
A Local Broadcast Layer for the SINR Network Model

Magnús M. Halldórsson∗
mmh@ru.is

Reykjavik University

Stephan Holzer†
holzer@csail.mit.edu

MIT

Nancy Lynch†
lynch@csail.mit.edu

MIT

Abstract

We present the first algorithm that implements an abstract MAC (absMAC) layer
in the Signal-to-Interference-plus-Noise-Ratio (SINR) wireless network model. We first
prove that efficient SINR implementations are not possible for the standard absMAC
specification. We modify that specification to an ”approximate” version that better suits
the SINR model. We give an efficient algorithm to implement the modified specification,
and use it to derive efficient algorithms for higher-level problems of global broadcast and
consensus.

In particular, we show that the absMAC progress property has no efficient imple-
mentation in terms of the SINR strong connectivity graph G1−ε, which contains edges
between nodes of distance at most (1− ε) times the transmission range, where ε > 0 is a
small constant that can be chosen by the user. This progress property bounds the time
until a node is guaranteed to receive some message when at least one of its neighbors
is transmitting. To overcome this limitation, we introduce the slightly weaker notion of
approximate progress into the absMAC specification. We provide a fast implementation
of the modified specification, based on decomposing the algorithm of [14] into local and
global parts. We analyze our algorithm in terms of local parameters such as node degrees,
rather than global parameters such as the overall number of nodes. A key contribution
is our demonstration that such a local analysis is possible even in the presence of global
interference.

Our absMAC algorithm leads to several new, efficient algorithms for solving higher-
level problems in the SINR model. Namely, by combining our algorithm with high-level
algorithms from [37], we obtain an improved (compared to [14]) algorithm for global
single-message broadcast in the SINR model, and the first efficient algorithm for multi-
message broadcast in that model. We also derive the first efficient algorithm for network-
wide consensus, using a result of [44]. This work demonstrates that one can develop
efficient algorithms for solving high-level problems in the SINR model, using graph-based
algorithms over a local broadcast abstraction layer that hides the technicalities of the
SINR platform such as global interference. Our algorithms do not require bounds on
the network size, nor the ability to measure signal strength, nor carrier sensing, nor
synchronous wakeup.

∗Supported by Icelandic Research Fund grants 120032011 and 152679-051.
†Supported by the following grants: AFOSR Contract Number FA9550-13-1-0042, NSF Award 0939370-

CCF, NSF Award CCF-1217506, NSF Award CCF-AF-0937274.

ar
X

iv
:1

50
5.

04
51

4v
1

 [
cs

.D
C

]
 1

8
M

ay
 2

01
5

1 Introduction

Two active areas in Distributed Computing Theory are the attempts to understand wireless
network algorithms in the Signal-to-Interference-plus-Noise-Ratio (SINR) model and abstract
Medium Access Control layers (absMAC).

• The SINR model captures wireless networks in a more precise way than traditional
graph-based models, taking into account the fact that signal strength decays according
to geometric rules and interference and does not simply stop at a certain border.

• Abstract MAC layers (a.k.a Local Broadcast Layers), express guarantees for local broad-
cast while hiding the complexities of managing message contention. These guarantees
include message delivery latency bounds: an acknowledgment bound on the time for a
sender’s message to be received by all neighbors, and a progress bound on the time for
a receiver to receive some message when at least one neighbor is sending.

In this paper we combine the strengths of both models by abstracting and modularizing
broadcast with respect to global interference and decay via the SINR formula. This marks
the start of a systematic study that simplifies the development of algorithms for the SINR
model. At the same time we provide an example that modularizing and abstracting broadcast
using MAC layers is beneficial and does not necessarily result in worse time-bounds than those
of the broadcast algorithm being decomposed.

Traditionally, SINR platforms are quite complicated (compared to graph-based platforms),
and consequently are very difficult to use directly for designing and analyzing algorithms for
higher-level problems1. We show how absMACs can help to mask their complexity and make
algorithms easier to design. This demonstrates the potential power of absMACs with respect
to algorithm design for the SINR model. During this process we point out and overcome
inherent difficulties that at first glance seem to separate the MAC layers from the SINR
model and other physical models. These difficulties arise because absMACs are graph-based
interference models, while physical models capture (global) interference by specific signal-
propagation formulas. Overcoming this mismatch is a key difficulty addressed in this work.

We tackle this mismatch by introducing the concept of approximate progress into the
absMAC specification and analysis. The definition of approximate progress enables us to
obtain a good implementation of an absMAC, which enables anyone to immediately transform
generic algorithms designed for an absMAC into algorithms for the SINR model. The main
observation that inspired the definition of approximate progress is a proof, that no SINR
absMAC implementation is able to guarantee fast progress in an SINR-induced graph G,
while fast progress can be guaranteed with respect to an approximation G̃ of G. Roughly
speaking, as SINR-induced strong connectivity graphs are defined based on discs representing
transmission ranges, we choose G̃ := G1−2ε to approximate G := G1−ε by making the disc a
tiny bit smaller than in G.

This abstraction makes it easier to design algorithms for higher-level problems in the
SINR model and has further benefits. One of the most intriguing properties of abstract MAC

1We refer by higher-level problems to e.g. network-wide broadcast, consensus, or computing fast relaying-
routes, max-flow and other problems whose solution requires a good understanding of lower-level problems.
Here, we refer by lower-level problems to e.g. achieving connectivity, minimizing schedules and capacity maxi-
mization, which are better understood by now.

1

layers is their separation of global from local computation. This is beneficial in two ways.
On the one hand this separation allows us to expose useful SINR techniques in the simple
setting of local broadcast. On the other hand this separation provides the basic structure
to perform an analysis based on local parameters, such as the number of nodes in trans-
mission/communication range and the distance-ratios between them, which is beneficial as
pointed out in Section 2.2. Due to this, and the plug-and-play nature of the absMAC theory,
we obtain a faster algorithms for global single-message broadcast than [14] and fast algorithms
for global multi-message broadcast and consensus in the SINR model. To achieve these results,
we simply plug our absMAC implementation and bounds into the results of [37] and [44].

Future Benefits of Abstract MAC Layers in the SINR Model. Many higher-level
problems such as global broadcast, routing and reaching consensus are not yet well understood
in the SINR model and recently gained more attention [14, 17, 30, 31, 33, 49, 50]. Many of
these problems in the algorithmic SINR can be attacked in a structured way by using and
implementing absMACs that hide all complications arising from the SINR model and global
interference. Using MAC layers, graph-based algorithms can be analyzed in the SINR model
even without knowledge of the SINR model and might still lead to almost optimal algorithms
as we demonstrate here.

2 Contributions and Related Work

We devote large parts of this article to prove theorems on implementing an absMAC in the
SINR model and how to modify the absMAC specification to get better results. Based on these
theorems we derive results on higher-level problems in the SINR model. Table 1 summarizes
our algorithmic contributions. In the following G1−ε and G1−2ε denote two versions of strong
connectivity SINR-induced graphs. By ∆G1−ε and ∆G1−2ε we denote their degree and by
DG1−ε and DG1−2ε their diameter. The network size is denoted by n and the ratio of the
minimum distance to the smallest distance between nodes connected by an edge in G1−ε is
denoted by Λ. Parameter α denotes the path-loss exponent of the SINR model. We state
more detailed definitions in Section 4.

Efficient implementation of acknowledgments. Theorem 5.1 transfers Algorithm 1
of [29] and its analysis to implement fast acknowledgments of the absMAC and modifies it
to use local parameters. The resulting algorithm performs acknowledgments with probability
at least 1 − εack in time O

(
∆G1−ε log

(
Λ
εack

)
+ log(Λ) log

(
Λ
εack

))
. Remark 5.3 provides a

close lower bound.

Proof of impossibility of efficient progress. Theorem 6.1 shows that one cannot expect
an efficient implementation of progress using the standard definition of absMAC. In particular
one cannot implement an absMAC in the SINR model that achieves progress in time ∆G1−ε

or less. This is not much better than our bound on acknowledgments and therefore inefficient.
This lower bound is even true when an optimal schedule for transmissions in the network is
computed by a central entity that has full knowledge of all node positions and can choose
arbitrary transmission powers for each node. In contrast, all algorithms presented here are
fully distributed, use uniform transmission power and do not know the positions of nodes.

2

The notion of approximate progress. Achieving progress faster than acknowledgment
is key to several algorithms designed for absMACs. Motivated by the above lower bound,
we relax the notion of progress in the specification of an absMAC to approximate progress.
Definition 7.1 introduces approximate progress with respect to an approximation (or some
subgraph) of the graph in which local broadcast is performed. Although this new notion
of approximate progress is weaker than the usual (single-graph) notion of progress, bounds
on approximate progress turn out to be strong enough to yield, e.g., good bounds for global
broadcast as long asG is, e.g., connected—see Theorem 12.7. The introduction of approximate
progress is the main conceptual contribution of this article.

Efficient implementation of approximate progress. We propose an algorithm that
implements approximate progress in time O

((
logα(Λ) + log∗

(
1

εapprog

))
log(Λ) log

(
1

εapprog

))
with probability at least 1− εapprog, see Theorem 9.1. This algorithm is a modification of the
global single-message broadcast algorithm of [14] to guarantee approximate progress in a local
multi-message environment. This also makes this algorithm suitable for a localized analysis,
which enables us to bound on approximate progress depending only on local parameters and
the desired success probability. A key issue is that transmissions made below the MAC layer to
implement its broadcast service might be highly unsuccessful due to being performed randomly
and being prone to interference. Although the absMAC implementation is guaranteed to
perform approximate progress with arbitrarily high probability guarantee 1−εapprog (specified
by by the user), it is crucial to use very low probability guarantees below the MAC layer. Fast
approximate progress for large values of εapprog can only be achieved when this is reflected in
probability guarantees below the MAC layer (e.g. by avoiding network wide union bounds,
as these require w.h.p. guarantees). This is an important step towards the improved bounds
on global broadcast stated below. To argue that despite constant success probability of
transmissions during our constructions we can still achieve the desired probability guarantee
1− εapprog for correctness of approximate progress, we 1) argue that global interference from
nodes that erroneously participate in the protocol due to previously unsuccessful transmissions
does not affect local broadcast much, and 2) bound the local effects of previously unsuccessful
transmissions by studying the probability of correct execution of the algorithm in a receiver’s
neighborhood. This analysis is arguably the main technical contribution of this article.

Global consensus, single-message and multi-message broadcast in the SINR model.
We immediately derive an algorithm for global consensus (CONS) in Corollary 5.5 by combin-
ing our acknowledgment-bound with a result of [44]. CONS can be achieved with probability
at least 1− εCONS in time O

(
DG1−ε(∆G1−ε + log(Λ)) log

(
nΛ

εCONS

))
. Section 12 combines our

absMAC implementation with results of [37] in a straightforward way to derive algorithms for
global single-message broadcast (SMB) and global multi-message broadcast (MMB). Global
SMB can be performed in time O

((
DG1−2ε + log

(
n

εSMB

))
logα+1(Λ)

)
with probability at

least 1− εMMB. Global MMB can be performed with probability at least 1− εMMB in time
O
(
DG1−2ε logα+1(Λ) + k

(
∆G1−ε + polylog

(
nkΛ
εMMB

))
log

(
nk

εMMB

))
.

Remark 2.1. All assumptions that we make in the SINR model and in absMACs are listed
in Section 4.6 and are mainly adapted from [14] and [32]. Our SINR-related assumptions are

3

Task/Bound Lower bound Upper bound presented here

fack ∆G1−ε
(+) O

(
∆G1−ε · log

(
Λ
εack

)
+ log(Λ) log

(
Λ
εack

))
fprog ∆(∗)

G1−ε
O
(

∆G1−ε · log
(

Λ
εack

)
+ log(Λ) log

(
Λ
εack

))
fapprog – O

((
logα(Λ) + log∗

(
1

εapprog

))
log(Λ) log

(
1

εapprog

))
global SMB Ω

(
DG1−ε log

(
n

DG1−ε

)
O
((
DG1−2ε + log

(
n

εSMB

))
logα+1(Λ)

)(†)

+ log2(n)
)(‡)

global MMB Ω
(
DG1−ε log

(
n

DG1−ε

)
O
(
DG1−2ε logα+1(Λ) + k∆G1−ε log

(
nk

εMMB

)
+ k log(n) + log2(n)

)(‡)
+ polylog

(
nkΛ
εMMB

))(†)

global CONS – O
(
DG1−ε(∆G1−ε + log(Λ)) log

(
nΛ

εCONS

))(†)

Table 1: Summary of algorithmic results, see Section 4 for details on notation. The table compares
our new upper bounds to (known and new) lower bounds. Known lower bounds are graph-based
and transfer to our setting, as we use weaker assumptions. To compare graph-based lower bounds
with our upper bounds, one might choose Λ = n to account for possible high degree and choose
εSMB = εMMB = n−c to achieve w.h.p. correctness. (*) Lower bound proven in this paper using
absMAC assumptions of [37]. (†) Lower bounds require runtimes of global broadcast to depend on n
even though we perform a local analysis. (‡) Combinations of lower bounds of [2, 20, 42] for graph
based models. (+) Trivial lower bound (Remark 5.3).

rather weak. We do neither require ability to measure signal strength, nor carrier sensing, nor
synchronous wakeup nor knowledge of positions. We do assume, e.g., (arbitrary) bounds on
the minimal physical distance between nodes and on the background noise (from which Λ can
be derived), as well as conditional wakeup.

2.1 Comparison of Algorithmic Results with Previous Work

Global single-message broadcast. Table 2 compares the runtime of our algorithm for
global SMB with previous work. Currently [14] and [32] provide the best implementations
of global SMB in the SINR model (see the runtimes in Table 2). The result of [14] is as
good or better than [32] in case logα+1(Λ) ≤ log(n) and vice versa. To make it possible
to compare our result to theirs, we need to choose εSMB = 1/nc such that global SMB is
correct w.h.p.. Furthermore, we execute our algorithm with ε′ := ε/2 instead of ε, while
algorithms in previous work are executed without changing ε. This ensures that our bounds
are stated in terms of the same parameter DG1−ε rather than the possibly larger parameter
DG1−2ε . At the same time the choice of ε′ affects the runtime only by a constant factor.
This results in a runtime of our algorithm of O

(
(DG1−ε + log(n)) logα+1(Λ)

)
in the strong

connectivity graph G1−ε. This improves over the algorithm presented in [14] in the full range
of all parameters, and improves in case of logα+1(Λ) ≤ min(DG1−ε log(n), log2(n)) over the
algorithm of [32]. Note that compared to [32] we (and [14]) assume knowledge of a bound on
Λ. The key-ingredient of this improvement is our localized analysis in combination with [37].

4

Article Runtime bound for global SMB We improve this runtime in case of

this O
((
DG1−ε + log (n)

)
logα+1(Λ)

)
[14] O

(
DG1−ε logα+1(Λ) log(n)

)
all parameters and ranges

[32] O
(
DG1−ε log2(n)

)
logα+1(Λ) ≤ min(DG1−ε log(n) , log2(n))

Table 2: Comparison of the runtime of our global SMB protocol with previous results.

Global multi-message broadcast. The algorithm for global MMB derived from [29] runs
in O((DG1−ε + k)(∆G1−ε · logn+ log2 n)) time. Roughly speaking, our algorithm replaces the
dependency on the potentially large multiplicative term DG1−ε∆G1−ε by DG1−ε up to polylog
factors. Section 3 summarizes global MMB in related models.

Global consensus. We are not aware of any previous work in the model we consider.

2.2 A Demonstration how Algorithms Benefit from Abstract MAC Layers

When abstract MAC layers were introduced to decompose global broadcast into local and
global parts, the original goal was to understanding broadcast better and to achieve a general
framework that can be used to state, implement and analyze new algorithms faster and simpler
with respect to different models. A downside was that decomposing broadcast by adding a
MAC layer might slow down performance. We demonstrate that the absMAC not only help
to decompose the SINR-algorithm for global single-message broadcast of [14] into a local and
global layer, but can be used to improve performance in an organized way when the algorithms
of the two layers are modified and put back together. The key insight is, that the MAC layer
provides the basic structure for a localized analysis by decomposing broadcast into a local
and a global part. We show that a local analysis is indeed possible despite global interference
and SINR constraints. To achieve best results, we make our analysis dependent on 1) local
parameters such as the degree of a node, and 2) the desired probabilities of success of local
broadcast. Combined with the algorithm [37] for global single-message and multi-message
broadcast (that assumes an absMAC implementation such as ours), this immediately implies
improved algorithms as highlighted in Section 2.1.

3 Related Work

Graph Based Wireless Networks. This model was introduced by Chlamtac and Kut-
ten [7], who studied deterministic centralized broadcast. Global SMB: For the case where
the topology is not known, Bar-Yehuda, Goldreich, and Itai (BGI) [4] provided a simple,
efficient and fully distributed method called Decay for local broadcast. Using this method
they perform global SMB in O(D logn+ log2 n) rounds w.h.p.. Later Czumaj and Rytter [12]
and Kowalski and Pelc [40] simultaneously and independently presented an algorithm that
performs global SMB in time O(D log(n/D) + log2 n), w.h.p.. While this sequence of upper
bounds was published, a lower bound of Ω(log2 n) was established for constant diameter net-
works by Alon et al. [2] and a lower bound of Ω(D log(n/D)) was established by Kushilevitz

5

and Mansour [42]. Therefore the upper bounds are tight. In case the topology is unknown but
collision detection is available, Ghaffari et al. [21], present show how to perform global SMB
w.h.p. in time O(D+ log6 n). In case the topology is known, a sequence of articles presented
increasingly tighter upper bounds [8, 18, 16, 19, 39], where an algorithm for for global SMB in
optimal time O(D+ log2 n) was presented by Kowalski and Pelc [39]. Global MMB: When
collision detection is available, the sequence of work [5, 21, 36] led to an O(D+k logn+log2 n)
round algorithm that performs global broadcast of k messages w.h.p. assuming knowledge
of the topology, which is due to Ghaffari et al. [21]. When this assumption is removed, the
runtime of [21] increases slightly to O(D+k logn+log6 n). Earlier, Ghaffari et al. [20] showed
a lower bound of Ω(k logn) for global MMB. Global Consensus: Peleg [45] provided a good
survey on consensus in wireless networks. Of particular interest is the work of Cholker et
al. [9] and [1]. Many of these lower bounds can be transferred to the SINR-model using
SINR-induced graphs. We can use upper bounds to benchmark our algorithms.

Abstract MAC layer. The abstract MAC layer model was recently proposed by Kuhn et
al. [41]. This model provides an alternative approach to the various graph-based models men-
tioned above with the goal of abstracting away low level issues with model uncertainty. The
probabilistic abstract MAC layer was defined by Khabbazian et al. [37]. Implementations
of absMACs: Basic implementations of a probabilistic absMAC were provided by Khab-
bazian et. al [37] using Decay, and by [38] using Analog Network Coding. Applications of
absMACs: The first to study an advanced problem using the absMAC of [41] were Cornejo
et al. [10, 11], who investigated neighbor discovery in a mobile ad hoc network environment.
Global SMB and MMB broadcast were studied by [37] in probabilistic environments and by
Ghaffari et al. [23] in the presence of unreliable links. Newport [44] showed how to achieve fast
consensus using absMAC implementations. Our paper makes applies the results of [37, 44].

SINR model. Moscibroda and Wattenhofer [43] were the first to study worst-case analysis
in the SINR model. They pointed the algorithmic and distributed computing community to
this model that was studied by engineers for decades. Local broadcast: Short time after this,
Goussevskaia et al. [24] presented two randomized distributed protocols for local broadcast
assuming uniform transmission power and asynchronous wakeup. This was improved simul-
taneously and independently by Yu et al. [48] and Halldorsson and Mitra [29] by obtaining
similar bounds while using weaker model assumptions that are similar to those assumptions
that we use. Both stated an algorithm for local broadcast in O(Nx · log(n) + log2(n)), where
Nx is the contention in the transmission range of node x. In this paper we transform the
latter result to be part of an implementation of a probabilistic absMAC that yields fast ac-
knowledgments. We modify the analysis of [29] to use purely local parameters. Global
MMB: The above algorithms for local broadcast immediately imply algorithms with run-
time O((DG1−ε + k)(∆G1−ε · log(n+ k) + log2(n+ k))) for global MMB of k messages w.h.p..
Scheideler et. al [46] consider a model with synchronous wakeup, uniform power and physical
carrier sensing (that allows to differentiate signal strength corresponding to two thresholds).
In this model they provide a randomized distributed algorithm that computes a constant
density dominating set w.h.p. in O(logn) rounds. Such a sparsified set can be used to speed
up global MMB by replacing the dependency on ∆G1−ε in the formula above by logn. Yu et
al. [49, 50] obtain almost optimal bounds using arbitrary power control. For a large range

6

of the parameters their runtimes are better than the runtime of the algorithm that we pro-
vide. However, we point out that arbitrary power control is known to be almost arbitrarily
more powerful for some problems than the uniform power restriction that we use [34, 43]
such that we do not use this result as a benchmark. Power control was also used in [6]
to achieve connectivity and aggregation, which in turn can be used for broadcast as well.
Global SMB: This problem recently caught increased attention and was studied in a se-
quence of papers [14, 31, 32, 33] using strong connectivity graphs G1−ε. Jurdzinski, Kowalski
et al. [31, 33] considered a setting where nodes know their own positions. In [31] they were
able to present a distributed protocol that completes global broadcasts in the near-optimal
time O(D + log(1/δ)) with probability at least 1− δ. In [33] they perform broadcasts within
O(D log2 n) rounds. Daum et al. [14] propose a model that avoids the rather strong assump-
tion that node’s locations are known and does not use carrier sensing. However, they assume
polynomial bounds on n and Λ. Thanks to a completely new approach they show how to
still perform global broadcast in G1−ε within O(D logα+1(Λ) log(n)) rounds w.h.p. using this
weaker model. Their algorithm is based on a new definition of probabilistic SINR induced
graphs combined with an iterative sparsification technique via MIS computation. We transfer
and modify this algorithm to implement approximate progress in a probabilistic absMAC and
provide a significantly extended analysis. Shortly after that, Jurdzinski et al. [32] came up
with a O(D log(n) + log2 n) algorithm that w.h.p. performs global broadcast independent of
knowing Λ. However, to achieve this runtime they assume all nodes are awake and start the
protocol at the same time. When assuming conditional wakeup, as [14] and we do, their algo-
rithm still requires only O(D log(n) + log2 n) rounds. Table 2 compares these results to ours.
Further work: During the last years significant progress was made on lower-level problems
that might provide useful tools for absMAC design, such as connectivity [28], minimizing
schedules [27], and capacity maximization [26, 34].

