thmax returns the maximal value of the set of h-pre�xes of t-labels; if such a maximal value exists (we will prove that thmax always exists).Otherwise, thmax returns?. If tmax 6= ? then imax returns the maximal indexof the set of processes having their timestamp value equal to tmax.Suppose thmax 6= ?. For any h0 < h, we will use parentheses (thmax)h0 todenote the pre�x of thmax up to and including digit h0.Lemma 5.3 For any h 2 f1; : : : ; n�1g, if thmax 6= ? then for any h0 2f0; : : : ; h� 1g, (thmax)h0 = th0max.

5.3. THE BCTSS ALGORITHM 97Proof. Assume for the sake of contradiction that thmax 6= ? and for someh0 < h, (thmax)h0 6= th0max. Let i be such that thi = thmax. Then by assumptionthere exists k 6= i such that th0k � th0i . But then by de�nition of � and sinceh0 < h, thk � thi which contradicts that thi = thmax. Hence for all k 6= i, th0k �th0i and by de�nition then th0i = th0max.In the following de�nitions we assume that tmax 6= ?. We do so sinceall the de�nitions are used to implement the function newlabel and as canbe seen from the code of automaton M , see Figure 5.1, this function is onlycalled in states where tmax 6= ?. When tmax 6= ? we have from Lemma 5.3that thmax = (tmax)h for any h 2 f0; : : : ; n�1g (note t0max = �). The followinglist of functions, on states of BCTSS, forms the basis of the newlabel function.De�nition 5.9 (agree, num, numi) For any h 2 f0; : : : ; n�1g, ` 2 An�1,and v 2 A,agree(`h) = fi j thi = `hgnum(`h) = jagree(`h)jnumi(`h) = jagree(`h)� figjnum(`h; v) = jagree(`h) \ fi j ti[h+ 1] = vgj (h 6= n�1)In any state, agree(`h) returns the set of process indexes i such that thepre�x thi is equivalent to the pre�x `h of label `. num(`h) is the cardinalityof agree(`h). numi(`h) is the cardinality of agree(`h) once index i is removedfrom agree(`h). Finally, num(`h; v) is the cardinality of the intersectionbetween agree(`h) and the set of indexes i such that the (h + 1)st elementof ti equals the value v.De�nition 5.10 (fulli) For any i 2 f1; : : : ; ng and h 2 f1; : : : ; n�1g,fulli(h) = � true if numi(thmax) � n�hfalse otherwiseIn any state, fulli(h) returns true if at least n�h t-labels, excluding ti,agree with the pre�x of tmax up to and including the h'th digit.De�nition 5.11 (next-label) For any h 2 f1 : : : n�1g, `2 = next-label(`1; h)i� `h�12 = `h�11 , `2[h] = next(`1[h]) and `2[h0] = 1 for all h0 > h.De�nition 5.12 (newlabel) For any i 2 f1; : : : ; ng, if i 6= imax then,newlabel(i; ti) = next-label(tmax; h0)where, h0 = minfh 2 f1; : : : ; n�1g j fulli(h) = trueg.

98 CHAPTER 5. THE BCTSS ALGORITHMFunction newlabel(i; ti) �nds the minimum integer h such that fulli(h)returns true. That is the minimum h such that at least n � h t-labels,excluding ti, agree with the pre�x of tmax up to and including the h'th digit.Then the new label is the same as tmax for the �rst h � 1 digits, it di�ersfrom tmax at the h'th digit based on the function next, and its remainingdigits are equal to 1. We know that the newlabel function is executed bya process i of automaton M , see Figure 5.1, only in states where i 6= imax.In such a state there always exist an h 2 f1; : : : ; n � 1g such that fulli(h)returns true, since numi(tn�1max) � 1 and hence fulli(n� 1) = true.The graph in Figure 5.9 illustrates the � order on the label domain A2used when the number n of processes is three. For clarity we have omitteddirections on edges and numbering of nodes in the subgraphs. The subgraphsare all identical to the graph of Figure 5.8.
1 2 3 4

5
p1 p2p3

Figure 5.9: The � order for n = 3Consider the situation in which processes p1, p2, and p3 have their times-tamp variables as illustrated in Figure 5.9. That is, t1 = 3:3, t2 = 3:4, andt3 = 4:1. Suppose now that processes p2 and p3 starts to alternately pick newlabels. Then they can use the cycle de�ned by labels with pre�x 4 to keeppicking labels ordered above the label of p1. The cycle can accommodatethe two processes, guaranteeing that they are always totally ordered. Letus examine in detail how the newlabel function will provide the new labelsfor processes p2 and p3. Suppose p2 is the �rst process to call the newlabelfunction. The function �rst determines the minimum level h 2 f1; 2g suchthat full2(h) returns true. In terms of the graph in Figure 5.9, full2(h) re-turns true if the node at level h, holding the maximal timestamp, cannotaccommodate more processes. A node at level 1 is a node in the outer graph,that is a node de�ned by a set of labels agreeing in the �rst digit. A nodeat level 2 is a node in some inner graph, that is a node de�ned by exactlyone label value. In our example, full2(1) returns false. Thus, the node atlevel 1 holding the maximal timestamp, that is the node numbered 4, is

5.3. THE BCTSS ALGORITHM 99not full yet. This node can hold two processes. Also, full2(2) returns trueimplying that the node at level 2 that holds the maximal timestamp, that isthe node 4:1, is full. This node can hold only one process. The rule used byfunction newlabel() to pick a new label is now to choose lowest node domi-nating the node 4:1. The new label for p2 thus becomes next-label(tmax; 2)= next-label(4:1; 2) = 4:2. Suppose p2 updates it timestamp variable leavingt2 = 4:2. Now, when p3 calls the newlabel function it will see full3(1) = falseand full3(2) = true. Note that even though both p2 and p3 resides in thenode 4 at level 1, full3(1) returns false since the timestamp of p3, the callingprocess, is not taken into account when determining the full criteria. Thenew label for p3 becomes next-label(4:2; 2) = 4:3. Processes p2 and p3 will ifthey continue to pick labels use the cycle in subgraph 4. In here they willalways be totally ordered and also ordered above the label 3:3 of p1. If atsome point p1 decides to pick a new label, it will observe that full1(1) = truewhich tells p1 that no further processes can be accommodated by the sub-graph numbered 4. Thus, p1 will pick as new label the value next-label(4:5; 1)= 5:1, assuming that tmax = 4:5.Using Figure 5.9 we can also illustrate the role played by the values 1 and2 in the label domain. Consider the situation from above, where p1 has labelt1 = 3:3, p2 has label t2 = 3:4, and p3 has label t3 = 4:1. Then subgraph4 will be the next graph in which new labels will be picked. Suppose p2is the next process to pick a new label. It sets nt2 = 4:2. Now, before p2updates its t-variable, assume that process p1 picks a new label and updatesits timestamp variable. Process p1 thus picks nt1 = 4:2 and subsequentlysets t1 = 4:2. Now, processes p3 and p1 can continue to pick labels endingup in the cycle of subgraph 4. At some point p2 may complete the updateof its timestamp variable, writing t2 = 4:2. This value however, will not bein the cycle of the subgraph. Moreover, any subsequent label operation ofa process will see the subgraph 4 as full and hence move onto subgraph 5,preventing three processes to occur in the cycle of subgraph 4.As mentioned earlier, the user automata guarantees well formedness ofthe behaviors of BCTSS. This implies for instance, that in any behavior ofBCTSS, for any process i, no two beginlabeli actions can occur without anintervening pair of consecutive actions, updatei, endlabeli. As a result, thefollowing simple invariant, used in the later sections, holds for the states ofBCTSS. The proof follows by trivial induction on the length of an execution.Lemma 5.4 For any reachable state of BCTSS, for any i 2 f1; : : : ; ng,M:pci = snap) ti = nti5.3.1 The Total Orderedness PropertyThe original requirement speci�cation for the BCTSS algorithm, as statedin [DS89], uses an axiomatic speci�cation formalism of Lamport [Lam86]

100 CHAPTER 5. THE BCTSS ALGORITHMto de�ne a set of ordering properties with respect to the label and scanoperations of the algorithm. These properties have been widely criticizedas \hard-to-use" and the original proof in [DS89] is long and di�cult tounderstand. In [GLS92], Gawlick, Lynch, and Shavit provides a proof ofthe BCTSS algorithm introduced in previous section, showing that it im-plements an unbounded concurrent timestamp system (UCTSS) algorithm,which can remarkably easy be shown to satisfy the original ordering proper-ties. All the complexity in the (simulation) proof that the BCTSS algorithmimplements the UCTSS algorithm, is centered in the use of a key invariantof the BCTSS algorithm. This key invariant asserts that in any state ofthe algorithm, the set of all timestamps, newly picked as well as alreadyupdated, is totally ordered. The proof in [GLS92] of the invariant uses aset of subinvariants, some of which are rather technical and unintuitive, andthe proof is somewhat long and detailed. We consider an alternative proofof this invariant, using abstraction strategies.In order to de�ne the key property (invariant) that we wish to prove, wede�ne the notion of a choice vector for any state of automaton BCTSS.De�nition 5.13 (Choice Vector) A choice vector is any vector (`1 : : : `n)such that `i 2 fti; ntig for each i.Our goal is to prove the invariant that for any reachable state of BCTSS,the set of values in every choice vector is totally ordered by �. Notice thatthis invariant implies that the << order used in automaton M de�nes atotal order. Proving the invariant is equivalent be Lemma 5.2 to provingthe following theorem.Theorem 5.1 (Total Orderedness) For any reachable state s of BCTSS,for any h 2 f1; : : : ; n�1g, for any choice vector (`1 : : : `n), and for anyindexes i; j; k such that i 6= j, i 6= k, and j 6= k,:(s:`h�1i = s:`h�1j = s:`h�1k ^ fs:`i[h]; s:`j [h]; s:`k[h]g = f3; 4; 5g)5.4 The Proof StrategyOur proof for the Total Orderedness theorem (Theorem 5.1) uses a com-bination of induction and abstraction. Induction is used as the high-levelproof strategy with abstraction applied in the inductive step.Consider Theorem 5.1. We will prove the theorem by strong induction onh (note n is �xed). For any h 2 f1; : : : ; n�1g we let (h) denote the propertyobtained from Theorem 5.1 by eliminating the universal quanti�cation of h.

5.4. THE PROOF STRATEGY 101Thus, h occurs free in (h). (h) = For any reachable state s of BCTSS, for any choice vector(`1; : : : ; `n), and for any indexes i; j; k such that i 6= j, i 6= k,and j 6= k, : (s:`h�1i = s:`h�1j = s:`h�1k ^fs:`i[h]; s:`j [h]; s:`k[h]g = f3; 4; 5g)Thus, we want to prove that (h) holds for all h, by strong induction on h.For any state s of BCTSS, we will use the notation (h; s) to denote theproperty obtained from (h) by eliminating the universal quanti�cation of s.Thus, (h) is the property that for all reachable states s of BCTSS, (h; s)holds. In the proof of (h) we will be using a slightly weaker property '(h),de�ned as follows,'(h) = For any reachable state s of BCTSS, for any choice vector(`1; : : : ; `n), and for any indexes i; j; k such that i 6= j, i 6= k,and j 6= k, : (s:`h�1i = s:`h�1j = s:`h�1k = s:th�1max ^fs:`i[h]; s:`j [h]; s:`k[h]g = f3; 4; 5g ^num(s:th�1max) � n�h+1)For states s of BCTSS, we will use the notation '(h; s) to denote theproperty obtained from '(h) be eliminating the universal quanti�cation of s.Now, to prove (h) we proceed according to the following inductive strategy.Assume for induction hypothesis,8h0; 1 � h0 < h; (h0): (5.1)Prove, '(h)) (h) and '(h): (5.2)For the remainder of this chapter we thus consider the proof of (5.2)under the assumption of hypothesis (5.1). In this section we prove the �rstpart of (5.2), saying that '(h)) (h), by a simple inductive argument. Theproof of the second part, '(h), will be by the use of abstraction strategies.This proof is the topic of the rest of this chapter.

102 CHAPTER 5. THE BCTSS ALGORITHMLemma 5.5 '(h)) (h)Proof. Assume '(h). We now prove (h) by showing that (h; s) holds forall reachable states s of BCTSS. We proceed by induction on the length ofan execution in BCTSS.Base: For any initial state s0 and for any index i, s0:ti = s0:nti = 1n�1.This immediately proves the base case.Step: Assume that state s satis�es (h; s). For any �; s0 such that s ��! s0we will show that s0 satis�es (h; s0). Assume for the sake of contradictionthat for some choice vector (`1 : : : `n), and for some indexes i; j; k such thati 6= j, i 6= k, and j 6= k,s0:`h�1i = s0:`h�1j = s0:`h�1k ^ fs0:`i[h]; s0:`j [h]; s0:`k[h]g = f3; 4; 5g (�)First suppose, � 2 fbeginlabell; endlabell; beginscanl; endscanlg. Since no t-labels or nt-labels change as a result of �, (�) immediately leads to a con-tradiction with the (h; s). Now, suppose � = updatel. The only label thatchanges as a result of � is tl, so l 2 fi; j; kg since otherwise (�) immediatelycontradicts (h; s) for s. Assume without loss of generality that l = k ands0:`k = s0:tl. Now, since i 6= k and j 6= k we have that s0:`i = s:`i and s0:`j= s:`j. And since s0:tk = s:ntk we have from (�),s:`h�1i = s:`h�1j = s:nth�1k ^ fs:`i[h]; s:`j [h]; s:ntk[h]g = f3; 4; 5gwhich contradicts (h; s). Now, �nally suppose that � = snapl. s:opl = labelsince otherwise no t-labels or nt-labels change as a result of � and hence (�)immediately leads to a contradiction with (h; s). By same argument s:tmax6= ?, l 6= s:imax, and l 2 fi; j; kg. Assume without loss of generality thatl = k and s0:`k = s0:ntk. From (�) then,s0:`h�1i = s0:`h�1j = s0:nth�1k ^ fs0:`i[h]; s0:`j [h]; s0:ntk[h]g = f3; 4; 5gWe know that s0:ntk = next-label(s:tmax; h0) for some h0 2 f1; : : : ; n�1g.Also by assumption s:tmax 6= ?. Suppose num(s:th�1max) > n�h+1. Thennumk(s:th�1max) � n�h+1 and fullk(h�1) = true. Therefore h0 � h�1 ands0:ntk[h] = 1 contradicting that s0:ntk[h] 2 f3; 4; 5g. Suppose num(s:th�1max)� n�h+1. Then numk(s:th�1max) � n�h+1. If h0 < h we reach the samecontradiction as above. If h0 � h then s0:nth�1k = s:th�1max. Now, from action,s0:tmax = s:tmax so s0:th�1max = s:th�1max. Hence, s0:nth�1k = s0:th�1max contradicting'(h; s0).5.5 The AbstractionIn this section we consider the proof of the invariant '(h) from the secondpart of (5.2). Recall that h denotes our induction constant. From the

5.5. THE ABSTRACTION 103induction hypothesis (5.1), if h > 1 then in any state and for any choicevector, the set consisting of the h� 1 pre�xes of the choice vector elementsis totally ordered. Thus, th�1max 6= ? for any h � 1 (t0max = �). That is, thereexists i 2 f1; : : : ; ng such that th�1i = th�1max.Our proof will use the abstraction framework introduced in Chapter 2.The proof strategy will be as follows. First, consider the path safety propertywith state set states (BCTSS) and with path set being the set of sequences ofstates s satisfying '(h; s). We identify the invariant '(h) with this inducedpath property. Thus our goal is to show that paths (BCTSS) � paths ('(h)).We construct an abstract automaton, BCTSS�(h), as well as an abstractpath property '�(h). We establish an abstraction relation, S, between thestates of BCTSS and the states of BCTSS�(h) and we prove that:BCTSS �p BCTSS�(h) via S; and (5.3)S�1(paths ('�(h))) � paths ('(h)): (5.4)Then by Theorem 2.8 (Path Safety Preservation) we can conclude thatif BCTSS�(h) satis�es '�(h) then BCTSS satis�es '(h). Our abstract au-tomaton will have a �nite state model and we therefore use automatic veri-�cation (model checking) to prove that BCTSS�(h) satis�es '�(h).In our proof we will make use of the following list of simple invariantson BCTSS. These invariants allow us to restrict the amount of informationneeded to be preserved in the abstraction. Recall that th�1max 6= ?.Lemma 5.6 For any reachable state of BCTSS, for any i 2 f1; : : : ; ng,1. (8j 6= i; th�1j 6= th�1max)) th�1i = nth�1i = th�1max2. th�1i = th�1max) nth�1i � th�1max3. nth�1i � th�1max) nti[h] = 1Proof. See Appendix B.In the following we give an intuitive explanation of the claims of Lemma5.6. In the following when we mention t- or nt-values we will mean theirh�1-pre�x. The �rst invariant states that, if only a single process has its t-value agreeing with th�1max, then this process' t- and nt-values agree. This willimply, by total orderedness of the h�1-pre�xes of timestamps, that a processwho's nt-value is greater than th�1max will have its t-value agree with th�1max afterperforming an update action. Suppose that s denotes the state before anupdatek of process k and s0 denotes the state after the action. If s:nth�1k� s:th�1max, claim 1 for s tells us that there exists i 6= k such that s:th�1i =s:th�1max. Thus for any j 6= i, j 6= k, s:th�1j � s:th�1i � s:nth�1k . From induction

104 CHAPTER 5. THE BCTSS ALGORITHMhypothesis (5.1) this implies that s:th�1j � s:nth�1k and hence for any i 6= k,s:th�1i � s:nth�1k . Now, for any i 6= k, s0:th�1i = s:th�1i and moreover s0:th�1k= s:nth�1k . This concludes that s0:th�1i � s0:th�1k for all i 6= k and thuss0:th�1k = s0:th�1max. The second invariant states that the newly picked label ofa process is greater than or equal to th�1max. The third invariant states that, ifa process' newly picked label is greater than th�1max then the h'th digit of thislabel equals 1. This invariant, together with the �rst invariant, provides uswith information about the relation between processes timestamps and th�1maxafter an update action, performed by a process who's nt-value is greaterthan th�1max. In this particular situation, we will be able to conclude, that theupdating process will be the only one agreeing with th�1max after the update,and moreover its t-value will have its h'th digit equal 1.5.5.1 Abstract State SpaceThe fundamental requirement to our abstract automaton, BCTSS�(h), isthat it must be property preserving with respect to the concrete path prop-erty '(h). Recall that paths ('(h)) is the set of sequences of states s ofBCTSS in which the predicate '(h; s) holds. Hence, this predicate will pro-vide us with information about the parts of a concrete state that needs tobe preserved in a corresponding abstract state. The predicate can be seenas a guideline for partitioning the concrete state space into a set of abstractstates. The basis of the abstract state space will be two abstract domainsof views and num-counts, respectively.ViewsConsider any state of BCTSS in which num(th�1max) � n�h+1. From thede�nition of the predicate '(h; s), we observe the need to preserve the fol-lowing information from the concrete state s into a corresponding abstractstate. For any i 2 f1; : : : ; ng and `i 2 fti;ntig, we must preserve informationtelling us whether `h�1i = th�1max, and if so, also whether or not `i[h] equals3, 4, or 5. We de�ne the information that we will preserve in terms of aprocess view.De�nition 5.14 For any state of BCTSS and for any i 2 f1; : : : ; ng,viewhi = 8>><>>: (ti[h];nti[h]) if th�1i = th�1max ^ nth�1i = th�1max(ti[h]; 0) if th�1i = th�1max ^ nth�1i � th�1max(0;nti[h]) if th�1i � th�1max ^ nth�1i = th�1max(0; 0) otherwiseThat this de�nition actually provides us with the intended informationfollows from the following lemma. Let viewhi [1] and viewhi [2] denote the �rstand second component of viewhi , respectively.

