
The Generalized Railroad Crossing: A Case Study in Formal
Verification of Real-Time Systems

Constance Heitmeyer’ Nancy Lynch+

Abstract
A new solution to the Generalized Railroad Cross-

ing problem, based on timed automata, invariants and
simulation mappings, i s presented and evaluated. The
solution shows formally the correspondence between
four system descriptions: an axiomatic specification,
an operational specification, a discrete system imple-
mentation, and a system implementatdon that works
with a continuous gate model.

1 Introduction
Recently, one of us (Heitmeyer) defined a bench-

mark problem to compare the many formal meth-
ods that exist for specifying, designing, and analyzing
real-time systems and to better understand the util-
ity of the methods for developing practical systems.
The problem, which is called the Generalized Railroad
(GRC) Crossing [8], is as follows:

The system to be developed operates a gate at a railroad cross-
ing. The railroad crossing I lies in a region of interest R, i.e.,
Z C R. A set of trains travel through R on multiple tracks in
both directions. A sensor system determines when each train
enters and exits region R. To describe the system formally, we
define a gate function g (t) E [0,90], where g (t) = 0 means the
gate is down and g (t) = 90 means the gate is up. We define a
set { A , } of occupancy inlerval.9, where each occupancy interval
is a time interval during which one or more trains are in I. The
ith occupancy interval is represented as A, = [T ~ , vl], where T;

is the time of the ith entry of a train into the crossing when no
other train is in the crossing and vt is the first time since T~ that
no train is in the crossing (i.e., the train that entered at T, has
exited as have any trains that entered the crossing after T ,) .

Given two constants (1 and (2 , (1 > 0, (2 > 0, the problem is
to develop a system to operate the crossing gate that satisfies
the following two properties:
Safety Property: t E UiA, 3 g(t) = 0

during all occupancy intervals.)
Utility Property: t

gate is up when no train is in the crossing.)

(The gate is down

U,[T, - (1 , vi + E21 3 g(t) = 90 (The

To solve the GRC problem, real-time researchers
have applied a variety of formal methods, including
process algebraic 9, 3, 1 , event-based [lo], and logic-
based approaches 119, 111. They have also used various
mechanical proof systems, including PVS [18], EVES

‘Code 5546, Naval Research Laboratory, Washington,
DC 20375.

‘Laboratory for Computer Science, Massachusetts Institute
of Technology, Cambridge, MA 02139. Supportedby NSF grant
9225124-CCR, ONR contract N00014-91-J-1046, AFOSR con-
tract F49620-94-1-0199, and ARPA contract N00014-92-5-4033.

[ll], and FDR [2], to formally analyze and verify their
solutions. Reference [5] describes three early efforts to
solve the GRC problem.

This paper describes a new solution of the GRC
based on the Lynch-Vaandrager timed automaton
model [16, 151, using invariant and simulation map-
ping techniques [12, 15, 141. To develop the solution,
a “formal methods expert” (Lynch) and an “applica-
tions expert” (Heitmeyer) worked closely together to
refine the GRC problem statement and to design and
verify an implementation.

Our close collaboration was in sharp contrast to
the limited interaction between the Naval Research
Laboratory (NRL) group that distributed the GRC
problem and the formal methods groups that devel-
oped earlier solutions. In the earlier work, the NRL
group limited interaction both to encourage original
solutions and to prevent some groups from having
more information and thus unfair advantage over other
groups. While these early efforts produced a vari-
ety of solutions and many insights into the relative
strengths and weaknesses of the different formalisms,
they suffered from two limitations. First, because the
original problem statement was somewhat ambiguous,
each group solved a slightly different problem, which
caused difficulties in comparing the solutions. Sec-
ond, the limited interaction meant that deficiencies in
the GRC problem statement went uncorrected. Our
collaboration allowed us to quickly identify and cor-
rect these deficiencies. It also led us to represent the
problem and its solution in a form that is both under-
standable to applications experts and usable by formal
methods experts for verification.

Section 2 describes our approach. Sections 3 and 4
present our highest-level problem specification, in-
tended to be understood by applications experts, and
a second operational specification, intended to be use-
ful in formal verification. Sections 5, 6 and 7 con-
tain our system implementation, the main correctness
proof, and an extension of our solution to more realis-
tic, continuous models. Section 8 evaluates our solu-
tion and method. An appendix provides background
on our formal methods. The details of the proofs are
available in the full version of the paper [6].

