
The Generalized Railroad Crossing: A Case Study in FormalVeri�cation of Real-Time SystemsConstance Heitmeyer� Nancy LynchyAbstractA new solution to the Generalized Railroad Crossing problem, based on timed automata, invariantsand simulation mappings, is presented and evaluated. The solution shows formally the correspondencebetween four system descriptions: an axiomatic speci�cation, an operational speci�cation, a discretesystem implementation, and a system implementation that works with a continuous gate model.1 IntroductionDuring the last decade, a large collection of formal methods have been invented for specifying,designing, and analyzing real-time systems. To compare these methods and to better understandtheir use in developing practical real-time systems, one of us (Heitmeyer) has de�ned a benchmarkproblem, called the Generalized Railroad (GRC) Crossing [7]. The problem is as follows.The system to be developed operates a gate at a railroad crossing. The railroad crossing I liesin a region of interest R, i.e., I � R. A set of trains travel through R on multiple tracks inboth directions. A sensor system determines when each train enters and exits region R. Todescribe the system formally, we de�ne a gate function g(t) 2 [0; 90], where g(t) = 0 meansthe gate is down and g(t) = 90 means the gate is up. We also de�ne a set f�ig of occupancyintervals, where each occupancy interval is a time interval during which one or more trainsare in I. The ith occupancy interval is represented as �i = [�i; �i], where �i is the time of theith entry of a train into the crossing when no other train is in the crossing and �i is the �rsttime since �i that no train is in the crossing (i.e., the train that entered at �i has exited ashave any trains that entered the crossing after �i).Given two constants �1 and �2, �1 > 0; �2 > 0; the problem is to develop a system to operatethe crossing gate that satis�es the following two properties:Safety Property: t 2 [i�i) g(t) = 0 (The gate is down during all occupancy intervals.)Utility Property: t 62 [i[�i � �1; �i + �2]) g(t) = 90 (The gate is up when no train is inthe crossing.)To solve the GRC problem, real-time researchers have applied a variety of formal methods,including process algebraic [9, 3, 1], event-based [10], and logic-based approaches [19, 11]. They�Code 5546, Naval Research Laboratory, Washington, D.C. 20375.yLaboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139. Supported byNSF grant 9225124-CCR, ONR contract N00014-91-J-1046, AFOSR contract F49620-94-1-0199, and ARPA contractN00014-92-J-4033.

have also used various mechanical proof systems, including PVS [18], EVES [11], and FDR [2], toformally analyze and verify their solutions. Reference [5] describes three early e�orts to solve theGRC problem.This paper describes a new solution of the GRC based on the Lynch-Vaandrager timed automatonmodel [16, 15], using invariant and simulation mapping techniques [12, 15, 14]. To develop thesolution, a \formal methods expert" (Lynch) and an \applications expert" (Heitmeyer) worked closelytogether to re�ne the GRC problem statement and to design and verify an implementation.Our close collaboration was in sharp contrast to the limited interaction between the Naval Re-search Laboratory (NRL) group that originated the GRC problem and the formal methods groupsthat developed earlier solutions. In the earlier work, the NRL group limited interaction both to en-courage original solutions and to prevent some groups from having more information and thus unfairadvantage over other groups. While these early e�orts produced a variety of solutions and manyinsights into the relative strengths and weaknesses of the di�erent formalisms, they su�ered fromtwo limitations. First, because the original problem statement was somewhat ambiguous, each groupsolved a slightly di�erent problem, which caused di�culties in comparing the solutions. Second, thelimited interaction meant that de�ciencies in the GRC problem statement went uncorrected. Ourcollaboration allowed us quickly to identify and correct these de�ciencies. It also led us to representthe problem and its solution in a form that is both understandable to applications experts and usableby formal methods experts for veri�cation.The rest of the paper is organized as follows. Section 2 describes our approach: general principlesfor applying formal methods to specify and verify real-time systems, our formal model and prooftechniques, and an outline of how we applied the formal methods to the GRC problem. Section 3presents our highest-level problem speci�cation, intended to be understood by applications experts;it improves over the original problem statement given above by resolving some ambiguities. Section 4contains a secondary operational speci�cation, intended to be useful in formal veri�cation. Section 5contains our system implementation. Section 6 contains the main correctness proof. Section 7describes extensions to more realistic, continuous models of the real world components. Section 8evaluates our solution and method. Several appendices provide background on the formal methodswe use, plus two proofs about the high-level speci�cation. A concise version of this report, whichomits the details of the proofs, appears in [8].2 Our ApproachIn this section, we describe our approach to solving the GRC problem. Section 2.1 contains somegeneral principles for applying formal methods to real-time systems. Section 2.2 contains a descrip-tion of the timed automaton model and of invariant and simulation mapping proof methods. Section2.3 contains an overview of how we apply these formal methods to the GRC problem.2.1 Formal Methods for Real-Time SystemsApplying formal methods to real-time systems involves three steps: system requirements speci�ca-tion, design of an implementation, and veri�cation that the implementation satis�es the speci�cation.This process has feedback loops. Once speci�ed, the requirements must be revised when later stepsexpose omissions and errors. The same is true of the designed implementation.2

All three steps require close collaboration between the formal methods expert and the applicationsexpert. The role of the formal methods expert is to produce formal descriptions of both the systemrequirements and the selected implementation and to prove formally that the latter satis�es theformer. The role of the applications expert is to work closely with the formal methods expert toidentify the \real" requirements and to ensure that the speci�ed implementation is acceptable. Inour collaboration, much of the dialogue focused on the system requirements. Once the requirementsspeci�cation was acceptable, de�ning and verifying an implementation, while labor-intensive andtime-consuming, was relatively straightforward.A system requirements speci�cation describes all acceptable system implementations [6]. It hastwo parts: (1) A set of formal models describing the computer system at an abstract level, theenvironment (here, the trains and the gate), and the interface between them. (2) Formal statementsof the properties that the system must satisfy.In developing the GRC solution, we applied the following seven software engineering principles.The �rst �ve concern the requirements speci�cation. The sixth concerns the implementation and itsveri�cation, and the seventh is applicable to all three steps.1. Avoid underspecifying system requirements. The original problem statement lacked necessaryinformation about the various constants. For example, the statement did not constrain theconstant �1. A simple analysis shows that we should assume that �1 >
down + �2 � �1, where�2 is the maximum time and �1 the minimum time that a train requires to travel from entryinto R to the crossing and
down is the maximum time needed to lower the gate.2. Avoid overspecifying system requirements. For example, while the function g is an acceptablegate model, the GRC problem can be solved using a simpler, discrete model { one that repre-sents the gate as being in one of four states { up, going-down, down, and going-up. Our solutionuses the simpler model, but we show in Section 7 how to extend our results to the original gatemodel.For another example, the Utility Property stated above does not rule out solutions in whichthe last train leaves the crossing at time t but within the interval [t; t+�2] the gate goes �rst upand then down rapidly before the gate is raised for the second (and �nal) time. Such solutions,though not to be encouraged, should not be excluded. The essential system properties are thatthe gate must be down when a train is in the crossing and that the gate must be up during thespeci�ed intervals when no train is in the vicinity. During other times, we do not care whatthe gate does.3. Make sure the speci�ed system behavior is reasonable. For example, suppose a train exits thecrossing at time t and another train is scheduled to enter the crossing by time t+
up+
down.Then there is insu�cient time for even one car to travel through the crossing, and thus theUtility Property fails to achieve its practical purpose. To rule out such useless activity, wemodify the original problem statement to only require the gate to be raised if su�cient time, �,exists for at least one car to travel through the crossing. A trivial modi�cation of the originalproblem statement to include � appears in Appendix D.4. Specify the system requirements axiomatically rather than operationally. In the original problemstatement, both the Safety Property and the Utility Property are expressed as axioms. Eachaxiom describes a relationship that is supposed to hold between the two components of the3

system environment, namely, the trains and the crossing gate. Thus the required system prop-erties are properties of the environment. Neither axiom mentions the computer system. Also,the two axioms are stated independently, making it easy to modify the individual properties.In the present study, we initially reformulated the requirements speci�cation operationally, asa timed automaton. This reformulation incorporated both the Safety and Utility Propertiesinto a single automaton description, thus losing the advantage of independence. Also, ourreformulation was stronger than the original, specifying some aspects of what the computersystem should do rather than just describing properties that the system needed to guarantee inthe environment. Finally, the operational style of the reformulation was harder for applicationsexperts to understand. Our �nal version of the speci�cation, which appears in Section 3, isaxiomatic. Like the original formulation, it describes the two properties as independent axiomsabout the environment.5. Provide an operational secondary speci�cation plus a formal proof that the operational speci�ca-tion implements the axiomatic speci�cation. Although it is desirable to start with an axiomaticspeci�cation, the types of proofs we do rest on operational, automaton versions of the speci-�cation and implementation. Therefore, we present a secondary requirements speci�cation interms of timed automata and prove that the operational requirements speci�cation implementsthe original axiomatic speci�cation.As in many applications of formal methods, we initially neglected to provide a formal proof ofthe correspondence between the original speci�cation and the reformulation within our frame-work. Without such a proof, there is no assurance that the properties satis�ed by the systemimplementation are the ones that are really required. In our case, while it was immediately ob-vious that the statement of the Safety Property in our operational speci�cation was equivalentto the original statement of the Safety Property, the correspondence between the two versionsof the Utility Property was not so clear.6. Provide a formal model for the implementation and a proof that it implements the operationalspeci�cation. The implementation should be described using the same model that is used for theoperational speci�cation, or at least one that is compatible. The proof that the implementationmeets the speci�cation can be done using a variety of methods. It might be done by hand, asin this paper, or with computer assistance.7. Express the system requirements speci�cation, the implementation, and the formal proofs sothat they are understandable to applications experts. If the requirements speci�cation and thespeci�cation of the implementation are di�cult to understand, the applications expert cannotbe con�dent that the right requirements have been speci�ed and that the implementationis acceptable. The same holds for the formal proofs: the applications expert must be ableto understand the proofs. This gives him/her a deep understanding of how and why thesystem works and how future changes are likely to a�ect system behavior. To increase theirunderstandability, both the formal speci�cations and the proofs should be based on standardmodels such as automaton models, standard notations, and standard proof techniques such asinvariants and simulation mappings. To the extent feasible, applications experts should not berequired to learn new notations or proof techniques.4

2.2 The Formal FrameworkThe formal method we used to specify the GRC problem and to develop and verify a solutionrepresents both the computer system and the system environment as timed automata, according tothe de�nitions of Lynch and Vaandrager [16, 15]. A timed automaton is a very general automaton,i.e., a labeled transition system. It is not �nite-state: for example, the state can contain real-valued information, such as the current time or the position of a train or crossing gate. This makestimed automata suitable for modeling not only computer systems but also real-world entities such astrains and gates. We base our work directly on an automaton model rather than on any particularspeci�cation language, programming language, or proof system, so that we may obtain the greatest
exibility in selecting speci�cation and proof methods. The formal de�nition of a timed automatonappears in Appendix A.The timed automaton model supports description of systems as collections of timed automata,interacting by means of common actions. In our example, we de�ne separate timed automata for thetrains, the gate, and the computer system; the common actions are sensors reporting the arrival oftrains and actuators controlling the raising and lowering of the gate.An important special case of the model, describable in a particularly simple way, is the MMTautomaton model [17], developed by Merritt, Modugno and Tuttle. An MMT automaton consists ofa collection of \tasks" (i.e., \processes") sharing common data, where each task has an upper boundand a lower bound on the time between its events. This special case is su�cient for describing severalof our components; in particular, the trains and the discrete version of the gate. Formal de�nitionsof the MMT model are given in Appendix B. Our other components, e.g., the computer system,cannot be expressed in the MMT style, so we describe them directly in terms of the general model.Instead of thinking of the MMT model as a di�erent model, we often �nd it useful to regard it assimply a way of describing a large subclass of timed automata.2.3 Applying Formal Methods to GRCOur solution contains four system descriptions: AxSpec, the axiomatic requirements speci�cation;OpSpec, the operational requirements speci�cation; SystImpl, the discrete system implementation;and SystImpl 0, a system implementation with a continuous gate model. Figure 1 illustrates the fourspeci�cations and how they are related.The top-level requirements speci�cation, AxSpec, contains timed automata describing the com-puter system and its environment (the trains and gate), and axioms expressing the Safety and Utility
AxSpec
Trains

