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Abstract 
A new solution to the Generalized Railroad Cross- 

ing problem, based on timed automata, invariants and 
simulation mappings, i s  presented and evaluated. The 
solution shows formally the correspondence between 
four system descriptions: an axiomatic specification, 
an operational specification, a discrete system imple- 
mentation, and a system implementatdon that works 
with a continuous gate model. 

1 Introduction 
Recently, one of us (Heitmeyer) defined a bench- 

mark problem to compare the many formal meth- 
ods that exist for specifying, designing, and analyzing 
real-time systems and to better understand the util- 
ity of the methods for developing practical systems. 
The problem, which is called the Generalized Railroad 
(GRC) Crossing [8], is as follows: 

The system to be developed operates a gate at a railroad cross- 
ing. The railroad crossing I lies in a region of interest R, i.e., 
Z C R. A set of trains travel through R on multiple tracks in 
both directions. A sensor system determines when each train 
enters and exits region R. To describe the system formally, we 
define a gate function g ( t )  E [0,90], where g ( t )  = 0 means the 
gate is down and g ( t )  = 90 means the gate is up. We define a 
set { A , }  of occupancy inlerval.9, where each occupancy interval 
is a time interval during which one or more trains are in I. The 
ith occupancy interval is represented as A, = [ T ~ ,  vl], where T;  

is the time of the ith entry of a train into the crossing when no 
other train is in the crossing and vt is the first time since T~ that 
no train is in the crossing (i.e., the train that entered at T,  has 
exited as have any trains that entered the crossing after T , ) .  

Given two constants ( 1  and ( 2 ,  (1 > 0,  ( 2  > 0, the problem is 
to develop a system to operate the crossing gate that satisfies 
the following two properties: 
Safety Property: t E UiA,  3 g(t)  = 0 

during all occupancy intervals.) 
Utility Property: t 

gate is up when no train is in the crossing.) 

(The gate is down 

U,[T,  - ( 1 ,  vi + E21 3 g(t) = 90 (The 

To solve the GRC problem, real-time researchers 
have applied a variety of formal methods, including 
process algebraic 9, 3,  1 , event-based [lo], and logic- 
based approaches 119, 111. They have also used various 
mechanical proof systems, including PVS [18], EVES 
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[ll], and FDR [2], to formally analyze and verify their 
solutions. Reference [5] describes three early efforts to 
solve the GRC problem. 

This paper describes a new solution of the GRC 
based on the Lynch-Vaandrager timed automaton 
model [16, 151, using invariant and simulation map- 
ping techniques [12, 15, 141. To develop the solution, 
a “formal methods expert” (Lynch) and an “applica- 
tions expert” (Heitmeyer) worked closely together to 
refine the GRC problem statement and to design and 
verify an implementation. 

Our close collaboration was in sharp contrast to 
the limited interaction between the Naval Research 
Laboratory (NRL) group that distributed the GRC 
problem and the formal methods groups that devel- 
oped earlier solutions. In the earlier work, the NRL 
group limited interaction both to encourage original 
solutions and to prevent some groups from having 
more information and thus unfair advantage over other 
groups. While these early efforts produced a vari- 
ety of solutions and many insights into the relative 
strengths and weaknesses of the different formalisms, 
they suffered from two limitations. First, because the 
original problem statement was somewhat ambiguous, 
each group solved a slightly different problem, which 
caused difficulties in comparing the solutions. Sec- 
ond, the limited interaction meant that deficiencies in 
the GRC problem statement went uncorrected. Our 
collaboration allowed us to quickly identify and cor- 
rect these deficiencies. It also led us to represent the 
problem and its solution in a form that is both under- 
standable to applications experts and usable by formal 
methods experts for verification. 

Section 2 describes our approach. Sections 3 and 4 
present our highest-level problem specification, in- 
tended to be understood by applications experts, and 
a second operational specification, intended to be use- 
ful in formal verification. Sections 5, 6 and 7 con- 
tain our system implementation, the main correctness 
proof, and an extension of our solution to more realis- 
tic, continuous models. Section 8 evaluates our solu- 
tion and method. An appendix provides background 
on our formal methods. The details of the proofs are 
available in the full version of the paper [6]. 

2 Our Approach 
Formal Methods for Real-Time Systems. Ap- 
plying formal methods to real-time syst,ems involves 
three steps: system requirements specification, design 
of an implementation, and verification that the im- 
plementation satisfies the specification. This process 
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has feedback loops. Once specified, the requirements 
must be revised when later steps expose omissions and 
errors. The same is true of the designed implementa- 
tion. 

All three steps require close collaboration between 
a formal methods expert and an applications expert. 
The role of the formal methods expert is to produce 
formal descriptions of both the system requirements 
and the selected implementation and to prove formally 
that the latter satisfies the former. The role of the ap- 
plications expert is to work closely with the formal 
methods expert to identify the "real" requirements 
and to ensure that the specified implementation is ac- 
ceptable. In our collaboration, much of the dialogue 
focused on the system requirements. Once the require- 
ments specification was acceptable, defining and ver- 
ifying an implementation, while labor-intensive and 
time-consuming, was relatively straightforward. 

A system requirements specification describes all 
acceptable system implementations [7]. It has two 
parts: (1) A set of formal models describing the com- 
puter system at an abstract level, the environment 
(here, the trains and the gate), and the interface be- 
tween them. (2) Formal statements of the properties 
that the system must satisfy. 

In developing the GRC solution, we applied the fol- 
lowing seven software engineering principles. The first 
five concern the requirements specification, the sixth 
concerns the implementation and its verification, and 
the seventh is applicable to all three steps. 

1. Avoid underspecifying system requirements. The 
original problem statement lacked necessary in- 
formation about the various constants. For ex- 
ample, the statement did not constrain the con- 
stant €1. A simple analysis shows that we should 
assume that €1 > 7down + €2 - €1, where €2 is the 
maximum time and €1 the minimum time that a 
train requires to travel from entry into R to the 
crossing and 7down is the maximum time needed 
to lower the gate. 

2 .  Avoid overspecifying system requirements. For 
example, while the function g is an acceptable 
gate model, the GRC problem can be solved us- 
ing a simpler, discrete model-one that represents 
the gate in one of four states-up, going-down, 
down, and going-up. Our solution uses the sim- 
pler model, but we show in Section 7 how to ex- 
tend our results to the original gate model. 
For another example, the Utility Property stated 
above does not rule out solutions in which the 
last train leaves the crossing a t  time t but within 
the interval [ t ,  t -t ~$21 the gate goes first up and 
then down rapidly before the gate is raised for the 
second (and final) time. Such solutions, though 
not to be encouraged, should not be excluded. 
The essential system properties are that the gate 
must be down when a train is in the crossing, 
and that the gate must be up during the specified 
intervals when no train is in the vicinity. During 
other times, we do not care what the gate does. 