2 Our Approach
Formal Methods for Real-Time Systems. Ap-
plying formal methods to real-time syst,ems involves
three steps: system requirements specification, design
of an implementation, and verification that the im-
plementation satisfies the specification. This process

120
1052-8725/94 $04.00 0 1994 IEEE

has feedback loops. Once specified, the requirements
must be revised when later steps expose omissions and
errors. The same is true of the designed implementa-
tion.

All three steps require close collaboration between
a formal methods expert and an applications expert.
The role of the formal methods expert is to produce
formal descriptions of both the system requirements
and the selected implementation and to prove formally
that the latter satisfies the former. The role of the ap-
plications expert is to work closely with the formal
methods expert to identify the "real" requirements
and to ensure that the specified implementation is ac-
ceptable. In our collaboration, much of the dialogue
focused on the system requirements. Once the require-
ments specification was acceptable, defining and ver-
ifying an implementation, while labor-intensive and
time-consuming, was relatively straightforward.

A system requirements specification describes all
acceptable system implementations [7]. It has two
parts: (1) A set of formal models describing the com-
puter system at an abstract level, the environment
(here, the trains and the gate), and the interface be-
tween them. (2) Formal statements of the properties
that the system must satisfy.

In developing the GRC solution, we applied the fol-
lowing seven software engineering principles. The first
five concern the requirements specification, the sixth
concerns the implementation and its verification, and
the seventh is applicable to all three steps.

1. Avoid underspecifying system requirements. The
original problem statement lacked necessary in-
formation about the various constants. For ex-
ample, the statement did not constrain the con-
stant €1. A simple analysis shows that we should
assume that €1 > 7down + €2 - €1, where €2 is the
maximum time and €1 the minimum time that a
train requires to travel from entry into R to the
crossing and 7down is the maximum time needed
to lower the gate.

2 . Avoid overspecifying system requirements. For
example, while the function g is an acceptable
gate model, the GRC problem can be solved us-
ing a simpler, discrete model-one that represents
the gate in one of four states-up, going-down,
down, and going-up. Our solution uses the sim-
pler model, but we show in Section 7 how to ex-
tend our results to the original gate model.
For another example, the Utility Property stated
above does not rule out solutions in which the
last train leaves the crossing a t time t but within
the interval [t , t -t ~$21 the gate goes first up and
then down rapidly before the gate is raised for the
second (and final) time. Such solutions, though
not to be encouraged, should not be excluded.
The essential system properties are that the gate
must be down when a train is in the crossing,
and that the gate must be up during the specified
intervals when no train is in the vicinity. During
other times, we do not care what the gate does.

3 . Make sure the specified system behavior is rea-
sonable. For example, suppose a train exits the
crossing at time t and another train is scheduled
to enter the crossing by time t + y a p + 7down.
Then there is insufficient time for even one car to
travel through the crossing, and thus the Utility
Property fails to achieve its practical purpose. To
rule out such useless activity, we modify the orig-
inal problem statement to only require the gate
to be raised if sufficient time, 6, exists for a t least
one car to travel through the crossing.

4. Specify the system requirements as axioms rather
than operationally. In the original problem state-
ment, both the Safety Property and the Utility
Property are expressed as axioms. Each axiom
describes a relationship that must hold between
the two components of the system environment,
namely, the trains and the crossing gate. Thus
the required system properties are properties of
the environment. Neither axiom mentions the
computer system. Also, the two axioms are stated
independently, making it easy to modify the in-
dividual properties.
In the present study, we initially described the re-
quirements operationally. This operational speci-
fication incorporated both the Safety and Utility
Properties into a single automaton, thus losing
the advantage of independence. Also, the spec-
ification was stronger than the original formula-
tion, describin some aspects of what the com-
puter system s%ould do rather than just describ-
ing properties that the system needed to guaran-
tee in the environment. Finally, the operational
style of the specification was harder for applica-
tions experts to understand. Our final version of
the specification, which appears in Section 3, is
axiomatic. Like the original formulation, it de-
scribes the two properties as independent axioms
about the environment.

5 . Provide a second, operational specification plus a
formal proof that the operational specification im-
plements the aziomatic specification. Although
it is desirable to start with an axiomatic spec-
ification, the types of proofs we do rest on op-
erational, automaton versions of the specification
and implementation. Therefore, we present a sec-
ond requirements specification in terms of timed
automata and prove that the operational require-
ments specification implements the original ax-
iomatic specification.
As in many applications of formal methods, we
initially neglected to provide a formal proof of
the correspondence between the original prob-
lem statement and the reformulation within our
framework. Without such a proof, there is no
assurance that the properties satisfied by the sys-
tem implementation are the ones that are really
required. In our case, while it was immediately
obvious that the statement of the Safety Property
in our operational specification was equivalent to
the original statement of the Safety Property, the

121

correspondence between the two versions of the
Utility Property was not so clear.