5.5. THE ABSTRACTION 105Lemma 5.7 For any state of BCTSS, for any i 2 f1; : : : ; ng, and for anyv 2 A,1. th�1i = th�1max ^ ti[h] = v , viewhi [1] = v.2. nth�1i = th�1max ^ nti[h] = v , viewhi [2] = v.Proof. Let v be any element of A. Consider 1. Suppose th�1i = th�1maxand ti[h] = v. From Lemma 5.6 part 2, nth�1i � th�1max and 1 follows fromDe�nition 5.14. Suppose viewhi [1] = v. Since v 6= 0 we have directly fromDe�nition 5.14, th�1i = th�1max and ti[h] = v. Consider 2. Suppose nth�1i =th�1max and nti[h] = v. From de�nition of th�1max, th�1i � th�1max and hence directlyfrom De�nition 5.14, viewhi [2] = v. Suppose viewhi [2] = v. Again, since v 6=0 we have from De�nition 5.14, nth�1i = th�1max and nti[h] = v.Notice that for any process i, we actually preserve more information inviewhi than what we initially motivated. Namely, in case `h�1i = th�1max wepreserve the actual value of `i[h] - not only when it equals 3, 4, or 5, but alsowhen it equals 1 or 2. We will see later that this is necessary in order forour abstract algorithm to be precise enough to satisfy the abstract propertyof interest. We now introduce the following state variable for BCTSS�.{ V � (A [f0g)2 : A set intended to describe the set of process viewsin a corresponding concrete state, initially f(1; 1)g.Since we have not yet fully speci�ed the abstract state space, we cannotyet de�ne the abstraction relation S between concrete and abstract states.However, we will at this point state a requirement to S, which describes theintended interpretation of the abstract set V . The requirement will later bepart of the de�nition of S. Let s and u be states of BCTSS and BCTSS�,respectively. At this point all we know about u is that u:V exists. If S(s; u)then,num(s:th�1max) � n�h+1) u:V = f(v; w) j 9i : s:viewhi = (v; w)gFrom the de�nition of predicate ', we only need to preserve the informa-tion about process views from concrete states where num(th�1max) � n�h+1.This explains the implication in the above requirement to the abstractionrelation S.Several processes may have identical views, but our abstract set V doesnot preserve information about the number of such processes. We will seethat the only information necessary for property preservation is whetherone or more processes have a particular view, and this information will bepreserved in a di�erent abstract state variable.

106 CHAPTER 5. THE BCTSS ALGORITHMNum-countsWe want the relation S to be a path simulation relation from BCTSS toBCTSS�(h). Therefore, from the requirement to S stated in the previ-ous section, BCTSS�(h) must be able to match any view-changing actionof BCTSS that preserves num(th�1max) � n�h+1, such that the concreteview-changes are preserved in the abstract state variable V . The view of aconcrete process may change as a result of this process either picking a newnt-value or updating its t-value. In the latter case the view change simplyconsists of copying the second view element into the �rst position. Thus, inthis case no additional information beside the view needs to be preservedfrom the concrete state. In the former case the view change is determinedby the result of the newlabel function. In order for our abstraction to be pre-cise enough, we must preserve some information, in abstract states, aboutthe values, in corresponding concrete states, of the state functions used byfunction newlabel. In particular, we must preserve information about thevalues of num(th�1max) and num(th�1max; v) for any v 2 A. Actually, it will beenough to preserve only certain critical ranges of values for these concretefunctions. As we will explain in detail later, these value ranges provide su�-cient information to let concrete view changes be matched \closely enough"in corresponding abstract states. We will represent the critical ranges ofnum(th�1max) and num(th�1max; v) by abstract state variables np and nv, respec-tively. The critical value domain will be represented by a single abstractdomain of num-counts, denoted N .De�nition 5.15 N = f0; 1; (1;n�h); n�h; n�h+1; (n�h+1;n]g.We de�ne a function, g, being the (obvious) mapping from elements off1; : : : ; ng to elements of N .De�nition 5.16 De�ne function g : f1; : : : ; ng ! N as follows,g(x) =8>>>>>><>>>>>>:
0 if x = 01 if x = 1 ^ h 6= n�1(1;n�h) if x > 1 ^ x < n�hn�h if x = n�hn�h+1 if x = n�h+1(n�h+1;n] if x > n�h+1 ^ x � nNotice, if h = n�1 then n � h = n � (n�1) = 1. Therefore, g(1) =g(n�h) = n�h in this case. We now introduce the following abstract statevariables of BCTSS�(h).{ np 2 N : The abstract interpretation of num(th�1max). Initially, np =n�h+1 if h = 1, np = (n�h+1;n] otherwise.

5.5. THE ABSTRACTION 107{ n 2 NA : Each nv the abstract interpretation of num(th�1max; v). Ini-tially, n1 = n�h+1 if h = 1, n1 = (n�h+1;n] otherwise, nv = 0 forv 6= 1.The variables introduced above together with the abstract view set V ,fully characterizes the state space of our abstract automaton BCTSS�(h).Thus, we can now make precise our intended interpretation of the abstractstate variables, by providing the abstraction relation S from states (BCTSS)to states (BCTSS�(h)).De�nition 5.17 S(s; u) i�1. u:np = g(num(s:th�1max))2. num(s:th�1max) � n�h+1)1: u:S = f(v; w) j 9i : s:viewhi = (v; w)g2: u:nv = g(num(s:th�1max; v))In the following we explain the details behind the information preservedin abstract state variables np and n.For any process i, the snapi action of BCTSS is a potential view-changingaction. Suppose (s; snapi; s0) is a step of BCTSS and s:opi = label, s:tmax 6=?, and i 6= s:imax. As a result of this action the nti-label changes, im-plying that viewhi [2] may change. Suppose that u is a state of BCTSS�(h)corresponding to s. We want BCTSS�(h) to match the concrete snapi ac-tion by a corresponding abstract action from u to some state u0, such thats0 and u0 correspond by S. Suppose num(s:th�1max) � n�h+1. No t-labelschange as a result of the snapi action, so s0:tmax = s:tmax and num(s0:th�1max)� n�h+1. Thus, s0:viewhi must be an element of u0:V . If the abstract actionnon-deterministically adds some element of (A[f0g)2 to the set u:V , it willobviously allow s0:viewhi 2 u0:V . However, this strategy will make BCTSS�too abstract to satisfy the abstract property of interest. In order to makethe abstract action more precise we will preserve information, in u, from theconcrete state s, used to determine the new value of nti. We are interestedin information determinining the new viewhi ; i.e. information determiningwhether s0:nth�1i = s0:th�1max and if so, also information determining the valueof s0:nti[h].Assume that fulli(h0) = false in s for all h0 � h � 1. Then s0:nth�1i =s0:th�1max, and the value of fulli(h) in s determines the value of s0:nti[h]. Iffulli(h) = true then s0:nti[h] = next(s:tmax[h]), and if fulli(h) = false thens0:nti[h] = s:tmax[h]. We will preserve in u the information determiningfulli(h) in s.From de�nition we have that fulli(h) = true if numi(s:thmax) � n�h,and fulli(h) = false, otherwise. From the de�nition of numi, numi(s:thmax)

108 CHAPTER 5. THE BCTSS ALGORITHM� n�h if either num(s:thmax) > n�h, or num(s:thmax) = n�h and s:thi 6=s:thmax. Furthermore, numi(s:thmax) < n�h if either num(s:thmax) < n�h,or num(s:thmax) = n�h and s:thi = s:thmax. We already preserve in u:V thevalue of s:viewhi , and we will see later that the value of s:tmax[h] is preservedin u:V as well. We therefore preserve enough information to determinewhether s:thi = s:thmax, holding if s:viewhi [1] = s:tmax[h]. Therefore, in orderto preserve in u the information determining fulli(h) in s we only need, inaddition, to preserve whether num(s:thmax) < n�h, num(s:thmax) = n�h, ornum(s:thmax) > n�h. From the abstract property of interest, we will see,that we also need to preserve, for any v 2 A, whether num(s:th�1max; v) = 1.If s:tmax 6= ?, then by De�nition 5.9, num(s:thmax) = num(s:th�1max; s:tmax[h])= num(s:th�1max; v) for some v 2 A. We therefore just preserve, for any v 2A, which of the following ranges of naturals, 0, 1, (1; n�h), n�h, or (n�h; n]includes the value of num(s:th�1max; v).In s,Pv num(s:th�1max; v) = num(s:th�1max) and the value of num(s:th�1max) de-termines whether fulli(h� 1) is true in s. If fulli(h� 1) is true then s0:nth�1i� s0:th�1max. We know that fulli(h� 1) = true if numi(s:th�1max) � n�h+1.Furthermore, numi(s:th�1max) � n�h+1 if either num(s:th�1max) > n�h+1, ornum(s:th�1max) = n�h+1 and s:th�1i 6= s:th�1max. We will preserve in u whichof the ranges [0; n�h+1), n�h+1, or (n�h+1; n] includes the value ofnum(s:th�1max). Notice, that we do not preserve information about the valueof fulli(h0) for any h0 < h � 1. We add non-determinism to the abstractaction allowing it to \assume" any value of fulli(h0) for h0 < h� 1.The above discussion has motivated the particular value ranges preservedby the abstract variables np and n.5.5.2 The Abstract PropertyHaving de�ned the abstract state space, we can now de�ne the abstract pathproperty '�(h), and show that '�(h) \implies" the concrete path property'(h) as required in condition (5.4), i.e. S�1(paths ('�(h))) � paths ('(h)).De�nition 5.18 For any state u of BCTSS�(h), '�(h; u) = true i� for alldistinct x; y; z 2 u:V and for all i; j; k 2 f1; 2g,fxi; yj; zkg 6= f3; 4; 5g ^ fx1; x2; yig = f3; 4; 5g) nx1 = onewhere one = n�h if h = n � 1 and one = 1 otherwise. Let '�(h) bethe path safety property with states ('�(h)) = states (BCTSS�(h)) and withpaths ('�(h)) the set of sequences of states u such that '�(h; u) holds.Consider any pair of concrete and abstract states s and u such thatS(s; u), it its our intention that '�(h; u) implies '(h; s). Intuitively, '�(h; u)states as follows. First, there must not be three distinct views in u:V , fromwhich we can generate the set f3; 4; 5g by choosing either the �rst or the

5.5. THE ABSTRACTION 109second view element from each view. This will imply that in s, no threedistinct processes with distinct views can be used to construct a choice vectorviolating '(h; s). However, we do not know whether three distinct processeswith overlapping views can construct a violating choice vector. This mayoccur if two processes in state s have the same view, with both view elementsin f3; 4; 5g and with the �rst element di�erent from the second. In this casenum(s:th�1max; v) 6= 1, where v denotes the �rst view element. The second partof '�(h; u) implies that in s, three processes with overlapping views cannotconstruct a violating choice vector.Notice that '�(h) is equivalent to the conjunction of the two nonpa-rameterized properties obtained from the cases h = n � 1 and h 6= n � 1.Similarly, we shall see, that the abstract automaton BCTSS�(h) describesexactly two distinct nonparametrized automata, namely for the cases ofh = 1 and h 6= 1. Thus, our abstract veri�cation problem consisting ofshowing, paths (BCTSS�(h)) � paths ('�(h)), gives rise to only four non-parametrized problem instances.Lemma 5.8 S�1(paths ('�(h))) � paths ('(h)).Proof. We show that if S(s; u) and '�(h; u) holds then '(h; s) holds. TheLemma then follows immediately. Assume for the sake of contradictionthat '(h; s) does not hold. Then there exists a choice vector (`1 : : : `n) anddistinct indexes i; j; k such that,(�) s:`h�1i = s:`h�1j = s:`h�1k = s:th�1max ^fs:`i[h]; s:`j [h]; s:`k[h]g = f3; 4; 5g ^num(s:th�1max) � n�h+1Suppose that `i, `j, and `k all denote the same type of label (t or nt). Letc = 1 if the type is t and let c = 2 if the type is nt. From (�) and Lemma 5.7we have that s:viewhi [c] = s:`i[h], s:viewhj [c] = s:`j [h], and s:viewhk [c] =s:`k[h]. Hence, fs:viewhi [c]; s:viewhj [c]; s:viewhk [c]g = f3; 4; 5g. This impliesthat s:viewhi , s:viewhj and s:viewhk are all distinct, and from S there existsdistinct x; y; z 2 u:V such that x = s:viewhi , y = s:viewhj , and z = s:viewhk .Hence, fxc; yc; zcg = f3; 4; 5g which contradicts '�(h; u).Now, suppose that `i and `j denote the same type of label, di�erent fromthe type denoted by `k. Let c = 1 if `i and `j denote label type t and letc = 2 if they denote type nt. Let c = 1 if c = 2 and c = 2 if c = 1. From (�)and Lemma 5.7 we have that fs:viewhi [c]; s:viewhj [c]; s:viewhk [c]g = f3; 4; 5g.This implies that s:viewhi 6= s:viewhj . Suppose that s:viewhk 6= s:viewhi ands:viewhk 6= s:viewhj . Then from S there exists distinct x; y; z 2 u:V such x =s:viewhi , y = s:viewhj , and z = s:viewhk . Hence, fxc; yc; zcg = f3; 4; 5g which

110 CHAPTER 5. THE BCTSS ALGORITHMcontradicts '�(h; u). Therefore, suppose that s:viewhk = s:viewhi or s:viewhk= s:viewhj . We assume without loss of generality the former case. We knowthat s:viewhi [c], s:viewhk [c] 2 f3; 4; 5g, and since fc; cg = f1; 2g and s:viewhi;1= s:viewhk;1 we get from Lemma 5.7 that s:th�1i = s:th�1k = s:th�1max and s:ti[h]= s:tk[h]. Let v = s:ti[h] = s:tk[h]. Then num(s:th�1max; v) 6= 1. Now, fromS there exists distinct x; y 2 u:V such that x = s:viewhi = s:viewhk and y =s:viewhj . Hence, fxc; xc; ycg = f3; 4; 5g. Furthermore, since x1 = v we getfrom S that u:nx1 6= one. This however contradicts '�(h; u).5.5.3 The Abstract AutomatonWe �rst de�ne a set of operators used in the actions of the abstract automa-ton BCTSS�(h). These operators can all be seen as abstract counterpartsof corresponding concrete operators. We show for each abstract operator,that it preserves (is homomorphic w.r.t.) its concrete counterpart in a senseto be made precise later.The following two de�nitions provide abstract successor and predecessorfunctions on elements of N . For each abstract function we provide a lemmastating that the function preserves its concrete counterpart, de�ned on theconcrete domain of naturals. Due to the abstraction of information, theabstract functions return sets of elements from N . In the following we stillassume that one = n�h if h = n�1 and one = 1 otherwise.De�nition 5.19 For x 2 N ,x+1 =8>>>><>>>>: f1g if x = 0 ^ one = 1fn�hg if x = 0 ^ one = n�hf(1;n�h); n�hg if x 2 f1; (1;n�h)gfn�h+1g if x = n�hf(n�h+1;n]g if x 2 fn�h+1; (n�h+1;n]gLemma 5.9 For all x 2 f0; : : : ; n�1g, g(x+ 1) 2 g(x)+1.Proof. By de�nition of +1 and g.De�nition 5.20 For x 2 N ,x�1 = 8>>>>>><>>>>>>:
f0g if x = 0 _ x = 1 _x = n�h ^ one = n�hf1; (1;n�h)g if x = (1;n�h) _x = n�h ^ one = 1fn�hg if x = n�h+1fn�h+1; (n�h+1;n]g if x = (n�h+1;n]Lemma 5.10 For all x 2 f1; : : : ; ng, g(x� 1) 2 g(x)�1.

5.5. THE ABSTRACTION 111Proof. By de�nition of �1 and g.The following two de�nitions provide predicates on the abstract statevariables n, np, and V describing when a valuation of these three variablesis valid. The validity predicates preserve information in an abstract stateabout the relationship, in a corresponding concrete state, between the valuesof num(th�1max) and num(th�1max; v), for any v, and between these num-valuesand the timestamp values.De�nition 5.21 valid(n;np) i� for all v 2 A,np = n�h+1) (nv = n�h, _w 6=v(nw = one ^ ^u6=v;u6=wnu = 0))The intuition behind the predicate valid(n;np) is as follows. Considera situation in which concrete processes may potentially move into the cyclede�ned by the set of labels agreeing with th�1max and having their h'digitin f3; 4; 5g. Such movement can only occur if a process picks a new ntlabel directly into the cycle. This can only occur if num(th�1max) = n�h+1and if the process picking the new nt-value agrees with th�1max. Moreover, ifnum(th�1max) = n�h+1 then num(th�1max; v) = n�h if and only if there existsexactly one w 6= v such that num(th�1max; w) = 1 and num(th�1max; u) = 0 for allother u. Preserving this information in abstract states will be used to ensurethat old elements of the abstract view set V must eventually be removedduring any continuous addition of new elements.Lemma 5.11 If S(s; u) and num(s:th�1max) � n�h+1 then valid(u:n; u:np).Proof. Consider the case that h 6= n�1. Then one = 1. The case h = n�1is completely analogous. Let v be any element of A. Suppose u:np =n�h+1. From S, num(s:th�1max) = n�h+1. Suppose u:nv = n�h. From S,num(s:th�1max; v) = n�h and from the de�nition of num, there exists w 6= vsuch that num(s:th�1max; w) = 1 and for each z 6= v, z 6= w, num(s:th�1max; z)= 0. Hence from S, u:nw = 1 and u:nz = 0 proving the) direction ofthe biimplication. Now, suppose there exists w 6= v such that u:nw = 1and for each z 6= v, z 6= w, u:nz = 0. From S, num(s:th�1max; w) = 1 andnum(s:th�1max; z) = 0, and by de�nition of num, num(s:th�1max; v) = n�h. Now,from S, u:nv = n�h proving the (direction.De�nition 5.22 valid(V;n;np) i� valid(n;np) and for all v 2 A,1: 9x 2 V x1 = v , nv 6= 02: 9x; y 2 V x1 = y1 = v ^ x2 6= y2) nv 6= one

112 CHAPTER 5. THE BCTSS ALGORITHMThe intuition behind 1 and 2 in the de�nition of valid(V; n;np) is ratherobvious. Part 1 preserves the fact that in any concrete state, if some process ihas th�1i = th�1max and ti[h] = v, i.e. viewhi [1] = v, then num(th�1max; v) 6= 0. Part2 preserves the fact that, if two distinct processes i and j have thi = thj = thmaxand nthi 6= nthj , i.e. viewhi [1] = viewhj [1] and viewhi [2] 6= viewhj [2], and ifviewhi [1] = viewhj [1] = v, then num(th�1max; v) 6= 1.Lemma 5.12 If S(s; u) and num(s:th�1max) � n�h+1 then valid(u:V; u:n; u:np).Proof. Consider the case that h 6= n�1. Then one = 1. The case h = n�1is completely analogous. From Lemma 5.11 we have that valid(u:n; u:np)holds so we consider the two additional requirements. Let v be any elementof A. Consider 1. Suppose x 2 u:V and x1 = v. From S there exists isuch that s:th�1i = s:th�1max and s:ti[h] = v. Now, from the de�nition of num,num(s:th�1max; v) 6= 0 and from S and g, u:nv 6= 0. Suppose u:nv 6= 0. FromS, num(s:th�1max; v) 6= 0 and hence there exists i such that s:th�1i = s:th�1maxand s:ti[h] = v. Hence from S there exists x 2 u:V such that x1 = v.Consider 2. Suppose x; y 2 u:V , x1 = y1 = v and x2 6= y2. Thenfrom S there exists i; j such that s:th�1i = s:th�1j = s:th�1max and s:ti[h] =s:tj[h] = v and s:nthi 6= s:nthj . Hence i 6= j and from the de�nition of num,num(s:th�1max; v) 6= 1. Now, from S, u:nv 6= 1.The following de�nition and corresponding preservation lemma shows,that enough information is preserved in abstract states to deduce the valueof tmax[h] in corresponding concrete states where tmax 6= ?.De�nition 5.23max = 8<: max�Afx1 j x 2 V ^ x1 6= 0g if f3; 4; 5g 6�fx1 j x 2 V ^ x1 6= 0g? otherwiseLemma 5.13 If S(s; u), s:tmax 6= ?, and num(s:th�1max) � n�h+1 thenu:max = s:tmax[h].Proof. From the de�nition of s:tmax it follows that for any i, if s:th�1i =s:th�1max then s:ti[h] �A s:tmax[h]. Hence s:tmax[h] =max�A fs:ti[h] j s:th�1i =s:th�1maxg. From S we have that for any v 2 A there exists i such that s:th�1i= s:th�1max and s:ti[h] = v i� there exists x 2 u:V such that x1 = v. Now,since s:tmax 6= ? it follows directly from the de�nition of u:max that u:max= s:tmax[h].In the following we assume that max 6= ?. We de�ne abstract functionsfull-level and newlabel. The full-level function takes an element of V andreturns a subset of abstract values from a set fsmlh;h; lrghg. The newlabel