3 .  Make sure the specified system behavior is  rea- 
sonable. For example, suppose a train exits the 
crossing at time t and another train is scheduled 
to enter the crossing by time t + y a p  + 7down. 
Then there is insufficient time for even one car to 
travel through the crossing, and thus the Utility 
Property fails to achieve its practical purpose. To 
rule out such useless activity, we modify the orig- 
inal problem statement to only require the gate 
to be raised if sufficient time, 6, exists for a t  least 
one car to travel through the crossing. 

4. Specify the system requirements as axioms rather 
than operationally. In the original problem state- 
ment, both the Safety Property and the Utility 
Property are expressed as axioms. Each axiom 
describes a relationship that must hold between 
the two components of the system environment, 
namely, the trains and the crossing gate. Thus 
the required system properties are properties of 
the environment. Neither axiom mentions the 
computer system. Also, the two axioms are stated 
independently, making it easy to modify the in- 
dividual properties. 
In the present study, we initially described the re- 
quirements operationally. This operational speci- 
fication incorporated both the Safety and Utility 
Properties into a single automaton, thus losing 
the advantage of independence. Also, the spec- 
ification was stronger than the original formula- 
tion, describin some aspects of what the com- 
puter system s%ould do rather than just describ- 
ing properties that the system needed to guaran- 
tee in the environment. Finally, the operational 
style of the specification was harder for applica- 
tions experts to understand. Our final version of 
the specification, which appears in Section 3, is 
axiomatic. Like the original formulation, it de- 
scribes the two properties as independent axioms 
about the environment. 

5 .  Provide a second, operational specification plus a 
formal proof that the operational specification im- 
plements the aziomatic specification. Although 
it is desirable to start with an axiomatic spec- 
ification, the types of proofs we do rest on op- 
erational, automaton versions of the specification 
and implementation. Therefore, we present a sec- 
ond requirements specification in terms of timed 
automata and prove that the operational require- 
ments specification implements the original ax- 
iomatic specification. 
As in many applications of formal methods, we 
initially neglected to provide a formal proof of 
the correspondence between the original prob- 
lem statement and the reformulation within our 
framework. Without such a proof, there is no 
assurance that the properties satisfied by the sys- 
tem implementation are the ones that are really 
required. In our case, while it was immediately 
obvious that the statement of the Safety Property 
in our operational specification was equivalent to 
the original statement of the Safety Property, the 
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correspondence between the two versions of the 
Utility Property was not so clear. 

Provide a formal model for the implementation 
and a proof that it implements the operational 
specification. The implementation should be de- 
scribed using the same model that is used for the 
operational specification, or a t  least one that is 
compatible. The proof that the implementation 
meets the specification can be done using a vari- 
ety of methods, either by hand, as in this paper, 
or with computer assistance. 

Express the system requirements specification, the 
implementation, and the formal proofs so that 
they are understandable to applications experts. If 
the requirements specification and the description 
of the implementation are difficult to  understand, 
the applications expert cannot be confident that 
the right requirements have been specified and 
that the implementation is acceptable. The same 
holds for the formal proofs: ’ the applications ex- 
pert must be able to  understand the proofs. This 
gives him/her a deep understanding of how and 
why the system works and how future changes 
are likely to  affect system behavior. To increase 
their understandability, both the formal specifica- 
tions and the proofs should be based on standard 
models such as automaton models, standard no- 
tations, and standard proof techniques such as in- 
variants and simulation mappings. To the extent 
feasible, applications experts should not be re- 
quired to learn new notations or proof techniques. 

The Formal Framework. The formal method we 
used to  specify the GRC problem and to  develop and 
verify a solution represents both the computer system 
and the system environment as timed automata, ac- 
cordin to the definitions of Lynch and Vaandrager 
[16, 14. A timed automaton is a very general au- 
tomaton, i.e., a labeled transition system. It is not 
finite-state: for example, the state can contain real- 
valued information, such as the current time or the 
position of a train or crossing gate. This makes timed 
automatasuitable for modeling not only computer sys- 
tems but also real-world entities such as trains and 
gates. We base our work directly on an automaton 
model rather than on any particular specification lan- 
guage, programming language, or proof system, in or- 
der to obtain the reatest flexibility in selecting spec- 
ification and proof methods. The formal definition of 
a timed automaton appears in the Appendix. 

The timed automaton model supports description 
of systems as collections of timed automata, interact- 
ing by means of common actions. In our example, 
we define separate timed automata for the trains, the 
gate, and the computer system; the common actions 
are sensors reporting the arrival of trains and actua- 
tors controlling the raising and lowering of the gate. 

An important special case of the model, describ- 
able in a particularly simple way, is the MMT au- 
tomaton model [17,  developed by Merritt, Modugno 

lection of “tasks” (i.e., “processes”) sharing common 
and Tuttle. An Id MT automaton consists of a col- 

data, where each task has an upper bound and a lower 
bound on the time between its events. This special 
case is sufficient for describing several of our compo- 
nents, in particular, the trains and the discrete version 
of the gate. Our other components, e.g., the computer 
system, cannot be expressed in the MMT style, so we 
describe them directly in terms of the general model. 

Applying Formal Methods to GRC. Our solu- 
tion contains four system descriptions: AxSpec, the 
axiomatic requirements specification; OpSpec, the op- 
erational requirements specification; Systlmpl, the dis- 
crete system implementation; and Systlmpl‘, a sys- 
tem implementation with a continuous gate model. 
Figure 1 illustrates the four descriptions and how they 
are related. 

The top-level requirements specification AxSpec 
contains timed automata describing the computer sys- 
tem and its environment (the trains and gate) and ax- 
ioms expressing the Safety and Utility Properties. The 
Safety Property states that if a train is in the crossing, 
the gate must be down. The Utility Property states 
that the gate is up unless a train is in the vicinity. 
Formally, these axioms are properties added to  the 
composition of three timed automata: Trains, Gate, 
and CompSpec, a trivial specification of the computer 
system. Figure 2 illustrates AxSpec. 

Next, because it is easier to  use in provin correct- 
ness, we produce a second, more operationafl require- 
ments specification in the form of a timed automaton 
OpSpec. We show that OpSpec implements AxSpec. 

Next, we describe our computer system implemen- 
tation as a timed automaton Complmpl. Correctness 
means that Complmpl, when it interacts with Trains 
and Gate, guarantees the Safety and Utility Proper- 
ties. To show this, we prove that Syslmpl, the com- 
position of CompImpl, Trains and Gate, provides the 
same view to the environment components, Trazns and 
Gate, as the operational specification OpSpec. This 
part of the proof follows well-established, stylized in- 
variant and simulation mapping methods, which is 
why we moved from the axiomatic style of specifica- 
tion to the operational style. All these proofs can be 
verified using current mechanical proof technology. 