4 Model and Definitions

We begin by defining basic notation for graphs, which we use throughout the paper. Although
the SINR model is not graph-based, we derive graphs from SINR models using reception zones.
Abstract MAC layers are defined explicitly in terms of graphs. We continue by by describing
the computational devices we use and recalling definitions of the SINR model, abstract MAC
layers and global broadcast problems.

4.1 Graphs and their Properties

Let G = (V,E) be a graph over n nodes V and edges E. We denote by dG(v, w) the hop-
distance between w and v (the number of edges on a shortest (u, v)-path), and by DG :=
maxu,v∈V dG(u, v) the diameter of graph G. All neighbors of v in G are called G-neighbors of
v. We denote the direct neighborhood of v inG byNG(v). This includes v itself. More formally
we define NG(v) := {u|(v, u) ∈ E} and extend this to NG,r(v) := {u|dG(v, u) ≤ r} for the
r-neighborhood, r ∈ N. For any set W ⊆ V we generalize this to NG,r(W) := ⋃

w∈W NG,r(w).
The degree δG(v) of a node is the number of its (direct) neighbors in G, formally δG(v) :=
|NG(v)|\{v}. We denote the maximum node degree of G by ∆G := maxv∈V δG(v). Let S ⊆ V
be a subset of G’s vertices, then G|S = (S,E|S) denotes the subgraph of G induced by nodes
S, where E|S := {(u, v) ∈ E|u, v ∈ S}. A set S ⊆ S′ ⊆ V is called a maximal independent set

7

(MIS) of S′ in G if 1) any two nodes u, v ∈ S are independent, that is (u, v) /∈ E, and 2) any
node v ∈ S′ is covered by some neighbor in S, that is NG(v) ∩ S 6= ∅.

Definition 4.1 (Growth bounded graphs). A graph G = (V,E) is (polynomial) growth-
bounded if there is a polynomial bounding function f(r) such that for each node v ∈ V , the
number of nodes in the neighborhood NG,r(v) that are in any independent set of G is at most
f(r) for all r ≥ 0.

Lemma 4.2. Let G be polynomially growth-bounded by function f , then it holds that |NG,r(v)| ≤
∆f(r) for all v ∈ V and r ∈ N.

Proof. The proof is deferred to Appendix A.

4.2 The SINR Model

The following describes the foundations of the physical model (or SINR model) of interference.
We start by introducing a second distance function. Nodes are located in a plane and we
write d(v, w) for the Euclidean distance between points v, w (often corresponding to node’s
positions). It is clear from the context when d refers to hop-distance or Euclidean distance.

When a node v (of a wireless network) sends a message, it transmits with (uniform) power
P > 0. A transmission of v is received successfully at a node u, if and only if

SINRu(v) := P/d(v, u)α∑
w∈S\{u,v} P/d(w, u)α +N

≥ β, (1)

where N is a universal constant denoting the ambient noise. The parameter β > 1 denotes the
minimum SINR (signal-to-interference-noise-ratio) required for a message to be successfully
received, α is the so-called path-loss constant. Typically it is assumed that α ∈ (2, 6], see [24].
Here, S is the subset of nodes in V that are sending. (All other nodes send with power
P ′ = 0). Independent of whether a distance function for the nodes is known, we assume in
the analysis that the minimum distance between two nodes is 12 (a.k.a near-field effect). This
assumption can be justified by scaling length when assuming that two nodes cannot be at
the same position (e.g. as each antenna’s size is strictly larger than 0). In this article we
restrict attention to uniform power assignments. All nodes v ∈ S send with the same power
Pv = P for some constant P . By R := (P/βN)1/α we denote the transmission range, i.e. the
maximum distance at which two nodes can communicate assuming no other nodes are sending
at the same time. For a ∈ R+, we define Ra := a ·R. If d(v, u) ≤ Ra and a < 1, we say u and v
are connected by a a-strong link. Like previous literature we consider a link to be strong if it
is (1− ε)-strong for constant ε > 0. Intuitively, this means that the link uses at least slightly
more power than the absolute minimum needed to overcome the ambient noise caused, e.g.,
by a few nodes sending far away. If Ra < d(u, v) ≤ R1, we say u and v are connected by an
a-weak link. A (1− ε)-weak link is just called weak link. Strong connectivity is a reasonable
and often used assumption [3, 14, 15, 24, 35].

2Otherwise the SINR-formula implies that the power P/d(v, u)α received by a node u closer to a sender v
is higher than the power that v uses to send.

8

4.3 SINR Induced Graphs

Like e.g. in [14], we consider strong connectivity broadcast in this article while using uniform
power. Therefore we consider the strong connectivity graph G1−ε = (V,E1−ε), where (u, v) ∈
E1−ε, if u, v ∈ V are connected by a strong link. Given a graph G, we denote by ΛG the ratio
between the maximum and minimum Euclidean length of an edge in E. In case that G is
G1−ε, we simply write Λ instead of ΛG1−ε .

Remark 4.3. Note that [14] uses a different but equivalent definition, while the above one
is more common. In [14] two nodes are connected in a graph if they are at distance at most
R/(1 + ρ), where ρ takes the place of our ε. When restating their lemmas, we simply use our
notation without further comments as one can chose e.g. ρ := ε/(1− ε) or ε := ρ/(1 + ρ).

4.4 Abstract MAC Layers

While there are several abstract MAC layer models [23, 37, 41], the probabilistic version
defined in [37] is most suitable for our purposes. Like any abstract MAC layer, the probabilistic
MAC layer is defined for a graph G = (V,E) and provides an acknowledged local broadcast
primitive for communication in G. In our setting we are interested in strong connectivity
broadcast with respect to the SINR formula, such that we use G1−ε as the communication
graph (defined in Section 4.2).

We use the definitions of Ghaffari et al. [23] adapted to the probabilistic setting of [37].
To initiate such a broadcast, the MAC layer provides an interface to higher layers via input
bcast(m)i for any node i ∈ V and message m ∈M . To simplify the definition of this primitive,
assume w.l.o.g. that all local broadcast messages are unique. When a node u ∈ V broadcasts
a message m, the model delivers the message to all neighbors in E. It then returns an
acknowledgment of m to u indicating the broadcast is complete, denoted by ack(m)u. In
between it returns a rcv(m)v event for each node v that received message m. This model
provides two timing bounds , defined with respect to two positive functions, fack and fprog
which are fixed for each execution. . The first is the acknowledgment bound, which guarantees
that each broadcast will complete and be acknowledged within fack time. The second is the
progress bound, which guarantees the following slightly more complex condition : fix some
(u, v) ∈ E and interval of length fprog throughout which u is broadcasting a message m; during
this interval v must receive some message (though not necessarily m, but a message that some
location is currently working on, not just some ancient message from the distant past). The
progress bound, in other words, bounds the time for a node to receive some message when at
least one of its neighbors is broadcasting. In both theory and practice fprog is typically much
smaller than fack [37]. Further motivation and power of these delay bounds is demonstrated
e.g. in [23, 37, 41].

We emphasize that in abstract MAC layer models the order of receive events is determined
non-deterministically by an arbitrary message scheduler. The timing of these events is also
determined nondeterministically by the scheduler, constrained only by the above time bounds.

The Standard Abstract MAC Layer. Nodes are modeled as event-driven automata.
While [23] assumes that an environment abstraction fires a wake-up event at each node at
the beginning of each execution, we assume conditional wake-up to be consistent with the
model of [14], see Definition 4.4. This is a weaker wake-up assumption with respect to upper

9

bounds when compared to synchronous wake-up [23]. This strengthens our algorithmic results.
In contrast to this our lower bounds assume synchronized wake-up, which is in turn the
weaker assumption with respect to lower bounds. The environment is also responsible for
any events specific to the problem being solved. In multi-message broadcast, for example, the
environment provides the broadcast messages to nodes at the beginning.

Definition 4.4 (Conditional (a.k.a non-spontaneous) wake-up of [14] adapted to absMACs).
Only after a node is woken up it can participate in computations below the MAC layer (i.e. in
the network layer). Communication needs to be scheduled from scratch. This corresponds to
the conditional (non-spontaneous) wake up model.

The Enhanced Abstract MAC Layer. The enhanced abstract MAC layer model differs
from the standard model in two ways. First, it allows nodes access to time (formally, they
can set timers that trigger events when they expire), and assumes nodes know fack and fprog.
Second, the model also provides nodes an abort interface that allows them to abort a broadcast
in progress.

The Probabilistic Abstract MAC Layer. We use parameters εprog and εack to indicate
the error probabilities for satisfying the delay bounds fprog and fack. Roughly speaking this
means that the MAC layer guarantees that progress is made with probability 1− εprog within
fprog time. With probability 1 − εack the MAC layer correctly outputs an acknowledgment
within fack time steps. More details can be found in Section 4.2 of [37].

Reliable Communication. Note that like in [37] all our communication graphsG := G1−ε
are static and undirected. In contrast to this, [23, 41] defines not only a graphG for guaranteed
communication, but also a graph G′ for possible (but unreliable) communication.

4.5 Problems

We derive algorithms in the SINR-model that perform the tasks listed below correctly with
probability 1 − εtask. When choosing εtask ≤ n−c we say that an algorithm performs a task
with high probability (w.h.p.). Here, c > 0 is an arbitrary constant provided to the algorithm
as an input-parameter. We use the notation w.h.p. only to compare our results with previous
work.

The Multi-Message Broadcast Problem (MMB) [37]. This problem inputs k ≥ 1
messages into the network at the beginning of an execution, perhaps providing multiple mes-
sages to the same node. We assume k is not known in advance. The problem is solved once
every message m, starting at some node u, reaches every node in G. Note that we assume G
is connected to be consistent with previous work in the SINR model, while in [23] this is not
assumed. We treat messages as black boxes that cannot be combined.

The Single-Message Broadcast Problem (SMB) [37]. The SMB problem is the special
case of MMB with k = 1. The single node at which the message is input is denoted by i0.

10

The Consensus Problem (CONS), version considered in [44]. In this problem each
node begins an execution with an initial value from {0, 1}. Every node has the ability to per-
form a single irrevocable decide action for a value in {0, 1}. To solve consensus, an algorithm
must guarantee the following three properties: 1) agreement: no two nodes decide different
values; 2) validity: if a node decides value v, then some node had v as its initial value; and
3) termination: every non-faulty process eventually decides.

4.6 General Model Assumptions

In principle each node has unlimited computational power. However, our algorithms perform
only very simple and efficient computations. Finally, we assume that each node has private
access to an unlimited perfect random source. This assumption can be weakened. As in [14]
wake up of nodes is conditional, see Definition 4.4. From SINR-based work [14] that we use we
take the following assumptions: Nodes are located in the Euclidean plane3 and locations are
unknown. Nodes send with uniform power, where the fixed power level P is not known to the
nodes. We use the common assumption that α > 2, see [24]. No collision detection mechanism
is provided. Even when the same message is sent by (at least) two nodes and arrives with
constructive interference we assume that the received signal cannot be distinguished from
the case where no node is sending at all. As previous work we assume G1−ε is connected.
MAC-layer based work [37] requires us to assume that nodes can detect if a received message
originates from a neighbor in a graph G–in our setting this is G1−ε–(only one graph G is
used in [37], while messages from any sender in the network might arrive but do not cause
rcv-events).

Remark 4.5 (Concerning SINR assumptions). Although not explicitly stated in [14], footnote
5 in the full version [13] of [14] indicates that they use the assumption α > 2 as well. We
also assume that α, β and N are known. Note that [14] allows α to be unknown, but fix in
a known range [αmin, αmax]. Furthermore they assume upper and lower bounds for β and N
given by βmin, Nmin and βmax, Nmax. For simplicity we do not make these assumptions, but
claim our results can be stated in terms of these bounds as well. Compared to [14] nodes that
execute local broadcast do not need to know a polynomial bound on the network size n. In [14]
this knowledge is only needed to achieve w.h.p. successful transmissions at each step. In our
setting the desired probability of success is provided by the user of the absMAC.

Remark 4.6 (Concerning absMAC assumptions). We want to remark that the assumption
that nodes can detect if a received message originated in the G1−ε-neighborhood is not used
by any of the algorithms presented in this paper. In particular this assumption is not needed
by previous algorithms on top of the MAC layer we use. This is due to the assumption that
G1−ε is connected. However, being able to detect if a message was sent from a G1−ε-neighbor
might be required by future algorithms using our absMAC implementation that need broadcast
to be implemented on exactly G1−ε. Examples of this include G1−ε-specific problems not
studied in this article (such as e.g. computing shortest paths in G1−ε). Note that a node
x executing our absMAC implementation might also successfully transmit messages to nodes
that are not in NG1−ε(x) but still in transmission range. For the reasons explained above we
state our algorithms without the assumption that nodes can detect in which range a received

3Our results can be generalized to any growth-bounded metric space when revising the assumption on α.

11

message originated. If future algorithms using our absMAC implementation require exact
broadcast, nodes executing our absMAC implementation could simply disregard messages they
receive from nodes that are not their G1−ε-neighbors (using the then necessary assumption that
nodes can detect in which range a received message originated required to achieve exact local
broadcast). If needed, there are several ways to implement this assumption. E.g. assuming
that the SINR of the received message as well as the total received signal strength CCA can
be measured. Using these assumptions there might also be faster SINR-implementations of an
absMAC than provided in this article.

4.7 Overview of Frequently used Notation
For the convenience of the reader the following table summarizes notation used frequently (or
globally) in this article. Definitions of notation not listed here are stated nearby where it is
used.

Notation Explanation/Reference
Problems:
SMB Global Single-Message Broadcast
MMB Global Multi-Message Broadcast
CONS Global Consensus
εSMB , εMMB , εCONS Bounds on the probability that SMB,MMB and CONS are performed incorrectly
SINR related:
α α ∈ (2, 6], path-loss exponent in the SINR model
P, Pv Constant sending power of a node
d(u, v) Euclidean distance between nodes u and v
IS(v) Interference caused at point v by nodes in set S sending with power P
ε Parameter that helps to define strong reachability, see R1−ε
R R := (P/βN)1/α, transmission range if no other node sends (weak reachability)
R1−ε, R1−2ε Ra := a·R, transmission distance tolerating interference from a sparse set of nodes.

Tolerated sparsity of the set depends on a (strong reachability)
Λ Ratio of R1−ε to the shortest distance between any two nodes
Graph related:
G1 Nodes at distance at most R1 are connected (weak connectivity graph). In our

algorithms communication in this graph might be unreliable
G1−ε, G1−2ε Nodes at distance at most R1−ε/or R1−2ε are connected in G1−ε/or G1−2ε (strong

connectivity graphs). We implement reliable local broadcast in G1−ε and analyze
fast approximate progress with respect to G1−2ε

G|S The subgraph (S,E|S) of G = (V,E) induced by nodes in S and E|S := E∩(S×S)
NG(v), NG(W) Neighborhoods of node v/set W in graph G
NG,r(v), NG,r(W) r-neighborhood of node v/set W in graph G
∆G Maximal degree of any node in graph G
DG Diameter of Graph G
f Polynomial increasing function bounding the growth of graphs in this article
MAC layer related:
bcast, rcv, ack Broadcast/receive/acknowledgment events in the MAC layer
fack, fprog, fapprog Bounds on the time needed for acknowledgment/progress/approximate progress
εack, εprog, εapprog Bounds on the probability that acknowledgment/progress/approximate progress

are not performed in time fack, fprog, fapprog
G′ Graph with unreliable communication [23]. Our setting considers G′ := G1

12

G Graph with reliable communication [23]. Our setting considers G := G1−ε
G̃ Notation we introduce to denote subgraphs/approximations of G in which we mea-

sure approximate progress. Our setting considers G̃ := G1−2ε

Algorithm 9.1 related:
Phase φ Phases φ = 1, . . . ,Φ are executed within an epoch
Epoch Each epochperforms approximate progress with respect to G1−2ε
Φ Φ = Θ(log Λ), number of phases φ executed in an epoch
Q Q = logα Λ, parameter used to adjust transmission probabilities in Line 11
c c ∈ N s.t. c log∗N bounds the MIS algorithm [47]’s runtime on IDs ∈ [1, N]
p p ∈ (0, 1/2], transmission-probability of a node (whenever not specified otherwise)
µ µ ∈ (0, p), reliability-probability of an edge (whenever not specified otherwise)
T T = Θ

(
log (f(h1)/εapprog) /(γ2µ)

)
, transmission-repetitions (when not changed)

m,m′ m is the bcast-message to be broadcast, m′ is a bcast-message that is received
γ γ ∈ (0, 1), parameter used to define the approximation H̃µ

p [S] of Hµ
p [S]

hφ, h
′
φ hφ := h′φ := 1, h′φ := 3hφ+1 and hφ := h′φ + c log∗(Λ/εapprog) + 1 for 1 ≤ φ < φ

Hµ
p [S] Graph defined in [14]: µ-reliable edges, nodes ∈ S send with prob. p, see Section 9.2

H̃µ
p [S] Graph computed in [14] to (1− γ)-approximate Hµ

p [S] w.h.p., see Section 9.2
˜̃Hµ
p [S] Graph computed in Section 9.2. Likely to (1− γ)-approximate Hµ

p [S] locally
S1 Set of nodes with an ongoing broadcast at a given time
Sφ Independent Set in ˜̃Hµ

p [Sφ] that is (φ, i)-locally maximal with some probability
(φ, i)-locally (φ, i)-locally maximal independent sets are defined in Definition 10.6
uφ Closest node ∈ Sφ to location i in the proofs, see Lemma 10.16
Uφ,i Uφ,i := NG1−ε(i) ∩ Sφ, phase-φ-senders at distance ≤ R1−ε, see Definition 10.5
Sφ,i Sφ,i := N ˜̃Hµp [Sφ],hφ

(Uφ,i), phase-φ-senders relevant to location i, see Definition 10.5
S′φ,i S′φ,i := N ˜̃Hµp [Sφ],h′

φ

(Uφ,i) ⊆ Sφ,i, see Definition 10.5

W Nodes that computed “wrong” neighbors in some ˜̃Hµ
p [Sφ], see Definition 10.2

5 Efficient Acknowledgments with an Application to Consen-
sus

Theorem 5.1. In the SINR model using the assumptions of Section 4.6, acknowledgments of
an absMAC can be implemented w.r.t. graph G1−ε with probability guarantee 1− εack in time
fack = O

(
∆G1−ε log

(
Λ
εack

)
+ log(Λ) log

(
Λ
εack

))
.

Remark 5.2. This section only focuses on implementation of broadcast. Reactions to inputs
from the MAC layer, such as bcast(m)i, are handled in Section 11. Section 11 that presents
the final implementation of our absMAC.

Proof. The bound on fack can be derived by modifying Theorem 3 in [29] to local parameters.
We do this in Appendix B. The bound follows when Theorem B.3 is applied with parameter
Ñx := 4Λ2, which upper bounds the number of nodes in transmission range R1 and thus the
local contention. We derive our claim as the actual contention Nx is upper bounded by ∆G1−ε .
Note that the network only knows a polynomial bound on Λ, not on Nx nor ∆G1−ε , which in
turn are estimated by Algorithm B.1. Furthermore one simply needs to modify Algorithm B.1
to stop after fack rounds, as then the probability-guarantee is reached. Note that this behavior

13

does not guarantee that no messages from nodes that are not G1−ε-neighbors are received.
See Remark 4.6 how exact local broadcast can be implemented.

Remark 5.3. As a node can only receive one message at a time, the degree ∆G1−ε of the
network corresponds to the maximal contention at some node and is therefore a lower bound
for fack. Therefore the result on fack in this section is close to optimal.

5.1 Application to Network-Wide Consensus in the SINR Model

Before implementing the absMAC specification in a formal way in Section 11, we now derive
an algorithm for global consensus based on the bound for acknowledgments, see Theorem 5.1.
This serves as a first example to demonstrate the power of the absMAC theory when applied
to the SINR world. This example is possible due to a result of [44] for achieving consensus
using an absMAC using the fact that they analyze this problem in terms of fack, while fprog
does not appear in their runtime. Although the MAC layer used in [44] is deterministic, we
can obtain a randomized algorithm that works correct with probability 1−εCONS by choosing
εprog and εack to be at most εCONS

t(n)n2 , where t(n) is the runtime of the algorithm using the MAC
layer. We obtain the following Theorem.