Safety

Gate

CompSpec

Utility

OpSpec

Trains

Gate

CompSpec

SystImpl
Trains

Gate

CompImpl

OpProps

SystImpl'

Trains

Gate'

CompImpl

OpPropsOpPropsFigure 1: The four system descriptions and how they are related. In OpSpec, OpProps incorporatesthe Safety and Utility properties into the automaton that results from composing Trains, Gate, andCompSpec. 5

Properties. The Safety Property states that any time there is a train in the crossing, the gate mustbe down. The Utility Property states that the gate is up unless there is a train in the vicinity.Formally, these axioms are properties added to the composition of three timed automata: Trains,Gate, and CompSpec, a trivial speci�cation of the computer system interface. Figure 2 illustratesAxSpec.Next, because it is easier to use in proving correctness, we produce a secondary, more opera-tional requirements speci�cation in the form of a timed automaton OpSpec. We show that OpSpecimplements AxSpec.Next, we describe our computer system implementation as a timed automaton, CompImpl. Cor-rectness means that CompImpl, when it interacts with Trains and Gate, guarantees the Safety andUtility Properties. To show this, we prove that SystImpl, the composition of CompImpl, Trains andGate, provides the same view to the environment components, Trains and Gates, as the operationalspeci�cation OpSpec. This part of the proof follows well-established, stylized invariant and simu-lation mapping methods, which is why we moved from the axiomatic style of speci�cation to theoperational style. All of these proofs can be veri�ed using current mechanical proof technology.In both speci�cation automata, AxSpec and OpSpec, and also in the implementation automatonSystImpl, time information is built into the state. Timing information consists of the current timeplus some deadline information, such as the earliest and latest times that a train that has entered Rwill actually enter the crossing. The correctness proof proceeds by �rst proving by induction someinvariants about the reachable states of SystImpl. The main work in the proof of the Safety Propertyis done by means of these invariants. An interesting feature of the proofs is that the invariantsinvolve time deadline information.Next, we show a \simulation mapping" between the states of SystImpl and OpSpec, again byinduction; this is enough to prove the Utility Property. Appendix C contains formal de�nitionsfor simulation mappings and the correctness properties they guarantee. Like the invariants, thesimulations involve time deadline information, in particular, they include inequalities between timedeadlines.Finally, we observe that our main proofs yield a weaker result that what we really want. Namely,we have worked with an abstract, discrete model of the trains and gate rather than with a realisticmodel that allows continuous behavior. And we have only shown that the \admissible timed traces",i.e., the sequences of externally visible actions, together with their times of occurrence, are preserved,rather than all aspects of the environment's behavior. We conclude by showing that we have not lostany generality by proving the weaker results. In particular, preservation of admissible timed traces
Trains GateCompSpec

enterR(r)enterI(r)

exit(r)

raise

lower

AxSpec

Safety

UtilityFigure 2: AxSpec is the composition of Trains, Gate, and CompSpec, constrained by the Safety andUtility properties. 6

actually implies preservation of all aspects of the environment's behavior. Further, the results extendto SystImpl 0, a system implementation with a more realistic environment model. Both extensions areobtained as corollaries of the results for admissible timed traces of the discrete model, using generalresults about composition of timed automata.3 Axiomatic Speci�cationWe begin with a high level axiomatic speci�cation, AxSpec, describing the problem in terms mosteasily understood by application experts. We express the axioms solely in terms of the environment.We �rst de�ne two timed automata, Trains and Gate, which are abstract representations of thetrains and gate, respectively. These two components do not interact directly. We then de�ne atrivial automaton CompSpec, which interacts with both Trains and Gate via actions representingsensors and actuators. CompSpec describes nothing more than the interface that the computersystem must have with the environment. AxSpec is obtained by composing these three automataand then imposing the Safety and Utility Properties on the composition; see Figure 2. Formally, thetwo properties are restrictions on the executions of the composition. The Safety Property is just arestriction on the states that occur in the execution, while the Utility Property is a more complextemporal condition.3.1 Parameters and Other NotationWe use the notation r, r0, etc. to denote (railroad) trains. We use I to denote the railroad crossing,R to denote the region from where a train passes a sensor until it exits the crossing, and P to denotethe portion of R prior to the crossing. We de�ne some positive real-valued constants:� �1, a lower bound on the time from when a train enters R until it reaches I.� �2, an upper bound on the time from when a train enters R until it reaches I.� �, the minimum useful time for the gate to be up. (For example, this might represent the minimum time for acar to pass through the crossing safely.)�
down, an upper bound on the time to lower the gate completely.�
up, an upper bound on the time to raise the gate completely.� �1, an upper bound on the time from the start of lowering the gate until some train is in I.� �2, an upper bound on the time from when the last train leaves I until the gate is up (unless the raising isinterrupted by another train getting \close" to I).� �, an arbitrarily small constant used to take care of some technical race conditions.1We need some restrictions on the values of the various constants:1. �1 � �2.2. �1 >
down. (The time from when a train arrives until it reaches the crossing is su�ciently large to allow thegate to be lowered.)3. �1 �
down + � + �2 � �1. (The time allowed between the start of lowering the gate and some train reaching Iis su�cient to allow the gate to be lowered in time for the fastest train, and then to accommodate the slowesttrain. The time
down is needed to lower the gate in time for the fastest train, but the slowest train could takean additional time �2 � �1. The � is a technicality.)4. �2 �
up. (The time allowed for raising the gate is su�cient.)1These arise because the model allows more than one event to happen at the same real time.7

3.2 TrainsWe model the Trains component as an MMT automaton with no input or internal actions, and threetypes of outputs, enterR(r), enterI(r), and exit(r), for each train r.Actions:Input:noneOutput:enterR(r), r a trainenterI(r), r a trainexit(r), r a trainInternal:The state consists of a status component for each train, just saying where it is.State:for each train r:r:status 2 fnot-here; P; Ig, initially not-hereThe state transitions are described by specifying the \preconditions" under which each actioncan occur and the \e�ect" of each action. We use s to denote the state before the event occursand s0 the state afterwards. We use the convention that if a state component is not mentioned, itis unchanged (although sometimes, to resolve ambiguities or for emphasis, we say explicitly that acomponent is unchanged).Transitions:enterR(r)Precondition:s:r:status= not-hereE�ect:s0:r:status= PenterI(r)Precondition:s:r:status= PE�ect:s0:r:status= I exit(r)Precondition:s:r:status= IE�ect:s0:r:status= not-hereIn this automaton (and for all the other MMT automata in this paper), we make each non-inputaction a task by itself. We only specify trivial bounds (that is, [0;1]) for the enterR(r) and exit(r)actions. For each enterI(r) action, we use bounds [�1; �2]. This means that from the time when anytrain r has reached R, it is at least time �1 and at most time �2 until the train reaches I .We use the general construction described in Appendix B to convert this automaton to a timedautomaton. This construction involves adding some components to the state { a current time com-ponent now, and �rst and last components for each task, giving the earliest and latest times at whichan action of each task can occur, once the task is enabled. The transition relation is augmented withconditions to enforce the bound assumptions, that is, that an event cannot happen before its �rsttime, and that time cannot pass beyond any last time. In this case, only the state components now,and �rst(enterI(r)) and last(enterI(r)) for each r contain nontrivial information, so we ignore the8

other cases. Applying this construction yields the timed automaton with the same actions and thefollowing states and transitions. (In this automaton description, as well as elsewhere in the paper,we sometimes omit mention of the state where there is no ambiguity.)State:now, a nonnegative real, initially 0for each train r:r:status 2 fnot-here; P; Ig, initially not-here�rst(enterI(r)), a nonnegative real, initially 0last(enterI(r)), a nonnegative real or 1, initially 1.Transitions:enterR(r)Precondition:s:r:status= not-hereE�ect:s0:r:status= Ps0:�rst(enterI(r)) = now+ �1s0:last(enterI(r)) = now+ �2enterI(r)Precondition:s:r:status= Pnow � s:�rst(enterI(r))E�ect:s0:r:status= Is0:�rst(enterI(r)) = 0s0:last(enterI(r)) =1
exit(r)Precondition:s:r:status= IE�ect:s0:r:status= not-here�(�t)Precondition:for all r, s:now+�t � s:last(enterI(r))E�ect:s0:now = s:now+�tLemma 3.1 In any reachable state of Trains:For any r such that r:status = P , �rst(enterI(r)) + �2 � �1 = last(enterI(r)).Proof: By induction on the length, i.e., the total number of non-time-passage and time-passagesteps, of an execution. Because �2 � �1 is a constant, we need only consider actions that change�rst(enterI(r)), last(enterI(r)) or make r:status = P , namely, enterR(r) and enterI(r). The actionsexit(r) and �(�t) do not a�ect the statement.After 0 steps, the claim is vacuously satis�ed. Assume the claim is true after m steps. We mustprove it is true after m+ 1 steps. For enterI(r), the claim is vacuously satis�ed. For enterR(r), thee�ect is s0:r:status = P . Then, s0:�rst(enterI(r)) = now+ �1 and s0:last(enterI(r)) = now+ �2, whichimplies that s0:�rst(enterI(r)) + �2 � �1 = s0:last(enterI(r)) as required.3.3 GateWe model the gate as another MMT automaton, this one with inputs lower and raise and outputsdown and up.Actions:Input:lowerraiseOutput: 9

downupInternal:The state consists of a single status component:State:status 2 fup; down; going-up; going-downg, initially upTransitions:lowerE�ect:if s:status 2 fup; going-upg thens0:status= going-downelse unchanged statusraiseE�ect:if s:status 2 fdown; going-downg thens0:status= going-upelse unchanged status downPrecondition:s:status= going-downE�ect:s0:status= downup Precondition:s:status= going-upE�ect:s0:status= upThe time bounds are down: [0;
down], and up: [0;
up], where
up and
down are upper boundson the time required for the gate to be raised and lowered. To build time into the state, the statecomponents now, last(up), and last(down) are added to produce the following states and transitions.State:status 2 fup; down; going-up; going-downg, initially upnow, a nonnegative real, initially 0last(down), a nonnegative real or 1, initially 1last(up), a nonnegative real or 1, initially 1Transitions:lowerE�ect:if s:status 2 fup; going-upg thens0:status= going-downs0:last(down) = now+
downs0:last(up) =1else unchanged status, last(down), last(up)raiseE�ect:if s:status 2 fdown; going-downg thens0:status= going-ups0:last(up) = now+
ups0:last(down) =1else unchanged status, last(down), last(up)
downPrecondition:s:status= going-downE�ect:s0:status= downs0:last(down) =1up Precondition:s:status= going-upE�ect:s0:status= ups0:last(up) =1�(�t)Precondition:s:now+�t � s:last(up)s:now+�t � s:last(down)E�ect:s0:now = s:now+�t10