In both specification automata, AxSpec and 
OpSpec, and in the implementation automaton 
SysImpl, time is built into the state. Time information 
consists of the current time plus some deadline infor- 

Figure 1: The four system descriptions and how they 
are related. In OpSpec, OpProps incorporates the 
Safety and Utility properties into the automaton that 
results from composing Trains, Gate, and CompSpec. 
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mation, such as the earliest and latest times that a 
train that has entered R will actually enter the cross- 
ing. The correctness proof proceeds by first proving by 
induction some invariants about the reachable states 
of SysImpl. The main work in the proof of the Safety 
Property is done by means of these invariants. An 
interesting feature of the proofs is that the invariants 
involve time deadline information. 

Next, we show a “simulation mapping” between the 
states of SysImpl and OpSpec, again by induction; this 
is enough to prove the Utility Property. Like the in- 
variants, the simulations also involve time deadline in- 
formation, in particular, they include inequalities be- 
tween time deadlines. 

Finally, we observe that our main proofs yield a 
weaker result that what we really want. Namely, 
we have worked with abstract, discrete models of the 
trains and gate rather than with realistic models that 
allow continuous behavior. And we have only shown 
that the “admissible timed traces”, i.e., the sequences 
of externally visible actions, together with their times 
of occurrence, are preserved, rather than all aspects of 
the environment’s behavior. We conclude by showing 
that we have not lost any generality by proving the 
weaker results. In particular, preservation of admis- 
sible timed traces actually implies preservation of all 
aspects of the environment’s behavior. Further, the 
results extend to  Systlmpl’, a system implementation 
with a more realistic environment model. Both ex- 
tensions are obtained as corollaries of the results for 
admissible timed traces of the discrete model, using 
general results about composition of timed automata. 

3 Axiomatic Specification 
We first define two timed automata, Trains and 

Gate, which are abstract representations of the trains 
and the gate. These two components do not in- 
teract directly. We then define a trivial automa- 
ton CompSpec, which interacts with both Trains and 
Gate via actions representing sensors and actuators. 
CompSpec describes nothing more than the computer 
system’s interface with the environment. AxSpec is ob- 
tained by composing these three automata and then 
imposing the Safety and Utility Properties on the com- 
position; see Figure 2. Formally, the two properties 
are restrictions on the executions of the composition. 
The Safety Property is just a restriction on the states 
that occur in the execution, while the Utility Property 
is a more complex temporal condition. 

Figure 2 :  AcSpec is the composition of Trains, Gate,  
and CompSpec, constrained by the Safety and Utility 
properties. 

Parameters and O t h e r  Notat ion.  We use the no- 
tation r ,  r’ , etc. to denote trains, I to denote the rail- 
road crossing, R to  denote the re ion from where a 
train passes a sensor until it exits t8e crossing, and P 
to denote the portion of R prior to  the crossing. We 
define some positive real-valued constants: 

€1, a lower bound on the time from when a train enters R 
until it reaches I. 
€2, an upper bound on the time from when a train enters 
R until it reaches I. 
6, the minimum useful time for the gate to be up. (For 
example, this might represent the minimum time for a car 
to pass through the crossing safely.) 
?down, an upper bound on the time to lower the gate 
completely. 
?up,  an upper bound on the time to raise the gate com- 
pletely. 
€1, an upper bound on the time from the start of lowering 
the gate until some train is in I. 
€2, an upper bound on the time from when the last train 
leaves I until the gate is up (unleis the raising is inter- 
rupted by another train getting “close” to I ) .  
p, an arbitrarily smal l  constant used to take care of some 
technical race conditions.’ 

We need some restrictions on the values of the var- 
ious constants: 

1. €1 5 €2. 

2 .  €1 > ?down. (The time from when a train arrives until it 
reaches the crossing is sufficiently large to allow the gate 
to be lowered.) 

3. €1 2 ?down + 0 + €2 - €1. (The time allowed between 
the start of lowering the gate and some train reaching I is 
sufficient to allow the gate to be lowered in time for the 
fastest train, and then to accommodate the slowest train. 
The time ?down is needed to lower the gate in time for the 
fastest train, but the slowest train could take an additional 
time €2 - €1. The is a technicality.) 

4. €2 2 T U P .  (The time allowed to raise the gate is sufficient.) 

Trains. We model the Trains component as an 
MMT automaton with no input or internal actions 
and three types of outputs, enterR(r) ,  enterI(r) ,  and 
e t i t ( r ) ,  for each train r .  The state consists of a status 
component for each train, just saying where it is. 
State: 

for each train T :  

r.status E {not -here ,P ,  I } ,  initially not-here 

The state transitions are described by specifying 
the “preconditions” under which each action can occur 
and the “effect” of each action. s denotes the state 
before the event occurs and s’ the state afterwards. 
Transitions: 

enterR(r) 
Precondition: 

Effect: 
a.r.statua = not-here 

s‘.r.status = P 

]These arise because the model allows more than one event 
to happen at the same real time. 
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ent erI( r )  
Precondition: 

Effect: 
s.r.status = P 

s’.r.status = I 

e&( T )  

Precondition: 

Effect: 
s.r.status = I 

s‘.r.status = not-here 

In this automaton (and for all other MMT au- 
tomata in this paper), we make each non-input action 
a task by itself. We only specify trivial bounds (that is, 
[O,oo] for the enterR(r) and et i t  r )  actions. For each 
enter 1 ( r )  action, we use bounds \ c ~ , E z ] .  This means 
that from the time when any train r has reached R,  it 
is a t  least time €1 and at  most time €2 until the train 
reaches I .  

We use the general construction described in the 
Appendix to  convert this automaton to  a timed au- 
tomaton. This construction involves adding some 
components to the state - a current time component 
now, and first and last components for each task, giv- 
ing the earliest and latest times at  which an action 
of that task can occur once the task is enabled. The 
transition relation is augmented with conditions to en- 
force the bound assumptions; that is, an event cannot 
happen before its first time, and time cannot pass be- 
yond any last time. In this case, only the state com- 
ponents now and first( enterI(r))  and last( enterI(r))  
for each T contain nontrivial information, so we ignore 
the other cases. Applying this construction yields the 
timed automaton with the same actions and the fol- 
lowing states and transitions. 