Theorem 5.4 (Theorem 4.2 of [44] transferred to our setting). The wPAXOS algorithm
[of [44]] solves network-wide consensus in O(DG1−ε · fack) time in the (probabilistic) absMAC
model (with εack = εprog = 1

n4εCONS
) in any connected network topology G1−ε w.h.p., where

nodes have unique ids and knowledge of network size.

Plugging in the bounds on fack of Theorem 5.1 we obtain:

Corollary 5.5 (Theorem 4.2. of [44] transferred to our setting). Network-wide consensus can
be solved with probability 1− εCONS in time

fCONS = O
(
DG1−ε(∆G1−ε + log(Λ)) log

(
nΛ

εCONS

))
.

6 Impossibility of Fast Progress using the SINR-Model

Many algorithms that are implemented in an absMAC benefit from the fact that typically
fprog is much smaller than fack. Often it is the case that fprog = O(polylog (fack)). We
show that for any implementation of the absMAC [37] for G1−ε in the SINR model such a
difference of the runtime is impossible. One can even not expect a bound on fprog that is
much better than fack. As the bound on fack in Theorem 5.1 is close to our lower bound on
fprog, we conclude that this algorithm is an almost optimal implementation of absMAC in the
SINR-model with respect to both fack and fprog.

Theorem 6.1. For worst-case locations of points there is no implementation of the absMAC in
the SINR model that provides local broadcast in G1−ε and achieves fast progress. In particular
it holds that fprog ≥ ∆G1−ε. This is true even for an optimal schedule computed by an (even
central) entity that has unbounded computational power, has full knowledge as well as control
of the network and can choose an arbitrary power assignment.

14

Proof. We first recall a slightly more formal definition of fprog given in [37], Section 4.1. (we
can choose G = G′ in their notation, as we do not consider unreliable links): a rcv(m)j event
can only be caused by a bcast(m)i event when the proximity condition (i, j) ∈ E is satisfied.
The progress bound guarantees, that a rcv event occurs at j within time fprog when some
neighbor of j is broadcasting some message. However, we make use of the assumption made
in [37] that nodes perform only rcv events for messages they received from G1−ε-neighbors and
discard messages from other nodes in transmission range. (See Remark 4.6 for a discussion
on this and why this assumption is later not needed for our upper bounds with respect to
global broadcast implementations.)

The reader might like to consult Figure 1 while following our construction. For sim-
plicity we consider the Euclidean setting and the implied distances. Consider ∆ nodes
V := {v1, . . . , v∆} placed equidistant on a line with distance 1 between neighboring nodes.
Let R1−ε := 10∆, i.e. parameters N,P and β are chosen such that the transmission range
is 10∆, and consider a second line parallel to the first line at distance R1−ε to the first line.
Now assume ∆ nodes U := {u1, . . . , u∆} are placed equidistant on this second line with dis-
tance 1 between neighboring nodes. Each node in V and U has degree ∆G1−ε = ∆ in G1−ε.
Each node in V has exactly one edge in G1−ε to a node in U and vice versa. W.l.o.g. we
assume vi is connected to ui. Now assume that bcast(mv)v events occurred for each v ∈ V
and a message mv ∈ M . Due to SINR constraints, a transmission through edge (vi, ui) is
only successful when no other node in V ∪U \ {vi} is sending at the same time. Although ui
receives a message from ui in case of a successful transmission, no node in U \ {ui} receives a
message. As there are ∆G1−ε pairs (vi, ui), there is a node uj that does not receive a message
from a G1−ε-neighbor during the first ∆G1−ε − 1 time slots. Because uj has a neighbor that
is broadcasting, we conclude that fprog ≥ ∆G1−ε for any algorithm.

𝑅1−𝜖

𝑈 𝑉

Figure 1: Graph G1−ε based on the construction used in the proof of Theorem 6.1. Here we
choose ∆ = 5.

Remark 6.2 (Comparison with previous lower bounds in the SINR model). Somewhat similar
arguments were made earlier in [14]. The same lower bound on fprog might also be derived by
modifying the construction in the proof of Theorem 9 in [14] to our setting when transferring it
to the notion of fprog. However, their lower bound is on the runtime for global single-message
broadcast in (the weak connectivity) graph G1 and therefore would need to be adapted.

Remark 6.3 (Comparison with previous lower bounds in absMACs). Note that in [22],
Theorems 7.1 and 7.2 also provide a lower bound of Ω(∆ logn) for fprog in the dual-graph
model with unreliable links. The construction of their lower bound has a similar flavor to

15

ours: Graph G consists of ∆ edges between nodes in U and V like in our example. Graph G′
is the complete bipartite graph over U and V . Whenever one single node in U is sending, an
adversary prevents communication through unreliable edges (such that progress is only made
at one node). When more than one node in U is sending, the adversary allows communication
through unreliable edges in a way that causes the lower bound. The difference to our model
is, that in our setting the edges in G′ correspond to interference when a node incident to an
edge is sending. This interference is fixed whenever a node is sending and cannot be switched
on/off by an adversary. At the same time messages received via edges in G′ that are not in
G are discarded by the probabilistic MAC layer described in [37] such that no progress can be
made using these edges.

7 Approximate Progress

Due to the lower bound on progress of Section 6 we cannot expect fprog to be much better
than fack in any SINR implementation. However, like in other wireless models it should take
much less time until some message is received by a node v (when several neighbors of v are
sending) compared to the time it takes until all neighbors of a sending node u receive u’s
message. The problem might be that the absMAC specification tries to measure progress in
this physical model using a definition of progress that tried to capture the whole complication
of the SINR model by a single graph. Motivated by this we try to capture a sense of progress
by using two graphs and modify the absMAC specification. An easy way would be to relax
the progress bound and output a rcv-event not only for messages sent by G1−ε-neighbors, but
for all message received (i.e. sent by any G1 neighbor). This is problematic when considering
randomized algorithms. In particular when computing e.g. overlay networks. It might happen
that only G1 \G1−ε-neighbors of a node v are chosen for the overlay due to the random event
of low interference. This could of course be avoided by directly implementing the absMAC
with respect to G1 rather than G1−ε, which in turn results in a Ω(n) lower bound for fprog
and fack (e.g. when all nodes are located at distance at least R1 such that messages can only
be received when exactly one node is sending). Later these overlay nodes might not be able
to serve v. To avoid such a setting, we introduce an approximate progress bound into the
absMAC specification, where we use a graph G and an approximation (or any subgraph) G̃
of G in which progress is measured.

In the next sections we show that this generalization of progress has three desirable prop-
erties, it

1. captures SINR behavior in the sense that we present an absMAC implementation in the
SINR model that provides fast (approximate) progress, and

2. replaces (with minor assumptions and effects) the progress bound in the runtime-analysis
of e.g. global single-message and multi-message broadcast in the MAC layer [37], and

3. does not affect the correctness of these algorithms.

Therefore we consider this notion of approximate progress to be a good modification of the
specification of abstract MAC layers with respect to the SINR model.

16

Definition 7.1 (Approximate progress). Let there be (reliable4) broadcast implemented with
respect to a graph G and let G̃ := (V, Ẽ) be a subgraph5 of G. Consider a node i and assume
that a G̃-neighbor of i is broadcasting a message. The approximate progress bound guarantees
that a rcv event with a message originating in a G-neighbor occurs at node i within time
fapprog with probability 1 − εapprog. We say that approximate progress is implemented with
respect to graphs G and (its approximation) G̃.

We formalize this using the notation of [37]: Let β be a closed execution that ends at time
t. Let I be the set of G̃-neighbors of j that have active bcasts at the end of β, where bcast(mi)i
is the bcast at i. Suppose that I is nonempty. Let I ′ be the set of G-neighbors of j that have
active bcasts at the end of β. Suppose that no rcv(mi)j event occurs in β, for any i ∈ I ′.
Define the following sets A and B of time-unbounded executions that extend β.

• A, the executions in which no abort(mi)i occurs for any i ∈ I.

• B, the executions in which, by time t+ fapprog, at least one of the following occurs:

1. An ack(mi)i for every i ∈ I,
2. A rcv(mi)j for some i ∈ I ′, or
3. A rcvj for some message whose bcast occurs after β.

If Pβ[A] > 0, then Pβ[B|A] ≥ 1− εapprog.

This notation is useful, as there are settings where it is not crucial that progress is made
with respect to exactly G. Already progress in subgraph G̃ might yield good overall bounds
for solving a problem on G especially when e.g. (depending on the problem at hand) DG̃ ≈ DG

or G̃2. As we show in Theorem 12.6, in the global SMB and MMB algorithms of [37] local
broadcast does not need to be precise such that under some conditions progress can be replaced
by approximate progress. In the global broadcast algorithms of [37], once a message is received
by a node i, node i broadcasts the message if it did not broadcast it before. The result of
global broadcast is independent of whether a message was received due to transmission from
a G̃-neighbor or a G-neighbor. However, one still needs to consider fack with respect to
G. At the same time this obervation allows us to express large parts of runtimes of global
broadcast algorithms [37] in terms of DG̃ and fapprog instead of DG and fprog. In graph based
models, one could choose e.g. G := G̃2, the graph that is derived from G̃ when all paths
of length at most 2 in G̃ are replaced by edges. In the SINR model one might choose, e.g.,
G := G1−ε ⊇ G1−2ε =: G̃, as we do. This choice captures that any G1−ε-neighbor is almost
a G1−2ε-neighbor. In addition its signal has a similar strength when it arrives at the receiver
and in reality might even be the same, as signal strengths can vary slightly. The factor 2 in
1− 2ε can be chosen arbitrarily small, but must be greater than 1.

Remark 7.2. Like [23] we study a dual-graph model. However, in our setting all communi-
cation is reliable. They consider a setting where reliable communication is provided in G and
communication which is unreliable in a non-deterministic way in G′ ⊃ G. We extend this by
a third graph G̃ ⊂ G such that unreliability can be studied in addition to approximate progress

4The notation of approximate progress might later be extended to unreliable broadcast [23].
5Graph G̃ can be any subgraph of G but will typically be an approximation of G, which results in the name

approximate progress. Later we consider graph G̃ := G1−2ε, which approximates G := G1−ε with respect to
the SINR formula and Euclidean distances in the sense that it contains all, but the longest edges of G.

17

in future work. Note that approximate progress in G̃ inherits reliable communication from
G. It is important to note that lower bounds on MMB of [23] in their gray-zone model with
unreliable graphs do not apply in our setting. Their lower bounds are invalid, as we consider
reliable broadcast in G ⊃ G̃ and assume that G is connected.

8 Decay Fails to Yield Fast Approximate Progress

Inspired by a proof of [14], we transfer this result into our setting. We show that using a
(standard) Decay method, one cannot achieve fast approximate progress in the SINR model.
In Section 9 we present an implementation based on an algorithm of [14] that uses a different
strategy than Decay achieves fast approximate progress and is analyzed in a more precise
way.

Theorem 8.1. When using the Decay method of [4] to implement local broadcast of a MAC
layer in the SINR model, it holds that fapprog = Ω(∆G1−ε log(1/εapprog)).

Proof. In the (standard) Decay method of [4] for graph-based models with collision detection,
each node starts with sending probability 1 and halves its transmission probability in each
time slot until a sending probability is reached where no collision occurred for the first time.
Then it keeps transmitting with this probability. This method can be applied in the SINR
model as well (note that adding the assumption of collision detection yields a stronger lower
bound than using our model assumptions).

Consider two R1/4-balls whose centers are located at distance R2. Let ball B1 contain
2 nodes and let ball B2 contain ∆G1−ε ≤ n/2 nodes. In the corresponding graph G1−ε the
nodes located in different balls are not directly connected. We assume that the remaining
n/2 − 2 nodes are arranged such that the nodes in the two balls are connected by a path
of length n/2 − 1 in G1−ε. Let’s assume each of the nodes in B1 and B2 wants to broad-
cast a message and we perform a (standard) Decay mechanism. Once the probabilities
reach a level where the nodes in B1 are likely to transmit, the interference from nodes in
B2 is very strong. To be more formal, in round i, the probability that exactly one node
in B1 is sending is less than 2−(log ∆G1−ε−i). The probability that no node in B2 is send-
ing is (1 − 1/2log(∆G1−ε)−i)∆G1−ε ≤ e−(∆G1−ε)/2

log(∆G1−ε)−i

. Thus the success probability of a
node in B1 is at most e−(∆G1−ε)/2

log(∆G1−ε)−i

/2−log(∆G1−ε)+i. From this we conclude that the
probability that a successful transmission takes place in B1 within log(∆G1−ε) rounds with
i = 1, . . . , log(∆G1−ε) is less than

log(∆G1−ε)∑
i=1

e−(log(∆G1−ε))/2
log(∆G1−ε)−i

/2− log(∆G1−ε)+i

=
log(∆G1−ε)∑

i=log(∆G1−ε)−log log(∆G1−ε)
e− log(∆G1−ε)/2i/2− log(∆G1−ε)+i

+
log(∆G1−ε)−log log(∆G1−ε)∑

i=1
e− log(∆G1−ε)/2i/2− log(∆G1−ε)+i

18

We bound this by

≤ e− log(∆G1−ε)/2
log log(∆G1−ε)

log(∆G1−ε)∑
i=log(∆G1−ε)−log log(∆G1−ε)

1/2− log(∆G1−ε)+i

+ e− log(∆G1−ε)/2
log(∆G1−ε)−log log(∆G1−ε)

log(∆G1−ε)−log log(∆G1−ε)∑
i=1

1/2log(∆G1−ε)−i

≤ e−1/2/2− log(∆G1−ε)−log log(∆G1−ε)+1 + 2e− log(∆G1−ε)+1

≤ c
log(∆G1−ε)

∆G1−ε
for some constant c

Therefore,
(
c

log(∆G1−ε)
∆G1−ε

)−1
ln(1/εprog) repetitions of log(∆G1−ε) rounds i = 1, . . . , log(∆G1−ε)

are necessary such that the nodes in B1 make progress with probability εapprog. We conclude
that fapprog = Ω(∆G1−ε log(1/εprog).

Note that the authors of [14] presented a lower bound of Ω(n) for SMB in G1−ε (Theorem
8 of [14]), when using the Decay method of [4]. This Ω(n) lower bound is of interest,
as the construction of [14] allows for an algorithm that needs only O(1) rounds for SMB.
Looking more closely at their lower bound, this can be interpreted as fapprog = Ω(n) when
εapprog = n−c. We strengthen this lower bound for fapprog to fapprog = Ω(n log(1/εapprog)). In
the proof of this lower bound we use that the SINR model takes global interference into account
(in contrast to graph based models). Also note that the proof of Theorem 8 of [14] uses a
network with maximal degree O(n), and it can be easily generalized to yield fprog = Ω(∆G1−ε)
for arbitrary maximal degrees ∆G1−ε .

9 Implementation of Fast Approximate Progress

Now we describe a method different from Decay . Note that during an execution of the
implementation additional messages from nodes that are G1-neighbors but not G1−ε-neighbors
might occur in a probabilistic way. These do not affect our delay bound for approximate
progress with respect to G1−2ε, as the analysis guarantees that messages from G1−ε-neighbors
arrive within time fapprog. Note that Remark 5.2 applies to this Algorithm as well. This
Algorithm 9.1 is described in this section and analyzed in Section 10.

Theorem 9.1. In the SINR model using the assumptions of Section 4.6, Algorithm 9.1 imple-
ments approximate progress of an absMAC with respect to graphs G1−ε and its approximation
G1−2ε with probability at least 1 − εapprog in time approximate progress of an absMAC with
respect to graphs G1−ε and its approximation G1−2ε with probability at least 1−εapprog in time

fapprog = O
((

logα(Λ) + log∗
(

1
εapprog

))
log(Λ) log

(
1

εapprog

))
.

The algorithm presented by [14] achieves global SMB in the strong connectivity graph
G1−ε. We modify this algorithm to fast (probabilistic) approximate progress with respect
to G1−2ε. In the algorithm of [14], after a node receives a bcast-message, it immediately

19

forwards this (uniform) bcast-message. Inspired by this we implement this part in a similar
style. However, we handle the possibility of multiple bcast-messages and need to guarantee
that fast approximate progress can be proven. However, the modifications of their algorithm
are substantial as described in this section to make it suitable for a localized analysis. In
particular, in order to get an improved time-bound, we need to 1) introduce non-unique
temporary labels instead of using unique IDs and handle this non-uniqueness, 2) acknowledge
certain messages involved in coordination below the MAC layer, and 3) reduce the number T
of repeated transmissions such that T is just large enough to guarantee low expected global
interference from parts of the plane where computations went into a wrong direction based
on communication-mistakes due to the reduced number T of repetitions. The analysis in
Section 10 uses several Lemmas from [14]. Whenever proofs of [14] do not need to be changed
significantly, we state versions of them adapted to our setting in Appendix C.

9.1 High-Level Description

We start by presenting a high-level outline of the algorithm. We follow the approach of [14]
and perform epochs, each consisting of fprog time steps. Each epoch corresponds to Lines 6–15
of Algorithm 9.1. During each epoch we compute approximations of a sequence of constant
degree graphs H1, H2, . . . ,HΦ, Φ = Θ(log Λ), used for communication. Graph H1 is defined
based on vertex set S1, which is the set of nodes that have an ongoing broadcast at this time.
As this set S1 might change over time (depending on the algorithm using the absMAC and
conditional wale-up, see Definition 4.4), graphs H1, H2, . . . ,HΦ might be different in different
epochs. Each Hφ, φ > 1, is defined based on the nodes of a maximal independent set in
Hφ−1. For each Hφ it is guaranteed that, when each node in Hφ transmits with a certain
(constant) probability p ∈ (0, 1/2], then for each edge e of Hφ the transmission through e
is successful with a (constant) probability µ ∈ (0, p). Using geometric arguments we show
in Lemma 10.18 that when for Φ phases φ = 1, . . . ,Φ during phase φ all nodes of graph Hφ

transmit their message a certain amount of times, then approximate progress takes place in
G1−2ε within time fapprog = O

((
logα(Λ) + log∗

(
1

εapprog

))
log(Λ) log

(
1

εapprog

))
. This happens

with probability 1− εapprog.

Intuition behind this algorithm: Intuitively, this algorithm automatically adapts to re-
gions of varying density. As the vertex set of graph Hφ is an MIS of Hφ−1, it is typically a
sparser version (with respect to density of nodes in the plane) of Hφ−1. Finally we show that
HΦ is so sparse that nodes are too far away to communicate due to SINR constraints. Due to
this sparsity, each node at this level is able to broadcast a message to its G1−ε-neighbor with
some probability. During this algorithm it will turn out that for each node u ∈ NG1−2ε(S1),
that has G1−2ε-neighbor with an ongoing broadcast, there is a G1−ε-neighbor of u in some
Sφ from which u receives a message in phase φ. In particular, in phase φ the local density of
nodes is reduced in a way that 1) there is still a node uφ at distance at most R1−ε, and 2) the
density of nodes is so low that interference from these other nodes is low enough that uφ’s
message reaches u with some probability (due to random transmissions which further sparsify
the set of transmitting nodes). We modify and extend the algorithm and analysis of [14] and
choose parameters of the algorithm to our benefit.

20

Suitability for localized analysis: Thanks to the MAC layer that helps us to treat global
and local parts of an algorithm separately in a structured way, we only need to provide
an algorithm that ensures local approximate progress in order to implement this part of
the MAC layer, while the algorithm of [14] has to ensure global broadcast (and focuses on
single-message broadcast, while we study multi-message broadcast). Note that therefore the
authors of [14] need to ensure that all their iterative computations of global approximations
of communication graphs Hφ have the desired approximation-quality with high probability
in n. Compared to this, we only need to make sure that for any point i in space these
graphs are local approximations with a certain probability. Therefore we require only a much
lower probability and gain a speedup from this. In particular this probability only depends
on the number of coordination-messages exchanged by those nodes that are locally involved
in ensuring approximate progress of bcast-messages6 that might reach i, as the sender is at
distance at most 1− ε to i.

We make use of this locality aspect (in combination with the carefully chosen parameters)
and perform a more careful and localized analysis extending the one of [14].

Naturally, some parts of our proof follow along the lines of the proof in [14] or argue how
their proofs can be adapted. However, they are significantly extended to derive the speedup
from our modifications of their algorithm. In the end our detailed analysis of approximate
progress yields faster global SMB than [14], see Section 12.

9.2 Graphs

During the algorithm we consider a graph Hµ
p [S] that was defined in [14]. This graph depends

on a set of nodes S, a constant transmission probability p ∈ (0, 1/2] and a constant reliability
parameter µ ∈ (0, p). The vertices of Hµ

p [S] are just the nodes in S. To define the edge set of
Hµ
p [S], assume that each node in S sends with probability p and no node outside of S (i.e. in

V \ S) is sending at the same time. Based on this assumption/experiment we define the edge
set Eµp [S] to contain edge (u, v) ∈ S × S iff (i) u receives a message from v with probability
at least µ, and (ii) v receives a message from u with probability at least µ.

As it is difficult to compute Hµ
p [S] in a distributed way (as pointed out in [14]), the authors

of [14] compute a (1 − γ)-approximation H̃µ
p [S] = (S, Ẽµp [S]), where w.h.p. the following is

true:
Eµp [S] ⊆ Ẽµp [S] ⊆ E(1−γ)µ

p [S].