5.5. THE ABSTRACTION 113function takes a view x from V and an abstract element in fsmlh;h; lrghgand returns a new view.The idea behind the functions is as follows. Suppose in any state ofBCTSS, that process k determines a new ntk-value. It does so by performinga snapk-action with opk = label. If tmax 6= ? and k 6= imax, then k usesfunction fullk to determine the h0 such that the new ntk will be equal tonext-label(tmax; h0). The h0 will be the minimal h00 such fullk(h00) = true.The abstract function full-level(x) with x = viewhk is intended to preservesthe order of h0 with respect to h. Based on the result of full-level(x), thenewlabel function returns the new view of k.De�nition 5.24 For x 2 V ,
full-level(x) = 8>>>>>>>><>>>>>>>>:

fh; smlhg if x1 6= 0 ^ np = n�h+1 ^(x1 = max ^ nmax = n�h+1 _x1 6=max ^ nmax = n�h) _x1 = 0 ^ np = n�h ^ nmax = n�hflrgh; smlhg otherwiseLemma 5.14 Let S(s; u), s:tmax 6= ? and num(s:th�1max) � n�h+1. For anyk 6= s:imax, if h0 = minfh00 j fullk(h00) = trueg then for x = viewhk:1. If h0 < h then smlh 2 full-level(x).2. If h0 = h then h 2 full-level(x).3. If h0 > h then lrgh 2 full-level(x).Proof. Let k 2 f1; : : : ; ng be such that k 6= s:imax. Let h0 be minfh00 jfullk(h00) = trueg and let x = viewhk .Suppose h0 < h. Directly from the de�nition of full-level we have thatsmlh 2 full-level(x).Suppose h0 = h. From the de�nition of fullk, numk(s:thmax) � n�hand numk(s:th�1max) < n�h+1. From the de�nition of num, num(s:th�1max) �num(s:thmax) and also, if num(s:th�1max) = num(s:thmax) and s:th�1k = s:th�1maxthen s:thk = s:thmax. Hence, numk(s:th�1max) � numk(s:thmax), and from abovenumk(s:th�1max) = numk(s:thmax) = n�h. Assume that s:th�1k = s:th�1max. Thennum(s:th�1max) = n�h+1. From S, x1 6= 0 and u:np = n�h+1. Now, if s:tk[h]= s:tmax[h] then num(s:thmax) = n�h+1. From Lemma 5.13, s:tmax[h] =u:max so by S, x1 = u:max and u:nmax = n�h+1. Directly from de�nition,h 2 full-level(x). If s:tk[h] 6= s:tmax[h] then num(s:thmax) = numk(s:thmax)= n�h. From S, x1 6= u:max and u:nmax = n�h, and from de�nition,h 2 full-level(x). Assume now that s:th�1k � s:th�1max. Then num(s:th�1max) =numk(s:th�1max) = n�h and num(s:thmax) = numk(s:thmax) = n�h. From S,

114 CHAPTER 5. THE BCTSS ALGORITHMx1 = 0, u:np = n�h, and u:nmax = n�h, and again directly by de�nition,h 2 full-level(x).Suppose h0 > h. Then numk(s:thmax) < n�h, hence num(s:thmax) � n�h.Suppose num(s:thmax) < n�h. Since u:nmax = s:tmax[h], we have from S,u:nmax 62 fn�h;n�h+1g and lrgh 2 full-level(x). Suppose num(s:thmax)= n�h. Then s:thk = s:thmax. From S, u:nmax = n�h and x1 = u:max, anddirectly from de�nition lrgh 2 full-level(x).De�nition 5.25 For x 2 V and l 2 fsmlh;h; lrghgnewlabel(x; l) = 8<: (x1; 0) if l = smlh(x1;next(max)) if l = h(x1;max) if l = lrghWe �nally de�ne an abstract function update, which takes as parametersthe set V , an element x of V , and a y in (A[f0g)2. The function is intendedto describe changes to the set V , resulting from abstract counterparts ofconcrete view-changing actions. The parameter x is intended to describethe view of the process k performing the view-changing action. The actionmay result in a state where no processes has a view equal to the old view ofk. The parameter y is intended to describe the new view of k.De�nition 5.26 For any x 2 V , and y 2 (A[f0g)2,update(V; x; y) = fV [fyg; (V nfxg) [fyggWe now de�ne the abstract automaton BCTSS�(h). Given a variable xand a set M of values in the range of x. We use the notation x :2 M todenote that x is set nondeterministically to some element of M .Automaton BCTSS�(h) has three internal actions, newlabel(x), update(x),and updatemax.The newlabel(x) action is the abstract counterpart of a concrete view-changing snapi action, within the label operation, of a process i with viewhi= x. If the concrete snapi action is performed in a state where num(th�1max)> n�h+1, then num(th�1max) > n�h+1 in the resulting state as well. From S,we only require a correspondence between the concrete set of process viewsand the abstract set V whenever num(th�1max) � n�h+1 in the concrete state.Thus, np 6= (n�h+1;n] is part of the precondition for action newlabel(x).If the concrete snapi action is performed in a state where viewhi = (0; 0)and num(th�1max) = n�h+1, then viewhi does not change as a result of theaction. Thus, x1 = 0) np 6= n�h+1 is part of the precondition fornewlabel(x). The e�ect of newlabel(x) computes, based on the abstractnewlabel(x) function, a new abstract view corresponding to the new viewhi .The abstract set S is updated by adding the new view and possibly removingx, based on the valid predicate.

5.5. THE ABSTRACTION 115internal: newlabel(x)Pre: x 2 Vx1 = x2max 6= ?np 6= (n�h+1;n]x1 = 0) np 6= n�h+1E�: l :2 full-level(x)x0 := newlabel(x; l)V 0 :2 update(V; x; x0)if valid(V 0; n; np) thenV := V 0internal: updatemaxPre: trueE�: V 0 :2 Pf(0; 0); (0; 1)g n;V := V 0 [f(1; 1)gn1 := one8y 6= 1; ny := 0np := one

internal: update(x)Pre: x 2 Vx1 6= x2 ^ x2 6= 0np 6= (n�h+1;n]E�: if x1 = 0 ^ np = n�h+1 thennp := np+ 1elsex0 := (x2; x2)V 0 :2 update(V; x; x0)if x1 = 0 thennp0 :2 np+1elsenp0 := npn0x1 :2 nx1�1n0x2 :2 nx2+18y 62 fx1; x2g n0y := nyif valid(V 0; n0; np0) then(V; n; np) := (V 0; n0; np0)Figure 5.10: Precondition-E�ect code for automaton BCTSS�(h)The update(x) action is the abstract counterpart of a concrete view-changing updatei action of a process i with viewhi = x and nth�1i = th�1max i.e.viewhi;2 6= 0. Hence, th�1max does not change as a result of the updatei action.The e�ect of update(x) computes a new abstract view, corresponding to thenew viewhi . Furthermore, it updates the abstract num-count variables npand n. The valid predicate guarantees validity of the updated variables.The updatemax action is the abstract counterpart of a concrete view-changing updatei action of a process i with nth�1i � th�1max i.e. viewhi;2 = 0.Induction hypothesis (5.1) will prove that the action leads to a state witha new value for th�1max, this value being the value of nth�1i ; i.e. the new valueof th�1i . Furthermore, in this new state, for all processes j 6= i, th�1j �th�1i . Lemma 5.6 will prove that ti[h] = 1 and hence that viewhi = (1; 1).Lemma 5.6 will also prove that all processes j 6= i will have viewhj either(0; 0) or (0; 1) in the new state.Lemma 5.15 BCTSS �p BCTSS�(h) via SProof. The proof is by induction on the length of an execution. If s0 2start (BCTSS) then for any i, s0:ti = s0:nti = 1n�1 and hence s0:viewhi =(1; 1). Moreover, we have that num(s0:th�1max) = n, num(s0:th�1max; 1) = 1, andnum(s0:th�1max; v) = 0 for all v 2 A� f1g. Suppose h = 1. Then n = n�h+1and for any u0 2 start (BCTSS�(h)), u0:V = f(1; 1)g, u:np = n�h+1, u:n1= n�h+1, and u:nv = 0 for all v 2 A � f1g. Hence S(s0; u0) in the case

116 CHAPTER 5. THE BCTSS ALGORITHMh = 1. Suppose h > 1. Then n > n�h+1 and for u0 2 start (BCTSS�(h)),the values of abstract variables are as for the case h = 1 except from u0:npand u0:n1, both of which equals (n�h+1;n]. Thus S(s0; u0) in the caseh > 1.Now, let s 2 states (BCTSS) and let u 2 states (BCTSS�(h)) such thatS(s; u). We then consider cases based on the type of action � performed bys on a transition s ��! s0.Case 1 (� 2 fbeginscank; endscan(s)k; beginlabelk; endlabelkg) : Thecorresponding action1 is u ��! u. No t-labels or nt-labels change as a resultof � so S(s0; u).Case 2 (� = snapk) : Suppose s:tmax = ? or s:opk = scan or s:imax = k.Then no t-labels or nt-labels change as a result of �. We let the correspond-ing step be u ��! u and S(s0; u) holds since S(s; u) does so.For the remainder of the case we assume that s:tmax 6= ?, s:opk = label,and s:imax 6= k. From � we have that ntk is the only label changing and henceall of the state functions of S, except from possibly viewhk , have the samevalue in s0 as they do in s. More precisely, s0:tmax = s:tmax, num(s0:th�1max) =num(s:th�1max), num(s0:th�1max; v) = num(s:th�1max; v) for all v 2 A, and s0:viewhi =s:viewhi for all i 6= k. Suppose that num(s:th�1max) > n�h+1. Then num(s0:th�1max)> n�h+1. In this case we let the corresponding step be u ��! u. FromS(s; u) we have that u:np = (n�h+1;n] and hence S(s0; u) holds.For the remainder of the case we assume that num(s:th�1max) � n�h+1. Leth0 be such that s0:ntk = next-label(s:tmax; h0). Suppose s:th�1k � s:th�1max andnum(s:th�1max) = n�h+1. From Lemma 5.4, s:tk = s:ntk and hence s:nth�1k� s:th�1max. Thus s:viewhk = (0; 0). From the de�nition of next-label, h0 < h.Hence, s0:nth�1k � s:th�1max and so s0:nth�1k � s0:th�1max. Since no t-labels changeswe also have that s0:th�1k � s0:th�1max. Now from de�nition, s0:viewhk = (0; 0)= s:viewhk . In this case we again let u ��! u be the corresponding step, andS(s0; u) holds since S(s; u) does so.For the remainder of the case assume that num(s:th�1max) 6= n�h+1 or s:th�1k6� s:th�1max. Let the corresponding step be u newlabel(x)�������! u0 where x = s:viewhk .From S(s; u) we have that x 2 u:V , u:np 6= (n�h+1;n], and x1 = 0 impliesu:np 6= n�h+1. From Lemma 5.13, u:max = s:tmax[h] (6= ?) and sinces:tk = s:ntk we have that x1 = x2. Hence action newlabel(x) is enabledin u. Let u00 be the intermediate state resulting from performing all butthe last line in the e�ect clause of action newlabel(x). Then u00:np = u:np,u00:nv = u:nv for all v 2 A, u00:V 2 2 update(u:V; x;newlabel(x; l)) where l 2full-level(x). Let l be the result of resolving the nondeterministic assignment1We assume an always enabled stutter action � s.t. for any state u, u ��! u2We write u00:V for u00:V 0.

5.5. THE ABSTRACTION 117in action newlabel(x) such that, l = smlh if h0 < h, l = h if h0 = h, andl = lrgh if h0 > h. According to Lemma 5.14 we can resolve in this manner.Recall that s0:tmax = s:tmax. If h0 < h then s0:nth�1k � s0:th�1max. Hences0:viewhk [2] = 0. Let x0 = newlabel(x; l). From de�nition, x02 = 0. If h0 = hthen s0:nth�1k = s0:th�1max and s0:ntk[h] = next(s0:tmax[h]) and so s0:viewhk [2] =next(s0:tmax[h]). Now, since u:max = s0:tmax[h] we have from newlabel(x; l),x02 = next(u:max) = next(s0:tmax[h]). If h0 > h then s0:nth�1k = s0:th�1max ands0:ntk[h] = s0:tmax[h], and so s0:viewhk [2] = s0:tmax[h]. From newlabel(x; l), x02= u:max = s0:tmax[h]. Since no t-labels change by �, s0:viewhk;1 = s:viewhk;1,and from newlabel(x; l), x01 = x1. This concludes that x0 = s0:viewhk . Now,�nally we resolve the last nondeterministic assignment in action newlabel(x)such that x 2 u00:V i� there exists i such that s0:viewhi = s:viewhk . Thenfrom S, S(s0; u00) and hence by Lemma 5.12, valid(u00:V; u00:n; u00:np). Nowlet u0 = u00 and we have that S(s0; u0).Case 3 (� = updatek) : We consider cases based on the value of s:nth�1k .Case 3.1 (s:nth�1k � s:th�1max) : Let the corresponding action be u ��! u.From Lemma 5.6 part 2, s:th�1k 6= s:th�1max and hence from the de�nition ofth�1max, s:th�1k � s:th�1max. Thus s:viewhk = (0; 0). From �, s0:tk = s:ntk and sincetk is the only label changing we have that s0:th�1max = s:th�1max. Hence, s0:viewhk= (0; 0) = s:viewhk . Furthermore, the rest of the state functions of f do notchange their value from s to s0. To be precise, num(s0:th�1max) = num(s:th�1max),num(s0:th�1max; v) = num(s:th�1max; v) for all v 2 A, and s0:viewhi = s:viewhi forall i 6= k. Now, S(s0; u) holds since S(s; u) does so.Case 3.2 (s:nth�1k = s:th�1max) : Since tk is the only label changing and sinces0:tk = s:ntk, we have that s0:th�1max = s:th�1max and num(s0:th�1max) � num(s:th�1max).Also, for all i 6= k, s0:viewhi = s:viewhi . Suppose num(s:th�1max) > n�h+1. Thennum(s0:th�1max) > n�h+1. In this case we let u ��! u be the correspondingstep. From S(s; u), u:np = (n�h+1;n] and hence S(s0; u).For the remainder of the case we assume num(s:th�1max) � n�h+1. Now,suppose s:th�1k = s:th�1max and s:tk[h] = s:ntk[h]. Again we let the corre-sponding step be u ��! u. From �, s0:viewhk = s:viewhk , num(s0:th�1max) =num(s:th�1max), and num(s:th�1max; v) = num(s:th�1max; v) for all v 2 A. There-fore S(s0; u) holds since S(s; u) does so. For the remainder of the case wetherefore also assume that s:th�1k 6= s:th�1max or s:tk[h] 6= s:ntk[h]. We letthe corresponding action be u update(x)�������! u0 where x = s:viewhk . From S,x 2 u:V , x2 = s:ntk[h] (6= 0), and x1 6= x2. Also, u:np 6= (n�h+1;n].Hence update(x) is enabled in u. Suppose s:th�1k 6= s:th�1max and num(s:th�1max)= n�h+1. Then num(s0:th�1max) > n�h+1. From S, x1 = 0 and u:np =n�h+1, and from action update(x), u0:np = (n�h+1;n]. Hence S(s0; u0).

118 CHAPTER 5. THE BCTSS ALGORITHMNow, suppose s:th�1k = s:th�1max or num(s:th�1max) < n�h+1. From S, x16= 0 or u:np 6= n�h+1. From � we have as follows. If s:th�1k � s:th�1maxthen num(s0:th�1max) = num(s:th�1max) + 1, num(s0:th�1max; x2) = num(s:th�1max; x2)+ 1, and for all v 6= x2, num(s0:th�1max; v) = num(s:th�1max; v). If s:th�1k = s:th�1maxthen num(s0:th�1max) = num(s:th�1max), num(s0:th�1max; x1) = num(s:th�1max; x1) � 1,num(s0:th�1max; x2) = num(s:th�1max; x2)+1, and for all v 62 fx1; x2g, we have thatnum(s0:th�1max; v) = num(s:th�1max; v). Furthermore, s0:viewhk = (x2; x2). Let u00be the intermediate state resulting from performing all but the last line inthe e�ect clause of action update(x).If s:th�1k � s:th�1max we have from S, x1 = 0. In this case, u00:np 2 u:np+1and u00:nx2 2 u:nx2+1. If s:th�1k = s:th�1max we have from S, x1 6= 0. Inthis case, u00:nx1 2 u:nx1�1, u00:np = u:np, and u00:nx2 2 u:nx2+1. In ei-ther of the above cases we can, by Lemma 5.9 and Lemma 5.10, resolvethe nondeterministic assignments of action update(x) such that u00:np =g(num(s0:th�1max)), u00:nx1 = g(num(s0:th�1max; x1)), u00:nx2 = g(num(s0:th�1max; x2)).Furthermore, u00:nv = u:nv for all v 62 fx1; x2g and u00:V 2 update(u:V; x; x0)where x0 = (x2; x2). Resolve the update assignment such that x 2 u00:V i�there exists i such that s0:viewhi = s:viewhk . Now directly from S, S(s0; u00)and by Lemma 5.12, valid(u00:V; u00:n; u00:np). Now, let u0 = u00 and S(s0; u0)holds.Case 3.3 (s:nth�1k � s:th�1max) : In this case let the corresponding step beu updatemax�������! u0. This action is always enabled. From Lemma 5.6 part 1,there exists i 6= k such that s:th�1i = s:th�1max. Hence for any j such thatj 6= i, j 6= k, s:th�1j � s:th�1i � s:nth�1k . From induction hypothesis (5.1)this implies that s:th�1j � s:nth�1k and hence for any i 6= k, s:th�1i � s:nth�1k .Consider any i 6= k. Since s0:th�1i = s:th�1i and s0:th�1k = s:nth�1k we nowhave that s0:th�1i � s0:th�1k . Hence s0:th�1k = s0:th�1max and num(s0:th�1max) =1. From Lemma 5.6 part 3, s:ntk[h] = 1 so num(s0:tmax; 1) = 1, and for allv 6= 1, num(s0:th�1max; v) = 0. Also, s0:viewhk = (1; 1). If there exists j 6= k suchthat s:nth�1j = s:nth�1i , then from Lemma 5.6 part 3, s:ntj [h] = 1. Thus,since s:th�1j � s:nth�1i , we have that s0:viewhj = (0; 1). Let u0:V be such that(0; 1) 2 u0:V i� there exists j 6= k as above. If there exists j 6= k such thats:nth�1j 6= s:nth�1i , then s0:viewhj = (0; 0). Therefore, let u0:V be such that(0; 0) 2 u0:V i� there exists j 6= k as above. Then directly from S, S(s0; u).5.6 The SPIN Veri�cationIn this section we describe the automatic veri�cation of our abstract algo-rithm using the SPIN model checker. Besides verifying the abstract totalorderedness property of interest, we also present a few experiments on the

5.6. THE SPIN VERIFICATION 119abstract model performed using SPIN. These experiments demonstrate howSPIN can be used to automatically provide further insight into the workingsof the concrete algorithm - in particular into the workings of the boundedtimestamp domain.5.6.1 The PROMELA ImplementationIn the following we present the implementation of the abstract automatonBCTSS�(h) in the input language PROMELA used by the SPIN modelchecker. The implementation follows the translation scheme presented inChapter 2.Views and Num-countsIn automaton BCTSS�(h) we use the state variable V to describe sets ofprocess views. Variable V is a set of elements from (A[f0g)2. In PROMELAthere is no built in support for a general set-datatype. We thus implementthe variable V using a two-dimensional array as described in Figure 5.11.The PROMELA code declares a two dimensional bit-array where a bit-valuetypedef a1 {bit nt[6]};a1 t[6]; Figure 5.11: Viewsin position (i; j) is indexed t[i].nt[j]. The interpretation of t[i].nt[j]having value 1 is the obvious one, namely that (i; j) is an element of variableV . In BCTSS�(h) we furthermore use the num-count variables np and n.Variable np ranges over elements of the abstract domain of num-counts Nand n is an array ranging over NA. The abstract domain N is implementedas a PROMELA message type and we declare variables np and n to representnp and n, see Figure 5.12.mtype = {zero, one, onh, nh, nho, nhon}mtype np;mtype n[6]; Figure 5.12: Num-counts

120 CHAPTER 5. THE BCTSS ALGORITHMThe AutomatonBased on the above declarations, the PROMELA implementation of au-tomaton BCTSS�(h) is constructed as a single proctype declaration with askeleton as presented in Figure 5.13.proctype BCTSS-alpha(){...do:: t[i].nt[j]==1 && i==j && /* newlabel(i,j) */(i!=0 || np!=nho) && np!=nhon -> ...:: t[i].nt[j]==1 && i!=j && /* update(i,j) */j!=0 && np!=nhon -> ...:: true -> ... /* updatemax */od...} Figure 5.13: Process BCTSS-alpha()Each action newlabel(x), update(x), and updatemax from automatonBCTSS�(h) is described by a separate entry in the do::od loop construc-tion of proctype BCTSS-alpha(). In Figure 5.13 only the precondition foreach action is presented. The �rst entry in the loop implements actionnewlabel(x) with x = (i; j). The second entry implements action update(x)and the third entry implements action updatemax. The code in Figure 5.13relies on a simple scheme for picking a random view, i.e. picking i andj. The preconditions are obtained by a direct translation from automatonBCTSS�(h) in Figure 5.10.In the following we describe the PROMELA implementation of the e�ect-code for action newlabel(x), i.e. the code that is to follow the -> symbol inthe �rst entry of the do::od loop. We assume that x = (i; j). The codeconsists of a sequence of four code fragments implementing the separatefunction calls in the e�ect clause of action newlabel(x), see Figure 5.10.The code in Figure 5.14, implements the result of the �rst line in the e�ectof action newlabel(x). The variable flevel implements variable l. Thenondeterministic assignment, :2, is implemented by the nondeterminsticif::fi structures having all selections guarded by true (1). The code usesa value max which implements the value of max from De�nition 5.23. Thecode follows directly from the de�nition of full-level(x), De�nition 5.24. The