Provide a formal model for the implementation
and a proof that it implements the operational
specification. The implementation should be de-
scribed using the same model that is used for the
operational specification, or a t least one that is
compatible. The proof that the implementation
meets the specification can be done using a vari-
ety of methods, either by hand, as in this paper,
or with computer assistance.

Express the system requirements specification, the
implementation, and the formal proofs so that
they are understandable to applications experts. If
the requirements specification and the description
of the implementation are difficult to understand,
the applications expert cannot be confident that
the right requirements have been specified and
that the implementation is acceptable. The same
holds for the formal proofs: ’ the applications ex-
pert must be able to understand the proofs. This
gives him/her a deep understanding of how and
why the system works and how future changes
are likely to affect system behavior. To increase
their understandability, both the formal specifica-
tions and the proofs should be based on standard
models such as automaton models, standard no-
tations, and standard proof techniques such as in-
variants and simulation mappings. To the extent
feasible, applications experts should not be re-
quired to learn new notations or proof techniques.

The Formal Framework. The formal method we
used to specify the GRC problem and to develop and
verify a solution represents both the computer system
and the system environment as timed automata, ac-
cordin to the definitions of Lynch and Vaandrager
[16, 14. A timed automaton is a very general au-
tomaton, i.e., a labeled transition system. It is not
finite-state: for example, the state can contain real-
valued information, such as the current time or the
position of a train or crossing gate. This makes timed
automatasuitable for modeling not only computer sys-
tems but also real-world entities such as trains and
gates. We base our work directly on an automaton
model rather than on any particular specification lan-
guage, programming language, or proof system, in or-
der to obtain the reatest flexibility in selecting spec-
ification and proof methods. The formal definition of
a timed automaton appears in the Appendix.

The timed automaton model supports description
of systems as collections of timed automata, interact-
ing by means of common actions. In our example,
we define separate timed automata for the trains, the
gate, and the computer system; the common actions
are sensors reporting the arrival of trains and actua-
tors controlling the raising and lowering of the gate.

An important special case of the model, describ-
able in a particularly simple way, is the MMT au-
tomaton model [17, developed by Merritt, Modugno

lection of “tasks” (i.e., “processes”) sharing common
and Tuttle. An Id MT automaton consists of a col-

data, where each task has an upper bound and a lower
bound on the time between its events. This special
case is sufficient for describing several of our compo-
nents, in particular, the trains and the discrete version
of the gate. Our other components, e.g., the computer
system, cannot be expressed in the MMT style, so we
describe them directly in terms of the general model.

Applying Formal Methods to GRC. Our solu-
tion contains four system descriptions: AxSpec, the
axiomatic requirements specification; OpSpec, the op-
erational requirements specification; Systlmpl, the dis-
crete system implementation; and Systlmpl‘, a sys-
tem implementation with a continuous gate model.
Figure 1 illustrates the four descriptions and how they
are related.

The top-level requirements specification AxSpec
contains timed automata describing the computer sys-
tem and its environment (the trains and gate) and ax-
ioms expressing the Safety and Utility Properties. The
Safety Property states that if a train is in the crossing,
the gate must be down. The Utility Property states
that the gate is up unless a train is in the vicinity.
Formally, these axioms are properties added to the
composition of three timed automata: Trains, Gate,
and CompSpec, a trivial specification of the computer
system. Figure 2 illustrates AxSpec.

Next, because it is easier to use in provin correct-
ness, we produce a second, more operationafl require-
ments specification in the form of a timed automaton
OpSpec. We show that OpSpec implements AxSpec.

Next, we describe our computer system implemen-
tation as a timed automaton Complmpl. Correctness
means that Complmpl, when it interacts with Trains
and Gate, guarantees the Safety and Utility Proper-
ties. To show this, we prove that Syslmpl, the com-
position of CompImpl, Trains and Gate, provides the
same view to the environment components, Trazns and
Gate, as the operational specification OpSpec. This
part of the proof follows well-established, stylized in-
variant and simulation mapping methods, which is
why we moved from the axiomatic style of specifica-
tion to the operational style. All these proofs can be
verified using current mechanical proof technology.

In both specification automata, AxSpec and
OpSpec, and in the implementation automaton
SysImpl, time is built into the state. Time information
consists of the current time plus some deadline infor-

Figure 1: The four system descriptions and how they
are related. In OpSpec, OpProps incorporates the
Safety and Utility properties into the automaton that
results from composing Trains, Gate, and CompSpec.