3.4 CompSpecWe model the computer system interface as a trivial MMT automaton CompSpec with inputsenterR(r) and exit(r) for each train r, and outputs lower and raise.Actions:Input:enterR(r), r a trainexit(r), r a trainOutput:lowerraiseInternal:CompSpec receives sensor information when a train arrives in the region R and when it leavesthe crossing I . Note that CompSpec does not have an input action enterI(r); this expresses theassumption that there is no sensor that informs the system when a train actually enters the crossing.CompSpec has just a single state. Inputs and outputs are always enabled, and cause no state change.There are no timing requirements.Transitions:enterR(r)E�ect:noneexit(r)E�ect:none lowerPrecondition:trueE�ect:noneraisePrecondition:trueE�ect:none3.5 AxSpecTo get the full speci�cation, we compose the three MMT automata given above, Trains, Gate andCompSpec, yielding a new MMT automaton. But this is not enough: we then add constraints toexpress the correctness properties in which we are interested. Formally, these constraints are axiomsabout an admissible timed execution � of the composition automaton:1. Safety PropertyAll the states in � satisfy the following condition:If Trains:r:status= I for any r, then Gate:status= down.2. Utility PropertyIf s is a state in � with s:Gate:status 6= up, then at least one of the following conditions holds.(a) There exists s0 preceding (or equal to) s in � with s0:Trains:r:status= I for some r and s0:now � s:now��2.(b) There exists s0 following (or equal to) s in � with s0:Trains:r:status= I for some r and s0:now � s:now+�1.(c) There exist two states s0 and s00 in �, with s0 preceding or equal to s, s00 following or equal to s,s0:Trains:r:status= I for some r, s00:Trains:r:status= I for some r, and s00:now� s0:now � �1 + �2 + �.11

The Safety and Utility properties are stated independently. The Safety Property is an assertionabout all the states reached in �, saying that they all satisfy the critical safety property. In contrast,the Utility Property is a temporal property with a somewhat more complicated structure, which saysthat if the gate is not up, then either there is a recent preceding state or an imminent following statein which a train is in I . The third condition takes care of the special case where there is both arecent state and an imminent state in which some train is in I ; although these states are not quiteas recent or imminent as required by the �rst two cases, there is insu�cient time for a car to passthrough the crossing. In Appendix D, we show that the above statement of the Safety and UtilityProperties is equivalent to a trivial modi�cation of the original problem statement.We de�ne the admissible timed executions of AxSpec, atexces(AxSpec), to be the set of admissibletimed executions of the composition automaton that satisfy the Safety and Utility axioms. Also, wede�ne the admissible timed traces of AxSpec, attraces(AxSpec), to be the set of timed traces of suchexecutions. These are analogous to the notions of admissible timed execution and admissible timedtraces used for timed automata.3.6 Implementation RequirementsAn implementation of AxSpec uses a new timed automaton, called CompImpl, with the same interfaceas CompSpec. CompImpl will be composed with the same Trains and Gate automata given above,yielding a new system SystImpl. The system SystImpl should produce executions that, when projectedon the environment (Trains composed with Gate), yields behavior that is also produced by the systemspeci�cation AxSpec. More precisely, for every admissible timed execution � of SystImpl, thereshould be a corresponding admissible timed execution �0 of AxSpec such that �0jTrains� Gate =�jTrains� Gate. That is, the two executions project identically on the Trains and Gate automata.4 Operational SpecIn contrast to AxSpec, which consists of a timed automaton together with some axioms that describerestrictions on the automaton's executions, the secondary operational speci�cation, OpSpec, is simplya timed automaton { all required properties are built into the automaton itself as restrictions on thestate set and on the actions that are permitted to occur. As a result, OpSpec is probably harder foran application expert to understand than AxSpec. But it is easier to use in proofs (at least for thestyle of veri�cation we are using). Thus we regard OpSpec as an intermediate speci�cation ratherthan a true problem speci�cation; we only require that OpSpec implement AxSpec, not necessarilyvice versa, and that all implementations of interest satisfy OpSpec.The two types of speci�cations are also di�erent in another respect: while AxSpec preserves theindependence of the Safety and Utility Properties, OpSpec does not. When a collection of separateproperties are speci�ed by an automaton, the properties usually become intertwined.4.1 The Speci�cationTo obtain OpSpec, we �rst compose Trains, Gate, and CompSpec, and then incorporate the Safetyand Utility Properties into the automaton itself. Formally, the modi�ed automaton is obtainedfrom the composition by restricting it to a subset of the state set, then adding some additionalstate components, and �nally modifying the de�nitions of the steps to describe their dependence on12

and their e�ects on the new state components. Although the composition of the three componentautomata is an MMT automaton, the modi�ed version is not { it is a timed automaton.First, to express the Safety Property, we restrict the states to be those states of the compositionthat satisfy the following invariant: \If Trains:r:status = I for any r, then Gate:status = down."Second, the time-bound restrictions expressed by the Utility Property are encoded as restrictionson the steps. The strategy is similar to that used in Appendix B to encode MMT time boundrestrictions into the steps of a timed automaton { it involves adding explicit deadline components.We describe the modi�cations in two pieces:1. The time from when the gate starts going down until some train enters I is bounded by �1. Toexpress this restriction formally, we add to the state of the composed system a new deadlinelast1, representing the latest time in the future that a train is guaranteed to enter I . Initially,this is set to 1, meaning that there is no such scheduled requirement. To add this newcomponent to OpSpec, we include the following new e�ects in two of the actions:Transitions:lowerE�ect:if s:Gate:status 2 fup; going-upgand s:last1 =1 thens0:last1 = now+ �1else unchanged last1 enterI(r)E�ect:s0:last1 =1There is also a new precondition added: the time-passage action cannot cause time to passbeyond last1. This means that whenever the gate starts moving down, some train must enterI within time �1. The new e�ect being added to the lower action just \schedules" the arrivalof a train in I .2. From when the crossing becomes empty, either the time until the gate is up is bounded by �2 orelse the time until a train is in I is bounded by �2+ �+ �1. Again, we express the condition byadding deadlines, only this time the situation is trickier since there are two alternative boundsrather than just one. We add two new components, last2(up) and last2(I), both initially 1.The �rst represents a milestone to be noted { whether or not the gate reaches the up positionby the designated time { rather than an actual deadline. In contrast, the second representsa real deadline { a time by which a new train must enter I , unless the gate reached the upposition by the milestone time last2(up). To add these new components to OpSpec, we includethe following additional e�ects in three of the actions:Transitions:exit(r)E�ect:if s:Trains:r0:status 6= I for all r0 6= r thens0:last2(up) = now+ �2s0:last2(I) = now+ �2 + � + �1elseunchanged last2(up)unchanged last2(I) up E�ect:if now � s:last2(up) thens0:last2(up) =1s0:last2(I) =1elseunchanged last2(up)unchanged last2(I)enterI(r)E�ect:s0:last2(up) =1s0:last2(I) =113

Also, as with last1, an implicit precondition is placed on the time-passage action, saying thattime cannot pass beyond last2(I). But no such limitation is imposed for time passing beyondlast2(up), because this is just a milestone to be recorded, not a time-blockage.4.2 PropertiesWe make some simple claims about OpSpec:Lemma 4.1 In all reachable states of OpSpec:1. If Trains:r:status = I for any r, then Gate:status = down.2. last2(up) + � + �1 = last2(I).Proof: The �rst property is by de�nition of OpSpec. The second property is proved by induction.We need only consider actions that a�ect last2(up) and last2(I), namely, up, enterI(r), and exit(r)for some r.For the action up, the only case in which the last2 components are a�ected is where now �s:last2(up). In this case, the e�ect of up is s0:last2(up) = s0:last2(I) = 1, and the claim is satis�ed.The e�ect of enterI(r) is s0:last2(up) = s0:last2(I) =1, and thus the claim is satis�ed. For exit(r), theonly case in which the last2 components are a�ected is where r's exit leaves I empty. Then the e�ectis s0:last2(up) = now+�2 and s0:last2(I) = now+�2+�+�1, which implies that s0:last2(up)+�+�1 =s0:last2(I), as needed.Lemma 4.2 In all reachable states of OpSpec:1. now � last1.2. now � last2(I).3. If last1 6=1 then last1 � now+ �1.4. If last2(I) 6=1 then last2(I) � now + �2 + � + �1.5. If last2(up) 6=1 then last2(up) � now+ �2.Proof: By induction. Note that the only actions that can a�ect the truth of 1 or 3 are time passage,lower and enterI actions, and only time passage and lower actions could falsify 1 or 3. Also, the onlyactions that can a�ect the truth of 2, 4, or 5 are time passage, exit, up and enterI actions, and onlytime passage actions and exit actions that leave I empty could falsify 2, 4 or 5.1. The precondition for time passage prevents s0:now from exceeding s:last1 = s0:last1. The e�ectof lower is s0:last1 = now + �1. By de�nition of the constants, �1 > 0, which implies thats0:last1 � now.2. The precondition for time passage prevents s0:now from exceeding s:last2(I) = s0:last2(I). Ifr's exit leaves I empty, then an e�ect of exit(r) is s0:last2(I) = now+ �2+ �+ �1. By de�nitionof the constants, �2 + � + �1 > 0, which implies that s0:last2(I) � now.14

3. If lower causes a change, then its e�ect is s0:last1 = now+ �1, which implies s0:last1 � now+ �1as needed. For the time passage action, suppose that s0:last1 6= 1. Since s:last1 = s0:last1, wehave s:last1 6= 1. Then by inductive hypothesis, s:last1 � s:now+ �1. But s:now < s0:now, sos:now+ �1 < s0:now+ �1. Therefore, s0:last1 � s0:now+ �1 as needed.4. Time passage causes time to increase, so it cannot cause the claim to be violated. For an exit(r)action that leaves I empty, an e�ect is s0:last2(I) = now+ �2 + � + �1, which su�ces.5. Similar to 4.4.3 Relationship Between OpSpec and AxSpecWe show that OpSpec implements AxSpec in the following sense:Lemma 4.3 For any admissible timed execution � of OpSpec, there is an admissible timed execution�0 of AxSpec such that �0jTrains�Gate = �jTrains�Gate. (This is the same as saying that � satis�esthe two properties given explicitly for AxSpec.)We leave the proof of Lemma 4.3 to Appendix E.Note that the relationship between OpSpec and AxSpec is only one-way: there are admissibletimed executions ofAxSpec that have no executions of OpSpec yielding the same projection. Consider,for example, the following example. Suppose that after I becomes empty, the system does a veryrapid raise, lower, raise. These could conceivably all happen within time �2 after the previous timethere was a train in I , which would make this \wa�ing" behavior legal according toAxSpec. However,when this lower occurs, there is no following entry of a train into I , which means that this does notsatisfy OpSpec.As a simple corollary, we obtain:Corollary 4.4 attraces(OpSpec) � attraces(AxSpec).4.4 Proof StrategyThe relationship between OpSpec and AxSpec immediately suggests a strategy for showing thatan implementation SystImpl, based on a particular computer system implementation CompImpl,satis�es AxSpec. The strategy is to show that every admissible timed execution of SystImpl has acorresponding admissible timed execution of OpSpec that projects identically on the Trains and Gateautomata. Then use Lemma 4.3.A simpler approach, which we use for our example, is to show that attraces(SysImpl) � attraces(OpSpec),which implies by Corollary 4.4 that attraces(SysImpl) � attraces(AxSpec). Then general propertiesof composition can be used to infer the needed result.5 ImplementationTo describe our implementation SystImpl, we use the same Trains and Gate automata but replace theCompSpec component in OpSpec and AxSpec with a new component CompImpl, a computer systemimplementation. 15