To obtain a speedup, we do not compute graph H̃µ
p [S], but define and compute a graph

˜̃Hµ
p [S] = (S, Ẽµp [S]) that locally corresponds to H̃µ

p [S] = (S, Ẽµp [S]) at each point i with
some probability much smaller than w.h.p (and demonstrate later that this is enough for
our purposes). We postpone the precise formal definition of this locality to Definitions 10.5
and 10.8. There we define local correctness with respect to different sets Sφ together with
other requirements for correct local computation during the algorithm. By postponing the
definition, we avoid unnecessary general and therefore complicated notation. For now we only
need to know that it should always be the case that for any node v we desire that N ˜̃Hµ

p [S](v)
corresponds to neighbors of v that would be present in a (1 − γ)-approximation H̃µ

p [S] of
6We denote by bcast-message any messages that contains information to be broadcast due to an bcast-event.

By messages, we refer to messages sent for coordination among the nodes.

21

Hµ
p [S] as well. However, we typically consider a much larger neighborhood of v and desire

that the subgraph of ˜̃Hµ
p [S] corresponding to this neighborhood matches the corresponding

subgraph of a (1− γ)-approximation H̃µ
p [S] of Hµ

p [S].

9.3 Details of the Algorithm

We propose the following algorithm that is executed by all nodes in S1 and is inspired by [14],
but has small modifications that yield substantial improvements when analyzed in detail. The
algorithm consists of epochs that are continuously repeated and ensure approximate progress
within each execution of a epoch. Like in [14] we assume that all nodes get synchronized by
other nodes when they wake up and join the algorithm at the beginning of the next epoch.
A node i wakes up either due to receiving a bcast-message from another node or due to the
first bcast event that occurred at node i. Whenever a bcast(msg)i event occurs, a variable m
stored in node i is set to msg.

Algorithm 9.1 Implementation of the part of absMAC that achieves fast approximate
progress. As executed by a node i.

Continuous execution of epochs:
1: Φ := Θ(log Λ); Q := Θ(logα<);
2: while awake do
3: S1 := S;
4: if m 6= 0 then // ongoing broadcast of m
5: node i marks itself as contained in set S1;
6: for φ = 1, . . . ,Φ do
7: if i ∈ Sφ then
8: Compute graph ˜̃Hµ

p [Sφ] and schedule τφ as described in Section 9.3.1;
9: Compute Sφ+1 as described in Section 9.3.2;

10: for O(Q · log(1/εapprog)) rounds do
11: transmit bcast-message m with probability p/Q;
12: // If not transmitting, listen for a bcast-message
13: end for
14: end if
15: end for
16: end if
17: m′:= (first) bcast-message received due to a transmission from another node in Line 11;
18: output rcv(m′)i ;
19: end while

Once a bcast(msg)i event occurs at node i at time t, we say that node i has an ongoing
broadcast for fack/2 time steps starting at time t + 1. At the beginning of each epoch,
each node i marks itself as belonging to set S1 if it has an ongoing broadcast (Line 5 of
Algorithm 9.1). Whenever a node i receives a bcast-message m′ for the first time in an epoch,
it delivers that bcast-message to its environment with a rcv(m′)i output event. This behavior
does not guarantee that no messages from nodes that are not G1−ε-neighbors are received.
See Remark 4.6 how exact local broadcast can be implemented.

22

Next in the epoch, a sequence of sets S1 ⊇ S2 ⊇ · · · ⊇ SΦ and corresponding graphs
˜̃Hµ
p [S1] ⊇ · · · ⊇ ˜̃Hµ

p [SΦ] are computed7. In this sequence ˜̃Hµ
p [Sφ] is a graph, that given any

node i ∈ S1, is likely to (1 − γ)-approximate Hµ
p [Sφ] in a certain neighborhood8 of i. Set

Sφ+1 is an independent set of ˜̃Hµ
p [Sφ] and is likely to be an MIS with respect to a certain

neighborhood8 of i. Sections 9.3.1 and 9.3.2 describe in detail how graphs ˜̃Hµ
p [Sφ] and sets

Sφ+1 are computed. While performing this computation, in each phase φ each node in Sφ
transmits its respective bcast-message m for O(Q · log(1/εapprog)) time steps, in each time
step with probability p/Q with Q = Θ(logα Λ), see Lines 10–13. Denote by m′ the first bcast-
message transmitted during Line 11 that node i receives during an epoch. In Line 18 node i
outputs rcv(m′)i.

9.3.1 Computation of Graph ˜̃Hµ
p [Sφ] and Schedule τφBased on Sφ in Line 8

We modify an algorithm described in [14] to do this. In this algorithm we change the number
of times T that each message is sent. We define

T := Θ

 log
(
f(h1)
εapprog

)
γ2µ


where h1 is defined in Definition 9.2 and f is the function that bounds the growth of G,

see Definition 4.1.

Definition 9.2. For Φ = Θ(log Λ), we set hΦ := h′Φ := 1 and define recursively h′φ :=
3hφ+1 and hφ := h′φ + c log∗(Λ/εapprog) + 1 for 1 ≤ φ < Φ, where c is chosen such that
c log∗(Λ/εapprog) bounds the runtime of the MIS algorithm [47] when applied on a network
with node-IDs ∈ [1, poly Λ

εapprog
].

We restate the algorithm of [14] with our modified parameter T in order to perform our
localized analysis later. All nodes in Sφ transmit their ID for T rounds with probability p in
each round. Each node maintains a list of IDs that it received and counts how often each ID
was received. Each ID that was received at least (1 − γ/2)µT times is a potential ˜̃Hµ

p [Sφ]-
neighbor. In another T time slots, in each slot every node transmits all IDs of these O(1)
potential neighbors9, again with probability p in each slot. A node u ∈ Sφ considers node
v ∈ Sφ to be a ˜̃Hµ

p [Sφ]-neighbor if v is a potential neighbor of u and u appears in the list of
potential neighbors of v that u received.

Schedule τφ keeps track of the nodes random choices to send depending on the time slot.
That is τφ maps time slot t ∈ {1, . . . , T} to τφ[t] ⊆ V of nodes that are sending in slot t.

7These graphs were abbreviated by Hφ in the high-level description in Section 9. We want to stress that
the sets S1 ⊇ S2 ⊇ · · · ⊇ SΦ computed by our algorithm are likely to differ from the sets S1 ⊇ S2 ⊇ · · · ⊇ SΦ
computed in [14], but might be the same with a very low probability.

8The size of this neighborhood is specified later in the analysis and not relevant in the specification of the
algorithm, see Definition 10.5.

9 Each node has at most 1
(1−γ/2)µ = O(1) many potential neighbors (as remarked in [14]).

23

9.3.2 Computation of Set Sφ+1 Based on ˜̃Hµ
p [Sφ] and Schedule τφ in Line 9

The authors of [14] show how to simulate the MIS-algorithm of [47] on ˜̃Hµ
p [Sφ] and define Sφ+1

to be the computed MIS. In order to perform a more localized analysis, we need to modify
their approach. In particular the runtime of the deterministic MIS-algorithm [47] depends on
the range from which node IDs are chosen, not on the network size. While [14] uses unique
IDs ∈ [1, poly n], which results in a runtime of O(log∗ n), we desire a runtime that depends
only on local parameters.

In order to achieve such a runtime, we let each node v ∈ Sφ choose a temporary label
li,φ ∈

[
1, poly Λ

εapprog

]
uniformly at random in each phase. Then we execute a modified version of

the MIS-algorithm of [47] for the CONGEST model using these temporary labels. As these
labels might not be unique, we need to modify the algorithm of [47], as it might not terminate
when non-unique labels are used.

To state our modifications and being able to argue that this achieves the desired outcome,
we review the algorithm of [47]. After this, we present our modification of it in the CONGEST
model. Subsequently we adapt the simulation of CONGEST algorithms in this probabilistic
graph/SINR model given in [14] to our modified parameters.

The MIS-algorithm of [47]: Each node starts in state competitor and can change its state
during the computation between states {competitor, ruler, ruled, dominator, dominated}. At
the end of the algorithm, the set of all nodes in state dominator is an MIS, and all other nodes
are in state dominated – as shown in [47]. To achieve this, the network executes a number of
stages until all nodes are in state dominator or dominated. At the beginning of each stage
every node v that is in state competitor at that time sets a variable rv to its ID. After this,
the stage performs log∗(N) + 2 phases, where N indicates the range [1, N] from which IDs
are chosen. In each phase a node v in state competitor 1) exchanges rv with its neighbors,
and 2) updates rv as well as its state depending on rv and the received rw, w ∈ N(v), from
its neighbors. If in a phase rv < minw∈N(v)\{v} rw in that phase, node v changes its state to
dominator and stays in that stage until the end of the algorithm. If rv = minw∈N(v)\{v} rw,
then v changes its state to ruler. If rv > minw∈N(v)\{v} rw, then v updates rv depending on
the bit where rv and minw∈N(v)\{v} rw differ and might change its state to dominated/ruled
in case a neighbor changed its state to dominator/ruler. The proof of [47] uses the fact that
IDs in the network are unique to argue that after a constant number c′ of stages all nodes are
in state dominator or dominated and nodes only terminate once they reached one of these
states.

Our modification of this algorithm in the CONGEST model: We modify this algo-
rithm to set rv := lv,φ instead of using v’s ID at the beginning of each stage. As temporary
labels lv,φ are not unique, it can happen that after c′ many stages some nodes are neither
in state dominator nor dominated. Therefore we change the algorithm to terminate at a
predetermined time (after c′ stages) instead of terminating at each node once it is in state
dominator or dominated. We still choose Sφ+1 to consist only of nodes in state dominator
and ignore nodes not in state dominator/dominated.

24

Adapted simulation of CONGEST algorithms in our probabilistic graph/SINR
model: Similar to [14], each round of communication in the CONGEST model is simulated
by T time steps in our model, where we use T as defined above. In each time step t ∈ {1, . . . , T}
the messages (sent in a round of the algorithm for the CONGEST model) is sent by nodes
τφ[t], such that no messages are unsuccessful.

In contrast to [14], our analysis requires that nodes know if their messages arrived at
the destination. Such an acknowledgment can be implemented as node i knows from which
neighbors in ˜̃Hµ

p [Sφ] it should receive a message within time T (as we just computed ˜̃Hµ
p [Sφ]).

We can acknowledge received messages by splitting each time slot into two slots, a transmission
and an acknowledgment slot. This implies that the (reliability) probability of an acknowledged
transmission is µ2. While w.h.p. communication is reliable in [14], it turns out that we
cannot make these guarantees due to our choice of T . Therefore we say that communication
at node u ∈ Sφ was unsuccessful (in phase φ) when node u did not receive messages (and
acknowledgments for reception of its own messages) from all its Sφ-neighbors within time T .
Once communication was unsuccessful, a node u ∈ Sφ stops participating in this epoch and
does not join Sφ+1 in this epoch. A node u ∈ Sφ that stopped during the current epoch
starts participating again in the next epoch as long as it has an ongoing broadcast. Messages
received from nodes that are not ˜̃Hµ

p [Sφ]-neighbors are ignored and not acknowledged.

10 Analysis of our Implementation of Approximate Progress

We start with an outline of the analysis in Section 10.1 for the implementation of approximate
progress of Section 9. This is followed by Sections focusing on details of different issues
mentioned in that outline.

10.1 Outline of the Analysis

We analyze the effect of the two main modifications of the algorithm of [14] with respect to
their analysis and put it into the context of approximate progress. We outline the effects of
these modifications here together with our approach before we dive into details in the next
sections.

10.1.1 First Modification: Non-Unique Labels in the MIS Computation

This difference is rooted in our modification of the MIS-algorithm of [47] combined with
using non-unique temporary labels ∈ [1, poly Λ

εapprog
] instead of unique IDs ∈ [1, poly n] in [14].

In Section 10.2 (Lemma 10.1) we argue in the model of [47] the sets Sφ computed by our
modified MIS-algorithm are independent sets in H̃φ−1. Furthermore, for any given node v,
with probability 1−εapprog/3, this set is maximal in a neighborhood around v “large enough”
to ensure that this part of computations involved in approximate progress at node v is correct.

10.1.2 Second Modification: Fewer Repetitions of Transmissions

In the algorithm of [14] each node sends every bcast-message O(logα(Λ) logn) times, while we
use only O(logα(Λ) log(1/εapprog)) repeated transmissions. This implies that [14] can assume
that all communication is successful at any point w.h.p.. For large εapprog we only have weak

25

probability guarantees for success of communication. One side-effect is that with very high
probability the computed graphs ˜̃Hφ are not the desired global approximations of graphs Hφ.
This in turn affects correctness of approximate progress and we need to analyze local and
global implications caused by reducing the number of repeated transmissions.

1. Global implications of unsuccessful transmissions: Global interference might
increase in the long term and we need to bound this. Unsuccessful transmissions that are
undetectable as the receiver does not know from which other nodes to expect messages
can only appear 1) during the computation of ˜̃Hµ

p [Sφ], and 2) while transmitting the
message in Line 11. The latter will not cause increased global interference in the long
term, as it does not influence the activity of nodes in future phases of the current epoch.
Thus we only need to consider unsuccessful transmissions during the computation of
˜̃Hµ
p [Sφ]. Consider a node v and assume node v has computed a wrong set of neighbors,

that is a set of neighbors that does not correspond to a (1−γ)-approximation of Hµ
p [Sφ].

In such a case we just assume for the sake of worst case analysis of additional interference
that v joins the MIS Sφ+1 of ˜̃Hµ

p [Sφ] – regardless of where v actually joins or not. Denote
the set of all these nodes with wrong neighborhoods that unconsciously might cause
additional interference during the current epoch by W . (Note that at the beginning
of each epoch W = ∅, as no unsuccessful transmission happened yet.) We bound the
additional (global) interference caused in case all nodes in W erroneously decided to join
Sφ in Lemma 10.3 (regardless of which nodes in W actually join Sφ). Each time when
we need to make an argument related to interference from nodes in Sφ in subsequent
proofs, we also argue that the additional interference from nodes in W is negligible
compared to interference from a correctly computed Sφ. Note that thus interference
from nodes in W might be counted twice (in particular nodes in Sφ ∩W), but this does
not hurt the analysis. After ˜̃Hφ is computed, all transmissions are successful. They use
the same schedule used to compute ˜̃Hφ.

2. Local implications of unsuccessful transmissions: Local communication of mes-
sages, which is based on the success of repeated transmissions, must be successful in a
certain area8 around v to ensure that 1) a node v that has a broadcasting G1−2ε neighbor
receives a bcast-message from a broadcasting G1−ε-neighbor in case all local computa-
tions are correct, and 2) we can transfer and extend tools from [13] to our localized
analysis. This area in which this needs to be true contains all nodes possibly involved in
the selection of a node from which v might receive a bcast-message. These unsuccessful
transmissions can only appear during the computation of ˜̃Hµ

p [Sφ] and while transmit-
ting the bcast-message in Line 11. Only if communication is locally successful, it is
guaranteed that graph ˜̃Hµ

p [Sφ] is an (1− γ)- approximation of Hµ
p [Sφ] w.r.t. the above

mentioned neighborhood of v, which is necessary in order to transfer the analysis of [14].
We analyze the probability that ˜̃Hµ

p [Sφ] is locally an approximation in Lemma 10.10.
Finally, approximate progress is made only if communication of bcast-messages succeeds
locally.
For all G1−ε-neighbors u′ of v (from which v might receive a bcast-message), we lower
bound the probability that all the above local computations/transmissions involved in
the broadcast of u′ are successful in Lemme 10.13.

26

10.2 Local Effects of Non-Unique Labels

We start by analyzing the effect of using (potentially) non-unique labels chosen uniformly at
random ∈

[
1, poly Λ

εapprog

]
in the modified MIS computation, which is the first difference to [14],

as pointed out in Section 10.1.1.

Lemma 10.1. Let H = (V,E) be a constant degree growth-bounded graph and let U ⊆ V
be a set of nodes of size at most O(Λ2). Consider an execution of our modification of the
MIS-algorithm of [47] on H in the CONGEST model using random labels ∈

[
1, poly Λ

εapprog

]
. Then

the set of nodes in state dominator is 1) an independent set, and 2) with probability at least
1− εapprog

3Φ this set is maximal with respect to NH,c·4Φ·log∗(Λ/εapprog)(U), the c·4Φ·log∗(Λ/εapprog)-
neighborhood of U in H.

Proof. From the description of the algorithm it follows that no neighboring nodes can be in
state dominator. Therefore the set of dominators remains an independent set despite our
modification.

Due to the analysis of [47], which uses that H is growth bounded, we know that in case
of unique IDs the algorithm computes an MIS within c′ < c stages. As the runtime of the algo-
rithm is c log∗(Λ/εapprog), only the c log∗(Λ/εapprog)-neighborhood ofNH,c·4Φ·log∗(Λ/εapprog)+1(U)
is involved in deciding which nodes among NH,c·4Φ·log∗(Λ/εapprog)+1(U) change their state to
dominator. From this we can conclude that if nodes inNH,c·4Φ·log∗(Λ/εapprog)+1+c log∗(Λ/εapprog)(U)
chose unique temporary labels, then the set of nodes in state dominator is a maximal inde-
pendent set with respect to NH,c·4Φ·log∗(Λ/εapprog)(U). Note, that as we considered dominators
located in NH,c·4Φ·log∗(Λ/εapprog)+1(U) for maximality in NH,c·4Φ·log∗(Λ/εapprog)(U), it cannot
happen that there is a node at the border of NH,c·4Φ·log∗(Λ/εapprog)(U) that has no neighbor in
state dominator.

Now observe that it is c·4Φ·log∗(Λ/εapprog)+c log∗(Λ/εapprog) = cpoly (Λ)·log∗(Λ/εapprog),
as Φ = Θ(log Λ). As H is growth bounded and has constant degree, this implies that
there are at most |U | · poly Λ = poly Λ nodes involved in the state-changes of nodes in
NH,4Φ·log∗(Λ/εapprog)+1(U). As we choose temporary labels from

[
1, poly Λ

εapprog

]
, we can choose this

range large enough such that with probability at least 1− εapprog
3Φ the labels are unique among

the poly Λ nodes in the c · 4Φ · log∗(Λ/εapprog) + c log∗(Λ/εapprog)-neighborhood of U .

10.3 Global Effects of Unsuccessful Transmissions

We analyze Case 1.a pointed out in Section 10.1.2, i.e. we bound the global interference from
nodes with undetectable unsuccessful transmissions.

Definition 10.2 (Set W of nodes with wrong neighborhoods (due to unsuccessful transmis-
sions)). Denote by W ⊆ S1 the set of all those nodes v such that for at least one φ ∈ {1, · · · ,Φ}
it is not the case that NHµ

p [Sφ](v) ⊆ N ˜̃Hµ
p [Sφ](v) ⊆ N

H
µ(1−γ)
p [Sφ](v), i.e. v’s direct neighborhood

does not (1− γ)-approximate NHµ
p [Sφ](v).

Lemma 10.3. Given point i in space, the expected total additional interference IW (i) that
point i receives from all nodes in W at any given time is less than

(εapprog
Λ

)Θ(1).

Proof. We first bound the probability that N ˜̃Hµ
p [Sφ](v) does not correspond to a (1 − γ)-

approximation ofHµ
p [Sφ] during a single phase. Let’s consider a potential edge (u, v) ∈ Sφ×Sφ.

27

As each ID is transmitted T times, a Chernoff bound implies that an edge (u, v) is included
in ˜̃Hµ

p [Sφ] if and only if (u, v) belongs to a (1− γ)-approximation of Hµ
p [Sφ] with probability

at least

1− e−Θ(T) = 1− e
−Θ
(

log f(h1)
εapprog

)
≥ 1−

(
εapprog
f(h1)

)Θ(1)
. (2)

The constant hidden in the Θ-notation depends on µ, γ and the Chernoff bound used. Re-
call9 that node v has constant many neighbors in Hµ

p [Sφ](v). Therefore the probability that

N ˜̃Hµ
p [Sφ](v) is a (1 − γ)-approximation of NHµ

p [Sφ](v) is at least
(

1−
(
εapprog
f(h1)

)Θ(1)
)Θ(1)

≤

1−
(
εapprog
f(h1)

)Θ(1)
.

From this we conclude, that in each square of size R1−2ε times R1−2ε the expected number
of nodes that incorrectly have no edges in at least one of the Φ phases is at most(

εapprog
Λ

)Θ(1)
· Λ2 · Φ =

(
εapprog

Λ

)Θ(1)
.

Now assume that exactly the nodes in W transmit at the same time. We use a standard
argument from the SINR community to bound the expected interference that node i receives
from nodes in W similar to the one in [24]. For the analysis we assume that the plane is
partitioned into a R1−2ε-grid centered in v. Denote by Ad the set of grid-cells that contain
nodes of L0-distance at least (d− 1) ·R1−2ε and at most d ·R1−2ε to i. Therefore Ad contains
8d− 4 squares of size R1−2ε times R1−2ε.

From this we conclude that the expected number of nodes in Ad ∩W is upper bounded
by O

((εapprog
Λ

)Θ(1) · d
)
.

Each node in Ad is at Euclidean distance at least d−1 to i, such that the interference caused
at i by a single node in Ad sending with power P is at most P/(d−1)α. Therefore the expected
interference at point i from nodes in Ad ∩W is upper bounded by O

((εapprog
Λ

)Θ(1)
/dα−1

)
,

where we use that power P is constant. Now we can upper bound the expected interference
that point i receives from W by

IW (i) =
∞∑
d=1

IAd∩W (i) =
∞∑
d=1
O
((

εapprog
Λ

)Θ(1)
/dα−1

)

= O
((

εapprog
Λ

)Θ(1)
)

=
(
εapprog

Λ

)Θ(1)
,

where we use α > 2 in the second-last bound and the fact that p-series with p > 1 converge
to a constant.