State: 
now, a nonnegative real, initially 0 
for each train T :  

r.status E {not-here, P,  I}, initially not-here 
first( enterI (r ) ) ,  a nonnegative real, initially 0 
last(enterI(r)) ,  a nonnegative real or CO, initially 00 

Transitions: 
enlerR(T) 

Precondition: 

Effect: 
8.r.staius = not-here 

s’.r.status = P 

s‘.last( enterI(r))  = now + €2 

S ‘ . f i T s t (  L?nteTI(T)) = nOW €1 

enterI(s) 
Precondition: 

s.r.3tatus = P 
now 2 s.first(enterI(r))  

s‘.r.status = I 

s‘. last(enterI(r))  = 00 

Effect: 

S ’ . f i T s t (  enleTl(T)) = 0 

e t i t ( r )  
Precondition: 

Effect: 
s.r.status = I 

s’.r.status = not-here 

4 A t )  
Precondition: 

Effect: 
for all T ,  s.now + A t  5 s . l a s t ( e n t e r I ( ~ ) )  

s‘.now = s.now + A t  

Gate. We model the gate as another MMT automa- 
ton, this one with inputs lower and raise and outputs 
down and up. The time bounds are down: [0, ydown],  
and up: [O,yup] ,  where yup and ydoWn are upper 
bounds on the time required for the gate to be raised 
and lowered. To build time into the state, the state 
components now, last( up),  and last( down) are added 
to produce the following states and transitions. 

State: 
status E {up ,  down, going-up, going-down}, initially up 
now, a nonnegative real, initially 0 
last(down), a nonnegative real or 00, initially 00 
last(up), a nonnegative real or CO, initially 00 

Transitions: 
lower 

Effect: 
if s.status E { u p ,  going-up} then 

s’.status = going-down 
s’.last(down) = now+ ?down 
s’, last( up) = 03 

raise 
Effect: 

if s.status E {down, going-down} then 
s’.status = going-up 
s’.lasi(up) = n o w +  yup 
s’.last(down) = CO 

down 
Precondition: 

Effect: 
s.status = going-down 

s’.status = down 
s’.fast(down) = 00 

Precondition: 

Effect: 
s.status = going-up 

s’.status = up 
s’.last( u p )  = 00 

4 A t )  
Precondition: 

s.now+ A t  5 s.last(up) 
s.now+ At  5 s.last(down) 

s’.now = s.now + A t  
Effect: 

CompSpec. We model the computer system inter- 
face as a trivial MMT automaton CompSpec with in- 
puts enterR(r)  and e&(r for each train T and outputs 
lower and raise. Comp 2 pec  receives sensor informa- 
tion when a train arrives in the region R and when it 
leaves the crossing I. I t  does not have an input ac- 
tion enterI(r);  this expresses the assumption that no 
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sensor informs the system when a train actually en- 
ters the crossing. CompSpec has just a single state. 
Inputs and outputs are always enabled and cause no 
state change. There are no timing requirements. 
Transitions: 

enterR(r) exit(r)  
Effect: Effect: 

none none 

lower Talse 
Precondition: Precondition: 

Effect: Effect: 
true true 

none none 

AxSpec. To get the full specification, the three 
MMT automata given above, Trains, Gate and 
CompSpec, are composed yielding a new MMT au- 
tomaton. We then add constraints to  express the cor- 
rectness properties in which we are interested. For- 
mally, these constraints are axioms about an admissi- 
ble timed execution a of the composition automaton: 

1. Safety Property 
All the states in Q satisfy the following condition: 
If Trainn.r.statun = Z for any r ,  then Gate.ntatus = down. 

2. Utility Property 
If s is a state in Q with s.Gate.status # up ,  then at least 
one of the following conditions holds. 

There exists s' preceding (or equal to) s in a with 
s'.'Xrains.r.statas = Z for some r and s'.now 2 
s.now - <z. 

There exists s' following (or equal to) s in a with 
s'.Trains.r.status = Z for some r and s'.now 5 
s.now+ €1. 

There exist two states n' and s" in a, with 
s' preceding or equal to s, s" following or 
equal to s, s'.Trainn.r.ntatus = Z for some r ,  
s".Trainn.r.status = Z for some r ,  and s".now - 
s'.now 5 €1 + €2 -+ 6. 

The Safety and Utility properties are stated inde- 
pendently. The Safety Property is an assertion about 
all states reached in a, saying that each satisfies the 
critical safety property. In contrast, the Utility Prop- 
erty is a temporal property with a somewhat more 
complicated structure, which says that if the gate is 
not up, then either there is a recent preceding state 
or an imminent following state in which a train is in 
I .  The third condition takes care of the special case 
where there is both a recent state and an imminent 
state in which some train is in I; although these states 
are not quite as recent or imminent as required by the 
first two cases, there is insufficient time for a car to 
pass through the crossing. 

the state set and on the actions that are permitted to  
occur. As a result, OpSpec is probably harder for an 
application expert to  understand than AxSpec. But it 
is easier to  use in proofs at least for the style of ver- 
ification we are using). T 6 us we regard OpSpec as an 
intermediate specification rather than a true problem 
specification; we only require that @Spec implement 
AxSpec, not necessarily vice versa, and that all imple- 
mentations satisfy OpSpec. 

The two specifications are also different in another 
respect: while AxSpec preserves the independence of 
the Safety and Utility Properties, OpSpec does not. 
When a collection of separate properties are specified 
by an automaton, the properties usually become in- 
tertwined. 

To obtain OpSpec, we first compose Trains, Gate, 
and CompSpec, and then incorporate the Safety and 
Utility Properties into the automaton itself. Formally, 
the modified automaton is obtained from the compo- 
sition by restricting it to  a subset of the state set, then 
adding some additional state components, and finally 
modifying the definitions of the steps to describe their 
dependence on and their effects on the new state com- 
ponents. Although the composition of the three com- 
ponent automata is an MMT automaton, the modified 
version is not - it is a timed automaton. 

First, to  express the Safety Property, we restrict 
the states to  be those states of the composition that 
satisfy the following invariant: "If 9 i n s . r . s t a t u s  = I 
for any r, then Gate.status = down. 

Second, the time-bound restrictions expressed by 
the Utility Property are encoded as restrictions on the 
steps. The strategy is similar to that used to  encode 
MMT time bound restrictions into the steps of a timed 
automaton - it involves adding explicit deadline com- 
ponents. We describe the modifications in two pieces: 

1. The time from when the gate starts going down 
until some train enters I i s  bounded by €1. To express 
this restriction formally, we add to  the state of the 
composed system a new deadline last1 , representin 
the latest time in the future that a train is guarantee! 
to enter I .  Initially, this is set to  00, meaning that 
there is no such scheduled requirement. To add this 
new component to  OpSpec, we include the following 
new effects in two of the actions: 
Transitions: 

lower 
Effect: 

if s.Goie.status E { u p ,  going-up} 
and s.lantl = 00 then 

s'.lastl = now + (1 
enterI(r) 

Effect: 
s'.lastl = 05 

4 Operational Spec 
Unlike AxSpec, which consists of a timed automaton 

together with some axioms that restrict the automa- 
ton's executions, the operational specification OpSpec 
is simply a timed automaton - all required properties 
are built into the automaton itself as restrictions on 