5.6. THE SPIN VERIFICATION 121abstract values smlh, h, and lrgh from De�nition 5.24 are represented byvalues 0, 1, and 2, respectively./* compute flevel */if:: ((i!=0 && np==nho) && ((i==max && n[max]==nho)|| (i!=max && n[max]==nh))) ||(i==0 && np==nh && n[max]==nh) ->if:: 1 -> flevel=0:: 1 -> flevel=1fi:: else ->if:: 1 -> flevel=0:: 1 -> flevel=2fifi; Figure 5.14: Code computing flevelBased on the value of flevel the next code fragment, see Figure 5.15,computes the result of the second line in the e�ect of action newlabel(x).Variable nl implements the value of x0[2]. Note, that x0[1] = x[1] and thevalue of x[1] is already implemented in i. The code follows immediatelyfrom De�nition 5.25./* compute newlabel */if:: flevel==0 -> nl=0:: flevel==1 -> if:: max<5 -> nl=max+1:: max==5 -> nl=3fi:: flevel==2 -> nl=maxfi; Figure 5.15: Code computing nlNow, the �nal code fragment, see Figure 5.16, implements the last twolines in the e�ect of action newlabel(x). The result of performing theselast two lines is simply that the new view x0 is added to V and the oldview x is either removed from V or kept, based on the value of the valid

122 CHAPTER 5. THE BCTSS ALGORITHMpredicate. Assuming that the valid predicate holds in the pre-state of actionnewlabel(x), the only way the predicate can be violated in the post-state isif the value of nx1 equals one. Note, that this value does not change by theaction. Thus in case nx1 = one we must make sure to remove the old viewx from V in order not to violate condition 2 in De�nition 5.22. If nx1 6= onethe old view x can nondeterministically be removed or kept without causingviolations. Having decided whether the old view should be kept or removed,the code then adds the new view to the viewset by setting t[i].nt[nl]=1./* make valid (S,n,np) */if:: n[i]==one -> t[i].nt[j]=0:: else -> if:: 1 -> t[i].nt[j]=0:: 1 -> t[i].nt[j]=1fifi;t[i].nt[nl]=1 Figure 5.16: Code guaranteeing validityThe code for actions update(x) and updatemax is implemented in a sim-ilar straightforward manner.5.6.2 The SPIN Veri�cationThe abstract path property '�(h) that we wish to verify describes an invari-ance property. Namely the property that the predicate '�(h; u) must holdin all reachable states u of BCTSS�(h). Thus, the property can be stateddirectly in terms of an LTL invariant. In the PROMELA implementationwe maintain a boolean state variable violate which implements the abovestate predicate. Variable violate is updated at the end of each entry in thedo::od construction in BCTSS-alpha(), and our goal is then to verify thatthe BCTSS-alpha() satis�es the LTL property [](violate==0).The updating of variable violate is performed as shown in Figure 5.17.The boolean variables three, four, and five are all set if there exists threedistinct views spanning the set f3; 4; 5g. The variables ethree, efour, andefive are all set if there exists three, not necessarily distinct, views spanningf3; 4; 5g. In this last situation variable count1 will be nonzero if thereexists a view x with x1; x2 2 f3; 4; 5g, x1 6= x2, and nx1 6= one. Thusvariable violate is set to 1 exactly in the case that the state predicate fromDe�nition 5.18 is false.

5.6. THE SPIN VERIFICATION 123if:: (three==1 && four==1 && five==1) ||(ethree==1 && efour==1 && efive==1 && count1!=0) -> violate=1:: else -> violate=0fi; Figure 5.17: Predicate violateWe have successfully veri�ed the property [](violate==0) for pro-cess BCTSS-alpha(). As mentioned earlier, the parameter h in automatonBCTSS�(h) and in the property '�(h) splits the veri�cation into four cases.The initial values of the num-count variables are de�ned based on the twocases h = 1 and h 6= 1, and for each of these cases the code for automa-ton BCTSS�(h) and the property '�(h) distinguishes two cases, based onh = n� 1 and h 6= n� 1. In the former case variable one = n�h and in thelatter case one = 1. Our veri�cation has been carried out successfully forall cases. We can thus conclude, that the concrete invariant '(h) holds forthe concrete automaton BCTSS for all possible values of h. This concludesthe proof of the Total Orderedness theorem, Theorem 5.1.5.6.3 Further Experiments using SPINIn the following we describe how SPIN can be used to experiment with theabstract model in order to support our understanding of the bounded times-tamp domain used in the concrete model. We �rst use SPIN to demonstratethe need for values 1 and 2 in the set A that forms the basis of the boundedtimestamp domain. The values 1 and 2 are required to guarantee totalorderedness of timestamp values in the concurrent setting where processespick and update new labels nonatomically. Changing the concrete algorithmsuch that any process picks and updates a new label in an atomic step re-moves the need for values 1 and 2. We use SPIN to demonstrate this factby changing our abstract model correspondingly. We can basically reuseour earlier proofs of property preservation to apply for the slightly changedmodels. Thus, we actually prove that the changed concrete algorithm hasno need for values 1 and 2.In the following we use SPIN to demonstrate the need for the value 1in the set A. A similar demonstration can be done for value 2. Considerthe concrete automaton BCTSS changed to run on the bounded timestampdomain (A�f1g)n�1 instead of An�1. The only changes to BCTSS occur inthe de�nition of function next-label, De�nition 5.11, and in the initial valuesof timestamp variables. De�nition 5.11 is changed such that `2[h0] = 2 forall h0 > h, and the initial value of all t- and nt variables is changed from

124 CHAPTER 5. THE BCTSS ALGORITHM1n�1 to 2n�1. Changing the abstract automaton BCTSS�(h) to \match" thechanges in BCTSS is quite simple. The initial value of the abstract view setV is changed from f(1; 1)g to f(2; 2)g and in the e�ect of action updatemax alloccurrences of the value 1 are replaced by the value 2. Now, upon verifying inSPIN the same abstract total orderedness property as before but now for theslightly changed model, immediately leads to an unsuccessful veri�cation.Furthermore, SPIN provides us with a counter example, which can easilybe used to construct an example behavior of the concrete automaton thatleads to a violation of the concrete total orderedness property.The counter example produced by SPIN is illustrated in Figure 5.18. TheAction State State nr.V = f(0; 0); (2; 2)g;np = n�h; n[2] = n�h (1)newlabel(0; 0) V = f(0; 0); (0; 3); (2; 2)g;np = n�h; n[2] = n�h (2)newlabel(0; 0) V = f(0; 3); (2; 2)g;np = n�h; n[2] = n�h (3)update(0; 3) V = f(0; 3); (2; 2); (3; 3)g;np = n�h+1; n[2] = n[3] = n�h (4)newlabel(2; 2) V = f(0; 3); (2; 4); (3; 3)g;np = n�h+1; n[2] = n[3] = n�h (5)update(2; 4) V = f(0; 3); (3; 3); (4; 4)g;np = n�h+1; n[3] = n[4] = n�h (6)newlabel(3; 3) V = f(0; 3); (3; 5); (4; 4)g;np = n�h+1; n[3] = n[4] = n�h (7)Figure 5.18: Counter example produced by SPINcounter example is in the form of an execution of automaton BCTSS�(h).The execution starts in state 1 and ends in state 7. For each state, thecontents of the abstract variables V , np, and n are shown. For the arrayn, we only show the components with a content di�erent from 0. Thus, instate 1, n[i] = 0 for all i 2 A� f1; 2g. The action leading from one state tothe next in the execution is shown in between the states. The �nal state,

5.6. THE SPIN VERIFICATION 125state 7, of the execution violates the abstract state property since the viewset V contains three distinct views spanning the set f3; 4; 5g.Even though our new abstract automaton might be property preservingwith respect to the new concrete automaton, we do not know whether theabove negative veri�cation result carries over to the concrete automaton.Our preservation conditions, stated in Chapter 2, only guarantees positiveresults to carry over. However, the counter example from above can eas-ily be used to construct a concrete execution violating the concrete totalorderedness property.Consider the concrete automaton running on timestamp domain (A �f1g)n�1 in the situation where n = 3. The timestamp domain can be repre-sented by the graph obtained from Figure 5.9 by removing all nodes (bothat level 1 and level 2) de�ned by labels including the digit 1. Now, considerthe situation in which three processes p1, p2, and p3 have their timestampsvariables as follows: t1 = nt1 = 2:2, t2 = nt2 = 2:2, and t3 = nt2 = 3:2.This situation does describe a reachable state in the concrete automaton.Now, consider the case h = 2. From the concrete state we have thatth�1max = t1max = 3 and thus from De�nition 5.14 the set of concrete processviews for h = 2 is described exactly by the set V in the abstract state 1 ofFigure 5.18. Processes p1 and p2 have viewh1 = viewh2 = (0; 0) and process p3has viewh3 = (2; 2). Moreover, in the concrete state, num(t1max) = n�h = 1,num(t1max; 2) = n�h = 1, and num(t1max; v) = 0 for all v 6= 2. The abstractstate 1 abstracts these values in variables np and n. Now, in the concretestate suppose process p1 picks a new label. It will pick its new nt1 labelas 3:3 thus changing viewh1 from (0; 0) to (0; 3). This step is representedin Figure 5.18 as the transition from state 1 to state 2 via abstract actionnewlabel(0; 0). Continuing the generation of the concrete counter examplebased on the abstract example leads to the following behavior.After p1 has picked its new label it delays its update. Now process p2picks a new label choosing nt2 = 3:3 as well. Having picked its new label,p2 immediately updates its timestamp t2 = nt2 = 3:3. Now, process p3picks a new label nt3 = 3:4 and then updates its timestamp t3 = nt3 = 3:4.Finally, process p2 picks a new label resulting in nt2 = 3:5. Now, in thissituation variables nt1 = 3:3, nt2 = 3:5, and t3 = 3:4 generates a choicevector violating the concrete total orderedness property. If process p1 hadnot delayed its update, the above situation could not have occurred.Consider the concrete automaton BCTSS changed to run on the times-tamp domain (A � f1; 2g)n�1. Moreover, suppose additional changes thatguarantees that processes pick new nt-labels and update corresponding t-labels atomically. A few changes to the abstract automaton BCTSS�(h) canbe made such that the resulting automaton path simulates the new concreteautomaton. Moreover, the simulation proof can be done almost entirelyby reusing the proof that BCTSS�(h) path simulates BCTSS. We verifyusing SPIN that the new abstract automaton satis�es the abstract total

126 CHAPTER 5. THE BCTSS ALGORITHMorderedness property and thus by property preservation the new concreteautomaton satis�es the concrete total orderedness property. Thus values 1and 2 are not needed in the timestamp domain in the setting where processespick and update new labels in an atomic sequence.

Chapter 6Fischer's Mutual ExclusionAlgorithmThis chapter presents an application of abstraction techniques to prove cor-rectness of a timing-based distributed algorithm. The considered algorithmis Fischer's mutual exclusion algorithm [AL93]. We prove that the parame-terized algorithm satis�es the mutual exclusion property, where the param-eter is the number of processes running the algorithm. Our proof exploitsboth induction, compositionality, and abstraction to reduce the unbound-edness of the input problem. The proof is within the timed frameworkpresented in Chapter 3. The algorithm and the the mutual exclusion spec-i�cation are formalized as timed transition systems and our proof relies onshowing the existence of a timed ready simulation between these systems.The algorithm is speci�ed as a composition of timed automata and a proofrequires reasoning for any number of automata in the composition. Ourproof strategy �rst reduces the required amount of reasoning to involve onlythree automata. The reduction strategy is based on the construction of anabstract network invariant that correctly represents the behaviour of thealgorithm regardless of the number of components in its speci�cation. Thereduced problem is translated into a reachability problem using the testingapproach of Chapter 3 and the resulting problem is directly veri�able usingthe UPPAAL tool.6.1 Background and ContributionsFor any distributed system it is essential that the applied proof methodssupports compositionality. It should be possible to deduce properties of acomposed system based on reasoning about its components. Moreover, anymethod of abstraction must be compositional as well. Meaning that the ab-straction method can be applied independently to components of a system\before" they are composed together, as even de�ning the abstraction rela-127

128 CHAPTER 6. FISCHER'S MUTUAL EXCLUSION ALGORITHMtion directly on the full composed system may very well be intractable. Inthis chapter we show how our timed abstraction framework from Chapter 3supports compositional reasoning by considering a proof of Fischer's mutualexclusion algorithm parameterized in the number of processes.Besides compositionality our proof relies on the use of network invariantsand induction strategies. We construct an abstract model serving as an in-variant for the compositionally de�ned concrete model of the algorithm. Theinvariant is shown to correctly simulate the concrete model independentlyof its number of components. Proving that the abstract model is indeed aninvariant is done by induction on the number of components of the concretemodel. The seperate steps in the inductive proof only requires reasoningabout a small number of processes and therefore model checking can beused to establish the subgoals. We use the testing approach of Chapter 3 toobtain input problems suitable for the UPPAAL model checker.The idea of reasoning about parameterized systems using network in-variants and induction on processes is not a new one. See [WL89b] and[KM89] for some early applications in the untimed setting. The novelty ofour strategy is the adaption to a real-time setting and the use of parame-terized network invariants.Fischer's algorithm has been analyzed for a �nite number of processesby real-time model checking tools [KLL+97] and theorem proving methodshave been applied for the parameterized problem [Luc95]. Methods havealso been considered to automatically verify the parameterized algorithm[AJ98].6.1.1 Chapter OrganizationThis chapter is organized as follows. In section 6.2 we present Fischer's algo-rithm formalized in our timed automaton language. We also introduce themethod used to specify the mutual exclusion property. Section 6.3 presentsthe high-level proof strategy that we use to prove the mutual exclusion prop-erty. In section 6.4 we present the details of the network invariant and weuse it to extract our �nal proof obligations. Finally, in section 6.5 we showhow UPPAAL is used to discharge the obtained proof obligations.6.2 Fischer's AlgorithmIn this section we present Fischer's n-process distributed mutual exclusionalgorithm. The algorithm provides asynchronously executing processes withmutually exclusive access to their critical regions based on local timing in-formation. The algorithm usually runs on a shared memory model with asingle shared variable. We model the algorithm using our notion of timedautomata from Chapter 3 and in this model we have no shared variables.Thus, we use a set of local variables, one per process, to model the single

6.2. FISCHER'S ALGORITHM 129shared variable of the algorithm. Each local variable maintains a copy ofthe shared variable. Whenever some process wants to update the sharedvariable, it updates its local copy and synchronizes with all other processes,initiating an identical setting of the local variables in these processes. Thesynchronization will be atomic, guaranteeing consistency among the localcopies of the shared variable. A process wanting to read the shared variablesimply reads its local copy.We assume that processes are indexed by the natural numbers N. Eachprocess i is modelled by a timed automaton Pi as shown in Figure 6.1. Au-tomaton Pi has a local variable turni 2 N [f0g, initially having the value0. This variable models the shared variable as mentioned above. Further-more, Pi has a clock variable xi used to guard access to its critical region.Automaton Pi has actions testi!, seti!, enteri!, exiti!, and faili!, and for eachj 6= i actions exitj? and setj?. Actions testi!, seti!, enteri!, exiti!, and faili!constitute the set of actions that Pi performs in its protocol for enteringand leaving its critical region. We say that these actions are controlled byPi. Actions exitj? and setj? are used by process Pi to observe that someother process Pj sets its local variable turnj . This observation initiates anidentical setting in Pi of variable turni. Actions exitj? and setj? are saidto be observed by Pi. For any action testi!, seti!, enteri!, exiti!, and faili!,we assume a unique complementary action testi?, seti?, enteri?, exiti?, andfaili?, respectively. The behaviour of Pi is as follows. First note that Piis always ready to observe actions setj? and exitj? for any j 6= i. That is,these actions are enabled in any state of Pi. An action setj? sets turni to jand an action exitj? sets turni to 0. Let j denote the set of process indicesfj j j � 1^ j 6= ig. In Figure 6.1 an edge labelled (setj?; turni := j) denotesa set of edges, one for each j 2 j. Any edge in this set is labelled uniquelyby a label (setj?; turni := j) for some j 2 j. Analogously for edges labelled(exitj?; turni := 0). We will use this notational simpli�cation in followingautomaton descriptions as well.Process Pi starts in location l0 with all variables set to 0. In l0, Pi teststhe turni variable. If turni = 0, Pi resets clock xi and enters location l1.In this location, if Pi delays no longer than one time unit it can set itsturni variable (and hence all turn variables) to its own index i and thenenter location l2. Here Pi will wait at least two time units before testingthe condition turni = i, which if it holds will grant Pi access to its criticalregion l3. Note, that we consider the upper and lower bounds on clock xito be constants 1 and 2, respectively. Fischer's algorithm does not demandthese exact bounds in order to work correctly. It works for any upper bounda and lower bound b satisfying that a < b. We consider the exact bounds1 and 2 in order to simplify matters. Our focus is an abstraction strategythat reduces the unboundedness of the parameterized algorithm where theparameter is the number of processes running the algorithm rather than theclock bounds. Mutual exclusion will be insured since Pi waits longer in l2

130 CHAPTER 6. FISCHER'S MUTUAL EXCLUSION ALGORITHM

exitj?turni := 0 setj?turni := j
exitj?turni := 0 setj?turni := j

exitj?turni := 0 setj?turni := j
enteri!turni = ixi � 2
turni = 0testi!xi := 0

turni 6= ifaili!exiti!turni := 0

exitj?turni := 0 setj?turni := j
xi := 0seti!turni := ixi � 1

l0
l1
l2
l3Figure 6.1: Automaton Pi, j = fj j j � 1 ^ j 6= igbefore testing turni than any process will delay in l1 before setting the turnvariables. Whenever Pi is in location l2 and it sees the turni variable havinga value di�erent from i, it will not be able to enter l3 and thus it returnsto node l0. Finally, upon leaving l3 process Pi resets the turn variables andenter the initial node l0.To describe the parallel composition of automata we de�ne a synchro-nization function f as follows.De�nition 6.1 Let f be a synchronization function such that for all i 2 N,{ f(testi!;0) = f(0; testi!) = testi!{ f(faili!;0) = f(0; faili!) = faili!{ f(enteri!;0) = f(0; enteri!) = enteri!{ f(seti!; seti?) = f(seti?; seti!) = seti!{ f(seti?; seti?) = seti?{ f(exiti!; exiti?) = f(exiti?; exiti!) = exiti!{ f(exiti?; exiti?) = exiti?and f takes value ? for all other inputs.