Finally, note that each node actually sends only with probability p (or p/Q) during the
execution of each phase. Replacing the assumption that all node in W transmit at the same
time by these probabilities implies that the expected interference remains

(εapprog
Λ

)Θ(1), as p
is constant and Q = O(logα(Λ)).

28

10.4 Local Effects of Unsuccessful Transmission

We analyze Case 2 pointed out in Section 10.1.2. We start with a bound on h1 (see Defini-
tion 9.2), define local success of an epoch (see Definition 10.8) and then analyze the probability
of local success of an epoch. Lemma 10.12 is the main Lemma of this section and states that
for any set S1 ⊆ V and node i ∈ NG1−2ε(S1) two out of three properties of a successful epoch
are satisfied with probability at least 1− εapprog/3 at point i.

Lemma 10.4. The following is true: 3Φ−1 ≤ h1 ≤ c · 4Φ · log∗(Λ/εapprog) for all parameters
Φ,Λ, εapprog in the ranges considered in this paper.

Proof. The first bound is immediate. To derive the second bound we show by induction on φ
that hφ ≤ c · 4Φ−φ · log∗(Λ/εapprog). It is hΦ = 1 ≤ c log∗(Λ/εapprog). For φ ≤ Φ assume that
hφ = c · 4Φ−φ · log∗(Λ/εapprog), then it is

hφ−1 = c · 4Φ−φ · log∗(Λ/εapprog) · 3 + c log∗(Λ/εapprog)
= c · 4Φ−φ · log∗(Λ/εapprog) · 3 + c · 4Φ−φ · log∗(Λ/εapprog)
= c · 4Φ−(φ−1) · log∗(Λ/εapprog)

10.4.1 Definition of Local Success of an Epoch

Given point i, we define the sets of nodes involved in the local computation that selects a
node from which i might receive a bcast-messages in phase φ.

Definition 10.5 (Sets Uφ,i, Sφ,i and S′φ,i). Let i ∈ NG1−2ε(S1) be a node (of which we can
think as a point in space) that has a G1−2ε-neighbor with an ongoing broadcast. Let Uφ,i :=
NG1−ε(i) ∩ Sφ be the subset of nodes at distance at most R1−2ε from which i might receive a
bcast-message in phase φ. We define sets Sφ,i and S′φ,i:

• Sφ,i := N ˜̃Hµ
p [Sφ],hφ

(Uφ,i), the hφ-hop ˜̃Hµ
p [Sφ]-neighborhood of Uφ.

• S′φ,i := N ˜̃Hµ
p [Sφ],h′

φ

(Uφ,i) ⊆ Sφ,i, the h′φ-hop ˜̃Hµ
p [Sφ]-neighborhood of Uφ,i.

Definition 10.6. (Local success of computing ˜̃Hµ
p [Sφ] and Sφ+1).

A computation of ˜̃Hµ
p [Sφ] is successful at point i if ˜̃Hµ

p [Sφ]|Sφ,i corresponds to a (1 − γ)-
approximation of Hµ

p [Sφ]|Sφ,i. A computation of independent set Sφ+1 on ˜̃Hµ
p [Sφ] is successful

at node i if Sφ+1 is a (φ, i)-locally maximal independent set in the sense that:

1. Sφ+1 is independent in ˜̃Hµ
p [Sφ], and

2. there is no node v ∈ Sφ \ Sφ+1,i such that Sφ+1,i ∪ {v} is independent in ˜̃Hµ
p [Sφ] and v

is of distance at most hφ to any u ∈ Uφ+1,i with respect to ˜̃Hµ
p [Sφ+1 ∪ {v}].

Adding a single node v to the vertex-set Sφ+1 might change the topology of ˜̃Hµ
p [Sφ+1],

and thus distances in other parts of the graph due to SINR constraints. Therefore we need
to show that this definition of (φ, i)-local maximality is well-defined.

29

Lemma 10.7. The definition of (φ, i)-local maximality is well-defined, i.e. (φ, i)-local maxi-
mality of set Sφ+1 is invariant to adding a node v that is independent to Sφ+1 in ˜̃Hµ

p [Sφ].

Proof. For any u1, u2 ∈ Sφ+1 the distance between u1 and u2 in ˜̃Hµ
p [Sφ+1∪{v}]|Sφ+1,i compared

to the distance in ˜̃Hµ
p [Sφ+1]|Sφ+1,i might potentially

1. decrease, as there might now be a shorter u1, u2-path via v, or

2. increase, as v adds interference, which might reduce connectivity among the nodes in
Sφ+1. Even though there might now be a short-cut for part of the paths via v, added
interference might still cause the overall path to be longer.

Therefore, in case that v is not at distance at most hφ+1 to any node in a set Sφ+1,i, set Sφ+1,i
stays (φ, i)-locally maximal independent of adding v, as the only way a node can be closer to
i is via a path through v—and v in turn is at distance at least hφ+1.

Definition 10.8 (Local success of an epoch). An epoch is successful at point i if

1. the computations of each graph ˜̃Hµ
p [S1], . . . , ˜̃Hµ

p [SΦ] are successful at point i, and

2. the computations of each set S2, . . . , SΦ are successful at point i, and

3. there is a φ ∈ {1, . . . ,Φ}, such that i receives the bcast-message m transmitted by some
node uφ ∈ Uφ,i in Line 11 of phase φ.

Note that in the proofs of this Section we never assume that we know the location of i nor
that we know uφ or uφ’s location/distance to i.

10.4.2 Probability of Local Success of Computing Graph ˜̃Hµ
p [Sφ] Based on Sφ

This is an important step towards analyzing Property 1 of local success of an epoch. Using
this property we later iteratively guarantee local success of computing graphs ˜̃Hµ

p [Sφ] in
each phase. As the nodes involved in decisions of other nodes cannot be too far away, this
helps to bound the probability that locally correct computations take place. If all involved
computations at nodes in transmission range are successful, approximate progress takes place.

Remark 10.9. In the remaining part of Section 10.4 we focus only on unsuccessful trans-
mission to keep the analysis clean. Therefore we assume for now that Sφ,i is assigned unique
temporary labels such that in absence of unsuccessful transmissions the modified MIS-algorithm
always computes a set that is (φ + 1, i)-locally maximal. In Section 10.7 we argue that this
assumption can be dropped at the cost of the probability derived in Lemma 10.1.

Lemma 10.10. Consider a node i ∈ S1 and phase φ of Algorithm 9.1. Line 8 described
in Section 9.3.1 computes a graph ˜̃Hµ

p [Sφ] in time O (Φ + log(1/εapprog)) , such that with

probability at least 1 −
(
εapprog
f(h1)

)Θ(1)
the computation of graph ˜̃Hµ

p [Sφ] is successful at node
i. Given set Sφ, the decision whether an edge (u, v) is in graph ˜̃Hµ

p [Sφ] does not involve
communication between nodes other than u and v.

30

Proof. From Bound 2 in Lemma 10.3 we know that the probability that an edge (u, v) ∈
Sφ×Sφ that belongs to a (1−γ)-approximation of Hµ

p [Sφ] is included in ˜̃Hµ
p [Sφ], hφ is at least

1−
(
εapprog
f(h1)

)Θ(1)
. As

• Sφ,i is defined using the hφ-hop ˜̃Hµ
p [Sφ]-neighborhood of nodes Uφ,i (see Definition 10.5),

and

• Uφ,i contains at most Λ2 many edges (see Definition 10.5), and

• ˜̃Hµ
p [Sφ] has degree9 O(1), and ˜̃Hµ

p [Sφ] is growth bounded by f ,

there are at most O(f(hφ) · Λ2) edges in ˜̃Hµ
p [Sφ]|Sφ,i among which the algorithm needs to

choose ˜̃Eµp [Sφ] ∩ (Sφ,i × Sφ,i) correctly. Therefore the probability that ˜̃Eµp [Sφ] ∩ (Sφ,i × Sφ,i)
of edges among nodes Sφ,i is chosen in a way that (1− γ)-approximates edges in Hµ

p [Sφ]|Sφ,i
is at least(

1−
(
εapprog
f(h1)

)Θ(1)
)O(f(hφ)Λ2)

≥ 1−O(f(hφ)Λ2) ·
(
εapprog
f(h1)

)Θ(1)
= 1−

(
εapprog
f(h1)

)Θ(1)
,

where we use

• hφ ≤ poly Λ, as hφ ≤ h1, h1 ≥ 3Φ−1 ≥ Φ (see Lemma 10.4), and Φ := Θ(log Λ); and

• that the growth bound f is a monotonic increasing function (as the number of neighbors
can only grow with the distance), and

• that we can choose the constant hidden in the Θ-notation arbitrarily high.

Furthermore, as µ and γ are constants, and as h1 ≤ c·4Φ·log∗(Λ/εapprog) (see Lemma 10.4),
and as f is a polynomial function, we can bound the runtime T by

T = Θ

 log f(h1)
εapprog

γ2µ

 = Θ

log
f
(
c · 4Φ · log∗(Λ/εapprog)

)
εapprog


= Θ (Φ + log(log∗(Λ/εapprog)) + log(1/εapprog)) = Θ (Φ + log(1/εapprog)) ,

where we choose the constant hidden in the Θ-notation sufficiently high. Finally, note that
in this process the decision whether an edge (u, v) is in the graph ˜̃Hµ

p [Sφ] does not involve
communication between nodes other than u and v.

10.4.3 Probability of Local Success of Computing Set Sφ+1 Based on ˜̃Hµ
p [Sφ]

This is an important step towards the analysis of Property 2 of local success of an epoch. Using
this property we later iteratively guarantee local success of computing sets Sφ in each phase.
As the nodes involved in decisions of other nodes cannot be too far away, this helps to bound
the probability that locally correct computations take place. If all involved computations at
nodes in transmission range are successful, approximate progress takes place.

31

Lemma 10.11. Given graph ˜̃Hµ
p [Sφ], consider phase φ in Algorithm 9.1. Line 9 described in

Section 9.3.2 computes in time O ((Φ + log(1/εapprog)) log∗(Λ/εapprog)) a set Sφ+1 that is an
independent set in ˜̃Hµ

p [Sφ]. The computation of set Sφ+1,i is successful at point i. Furthermore,
determining the Sφ+1,i part of Sφ+1 involves only nodes in Sφ,i.

Proof. Runtime analysis: The algorithm described in Section 9.3.2 consists of simulat-
ing (in the SINR model) an algorithm to compute an MIS in the CONGEST model taking
c log∗(Λ/εapprog) rounds in the CONGEST model. The provided simulation of each round of
the CONGEST model in the SINR model takes O(T) time slots. Therefore the total runtime
is

O(T · log∗(Λ/εapprog)) = O
(

log
(
f(h1)
εapprog

)
· log∗(Λ/εapprog)

)

= O

log

f
(
c · 4Φ · log∗(Λ/εapprog)

)
εapprog

 · log∗(Λ/εapprog)


= O ((Φ + log(log∗(Λ/εapprog)) + log(1/εapprog)) · log∗(Λ/εapprog)) .
= O ((Φ + log(1/εapprog)) · log∗(Λ/εapprog)) ,

where we use similar arguments as in the runtime analysis of Lemma 10.10 as well as the fact
that log log∗(Λ) ≤ Θ(log(Λ)) = Φ.

An independent set is computed: This algorithm simulates the MIS algorithm of [47],
which computes an MIS in growth-bounded graphs, and attempts to compute a subset Sφ+1

of an MIS on ˜̃Hµ
p [Sφ]. The algorithm might not achieve maximality as nodes might stop

participating in this epoch after their communication was unsuccessful10. As these nodes do
not join Sφ+1, set Sφ+1 is still an independent set in ˜̃Hµ

p [Sφ].

Given graph ˜̃Hµ
p [Sφ], the computation of set Sφ+1 is successful at point i : As

all communication in ˜̃Hµ
p [Sφ]|Sφ,i is successful due to using the same schedule τφ as when

computing ˜̃Hµ
p [Sφ], the set Sφ+1 ∩ S′φ,i is (φ, i)-locally maximal. Recall that set S′φ,i depends

on h′φ := 3hφ+1, a choice taking into account that each hop in ˜̃Hµ
p [Sφ+1]|Sφ+1,i corresponds

to at most 3 hops in ˜̃Hµ
p [Sφ]|N ˜̃Hµp [Sφ](Sφ+1,i), as otherwise (φ + 1, i)-local maximality of Sφ+1

in ˜̃Hµ
p [Sφ]|N ˜̃Hµp [Sφ](Sφ+1,i) was violated. Therefore we conclude that N ˜̃Hµ

p [Sφ](Sφ+1,i) ⊆ S′φ,i.
Furthermore any node v that could be added to Sφ+1,i without violating independence in
˜̃Hµ
p [Sφ] is at least h′φ+1 hops away from uφ+1 in ˜̃Hµ

p [Sφ] and thus at least hφ+1 +2 hops away
from uφ in ˜̃Hµ

p [Sφ+1]. Therefore Definition 10.8 of local successful computation of Sφ+1,i is
satisfied.

Also note that only nodes in N ˜̃Hµ
p [Sφ],c log∗(Λ/εapprog)(S

′
φ,i) = Sφ,i are involved in the com-

putation, as the runtime of the MIS algorithm of [47] is c log∗(Λ/εapprog).
10Recall that communication at node u ∈ Sφ is unsuccessful if u did not receive a message (and acknowledg-

ments) for own messages form each neighbor in ˜̃Hµ
p [Sφ].

32

10.4.4 Probability of Satisfying Properties 1 and 2 of a Local Successful Epoch

Lemma 10.12. For any set S1 ⊆ V and node i ∈ NG1−2ε(S1), both Properties 1 and 2 of
Definition 10.8 of a successful epoch at point i are satisfied with probability at least 1−εapprog/3.

Proof. Due to Lemma 10.10 only nodes in Sφ,i are involved in computing ˜̃Hµ
p [Sφ]|φ,i and

Lemma 10.11 states that only this part of the graph is involved in computing Sφ+1,i. By
induction we only need to bound the probability that all graphs ˜̃Hµ

p [S1], . . . , ˜̃Hµ
p [SΦ−1] and

all sets S2, . . . , SΦ are computed successfully at point i to prove the statement.
Due to Lemma 10.10 the probability that any of the graphs ˜̃Hµ

p [S1], . . . , ˜̃Hµ
p [SΦ−1] is com-

puted successfully at point i is at least 1 −
(
εapprog
f(h1)

)Θ(1)
. The probability that all of the

sets S2, . . . , SΦ are computed successfully at point i is 1 due to Lemma 10.11. Notice that
1−

(
εapprog
f(h1)

)Θ(1)
can be lower bounded by (1− εapprog

3Φ−1)Θ(1), as h1 ≥ 3Φ−1 (Lemma 10.4) and f
is a monotonic increasing polynomial. While we obtain this generous bound as a side effect of
other parts of the analysis, it is sufficient for our purposes to use 1− εapprog

6Φ as a lower bound
for this probability. Here, we assume Φ = Θ(log Λ) ≥ 4 for simplicity of the presentation.
As there are Φ phases, in total Φ graphs need to be computed. Thus the probability that all
these computations are successful at point i is at least (1− εapprog

6Φ)Φ ≥ 1− εapprog/3.

10.5 Probability of Approximate Progress Conditioned on Satisfaction of
Property 3 of a Local Successful Epoch

After proving initial lemmas in the previous subsections, we first give an outline how these
connect to the remaining parts of the proof of Theorem 9.1 via this section. In Lemma 10.12
we argued that with probability at least 1 − εapprog/3 we can assume that Properties 1 and
2 of Definition 10.8 of a successful epoch at point i are satisfied. Therefore we assume in
Lemma 10.13 that Properties 1 and 2 of Definition 10.8 of a successful epoch at point i are
satisfied, and show that in this case there is a phase φ′ ∈ {1, . . . ,Φ} such that i could be
able to receive a bcast-message m from a G1−ε-neighbor. Node i will receive such a message
if Property 3 of Definition 10.8 of a successful epoch at point i is satisfied. As we cannot
yet analyze the probability of satisfaction of Property 3, we condition our probabilities in
this section on satisfaction of Property 3. To analyze probability of satisfaction of Property
3, we first need to bound the runtime of an epoch, which is done in Lemma 10.18. In
Section 10.7 we analyze the probability that i indeed receives m in phase φ′ from a G1−ε-
neighbor by combining results from this and previous sections with a bound on the probability
for satisfaction of Property 3 of Definition 10.8 of a successful epoch at point i. Section 10.7
also concludes the proof of the bound on fapprog stated in Theorem 9.1.

The main Lemma that we prove in this Section is

Lemma 10.13. Given set S1 and a node i and let there be a G1−2ε-neighbor of i with an on-
going broadcast event bcast(m)j. Assume Properties 1 and 2 of Definition 10.8 of a successful
epoch at point i are satisfied. Then there is a phase φ′ ∈ {1, . . . ,Φ} such that in phase φ node
i receives a bcast-message from a G1−ε-neighbor of i with probability 1− εapprog/3.

However, before we can proof Lemma 10.13, we need to derive a few more lemmas which
are extended from [13] to our localized setting.

33

Lemma 10.14 (Extended version of Lemma 4.3 of [13]). For all p ∈ (0, 1/2], there is a
µ ∈ (0, p) such that: Let dmin ≤ R1−2ε be the shortest distance between two nodes in a
set S ⊆ S1. Then the graph Hµ

p [S] contains all edges between pairs u, v ∈ S for which
d(u, v) ≤ min{2dmin, R1−2ε}.

The part of the proof of Lemma 4.3 of [13] that changes relies on bounding the interference
IS(u) that u receives from a set S. Compared to [13] we not only need to bound interference
from a set S, but from S ∪ W , as nodes in W might still participate in the computation
and send messages due to unsuccessful transmissions in a previous phase that made them
compute wrong neighborhoods. We show that one can choose slightly modified parameters
in the algorithm/analysis such that the interference IS∪W (u) is as small as in the original
proof by [13]. Therefore other parts of their proof are not affected and can be immediately
transferred.

For completeness we restate the full proof of [13] adapted to our modifications and exten-
tions.

Proof. We restrict our attention to the case dmin < rs/2. If the minimum distance is between
rs/2 and rs, the claim can be shown by a similar, simpler argument.

Consider some node u ∈ S. Due to the underlying metric space in our model, there are
at most O(kδ) nodes in S within distance kdmin of node u. Let v be a node at distance at
most 2dmin from u. For any constant k0, with probability p(1− p)O(kδ0) = Ω(p), node v is the
only node transmitting among all the nodes within distance k0dmin from node u. Further,
assuming that all nodes at distance greater than k0dmin transmit, the interference IS∪W (u)
at u can be bounded from above by

IS∪W (u) ≤ IW (u) +
∑

w∈S s.t. d(u,w)≥k0dmin

P

d(u,w)α ≤ IW (u) +
∞∑

k=k0

∑
w∈S s.t. 1≤ d(u,w)

kdmin
<1+ 1

k

P

d(u,w)α

(1)= IW (u) +
∞∑

k=k0

P

kαdαmin
O
(
δkδ−1

)
= IW (u) + P

dαmin
O

δ ∞∫
k0

k−(1+αmin−δ)dk


= IW (u) + P

dαmin
O
(
δ
kδ−αmin

0
αmin − δ

)
≤
(
εapprog

Λ

)Θ(1)
+ κ(k0) P

dαmin
(2)
≤
(
εapprog

Λ

)Θ(1)
+ κ(k0) P · Λ

R1−2ε
(3)
≤ κ(k0/2) P · Λ

R1−2ε
.

Step (1) stems from bounding |{w ∈ S : kdmin ≤ d(u,w) < (k + 1)dmin}|, the maximum
number of nodes within a ring of diameter dmin at distance kdmin. If we define the function
κ so as to replace the O-term with κ(k0) = κ(k0, αmin, δ) > 0, which decreases polynomially
in k0. Step (2) stems from bounding IW (u) using Lemma 10.3 and restating κ(k0) P

dmin
by

κ(k0) P ·Λ
R1−2ε

. Step (3) is true, as Λ ≥ 1, R1−2ε is constant, and the exponent hidden in the
Θ-notation can be chosen arbitrary large in order to match the function κ.

34

Due to the choice of k0 and κ, we get for SINR(u, v, I), where I is the set of all nodes
with distance greater than k0dmin:

P
d(u,v)α

N + κ(k0) P
dαmin

≥
P

(2dmin)α

N + κ(k0) P
dαmin

≥
P
rαs

P
βrαw

+ κ(k0)2αP
rαs

= β
1

(1+ρ)α + κ(k0)β2α
≥ β

The second inequality follows from N = p
βrαw

and from dmin ≤ rs/2. The last inequality holds
for sufficiently large k0. If we choose µ to be the probability that no more than one node in
a ball of radius k0dmin transmits, then node v can transmit to u with probability µ.

In the above proof, µ depends on the unknown parameter β, so we use βmax as the base
for computing µ. Note also that since Hµ

p [S] ⊆ H̃µ
p [S], the lemma induces the same properties

on H̃µ
p [S] with high probability.

Lemma 10.15 (Version of Lemma 4.4 of [13]). Given node i ∈ NG1−2ε(S1) and assume
Properties 1 and 2 of Definition 10.8 of a successful epoch at point i are satisfied. Then
for any φ ∈ {1, . . . ,Φ}, the minimum distance between any two nodes in Sφ,i is at least
dφ ≥ 2φ−1 · dmin.