Also added is a new precondition: the time-passage 
action cannot cause time to pass beyond lastl .  This 
means that whenever the gate starts moving down, 
some train must enter I within time €1. The new effect 
being added to  the lower action just "schedules" the 
arrival of a train in I .  
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2. From when the crossing becomes empty, either 
the time until the gate is up is bounded b y  or else 
the time until a train is in I is bounded by  & + 6 + €1. 
Again, we express the condition by adding deadlines, 
only this time the situation is trickier since two al- 
ternative bounds exist rather than just one. We add 
two new components, lastz(up) and lastz(l), both ini- 
tially o. The first represents a milestone to be noted 
- whether the gate reaches the up position by the des- 
ignated time - rather than an actual deadline. In con- 
trast, the second represents a real deadline - a time by 
which a new train must enter I unless the gate reached 
the up position by the milestone time last:!(up . To 

following effects to three of the actions: 
Transitions: 

include these new components in OpSpec, we a d d the 

exit( r )  
Effect: 

if s. Trains.r’.status # I for all r‘ # T then 
s’.lastz(up) = now+ [ 2  

s ’ . lash( I )  = n o w + & + S + t i  

U P  
Effect: 

if now 5 s.last2(up) then 
s‘.lastz(up) = 00 

s ‘ . lasb( I )  = 03 

enter I (r )  
Effect: 

s‘.fast2(ap) = 00 
s’.last2(I) = cc 

Also, as with lastl, an implicit precondition is 
placed on the time-passage action, saying that time 
cannot pass beyond lastZ(I). But because lastz(up) is 
just a milestone to be recorded, no such limitation is 
imposed for time passing beyond lastz(up). 

We show that OpSpec implements AxSpec in the 
following sense: 

Lemma 4.1 For any admissible timed execution a of 
OpSpec, there is an admissible timed execution a’ of 
AxSpec such that (Y’I Trains x Gate = a1 Trains x Gate. 
(This is the same as saying that a satisfies the two 
properties given explicitly for AxSpec.) 

Note that the relationship between OpSpec and 
AxSpec is only one-way: there are admissible timed ex- 
ecutions of AxSpec that have no executions of OpSpec 
yielding the same projection. Consider, for example, 
the following example. Suppose that after I becomes 
empty, the system does a very rapid raise, lower, raise. 
These could conceivably all happen within time e 2  af- 
ter the previous time there was a train in I ,  which 
would make this “waffling” behavior legal according 
to AxSpec. However, when this loweroccurs, there is 
no following entry of a train into I ,  which means that 
this does not satisfy OpSpec. 

5 Implementation 
To describe our implementation SysImpl, we use 

the same Trains and Gate automata but replace the 

CompSpec component in OpSpec and AzSpec with a 
new component Compimpl, a computer system imple- 
mentation. CompImpl is a timed automaton with the 
same interface as CompSpec. It keeps track of the 
trains in R together with the earliest possible time 
that each might enter I .  (This time could be in the 
past.) It also keeps track of the latest operation that 
it has performed on the gate and the current time. 

State: 
for each train T :  

r.statas E {not-here,  R), initially not-here 
r.sched-time, a nonneg. red number or 00, initially 00 

gate-status E ( u p ,  down}, initially up 
now, initially 0 

Transit ions: 
enterR( r )  

Effect: 
s’.r.status = R 
s‘.r.sched-time = now+ €1 

exit( T )  

Effect: 
s’.r.status = not-here 
s‘.r.sched-time = 00 

lower 
Precondition: 

s.gate-status = up 
3~ : s.r.sched-time 5 now + ?down + /3 

s‘.gate-status = down 
Effect: 

raise 
Precondition: 

s.gate-status = down 
$T : s.r.sched-time 5 now + ?up + 6 4- ?down 

s’.gate-status = up 
Effect: 

4 A t )  
Precondition: 

t = s.now + At 
if s.gate-status = up then 

if s.gate-status = down then 
t < s.r.sched-time - ?down for all r 

3r : s.r.sched-time 5 S.nOW Tup + 6 + ?down 
Effect: 

s‘.now = t 

Observe that the fact that CompImpl.gate-status = 
up does not mean that Gate.siatus = up but just 
that Ga2e.status E up, going-up}. A similar remark 

r.sched-time keeps track of the earliest time that train 
r might enter I .  The system lowers the gate if the gate 
is currently up (or going up) and some train might 
soon arrive in I .  Here “soon” means by the time the 
computer system can lower the gate plus a little bit 
more - this is where we consider the technical race 
condition mentioned earlier. The system raises the 
gate if the gate is currently down (or going down) 
and no train can soon arrive in 1. This time, “soon” 
means by the time the gate can be raised plus the 
time for a car to pass through the crossing plus the 

holds for CompImp I .gate-status = down. Note that 
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time for the system to lower the gate. The system 
allows time to  pass subject to  two conditions. First, 
if gate-status = up, then real time is not allowed to  
reach a time at which it is necessary to  lower the gate. 
Second, if gate-status = down and the gate should be 
raised, then time cannot increase at  all (until the gate 

is The ull system implementation, SysImpl, is just 
the composition of the Trains, Gate and CompImpl 
components. 

6 Correctness Proof 
The main correctness proof shows that every ad- 

missible execution of SysImpl projects on the external 
world like some admissible execution of OpSpec. 

We first state a collection of invariants, leading to  a 
proof of the safety property. All are proved by induc- 
tion on the length of an execution. The first invariant 
says that if a train is in the region and the gate is 
either up or going up, then the train must still be far 
from the crossing. 

Lemma 6.1 In all reachable states of SysImpl, if 
Traans.r.status = P and Gate.status E {up ,  going-up}, 
then Thtns.first(enterI(r))  > now + 7down. 

The second invariant says that if a train is nearing 
I and the gate is going down, then the gate is nearing 
the down position. In particular, the earliest time at 
which the train might enter I is strictly after the latest 
time a t  which the gate will be down. 

Lemma 6.2 In all reachable states of SysImpl, if 
Trains.r.status = P and Gate .status = going-down, 
then Trains.first( enterI(r))  > Gate.last( down). 

These invariants yield the main safety result: 

Lemma 6.3 In all reachable states of SysImpl, if 
Trains,r.status = I for any r ,  then Gate.status = 
down. 

To show the Utility Property, we present the simu- 
lation mapping from SysImpl to  OpSpec. Specifically, 
if s and U are states of SysImpl and OpSpec, respec- 
tively, then we define s and U to  be related by relation 
f provided that: 

1. 

2. 

3. 

4. 

5 .  

u.now = s.now. 

U .  Trains = s. Trains.2 

u.Gate = s.Gate.  

u.last1 2 mint s .  Tkains.last(enterI(r))}. 