6.2. FISCHER'S ALGORITHM 131Proposition 6.1 f is associative and commutative.For any n 2 N, we now de�ne the composition Fn of processes P1; : : : ; Pnas follows.De�nition 6.2 For any n 2N de�ne Fn as, Fn = P1
f � � �
f Pn.Note that
f is associative and commutative since by Proposition 6.1 f isso. Consider any processes Pi and Pj in the composition Fn. Then Pi canperform actions seti! and exiti! only if process Pj synchronizes on actionsseti? and exiti?, respectively. This follows from the fact that f(seti!; seti?)= f(seti?; seti!) = seti!, and f(seti!;0) = f(0; seti!) = ?. Analogously for ac-tion exiti!. We thus have atomicity of actions setting the local turn variables,ensuring consistency among these local copies. Furthermore, for process Piactions setj? and exitj? are always enabled, ensuring that Pi is always readyto observe an update of the turn variables by Pj .We have de�ned Fn as an open system always ready to observe actionsfrom possible processes in the environment. More precisely, for any m > nthe actions setm? and exitm? are enabled in any state of Fn. When provingmutual exclusion we are interested in Fn as a closed system without anyprocesses in its environment. Therefore, we de�ne a closed version of Fn,where the above actions are no longer enabled. We assume a special automa-ton nil consisting of a single location (the initial location), a single clock,no data variables, and no edges. Thus, the only behaviours of nil are delaytransitions. We de�ne a synchronization function �n as follows: �n(a;0) = afor all a 2 ftesti!; seti!; enteri!; faili!; exiti!g, i � n, and �n takes value ? forall other inputs. Now, we de�ne the closed version of Fn, denoted Fn, asfollows.De�nition 6.3 De�ne Fn as, Fn = Fn
�n nil.6.2.1 The Mutual Exclusion PropertyOur goal is to prove the mutual exclusion property for Fn for all n � 1. Forany n, the property states that no reachable state of Fn exists in which morethan one process (in Fn) is in its critical region. Formally, we will state theproperty using an abstract speci�cation automaton. For any n � 1, we willde�ne a speci�cation Mn that will specify the mutual exclusion conditionfor Fn. Analogous to Fn, we will de�neMn as the closed version of an openspeci�cationMn. We postpone the precise de�nition ofMn until section 6.4,but assuming its existence we de�ne as follows.De�nition 6.4 De�ne Mn as, Mn =Mn
�n nil.Our goal is now to prove the following,Fn �Mn for all n � 1 (6.1)

132 CHAPTER 6. FISCHER'S MUTUAL EXCLUSION ALGORITHMThat is, for any n � 1, there exists a timed ready simulation from Fn toMn parameterized with the identity action relation id. The speci�cationMn will be stated over the same actions as those of Fn. Therefore, the re-quirement of the identity action relation. By de�nition, proving 6.1 amountsto showing that Fn
�n nil � Mn
�n nil, for any n � 1. Using the com-positionality principle, stated as Theorem 3.2 of Chapter 3, it will su�ceto show separately that Fn � Mn and nil � nil. The latter is trivial sincethe � relation is re
exive. The compositionality theorem imposes a fewtechnical requirements on processes. It requiresMn and nil to be � -free andthe identity action relation id must be closed with respect to the synchro-nization function �n. Neither Mn nor nil will have any � -transitions, andby de�nition id is closed with respect to �n. Thus, proving 6.1 reduces toproving, Fn �Mn for all n � 1 (6.2)The proof of 6.2 will be the topic of the rest of this chapter. Recall, thatwe still have not precisely de�ned the speci�cation Mn. We merely assumethat it exists and that it correctly speci�es the mutual exclusion property.6.3 The Proof StrategyIn this section we come a few steps closer to the precise de�nition of the spec-i�cationMn. We will de�neMn as a composition of a network invariant anda well-formedness speci�cation, and we will provide the overall proof strat-egy for showing that this composition timed ready simulates process Fn asrequired in equation 6.2. The precise de�nition of the network invariant andthe well-formedness speci�cation will be postponed until the next section.For any n � 1, we will assume the existence of timed automata In andWFn denoted as the n'th network invariant and the n'th well-formednessspeci�cation, respectively. Based on these automata we de�ne the mutualexclusion speci�cation Mn as the synchronous composition of In and WFn.De�nition 6.5 De�ne Mn as Mn = In
� WFnNow, to prove equation 6.2 we can once again apply the compositionalityprinciple. To prove Fn �Mn it su�ces to prove separately,Fn � In for all n � 1 (6.3)and Fn �WFn for all n � 1 (6.4)The reasoning is valid due to the following argument. If 6.3 and 6.4 holdthen by Theorem 3.2 (Compositionality) we have for any n � 1, Fn
� Fn �

6.4. THE ABSTRACTION 133
l0
l1exiti!

a 2 acts(Pi)� fenteri!; exiti!g
a 2 acts(Pi)� fenteri!; exiti!g

enteri!
Figure 6.2: Automaton WiIn
� WFn. By Theorem 3.1 (Idempotency of Synchronous Composition)we have that Fn � Fn
� Fn. Thus, from Theorem 3.3 (Transitivity) wecan conclude that Fn � In
� WFn i.e. Fn �Mn. The additional technicalrequirements of the involved theorems are all satis�ed since none of ourprocesses include neither � nor urgent actions.We have now reduced our overall proof goal to the two subgoals of equa-tions 6.3 and 6.4. In the next section we will formally de�ne the networkinvariant In and the well-formedness speci�cationWFn and we will considerthe proofs of equations 6.3 and 6.4.6.4 The AbstractionIn this section we formally de�ne the components In andWFn of the mutualexclusion speci�cation Mn and we prove that these components satisfy theequations 6.3 and 6.4 from the previous section. The proof of 6.4 will beby a simple application of the compositionality principle. The proof of 6.3will be using a combination of induction, compositionality, and abstraction.This proof will constitute the main part of the rest of this chapter.6.4.1 The Well-Formedness Speci�cationThe purpose of the speci�cationWFn is to specify a certain well-formednessrequirement on any process Pi in Fn. The requirement simply says thatany behaviour of Fn restricted to the actions enteri! and exiti! of Pi is analternating sequence of these two actions beginning with enteri!.For any i � 1 we de�ne an automaton Wi as shown in Figure 6.2. Itis obvious that any behaviour of Wi restricted to actions enteri! and exiti!is an alternating sequence of these two actions beginning with enteri!. Wenow de�ne the well-formedness speci�cation as follows.

134 CHAPTER 6. FISCHER'S MUTUAL EXCLUSION ALGORITHMDe�nition 6.6 For any i � 1, de�ne WFi as WFi =W1
f � � �
f Wi.The speci�cation WFn provides the required well-formedness speci�ca-tion for any process Pi in Fn as follows. First observe that actions enteri!and exiti! are not in acts(Wj) for any Wj such that j 6= i. Moreover, no suchWj can prevent the execution of any action in Wi. From the de�nition of f ,the only action of Wi that needs synchronization is action exiti!. However,the complementary action exiti? is always enabled in any Wj, j 6= i.Proving that for all n � 1, Fn � WFn (6.4) is simple. Recall thatFn = P1
f � � �
fPn andWFn =W1
f � � �
fWn. Thus, due to Theorem 3.2(Compositionality) we simply need to show that for every i � 1, Pi � Wi.But this is obvious directly by inspection of Figure 6.1 and Figure 6.2.6.4.2 The Network InvariantThe overall purpose of the network invariant In is to serve as a weak mutualexclusion speci�cation for the set of processes in Fn. The idea is that thecomposition, Mn, of this weak speci�cation, In, and the well-formednessspeci�cation, WFn, will serve as the correct mutual exclusion speci�cation.We may say that WFn is used to strengthen In in order to obtain thecorrect speci�cation. In will specify, that for any indices i; j; k � n, no twoenteri!, enterj! actions can occur without an intervening exitk! action. Thisspeci�cation is weak in the sense that it does not require that k = i. Westrengthen In to obtain the stronger speci�cation requiring that k = i bycomposing it synchronously with the well-formedness speci�cation WFn.We want to prove that In satis�es equation 6.3, that is Fn � In for alln � 1. To prove this we will use induction on n. The strategy will be asfollows: Assume that, Fm � Im for all 1 � m < n (6.5)Prove that, F1 � I1 and In�1
f Pn � In when n > 1 (6.6)Then, Fn � In for all n � 1 and equation 6.3 holds. The soundness of thisstrategy is established as follows. Assume that 6.6 has been proved underthe assumption of 6.5. We will see how this can be used to conclude thatFn � In for all n � 1. The case n = 1 is trivial. Suppose n > 1. Byde�nition we know that Fn = Fn�1
f Pn. By induction hypothesis 6.5we know that Fn�1 � In�1 and thus by Theorem 3.2 (Compositionality),Fn � In�1
f Pn. From 6.6 we have that In�1
f Pn � In and thus byTheorem 3.3 we can conclude that Fn � In.Using the term network invariant for In is motivated by the fact thatthe automaton satis�es equation 6.6. Intuitively, In serves as an abstractrepresentation of all the processes in Fn.

6.4. THE ABSTRACTION 135
m0
m1yi � 2

exitk?turni := 0 setk?turni := kxi � 1setj !turni := jyi := 0turni = 0testj !xi := 0
1 � turni � ienterj !

failj !
exitj !turni := 0 exitk?turni := 0

failj ! setk?turni := k

exitj !turni := 0

Figure 6.3: Invariant Ii, j = fj j 1 � j � ig, k = fk j k > igWe now present the automaton Ii for any i � 1. The automaton isshown in Figure 6.3. It has actions testj !, setj !, enterj!, exitj !, and failj ! forall 1 � j � i, and setk?, exitk? for any k > i. This is exactly the actioninterface of Fi. Automaton Ii has a single data variable turni and two clockvariables xi and yi. Variable turni ranges over the naturals including 0, andit is used to represent the (unique) value held by the concrete set of turnvariables in Fi. Clock variable xi will represent the local clock value of theprocess in Fi having performed the most recent test! action, and the clockyi will represent the clock value of the process in Fi having performed themost recent set! action.It is obvious directly from Figure 6.3 that automaton In speci�es therequired weak mutual exclusion property for any n � 1. Recall that thisproperty states that for all i; j; k � n, no two enteri!, enterj! can occur with-out an intervening exitk! action. If we let enter! denote any enteri! action,i � n and exit! denote any exiti! action, i � n, then the above propertysimply says that no two enter! actions can occur without an interveningexit! action. We might say that the property is independent of the indicesof actions. If the only purpose of automaton In was to specify the aboveproperty, a much simpler implementation than the one of Figure 6.3 is pos-sible. However, our inductive strategy for proving that Fn � In imposesrestrictions on In. In particular, we must be able to prove the conditions ofequation 6.6 which implies that In cannot be too abstract.In the following we make an attempt to create some intuition for au-tomaton Ii as it is de�ned in Figure 6.3 for any i � 1. We examine howIi is intended to represent the behavior of processes in Fi. In the initial

136 CHAPTER 6. FISCHER'S MUTUAL EXCLUSION ALGORITHMstate of Fi, as long as the turn variables have the value 0, any process in Fican perform a test! action, and thereby reset its local clock to 0 and enterlocation l1. In Ii such an action is represented by a test! action from m0to itself. This action resets clock xi, thereby letting xi represent the localclock of the concrete process having performed the most recent test! action.In Fi, any process being in location l1 may perform a set! action no laterthan one time unit from when the process entered l1. This also implies, thatany set! action may be performed no later than one time unit from whenthe most recent process entered l1. Since the abstract clock xi preserves theclock value of the most recent process to enter l1, we have that xi � 1 is asafe weakening of the guard for any set! action in Fi. Thus, xi � 1 serve asguard in Ii for the abstract set! action from m0 to itself. This abstractionmay of course allow Ii to perform a setj ! action, for some j � i, much laterthan one time unit from the corresponding testj!. However, in Ii all we wantto preserve is the fact that any set! action occurs no later than one time unitfrom the most recent test! action. Any process in Fi being in location l2 canenter the critical region l3 provided it has spent at least two time units in l2and provided the turn variable holds the index of the process. Due to theoverwriting of the turn variables on set! actions, a process entering l3 will bethe most recent process having performed a set! action. In Ii we preserve, inyi, the local clock of the concrete process having performed the most recentset! action. Thus, in Ii an enter! action is guarded by the condition yi � 2combined with the condition that the turn variable must have some valueless than or equal to i.In the remainder of this chapter we present our proof that Fn � Infor all n � 1. We use our inductive proof strategy presented in 6.6 and6.7. Using the inductive strategy simpli�es our proof from a task involvingan unbounded number of automata to a task involving only the automataexplicitly mentioned in proof obligation 6.7. However, all the automata of6.6 contains an unbounded number of actions. In the following we constructfurther abstractions of the automata in 6.6 in order to reduce the numberof actions. The resulting automata will allow for an automatic veri�cationof proof obligation 6.7.Further AbstractionIn the remainder of this section n will denote the induction constant from 6.7.We will use the technique of Section 3.3 to construct �nite state abstractionsfor the automata in 6.7.Let � = f0; 1; 2; 3g and let h : N 7! � be such that:h(x) = 8>><>>: 0 if x = 01 if 1 � x < n2 if x = n3 if x > n

6.4. THE ABSTRACTION 137It can easily be seen that (�; h) is an abstract data domain for In�1, In,and Pn (If n = 1, In�1 is unde�ned). That is, h preserves, according tothe de�nitions of Section 3.3, the guards and the reset operations of each ofthese automata.Assume that actions consist of a name part and an index part, andthat there exists functions index() and name() extracting the correspond-ing information in the obvious way. For example name(testi!) = test! andindex(testi!) = i. Let R be the relation from A [f0g to A [f0g such that(0;0) 2 R and for any actions a; b 6= 0, (a; b) 2 R i� name(a) = name(b)and h(index(a)) = index(b). We now de�ne sets of abstract actions. Wede�ne sets �(Ii) and �(Pi) of abstract actions as follows: �(Ii) = fb j 9a 2acts(Ii): (a; b) 2 Rg and �(Pi) = fb j 9a 2 acts(Pi): (a; b) 2 Rg. ThenR is an action relation total on acts(Ii) and �(Ii) and total on acts(Pi)and �(Pi). This implies that (�(Ii); R) and (�(Pi); R) are abstract actiondomains for Ii and Pi, respectively. Let S1 = ((�; h); (�(In�1); R)), S2 =((�; h); (�(In); R)), and S3 = ((�; h); (�(Pn); R)). Then S1, S2, and S3 areabstract domains for In�1, In, and Pn, respectively. Automata (In�1)S1 ,(In)S2 , and (Pn)S3 will be our abstractions of In�1, In, and Pn.In the case n = 1, (In)S2 will be identical to I2 with indices of actionsranging over the set f2; 3g. Also, (Pn)S3 will be identical to P2 with indicesof actions ranging over f2; 3g as well. In the case n > 1, (In�1)S1 and (In)S2will be identical to I1 and I2, respectively, with indices ranging over theset f1; 2; 3g. Analogously (Pn)S3 will be identical to P2 with indices overf1; 2; 3g. In the following we assume that I1, I2, and P2 have index sets asdescribed above.It can easily be observed that each of the abstract automata are closedunder the action relation R. Thus, from Theorem 3.6(3.7) we have thatPn �R P2 (P2 �R�1 Pn) and In�1 �R I1 (I1 �R�1 In�1). By Theorem 3.2(Compositionality), and since R (R�1) is closed with respect to f , we havethat Pn
f In�1 �R P2
f I1 (P2
f I1 �R�1 Pn
f In�1). We further have,from Theorem 3.7(3.6) that I2 �R�1 In (In �R I2). Thus by Theorem 3.5we have as follows: P2 � I2 i� Pn � In; for n = 1 (6.7)and I1
f P2 � I2 i� In�1
f Pn � In; for n > 1 (6.8)We can thus conclude that our proof obligations stated in equation 6.6can be replaced by the lefthand sides of equations 6.7 and 6.8. All theautomata of the new proof obligations have �nite sets of actions. We cannow use the testing approach presented in Chapter 3 to verify the lefthand

138 CHAPTER 6. FISCHER'S MUTUAL EXCLUSION ALGORITHM
yi � 21 � turni � ienterj?

exitj?turni := 0xi � 1turni := jyi := 0turni = 0testj?xi := 0 failj? setk!turni := kexitk!turni := 0
exitk!turni := 0 exitj?turni := 0

setk!turni := k

setj? m0
m1

turni 6= 0testj?
testj?

xi > 1setj? :(yi � 2^1 � turni � i)enterj?
setj? enterj?failj?Figure 6.4: Test Automaton TIi , j = fj j 1 � j � ig, k = fk j k > igsides of equations 6.7 and 6.8. This approach translates the checks for timedready simulations into reachability questions directly analyzable using theUPPAAL tool. We consider the UPPAAL veri�cation in the next section.6.5 The UPPAAL Veri�cationWe �rst consider how the lefthand sides of equations 6.7 and 6.8 are trans-lated into reachability problems. For this we use the testing approach pre-sented in Chapter 3.Since automaton Ii is � -free and deterministic, for any i, we have fromTheorem 3.9 that, P2 passes the I2-test i� P2 � I2 (6.9)and I1
f P2 passes the I2-test i� I1
f P2 � I2 (6.10)We thus construct the test automaton TI2 for I2 such that in case n = 1we use the set f2; 3g as index domain and in case n > 1 we use the setf1; 2; 3g. We assume that any action a!(?) of I2 has a unique complemen-tary action a?(!). Let s be the synchronization function de�ned as followsfor any i 2 f1; 2g: s(testi!; testi?) = s(seti!; seti?) = s(enteri!; enteri?) =s(set3?; set3!) = � , and s takes value ? for all other inputs. The test au-tomaton TIi is shown in Figure 6.4. We will verify the lefthand sides of

6.5. THE UPPAAL VERIFICATION 139equations 6.9 and 6.10 using the automatic veri�cation tool UPPAAL whichallows for reachability analysis upon networks of timed automata. The au-tomata of 6.9 and 6.10 are, with a few modi�cations, typed directly into thegraphical input language provided by the UPPAAL tool. The input for UP-PAAL for 6.9 is shown in Figure 6.5 and for 6.10 in Figure 6.6. For simplicitywe have denoted I1 by invariant, P2 by proc, and TI2 by tester.The timed automata input language for UPPAAL only allows for bi-nary synchronization between processes in a composition (network). Sinceall three automata in 6.10 synchronize on actions set and exit, we have tosomehow implement this using only binary synchronization. Fortunately,the input language for UPPAAL allows us to do this using a special form oflocation called committed locations. Consider for example the synchroniza-tion consisting of automaton I1 performing a set1! action and automata P2and TI2 both performing a set1?. In the UPPAAL model, see Figure 6.6,this is implemented as follows. Automaton invariant synchronizes in turnwith automata proc and automata tester. First, invariant performs aset12! action synchronizing with action set12? of proc. Then invariantperforms a set13! action synchronizing with action set13? of tester.Atomicity of the synchronization sequence is ensured by labelling the inter-mediate node i2 of automaton invariant with a pre�x c:, marking thenode as committed. This guarantees that once invariant enters locationi2, the next transition taken in the complete system will be from this lo-cation. More precisely, no actions, including time-passage actions, can betaken until invariant has left the committed location. Using the same ap-proach, we implement synchronizations on the remaining set and exit actionsas well. No further modi�cations are made upon translation to UPPAALmodel.The reject nodes of test automaton TI2 correspond to locations (nodes)t1 and t3 in tester. Thus, we want to verify that none of these locationsare reachable in the composition of invariant, proc, and tester. Statedas a property in the logical property language of UPPAAL, this becomes:A[] not (tester.t1 or tester.t3)We have veri�ed the above property successfully in UPPAAL for bothinputs (cases n = 1 and n > 1). The veri�cation taking less than 2 seconds.We can therefore conclude that In is an invariant for Fn for any n.