Proof. The proof appears in the full version of this paper [25], as it requires only a minimal
modification of a proof provided in [13].

Lemma 10.16 (Extended version of Lemma 4.5, [13]). For all p ∈ (0, 1/2], there is a Q̂, γ =
Θ(1), such that for all Q ≥ Q̂ the following holds. Consider a round r in phase φ where each
node in Sφ transmits a bcast-message with probability p/Q (Line 11). Let i ∈ NG1−2ε(S1) and
let uφ ∈ Sφ \ {v} be the closest node to v in Sφ. Assume Property 1 of Definition 10.8 of a
successful epoch at point i are satisfied. Let duφ be the distance between uφ and its farthest
neighbor in ˜̃Hµ

p [Sφ]. If d(uφ, v) ≤ (1 + ε)R1−2ε and duφ ≥ γQ−1/α · d(uφ, v), node v receives
a bcast-message from uφ in round r with probability Θ(1/Q).

Note that the proof presented in [13] reveals that the bcast-message is actually received
from node uφ such that we adapted the statement to this fact (instead of stating that v
receives a message from some node). We restate the full proof of [13] with our extensions that
yield Lemma 10.16. There are two main issues we need to take care of:

1. The proof presented in [13] relies on H̃µ
p [Sφ] being a γ-close approximation of Hµ

p [Sφ].
When looking at this proof in more detail, it turns out that this approximation is only
required for all nodes located at distance at most 2duφ around uφ. We show that this
area is covered by a O(1)-neighborhood of uφ in ˜̃Hµ

p [Sφ] such that the statement of [13]
on H̃µ

p [Sφ] can be transferred to our graph ˜̃Hµ
p [Sφ].

2. The proof given in [13] deals with interference from nodes in Sφ at distance further than
2dφ from uφ. We show that additional interference from nodes W that arises due to our
modification of their algorithm is negligible compared to interference from nodes in Sφ.
We conclude that nodes in W do not affect the remainder of the proof of [13].

of Lemma 10.16. The full proof by [13] with the described extensions is deferred to the Ap-
pendix, Lemma C.2

35

Lemma 10.17 (Version of Lemma 4.6. of [13]). Assume Property 2 of the Definition 10.8 of
a successful epoch is satisfied. With probability 1− εapprog/3, either u’s bcast-message reaches
i in phase φ, or d(uφ+1, i) ≤ R1−2ε

(
1 + φ ε

log Λ

)
.

Proof. We defer the proof to the Appendix (Lemma C.3), as it requires only a minimal
modification of a proof provided in [13].

10.5.1 Proof of Lemma 10.13

Proof. We extend and adapt parts of the proof presented in Section 4.3 of [13] to our setting.
We show that Φ = Θ(log Λ) phases are sufficient such that each node v ∈ NG1−2ε(S1) receives a
bcast-message from a G1−ε-neighbor. First, we know due to Lemma 10.15 that the minimum
distance between nodes in Sφ,i grows exponentially with φ. Therefore in some phase φ ≤
Φ = Θ(log Λ) (assuming Λ ≥ R1−2ε/dmin, which is satisfied in any non-trivial instance) the
minimum distance between nodes in Sφ exceeds R1−2ε ·

(
1 + φ ε

log Λ

)
. Second, by applying

Lemma 10.17, there must be a phase φ in which i receives with probability 1 − εapprog/3
a bcast-message from a node uφ ∈ Sφ at distance d(uφ+1, i) ≤ R1−2ε

(
1 + φ ε

log Λ

)
to i. As

φ ≤ Φ = Θ(log Λ), this can be bounded to be less than R1−2ε−2ε2 < R1−2ε. We conclude that
the there must be a bcast-message m′ sent by a G1−ε-neighbor which arrives at node i during
the epoch. This is the bcast-message m′ for which node i outputs an rcv event (Line 11).

10.6 Runtime of an Epoch

Lemma 10.18. The runtime of an epoch is

O
(

logα+1(Λ) · log
(

1
εapprog

)
+ log(Λ) · log

(
1

εapprog

)
· log∗

(
1

εapprog

))
.

Proof. Due to Lemma 10.10 each execution of Line 8 that constructs a graph ˜̃Hµ
p [Sφ] takes

time O (Φ + log(1/εapprog)). Due to Lemma 10.11 each execution of Line 9 that constructs a
set Sφ+1 takes time O ((Φ + log(1/εapprog)) log∗(Λ/εapprog)). In Lines 10–13 a bcast-message
is sent O(Q log(1/εapprog)) times. Due to the choice of Q this is O(logα(Λ) · log(1/εapprog)).
All this is executed for each of the Φ phases of an epoch (Lines 6– 15). Thus the total runtime
of an epoch is

O
(

Φ
((

Φ + log
(

1
εapprog

))
log∗(Λ/εapprog) + logα(Λ) · log

(
1

εapprog

)))

= O
(

log2(Λ) log∗(Λ/εapprog) + log(Λ) log∗(Λ/εapprog) log
(

1
εapprog

)

+ logα+1(Λ) · log
(

1
εapprog

))

= O
(

logα+1(Λ) · log
(

1
εapprog

)
+ log(Λ) · log

(
1

εapprog

)
· log∗

(
1

εapprog

))
,

where we use the definition of Φ = Θ(log Λ) and α > 2.

36

10.7 Proof of Theorem 9.1 (Approximate Progress Bound)

Proof. Probability of approximate progress conditioned on locally unique labels
(Remark 10.9). Consider any node i that has an G1−2ε-neighbor j with an ongoing broad-
cast event (i.e. j ∈ S1). Under the assumption of 1) locally unique labels (Remark 10.9),
and 2) satisfaction of Properties 1 and 2 of Definition 10.8 of a successful epoch at point
i, Lemma 10.13 states that node i receives a bcast-message from a G1−ε-neighbor of i with
probability 1 − εapprog/3 within one epoch. Lemma 10.12 provides that Properties 1 and 2
of Definition 10.8 of a successful epoch at point i are satisfied with probability 1− εapprog/3.
Therefore the total probability that i receives a bcast-message from a G1−ε-neighbor within
an epoch is at least 1− 2εapprog/3, which on the one hand implies satisfaction of Property 3
of Definition 10.8 of a successful epoch at point i, and on the other hand implies that approx-
imate progress is made at point i.

Probability of locally unique labels (Remark 10.9). We apply Lemma 10.1 with
H := ˜̃Hµ

p [Sφ] and U := Uφ,i using random labels ∈ [1, poly Λ
εapprog

]. Lemma 10.1 can be applied, as
|Uφ,i| = O(Λ2). This implies that the modified MIS algorithm computes an independent set
that is maximal with respect to N ˜̃Hµ

p [Sφ],c·4Φ·log∗(Λ/εapprog)(Uφ,i) with probability 1− εapprog
3Φ . As

Sφ,i ⊆ N ˜̃Hµ
p [Sφ],c·4Φ·log∗(Λ/εapprog)(Uφ,i), set Sφ+1 is (φ, i)-locally maximal in ˜̃Hµ

p [Sφ] with prob-
ability 1 − εapprog

3Φ . The probability that we can assume locally unique labels (Remark 10.9)
at each of the Φ phases is at least

(
1− εapprog

3Φ
)Φ ≥ 1− εapprog/3.

Final conclusion. When the two arguments the are combined, we conclude that approximate
progress is made within one epoch with probability at least (1−2εapprog/3) · (1− εapprog/3) ≥
1−εapprog. Therefore Lemma 10.18 bounds not only the runtime of an epoch, but also fapprog
by

O
((

logα(Λ) + log∗
(

1
εapprog

))
log(Λ) log

(
1

εapprog

))
.

Remark 10.19. It might be the case that in Algorithm 9.1 a node receives the same bcast-
message over and over again for fack/2 time slots (until the sender stops broadcasting), which
is an extreme case that still satisfies the definition of progress and approximate progress. We
want to stress that this is not a problem, as Algorithm 9.1 is only required to implement
fast approximate progress and not acknowledgments. Acknowledgments are obtained in Algo-
rithm B.1.

11 A Probabilistic AbsMAC Implementation with Fast Ac-
knowledgments and Approximate Progress in the SINR-
Model

Theorem 11.1. Algorithm 11.1 implements the probabilistic absMAC of [37] for G := G1−ε.
Approximate progress is measured with respect to G̃ := G1−2ε. The algorithm ensures local

37

broadcast in G s.t.

fack = O
(

∆G1−ε · log
(Λ
εack

)
+ log(Λ) log

(Λ
εack

))
with probability at least 1− εack with respect to acknowledgments in G := G1−ε, and

fapprog = O
((

logα(Λ) + log∗
(

1
εapprog

))
log(Λ) log

(
1

εapprog

))
.

with probability at least 1− εapprog with respect to approximate progress in G̃ := G1−2ε.

Remark 11.2. The bound on fapprog is significantly better than the best possible bound on
fprog due to the lower bound in Theorem 6.1. E.g. for graphs where ∆G1−ε = Ω(Λγ), for
γ > 0, the bound on fapprog of Theorem 11.1 is polylogarithmic in the degree ∆G1−ε, while the
lower bound on fprog in Section 6 is linear in the degree ∆G1−ε.

To achieve the bounds stated in Theorem 11.1, we use two algorithms that run in parallel.

• Algorithm of Theorem 5.1 is executed in every even time step with respect to G1−ε and
ensures an almost optimal bound on fack.

• Algorithm 9.1 is executed in every odd time step and ensures fast approximate progress
with respect to G̃.

Combining these two algorithms provides good bounds on both, fack and fapprog. Such
a combination is necessary, as the Algorithm of Theorem 5.1 might not yield a good bound
on approximate progress and Algorithm 9.1 might not lead to an acknowledgment at all.
Therefore they complement each other.

11.1 Details of the Algorithm

Once a bcast(m)i event occurs at node i, node i starts to execute Algorithm 11.1 for fack time
steps. After this node i performs ack(m)i. If node i has an ongoing broadcast and receives
an abort(m)i input from the environment before it performs ack(m)i, then it (i) continues to
participate until the current epoch of Algorithm 9.1 is finished, (ii) after this epoch performs
no further transmission on behalf of bcast-message m, and (iii) does not perform ack(m)i.
Whenever a node i receives a message m′ for the first time in an epoch, it delivers that message
to its environment with a rcv(m′)i output event.

Algorithm 11.1 Implementation of local broadcast as executed by a node i.

1: m := 0; // m stores bcast-message input of an ongoing bcast-event at i
2: whenever a bcast-message is received or a bcast(m′)i event occurs, wake up if not awake;
3: whenever a bcast(m′)i event occurs, set m := m′ and reset m := 0 after fack rounds;
4: Execute in parallel in even/odd time steps:

The algorithm of Theorem 5.1, and
Algorithm 9.1;

38

of Theorem 11.1. Details on the Algorithm and proof corresponding to the bound on fack in
Theorem 11.1 are stated in Section 5. Details on the Algorithm and proof corresponding to
the bound on fapprog in Theorem 11.1 are stated in Sections 9 and 10. We also point the
reader to Remark 4.6 used in these proofs.

12 Application: Improved Network-Wide Broadcast

We combine this absMAC implementation with algorithms from [37] for global broadcast in
this absMAC. We recall the relevant Theorems of [37]. In Theorem 12.6 we argue that we can
replace fprog and εprog in the relevant Theorems of [37] by fapprog and εapprog under certain
conditions and state the effect that this replacement has on other parameters of the runtime.
We use

c2 := 2
1− εprog

and c3 := 3
1− εprog

.

For the convenience of the reader we restate Theorem 7.7 and 8.20 of [37] with respect to
broadcast in graph G and diameter DG, and recall notation used in these Theorems.

Theorem 12.1 (Version of Theorem 7.7 of [37]). Let G be a graph in which local broadcast is
implemented that can be used via the probabilistic absMAC. Let γ′ be a real number, 0 < γ′ ≤ 1.
The BSMB protocol [of [37]] guarantees that, with probability at least

1− γ′ − n · εack,

rcv events and hence, deliver events, occur at all nodes 6= i0 by time

(c3DG + c2 ln(n/γ′))fprog

Definition 12.2 (Nice broadcast events and nice executions, Definition 4.1 of [37]). Suppose
a bcast(m)i event π occurs at time t0 in execution α. Then we say that π is nice if ack(m)i
occurs by time t0 + fack and is preceded by a rcv(m)j for every neighbor j of i. We say that
execution α is nice if all bcast events in α are nice. Let N be the set of all nice executions.

Definition 12.3 (Clear events, Definition 8.1 of [37]). Let α be an execution in N (the set of
nice executions), and let m ∈M be a message such that an arrive(m) event occurs in α. We
define the event clear(m) to be the final ack(m) event in α.

Definition 12.4 (The Set K(m), Definition 8.2 of [37]). Let α be an execution in N and
let m ∈ M be a message such that arrive(m) occurs in α. We define K(m) to be the set of
messages m′ ∈M such that an arrive(m′) event precedes the clear(m) event and the clear(m′)
event follows the arrive(m) event. That is, K(m) is the set of messages whose processing
overlaps the interval between the arrive(m) and clear(m) events.

Theorem 12.5 (Version of Theorem 8.20 of [37]). Let G be a graph in which local broadcast
is implemented that can be used via the probabilistic absMAC. Let m ∈M and let γ′ be a real
number, 0 < γ′ < 1. The BMMB protocol [of [37]] guarantees that, with probability at least

1− γ′ − nkεack,

39

the following property holds for the generated execution α:
Suppose an arrive(m)i event π occurs in α, and let t0 be the time of occurrence of π. Let k′
be a positive integer such that |K(m)| ≤ k′. Then get(m) events, and hence, deliver events
occur at all nodes in α by time

t0 +
(
(c3 + c2)DG + ((c3 + 2c2)

⌈
ln
(

2n3k
γ′

)⌉
+ c3 + c2)k′

)
fprog + (k′ − 1)fack

Theorem 12.6. Let G be a graph in which local broadcast is available via the probabilistic ab-
sMAC of [37]. Let G̃ be the graph in which approximate progress is measured and let the vertex
sets of the connected components of G̃ and G be the same. Then one can replace fprog, εprog
and DG in Theorems 12.1 and 12.5 concerning their global SMB and MMB algorithms by
fapprog, εapprog and DG̃.

Proof. We start by recalling the BMMB and BSMB protocols of [37] for global MMB and
SMB, for which we present our argument.

Basic Multi-Message Broadcast (BMMB) Protocol: Every process i maintains a FIFO
queue named bcastq and a set named rcvd. Both are initially empty. If process i is not cur-
rently sending a message on the MAC layer and its bcastq is not empty, it sends the message
at the head of the queue on the MAC layer (disambiguated with identifier i and sequence num-
ber) using a bcast output. If i receives a message from the environment via an arrive(m)i
input, it immediately delivers the message m to the environment using a deliver(m)i output,
and adds m to the back of bcastq and to the rcvd set. If i receives a message m from the MAC
layer via a rcv(m)i input, it first checks rcvd. If m ∈ rcvd it discards it. Else, i immediately
performs a deliver(m)i output and adds m to bcastq and rcvd.

Basic Single-Message Broadcast (BSMB) Protocol: This is just BMMB specialized to
one message, and modified so that the message starts in the state of a designated initial node
i0.

In the above algorithms, once a node i receives a message, node i broadcasts the message
if it did not broadcast it before. The result of global broadcast is independent of whether a
message was received due to transmission from a G̃-neighbor or a G-neighbor as long as the
components of G̃ and G are the same. Only the runtime changes.

In time fprog it is guaranteed that with probability 1 − εprog a message is received by a
node v when a G-neighbor of v is sending. Therefore the runtime presented in [37] depends
on DG̃. Compared to this it is guaranteed with probability 1− εapprog that in time fapprog a
message arrives when a G̃-neighbor is sending. A message that causes approximate progress in
G with respect to G̃ essentially causes progress in G̃ if we restrict local broadcast to G̃. Here,
if required by the specification of the abstract MAC layer (or algorithms using it) we output
rcv-events for messages that arrive from G-neighbors, but not from other nodes outside of G.
Therefore DG needs to be replaced by DG̃.

Now note that a node i that receives a message m from the MAC layer via a rcv(m)i
discards m if m ∈ rcvd. Therefore messages from G are only placed into bcastq once and
cannot cause delays more than once. Based on this we can now replace fprog and εprog in
Theorems 12.1 and 12.5 by fapprog and εapprog if we also take into account the change of the

40

diameter of the graph in which we consider broadcast. Therefore the diameter DG is replaced
by DG̃.

Although one might now only need fack with respect to broadcast in G̃, we still need to
use the bound of fack for G, as broadcast is implemented in G. We conclude the statement,
as G := G1−ε and G̃ := G1−2ε.

By combining Theorems 12.1 and 12.5 with our results, we obtain:

Theorem 12.7. Consider the SINR model using the model assumptions stated in Section 4.6.
We present an algorithm that performs global SMB in graph G1−ε with probability at least
1− εSMB in time

O
((

DG1−2ε + log
(

n

εSMB

))
· logα+1(Λ)

)
.

O
(
DG1−2ε logα+1(Λ) + k′

(
∆G1−ε + polylog

(
nkΛ
εMMB

))
log

(
nk

εMMB

))
.

Proof. Theorem 11.1 states that fack = O
(
∆G1−ε · log

(
Λ
εack

)
+ log(Λ) log

(
Λ
εack

))
and

fapprog = O
(
DG1−2ε logα+1(Λ) + k(∆G1−ε + polylog (nkΛ)) log (nk)

)
.

Global SMB: Theorem 12.1 combined with Theorem 12.6 guarantees that for 0 < γ′ ≤
1 with probability 1 − γ′ − n · εack, global SMB can be performed in time (c3DG1−2ε +
c2 ln(n/γ′))fapprog. We choose γ′ = εSMB/2 and εack := εSMB/(2n). Therefore we ob-
tain that global SMB is performed with probability 1 − γ′ − n · εack = 1 − εSMB. Choosing
εapprog := 1/8 yields the following total runtime:

(c3DG1−2ε + c2 ln(n/γ′))fapprog = O
(
(DG1−2ε + log(n/εSMB)) · logα+1(Λ)

)
.

Global MMB: Theorem 12.5 guarantees that for 0 < γ′ ≤ 1 with probability 1−γ′−nkεack,
global MMB is completed at time

t0 +
(

(c3 + c2)DG1−2ε + ((c3 + 2c2)
⌈

ln
(

2n3k

γ′

)⌉
+ c3 + c2)k′

)
fprog + (k′ − 1)fack.

We choose γ′ = εMMB/(2k) and εack := εMMB/(2kn). Therefore we obtain that global
MMB is performed with probability 1− γ′ − nk · εack = 1− εMMB. This yields the following
total runtime:(

(c3 + c2)DG1−2ε + ((c3 + 2c2)
⌈

ln
(

2n3k

γ′

)⌉
+ c3 + c2)k′

)
fprog + (k′ − 1)fack

= O
(
DG1−2εfprog + k′(fack + log (nk/εMMB) fprog)

)
= O

(
DG1−2εfapprog + k′(fack + log (nk/εMMB) fapprog)

)
= O

(
DG1−2ε logα+1(Λ) + k′

(
∆G1−ε + polylog

(
nkΛ
εMMB

))
log

(
nk

εMMB

))
In our setting we can simply replace k′ by k, as we consider the one-shot version of k-

message broadcast. This results in the claimed runtime. Furthermore note that we do not

41

need the model assumption (see Section 4.6) that nodes know their G1−ε-neighbors in case
G1−ε is connected (also see the discussion in Remark 4.6). When looking at the proof of
Theorem 12.6 and the BMMB protocol stated therein, we conclude that even if messages are
received from nodes in transmission range that are not G1−ε-neighbors, messages are added
to bcastq only once and cannot cause delays several times.

Acknowledgments: We thank Sebastian Daum, Mohsen Ghaffari, Fabian Kuhn and Calvin
Newport for answering questions concerning their earlier work and helpful discussions. In
particular we thank Erez Kantor for many helpful discussions—especially in the early stages
of this work.

References

[1] K. Alekeish and P. D. Ezhilchelvan. Consensus in sparse, mobile ad hoc networks. IEEE
Trans. Parallel Distrib. Syst., pages 467–474, 2012.

[2] A. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A lower bound for radio broadcast. J.
Compt. Syst. Science, 43:290–298, 1991.

[3] M. Andrews and M. Dinitz. Maximizing capacity in arbitrary wireless networks in the
SINR model: Complexity and game theory. In Proc. of the 28th International Conference
on Computer Communications, INFOCOM, Rio de Janeiro, pages 1332–1340. IEEE,
2009.

[4] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and randomization.
Journal of Computer and System Sciences, 45(1):104–126, 1992.

[5] R. Bar-Yehuda, A. Israeli, and A. Itai. Multiple communication in multihop radio net-
works. SIAM J. Comput., 22(4):875–887, 1993.

[6] M. H. L. Bodlaender, M. M. Halldórsson, and P. Mitra. Connectivity and aggregation in
multihop wireless networks. In ACM Symposium on Principles of Distributed Computing,
PODC ’13, Montreal, QC, Canada, July 22-24, 2013, pages 355–364, 2013.

[7] I. Chlamtac and S. Kutten. On broadcasting in radio networks–problem analysis and
protocol design. IEEE Transactions on Communications, 33(12):1240–1246, 1985.

[8] I. Chlamtac and O. Weinstein. The wave expansion approach to broadcasting in multihop
radio networks. IEEE Transactions on Communications, 39:426–433, 1991.