122

mation, such as the earliest and latest times that a
train that has entered R will actually enter the cross-
ing. The correctness proof proceeds by first proving by
induction some invariants about the reachable states
of SysImpl. The main work in the proof of the Safety
Property is done by means of these invariants. An
interesting feature of the proofs is that the invariants
involve time deadline information.

Next, we show a “simulation mapping” between the
states of SysImpl and OpSpec, again by induction; this
is enough to prove the Utility Property. Like the in-
variants, the simulations also involve time deadline in-
formation, in particular, they include inequalities be-
tween time deadlines.

Finally, we observe that our main proofs yield a
weaker result that what we really want. Namely,
we have worked with abstract, discrete models of the
trains and gate rather than with realistic models that
allow continuous behavior. And we have only shown
that the “admissible timed traces”, i.e., the sequences
of externally visible actions, together with their times
of occurrence, are preserved, rather than all aspects of
the environment’s behavior. We conclude by showing
that we have not lost any generality by proving the
weaker results. In particular, preservation of admis-
sible timed traces actually implies preservation of all
aspects of the environment’s behavior. Further, the
results extend to Systlmpl’, a system implementation
with a more realistic environment model. Both ex-
tensions are obtained as corollaries of the results for
admissible timed traces of the discrete model, using
general results about composition of timed automata.

3 Axiomatic Specification
We first define two timed automata, Trains and

Gate, which are abstract representations of the trains
and the gate. These two components do not in-
teract directly. We then define a trivial automa-
ton CompSpec, which interacts with both Trains and
Gate via actions representing sensors and actuators.
CompSpec describes nothing more than the computer
system’s interface with the environment. AxSpec is ob-
tained by composing these three automata and then
imposing the Safety and Utility Properties on the com-
position; see Figure 2. Formally, the two properties
are restrictions on the executions of the composition.
The Safety Property is just a restriction on the states
that occur in the execution, while the Utility Property
is a more complex temporal condition.

Figure 2 : AcSpec is the composition of Trains, Gate,
and CompSpec, constrained by the Safety and Utility
properties.

Parameters and O t h e r Notat ion. We use the no-
tation r , r’ , etc. to denote trains, I to denote the rail-
road crossing, R to denote the re ion from where a
train passes a sensor until it exits t8e crossing, and P
to denote the portion of R prior to the crossing. We
define some positive real-valued constants:

€1, a lower bound on the time from when a train enters R
until it reaches I.
€2, an upper bound on the time from when a train enters
R until it reaches I.
6, the minimum useful time for the gate to be up. (For
example, this might represent the minimum time for a car
to pass through the crossing safely.)
?down, an upper bound on the time to lower the gate
completely.
?up, an upper bound on the time to raise the gate com-
pletely.
€1, an upper bound on the time from the start of lowering
the gate until some train is in I.
€2, an upper bound on the time from when the last train
leaves I until the gate is up (unleis the raising is inter-
rupted by another train getting “close” to I) .
p, an arbitrarily smal l constant used to take care of some
technical race conditions.’

We need some restrictions on the values of the var-
ious constants:

1. €1 5 €2.

2 . €1 > ?down. (The time from when a train arrives until it
reaches the crossing is sufficiently large to allow the gate
to be lowered.)

3. €1 2 ?down + 0 + €2 - €1. (The time allowed between
the start of lowering the gate and some train reaching I is
sufficient to allow the gate to be lowered in time for the
fastest train, and then to accommodate the slowest train.
The time ?down is needed to lower the gate in time for the
fastest train, but the slowest train could take an additional
time €2 - €1. The is a technicality.)

4. €2 2 T U P . (The time allowed to raise the gate is sufficient.)

Trains. We model the Trains component as an
MMT automaton with no input or internal actions
and three types of outputs, enterR(r) , enterI(r) , and
e t i t (r) , for each train r . The state consists of a status
component for each train, just saying where it is.
State:

for each train T :

r.status E {not -here ,P , I } , initially not-here

The state transitions are described by specifying
the “preconditions” under which each action can occur
and the “effect” of each action. s denotes the state
before the event occurs and s’ the state afterwards.
Transitions:

enterR(r)
Precondition:

Effect:
a.r.statua = not-here

s‘.r.status = P

]These arise because the model allows more than one event
to happen at the same real time.

123

ent erI(r)
Precondition:

Effect:
s.r.status = P

s’.r.status = I

e&(T)

Precondition:

Effect:
s.r.status = I

s‘.r.status = not-here

In this automaton (and for all other MMT au-
tomata in this paper), we make each non-input action
a task by itself. We only specify trivial bounds (that is,
[O,oo] for the enterR(r) and et i t r) actions. For each
enter 1 (r) action, we use bounds \ c ~ , E z] . This means
that from the time when any train r has reached R, it
is a t least time €1 and at most time €2 until the train
reaches I .