140 CHAPTER 6. FISCHER'S MUTUAL EXCLUSION ALGORITHM

exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!
turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0

x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1
set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!
turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2
x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0

exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!
turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0

set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!
turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3

exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!
turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0

set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!
turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3

y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2
turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1
turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2
enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?

turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3
enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?

turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0
enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?

y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2
enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?

x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1
set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?

x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2
turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2
enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!

turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0
test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!
x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0

turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2
fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!

turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2
fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!

set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?
turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3

exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?
turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0

set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?
turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3

exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?
turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0

set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?
turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3

exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?
turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0

set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?
turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3

exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?
turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0

turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0
test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?
x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0

fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?
x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1
set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?
turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2
y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0

turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2
test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?

turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3
test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?

test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?

set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?

enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?

exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?
turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0

exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?
turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0

p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0

p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1

p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2

p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3

t0t0t0t0t0t0t0t0t0t0t0t0t0t0t0t0t0 t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1

t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2

testertestertestertestertestertestertestertestertestertestertestertestertestertestertestertestertester

procprocprocprocprocprocprocprocprocprocprocprocprocprocprocprocproc

configconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfig

//////////////////////////////////
// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer
//////////////////////////////////
clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;clock x2, x3, y3;
int turn2, turn3;int turn2, turn3;int turn2, turn3;int turn2, turn3;int turn2, turn3;int turn2, turn3;int turn2, turn3;int turn2, turn3;int turn2, turn3;int turn2, turn3;int turn2, turn3;int turn2, turn3;int turn2, turn3;int turn2, turn3;int turn2, turn3;int turn2, turn3;int turn2, turn3;
chan test2, test3, chan test2, test3, chan test2, test3, chan test2, test3, chan test2, test3, chan test2, test3, chan test2, test3, chan test2, test3, chan test2, test3, chan test2, test3, chan test2, test3, chan test2, test3, chan test2, test3, chan test2, test3, chan test2, test3, chan test2, test3, chan test2, test3,
 set23, set32, set23, set32, set23, set32, set23, set32, set23, set32, set23, set32, set23, set32, set23, set32, set23, set32, set23, set32, set23, set32, set23, set32, set23, set32, set23, set32, set23, set32, set23, set32, set23, set32,
 fail2, fail3, fail2, fail3, fail2, fail3, fail2, fail3, fail2, fail3, fail2, fail3, fail2, fail3, fail2, fail3, fail2, fail3, fail2, fail3, fail2, fail3, fail2, fail3, fail2, fail3, fail2, fail3, fail2, fail3, fail2, fail3, fail2, fail3,
 enter2, enter3, enter2, enter3, enter2, enter3, enter2, enter3, enter2, enter3, enter2, enter3, enter2, enter3, enter2, enter3, enter2, enter3, enter2, enter3, enter2, enter3, enter2, enter3, enter2, enter3, enter2, enter3, enter2, enter3, enter2, enter3, enter2, enter3,
 exit23, exit32; exit23, exit32; exit23, exit32; exit23, exit32; exit23, exit32; exit23, exit32; exit23, exit32; exit23, exit32; exit23, exit32; exit23, exit32; exit23, exit32; exit23, exit32; exit23, exit32; exit23, exit32; exit23, exit32; exit23, exit32; exit23, exit32;
system proc, tester;system proc, tester;system proc, tester;system proc, tester;system proc, tester;system proc, tester;system proc, tester;system proc, tester;system proc, tester;system proc, tester;system proc, tester;system proc, tester;system proc, tester;system proc, tester;system proc, tester;system proc, tester;system proc, tester;Figure 6.5: Automata P2 and TI2 in case n = 1

6.5. THE UPPAAL VERIFICATION 141

exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?
turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0

exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?
turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0

exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!

exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!
turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0

exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?exit23?
turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0

exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?exit13?
turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0

exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!

exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!
turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0

set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!

set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!
turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3

fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2? fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1? enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?
enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?

set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?
set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?

test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?
test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?

turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3
enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?

turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0
enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?

x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1
set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?

turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3
test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?

turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2
test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?

turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1
test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?

turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3
test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?

turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2turn3==2
test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?

turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1turn3==1
test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?

x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1
set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?
turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2turn3:=2
y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0

x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1x3<=1
set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?set13?
turn3:=1turn3:=1turn3:=1turn3:=1turn3:=1turn3:=1turn3:=1turn3:=1turn3:=1turn3:=1turn3:=1turn3:=1turn3:=1turn3:=1turn3:=1turn3:=1turn3:=1
y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0y3:=0fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?fail2?

fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?fail1?
turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0
test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?test2?
x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0

turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0
test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?test1?
x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0x3:=0

set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!set32!
set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!set31!
turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3turn3:=3

exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!exit32!
exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!exit31!
turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0turn3:=0

exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?
turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0

set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?
turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1

exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?
turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0

set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?
turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3

exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?
turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0

set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?
turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1

exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?
turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0

set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?
turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3

exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?
turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0

set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?
turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1

exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?
turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0

set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?
turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3

exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?exit32?
turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0

set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?set32?
turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3turn2:=3

exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!exit23!

exit21!exit21!exit21!exit21!exit21!exit21!exit21!exit21!exit21!exit21!exit21!exit21!exit21!exit21!exit21!exit21!exit21!
turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0

set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!set23!

x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1x2<=1
set21!set21!set21!set21!set21!set21!set21!set21!set21!set21!set21!set21!set21!set21!set21!set21!set21!
turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2turn2:=2
x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0

exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?
turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0

exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?
turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0

set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?
turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3

set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?
turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2

turn1==0turn1==0turn1==0turn1==0turn1==0turn1==0turn1==0turn1==0turn1==0turn1==0turn1==0turn1==0turn1==0turn1==0turn1==0turn1==0turn1==0
test1!test1!test1!test1!test1!test1!test1!test1!test1!test1!test1!test1!test1!test1!test1!test1!test1!
x1:=0x1:=0x1:=0x1:=0x1:=0x1:=0x1:=0x1:=0x1:=0x1:=0x1:=0x1:=0x1:=0x1:=0x1:=0x1:=0x1:=0

exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?exit12?
turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0turn2:=0 set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?set12?

turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1turn2:=1

set13!set13!set13!set13!set13!set13!set13!set13!set13!set13!set13!set13!set13!set13!set13!set13!set13!

x1<=1x1<=1x1<=1x1<=1x1<=1x1<=1x1<=1x1<=1x1<=1x1<=1x1<=1x1<=1x1<=1x1<=1x1<=1x1<=1x1<=1
set12!set12!set12!set12!set12!set12!set12!set12!set12!set12!set12!set12!set12!set12!set12!set12!set12!
turn1:=1turn1:=1turn1:=1turn1:=1turn1:=1turn1:=1turn1:=1turn1:=1turn1:=1turn1:=1turn1:=1turn1:=1turn1:=1turn1:=1turn1:=1turn1:=1turn1:=1
y1:=0y1:=0y1:=0y1:=0y1:=0y1:=0y1:=0y1:=0y1:=0y1:=0y1:=0y1:=0y1:=0y1:=0y1:=0y1:=0y1:=0

y1>=2y1>=2y1>=2y1>=2y1>=2y1>=2y1>=2y1>=2y1>=2y1>=2y1>=2y1>=2y1>=2y1>=2y1>=2y1>=2y1>=2
turn1==1turn1==1turn1==1turn1==1turn1==1turn1==1turn1==1turn1==1turn1==1turn1==1turn1==1turn1==1turn1==1turn1==1turn1==1turn1==1turn1==1
enter1!enter1!enter1!enter1!enter1!enter1!enter1!enter1!enter1!enter1!enter1!enter1!enter1!enter1!enter1!enter1!enter1!

fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!

fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!fail1!

turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2turn2<2
fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!

turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2turn2>2
fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!fail2!

turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0turn2==0
test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!test2!
x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0x2:=0

x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2x2>=2
turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2turn2==2
enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!enter2!

exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!exit12!
turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0

exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!exit13!

exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?exit21?
turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0

exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?exit31?
turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0turn1:=0

set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?set21?
turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2turn1:=2

set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?set31?
turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3turn1:=3

x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1x3>1
set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?set23?

y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2
enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?

y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2y3<2
enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?

turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0turn3==0
enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?

turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3turn3==3
enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?

y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2
turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1
turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2
enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?enter2?

y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2y3>=2
turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1turn3>=1
turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2turn3<=2
enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?enter1?

c:i4c:i4c:i4c:i4c:i4c:i4c:i4c:i4c:i4c:i4c:i4c:i4c:i4c:i4c:i4c:i4c:i4

c:t7c:t7c:t7c:t7c:t7c:t7c:t7c:t7c:t7c:t7c:t7c:t7c:t7c:t7c:t7c:t7c:t7

c:t6c:t6c:t6c:t6c:t6c:t6c:t6c:t6c:t6c:t6c:t6c:t6c:t6c:t6c:t6c:t6c:t6

c:t5c:t5c:t5c:t5c:t5c:t5c:t5c:t5c:t5c:t5c:t5c:t5c:t5c:t5c:t5c:t5c:t5

t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2 t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3

t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1

c:t4c:t4c:t4c:t4c:t4c:t4c:t4c:t4c:t4c:t4c:t4c:t4c:t4c:t4c:t4c:t4c:t4

t0t0t0t0t0t0t0t0t0t0t0t0t0t0t0t0t0

c:p5c:p5c:p5c:p5c:p5c:p5c:p5c:p5c:p5c:p5c:p5c:p5c:p5c:p5c:p5c:p5c:p5

c:i2c:i2c:i2c:i2c:i2c:i2c:i2c:i2c:i2c:i2c:i2c:i2c:i2c:i2c:i2c:i2c:i2

i0i0i0i0i0i0i0i0i0i0i0i0i0i0i0i0i0

i1i1i1i1i1i1i1i1i1i1i1i1i1i1i1i1i1

p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3

p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2

p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1

p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0

c:i3c:i3c:i3c:i3c:i3c:i3c:i3c:i3c:i3c:i3c:i3c:i3c:i3c:i3c:i3c:i3c:i3 c:p4c:p4c:p4c:p4c:p4c:p4c:p4c:p4c:p4c:p4c:p4c:p4c:p4c:p4c:p4c:p4c:p4

testertestertestertestertestertestertestertestertestertestertestertestertestertestertestertestertester

procprocprocprocprocprocprocprocprocprocprocprocprocprocprocprocproc

configconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfig

//////////////////////////////////
// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer// fischer
//////////////////////////////////
clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;clock x1, y1, x2, x3, y3;
int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;int turn1, turn2, turn3;
chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3, chan test1, test2, test3,
 set12, set13, set12, set13, set12, set13, set12, set13, set12, set13, set12, set13, set12, set13, set12, set13, set12, set13, set12, set13, set12, set13, set12, set13, set12, set13, set12, set13, set12, set13, set12, set13, set12, set13,
 set21, set23, set21, set23, set21, set23, set21, set23, set21, set23, set21, set23, set21, set23, set21, set23, set21, set23, set21, set23, set21, set23, set21, set23, set21, set23, set21, set23, set21, set23, set21, set23, set21, set23,
 set31, set32, set31, set32, set31, set32, set31, set32, set31, set32, set31, set32, set31, set32, set31, set32, set31, set32, set31, set32, set31, set32, set31, set32, set31, set32, set31, set32, set31, set32, set31, set32, set31, set32,
 fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3, fail1, fail2, fail3,
 enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3, enter1, enter2, enter3,
 exit12, exit13, exit12, exit13, exit12, exit13, exit12, exit13, exit12, exit13, exit12, exit13, exit12, exit13, exit12, exit13, exit12, exit13, exit12, exit13, exit12, exit13, exit12, exit13, exit12, exit13, exit12, exit13, exit12, exit13, exit12, exit13, exit12, exit13,
 exit21, exit23, exit21, exit23, exit21, exit23, exit21, exit23, exit21, exit23, exit21, exit23, exit21, exit23, exit21, exit23, exit21, exit23, exit21, exit23, exit21, exit23, exit21, exit23, exit21, exit23, exit21, exit23, exit21, exit23, exit21, exit23, exit21, exit23,
 exit31, exit32; exit31, exit32; exit31, exit32; exit31, exit32; exit31, exit32; exit31, exit32; exit31, exit32; exit31, exit32; exit31, exit32; exit31, exit32; exit31, exit32; exit31, exit32; exit31, exit32; exit31, exit32; exit31, exit32; exit31, exit32; exit31, exit32;
system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;system invariant, proc, tester;

invariantinvariantinvariantinvariantinvariantinvariantinvariantinvariantinvariantinvariantinvariantinvariantinvariantinvariantinvariantinvariantinvariant

Figure 6.6: Automata I1, P2 and TI2 in case n > 1

142 CHAPTER 6. FISCHER'S MUTUAL EXCLUSION ALGORITHM

Chapter 7Conclusion7.1 Thesis SummaryAbstraction Frameworks. In this thesis we have provided weakly pre-serving abstraction frameworks for untimed as well as timed systems. Theuntimed framework is based on I/O automata and it extends the standardI/O automata theory with sound conditions for property preservation fromone automaton (the abstract one) to another (the concrete one). We provideconditions for both action-based abstractions and state-based abstractions.The action setting is based on properties expressed as sequences of actions(trace properties) and the state setting is based on properties expressed assequences of states (path properties). For both settings we provide preser-vation conditions for safety as well as liveness properties. Our preservationconditions are based on variants of the forward simulation preorder tailoredfor abstractions based on actions and states, respectively, and the condi-tions therefore �ts well into the existing I/O automata theory. To providetool support for doing abstraction-based veri�cation in the I/O automatonsetting we have formalized parts of our abstraction theory in the Larch toolset and we have examined a rudimentary scheme for translating �nite-stateI/O automata and trace/path properties into the SPIN model checker.In the timed setting we have provided an abstraction framework for real-time systems described as timed automata. Our framework provides a linkto the UPPAAL real-time model checker. The veri�cation engine of UP-PAAL is based on e�cient techniques for abstracting (strongly) the densetime domain of real-time systems into a �nite representation. These tech-niques rely on certain restrictions imposed by the timed automaton modelon the allowed clock conditions in system descriptions. Thus, UPPAAL cane�ciently abstract the timing component of properly described real-time sys-tems. However, it does not allow systems with unbounded control or datainformation such as for example parameterized systems consisting of a num-ber of composed processes, where the value of the number is the parameter,143

144 CHAPTER 7. CONCLUSIONor systems with unbounded number of actions or unbounded data domains.We provide conditions for sound abstractions of such systems. We rely onsystem requirements expressed as abstract automata and a satisfaction re-lation in the form of a timed ready simulation relation. Our preservationconditions are based on a variant of this timed ready simulation as well.We show that this variant enjoys properties such as preservation under sys-tem composition thus supporting hierarchical veri�cation. The UPPAALtool is based on verifying simple reachability properties and thus it does notdirectly implement methods for checking the existence of timed ready sim-ulations between automata. However, we provide a method for translatingthe check for timed ready simulations into a reachability problem suitablefor the UPPAAL tool.Applied Abstraction Strategies. A main result of this thesis is thedemonstration, through case studies, that our abstraction frameworks areindeed useful in practice. The di�cult part in using the frameworks is�nding suitable abstractions for given concrete systems. Useful abstractionstrategies depend on the concrete problem at hand. We have presenteduseful abstraction strategies for the proofs of three nontrivial distributed al-gorithms. All our proofs have the advantage that the essential functionalityof the considered algorithms is preserved in their �nite-state abstractions.Thus, proving properties about this functionality is performed by modelchecking.In our proof of the parameterized version of Burns' mutual exclusionalgorithm we use a skolemization abstraction strategy to construct an ab-stract interpretation of any pair of concrete processes including the possiblee�ects of processes in the environment. The skolemization strategy utilizesthat the mutual exclusion property is stated as a conjunction over pairs ofprocess indices. We have used the LP theorem prover to show that ourabstraction is indeed property preserving and the SPIN model checker toverify the abstraction.Our abstraction-based proof of the Bounded Concurrent Timestamp Sys-tem (BCTSS) algorithm is the most advanced in this thesis. The BCTSSalgorithm is one of the most complicated algorithms in the distributed sys-tems literature and existing proofs are all long and hard to understand. Weprovide an abstraction-based proof of a key invariant of this algorithm es-tablished and proved by hand within the I/O automaton model in [GLS92].Our proof exploits a combination of induction and abstraction strategiesand it reduces the required amount of manually proven subinvariants fromthe original proof.Our proof of the parametrized version of Fischer's mutual exclusion al-gorithm utilizes a combination compositionality and abstraction strategies.Our abstraction strategy involves the use of a network invariant. This invari-

7.2. FUTURE WORK 145ant is shown to timed ready simulate the concrete system independently ofits number of component processes. Our network invariant is parametrized(in the number of components it simulates) and has an unbounded num-ber of transitions, but only �nitely many locations. Using data abstractiontechniques we reduce the parameterized invariant to a simple �nite-statesystem.7.2 Future WorkCase Studies { Liveness. All case studies considered in this thesis dealswith abstraction-based veri�cation of safety properties. For real-time sys-tems most interesting \liveness" properties are bounded liveness properties,stating that something good happens within a certain time bound, and suchproperties are actually safety properties. However, for untimed systemsreal liveness properties do exist. Our untimed abstraction framework pro-vides preservation conditions for liveness properties but we have not yet hadany practical experience in using these conditions to prove liveness underabstraction. In the I/O automaton model used in this thesis liveness it actu-ally treated in a restricted form called fairness. In [GSSL93] a generalizedI/O automaton model is considered permitting the veri�cation of generalliveness properties. Further research may investigate how our abstractionconditions can be generalized to this setting.We believe that further case studies, regarding safety as well as livenessproperties and for timed as well as untimed systems, are of importance tofurther investigate common abstraction patterns for classes of systems.Integrated Tool Support. In this thesis we have only presented a rudi-mentary scheme for translating I/O automata into the SPIN model checker.Thus we have not actually integrated SPIN with the I/O automata frame-work. Recent research has taken place that de�nes a speci�cation languageIOA [GLV97] for I/O automata supported by a parser and syntax checker.Interesting future research aims at tools for extracting proof obligations fromalgorithm descriptions and presenting them to theorem provers like LP andmodel checkers like SPIN. This work is already in progress at the Laboratoryfor Computer Science at M.I.T.Further tool support integrating our timed abstraction framework withthe UPPAAL model checker also remains to be investigated.

146 CHAPTER 7. CONCLUSION

Bibliography[ABL98] Luca Aceto, Augusto Burgueno, and Kim G. Larsen. Modelchecking via reachability testing for timed automata. InBernhard Ste�en, editor, Proc. 4th In.t Conference on Toolsans Algorithms for the Construction and analysis of Systems(TACAS'98), volume 1384 of Lecture Notes in Computer Sci-ence, pages 263{280. Springer, 1998.[Abr88] K. Abrahamson. On Achieving Consensus using a Shared Mem-ory. In Proceedings of 7th ACM Symposium on the Principlesof Distributed Computing, Toronto, Ontario, Canada, 1988.[AD94] R. Alur and D. Dill. A theory of timed automata. TheoreticalComputer Science, 126:183{236, 1994.[ADG+94] Y. Afek, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. ABounded First-in, First-enabled Solution to the `-exclusionProblem. In ACM TOPLAS, pages (16)3:939{953, 1994.[AHH96] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolicveri�cation of embedded systems. IEEE Transactions on Soft-ware Engineering, pages 22:181{201, 1996.[AJ98] Parosh Aziz Abdulla and Bengt Jonsson. Verifying networks oftimed processes. In Bernhard Ste�en, editor, TACAS'98, Toolsand Algorithms for the Construction and Analysis of Systems,volume 1384 of Lecture Notes in Computer Science, pages 298{312, Lisbon, Portugal, March/April 1998. Springer.[AL93] Martin Abadi and Leslie Lamport. An Old-Fashioned Recipefor Real Time. Lecture Notes in Computer Science, 600, 1993.[BB89] J.C.M. Baeten and J.A. Bergstra. Real time process algebra.Technical Report P8916, University of Amsterdam, 1989.[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.Hwang. Symbolic Model Checking: 1020 states and beyond.Logic in Computer Science, 1990.147

148 BIBLIOGRAPHY[BHK86] J.A. Bergstra, J. Heering, and P. Klint. Algebra of commu-nicating processes. In CWI Symposium on Mathematics andComputer Science, pages 89{138. North-Holland, 1986.[BIM95] B. Bloom, S. Istrail, and A. Meyer. Bisimulation can't betraced. Journal of the Association for Computing Machinery,pages 42(1):232{268, 1995.[BLL+95] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pet-tersson, and Wang Yi. Uppaal | a Tool Suite for Auto-matic Veri�cation of Real{Time Systems. In Proc. of the4th DIMACS Workshop on Veri�cation and Control of Hy-brid Systems, Lecture Notes in Computer Science, pages 22{24.Springer Verlag, October 1995.[Bur78] James E. Burns. Mutual exclusion with linear waiting usingbinary shared variables. ACM SIGACT News, 1978.[CC77] P. Cousot and R. Cousot. Abstract Interpretation: A uni�edlattice model for static analysis of programs by construction orapproximation of �xpoints, 1977.[CC79] P. Cousot and R. Cousot. Systematic design of program anal-ysis frameworks, 1979.[CC92a] P. Cousot and R. Cousot. Abstract Interpretation and Applica-tion to Logic Programs. Journal of Logic Programming, pages13:103{179, 1992.[CC92b] P. Cousot and R. Cousot. Abstract Interpretation Frameworks.Journal of Logic and Computation, pages 2(4):511{547, 1992.[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automaticveri�cation of �nite state concurrent system using temporallogic. ACM Trans. on Programming Languages and Systems,8(2):244{263, 1986.[CGL92] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking andabstraction. In Nineteenth Annual ACM SIGPLAN-SIGACTSymposium on Principles of Programming Languages, 1992.[CPS89] R. Cleaveland, J. Parrow, and B. Ste�en. The edinburgh con-currency workbench: A semantics-based veri�cation tool for�nite-state systems. In Proceedings of the Workshop on Auto-mated Veri�cation Tools for Finite-State Systems, volume 407of Lecture Notes in Computer Science. Springer Verlag, 1989.