Either 
u.last2 I )  2 mint s .  Trains.lasl(enterI(r))}, or 
u.lastz(up) 2 n o w +  yup and the raise precondi- 
tion holds in s ,  or 
u.lastz(up) 2 s.Gate.lasl(up) and s.Gate.status = 
going-up. 

2By this we mean that the entire state of the Trains automa- 
ton, including the time components, is preserved. 

The first three parts of the definition are self- 
explanatory. The last two parts provide connections 
between the time deadlines in the specification and im- 
plementation. In the typical style for this approach, 
the connections are expressed as inequalities. The 
fourth condition bounds the latest time for some train 
to enter I ,  a bound mentioned in the specification, in 
terms of the actual time it could take in the imple- 
mentation, namely, the minimum of the latest times 
for all the trains in P. The fifth condition is slightly 
more complicated - it bounds the time for either some 
train to enter I or the gate to  reach the up position. 
There are two cases for the gate reaching the up posi- 
tion - one in which the gate has not yet begun to  rise 
and the other in which it has. 

Theorem 6.4 f is Q simulation mapping from 
SysImpl t o  OpSpec. 

Proof: We show the three conditions required for a 
simulation mapping, as defined in the Appendix. 

Theorems 6.4 and A.l  together imply that all ad- 
missible timed traces of SysImpl are admissible timed 
traces of OpSpec. This is not quite what we need. 
However, we can obtain the needed correspondence 
between SysImpl and OpSpec as a corollary, using gen- 
eral results about composition of timed automata: 

Corollary 6.5 For any admissible timed execution a 
of SysImpl, there is an admissible timed execution a‘ 
of OpSpec such that a’ITrains x Gate = alTrains x 
Gate. 

Putting this together with Lemma 4.1, we obtain 
the main theorem: 

Theorem 6.6 For any admissible timed execution a 
of SysImpl, there is an admissible timed execution a’ 
of AxSpec such that a’ITrains x Gate = alTrains x 
Gate. 

7 Realistic Models of the Real World 
The models used above for the trains and gate are 

rather abstract. An applications expert might prefer 
more realistic models giving, for instance, exact or ap- 
proximate positions for the trains and gate. However, 
a formal methods expert would probably not want to  
include such details, because they would complicate 
the proofs. Fortunately, we can satisfy everyone. 

For any real world component, it is possible to  de- 
fine a pair of models, one abstract and one more real- 
istic. The only constraint is that the realistic model 
should be an “implementation” of the abstract model, 
i.e., its set of admissible timed traces should be in- 
cluded in that of the abstract model. All the difficult 
proofs are carried out using the abstract models, as 
above. Then corollaries are given to extend the results 
to  the realistic models. This extension is based on gen- 
eral results about composition of timed automata. 

For example, we can define a new type of gate com- 
ponent, Gate‘, similar to  the Gate defined above, but 
having a more detailed model of gate position. Gate’ 
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is also a timed automaton. Fix any constant ybown,  
0 5 7bOwn 5 ydown. Define gd to  be a function map- 
ping [o, ‘y&Own] to  [o, 901. Function gd is defined so that 
gd(0)  = 90, gd(YhoVn) = 0, and gd is monotone non- 
increasing and continuous. gd(t)  gives the position of 
the gate after it has been going down for time t .  Simi- 
larly, fix a constant yh?, 0 yup 5 yup ,  and define g,, 
to be a function mapping [ 0 , y h p ]  to [0,90]. Function 
gu is defined so that g,(O) = 0, gu(yhp)  = 90, and gu 
is monotone nondecreasing and continuous. 

The actions of Gate’ are the same as for Gate. The 
state is also the same, with the addition of one new 
component pos E 0,901 to  represent the gate posi- 

the same as for Gate, except that 7hown and 7hp are 
used in place of ?down and ?up; they are omitted be- 
low. The up and down transitions contains new pre- 
conditions stating that the correct position has been 
reached. The time-passage transitions adjust pos. 
Transitions: 

tion, initially 90. 4 he lower and raise transitions are 

down 
Precondition: 

s.atatu8 = going-down 
3.p05 = 0 

Effect: 
s’.status = down 
s’./ast(down) = 00 

U P  
Precondition: 

s.status = going-up 
S . p O 3  = 90 

Effec t :  
s’.atatrs = up 
3’. last( up) = 00 

4 A t )  
Precondition: 

t = now+ At 
t 5 s. /ast(down) 
t 5 s.last(up) 

s’.now = t 
i f  s.status = going-zlp then 

elseif s.status = going-down then 

Effec t :  

s‘ .pos=max{s.pos,gu(t  - (s. /ast(  up) -rbp))} 

s‘.pos=min{s.pos, g d ( t -  (s.last( down) -7’ d o w n ) ) )  

Thus, unlike the more abstract automata consid- 
ered so far, Gate’ allows interesting state changes to 
occur in conjunction with time-passage actions. Note 
that Gate’ contains a rather arbitrary decision about 
what happens if a lower event occurs when the gate is 
in an intermediate position. It says that the gate stays 
still for the initial time that it would take for the gate 
to move down to its current position if it had started 
from position 0. Alternative modeling choices would 
also be possible. A similar remark holds for raise. 

We relate the new gate model to the old one. See 
the Appendix for the notation. 

Lemma 7.1 attraces( Gate‘) attraces( Gate) .  

Now, let SysImpl‘ be the composition of Trains, 
Gate’, and CompImpl, and let AzSpec’ be the compe 
sition of Trains, Gate‘, and CompSpec, with Safety and 
Utility Properties added as in AzSpec. Using Theorem 
6.6  and general results about composition of timed au- 
tomata. we obtain: 

Theorem 7.2 For a n y  admissible timed execution (Y 

of SysImpl’, there is an admissible timed execution cy‘ 
of AxSpec‘ such that ail Trains x Gate’ = aITrains x 
Gate’. 

8 Concluding Remarks 
We have applied a formal method based on timed 

automata, invariants, and simulation mappings to 
model and verify the Generalized Railroad Crossing. 
Here, we extrapolate from this experience and attempt 
to  evaluate the method for modeling and verifying 
other real-time systems. We also describe future work. 

Generality. Can the method be used to  describe all 
acceptable implementations? It seems so. Timed au- 
tomata can have an infinite number of states and both 
discrete and continuous variables. Further, they can 
express the maximum allowable nondeterminism, use 
symbolic parameters to represent system constants, 
and represent asynchronous cornmunicalion. Thus 
the method is significantly more general than model 
checking approaches, which typically require a finite 
number of states and constant timing parameters. 

Readability. Are the formal descriptions easy to  
understand? The environment model and the system 
implementation model are easy to understand, since 
these are naturally modeled as automata. The re- 
quirements specifications do not look so natural when 
expressed as automata; an axiomatic form seems eas- 
ier to  understand. However, if one starts with an 
axiomatic specification, then one has to rewrite the 
specification as an automaton. It may be difficult to  
determine that the automaton specification is equiv- 
alent to  (or implements) the axiomatic specification. 