5.1 CompImplCompImpl is not an MMT automaton but a timed automaton with the same interface as CompSpec.It keeps track of the trains in R, together with the earliest possible time that each might enter I .(This time could be in the past.) It also keeps track of the latest operation that it has performed onthe gate and the current time.State:for each train r:r:status 2 fnot-here; Rg, initially not-herer:sched-time, a nonnegative real number or 1, initially 1gate-status2 fup; downg, initially upnow, initially 0Transitions:enterR(r)E�ect:s0:r:status= Rs0:r:sched-time= now+ �1exit(r)E�ect:s0:r:status= not-heres0:r:sched-time=1lowerPrecondition:s:gate-status= up9r : s:r:sched-time� now+
down+ �E�ect:s0:gate-status= down
raisePrecondition:s:gate-status= down6 9r : s:r:sched-time� now+
up + � +
downE�ect:s0:gate-status= up�(�t)Precondition:t = s:now+�tif s:gate-status= up thent < s:r:sched-time�
down for all rif s:gate-status= down then9r : s:r:sched-time� s:now+
up + � +
downE�ect:s0:now = tObserve that the fact that CompImpl:gate-status = up does not mean that Gate:status = up butjust that Gate:status 2 fup; going-upg. A similar remark holds for CompImpl:gate-status = down.Note that r:sched-time keeps track of the earliest time that train r might enter I . The systemlowers the gate if the gate is currently up (or going up) and some train might soon arrive in I . Here\soon" means by the time the computer system can lower the gate plus a little bit more { this iswhere we consider the technical race condition mentioned earlier. The system raises the gate if thegate is currently down (or going down) and no train can soon arrive in I . This time, \soon" meansby the time the gate can be raised plus the time for a car to pass through the crossing plus the timefor the system to lower the gate. The system allows time to pass subject to two conditions. First, ifgate-status = up, then real time is not allowed to reach a time at which it is necessary to lower thegate. Second, if gate-status = down and the gate should be raised, then time cannot increase at all(until the gate is raised).5.2 The Full System Implementation, SystImplThe full system implementation, SystImpl, is just the composition of the Trains, Gate and CompImplcomponents.Here, we give some useful basic invariants about SystImpl; the next two lemmas say thatCompImpl has accurate information about the trains and gate, respectively.16

Lemma 5.1 The following are true in any reachable state of SystImpl:1. CompImpl:r:status = R i� Trains:r:status 2 fP; Ig.2. If Trains:r:status = P , then CompImpl:r:sched-time = Trains:�rst(enterI(r)).3. If CompImpl:r:status = R and CompImpl:r:sched-time > now, then Trains:r:status = P .4. If Trains:r:status = I, then CompImpl:r:sched-time � now.5. If CompImpl:r:sched-time 6=1, then Trains:r:status 2 fP; Ig.Proof: By induction.1. The only actions that can cause a violation are actions that change the truth values of ei-ther CompImpl:r:status = R or Trains:r:status 2 fP; Ig, namely, enterR(r) and exit(r). But,enterR(r) makes both sides of the equivalence true, and exit(r) makes both sides false. Hence,the property is true.2. The only actions that can cause a violation are actions that make Trains:r:status = P , orelse change CompImpl:r:sched-time or Trains:�rst(enterI(r)), namely, enterR(r), exit(r), andenterI(r). But exit(r) and enterI(r) cause Trains:r:status 6= P , so the claim is vacuouslysatis�ed. Further, the e�ect of enterR(r) ensures that s0:Trains:�rst(enterI(r)) = now+�1, ands0:CompImpl:r:sched-time = now+ �1. Hence, s0:Trains:�rst(enterI(r)) =s0CompImpl:r:sched-time, as required.3. The only actions that can cause a violation are those that can make CompImpl:r:status = R,increase CompImpl:r:sched-time, or make Trains:r:status 6= P , namely, enterR(r), exit(r), andenterI(r). The e�ect of exit(r) is CompImpl:r:status 6= R, and thus the claim is vacuouslysatis�ed. The e�ect of enterR(r) is Trains:r:status = P , and thus the claim is satis�ed.Now consider enterI(r). By the precondition of enterI(r), s:Trains:r:status = P and now �s:Trains:�rst(enterI(r)). Part 2 of this lemma implies that now � s:CompImpl:r:sched-time.Since s:CompImpl:r:sched-time = s0:CompImpl:r:sched-time, we havenow � s0:CompImpl:r:sched-time, and the claim is vacuously satis�ed.4. Suppose s0:Trains:r:status = I . Then Part 1 implies that s0:CompImpl:r:status = R. Ifs0:CompImpl:r:sched-time > s0:now, then Part 3 implies that s0:Trains:r:status = P , a con-tradiction. So, s0:CompImpl:r:sched-time � s0:now as needed.5. The only action that could cause a violation, enterR(r), sets s0:CompImpl:r:sched-time 6= 1.In this case, we have s0:CompImpl:r:status = R. Then Part 1 implies s0:Trains:r:status 2 fP; Igas needed.Lemma 5.2 The following are true in any reachable state of SystImpl:1. CompImpl:gate-status = up if and only if Gate:status 2 fup; going-upg.2. CompImpl:gate-status = down if and only if Gate:status 2 fdown; going-downg.17

Proof: By induction.1. We need only consider actions that change the truth values of CompImpl:gate-status = up andGate:status 2 fup; going-upg, namely, lower and raise. For a lower action,s0:CompImpl:gate-status = down and s0:Gate:status 2 fdown; going-downg, which su�ces. Fora raise action, s0:CompImpl:gate-status = up and s0:Gate:status 2 fup; going-upg, which againsu�ces.2. Follows from Part 1.6 Correctness ProofThe main correctness proof shows that every admissible execution of SystImpl projects on the externalworld like some admissible execution of OpSpec.We �rst prove a collection of invariants, leading to a proof of the safety property. All of theinvariants are proved by induction on the length of an execution. Then we give a simulation mappingto show the Utility Property. Technically speaking, the simulation mapping only preserves timedtraces, not the complete view of the environment components. However, standard compositiontechniques for timed automata show that the view is also preserved.6.1 InvariantsIn this section, we prove the main safety invariant, namely: \If Trains:r:status = I for any r, thenGate:status = down." We do this with the help of two preliminary invariants. The �rst invariantsays that if a train is in the region and the gate is either up or going up, then the train must still befar from the crossing.Lemma 6.1 In all the reachable states of SystImpl, if Trains:r:status = P andGate:status 2 fup; going-upg, then Trains:�rst(enterI(r)) > now+
down.Proof: By induction. Fix any particular train r. We need only consider actions that causeTrains:r:status to become equal to P , cause Gate:status to change to be in fup; going-upg, decreaseTrains:�rst(enterI(r)), or increase now, namely enterR(r), raise, and �.1. enterR(r)An e�ect is s0:Trains:�rst(enterI(r)) = now + �1. Since �1 >
down by an assumption on theconstants, we have s0:Trains:�rst(enterI(r)) > now+
down, as needed.2. raiseAssume that s0:Trains:r:status = P . The precondition implies that s:CompImpl:r:sched-time >now +
up + � +
down, so that s:CompImpl:r:sched-time > now +
down and therefores0:CompImpl:r:sched-time > now+
down. By Lemma 5.1, Part 2, s0:CompImpl:r:sched-time =s0:Trains:�rst(enterI(r)). So s0:Trains:�rst(enterI(r)) > now+
down, as needed.18

3. �(�t)Assume s0:Trains:r:status = P and s0:Gate:status 2 fup; going-upg. Then, Lemma 5.2 impliesthat s0:CompImpl:gate-status = up, and the precondition for time passage implies thats0:now < s:CompImpl:r:sched-time�
down. By Lemma 5.1, Part 2,s:CompImpl:r:sched-time = s:Trains:�rst(enterI(r)). So, s:Trains:�rst(enterI(r)) > s0:now +
down, which implies s0:Trains:�rst(enterI(r)) > s0:now+
down, as needed.The second invariant says that if a train is nearing I and the gate is going down, then the gate isnearing the down position. In particular, the earliest time at which the train might enter I is strictlyafter the latest time at which the gate will be down.Lemma 6.2 In all reachable states of SystImpl, if Trains:r:status = P andGate:status = going-down, then Trains:�rst(enterI(r)) > Gate:last(down).Proof: Another inductive argument. Fix any particular train r. We need only consider actions thatmake Trains:r:status = P or Gate:status = going-down, decrease Trains:�rst(enterI(r)) or increaseGate:last(down), namely, enterR(r), lower, enterI(r), raise and down.1. enterI(r), raise, or down.In each case, the claim is vacuously satis�ed.2. enterR(r)Assume s0:Trains:r:status = P and s0:Gate:status = going-down. Then, Part 2 of Lemma B.1implies that s0:Gate:last(down) � now+
down. The e�ect of enterR(r) iss0:Trains:�rst(enterI(r)) = now+ �1. By an assumption about the constants, �1 >
down, andso now + �1 > now+
down. So s0:Trains:�rst(enterI(r)) > s0:Gate:last(down) as needed.3. lowerSuppose s0:Trains:r:status = P . We only need to consider the case where s:Gate:status 2fup; going-upg, since otherwise the lower doesn't change anything. By Lemma 6.1, this impliesthat s:Trains:�rst(enterI(r)) > now +
down, which implies that s0:Trains:�rst(enterI(r)) >now+
down. Since now+
down = s0:Gate:last(down), the needed inequality follows.These invariants yield the main safety result:Lemma 6.3 In all reachable states of SystImpl, if Trains:r:status = I for any r, then Gate:status =down.Proof: By induction again. This time, the interesting cases are enterI and raise. Fix r.19

1. enterI(r)By the precondition, s:Trains:r:status = P .If s:Gate:status 2 fup; going-upg, then Lemma 6.1 implies that s:Trains:�rst(enterI(r)) > now+
down, so s:Trains:�rst(enterI(r)) > now. But, the precondition for enterI(r) iss:Trains:�rst(enterI(r)) � now. This means that it is impossible for this action to occur, acontradiction.If s:Gate:status = going-down, then Lemma 6.2 implies thats:Trains:�rst(enterI(r)) > s:Gate:last(down). By Lemma B.1, s:Gate:status = going-downimplies s:Gate:last(down) � now. This implies that s:Trains:�rst(enterI(r)) > now, whichagain means that it is impossible for this action to occur.The only remaining case is s:Gate:status = down. This implies s0:Gate:status = down, whichsu�ces.2. raiseWe need to show that the gate doesn't get raised when a train is in I . So suppose thats:Trains:r:status = I . The precondition of raise states that 6 9r: s:CompImpl:r:sched-time �now +
up + � +
down, which implies that, for all r, s:CompImpl:r:sched-time > now. ButParts 1 and 3 of Lemma 5.1 imply that in this case, s:Trains:r:status = P , a contradiction.6.2 Simulation MappingNow, in order to show the Utility Property, we present the simulation mapping from SystImpl toOpSpec. Speci�cally, if s and u are states of SystImpl and OpSpec, respectively, then we de�ne s andu to be related by relation f provided that:1. u:now = s:now.2. u:Trains= s:Trains.23. u:Gate = s:Gate.4. u:last1 � minfs:Trains:last(enterI(r))g.5. Either u:last2(I) � minfs:Trains:last(enterI(r))g, oru:last2(up) � now+
up and the raise precondition holds in s, oru:last2(up) � s:Gate:last(up) and s:Gate:status = going-up.The �rst three parts of the de�nition are self-explanatory. The last two parts provide connectionsbetween the time deadlines in the speci�cation and implementation. In the typical style for thisapproach, the connections are expressed as inequalities. The fourth condition bounds the latest timefor some train to enter I , a bound mentioned in the speci�cation, in terms of the actual time it couldtake in the implementation, namely, the minimum of the latest times for all the trains in P . The�fth condition is slightly more complicated { it bounds the time for either some train to enter I or2By this we mean that the entire state of the Trains automaton, including the time components, is preserved.20