BIBLIOGRAPHY 149[Dam96] D. Dams. Abstract Interpretation and Partition Re�nement forModel Checking. PhD thesis, Eindhoven University of Technol-ogy, 1996.[DF95] J�urgen Dingel and Thomas Filkorn. Model checking for in�nitestate systems using data abstraction, assumption-commitmentstyle reasoning and theorem proving. In Proc. of CAV'95, vol-ume 939 of Lecture Notes in Computer Science, pages 54{69,1995.[DL97] Ekaterina Dolginova and Nancy Lynch. Safety veri�cation forautomated platoon maneuvers: A case study. In ProceedingsInt. Workshop on Hybrid and Real-Time Systems (HART'97),volume 1201 of Lecture Notes in Computer Science, pages 154{170. Springer Verlag, 1997.[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The toolkronos. In Hybrid Systems III, Veri�cation and Control, volume1066 of Lecture Notes in Computer Science. Spinger Verlag,1996.[DS89] Danny Dolev and Nir Shavit. Bounded Concurrent Time-StampSystems Are Constructible. In Prooceedings of the 21st ACMSymposium on Theory of Computing. Also in SIAM Journal ofComputing, pages (26)2:418{455, 1989.[DY95] C. Daws and S. Yovine. Two examples of veri�cation of multi-rate timed automata with Kronos. In Proc. of the 16th IEEEReal-Time Systems Symposium, pages 66{75, December 1995.[Gaw92] Rainer Gawlick. Concurrent timestamping made simple. Mas-ter's thesis, Massachusetts Institute of Technology, 1992.[GG91] S.J. Garland and J.V. Guttag. A Guide to LP, the LarchProver. Technical Report Research Report 82, Digital SystemsResearch Center, 1991.[GH93] J.V. Guttag and J.J. Horning. Larch: Languages and Tools forFormal Speci�cation. Springer Verlag, 1993.[GLS92] Rainer Gawlick, Nancy Lynch, and Nir Shavit. ConcurrentTimestamping Made Simple. In Israel Symposium on Theoryand Practice of Computing, 1992.[GLV97] Stephen Garland, Nancy Lynch, and Mandana Vaziri. IOA:A language for specifying, programming, and validating dis-tributed systems. Technical report, Massachusetts Institute

150 BIBLIOGRAPHYof Technology, Laboratory for Computer Science, Cambridge,1997.[GM93] M.C.J. Gordon and T.F. Melham. Introduction to HOL: atheorem-proving environment for higher-order logic. CambridgeUniversity Press, 1993.[GSSL93] Rainer Gawlick, Roberto Segala, J�rgen S�gaard-Andersen,and Nancy Lynch. Liveness in timed and untimed systems.Technical Report MIT/LCS/TR-587, Massachusetts Instituteof Technology, Laboratory for Computer Science, December1993.[GW94] P. Godefroid and P. Wolper. A partial approach to model check-ing. Information and Computation, pages 110:205{326, 1994.[Har87] D. Harel. Statecharts: A visual formalism for complex systems.Science of Computer Programming, pages 8:231{274, 1987.[HHK95] Monika R. Henzinger, Thomas A. Henzinger, and Peter W.Kopke. Computing Simulations on Finite and In�nite Graphs.In 36th Annual Symposium on Foundations of Computer Sci-ence, pages 453{462. IEEE Computer Society Press, 1995.[HK87] Z. Har'El and R.P. Kurshan. The cospan user's guide. Technicalreport, AT&T Bell Laboratories, 1987.[HL94] Constance Heitmeyer and Nancy Lynch. The generalized rail-road crossing: A case study in formal veri�cation of real-timesystems. Technical Report MIT/LCS/TM-511, MassachusettsInstitute of Technology, Laboratory for Computer Science,Cambridge, November 1994.[HLR92] N. Halbwachs, F. Lagnier, and C. Ratel. An experience in prov-ing regular networks of processes by modular model checking.Acta Informatica, pages 29(6/7):523{543, 1992.[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminismand concurrency. Journal of the Association for ComputingMachinery, pages 32(1):137{161, 1985.[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice{Hall, 1985.[Hol91] Gerard Holzmann. The Design and Validation of ComputerProtocols. Prentice Hall, 1991.

BIBLIOGRAPHY 151[HP94] G.J. Holzmann and Doron Peled. An improvement in formalveri�cation. In Proc. 7th Int. Conf. on Formal DescriptionTechniques (FORTE'94), pages 177{194, Berne, Switzerland,1994.[HWT95] Pei-Hsin Ho and Howard Wong-Toi. Automated analysis of anaudio control protocol. In Proceedings of CAV'95, volume 939of Lecture Notes in Computer Science, 1995.[IS94] A. Ingolfsdottir and B. Ste�en. Characteristic formulae for pro-cesses with divergence. Information and Computation, pages110(1):149{163, 1994.[JL98] Henrik E. Jensen and Nancy A. Lynch. A Proof of Burns N -Process Mutual Exclusion Algorithm Using Abstraction. InBernhard Ste�en, editor, TACAS'98, Tools and Algorithmsfor the Construction and Analysis of Systems, volume 1384of Lecture Notes in Computer Science, Lisbon, Portugal,March/April 1998. Springer.[KLL+97] K.J. Kristo�ersen, F. Larroussinie, K.G. Larsen, P. Petterson,and W. Yi. A compositional proof of a real-time mutual exclu-sion protocol. In TAPSOFT'97 7th International Joint Con-ference on the Theory and Practice of Software Development,Lecture Notes in Computer Science, Lille, France, April 1997.Springer Verlag.[KM89] R.P. Kurshan and K. McMillan. A Structural Induction The-orem for Processes. In Proceedings of the 8th Annual ACMSymposium on Principles of Distributed Computing, 1989.[Koz82] D. Kozen. Results on the propositional mu-calculus. In Proc. ofInternational Colloquium on Algorithms, Languages and Pro-gramming 1982, volume 140 of Lecture Notes in Computer Sci-ence, Springer Verlag, Berlin, 1982.[Kri98] K�are Jelling Kristo�ersen. Compositional Veri�cation of Con-current Systems. PhD thesis, Aalborg University, Departmentof Computer Science, Institute for Electronic Systems, Aalborg,Denmark, August 1998.[Kur89] R.P. Kurshan. Analysis of Discrete Event Coordination. InJ.W. de Bakker, W.-P. de Roever, and G. Rozenberg, edi-tors, Proceedings of the Workshop on Stepwise Re�nement ofDistributed Systems: Models, Formalisms, Correctness, vol-ume 430 of Lecture Notes in Computer Science, pages 414{454.Springer Verlag, 1989.

152 BIBLIOGRAPHY[Kur94] R.P. Kurshan. Computer-Aided Veri�cation of CoordinatingProcesses - The Automata-Theoretic Approach. Princeton Uni-versity Press, 1994.[Lam74] Leslie Lamport. A New Solution of Dijkstra's Concurrent Pro-gramming Problem. Communications of the ACM, pages 78(8):453{455, 1974.[Lam86] Leslie Lamport. On Interprocess Communication. Parts I andII. Distributed Computing, pages 1, 77{101, 1986.[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Ben-salem. Property Preserving Abstractions for the Veri�cation ofConcurrent Systems. Formal Methods in System Design, pages6:11{44, 1995.[LLSA94] Butler W. Lampson, Nancy A. Lynch, and J�rgen F. S�gaard-Andersen. Correctness of at-most-one message delivery proto-cols. In Richard L. Tenney, Paul D. Amer, and M. �Umit Uyan,editors, Formal Description Techniques VI (Proceedings of theIFIP TC6/WG6.1 Sixth International Conference on FormalDescription Techniques, FORTE'93, Boston, October, 1993)IFIP Transactions C, pages 385{400. North{Holland, Amster-dam, 1994.[LMWF94] Nancy Lynch, Michael Merrit, WilliamWeihl, and Alan Fekete.Atomic Transactions. Morgan Kaufmann, San Mateo, Calif.,1994.[LS91] K.G. Larsen and A. Skou. Bisimulation through probabilistictesting. Information and Computation, pages 94(1):1{28, 1991.[LSVW95] Nancy Lynch, Roberto Segala, Fritz Vaandrager, and H.B.Weinberg. Hybrid I/O Automata. In R. Alur, T. Hen-zinger, and E. Sontag, editors, Hybrid Systems III: Veri�cationand Control (DIMACS/SYCON Workshop on Veri�cation andControl of Hybrid Systems, New Brunswick, New Jersey, Octo-ber 1995), volume 1066 of Lecture Notes in Computer Science,pages 496{510. Springer Verlag, 1995.[LSW95] K.G. Larsen, B. Ste�en, and C. Weise. Fischer's protocol revis-ited: A simple proof using modal constraints. In 4th DIMACSWorkshop on Veri�cation and Control of Hybrid Systems, NewBrunswick, New Jersey, 1995.[LT87] N. Lynch and M. Tuttle. Hierarchical correctness proofs fordistributed algorithms. In Proc. of the 6th ACM Symposium onPrinciples of Distributed Computation, pages 137{151, 1987.

BIBLIOGRAPHY 153[LT89] Nancy Lynch and Mark Tuttle. An Introduction to In-put/Output Automata. CWI-Quarterly, pages 2(3)219{246,1989.[Luc95] Victor Luchangco. Using simulation techniques to prove timingproperties. Master's thesis, Massachusetts Institute of Tech-nology, Department of Electrical Engineering and ComputerScience, Cambridge, June 1995.[LV95] N.A. Lynch and F. Vaandrager. Forward and backward simula-tions - part i: Untimed systems. Information and Computation,pages 121(2):214{233, 1995.[LV96] N.A. Lynch and F. Vaandrager. Forward and backward simu-lations - part ii: Timing-based systems. Information and Com-putation, 1996.[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan KaufmannPublishers, 1996.[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer AcademicPublishers, 1993.[Mil89] R. Milner. Communication and Concurrency. Prentice Hall,Englewood Cli�s, 1989.[MN95] Olaf M�uller and Tobias Nipkow. Combining Model Checkingand Deduction for I/O-Automata. In Tools and Algorithms forthe Construction and Analysis of Systems, volume 1019 of Lec-ture Notes in Computer Science, pages 1{16. Springer Verlag,1995.[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactiveand Concurrent Systems: Speci�cation. Springer-Verlag, NewYork, 1992.[NSY91] X. Nicollin, J. Sifakis, and S. Yovine. From atp to timed graphsand hybrid systems. In Real-Time: Theory in Practice, volume600 of Lecture Notes in Computer Science. Springer-Verlag,1991.[ORR+96] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas.Pvs: combining speci�cation, proof checking and model check-ing. In R. Alur and T.A. Henzinger, editors, Computer AidedVeri�cation, volume 1102 of Lecture Notes in Computer Sci-ence. Springer Verlag, 1996.

154 BIBLIOGRAPHY[Pau94] Lawrence C. Paulson. Isabelle: A generic theorem prover. InLecture Notes in Computer Science, volume 828. Springer Ver-lag, 1994.[Pnu86] Amir Pnueli. Applications of Temporal Logic to the Speci�ca-tion and Veri�cation of Reactive Systems: A Survey of CurrentTrends. In Current Trends in Concurrency, J.W. de Bakker,W.-P. de Roever, and G. Rozenberg (editors). Lecture Notesin Computer Science, 224, Springer-Verlag, Berlin, pages 510{584, 1986.[SA93] J�rgen S�gaard-Andersen. Correctness of Protocols in Dis-tributed Systems. PhD thesis, Department of Computer Sci-ence, Technical University of Denmark, Lyngby, Denmark, De-cember 1993. ID-TR: 1993-131.[SAGG+93] J�rgen S�gaard-Andersen, Stephen J. Garland, John V. Gut-tag, Nancy A. Lynch, and Anna Pogosyants. Computer-Assisted Simulation Proofs. In Costas Courcoubetis, edi-tor, Computer-Aided Veri�cation (5th International Confer-ence, CAV'93, Elounda, Greece, June/July 1993), volume 697of Lecture Notes in Computer Science, pages 305{319. SpringerVerlag, 1993.[SL95] Roberto Segala and Nancy Lynch. Probabilistic simulations forprobabilistic processes. Nordic Journal of Computing, pages2(2):250{273, August 1995.[VA95] P. Vitianyi and B. Awerbuch. Shared Register Access by Asyn-chronous Hardware. In 27th Symposium on the Foundations ofComputer Science, Tel-Aviv, 1995.[WL89a] P. Wolper and V. Lovinfosse. Verifying poperties of large sets ofprocesses with network invariants. Lecture Notes in ComputerScience, Springer Verlag, 407, 1989. Proc. of Workshop onAutomatic Veri�cation Methods for Finite State Systems.[WL89b] Pierre Wolper and Vincianne Lovinfosse. Verifying Propertiesof Large Sets of Processes with Network Invariants, 1989.[WLL88] Jennifer LundeliusWelch, Leslie Lamport, and Nancy Lynch. Alattice-structured proof technique applied to a minimum span-ning tree algorithm. In Proceedings of the Seventh Annual ACMSymposium on Principles of Distributed Computing, Toronto,Ontario, Canada, 1988.

BIBLIOGRAPHY 155[Yi90] Wang Yi. Real-time behaviour of asynchronous agents. InJ.C.M. Baeten and J.W. Klop, editors, Proc. of the Confer-ence on Theories of Concurrency: Uni�cation and Extension,CONCUR'90, volume 458 of Lecture Notes in Computer Sci-ence, pages 502{520. Springer-Verlag, 1990.[Yi91] Wang Yi. A Calculus of Real Time Systems. PhD thesis,Chalmers University of Technology, G�oteborg, Sweden, 1991.

156 BIBLIOGRAPHY

Appendix AProof of Theorem 4.2Proof. If s0 2 start (Burns) then,s0:upci = s0:upcj = rems0:ppci = s0:ppcj = rems0:
agi = s0:
agj = 0s0:Si = s0:Sj = ;and if u0 2 start (Burns�) then,u0:upc0 = u0:upc1 = remu0:ppc0 = s0:ppc1 = remu0:
ag0 = u0:
ag1 = 0u0:S0 = u0:S1 = ;so Sfi;jg(s0; u0).Now, let s 2 states (Burns) and let u 2 states (Burns�) s.t. Sfi;jg(s; u).We consider cases based on the type of action �x performed by s on atransition s �x�!Burns s0. For each action �x we consider x = i, x = j andx 62 fi; jg. If x 62 fi; jg, it is obvious from Burns that no shared or localvariables in processes or users with indices i or j change. So any transitions �x�! s0 in Burns, with x 62 fi; jg, can be matched by Burns� doing noaction and we still have Sfi;jg(s0; u).Case 1 (�x = tryx):Case a (x = i):The corresponding execution fragment is u try0�! u0. try0 is enabledin u as u:upc0 = s:upci = rem. From Burns the only changes are,s0:upci = try and s0:ppci = set-
g-0, and from Burns� the onlychanges are, u0:upc0 = try and u0:ppc0 = set-
g-0 so Sfi;jg(s0; u0).Case b (x = j):The corresponding execution fragment is u try1�! u0. Analogous toabove. 157

158 APPENDIX A. PROOF OF THEOREM 4.2Case 2 (�x = set-
g-0x):Case a (x = i):Case i (i = 1):The corresponding execution fragment is u set-
g-0-sml0�������! u0.set-
g-0-sml0 is enabled in u as u:ppc0 = s:ppci = set-
g-0.From Burns the only changes are s0:
agi = 0 and s0:ppci =set-
g-1. From Burns� the only changes are, u0:
ag0 = 0 andu0:ppc0 = set-
g-1 so Sfi;jg(s0; u0).Case ii (i 6= 1):The corresponding execution fragment is u set-
g-00�������! u0.Fragment is enabled in u as u:ppc0 = s:ppci = set-
g-0.From Burns the only changes are s0:
agi = 0 and s0:ppci =test-sml-fst. From Burns� the only changes are, u0:
ag0 = 0and u0:ppc0 = test-sml-fst so Sfi;jg(s0; u0).Case b (x = j):The corresponding execution fragment is u set-
g-01�������! u0. set-
g-01is enabled in u as u:ppc1 = s:ppcj = set-
g-0. As j > i and i � 1we know that j > 1 and hence from Burns the only changesare s0:
agj = 0 and s0:ppcj = test-sml-fst. From Burns� the onlychanges are, u0:
ag1 = 0 and u0:ppc1 = test-sml-fst so Sfi;jg(s0; u0).Case 3 (�x = test-sml-fst(y)x):Case a (x = i):Case i (s:
agy = 1):The corresponding fragment is u test-sml-fail0�������! u0. test-sml-fail0is enabled in u as u:ppc0 = s:ppci = test-sml-fst. From Burnsthe only changes are s0:Si = ; and s0:ppci = set-
g-0, andfrom Burns� the only changes are u0:ppc0 = set-
g-0, soSfi;jg(s0; u0).Case ii (s:
agy = 0; js:Sij < i� 2):The corresponding fragment is u. From Burns the only changeis s0:Si = s:Si [fyg and as y 6= j, we have Sfi;jg(s0; u).Case iii (s:
agy = 0; js:Sij = i� 2):The corresponding fragment is u test-sml-fst-succ0�������������! u0. Frag-ment enabled as u:ppc0 = s:ppci = test-sml-fst. From Burnsthe only changes are s0:Si = ; and s0:ppci = set-
g-1. FromBurns� the only change is u0:ppc0 = set-
g-1, so Sfi;jg(s0; u0).Case b (x = j; y = i):

159Case i (s:
agi = 1):The corresponding fragment is u test-sml-fail1�������! u0. test-sml-fail1is enabled in u as u:ppc1 = s:ppcj = test-sml-fst. From Burnsthe only changes are s0:Sj = ; and s0:ppcj = set-
g-0, andfrom Burns� the only changes are u0:S1 = ; and u0:ppc1 =set-
g-0, so Sfi;jg(s0; u0).Case ii (s:
agi = 0; js:Sjj < j � 2):If u:S1 = f0g the corresponding fragment is u. From Burnsthe only change is s0:Sj = s:Sj [fig and as u:P1:S = f0g,we have Sfi;jg(s0; u).If u:P1:S = ; let the corresponding execution fragment beu test-other-
g1�������! u0. Fragment is enabled as u:P1:pc = s:ppcj =test-sml-fst, and u:P1:S = ;. From Burns the only change is,as above, s0:Sj = s:Sj [fig. From Burns� the only changeis u0:P1:S = f0g, as u:
ag0 = s:
agi, so Sfi;jg(s0; u0).Case iii (s:
agi = 0; js:Sjj = j � 2):If u:P1:S = f0g the corresponding execution fragment isu test-sml-fst-succ1�������������! u0. Fragment is enabled as u:P1:pc =s:ppcj = test-sml-fst and u:P1:S = f0g. From Burns the onlychanges are s0:Sj = ; and s0:ppcj = set-
g-1. From Burns�the only changes are u0:P1:S = ; and u0:P1:pc = set-
g-1, soSfi;jg(s0; u0).If u:P1:S = ; then let the corresponding execution fragmentbe u test-other-
g1�������! u00 test-sml-fst-succ1�������������! u0. test-other-
g1 isenabled in u as u:P1:pc = s:ppcj = test-sml-fst and u:P1:S =;. From Burns�, u00:P1:pc = test-sml-fst and u00:P1:S = f0gas u:
ag0 = s:
agi. Therefore, test-sml-fst-succ1 is enabledin u00. From Burns the changes are s0:Sj = ; and s0:ppcj =set-
g-1, and from Burns� the changes are, u0:P1:S = ; andu0:P1:pc = set-
g-1, so Sfi;jg(s0; u0).Case c (x = j; y 6= i):Case i (s:
agy = 1):The corresponding fragment is u test-sml-fail1�������! u0. test-sml-fail1is enabled in u as u:ppc1 = s:ppcj = test-sml-fst. From Burnsthe only changes are s0:Sj = ; and s0:ppcj = set-
g-0, andfrom Burns� the only changes are u0:S1 = ; and u0:ppc1 =set-
g-0, so Sfi;jg(s0; u0).Case ii (s:
agy = 0; js:Sj j < j � 2):The corresponding fragment is u. From Burns the only changeis s0:Sj = s:Sj [fyg and as y 6= i, we have Sfi;jg(s0; u).Case iii (s:
agy = 0; js:Sj j = j � 2):

160 APPENDIX A. PROOF OF THEOREM 4.2The corresponding fragment is u test-sml-fst-succ1�������������! u0. Frag-ment enabled as u:ppc1 = s:ppcj = test-sml-fst and u:P1:S =f0g as i 2 s:Sj1. From Burns the only changes are s0:Sj =; and s0:ppcj = set-
g-1. From Burns� the only changes areu0:P1:S = ; and u0:P1:pc = set-
g-1, so Sfi;jg(s0; u0).Case 4 (�x = set-
g-1x):Case a (x = i):Case i (i = 1):The corresponding execution fragment is u set-
g-1-sml0�������! u0.set-
g-1-sml0 is enabled in u as u:ppc0 = s:ppci = set-
g-1.From Burns the only changes are s0:
agi = 1 and s0:ppci =test-lrg. From Burns� the only changes are, u0:
ag0 = 1 andu0:ppc0 = test-lrg so Sfi;jg(s0; u0).Case ii (i 6= 1):The corresponding execution fragment is u set-
g-10�������! u0.Fragment is enabled in u as u:ppc0 = s:ppci = set-
g-1.From Burns the only changes are s0:
agi = 1 and s0:ppci =test-sml-snd. From Burns� the only changes are, u0:
ag0 = 1and u0:ppc0 = test-sml-snd so Sfi;jg(s0; u0).Case b (x = j):The corresponding execution fragment is u set-
g-11�������! u0. set-
g-11is enabled in u as u:ppc1 = s:ppcj = set-
g-1. As j > i andi � 1 we know that j > 1 and hence from Burns the onlychanges are s0:
agj = 1 and s0:ppcj = test-sml-snd. From Burns�the only changes are, u0:
ag1 = 1 and u0:ppc1 = test-sml-snd soSfi;jg(s0; u0).Case 5 (�x = test-sml-snd(y)x):Case a (x = i):Case i (s:
agy = 1):The corresponding fragment is u test-sml-fail0�������! u0. test-sml-fail0is enabled in u as u:ppc0 = s:ppci = test-sml-snd. FromBurns the only changes are s0:Si = ; and s0:ppci = set-
g-0,and from Burns� the only changes are u0:ppc0 = set-
g-0, soSfi;jg(s0; u0).Case ii (s:
agy = 0; js:Sij < i� 2):The corresponding fragment is u. From Burns the only changeis s0:Si = s:Si [fyg and as y 6= j, we have Sfi;jg(s0; u).1Relies on invariant: pci = test-sml-fst ^ j 2 Si) 1 � j < i