Information. Does the proof yield information 
other than just  the fact that the implementataon is 
correct? Does it provide insight into the reasons that 
the implementation works? Yes. The invariants and 
simulations that require considerable effort to produce 
yield payoffs by providing very useful documentation. 
They express key insights about the behavior of the 
implementation. In contrast, model checkers yield no 
such byproducts, only an assertion that the implemen- 
tation satisfies the desired properties. 

Power. Can the method be used to  verify all imple- 
mentations? Simulation methods (extended beyond 
what is described in this paper, to  include “back- 
ward” as well as “forward” simulations) are theoreti- 
cally complete for showing admissible timed trace in- 
clusion. They also seem to be powerful in practice, 
although they might sometimes benefit from combi- 
nation with other verification methods, such as model 
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checking, process algebra, temporal logic or partial or- 
der techniques. Model checking alone is less powerful 
in practice, since it only checks whether a subfamily 
of solutions satisfy some specific properties. 

Ease of Carrying out the Proof. How hard is it 
to construct a proof using this method? Can typical 
engineers learn to  do this? Constructing these proofs, 
though not difficult, required significant work. The 
hardest parts were getting the details of the models 
right and finding the right invariants and simulation 
mapping. This is an art rather than an automatic 
procedure. The actual proofs of the invariants and 
the simulation were tedious but routine. 

Carrying out such a modeling and verification ef- 
fort requires the ability t$o do formal proofs, which 
m a t  engineers are not trained to do. In contrast, us- 
ing a model checker, an engineer can check automati- 
cally whether a iven “model” satisfies the properties 
of interest. (Mofel checkers are aiready being used in 
practice by engineers to check the correctness of cer- 
tain implementations, e.g., of circuits.) On the other 
hand, the proofs developed using the method of this 
paper are amenable to mechanical proof checking. So, 
automated support can be provided to engineers at- 
tempting to develop formal proofs. 

Scalability. Does the formalism scale up to  handle 
larger problems? We don’t yet know. Just reasoning 
about this relatively simple problem was quite com- 
plex. A bigger system will mainly add complexity in 
the form of more system components and more ac- 
tions, which leads in turn to more invariants, more 
components in the simulation mapping, and more 
cases in the proofs. But, in contrast to model check- 
ing, the blowup should not be exponential. Nonethe- 
less, use of the method for larger problems should be 
coupled with various methods of decomposing a prob- 
lem, so one need not reason about an entire complex 
system at once. Additional levels of abstraction and 
use of parallel composition should help. 

Ease of Change. How easy i s  it t o  modify the speci- 
fications and the proofs? Separating the system model 
from the environment model and splitting the envi- 
ronment model into the individual gate model and 
train model makes it easy to  change the descriptions. 
Should one want to  use a more complex train model 
(for example, trains move backward as well as for- 
wardb, one can easily substitute the revised model 
for t e original. Expressing the required properties 
axiomatically and independently makes it easier to 
change the requirements. 

Changes to the specifications and implementations 
require, of course, changes to the proofs. If the 
changes are fairly small, we expect most of the prior 
work to survive, and the stylized form of the proof 
provides useful structure for managing the modifica- 
tions. Here is a place where mechanical aid would be 
most helpful - proofs could be rerun quickly to dis- 
cover which parts need to be changed. 

Future work. Our plans include: 

1 Trying this method on larger examples from real- 
time process control and time-based communica- 
tion. In real-time process control, transportation 
problems are especially interesting to us. New 
complications are expected to arise when the con- 
tinuous quantities of interest include velocity and 
acceleration as well as time and position. 

2. Developing computer assistance for carrying out 
and checking the proofs. We plan to  use the 
proof systems PVS [18] and Larch [4] to check 
the proofs and to assess the utility of mechanical 
proof systems for such proofs. 

3. Trying to systematize the reasoning about the 
correspondence between the axiomatic and oper- 
ational specifications. 
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The Timed Automaton Model 
This section contains the formal definitions for the 

timed automaton model, taken from [14]. 

Timed Automata. A timed automaton A con- 
sists of a set states(A) of states, a nonempty set 
start(A) states(A) of start states, a set acts(A) 
of actions, including a s ecial time-passage action U ,  
a set steps(A) of steps bransition.), and a mapping 
nowA : states(A) -+ RLO. (eo denotes the nonneg- 
ative reals.) The actions are partitioned into exter- 
nal and internal actions, where U is considered ex- 
ternal; the visible actions are the non-u external ac- 
tions; the visible actions are partitioned into input 
and output actions. The set steps(A) is a subset of 
states(A) x acts(A) x states(A). We write s AA s’ as 
shorthand for (s, x ,  s’) E steps(A) and usually write 
s.nowA in place of nowA(s). We sometimes suppress 
the subscript or argument A. 

A timed automaton satisfies five axioms: [All I f s  E 
start then s.now = 0. [A21 If s -L s‘ and x # U then 

s.now = s’.now. [A31 If SA s’ then s.now < s’,now. 
[A41 If s 5 s“ and s” 5 s‘, then s A s‘. 

The statement of [A51 requires the preliminary def- 
inition of a trajectory, which describes restrictions on 
the state changes that can occur during time-passage. 
Namely, if I is any interval of RZo, then an I-trajectory 
is a function w : I --+ states, such that w(t).now = t 
for all t E I, and w(t1) w(t2) for all t l , t 2  E I with 
tl  < t 2 .  That is, w assigns, to  each time t in interval 
I ,  a state having the given time t as its now compo- 
nent. This assignment is done in such a way that time- 
passage steps can span between any pair of states in 
the range of w.  If w is an I-trajectory and I is left- 
closed, then let w.fstaie be the first state of w ,  while if 
I is right-closed, then let w.lstate denote the last state 
of w. If I is a closed interval, then an I-trajectory w 
is said to span from state s to state s’ if w.fstate = s 
and w.lstate = s’. The final axiom is: [A51 If SA s‘ 
then there exists a trajectory that spans from s to  s‘. 

Timed Executions and Timed Traces A timed 
execution fragment is a finite or infinite alternating 
sequence a = woa1w1a2w2 ‘ . ., where 

Each wl is a trajectory and each x, is a non-time- 
passage action. 

If a is a finite sequence, then it ends with a trajectory. 

If zu, is not the last trajectory in a, then its domain is 
a closed interval. If w, is the last trajectory, then its 
domain is left-closed (and either right-open or right- 
closed). 

If w, is not the last trajectory in a, then 
wl ./staterJ+! w,+l .fstate. 