the gate to reach the up position. There are two cases for the gate reaching the up position { one inwhich the gate has not yet begun to rise and the other in which it has.Theorem 6.4 f is a simulation mapping from SystImpl to OpSpec.Proof: We must show the three conditions in the de�nition of a simulation mapping. The threeconditions are de�ned in Appendix C. The �rst condition, preservation of the now value, is immediatefrom the de�nition of f . The second condition is also immediate, because the unique start states ofthe two automata satisfy all the relationships in the de�nition of f . The interesting condition is thestep condition.Suppose that s ��!SystImpl s0, s and s0 satisfy the invariants of SystImpl, and u 2 f [s] satis�esthe invariants of OpSpec. We must produce u0 2 f [s0] such that there is a timed execution fragmentfrom u to u0 having the same timed visible actions as the given step. We do this using a case analysison �.For each non-time-passage action �, we �rst argue that � is enabled in u and then de�ne u0 to bethe unique state that results from applying the indicated action from state u. For the time-passageaction, we �rst argue that the same amount of time can pass from u, and then de�ne u0 to be theunique state that results from allowing that amount of time to pass.Then in each case, we must check that u0 2 f [s0]; in each case, Conditions 1-3 are easy to check,so we need only consider Conditions 4 and 5. Condition 4 is also easy for all cases except the loweraction, since that is the only action that can decrease last1. (The only action that can raise theminimum on the right-hand side of the inequality is enterI, but that sets last1 to 1.) So we omitmention of Condition 4 in all other cases.1. � = enterR(r).Enabling: Since � is enabled in s, we have s:Trains:r:status = not-here. Since u 2 f [s], we haveu:Trains:r:status = not-here. This implies that � is enabled in u.Condition 5: The only alternative that might be falsi�ed by � is the second, and only ifenterR(r) falsi�es the raise precondition. So suppose that u:last2(up) � now +
up andthe raise precondition holds in s but gets falsi�ed in s0. Then, there exists r such thats0:CompImpl:r:sched-time � now+
up + � +
down. Since an e�ect of the action iss0:CompImpl:r:sched-time = now+ �1, we have �1 �
up + � +
down.It su�ces to show that u0:last2(I) � s0:Trains:last(enterI(r)), since that would show that theaction makes the �rst alternative of Condition 5 true. We have that u0:last2(I) = u:last2(I)and s0:Trains:last(enterI(r)) = now+ �2. So it su�ces to show that u:last2(I) � now+ �2.Since u:last2(up) � now+
up, and u:last2(I) = u:last2(up)+�+�1 (this by Part 2 of Lemma 4.1),it is enough to show that now+
up+�+�1 � now+ �2, or, more simply, that
up+�+�1 � �2.But
up + � � �1 �
down as noted above. And we have that �1 �
down + �2 � �1, by anassumption about the constants. So,
up + � + �1 � �2 as needed.2. � = enterI(r).Enabling: Similar to enterR(r).Condition 5: � makes last2(I) = 1 and last2(up) = 1, which make the condition triviallytrue. 21

3. � = exit(r).Enabling: Similar to enterR(r).Condition 5:There are three cases, based on which of the three alternatives becomes falsi�ed.(a) The �rst alternative is falsi�ed.Then, it must be that � decreases u:last2(I), and that no train is in I after the step.We have that u0:last2(I) = now+�2+�+�1 and u0:last2(up) = now+�2. If the preconditionfor raise holds after the step, then it su�ces to show that u0:last2(up) � now+
up. Thatis, it su�ces to show that �2 �
up. But this follows from an assumption about theconstants.Suppose that the precondition for raise does not hold after the step. Then there is somer0 such that s0:CompImpl:r0:sched-time � now+
up+ �+
down. (The �rst preconditionof raise, gate-status = down, cannot fail after the step because of Lemma 6.3 appliedto s.) The fact that s0:CompImpl:r0:sched-time 6= 1 and Part 5 of Lemma 7.1 togetherimply that s0:Trains:r0:status 2 fP; Ig. However, by assumption, no trains are in I afterthe step, so it must be that s0:Trains:r0:status = P . Then Lemma 5.1, Part 2, impliesthat s0:Trains:�rst(enterI(r0)) � now +
up + � +
down, and then Lemma 3.1 impliesthat s:Trains:last(enterI(r0)) � now+
up + � +
down + �2 � �1. It su�ces to show thatu0:last2(I) � s0:Trains:last(enterI(r0)). To show this, it su�ces to show that now+�2+�+�1 � now+
up+�+
down+�2��1, or, more simply, that �2+�1 �
up+
down+�2��1. Butthis follows from the inequalities �2 �
up and �1 �
down+�+ �2� �1 >
down+ �2� �1.(b) The second alternative is falsi�ed.Then the raise precondition must be true in s. By the precondition, s:Trains:r:status = I .Then Lemma 5.1, Part 4, implies that s:CompImpl:r:sched-time � now. But this violatesthe raise precondition in s, which is a contradiction.(c) The third alternative is falsi�ed.Then s:Gate:status = going-up. By the precondition, we have s:Trains:r:status = I , so byLemma 6.3, we have that s:Gate:status = down, a contradiction.4. � = raise.Enabling: Clearly � is enabled in u, because OpSpec imposes no preconditions on its perfor-mance.Condition 5: The only alternative that can be falsi�ed is the second. Suppose thatu:last2(up) � now+
up. We have u0:last2(up) = u:last2(up), so u0:last2(up) � now+
up. But,s0:Gate:last(up) = now+
up and s0:Gate:status = going-up, which yields the third alternative.5. � = lower.Enabling: As for raise.The precondition for lower in SystImpl implies that s:CompImpl:gate-status = up and that thereis a particular r such that s:CompImpl:r:sched-time � now +
down + �. Then Lemma 5.2implies that s:Gate:status 2 fup; going-upg. If s:Trains:r:status = I , then Lemma 6.3 is violated22

in s. Because s:CompImpl:r:sched-time 6= 1, it cannot be that s:Trains:r:status = not-here.So it must be that s:Trains:r:status = P .Then Lemma 5.1, Part 2, implies that s:CompImpl:r:sched-time = s:Trains:�rst(enterI(r)), andLemma 3.1 implies that s:CompImpl:r:sched-time+ �2� �1 = s:Trains:last(enterI(r)). Thus, wehave s:Trains:last(enterI(r)) = s:CompImpl:r:sched-time+ �2� �1, � now+
down+�+ �2� �1,� now+�1 by an assumption about the constants. That is, now+�1 � s:Trains:last(enterI(r)).Condition 4: By de�nition of lower in OpSpec, u0:last1 = now + �1. But as we showed above,this is at least as great as s:Trains:last(enterI(r)) = s0:Trains:last(enterI(r)). That is, u0:last1 �s0:Trains:last(enterI(r)), as needed.Condition 5: The only alternative that � can falsify is the third. So suppose that u:last2(up) �s:Gate:last(up) and s:Gate:status = going-up. Lemma B.1 implies that s:Gate:last(up) � now,so u:last2(up) � now. Since u:last2(up) = u0:last2(up), we have u0:last2(up) � now.Then Lemma 4.1 implies that u0:last2(I) = u0:last2(up) + �1 + �, which is in turn � now + �1.Since now + �1 � s:Trains:last(enterI(r)), we have u0:last2(I) � s:Trains:last(enterI(r)), sou0:last2(I) � s0:Trains:last(enterI(r)). This su�ces for alternative 1.6. � = up.Enabling: Similar to enterR.Condition 5: Because � doesn't decrease any of the left sides of the inequalities. it cannotfalsify alternative 1. Alternative 2 can't hold before the step, because the raise preconditionand the up precondition are exclusive. Suppose that � falsi�es alternative 3. Then u:last2(up) �s:Gate:last(up) and s:Gate:status = going-up. Lemma B.1 implies that s:Gate:last(up) � now,so u:last2(up) � now. But then the e�ect of the action implies that u0:last2(I) = 1, whichsu�ces to satisfy alternative 1.7. � = down.Enabling: Similar to enterR.Condition 5: Straightforward.8. � = �(�t).Enabling: We must show that time �t is allowed to pass in OpSpec. This amounts to showingthat s0:now � u:last1 and s0:now � u:last2(I).To show s0:now � u:last1, we only need to consider the case where u:last1 6= 1. In this case,Condition 4 implies that u:last1 � s:Trains:last(enterI(r)) for some r. The precondition ontime-passage in CompImpl implies thats0:now � s:Trains:last(enterI(r)). So s0:now � u:last1, as needed.To show that s0:now � u:last2(I), we only need to consider the case where u:last2(I) 6= 1. Inthis case, we consider the three alternatives, for s and u. If the �rst alternative holds, then theargument is as for last1. If the second alternative holds, then the raise precondition holds in s.But this implies that � cannot be enabled in s, a contradiction. If the third alternative holds,then s0:now � s:Gate:last(up) � u:last2(up) � u:last2(I), which su�ces.23

Condition 5: The only alternative that the time-passage action might falsify is the second. Butthis means that the raise precondition holds in s, which is impossible since then � could notbe enabled in s.6.3 Putting the Pieces TogetherNow we can put the pieces together to obtain our main correctness result. The simulation resultimmediately implies that all admissible timed traces of SysImpl are admissible timed traces ofOpSpec.See Appendix A for the notation.Lemma 6.5 attraces(SysImpl) � attraces(OpSpec).Proof: By Theorem 6.4 and Theorem C.1.Thus we have:Corollary 6.6 attraces(SysImpl) � attraces(OpSpec).Proof: By Lemma 6.5 and Corollary 4.4.This is not quite what we need, because it does not give us corresponding projections on theenvironment automata. However, we can obtain the main theorem using general results aboutcomposition of timed automata:Theorem 6.7 For any admissible timed execution � of SystImpl, there is an admissible timed exe-cution �0 of AxSpec such that �0jTrains� Gate = �jTrains�Gate.Proof: Let � be any admissible timed execution of SysImpl and let � = ttrace(�). Lemma A.2implies that �jE 2 atexecs(E). Then Corollary 6.6 yields an admissible timed execution � of AxSpecsuch that ttrace(�) = ttrace(�) = �. Note that � satis�es the Safety and Utility properties. Also,Lemma A.2 implies that �jCompSpec 2 atexces(CompSpec).Now we de�ne a new admissible timed execution �0 of the system composed of E and CompSpec.Since �jE = ttrace(�jE) and �jCompSpec = ttrace(�jCompSpec), Lemma A.3 implies that there isan admissible timed execution �0 of the system composed of E and CompSpec such that �0jE = �jEand �0jCompSpec = �jCompSpec. Note that ttrace(�0) = �, because all actions are in the interfaceof E.We claim that �0 satis�es the required properties. First, �0 is de�ned to be an admissible timedexecution of the system composed of E and CompSpec; to see that it is an admissible timed executionof AxSpec it su�ces to show that it satis�es the Safety and Utility properties. But this follows fromthe facts that ttrace(�0) = � = ttrace(�) and that � satis�es the Safety and Utility properties. (Theseproperties can be inferred from the timed traces.) Second, �0jE = �jE by construction. This is asneeded. 24

7 Realistic Models of the Real WorldThe models used above for the trains and gate are rather abstract. An applications expert mightprefer more realistic models, giving, for instance, exact or approximate positions for the trains andgate. However, a formal methods expert would probably not want to include such details, becausethey would complicate the proofs. Fortunately, we can satisfy everyone.It is possible to de�ne a pair of models for any real world component, one abstract and onemore realistic. The only constraint is that the realistic model should be an \implementation" ofthe abstract model, i.e., its set of admissible timed traces should be included in that of the abstractmodel. All the di�cult proofs are carried out using the abstract models, as above. Then corollariesare given to extend the results to the realistic models. This extension is based on general resultsabout composition of timed automata.For example, we can de�ne a new type of gate component, Gate0, similar to the Gate de�nedabove, but having a more detailed model of gate position. Gate0 is also a timed automaton. Fixany constant
 0down, 0 �
 0down �
down. De�ne gd to be a function mapping [0;
 0down] to [0; 90].Function gd is de�ned so that gd(0) = 90, gd(
 0down) = 0, and gd is monotone nonincreasing andcontinuous. gd(t) gives the position of the gate after it has been going down for time t. Similarly, �xa constant
 0up, 0 �
 0up �
up, and de�ne gu to be a function mapping [0;
 0up] to [0; 90]. Functiongu is de�ned so that gu(0) = 0, gu(
 0up) = 90, and gu is monotone nondecreasing and continuous.The actions of Gate0 are the same as for Gate. The state is also the same, with the addition ofone new component pos 2 [0; 90] to represent the gate position, initially 90:State:status in fup; down; going-up; going-downg, initially uppos 2 [0; 90], initially 90now, a nonnegative real, initially 0last(down), a nonnegative real or 1, initially 1last(up), a nonnegative real or 1, initially 1The transitions are as follows. The lower and raise transitions are the same as for Gate, exceptthat
 0down and
0up are used in place of
down and
up. The up and down transitions containsnew preconditions stating that the correct position has been reached. The time-passage transitionsadjust pos.
25