161Case iii (s:
agy = 0; js:Sij = i� 2):The corresponding fragment is u test-sml-snd-succ0�������������! u0. Frag-ment enabled as u:ppc0 = s:ppci = test-sml-snd. From Burnsthe only changes are s0:Si = ; and s0:ppci = test-lrg, as i <j � n. From Burns� the only change is u0:ppc0 = test-lrg, soSfi;jg(s0; u0).Case b (x = j; y = i):Case i (s:
agi = 1):The corresponding fragment is u test-sml-fail1�������! u0. test-sml-fail1is enabled in u as u:ppc1 = s:ppcj = test-sml-snd. FromBurns the only changes are s0:Sj = ; and s0:ppcj = set-
g-0,and from Burns� the only changes are u0:S1 = ; and u0:ppc1= set-
g-0, so Sfi;jg(s0; u0).Case ii (s:
agi = 0; js:Sjj < j � 2):If u:S1 = f0g the corresponding fragment is u. From Burnsthe only change is s0:Sj = s:Sj [fig and as u:P1:S = f0g,we have Sfi;jg(s0; u).If u:P1:S = ; let u test-other-
g1�������������! u0 be the correspond-ing fragment. Fragment is enabled as u:P1:pc = s:ppcj =test-sml-snd, and u:P1:S = ;. From Burns the only changeis, as above, s0:Sj = s:Sj [fig. From Burns� the only changeis u0:P1:S = f0g, as u:
ag0 = s:
agi, so Sfi;jg(s0; u0).Case iii (s:
agi = 0; js:Sjj = j � 2):Case A (j = n):If u:P1:S = f0g the corresponding execution fragment isu test-sml-snd-succ-lrg1�������������! u0. Fragment is enabled as u:P1:pc= s:ppcj = test-sml-snd and u:P1:S = f0g. From Burnsthe only changes are s0:Sj = ; and s0:ppcj = leave-try.From Burns� the only changes are u0:P1:pc = leave-try,so Sfi;jg(s0; u0).If u:P1:S = ; let the corresponding execution fragment beu test-other-
g1�������! u00 test-sml-snd-succ-lrg1�������������! u0. test-other-
g1 is en-abled in u as u:P1:pc = s:ppcj = test-sml-snd and u:P1:S= ;. From Burns�, u00:P1:pc = test-sml-snd and u00:P1:S= f0g as u:
ag0 = s:
agi. Therefore, test-sml-snd-succ-lrg1is enabled in u00. From Burns the changes are s0:Sj = ;and s0:ppcj = leave-try. From Burns� the changes are,u0:P1:pc = leave-try, so Sfi;jg(s0; u0).Case B (j 6= n):If u:P1:S = f0g the corresponding execution fragment isu test-sml-snd-succ1�������������! u0. Fragment is enabled as u:P1:pc

162 APPENDIX A. PROOF OF THEOREM 4.2= s:ppcj = test-sml-snd and u:P1:S = f0g. From Burnsthe only changes are s0:Sj = ; and s0:ppcj = test-lrg.From Burns� the only changes are u0:P1:pc = test-lrg, soSfi;jg(s0; u0).If u:P1:S = ; let u test-other-
g1�������! u00 test-sml-snd-succ1�������������! u0 bethe corresponding fragment u0. test-other-
g1 is enabledin u as u:P1:pc = s:ppcj = test-sml-snd and u:P1:S =;. From Burns�, u00:P1:pc = test-sml-snd and u00:P1:S =f0g as u:
ag0 = s:
agi. Therefore, test-sml-snd-succ1 isenabled in u00. From Burns the changes are s0:Sj = ; ands0:ppcj = test-lrg. From Burns� the changes are, u0:P1:pc= test-lrg, so Sfi;jg(s0; u0).Case c (x = j; y 6= i):Case i (s:
agy = 1):The corresponding fragment is u test-sml-fail1�������! u0. test-sml-fail1is enabled in u as u:ppc1 = s:ppcj = test-sml-snd. FromBurns the only changes are s0:Sj = ; and s0:ppcj = set-
g-0,and from Burns� the only changes are u0:S1 = ; and u0:ppc1= set-
g-0, so Sfi;jg(s0; u0).Case ii (s:
agy = 0; js:Sjj < j � 2):The corresponding fragment is u. From Burns the only changeis s0:Sj = s:Sj [fyg and as y 6= i, we have Sfi;jg(s0; u).Case iii (s:
agy = 0; js:Sjj = j � 2):Case A (j = n):The corresponding fragment is u test-sml-snd-succ-lrg1�������������! u0.Fragment enabled as u:ppc1 = s:ppcj = test-sml-snd andu:P1:S = f0g as i 2 s:Sj2. From Burns the only changesare s0:Sj = ; and s0:ppcj = leave-try, and from Burns�the only changes are u0:P1:pc = leave-try, so Sfi;jg(s0; u0).Case B (j 6= n):The corresponding fragment is u test-sml-snd-succ1�������������! u0.Fragment enabled as u:ppc1 = s:ppcj = test-sml-snd andu:P1:S = f0g as i 2 s:Sj3. From Burns the only changesare s0:Sj = ; and s0:ppcj = test-lrg, and from Burns� theonly changes are u0:P1:pc = test-lrg, so Sfi;jg(s0; u0).Case 6 (�x = test-lrg(y)x):Case a (x = i; y = j):2Relies on invariant: pci = test-sml-snd ^ j 2 Si) 1 � j < i.3As above.

163Case i (s:
agj = 1):The corresponding fragment is u test-lrg-fail0�������! u0. test-lrg-fail0is enabled in u as u:ppc0 = s:ppci = test-lrg. From Burnsthe only changes are s0:Si = ;, and from Burns� the onlychanges are u0:S0 = ;, so Sfi;jg(s0; u0).Case ii (s:
agj = 0; js:Sij < n� i� 1):If u:S0 = f1g the corresponding fragment is u. From Burnsthe only change is s0:Si = s:Si [fjg and as u:P0:S = f1g,we have Sfi;jg(s0; u).If u:P0:S = ; let u test-other-
g0�������! u0 be the corresponding frag-ment. Fragment is enabled as u:P0:pc = s:ppci = test-lrg,and u:P0:S = ;. From Burns the only change is, as above,s0:Si = s:Si [fjg. From Burns� the only change is u0:P0:S= f1g, as u:
ag1 = s:
agj, so Sfi;jg(s0; u0).Case iii (s:
agj = 0; js:Sij = n� i� 1):If u:P0:S = f1g let u test-lrg-succ0�������! u0 be corresponding frag-ment. Fragment is enabled as u:P0:pc = s:ppci = test-lrg andu:P0:S = f1g. From Burns the changes are s0:Si = s:Si [fjg and s0:ppci = leave-try. From Burns� the only changesare u0:P0:pc = leave-try, so Sfi;jg(s0; u0).If u:P0:S = ; let the corresponding execution fragment beu test-other-
g0�������������! u00 test-lrg-succ0�������������! u0. test-other-
g0 isenabled in u as u:P0:pc = s:ppci = test-lrg and u:P0:S =;. From Burns�, u00:P0:pc = test-lrg and u00:P0:S = f1g asu:
ag1 = s:
agj. Therefore, test-lrg-succ1 is enabled in u00.From Burns the changes are s0:Si = s:Si [fjg and s0:ppci =leave-try, and from Burns� the changes are, u0:P0:S = f1gand u0:P0:pc = leave-try, so Sfi;jg(s0; u0).Case b (x = i; y 6= j):Case i (s:
agy = 1):The corresponding fragment is u test-lrg-fail0�������! u0. test-sml-fail0is enabled in u as u:ppc0 = s:ppci = test-lrg. From Burnsthe only changes are s0:Si = ;, and from Burns� the onlychanges are u0:S0 = ;, so Sfi;jg(s0; u0).Case ii (s:
agy = 0; js:Sij < n� i� 1):The corresponding fragment is u. From Burns the only changeis s0:Si = s:Si [fyg and as y 6= j, we have Sfi;jg(s0; u).Case iii (s:
agy = 0; js:Sij = n� i� 1):The corresponding fragment is u test-lrg-succ0�������! u0. Fragmentenabled as u:ppc0 = s:ppci = test-lrg and u:P0:S = f1g as j

164 APPENDIX A. PROOF OF THEOREM 4.22 s:Si4. From Burns the only changes are s0:ppci = leave-try.From Burns� the only changes are u0:P0:pc = leave-try, soSfi;jg(s0; u0).Case c (x = j):Case i (s:
agy = 1):The corresponding fragment is u test-lrg-fail1�������! u0. test-lrg-fail1 isenabled in u as u:ppc1 = s:ppcj = test-lrg. From Burns thereare no changes, and from Burns� neither, so Sfi;jg(s0; u0).Case ii (s:
agy = 0; js:Sjj < n� j � 1):The corresponding fragment is u. From Burns the only changeis s0:Sj = s:Sj [fyg and as y 6= i, we have Sfi;jg(s0; u).Case iii (s:
agy = 0; js:Sjj = n� j � 1):The corresponding fragment is u test-lrg-succ1�������������! u0. Frag-ment enabled as u:ppc1 = s:ppcj = test-lrg. From Burns theonly changes are s0:ppcj = leave-try. From Burns� the onlychanges are u0:ppc1 = leave-try, so Sfi;jg(s0; u0).Case 7 (�x = critx):Case a (x = i):The corresponding execution fragment is u crit0�������! u0. crit0 isenabled in u as u:ppc0 = s:ppci = leave-try. From Burns the onlychanges are, s0:ppci = crit, and from Burns� the only changesare, u0:ppc0 = crit, so Sfi;jg(s0; u0).Case b (x = j):The corresponding execution fragment is u crit1�������! u0. Analo-gous to above.Case 8 (�x = exitx):Case a (x = i):The corresponding execution fragment is u exit0�������! u0. exit0is enabled in u as u:upc0 = s:upci = crit. From Burns the onlychanges are, s0:ppci = reset, and from Burns� the only changesare, u0:ppc0 = reset, so Sfi;jg(s0; u0).Case b (x = j):The corresponding execution fragment is u exit1�������! u0. Analo-gous to above.Case 9 (�x = resetx):4Relies on invariant: pci = test-lrg ^ j 2 Si) i < j � n.

165Case a (x = i):The corresponding execution fragment is u reset0�������! u0. reset0is enabled in u as u:ppc0 = s:ppci = reset. From Burns the onlychanges are, s0:
agi = 0, s0:Si = ;, and s0:ppci = leave-exit.From Burns� the only changes are, u0:
ag0 = 0, u0:S0 = ;, andu0:ppc0 = leave-exit, so Sfi;jg(s0; u0).Case b (x = j):The corresponding execution fragment is u reset1�������! u0. Analo-gous to above.Case 10 (�x = remx):Case a (x = i):The corresponding execution fragment is u rem0�������! u0. rem0is enabled in u as u:ppc0 = s:ppci = leave-exit. From Burnsthe only changes are, s0:ppci = rem, and from Burns� the onlychanges are, u0:ppc0 = rem, so Sfi;jg(s0; u0).Case b (x = j):The corresponding execution fragment is u rem1�������! u0. Analo-gous to above.

166 APPENDIX A. PROOF OF THEOREM 4.2

Appendix BProof of Lemma 5.6Proof. The proof is by induction on the length of an execution and it isorganized as the following sequence of Lemmas and Claims.Lemma B.1 The initial state satis�es 1, 2 and 3.Proof. 1, 2 and 3 holds in the initial state s0 since for any i, s0:ti = s0:nti= 1n�1.Now, assume that 1, 2 and 3 holds in s. Consider cases s ��! s0 basedon the type of action �.Lemma B.2 If � = updatek then s0 statis�es 1, 2 and 3.Proof. The following claims prove Lemma B.2.Claim B.1 If s:nth�1k � s:th�1max then s0:th�1max = s:th�1max.Proof. Suppose s:th�1j 6= s:th�1max for all j 6= k. Consider any j 6= k. Fromthe de�nition of th�1max, s:th�1j � s:th�1k . By 1, s:th�1k = s:nth�1k and as aresult of the action s0:th�1k = s:nth�1k . Hence s0:th�1k = s:th�1k . Since tk is theonly label changing, s0:th�1j = s:th�1j . Hence, s0:th�1j � s0:th�1k and from thede�nition of th�1max, s0:th�1max = s0:th�1k . Now since s0:th�1k = s:th�1k = s:th�1max,we have s0:th�1max = s:th�1max.Suppose j 6= k is such that s:th�1j = s:th�1max. Consider any i 6= k. Since tkis the only label changing, s0:th�1i = s:th�1i . From de�nition of th�1max, s:th�1i� s:th�1max. Hence s:th�1i � s:th�1j and s0:th�1i � s0:th�1j . By action, s0:th�1k =s:nth�1k and by assumption, s:nth�1k � s:th�1j . Hence s0:th�1k � s0:th�1j . Now,from the de�nition of th�1max, s0:th�1max = s0:th�1j , and since s0:th�1j = s:th�1j =s:th�1max, we have that s0:th�1max = s:th�1max.Claim B.2 If s:nth�1k � s:th�1max then s0 satis�es 1.167

168 APPENDIX B. PROOF OF LEMMA 5.6Proof. Suppose for all j 6= i, s0:th�1j 6= s0:th�1max. By Claim B.1, s0:th�1max= s:th�1max and since s:th�1max 6= ? we have s0:th�1i = s0:th�1max. Suppose i 6= k.Since tk is the only label changing, s0:th�1i = s:th�1i . Hence s:th�1i = s:th�1max.Also, for all j 6= i, j 6= k, s0:th�1j = s:th�1j and hence s:th�1j 6= s:th�1max.By assumption s0:th�1k 6= s0:th�1max and since s0:th�1k = s:nth�1k and s0:th�1max =s:th�1max we have that s:nth�1k 6= s:th�1max and by hypothesis then s:nth�1k �s:th�1max. Thus, by 2 for s, s:th�1k 6= s:th�1max and hence by 1 for s, s:th�1i =s:nth�1i = s:th�1max. Now, since s0:th�1max = s:th�1max and since no labels with indexi change we have that s0:th�1i = s0:nth�1i = s0:th�1max. Suppose i = k. Thens0:th�1k = s0:th�1max. From action, s0:th�1k = s:nth�1k and s0:nth�1k = s:nth�1k .Hence s0:nth�1k = s0:th�1max.Claim B.3 If s:nth�1k � s:th�1max then s0 satis�es 2.Proof. Suppose s0:th�1i = s0:th�1max. Suppose i 6= k. From action, s0:th�1i =s:th�1i and by Claim B.1, s0:th�1max = s:th�1max. Now by 2 for s, s:nth�1i � s:th�1maxand since s0:nth�1i = s:nth�1i , s0:nth�1i � s0:th�1max. Suppose i = k. By action,s0:nth�1k = s0:th�1k hence s0:nth�1k = s0:th�1max.Claim B.4 If s:nth�1k � s:th�1max then s0 satis�es 3.Proof. Since s0:th�1max = s:th�1max and since no nt-labels change as a result ofthe action, s0 satis�es 3 since s does so.Claim B.5 If s:nth�1k � s:th�1max then s0:th�1max = s0:th�1k .Proof. By 1 for s there exists j 6= k such that s:th�1j = s:th�1max. Considerany i 6= k. Then s:th�1i � s:th�1j and since s:nth�1k � s:th�1j we have byinduction hypothesis (5.1) that s:th�1i � s:nth�1k . Now since s0:th�1i = s:th�1iand s0:th�1k = s:nth�1k we conclude that s0:th�1i � s0:th�1k and from de�nitionof th�1max, s0:th�1max = s0:th�1k .Claim B.6 If s:nth�1k � s:th�1max then s0 satis�es 1.Proof. From Claim B.5, s0:th�1k = s0:th�1max. If there exists j 6= k such thats0:th�1j = s0:th�1max then 1 vacously. Otherwise, from action, s0:th�1k = s0:nth�1k .Claim B.7 If s:nth�1k � s:th�1max then s0 satis�es 2.Proof. Suppose s0:th�1i = s0:th�1max. We �rst show that i = k. Assume for thesake of contradiction that i 6= k. From Claim B.5, s0:th�1max = s0:th�1k and byaction s0:th�1k = s:nth�1k and s0:th�1i = s:th�1i . Hence s:th�1i = s:nth�1k . Sinceby assumption s:nth�1k � s:th�1max we have s:th�1i � s:th�1max which contradictsthe de�nition of th�1max. Therefore i = k. From action s0:nth�1k = s0:th�1k andhence s0:nth�1k = s0:th�1max.

169Claim B.8 If s:nth�1k � s:th�1max then s0 satis�es 3.Proof. Suppose s0:nth�1i � s0:th�1max. Then by Claim B.5 s0:nth�1i � s0:th�1kand since s0:th�1k = s0:nth�1k , s0:nth�1i � s0:nth�1k . Hence i 6= k. By action,no nt-labels change and hence s:nth�1i � s:nth�1k . By assumption, s:nth�1k� s:th�1max and from 1 for s, there exists j 6= k such that s:th�1j = s:th�1max.Suppose s:th�1i = s:th�1max. From 2 for s, s:nth�1i � s:th�1max and since s:nth�1i� s:nth�1k and s:nth�1k � s:th�1max we have that s:nth�1i � s:th�1max and by 3 fors, s:nti[h] = 1. Thus, since s0:nti = s:nti, s0:nti[h] = 1. Suppose s:th�1i 6=s:th�1max. Then j 6= i and by induction hypothesis (5.1) for s we have thats:nth�1i � s:th�1max and from 3, s:nti[h] = 1. From action s0:nti = s:nti andhence s0:nti[h] = 1.This ends the proof of Lemma B.2.Lemma B.3 If � = scank then s0 satis�es 1, 2 and 3.Proof. The proof follows from the following claims. We assume that s:tmax6= ?, k 6= s:imax, and s:opk label since otherwise no t-labels or nt-labelschange and s0 satis�es 1, 2 and 3 since by hypothesis s does so.Claim B.9 s0 satis�es 1.Proof. Suppose for all j 6= i, s0:th�1j 6= s0:th�1max. From action no t-labelschange. Hence, for all j 6= i, s:th�1j 6= s:th�1max and s:th�1i = s:th�1max. Thisimplies that i = s:imax and hence by assumption i 6= k. From 1 for s, s:th�1i= s:nth�1i and since no i labels change, s0:th�1i = s0:nth�1i .Claim B.10 s0 satis�es 2.Proof. Suppose i 6= k. By action, neither nti nor any t-labels changeso s0 satis�es 2 since s does so. Suppose i = k. By action, s0:nti =next-label(s:tmax; h0) for some h0 2 f1; : : : ; n�1g and since s0:tmax = s:tmax,s0:nti = next-label(s0:tmax; h0). From de�nition of next-label, s0:nti � s0:tmaxhence s0:nth�1i � s0:th�1max.Claim B.11 s0 satis�es 3.Proof. Suppose s0:nth�1i � s0:th�1max. Since no t-labels change, s0:th�1max =s:th�1max and hence s0:nth�1i � s:th�1max. Suppose i 6= k. Then s0:nti = s:nti ands:nth�1i � s:th�1max. By 3 for s, s:nti[h] = 1 and hence s0:nti[h] = 1. Supposei = k. Then s0:nti = next-label(s:tmax; h0) for some h0 2 f1; : : : ; n� 1g. If h0> h� 1 then by de�nition of next-label, s0:nth�1i = s:th�1max and since s0:th�1max= s:th�1max, 3 holds vacoulsy in s0 in this case. If h0 � h� 1 then by de�nition

170 APPENDIX B. PROOF OF LEMMA 5.6of next-label, s0:nth�1i � s:th�1max, i.e. s0:nth�1i � s0:th�1max, and for all h00 > h0,s0:nti[h00] = 1. Now, since h0 � h� 1 this implies that s0:nti[h] = 1.This ends the proof of Lemma B.3.Lemma B.4 If � 2 fbeginlabelk; endlabelk; beginscank; endscankg then s0 sat-is�es 1, 2 and 3.Proof. No t-labels or nt-labels change so s0 satis�es 1, 2 and 3 since s doesso. This ends the proof of Lemma 5.6.