A timed execution is a timed execution fragment for 
which the first state of the first trajectory, W O ,  is a 
start state. In this paper, we restrict attention to  the 
admissible timed executions, i.e., those in which the 
now values occurring in the states approach 00. We 
use the notation atexecs(A) for the set of admissible 
timed executions of timed automaton A. A state of a 
timed automaton is defined to be reachable if it is the 
final state of the final trajectory in some finite timed 
execution of the automaton. 

To describe the problems to  be solved by timed au- 
tomata, we require a definition for their visible be- 
havior. We use the notion of iimed traces, where the 
timed trace of any timed execution is just the sequence 
of visible events that occur in the timed execution, 
paired with their times of occurrence. The admissi- 
ble timed traces of the timed automaton are just the 
timed traces that arise from all the admissible timed 
executions. We use the notation attraces(A) for the set 
of admissible timed traces of timed automaton A. If a 
is any timed execution, we use the notation ttrace(a) 
to denote the timed trace of a. 

We define a function tame that maps any non- 
time-passage event in an execution to  the real time 
at  which it occurs. Namely, let x be any non-time 
passage event. If x occurs in state s ,  then define 
time(a) = s.now. 
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Composition. Let A  and B be timed automatasat- 
isfying the following compatibility conditions: A  and B  
have no output actions in common, and no internal ac- 
tion of A  is an action of B ,  and vice versa. Then the 
composition of A  and B ,  written as A x  B ,  is the timed 
automaton defined as follows: 

statee(A x B )  = { ( S A , S B )  E states(A) x states(B) : 

start(A x E )  = start(A) x start(B); 
acts(A x B )  = acts(A) U acts(B); an action is ezternal 
in A x B exactly if it is external in either A or E ;  a 
visible action of A x B is an output in A x B exactly 
if it is an output in either A or B and is an input 
otherwise; 
( S A ,  SB) - % X B  (sk ,  sb) exactly if 

S A . n O W A  = sB.noufB}; 

1. S A  AA sk if T E acts(A), else S A  = s;, and 

2. SB 2~ s& if x E acta(B), else SB = sb; 

( B A , s B ) . n O w A x B  = S A . n O W A .  

Then A x B is a timed automaton. If cy is a timed 
execution of A x B, cylA and alB denote the projec- 
tions of cy on A and B. For instance, a l A  is defined by 
projecting all states in a on the state of A ,  removing 
actions that do not belong to  A  and collapsing consec- 
utive trajectories. We also use the projection notation 
for sequences of actions; e.g., PIA denotes the subse- 
quence of /3 consisting of actions of A .  

MMT Automata. We use the special case of MMT 
automata defined in [12, 141. An MMT automaton 
is an 1/0 automaton [13] together with upper and 
lower bounds on time. An 1 / 0  automaton A  con- 
sists of a set states(A) of states, a nonempty set 
start(A) E states A )  of start states, a set acts A )  of ac- 

the external actions are further partitioned into in- 
put and output actions a set steps(A) of steps, and 

put and internab actions into at  most countably many 
equivalence classes. The set steps(A) is a subset of 
sta.tes(A x acts(A) x s tates(A);  an action T is said to  

state s’ such that (8, T, s’) E steps(A),  i.e., such that 
s 4 ~  6’. A set of actions is said to  be enabled in s 
provided that at least one action in that set is enabled 
in s. The automaton must be input-enabled, which 
means that T is enabled in s for every state s and in- 
put action T .  The final component, part, is sometimes 
called the task partition. Each class in this partition 
groups together actions that are supposed to  be part 
of the same “task”. 

An MMT automaton is obtained by augmenting 
an 1/0 automaton with certain up er and lower time 
bound information. Let A  be an $0 automaton with 
only finitely many partition claases. For each class 
C, define lower and upper time bounds, lower(C) 
and U per(C),  where 0 5 lower(C) < 00 and 0 < 
upper(%) 5 00; that is, the lower bounds cannot be 
infinite and the upper bounds cannot be 0. 

tions (partitione 6 into external and i n t e n a  I actions; 

a partition part A )  o f t  k e locally controlled (i.e., out- 

be enab I ed in a state s provided that there exists a 

A timed execution of an MMT automaton A  is 
defined to  be an alternating sequence of the form 
S O ,  (TI, t l ) ,  S I ,  + .  . where the T’S are input, output or in- 
ternal actions (but not time-passage actions). For each 
j, it  must be that s’ “j+! S j + l .  The successive times are 
nondecreasing, and are required to  satisfy the given 
lower and upper bound requirements. Finally, admis- 
sability is required: if the sequence is infinite, then the 
times of actions approach 00. 

Each timed execution of an MMT automaton A  
gives rise to a timed trace, which is just the subse- 
quence of external actions and their associated times. 
The admissible timed traces of the MMT automaton A  
are just the timed traces that arise from all the timed 
executions of A .  

I t  is not hard to  transform any MMT automa- 
ton A  into a naturally-corresponding timed automa- 
ton A’. First, the state of the MMT automaton A  is 
augmented with a now component, plus first C) and 

the earliest and latest time in the future that an ac- 
tion in class C is allowed to  occur. The time-passage 
action U is also added. The first and last components 
get updated in the natural way by the various steps, 
according to the lower and upper bounds specified in 
the MMT automaton A .  The time-passage action has 
explicit preconditions saying that time cannot pass 
beyond any of the last (C)  values, since these repre- 
sent deadlines for the various tasks. Restrictions are 
also added on actions in any class C ,  saying that the 
current time now must at least equal f i rs t (C) .  The 
resulting timed automaton A’ has exactly the same 
admissible timed traces as the MMT automaton A .  

Invariants and Simulation Mappings. We de- 
fine an invariant of a timed automaton to  be any 
property that is true of all reachable states. 

The definition of a simulation mapping is para- 
phrased from [16, 15, 141. We use the notation f [ s ] ,  
where f is a binary relation, to  denote {U : (s, U) E f}. 
Suppose A  and B are timed automata and I A  and IB 
are invariants of A  and B. Then a simulation mapping 
from A  to  B with respect to  IA and IB is a relation f 
over states(A) and states(B) that satisfies: 

1. If U E f [ s ]  then u.now = s.now. 

2. If s E start(A) then f [ s ]  n start(B) # 0. 
3.  If s AA s’, s ,  s’ E IA, and U E f [ s ]  n le, then there 

exists U’ E f [ s ’ ]  such that there is a timed execution 
fragment from U to U’ having the same timed visible 
actions as the given step. 

Note that T is allowed to  be the time-passage action 
in the third item of this definition. The most impor- 
tant fact about these simulations is that they imply 
admissible timed trace inclusion: 

Theorem A . l  If there is a simulation mapping 
from tamed automaton A  to timed automaton B,  
with respect t o  any  invariants, then attraces(A) C. 
attraces( B ) .  

last(C components for each class of the tas k parti- 
tion. 4 he f irs t (C)  and lasl(C) components represent 
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