Transitions:lowerE�ect:if s:status 2 fup; going-upg thens0:status= going-downs0:last(down) = now+
0downs0:last(up) =1else unchanged status, last(down), last(up)raiseE�ect:if s:status 2 fdown; going-downg thens0:status= going-ups0:last(up) = now+
0ups0:last(down) =1else unchanged status, last(down), last(up)downPrecondition:s:status= going-downs:pos= 0E�ect:s0:status= downs0:last(down) =1
up Precondition:s:status= going-ups:pos= 90E�ect:s0:status= ups0:last(up) =1�(�t)Precondition:t = now+�tt � s:last(down)t � s:last(up)E�ect:s0:now = tif s:status= going-up thens0:pos=maxfs:pos; gu(t�(s:last(up)�
0up))gelseif s:status= going-down thens0:pos=minfs:pos; gd(t�(s:last(down)�
0down))gelse unchanged posThus, unlike the more abstract automata considered so far, Gate0 allows interesting state changesto occur in conjunction with time-passage actions. Note that Gate0 contains a rather arbitrarydecision about what happens if a lower event occurs when the gate is in an intermediate position.It says that the gate stays still for the initial time that it would take for the gate to move down toits current position if it had started from position 0. Alternative modeling choices would also bepossible. A similar remark holds for raise.One detail needs mentioning: we need to verify that when we apply the functions gu and gd toarguments in the time-passage transitions, the arguments are in fact within the speci�ed interval. Forexample, consider the application gu(t� (s:last(up)�
 0up))g, which occurs when s:status = going-up.We must be sure that 0 � t � (s:last(up) �
 0up) �
 0up. The �rst inequality follows from the factsthat s:last(up) � s:now+
0up and s:now � t, while the second inequality follows from the fact thatt � s:last(up).We relate the new gate model to the old one.Lemma 7.1 attraces(Gate0) � attraces(Gate).Proof: By Theorem C.1, it su�ces to show the existence of a simulation mapping from Gate0 toGate. If s and u are states of Gate0 and Gate, respectively, then we de�ne s and u to be related byrelation f provided that:1. u:status = s:status.2. u:now = s:now.3. u:last(down) � s:last(down).4. u:last(up) � s:last(up). 26

It is straightforward to show that f is a simulation mapping.Now, let SystImpl 0 be the composition of Trains, Gate0, and CompImpl, and let AxSpec0 be thecomposition of Trains, Gate0, and CompSpec, with Safety and Utility Properties added as in AxSpec.Using Theorem 6.7 and general results about composition of timed automata, we obtain:Theorem 7.2 For any admissible timed execution �0 of SystImpl 0, there is an admissible timedexecution �0 of AxSpec0 such that �0jTrains� Gate0 = �0jTrains� Gate0.Proof: We de�ne two environment automata: let E be the composition of Gate and Trains, and E0the composition ofGate0 and Trains. Lemma 7.1 says that attraces(Gate0) � attraces(Gate). This anda basic substitutivity property of composition, Lemma A.1, imply that attraces(E0) � attraces(E).Let �0 be any admissible timed execution of SystImpl 0, and let � = ttrace(�0).Lemma A.2 implies that �0jE 0 2 atexecs(E0) and �0jCompImpl 2 atexecs(CompImpl). Sinceattraces(E 0) � attraces(E), we may obtain
 2 atexecs(E) with ttrace(
) = ttrace(�0jE 0) =ttrace(�0)jE 0 = �jE 0 = �.Now we construct an admissible timed execution � of SystImpl. Since �jE = ttrace(
) and�jCompImpl = ttrace(�0jCompImpl), Lemma A.3 implies that there is an admissible timed execution� of SystImpl such that �jE =
 and �jCompImpl = �0jCompImpl. We have that ttrace(�) =ttrace(
) = �.Next, by Theorem 6.7 applied to �, we obtain an admissible timed execution � of AxSpec suchthat �jE = �jE. It follows that ttrace(�) = ttrace(�) = � and that � satis�es the Safety and Utilityproperties.Now we de�ne an admissible timed execution �0 of the system composed of E 0 and CompSpec.Since �jE0 = ttrace(�0jE 0) and �jCompSpec = ttrace(�jCompSpec), Lemma A.3 implies that there isan admissible timed execution �0 of the system composed ofE0 and CompSpec such that �0jE 0 = �0jE 0and �0jCompSpec = �jCompSpec. Note that ttrace(�0) = �.We claim that �0 satis�es the required properties. First, �0 is de�ned to be an admissible timedexecution of the system composed of E0 and CompSpec; to see that it is an admissible timed executionof AxSpec0 it su�ces to show that it satis�es the Safety and Utility properties. But this follows fromthe facts that ttrace(�0) = � = ttrace(�) and that � satis�es the Safety and Utility properties. (Theseproperties can be inferred from the timed traces.) Second, �0jE 0 = �0jE 0 by construction. This is asneeded.8 DiscussionWe have applied a formal method based on timed automata, invariants, and simulation mappingsto model and verify the Generalized Railroad Crossing example [7]. Here, we extrapolate from thisexperience and attempt to evaluate the method for use in modeling and verifying other real-timesystems. We also describe future work.� Generality. Can the method be used to describe all acceptable implementations? It seemsso. For instance, timed automata can have an in�nite number of states and both discrete andcontinuous variables. Further, they can express the maximum allowable nondeterminism, usesymbolic parameters to represent system constants, and represent asynchronous communica-tion. Thus the method is signi�cantly more general than approaches based on model-checking,which typically require a �nite number of states and constant timing parameters.27

� Readability. Are the formal descriptions easy to understand? The environment model andthe system implementation model are easy to understand, since it is natural to model these asautomata. The requirements speci�cations do not look so natural when expressed as automata;an axiomatic form seems easier to understand. However, if one starts with an axiomaticspeci�cation, then one has to rewrite the speci�cation as an automaton. It may be di�cultto determine that the automaton speci�cation is equivalent to (or implements) the axiomaticspeci�cation.� Power. Can the method be used to verify all implementations? Simulation methods (extendedbeyond what is described in this paper, to include \backward" as well as \forward" simulations)are theoretically complete for showing admissible timed trace inclusion. They also seem to bepowerful in practice, although they might sometimes bene�t from combination with otherveri�cation methods, such as model-checking, process algebra, temporal logic or partial ordertechniques. Model-checking alone is less powerful in practice, since it only checks whether asubfamily of solutions satisfy some speci�c properties.� Ease of Carrying out the Proof. How hard is it to construct a proof using this method?Can typical engineers learn to do this?Constructing these proofs, though not di�cult, required signi�cant work. The hardest partswere getting the details of the models right and �nding the right invariants and simulationmapping. This is an art rather than an automatic procedure. The actual proofs of the invariantsand the simulation were tedious but routine.Carrying out such a modeling and veri�cation e�ort requires the ability to do formal proofs,which most engineers are not trained to do. In contrast, using model-checking, an engineercan check automatically whether a given \model" satis�es the properties of interest. (Modelcheckers are already being used in practice by engineers to check the correctness of certainimplementations, e.g., of circuits.) On the other hand, the proofs developed using the methodof this paper are amenable to mechanical proof checking. So, automated support can beprovided to engineers attempting to develop formal proofs.� Information. Does the proof yield information other than just the fact that the implemen-tation is correct? Does it give any insight into the reasons that the implementation works?Yes. The invariants and simulations that require considerable e�ort to produce yield payo�sby providing very useful documentation. They express key insights about the behavior ofthe implementation. In contrast, model-checking methods yield no such byproducts, only anassertion that the implementation satis�es the desired properties.� Scalability. Does the formalism scale up to handle larger problems? We don't yet know. Justreasoning about this relatively simple problem was quite complex. A bigger system will mainlyadd complexity in the form of more system components and more actions, which leads in turnto more invariants, more components in the simulation mapping, and more cases in the proofs.But, in contrast to model-checking, the blowup should not be exponential. Nonetheless, useof the method for larger problems should be coupled with various methods of decomposing aproblem so one need not reason about an entire complex system at once. Additional levels ofabstraction and use of parallel composition should help.28

� Ease of Change. How easy is it to modify the speci�cations and the proofs? Separatingthe system model from the environment model and splitting the environment model into theindividual gate model and train model makes it easy to change the descriptions. Should onewant to use a more complex train model (for example, trains move backward as well as forward),one can easily substitute the revised model for the original. Expressing the required propertiesaxiomatically and independently makes it easier to change the requirements.Changes to the speci�cations and implementations require, of course, changes to the proofs.If the changes are fairly small, however, we expect most of the prior work to survive, and thestylized form of the proof provides useful structure for managing the modi�cations. Here is aplace where mechanical aid would be most helpful { proofs could be rerun quickly to discoverwhich parts need to be changed.Future work includes:1. Trying this method out on larger examples from real-time process control and timing-basedcommunication. In the real-time process control area, transportation problems are especiallyinteresting to us. Some new complications are expected to arise when the continuous quantitiesof interest include velocity and acceleration as well as time and position.2. Developing the appropriate computer assistance for carrying out and checking the proofs. Weplan to try to use the proof systems PVS [18] and Larch [4] to check the proofs and to assessthe utility of mechanical proof systems for such proofs.3. Trying to systematize the reasoning about the correspondence between the axiomatic andoperational speci�cations.AcknowledgmentsDiscussions with Ralph Je�ords of NRL helped identify and clarify software engineering principlesuseful in developing the GRC solution and led to improvements in the proofs in Appendix D. RainerGawlick pointed out an imprecision in our original argument for Theorem 6.7.
29

References[1] R. Cleaveland, J. Parrow, and B. Ste�en. The concurrency workbench: A semantics-based toolfor the veri�cation of concurrent systems. ACM Trans. Prog. Lang. and Sys., 15(1):36{72, Jan.1993.[2] Oxford Formal Systems (Europe) Ltd. Failure Divergence Re�nement, user manual and tutorial,1992.[3] R. Gerber and I. Lee. A proof system for communicating shared resources. In Proc. 11th IEEEReal-Time Systems Symp., pages 288{299, 1990.[4] J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal Speci�cation. Springer-Verlag, 1993.[5] C. Heitmeyer and R. Je�ords. Formal speci�cation and veri�cation of real-time systems: Acomparison study. Technical report, NRL, Wash., DC, 1994. In preparation.[6] C. Heitmeyer and J. McLean. Abstract requirements speci�cations: A new approach and itsapplication. IEEE Trans. Softw. Eng., SE-9(5), September 1983.[7] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. A benchmark for comparing di�erentapproaches for specifying and verifying real-time systems. In Proc., 10th Intern. Workshop onReal-Time Operating Systems and Software, May, 1993.[8] Constance Heitmeyer and Nancy Lynch. The Generalized Railroad Crossing: A case study informal veri�cation of real-time systems. In Proceedings, Real-Time Systems Symposium, SanJuan, Puerto Rico, December 1994. To appear.[9] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cli�s, NJ,1985.[10] F. Jahanian and A. K. Mok. Safety analysis of timing properties in real-time systems. IEEETrans. Softw. Eng., SE-12(9), September 1986.[11] S. Kromodimoeljo, W. Pase, M. Saaltink, D. Craigen, and I. Meisels. A tutorial on EVES.Technical report, Odyssey Research Associates, Ottawa, Canada, 1993.[12] N. Lynch and H. Attiya. Using mappings to prove timing properties. Distrib. Comput., 6:121{139, 1992.[13] N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-Quarterly, 2(3):219{246, September 1989. Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands.[14] Nancy Lynch. Simulation techniques for proving properties of real-time systems. In REXWorkshop '93, Lecture Notes in Computer Science, Mook, the Netherlands, 1994. Springer-Verlag. To appear.[15] Nancy Lynch and Frits Vaandrager. Forward and backward simulations { Part II: Timing-basedsystems. Submitted for publication. 30

[16] Nancy Lynch and Frits Vaandrager. Forward and backward simulations for timing-based sys-tems. In Proceedings of REX Workshop \Real-Time: Theory in Practice", volume 600 of LectureNotes in Computer Science, pages 397{446, Mook, The Netherlands, June 1991. Springer-Verlag.[17] Michael Merritt, Francesmary Modugno, and Mark R. Tuttle. Time constrained automata. InJ. C. M. Baeten and J. F. Goote, editors, CONCUR'91: 2nd International Conference on Con-currency Theory, volume 527 of Lecture Notes in Computer Science, pages 408{423, Amsterdam,The Netherlands, August 1991. Springer-Verlag.[18] S. Owre, N. Shankar, and J. Rushby. User guide for the PVS speci�cation and veri�cationsystem (Draft). Technical report, Computer Science Lab, SRI Intl., Menlo Park, CA, 1993.[19] N. Shankar. Veri�cation of real-time systems using PVS. In Proc. Computer Aided Veri�cation(CAV '93), pages 280{291. Springer-Verlag, 1993.