[9] G. Chockler, M. Demirbas, S. Gilbert, C. C. Newport, and T. Nolte. Consensus and
collision detectors in wireless ad hoc networks. In M. K. Aguilera and J. Aspnes, editors,
Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Distributed
Computing, PODC 2005, Las Vegas, NV, USA, July 17-20, 2005, pages 197–206, 2005.

[10] A. Cornejo, N. Lynch, S. Viqar, and J. L. Welch. Neighbor discovery in mobile ad hoc
networks using an abstract mac layer. In Communication, Control, and Computing,
2009. Allerton 2009. 47th Annual Allerton Conference on, pages 1460–1467. IEEE, 2009.

42

[11] A. Cornejo, S. Viqar, and J. L. Welch. Reliable neighbor discovery for mobile ad hoc
networks. Ad Hoc Networks, 12:259–277, 2014.

[12] A. Czumaj and W. Rytter. Broadcasting algorithms in radio networks with unknown
topology. J. Algorithms, 60(2):115–143, 2006.

[13] S. Daum, S. Gilbert, F. Kuhn, and C. Newport. Broadcast in the ad hoc SINR model.
Technical Report 274, University of Freiburg, Dept. of Computer Science, 2013.

[14] S. Daum, S. Gilbert, F. Kuhn, and C. C. Newport. Broadcast in the ad hoc SINR model.
In Distributed Computing - 27th International Symposium, DISC 2013, Jerusalem, Israel,
October 14-18, 2013. Proceedings, pages 358–372, 2013.

[15] M. Dinitz. Distributed algorithms for approximating wireless network capacity. In INFO-
COM 2010. 29th IEEE International Conference on Computer Communications, Joint
Conference of the IEEE Computer and Communications Societies, 15-19 March 2010,
San Diego, CA, USA, pages 1397–1405, 2010.

[16] M. Elkin and G. Kortsarz. Improved schedule for radio broadcast. In Proceedings of the
Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancou-
ver, British Columbia, Canada, January 23-25, 2005, pages 222–231, 2005.

[17] G. Even, Y. Matsri, and M. Medina. Multi-hop routing and scheduling in wireless net-
works in the SINR model. In Algorithms for Sensor Systems - 7th International Sym-
posium on Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous
Mobile Entities, ALGOSENSORS 2011, Saarbrücken, Germany, September 8-9, 2011,
Revised Selected Papers, pages 202–214, 2011.

[18] I. Gaber and Y. Mansour. Centralized broadcast in multihop radio networks. Journal of
Algorithms, 46:(1),1–20, 2003.

[19] L. Gasieniec, D. Peleg, and Q. Xin. Faster communication in known topology radio
networks. Distributed Computing, 19(4):289–300, 2007.

[20] M. Ghaffari, B. Haeupler, and M. Khabbazian. A bound on the throughput of radio
networks. CoRR, abs/1302.0264, 2013.

[21] M. Ghaffari, B. Haeupler, and M. Khabbazian. Randomized broadcast in radio networks
with collision detection. In ACM Symposium on Principles of Distributed Computing,
PODC ’13, Montreal, QC, Canada, July 22-24, 2013, pages 325–334, 2013.

[22] M. Ghaffari, B. Haeupler, N. A. Lynch, and C. C. Newport. Bounds on contention man-
agement in radio networks. In M. K. Aguilera, editor, Distributed Computing - 26th
International Symposium, DISC 2012, Salvador, Brazil, October 16-18, 2012. Proceed-
ings, volume 7611 of Lecture Notes in Computer Science, pages 223–237. Springer, 2012.

[23] M. Ghaffari, E. Kantor, N. Lynch, and C. Newport. Multi-message broadcast with
abstract MAC layers and unreliable links. In Proceedings of the 33rd Annual ACM
Symposium on Principles of Distributed Computing, PODC 2014, Paris, France, July
15-18, 2014, pages 56–65, extended version available at http://arxiv.org/abs/1405.1671,
2014.

43

[24] O. Goussevskaia, T. Moscibroda, and R. Wattenhofer. Local broadcasting in the physical
interference model. In DIALM-POMC, pages 35–44, 2008.

[25] M. M. Halldorsson, S. Holzer, and N. Lynch. A local broadcast layer for the sinr network
model. arXiv preprint arXiv:1505.tba, 2015.

[26] M. M. Halldórsson, S. Holzer, P. Mitra, and R. Wattenhofer. The power of non-uniform
wireless power. In S. Khanna, editor, Proceedings of the 24th annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,
2013, pages 1595–1606, 2013.

[27] M. M. Halldórsson and P. Mitra. Nearly optimal bounds for distributed wireless schedul-
ing in the SINR model. In L. Aceto, M. Henzinger, and J. Sgall, editors, Automata, Lan-
guages and Programming - 38th International Colloquium, ICALP 2011, Zürich, Switzer-
land, July 4-8, 2011, Proceedings, Part II, volume 6756 of Lecture Notes in Computer
Science, pages 625–636. Springer, Berlin & Heidelberg, Germany, 2011.

[28] M. M. Halldórsson and P. Mitra. Distributed connectivity of wireless networks. In
D. Kowalski and A. Panconesi, editors, Proceedings of the 31st annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, PODC 2012, Funchal,
Madeira, Portugal, July 16-18, 2012, pages 205–214, 2012.

[29] M. M. Halldórsson and P. Mitra. Towards tight bounds for local broadcasting. In
FOMC’12, The Eighth ACM International Workshop on Foundations of Mobile Com-
puting (part of PODC 2012), Funchal, Portugal, July 19, 2012, Proceedings, page 2,
2012.

[30] N. Hobbs, Y. Wang, Q.-S. Hua, D. Yu, and F. C. M. Lau. Deterministic distributed data
aggregation under the SINR model. In M. Agrawal, S. B. Cooper, and A. Li, editors,
TAMC, volume 7287 of Lecture Notes in Computer Science, pages 385–399. Springer,
Heidelberg, 2012.

[31] T. Jurdzinski, D. R. Kowalski, M. Rozanski, and G. Stachowiak. Distributed randomized
broadcasting in wireless networks under the SINR model. In Distributed Computing,
pages 373–387. 2013.

[32] T. Jurdzinski, D. R. Kowalski, M. Rozanski, and G. Stachowiak. On the impact of
geometry on ad hoc communication in wireless networks. In M. M. Halldórsson and
S. Dolev, editors, Proceedings of the Thirty-Third Annual ACM Symposium on Principles
of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014, pages 357–366,
2014.

[33] T. Jurdzinski, D. R. Kowalski, and G. Stachowiak. Distributed deterministic broadcasting
in wireless networks of weak devices. In Automata, Languages, and Programming - 40th
International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part
II, pages 632–644, 2013.

[34] T. Kesselheim. A constant-factor approximation for wireless capacity maximization with
power control in the SINR model. In D. Randall, editor, Proceedings of the Twenty-Second

44

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco,
California, USA, January 23-25, 2011, pages 1549–1559, 2011.

[35] T. Kesselheim and B. Vöcking. Distributed contention resolution in wireless networks.
In N. A. Lynch and A. A. Shvartsman, editors, Distributed Computing (proceedings of
DISC), volume 6343 of Lecture Notes in Computer Science, pages 163–178. Springer,
Heidelberg, 2010.

[36] M. Khabbazian and D. R. Kowalski. Time-efficient randomized multiple-message broad-
cast in radio networks. In C. Gavoille and P. Fraigniaud, editors, Proceedings of the
30th Annual ACM Symposium on Principles of Distributed Computing, PODC 2011,
San Jose, CA, USA, June 6-8, 2011, pages 373–380, 2011.

[37] M. Khabbazian, D. R. Kowalski, F. Kuhn, and N. A. Lynch. Decomposing broadcast
algorithms using abstract MAC layers. Ad Hoc Networks, 12:219–242, 2014.

[38] M. Khabbazian, F. Kuhn, N. A. Lynch, M. Médard, and A. ParandehGheibi. MAC design
for analog network coding. In A. Chaintreau and D. R. Kowalski, editors, FOMC’11, The
Seventh ACM SIGACT/SIGMOBILE International Workshop on Foundations of Mobile
Computing (part of FCRC 2011), San Jose, CA, USA, June 9, 2011, Proceedings, pages
42–51, 2011.

[39] D. Kowalski and A. Pelc. Optimal deterministic broadcasting in known topology radio
networks. Distributed Computing, 19:185–195, 2007.

[40] D. R. Kowalski and A. Pelc. Broadcasting in undirected ad hoc radio networks. Dis-
tributed Computing, 18(1):43–57, 2005.

[41] F. Kuhn, N. A. Lynch, and C. C. Newport. The abstract MAC layer. Distributed
Computing, 24(3-4):187–206, 2011.

[42] E. Kushilevitz and Y. Mansour. An Ω(D log(N/D)) lower bound for broadcast in radio
networks. SIAM J. on Computing, 27:702–712, 1998.

[43] T. Moscibroda and R. Wattenhofer. The Complexity of Connectivity in Wireless Net-
works. In Proceedings of the 25th annual IEEE International Conference on Computer
Communications, Joint Conference of the IEEE Computer and Communications Soci-
eties, INFOCOM 2006, Barcelona, Catalunya, Spain, 23-29 April 2006, pages 1–13, 2006.

[44] C. C. Newport. Consensus with an abstract MAC layer. In M. M. Halldórsson and
S. Dolev, editors, ACM Symposium on Principles of Distributed Computing, PODC ’14,
Paris, France, July 15-18, 2014, pages 66–75, 2014.

[45] D. Peleg. Time-efficient broadcasting in radio networks: A review. In T. Janowski and
H. Mohanty, editors, Distributed Computing and Internet Technology, 4th International
Conference, ICDCIT 2007, Bangalore, India, December 17-20, Proceedings, pages 1–18,
2007.

[46] C. Scheideler, A. W. Richa, and P. Santi. An O(log n) dominating set protocol for wireless
ad-hoc networks under the physical interference model. In MobiHoc, pages 91–100, 2008.

45

[47] J. Schneider and R. Wattenhofer. A log-star distributed maximal independent set al-
gorithm for growth-bounded graphs. In R. A. Bazzi and B. Patt-Shamir, editors, Pro-
ceedings of the Twenty-Seventh Annual ACM Symposium on Principles of Distributed
Computing, PODC 2008, Toronto, Canada, August 18-21, 2008, pages 35–44, 2008.

[48] D. Yu, Q. Hua, Y. Wang, and F. C. M. Lau. An o(log n) distributed approximation
algorithm for local broadcasting in unstructured wireless networks. In IEEE 8th Interna-
tional Conference on Distributed Computing in Sensor Systems, DCOSS 2012, Hangzhou,
China, 16-18 May, 2012, pages 132–139, 2012.

[49] D. Yu, Q.-S. Hua, Y. Wang, H. Tan, and F. C. M. Lau. Distributed multiple-message
broadcast in wireless ad-hoc networks under the SINR model. In G. Even and M. M.
Halldórsson, editors, Structural Information and Communication Complexity - 19th In-
ternational Colloquium, SIROCCO 2012, Reykjavik, Iceland, June 30-July 2, 2012, Re-
vised Selected Papers, volume 7355 of Lecture Notes in Computer Science, pages 111–122.
Springer, Heidelberg, 2012.

[50] D. Yu, Q.-S. Hua, Y. Wang, J. Yu, and F. C. M. Lau. Efficient distributed multiple-
message broadcasting in unstructured wireless networks. In Proceedings of the IEEE
INFOCOM 2013, Turin, Italy, April 14-19, 2013, pages 2427–2435, 2013.

46

Appendix

A Basic Lemma on Growth Bounded Graphs

Lemma A.1. Let G be growth bounded with polynomial bounding function f(r). Then it is
|NG,r(v)| ≤ ∆f(r).

Proof. This statement is well known in the unit-disc graph community. As we did not find a
reference to this version of the statement we include a proof for completeness. The number
of nodes in |NG,r(v)| that are in an independent set of G is bounded by f(r). Consider
the subgraph H of G that consist of nodes NG,r(v) and edges of G between them. Any
independent set in H can be extended to an independent set in G and thus is of size at most
f(r). On the other hand an independent set on H dominates all nodes in H such that the
size of H is at most ∆f(r), as each node has degree at most ∆.

B Proof of [29] Adapted to our Theorem 5.1

We only restate Algorithm and Analysis from [29] adapted to our needs for completeness and
convenience of the reader with the goal of making it simpler to verify our claim in Theorem 5.1.
The proof is minimal modified and variables are replaced by more general parameters to
demonstrate correctness. In particular we restate Theorem 3 of [29] with respect to an upper
bound Ñx of the local contention Nx. Here Nx is defined to be the number of G(1−ε)-neighbors
of x ∈ V that have ongoing broadcasts at the time of execution. Compared to this Theorem
3 of [29] assumes n as an upper bound such that the runtime depends on n. However, we are
interested in local parameters. Furthermore we only wish to claim successful local broadcast
within the stated time with probability 1 − εack, while [29] claims w.h.p., which affects the
runtime as well. For simplicity we use their Notation of regions Tx and Bx, see Definition B.1,
which at the same time serve as sets of nodes with ongoing broadcast located in these regions.
Our notion of NG(1−ε)(x) describes a similar set of all nodes in the ball of radius R(1 − ε),
but also those nodes with no ongoing broadcasts. Furthermore this set cannot be treated as
an area and Bx is more useful for this.

Definition B.1. The transmission region Tx is the ball of radius R1 around a node x which
x can reach without any other node transmitting. The broadcasting region Bx is a ball of
radius R(1−ε) around any node x, containing all nodes to which x would like to transmit.

Remark B.2. The analysis below is transferred from [29] and requires ε large enough such
that (1 − ε) =: φ ≤ 1

6 . However, this is only for simplicity of the presentation and can be
adapted to arbitrary small constant ε.

Theorem B.3 (Version of Theorem 3 of [29]). Let Ñx be an upper bound on the local con-
tention Nx and let εack > 0. When executing Algorithm B.1 each node x successfully performs
a local broadcast within

O(Nx log(Ñx/εack) + log(Ñx) log(Ñx/εack))

rounds with probability at least 1− εack.

47

Algorithm B.1 LocalBroadcast (For any node y)
1: tpy ← 0
2: py ← 1

4Ñx
3: loop
4: py ← max{ 1

128Ñx
,
py
32}

5: rcy ← 0
6: loop
7: py ← min{ 1

16 , 2py}
8: for j ← 1, 2, . . . , δ log(Ñx/εack) do
9: s← 1 with probability py

10: if s = 1 then
11: transmit
12: end if
13: tpy ← tpy + py
14: if tpy > γ′ log(Ñx/εack) then
15: halt;
16: end if
17: if message received then
18: rcy ← rcy + 1
19: if rcy > 8 log(2Ñx/εack) then
20: goto line 4
21: end if
22: end if
23: end for
24: end loop
25: end loop

The symbols γ′, λ used in Algorithm B.1 are appropriate constants.
The intuition behind the algorithm is as follows. The “right” probability for x to transmit

at is about 1
Ñx

(too high, and collisions are inevitable; too low, nothing happens). The
algorithm starts from a low probability, continuously increasing it, but once it starts receiving
messages from others, it uses that as an indication that the “right” transmission probability
has been reached.

To prove Thm. B.3, we will first need the following definition.

Definition B.4. For any node x, the event LowPower occurs at a time slot if the received
power at x from other nodes, Px ≤ 1

(4(β+4)R(1−ε))α
.

The following technical Lemma follows from geometric arguments.

Lemma B.5. f x transmits and LowPower occurs at x, all nodes in 2Bx receive the message
from x (thus a successful local broadcast occurs for x).

Proof. [of Lemma B.5] Consider any y ∈ 2Bx. By definition of 2Bx, d(x, y) ≤ 2R(1−ε). Now
consider any other transmitting node z. We will show that,

Claim B.6. d(z, x) ≤ 3(β + 2)d(z, y)

48

Proof. By the signal propagation model, 1
d(z,x)α is the power received at x from z. Since

LowPower occurred,

1
d(z, x)α ≤

1
((4β + 4)R(1−ε))α

⇒ d(z, x) ≥ 4(β + 4)R(1−ε)

By the triangle inequality, d(z, y) ≥ d(z, x)− d(x, y) > 4(β + 4)R(1−ε) − 2R(1−ε) ≥ 3(β +
4)R(1−ε), proving the claim.

This implies, by basic computation and summing over all transmitting z, that

Py ≤
(4

3

)α
Px (3)

Now, the SINR at node y (in relation to the message sent by x) is

1
2αRα(1−ε)
Py +N

1
≥

1
2αRα(1−ε)(

4
3

)α
Px +N

2
≥

1
2αRα(1−ε)(

4
3

)α 1
((4(β+4))R(1−ε))α

+ (1−ε)α
Rα(1−ε)β

3
≥ β

Explanation of numbered (in)equalities:

1. By Eqn. 3.

2. Plugging in the bound of Px (since LowPower occurs at x) and noting that N =
1

βRα1
= (1−ε)α

βRα(1−ε)
, from the definitions of R1 and R(1−ε).

3. Follows from simple computation once (1− ε) is set to a small enough constant ((1−ε) =
1
6 suffices).

Thus the SINR condition is fulfilled, and y receives the message from x.

We will also need the following definition:

Definition B.7. A FallBack event is said to occur for node y if line 20 is executed for y.

We will refer to the transmission probability py for a node y at given time slots. This will
always refer to the value of py in line 9. We first provide a few basic lemmas needed for the
proof of Lemma B.10, that bounds the transmission probability in any broadcast region at a
given time.

Lemma B.8. Consider any slot t and any node z. Assume that in that slot, for all broad-
cast regions Bx, ∑y∈Bx ≤

1
2 . Then, LowPower occurs for z with probability at least

1
2

(
1
4

) 1
2O
(

1
(1−ε)2

)
.

49

Proof. Let B = Bx \ {x}. We first prove that there is a substantial probability that no node
in B transmits. Assuming this probability is PNx

PNx ≥
∏
w∈B

(1− pw) ≥
∏
w∈Bx

(1− pw) ≥
(1

4

)∑
w
pw

≥
(1

4

) 1
2

The third inequality is from Fact 3.1 [24], and the last from the bound ∑w pw ≤ 1
2 .

Let PT be the probability that no other node transmits in Tx. Since R(1−ε) = (1− ε)R1,
Tx can be covered by O(1

(1−ε)2) broadcast regions (this can be shown using basic geometric
arguments). Thus,

PT ≥ P
O

(
1

(1−ε)2

)
Nx

≥
(1

4

) 1
2O
(

1
(1−ε)2

)
(4)

Since no other node in Tx is transmitting, we only need to bound the signal received from
outside Tx.

To this end, we need the following Claim (which is a restatement of Lemma 4.1 of [24]
and can be proven by standard techniques):

Claim B.9. Assume that for all broadcast regions Bx,∑
y∈Bx py ≤

1
2 . Consider a node x. Then the expected power received at node x from nodes

not in Tx can be upper bounded by

1
8
α− 1
α− 2332α−2 (1− ε)2

Rα(1−ε)
≤ 1

2(4(β + 4)R(1−ε))α

for appropriately small (1− ε).

Then by Markov’s inequality, with probability at least 1
2 , the power received from nodes

outside of Tx is at most 1
(4(β+4)R(1−ε))α

.
Thus, with probability 1

2PT , LowPower occurs at x, proving the Lemma.

Lemma B.10. Consider any node x. Then during any time slot t ≤ 10N2
x ,

∑
y∈Bx

py ≤
1
2 (5)

with probability at least 1/2.

Proof. For contradiction, we will upper bound the probability that Eqn. 5 is violated for the
first time at any given time t, after which we will union bound over all t ≤ 10N2

x ≤ 10Ñx
2.

Let T be the interval (time period) {t− δ log(Ñx/εack) + 1 . . . t− 1}. Then we claim,

Claim B.11. In each time slot in the period T ,

1
2 ≥

∑
y∈Bx

py ≥
1
4 (6)

50

Proof. The first inequality is by the assumption that t is the first slot when Eqn. 5 is violated.
The second is because probabilities (at most) double once every δ log(Ñx/εack) slots (by the
description of the algorithm).

We now show that Eqn. 6 is not possible. To that end, we show that in the δ log(Ñx/εack)
interval preceding t, a FallBack will occur with high probability:

Claim B.12. With probability 1− 1
N8
x

, each node z ∈ Bx will FallBack once in the period
T .

Proof. Fix any z ∈ Bx. By the algorithm

pz ≤
1
16 (7)

Thus, at any time slot,
P(z does not transmit) ≥ 15

16 (8)

Now, combining Eqn. 7 and Eqn. 6, and defining B = Bx \ {z},∑
y∈B

py ≥
3
16 (9)

For y ∈ Bx define Successy to be the event that y transmits and LowPower occurs
for y. By Lemma B.5, Successy implies that z will receive the message from y. Thus,
the probability of z receiving a message from some node in B in a given round is at least
15
16P(⋃

y∈B
Successy).

We claim that for any y 6= w (both in B), the events Successy and Successw are disjoint.
This is implicit in Lemma B.5, since Successy means that w cannot be transmitting and vice-
versa. Thus, the probability of z receiving a message from some node in B is at least:

15
16P(

⋃
y∈B

Successy) = 15
16
∑
y∈B

P(Successy)

≥ 15
16
∑
y∈B

py
1
2

(1
4

) 1
2O
(

1
(1−ε)2

)
≥ 15

32

(1
4

) 1
2O
(

1
(1−ε)2

)
3
16 ,

where we use Lemma B.8 for the first inequality and Eqn. 9 for the last.
Setting δ ≥ 10

15
32(1

4)
1
2O(1

(1−ε)2
) 3

16

and using the Chernoff bound, we can show that z will receive

> 8 log(2Ñx/εack) messages in T with probability 1− 1
Ñx

, thus triggering the FallBack.