31

A The Timed Automaton ModelThis section contains the formal de�nitions for the timed automaton model, taken from [14].A.1 Timed AutomataA timed automaton A consists of a set states(A) of states, a nonempty set start(A) � states(A) ofstart states, a set acts(A) of actions, including a special time-passage action �, a set steps(A) of steps(transitions), and a mapping nowA : states! R�0. (R�0 denotes the nonnegative reals.) The actionsare partitioned into external and internal actions, where � is considered external; the visible actionsare the non-� external actions; the visible actions are partitioned into input and output actions.The set steps(A) is a subset of states(A) � acts(A) � states(A). We write s a�!A s0 as shorthandfor (s; �; s0) 2 steps(A), and usually write s:nowA in place of nowA(s). We sometimes suppress thesubscript or argument A.A timed automaton must satisfy �ve axioms: [A1] If s 2 start then s:now = 0. [A2] If s ��! s0 and� 6= � then s:now = s0:now. [A3] If s ��! s0 then s:now < s0:now. [A4] If s ��! s00 and s00 ��! s0, thens ��! s0. Axiom [A1] says that the current time is always 0 in a start state. Axiom [A2] says thatnon-time-passage steps do not change the time; that is, they occur \instantaneously", at a singlepoint in time. Axiom [A3] says that time-passage steps must cause the time to increase; this is aconvenient technical restriction. Axiom [A4] allows repeated time-passage steps to be combined intoone step.The statement of [A5] requires the preliminary de�nition of a trajectory , which describes re-strictions on the state changes that can occur during time-passage. Namely, if I is any interval ofR�0, then an I-trajectory is a function w : I ! states, such that w(t):now = t for all t 2 I , andw(t1) ��! w(t2) for all t1; t2 2 I with t1 < t2. That is, w assigns, to each time t in interval I , a statehaving the given time t as its now component. This assignment is done in such a way that time-passage steps can span between any pair of states in the range of w. If w is an I-trajectory and I isleft-closed, then de�ne w:ftime = min(I) and w:fstate = w(w:ftime), while if I is right-closed, thende�ne w:ltime = max(I) and w:lstate = w(w:ltime). If I is a closed interval, then an I-trajectory wis said to span from state s to state s0 if w:fstate = s and w:lstate = s0. The �nal axiom is: [A5] Ifs ��! s0 then there exists a trajectory that spans from s to s0. Axiom [A5] is a kind of converse to[A4]; it says that any time-passage step can be \�lled in" with states for each intervening time, in a\consistent" way.A.2 Timed Executions and Timed TracesA timed execution fragment is a �nite or in�nite alternating sequence � = w0�1w1�2w2 � � �, where:1. Each wj is a trajectory and each �j is a non-time-passage action.2. If � is a �nite sequence, then it ends with a trajectory.3. If wj is not the last trajectory in � then its domain is a closed interval. If wj is the lasttrajectory then its domain is left-closed (and either right-open or right-closed).4. If wj is not the last trajectory then wj:lstate �j+1�! wj+1:fstate.32

The trajectories describe the changes of state during the time-passage steps. The last item saysthat the actions in � span between successive trajectories. A timed execution is a timed executionfragment for which the �rst state of the �rst trajectory, w0, is a start state. In this paper, we restrictattention to the admissible timed executions, i.e., those in which the now values occurring in thestates approach 1. We use the notation atexecs(A) for the set of admissible timed executions oftimed automaton A. A state of a timed automaton is de�ned to be reachable if it is the �nal stateof the �nal trajectory in some �nite timed execution of the automaton.In order to describe the problems to be solved by timed automata, we require a de�nition for theirvisible behavior. We use the notion of timed traces , where the timed trace of any timed executionis just the sequence of visible events that occur in the timed execution, paired with their times ofoccurrence. The admissible timed traces of the timed automaton are just the timed traces that arisefrom all the admissible timed executions. We use the notation attraces(A) for the set of admissibletimed traces of timed automaton A. Often, we express requirements to be satis�ed by a timedautomaton A as the set of admissible timed traces of another timed automaton B. Then we saythat A implements B if attraces(A) � attraces(B). If � is any timed execution, we use the notationttrace(�) to denote the timed trace of �.We de�ne a function time that maps any non-time-passage event in an execution to the real timeat which it occurs. Namely, let � be any non-time-passage event. If � occurs in state s, then de�netime(�) = s:now.A.3 CompositionWe de�ne a simple binary parallel composition operator for timed automata. Let A and B betimed automata satisfying the following compatibility conditions: A and B have no output actionsin common, and no internal action of A is an action of B, and vice versa. Then the composition ofA and B, written as A� B, is the timed automaton de�ned as follows.� states(A�B) = f(sA; sB) 2 states(A)� states(B) : sA:nowA = sB :nowBg;� start(A�B) = start(A)� start(B);� acts(A � B) = acts(A) [acts(B); an action is external in A � B exactly if it is external ineither A or B, and likewise for internal actions; a visible action of A�B is an output in A�Bexactly if it is an output in either A or B, and is an input otherwise;� (sA; sB) ��!A�B (s0A; s0B) exactly if1. sA ��!A s0A if � 2 acts(A), else sA = s0A, and2. sB ��!B s0B if � 2 acts(B), else sB = s0B ;� (sA; sB):nowA�B = sA:nowA.Then A�B is a timed automaton. If � is a timed execution of A�B, we write �jA and �jB for theprojections of � on A and B, respectively. For instance, �jA is de�ned by projecting all states in �on the state of A, removing actions that do not belong to A, and collapsing consecutive trajectories.We also use the projection notation for sequences of actions, writing, e.g., �jA for the subsequenceof � consisting of actions of A. 33

Lemma A.1 (Substitutivity) Let A and B be timed automata with the same input and output ac-tions, and let C be a timed automaton compatible with both. If attraces(A) � attraces(B) thenattraces(A� C) � attraces(B � C).Lemma A.2 If � 2 atexecs(A� B) then �jA 2 atexecs(A) and �jB 2 atexecs(B).Lemma A.3 Suppose that �A 2 atexecs(A) and �B 2 atexecs(B). Suppose � is a sequence oftimed visible actions of A� B such that �jA = ttrace(�A) and �jB = ttrace(�B). Then there exists� 2 atexecs(A� B) such that �jA = �A and �jB = �B.Since the composition operation is associative, up to isomorphism, we may extend it to anarbitrary �nite number of argument timed automata.

34

B MMT AutomataB.1 Automaton De�nitionMMT automata were originally de�ned by Merritt, Modugno and Tuttle [17]; we use a specialcase of their de�nition from [12, 14]. An MMT automaton is an I/O automaton [13] togetherwith upper and lower bounds on time. An I/O automaton A consists of a set states(A) of states,a nonempty set start(A) � states(A) of start states, a set acts(A) of actions, (partitioned intoexternal and internal actions; the external actions are further partitioned into input and outputactions), a set steps(A) of steps, and a partition part(A) of the locally controlled (i.e., output andinternal) actions into at most countably many equivalence classes. The set steps(A) is a subset ofstates(A)� acts(A)� states(A); An action � is said to be enabled in a state s provided that thereexists a state s0 such that (s; �; s0) 2 steps(A), i.e., such that s ��!A s0. A set of actions is said tobe enabled in s provided that at least one action in that set is enabled in s. It is required thatthe automaton be input-enabled , by which is meant that � is enabled in s for every state s andinput action �. The �nal component, part, is sometimes called the task partition. Each class in thispartition groups together actions that are supposed to be part of the same \task".An MMT automaton is obtained by augmenting an I/O automaton with certain upper and lowertime bound information. Let A be an I/O automaton with only �nitely many partition classes. Foreach class C, de�ne lower and upper time bounds, lower(C) and upper(C), where 0 � lower(C) <1and 0 < upper(C) � 1; that is, the lower bounds cannot be in�nite and the upper bounds cannotbe 0.B.2 Timed Executions and Timed TracesA timed execution of an MMT automaton A is de�ned to be an alternating sequence of the forms0; (�1; t1); s1; � � � where the �'s are input, output or internal actions (but not time-passage actions).For each j, it must be that sj �j+1�! sj+1. The successive times are nondecreasing, and are requiredto satisfy the given lower and upper bound requirements. More speci�cally, de�ne j to be an initialindex for a class C provided that C is enabled in sj , and either j = 0, or else C is not enabled insj�1, or else �j 2 C; initial indices are the points at which the bounds for C begin to be measured.Then for every initial index j for a class C, the following conditions must hold:1. (Upper bound)If upper 6=1, then there exists k > j with tk � tj + upper(C) such that either �k 2 C or C isnot enabled in sk.2. (Lower bound)There does not exist k > j with tk < tj + lower(C) and �k 2 C.Finally, admissibility is required: if the sequence is in�nite, then the times of actions approach 1.Each timed execution of an MMT automaton A gives rise to a timed trace, which is just thesubsequence of external actions and their associated times. The admissible timed traces of the MMTautomaton A are just the timed traces that arise from all the timed executions of A.MMT automata can be composed in much the same way as ordinary I/O automata, using syn-chronization on common actions. More speci�cally, de�ne two MMT automata A and B to becompatible according to the same de�nition of compatibility for timed automata. Then the com-position of the two automata is the MMT automaton consisting of the I/O automaton that is the35

composition of the two component I/O automata (according to the de�nition of composition in [13]),together with the bounds arising from the components. This composition operator is substitutivefor the admissible timed trace inclusion ordering on MMT automata.B.3 MMT Automata and Timed AutomataMMT automata are not exactly a special case of timed automata. This is because the MMT modeluses an \external" way of specifying the time bound restrictions, via the added lower and upperbounds. Timed automata, in contrast, build the time-bound restrictions explicitly into the time-passage steps. However, it is not hard to transform any MMT automaton A into a naturally-corresponding timed automaton A0. First, the state of the MMT automaton A is augmented witha now component, plus �rst(C) and last(C) components for each class of the task partition. The�rst(C) and last(C) components represent, respectively, the earliest and latest time in the futurethat an action in class C is allowed to occur. The now, �rst and last components all take on valuesthat represent absolute times, not incremental times. The time-passage action � is also added. The�rst and last components get updated in the natural way by the various steps, according to thelower and upper bounds speci�ed in the MMT automaton A. The time-passage action has explicitpreconditions saying that time cannot pass beyond any of the last(C) values, since these representdeadlines for the various tasks. Restrictions are also added on actions in any class C, saying thatthe current time now must be at least equal to �rst(C).In more detail, each state of A0 is a record consisting of a component basic, which is a stateof A, a component now 2 R�0, and, for each class C of A, components �rst(C) and last(C), eachin R�0 [f1g. Each start state s of A0 has s:basic 2 start(A), and s:now = 0. Also, if C isenabled in s:basic, then s:�rst(C) = lower(C) and s:last(C) = upper(C); otherwise s:�rst(C) = 0and s:last(C) = 1. The actions of A0 are the same as those of A, with the addition of the time-passage action �. Each non-time-passage action is classi�ed as an input, output or internal actionaccording to its classi�cation in A.The steps are de�ned as follows. If � 2 acts(A), then s ��!A0 s0 exactly if all the followingconditions hold:1. s:now = s0:now.2. s:basic ��!A s0:basic.3. For each C 2 part(A):(a) If � 2 C then s:�rst(C) � s:now.(b) If C is enabled in both s and s0, and � =2 C, then s0:�rst(C) = s:�rst(C) and s0:last(C) =s:last(C).(c) If C is enabled in s0 and either C is not enabled in s or � 2 C then s0:�rst(C) = s:now+lower(C) and s0:last(C) = s:now+ upper(C).(d) If C is not enabled in s0 then s0:�rst(C) = 0 and s0:last(C) =1.On the other hand, if � = �, then s0 ��!A0 s exactly if all the following conditions hold:1. s0:now < s:now. 36