Now we show that the above claim implies that Eqn. 6 is not possible.

Claim B.13. There exists a time slot in T such that∑
y∈Bx py <

1
4 .

51

Proof. For any y ∈ Bx, let p1
y be the value of py in the first slot of T . Let pfy be the value of

py in the slot when FallBack happened for y. Since probabilities can at most double during
T , ∑

y∈Bx
pfy ≤ 2

∑
y∈Bx

p1
y ≤ 1 , (10)

the last inequality using the fact that ∑y∈Bx p
1
y ≤ 1

2 (Eqn. 6).
Now by lines 4 and 7 of the algorithm, in the slot after FallBack, py = max{ 1

128Ñx
,
pfy
32} ≤

1
128Ñx

+ pfy
32 . Since probabilities at most double during T , the value of py at the final slot of T

is at most 1
64Ñx

+ pfy
16 . Summing over all y, during the final slot of T ,

∑
y∈Bx

py ≤
Nx

32Ñx
+
∑
y∈Bx

pfy
8 ≤

1
32 + 1

8 <
1
4

contradicting Eqn. 6. We used Eqn. 10 in the second inequality.

The proof of the Claim is completed by union bounding over time slots t ≤ 10N2
x ≤

10Ñx
2.

Now we prove that nodes stop running the algorithm by a certain time.

Lemma B.14. Each node x stops executing within O(Nx log(Ñx)+log2(Ñx)+log(Ñx/εapprog))
slots, with probability at least 1− εack/2.

Proof. Fix x. We derive four claims that together imply the lemma.

Claim B.15. The number of slots for which px ≥ 1
32 is O(log(Ñx/εack)).

Proof. This is ensured by the halting condition in line 14.

Assume that x experienced k FallBacks. Consider the times tx(1), tx(2) . . . tx(k) when
a FallBack happened for x. Now,

Claim B.16. tx(1) = O(log(Ñx) log(Ñx/εack)). Also, there are O(log(Ñx) log(Ñx/εack)) slots
after tx(k).

Proof. The two claims are very similar. Let us prove the latter one. Since FallBack does
not occur after tx(k), the probability px of each node doubles every δ log(Ñx/εack) slots.
Since the minimum probability is Ω(Ñx), by O(log(Ñx) log(Ñx/εack)) slots, the probability
will reach 1

32 . Once this happens, the algorithm terminates in O(log(Ñx/εack)) additional
slots, by Claim B.15.

Given the above claim it suffices to bound tx(k)−tx(1). By Claim B.15 we can also restrict
ourselves to slots for which px < 1

32 . For these slots, line 7 does not need the min clause, i.e.,
py ← 2py each time line 7 is executed.

Define bi such that px = 1
2bi at time tx(i). Note that if Ñx is a power of 2, bi is always an

integer (the case of other values of Ñx can be easily managed).
We can characterize the running time between two FallBacks as follows.

52

Claim B.17. tx(i+ 1)− tx(i) ≤ (bi − bi+1 + 5)δ log(Ñx/εack), for all i = 1, 2 . . . k − 1.

Proof. During slots in [tx(i), tx(i+1)), px doubles every δ log(Ñx/εack) slots (by the description
of the algorithm and the fact that px < 1

32). Let b be such that px = 1
2b at time tx(i+ 1)− 1.

Then,

1
2b = 2

⌊
tx(i+1)−tx(i)
δ log(Ñx/εack)

⌋
2bi

⇒ bi − b =
⌊
tx(i+ 1)− tx(i)
δ log(Ñx/εack)

⌋

By lines 7 and 4 of the algorithm, bi+1 ≤ b+ 4, and thus,

bi − bi+1 + 4 ≥
⌊
tx(i+ 1)− tx(i)
δ log(Ñx/εack)

⌋

⇒ bi − bi+1 + 5 ≥ tx(i+ 1)− tx(i)
δ log(Ñx/εack)

,

completing the proof of the Lemma.

Thus, the running time tx(k)− tx(1) can be bounded by:

tx(k)− tx(1)
= (tx(k)− tx(k − 1)) + (tx(k − 1)− tx(k − 2))

. . .+ (tx(2)− tx(1))
≤ ((bk−1 − bk + 5) + (bk−2 − bk−1 + 5)

. . .+ (b1 − b2 + 5))δ log(Ñx/εack)
= (b1 − bk + 5k)δ log(Ñx/εack)
= O(log(Ñx) log(Ñx/εack) + k log(Ñx/εack)) , (11)

where we use Claim B.17, the non-negativity of bk and the fact that bi = O(log Ñx) (as
px = Ω(1

Ñx
)).

To complete the proof of the Lemma, we need a bound on k:

Claim B.18. With probability 1−εack/2, each node transmits at least 4γ′ log(Ñx/εack) times,
and at most 16γ′ log(Ñx/εack) times.

Proof. By the description of the algorithm, when the node stops, its total transmission prob-
ability is γ′ log(Ñx/εack). By the standard Chernoff bound, the actual number of transmis-
sions is very close to this number, with probability at least 1− εack/(2N8

x), which is at least
1− εack/2.

Claim B.19. k = O(Nx) with probability at least 1− εack/2.

53

Proof. The total number of possible transmissions that x could possibly hear is upper bounded
by O(Nx log(Ñx/εack)), with probability at least 1−εack/(poly Nx) (due to a Chernoff bound).
(However, we only need probability at least 1−εack/4 for our purposes.) This is because each
node transmits O(log(Ñx/εack)) times, with probability at least 1− εack/4) (by Claim B.18)
and a node can only hear messages from nodes in Tx (by the definition of Tx). But nodes only
FallBack once for every 8 log(Ñx/εack) messages received (by the condition immediately
preceding line 20). The claim is proven with probability guarantee (1− εack/4)(1− εack/4) ≥
(1− εack/2).

Applying the above claim to Eqn. 11,

tx(k)− tx(1) ≤ O(log(Ñx) log(Ñx/εack) + k log(Ñx/εack))
= O(Nx log(Ñx/εack) + log(Ñx) log(Ñx/εack)),

completing the argument.

The final piece of the puzzle is to show that for each node, a successful local broadcast
happens with probability at least 1−εack/2 during one of its Θ(γ′ log(Ñx/εack)) transmissions.

Lemma B.20. By the time a node halts, it has successfully locally broadcast a message, with
probability at least 1− εack/2.

Proof. The expected number of transmission made by a node is γ′ log(Ñx/εack) (by the al-
gorithm). By Lemma B.8 (which can be applied, as Lemma B.8’s prerequisites are met each
time with probability 1/2 due to Lemma B.10) and Lemma B.5, during each such transmis-

sion, local broadcast succeeds with probability 1
2

(
1
4

) 1
2O(1

(1−ε)2)
, at least. Thus, the expected

number of successful local broadcasts is (1− 1/2) · 1
2

(
1
4

) 1
2O(1

(1−ε)2)
γ′ log(Ñx/εack). Setting γ′

to a high enough constant, and using Chernoff bounds, with probability at least 1− εack/2, a
successful local broadcast happens at least once.

Lemmas B.14 and B.20 together imply Thm. B.3 with probability guarantee (1−εack/2)(1−
εack/2) ≥ (1− εack).

C Useful Lemmas and Proofs from [13] Adapted to our Needs

We restate two lemmas and proofs from [29] adapted to our needs for completeness. This is
done only for the convenience of the reader with the goal of making it simpler to verify our
claim. Compared to the adapted proofs in the main-body of the paper, the proofs presented
here have only minor modifications and are adapted to our notation.

Lemma C.1 (Version of Lemma 4.4 of [13]). Given node i ∈ NG1−2ε(S1) and assume Prop-
erties 1 and 2 of Definition 10.8 of a successful epoch at point i are satisfied. Then for any
φ ∈ {1, . . . ,Φ}, the minimum distance between any two nodes in Sφ,i is at least dφ ≥ 2φ−1·dmin.

54

Proof. For completeness and clarity we restate the full proof of [13] and extend it to our
setting. We prove the lemma by induction on φ. By definition of dmin, it is d1 ≥ 20 ·
dmin = dmin. By the definition of γ′-close approximation of Hµ

p [S] and as we assume that
Properties 1 and 2 of Definition 10.8 of a successful epoch at point i are satisfied, we can
apply Lemma 10.14 and conclude that Hµ

p [Sφ]|Sφ,i contains edges between all pairs of nodes
Sφ,i at distance d(u, v) ≤ 2 ·dφ. As Sφ+1,i is (φ+ 1, i)-locally maximal in ˜̃Hµ

p [Sφ]|Sφ,i , nodes in
Sφ+1,i are at distance more than 2 · dφ. Using the induction hypothesis, it is dφ+1 > 2 · dφ ≥
2φ · dmin.

Lemma C.2 (Version of Lemma 4.5. of [13]). Assume Property 2 of the For all p ∈ (0, 1/2],
there is a Q̂, γ = Θ(1), such that for all Q ≥ Q̂ the following holds. Consider a round r in
phase φ where each node in Sφ transmits a bcast-message with probability p/Q (Line 11). Let
i ∈ NG1−2ε(S1) and let uφ ∈ Sφ \ {v} be the closest node to v in Sφ. Assume Property 1 of
Definition 10.8 of a successful epoch at point i are satisfied. Let duφ be the distance between
uφ and its farthest neighbor in ˜̃Hµ

p [Sφ]. If d(uφ, v) ≤ (1+ε)R1−2ε and duφ ≥ γQ−1/α ·d(uφ, v),
node v receives a bcast-message from uφ in round r with probability Θ(1/Q).

Proof. For completeness and we restate the full proof of [13] and extend it based on the ideas
summarized in the main-body of our paper. The lemma states under what conditions in round
r of block 2 in phase φ a node v ∈ N(S)\S can receive the message. The roadmap for this
proof is to show that if u is able to communicate with probability (1 − ε)µ with its farthest
neighbor u′ in some round r′ of block 1 in phase φ, using the broadcast probability p, then
u must also be able to reach v with probability Θ(1/Q) in round r of block 2, in which it
transmits with probability p/Q. We start with some notations and continue with a connection
between the interference at u and at v. We then analyze the interference at u created in a
ball of radius 2du around u, as well as the remaining interference coming from outside that
ball. Finally, we transfer all the knowledge we gained for round r′ to round r to conclude the
proof.

For a node w ∈ V , let ISφ∪W (w) = ∑
x∈Sφ∪W

P
d(x,w)α , i.e., the amount of interference at

node w if all nodes of Sφ ∪W transmit. For round r′, the random variable Xp
x(w) denotes

the actual interference at node w coming from a node x ∈ S (the superscript p indicates
the broadcasting probability of nodes in round r′). The total interference at node w is thus
Xp(w) := ∑

x∈Sφ∪W Xp
x(w). If we only want to look at the interference stemming from nodes

within a subset A ⊆ Sφ, we use IA(w) and Xp
A(w) respectively. For round r, in which nodes

use the broadcasting probability p/Q, we use the superscript p/Q. Finally, for a set A ⊆ Sφ,
we define Ā := Sφ\A.

For any w ∈ Sφ, the triangle inequality implies that d(u,w) ≤ d(u, v)+d(v, w) ≤ 2d(v, w).
By comparing IS′(u) and IS′(v) for an arbitrary set S′ ⊆ Sφ we obtain the following observa-
tion:

IS′(u) ≥ 2−αIS′(v). (12)

Let u′ be the farthest neighbor of node u in H̃µ
p [Sφ]. Because H̃µ

p [Sφ] is an ε-close ap-
proximation of Hµ

p [Sφ], we know that H̃µ
p [Sφ] and that this is a subgraph of H(1−ε)µ

p [Sφ].
Therefore [13] now argues that in round r′, u receives a message from uφ with probability at
least (1− ε)µ. In our case, we can only claim that ˜̃Hµ

p [Sφ] is a subgraph of H(1−ε)µ
p [Sφ] in a

certain area around u. It turns out that this is sufficient, as we argue below.

55

Let A ⊆ Sφ be the set of nodes at distance at most 2du from u. Note that d(u, uφ) = du
and therefore both u and uφ are in A. In round r′, if more than 2α/β = O(1) nodes u′ ∈ A
transmit, then node u cannot receive a message from uφ. Since node u receives a message
from uφ with probability at least (1− ε)µ in round r′, we can conclude that fewer than 2α/β
nodes transmit with at least the same probability.

We show that this disc of radius 2du around u is covered by a O(1)-neighborhood of uφ
in ˜̃Hµ

p [Sφ]. For sake of contradiction assume Lemma 10.16 is not true while Property 1 of
Definition 10.8 of a successful epoch at point i is satisfied. Then the communication link
between uφ and its furthest neighbor in Hµ

p [Sφ] could not be µ-reliable, as there are ω(1)
nodes within distance 2duφ that are sending with probability p each. We now bound the
interference from nodes outside of A. The authors of [13] prove that IĀ(u) ≤ c · P

pβdαv
, where

c is a constant. However, compared to [13] we need to take interference from nodes W into
account, as already pointed out in the proof of Lemma 10.14, and we modify their proof to
derive IĀ∪W (u) ≤ c′ · P

pβdαv
for some constant c′. Using the fact that node u receives a message

from node uφ with constant probability at least (1− ε)µ allows us to upper bound IĀ∪W (u)
and by (12) also IĀ∪W (v). For node u to be able to receive a message from uφ, two things
must hold:
(a) P

dαu(N+Xp

Ā∪W (u)) ≥
P

dαu(N+Xp(u)) ≥ β and
(b) uφ transmits and u listens (event Ru,uφ).

Due to Lemma 10.3 we know that IW (u) ≤
(εapprog

Λ
)Θ(1). This implies, that we can

transform (a) to P
dαu(N+Xp

Ā
(u)) ≤ c

′ · P
pβdαv

for some c′, when we choose the exponent hidden in
Θ-notation to match the choice of constant c′. Thus we have for Xp

Ā
(u) that

(1− ε)µ ≤ PRu,uφ · P
(
Xp

Ā
(u) ≤ P

βdαu
−N

)
≤ p(1− p) · P

(
Xp

Ā
(u) ≤ P

βdαu

)
. (13)

Using Lemma B.1, we can therefore bound Xp

Ā
(u) as

P
(
Xp

Ā
(u) ≤

E[Xp

Ā
(u)]

2

)
= P

(
Xp

Ā
(u) ≤ pIĀ(u)

2

)
≤ e−

p2αdαu
8p ·IĀ(u)

. (14)

For the sake of contradiction, assume that IĀ(u) > c · P
pβdαu

for c = max{2, 16β
2α · ln

p(1−p)
(1−ε)µ}.

Combining (13) and (14), we obtain

(1− ε)µ
p(1− p)

(2)
≤ P

(
Xp

Ā
(u) ≤ P

βdαu

)
≤ P

(
Xp

Ā
(u) ≤ cP

2βdαu

)
< P

(
Xp

Ā
(u) ≤ pIĀ(u)

2

)
≤ e−

2αc
16β ,

which is a contradiction to the definition of c. We therefore have IĀ(u) ≤ c · P
pβdαu

and
IĀ∪W (u) ≤ c′ · P

pβdαu
.

We now have all tools to show that v receives a message from u in round r, with broad-
casting probabilities p/Q. From the fact that the link {u, uφ} ∈ E[H̃µ

p [Sφ]] is reliable, we
have seen that with probability at least (1− ε)µ fewer than 2α

β nodes in A send in round r′.
But then in round r with the same probability no more than 2α

βQ send within A. Markov’s
inequality shows that P

(
X
p/Q

Ā∪W (v) < 2 p
QIĀ∪W (v)

)
≥ 1/2. Finally, u sends with probability

56

p/Q. All those events are independent, thus all of them happen with probability at least
(1−ε)µp

2Q = Θ(1/Q). Let us assume that this is the case. To see that v indeed gets u’s message
under those conditions, we check whether SINR(u, v, I) = Pd(u,v)−α

N+Xp/Q

Ā∪W (v)+Xp/Q
A

≥ β:

βd(u, v)α(N +X
p/Q

Ā∪W (v) +X
p/Q
A)

(∗)
≤ βd(u, v)αN + 2α+1cβP

d(u, v)α
dαu

+ β
∑

w∈A,w sends
P

d(u, v)α
Qd(w, v)α

d(u,v)α≤Q dαu
γα

≤
(

1 + ρ

2

)α
rαsNβ + 2α+1cβ

γα
P + 2α

Q
P

(1+ρ)α≥(1+ ρ
2)α+α ρ2

≤
(

1− αρ

2(1 + ρ)α
)

(1 + ρ)αrαsNβ + 2α+1cβ
γα

P + 2α

Q̂
P

P=Nβ(1+ρ)αrαs
≤ P + P

(
2α+1cβ
γα

+ 2α

Q̂
− αρ

2(1 + ρ)α

)
(∗∗)
≤ P

Inequality (∗) holds due to the assumption that Xp/Q

Ā∪W (v) < 2IĀ∪W (v)p/Q and (13).
Inequality (∗∗) holds for properly chosen γ = Θ(1) and Q̂ = Θ(2α) = O(logαmax Rs).

Lemma C.3 (Version of Lemma 4.6. of [13]). Assume Property 2 of the Definition 10.8 of a
successful epoch is satisfied. With probability 1− εapprog/3, either uφ’s bcast-message reaches
i in phase φ, or d(uφ+1, i) ≤ R1−ε

(
1 + φ ε

log Λ

)
.

Proof. For completeness and clarity we restate the full proof of [13] and extend it to our
setting. Clearly, d(u1, i) ≤ R1−2ε. Let φ be any phase. If duφ ≥ Q−1/αd(uφ, i), then we
can apply Lemma 10.16 and we are done, because uφ sends for O(Q log(1/εapprog)) rounds in
Line 11. To see this, we choose the constant hidden in the O-notation large enough, and derive
that with probability 1−(1−(1/Θ(Q))O(Q·log(1/εapprog)) ≥ 1−e− log(3/εapprog) = 1−εapprog/3 the
bcast-message sent by uφ reaches i during the execution of Lines 10–13. Now let this not be the
case and let uφ+1 be the closest neighbor to i in Sφ+1. Due to the assumption that Property 2
of Definition 10.8 of a successful epoch at point i is satisfied, Sφ+1 is (φ, i)-locally maximal in
˜̃Hµ
p [Sφ]. Using this maximality property of our construction, it is d(uφ+1, i) ≤ d(uφ, i) + duφ ,

and therefore

d(uφ+1, i) ≤
(

1 + γ′

Q1/α

)
d(uφ, i) ≤ R1−2ε

(
1 + φ

ε

log Λ + 2γ′
Q1/α

)
≤ R1−2ε

(
1 + (φ+ 1)ε

log Λ

)
.

The last inequality holds for properly chosen Q = Θ (logαR1−2ε), Q ≥ Q̂, proving the
Lemma.

57

	1 Introduction
	2 Contributions and Related Work
	2.1 Comparison of Algorithmic Results with Previous Work
	2.2 A Demonstration how Algorithms Benefit from Abstract MAC Layers

	3 Related Work
	4 Model and Definitions
	4.1 Graphs and their Properties
	4.2 The SINR Model
	4.3 SINR Induced Graphs
	4.4 Abstract MAC Layers
	4.5 Problems
	4.6 General Model Assumptions
	4.7 Overview of Frequently used Notation

	5 Efficient Acknowledgments with an Application to Consensus
	5.1 Application to Network-Wide Consensus in the SINR Model

	6 Impossibility of Fast Progress using the SINR-Model
	7 Approximate Progress
	8 Decay Fails to Yield Fast Approximate Progress
	9 Implementation of Fast Approximate Progress
	9.1 High-Level Description
	9.2 Graphs
	9.3 Details of the Algorithm
	9.3.1 Computation of Graph p[S] and Schedule Based on S in Line ??
	9.3.2 Computation of Set S+1 Based on p[S] and Schedule in Line ??

	10 Analysis of our Implementation of Approximate Progress
	10.1 Outline of the Analysis
	10.1.1 First Modification: Non-Unique Labels in the MIS Computation
	10.1.2 Second Modification: Fewer Repetitions of Transmissions

	10.2 Local Effects of Non-Unique Labels
	10.3 Global Effects of Unsuccessful Transmissions
	10.4 Local Effects of Unsuccessful Transmission
	10.4.1 Definition of Local Success of an Epoch
	10.4.2 Probability of Local Success of Computing Graph p[S] Based on S
	10.4.3 Probability of Local Success of Computing Set S+1 Based on p[S]
	10.4.4 Probability of Satisfying Properties 1 and 2 of a Local Successful Epoch

	10.5 Probability of Approximate Progress Conditioned on Satisfaction of Property 3 of a Local Successful Epoch
	10.5.1 Proof of Lemma ??

	10.6 Runtime of an Epoch
	10.7 Proof of Theorem ?? (Approximate Progress Bound)

	11 A Probabilistic AbsMAC Implementation with Fast Acknowledgments and Approximate Progress in the SINR-Model
	11.1 Details of the Algorithm

	12 Application: Improved Network-Wide Broadcast
	References
	A Basic Lemma on Growth Bounded Graphs
	B Proof of halldorsson2012towards Adapted to our Theorem ??
	C Useful Lemmas and Proofs from daumfull Adapted to our Needs