2. s:basic = s0:basic.3. For each C 2 part(A):(a) s:now � s0:last(C).(b) s:�rst(C) = s0:�rst(C) and s:last(C) = s0:last(C).The resulting timed automaton A0 has exactly the same admissible timed traces as the MMTautomaton A.Moreover, this transformation commutes with the operation of composition, up to isomorphism.We refer to an MMT automaton and to its transformed version interchangeably. Another way oflooking at the preceding construction is as showing exactly how the MMT notation is used to denotetimed automata.The following is a technical lemma that is useful in some of the invariant and simulation proofs.Lemma B.1 In all reachable states of a (transformed) MMT automaton, and for all classes C, thefollowing hold.1. now � last(C)2. If last(C) 6=1 then last(C) � now+ upper(C).

37

C Invariants and Simulation MappingsWe de�ne an invariant of a timed automaton to be any property that is true of all reachable states.The de�nition of a simulation mapping is paraphrased from [16, 15, 14]. We use the notationf [s], where f is a binary relation, to denote fu : (s; u) 2 fg. Suppose A and B are timed automataand IA and IB are invariants of A and B, respectively. Then a simulation mapping from A to Bwith respect to IA and IB is a relation f over states(A) and states(B) that satis�es:1. If u 2 f [s] then u:now = s:now.2. If s 2 start(A) then f [s] \ start(B) 6= ;.3. If s ��!A s0, s; s0 2 IA, and u 2 f [s] \ IB, then there exists u0 2 f [s0] such that there is a timedexecution fragment from u to u0 having the same timed visible actions as the given step.Note that � is allowed to be the time-passage action in the third item of this de�nition. The mostimportant fact about these simulations is that they imply admissible timed trace inclusion:Theorem C.1 If there is a simulation mapping from timed automaton A to timed automaton B,with respect to any invariants, then attraces(A) � attraces(B).

38

D Correspondence Between Original Speci�cation and AxSpecWe show how the Utility Property in the original formulation of the GRC [7] relates to the UtilityProperty in AxSpec. In the original formulation, the Utility Property is expressed as \If t 62 [i[�i ��1; �i + �2]; then g(t) = 90;" which can be rewritten as \If g(t) 6= 90, then t 2 [i[�i � �1; �i + �2]:"In the Lynch-Vaandrager model, the Utility Property can be stated as an axiom of any admissibletimed execution �: \If s is a state in � with s:Gate:status 6= up, then s:now 2 [�i � �1; �i + �2] forsome i."In the description of AxSpec in Section 3.5, the Utility Property is expressed asIf s is a state in � with s:Gate:status 6= up, then at least one of the following conditions holds.a. There exists s0 preceding (or equal to) s in � with s0:Trains:r:status= I for some r and s0:now � s:now� �2.b. There exists s0 following (or equal to) s in � with s0:Trains:r:status= I for some r and s0:now � s:now+ �1.c. There exist two states s0 and s00 in �, with s0 preceding or equal to s, s00 following or equal to s, s0:Trains:r:status=I for some r, s00:Trains:r:status= I for some r, and s00:now� s0:now � �1 + �2 + �.Lemmas D.1 and D.2 show that the Lynch-Vaandrager form of the original Utility Property and thestatement of utility in AxSpec (parts a and b only) are equivalent.Lemma D.1 If s is a state in � and s:now 2 [�i � �1; �i + �2] for some i, then (a) or (b) holds.Proof: There are three cases.1. For s:now 2 [�i � �1; �i], choose s0 to be the last state in � such that s0:now = �i. Then,s0:Trains:r:status = I for some r, and s0 follows (or is equal to) s in �. Further, �i��1 � s:now,which implies �i � s:now+ �1. This implies s0:now � s:now+ �1.2. For s:now 2 [�i; �i], choose s0 = s. Then, s0:Trains:r:status = I for some r, and s:now �s:now� �2 by assumptions on the constants. This implies s0:now � s:now� �2.3. For s:now 2 [�i; �i + �2], choose s0 to be the �rst state in � such that s0:now = �i. Then,s0:Trains:r:status = I for some r, and s0 precedes (or is equal to) s in �. Further, s:now ��i + �2, which implies s:now� �2 � �i. This implies s:now� �2 � s0:now.Lemma D.2 If s is a state in � and (a) or (b) holds, then s:now 2 [�i � �1; �i + �2] for some i.Proof: Assume (a). Then, s:now � �2 � s0:now, which implies s:now � s0:now + �2. Further,s0:Trains:r:status = I for some r implies �i � s0:now � �i for some i, which implies s0:now+ �2 ��i + �2. This implies s:now � �i + �2 as needed. By assumptions on the constants, �i � �1 � �i. Thisimplies �i � �1 � s:now, since s0 precedes or is equal to s.Assume (b). Then, s0:Trains:r:status = I for some r implies �i � s0:now � �i. Further, s0follows (or equals) s in � implies s:now � s0:now. By assumptions on the constants, �i � �i + �2.Hence, s:now � �i + �2 as needed. Also, �i � �1 � s0:now � �1. Then, s0:now � s:now + �1 impliess0:now� �1 � s:now. This implies �i � �1 � s:now as needed.39

To prevent the gate from being raised and lowered uselessly, we revised the Utility Property sothat the gate is only raised if there is su�cient time �, � > 0, for at least one car to pass throughthe crossing. To express this added constraint, the original statement can be rewritten asIf g(t) 6= 90, then at least one of the following holds:1. t 2 [i[�i � �1; �i + �2] or2. t 2 [�i + �2; �i+1 � �1] with �i+1 � �i � �2 + � + �1 for some i.In the Lynch-Vaandrager model, this is expressed asIf s is is a state in � with s:Gate.status 6= up, then for some i at least one of the following holds:1. s:now 2 [�i � �1; �i + �2] or2. s:now 2 [�i + �2; �i+1 � �1] with �i+1 � �i � �2 + � + �1:We show the equivalence between the latter statement of the Utility Property and the statement ofutility (parts a, b, and c) in AxSpec.Lemma D.3 If there exists a state s in � such that for some i either condition (1) or condition (2)holds, then at least one of conditions (a), (b), or (c) holds.Proof: Lemma D.1 shows that if condition (1) holds, either (a) or (b) holds. We show that condition(2) implies condition (c). Let s0 be some state such that s0:now = �i and s00 be some state such thats00:now = �i+1: Then, by de�nition, s0:Trains:r:status = I for some r and s00:Trains:r:status = I forsome r. Further, s:now 2 [�i � �1; �i + �2] implies s0:now < s:now < s00:now, so s0 precedes s and s00follows s in �. Finally, �i+1 � �i � �2 + � + �1 implies s00:now� s0:now � �1 + �2 + �.Lemma D.4 If there exists a state s in � such that at least one of conditions (a), (b), or (c) holds,then for some i condition (1) or condition (2) holds.Proof: Lemma D.2 shows that if either (a) or (b) holds, then (1) holds. We show that if condition(c) holds, then either (1) or (2) holds. There are two cases.1. Suppose s occurs during the interval [�i � �1; �i + �2] for some i. Clearly, (1) holds.2. Suppose s occurs during the interval [�i+�2; �i+1��1] for some i. Then, s0:Trains:r:status = I forsome r and s0 precedes or is equal to s implies s0:now � �i. Similarly, s00:Trains:r:status = I forsome r and s00 follows or is equal to s implies s00:now � �i+1. Hence, s00:now�s0:now � �i+1��i.This together with s00:now� s0:now � �1+ �2+ � implies �i+1� �i � �1+ �2+ �. Therefore, (2)holds.
40

E Proof of Relationship Between OpSpec and AxSpecWe prove Lemma 4.3. We �rst prove an easy property of OpSpec:Lemma E.1 Let � be any admissible timed execution of OpSpec. Let � be any lower event occurringin � from a state in which Gate:status 2 fgoing-up; upg. Then there is an enterI event � occurringafter � in �, with time(�) � time(�) + �1.Proof: Suppose that � occurs from state s, leading to state s0; then time(�) = s:now = s0:now. Ifs:last1 =1, then the e�ect of lower implies that s0:last1 = s0:now+ �1. Otherwise, part 3 of Lemma6.2 implies that s0:last1 � s0:now+ �1. Thus, in either case, s0:last1 � s0:now+ �1.By the precondition for the time-passage action and the fact that only enterI actions can increaselast1, real time cannot pass beyond s0:last1 unless a train enters I at a time � s0:last1 � s0:now+ �1.But � is an admissible execution, so time passes to 1. It follows that there must be an enterI event� occurring after � in � such that time(�) � time(�) + �1.Now for the proof of Lemma 4.3:Proof: Let � be any admissible timed execution of OpSpec. By assumption, � satis�es the SafetyProperty, i.e., the safety invariant is true in all states of �. We show that it also satis�es the UtilityProperty.Let s be any state occurring in � with s:Gate:status 6= up. If s:Trains:r:status = I for any r, thenthe claim is immediate. So assume that s:Trains:r:status 6= I for all r.Since s:Gate:status 6= up, it must be that there was a previous lower event occurring from a state inwhich Gate:status 2 fgoing-up; upg. (Consider the possible transitions in the automaton Gate.) Let� be the last lower event preceding s that occurs from a state in which Gate:status 2 fgoing-up; upg.Then Gate:status 6= up in the entire interval from just after � to s. Also, time(�) � s:now.By Lemma E.1, an enterI event occurs within time �1 after �. Let � be the �rst such enterIevent. Thus, time(�) � time(�)+�1 � s:now+�1. By the Safety Property, Gate:status = down when� occurs. We consider two cases.1. � is after s.Then take s0 to be the state just after �. Then s0:now = time(�) � s:now + �1, and so s0satis�es the axiomatic Utility Property, part (b).2. � is before s.Since (by assumption) there is no train in I in state s, we can �nd a latest exit event following� and preceding s, which must leave I empty. When occurs, the last2 variables are set, whichensures that either the gate reaches the up position within time �2 after , or some train reachesI within time �2 + � + �1 after . We consider two subcases.(a) s:now � time() + �2.Then take s0 to be the state just prior to . Then s0:now = time() � s:now� �2, and sos0 satis�es the axiomatic Utility Property, part (a).41

(b) s:now > time() + �2.Then the gate cannot reach the up position within time �2 after , because Gate:status 6=up throughout the interval from � to s. So it must be that some train reaches I withintime �2 + � + �1 after . That is, there must be some enterI event 0 following , withtime(0) � time() + �2 + � + �1.We claim that 0 must follow s. For if it did not, the fact that I is empty in s wouldimply that there must be an exit event following 0 and preceding s, which contradictsour choice of . Then take s0 to be the state just before and s00 to be the state justafter 0. Then s00:now� s0:now = time(0)� time() � �2+ �+ �1. Thus, s0 and s00 satisfythe axiomatic Utility Property, part (c).

42