We use the general construction described in the
Appendix to convert this automaton to a timed au-
tomaton. This construction involves adding some
components to the state - a current time component
now, and first and last components for each task, giv-
ing the earliest and latest times at which an action
of that task can occur once the task is enabled. The
transition relation is augmented with conditions to en-
force the bound assumptions; that is, an event cannot
happen before its first time, and time cannot pass be-
yond any last time. In this case, only the state com-
ponents now and first(enterI(r)) and last(enterI(r))
for each T contain nontrivial information, so we ignore
the other cases. Applying this construction yields the
timed automaton with the same actions and the fol-
lowing states and transitions.

State:
now, a nonnegative real, initially 0
for each train T :

r.status E {not-here, P, I}, initially not-here
first(enterI (r)) , a nonnegative real, initially 0
last(enterI(r)) , a nonnegative real or CO, initially 00

Transitions:
enlerR(T)

Precondition:

Effect:
8.r.staius = not-here

s’.r.status = P

s‘.last(enterI(r)) = now + €2

S ‘ . f i T s t (L?nteTI(T)) = nOW €1

enterI(s)
Precondition:

s.r.3tatus = P
now 2 s.first(enterI(r))

s‘.r.status = I

s‘. last(enterI(r)) = 00

Effect:

S ’ . f i T s t (enleTl(T)) = 0

e t i t (r)
Precondition:

Effect:
s.r.status = I

s’.r.status = not-here

4 A t)
Precondition:

Effect:
for all T , s.now + A t 5 s . l a s t (e n t e r I (~))

s‘.now = s.now + A t

Gate. We model the gate as another MMT automa-
ton, this one with inputs lower and raise and outputs
down and up. The time bounds are down: [0, ydown],
and up: [O,yup] , where yup and ydoWn are upper
bounds on the time required for the gate to be raised
and lowered. To build time into the state, the state
components now, last(up), and last(down) are added
to produce the following states and transitions.

State:
status E {up , down, going-up, going-down}, initially up
now, a nonnegative real, initially 0
last(down), a nonnegative real or 00, initially 00
last(up), a nonnegative real or CO, initially 00

Transitions:
lower

Effect:
if s.status E { u p , going-up} then

s’.status = going-down
s’.last(down) = now+ ?down
s’, last(up) = 03

raise
Effect:

if s.status E {down, going-down} then
s’.status = going-up
s’.lasi(up) = n o w + yup
s’.last(down) = CO

down
Precondition:

Effect:
s.status = going-down

s’.status = down
s’.fast(down) = 00

Precondition:

Effect:
s.status = going-up

s’.status = up
s’.last(u p) = 00

4 A t)
Precondition:

s.now+ A t 5 s.last(up)
s.now+ At 5 s.last(down)

s’.now = s.now + A t
Effect:

CompSpec. We model the computer system inter-
face as a trivial MMT automaton CompSpec with in-
puts enterR(r) and e&(r for each train T and outputs
lower and raise. Comp 2 pec receives sensor informa-
tion when a train arrives in the region R and when it
leaves the crossing I. I t does not have an input ac-
tion enterI(r); this expresses the assumption that no

124

sensor informs the system when a train actually en-
ters the crossing. CompSpec has just a single state.
Inputs and outputs are always enabled and cause no
state change. There are no timing requirements.
Transitions:

enterR(r) exit(r)
Effect: Effect:

none none

lower Talse
Precondition: Precondition:

Effect: Effect:
true true

none none

AxSpec. To get the full specification, the three
MMT automata given above, Trains, Gate and
CompSpec, are composed yielding a new MMT au-
tomaton. We then add constraints to express the cor-
rectness properties in which we are interested. For-
mally, these constraints are axioms about an admissi-
ble timed execution a of the composition automaton:

1. Safety Property
All the states in Q satisfy the following condition:
If Trainn.r.statun = Z for any r , then Gate.ntatus = down.

2. Utility Property
If s is a state in Q with s.Gate.status # up , then at least
one of the following conditions holds.

There exists s' preceding (or equal to) s in a with
s'.'Xrains.r.statas = Z for some r and s'.now 2
s.now - <z.

There exists s' following (or equal to) s in a with
s'.Trains.r.status = Z for some r and s'.now 5
s.now+ €1.

There exist two states n' and s" in a, with
s' preceding or equal to s, s" following or
equal to s, s'.Trainn.r.ntatus = Z for some r ,
s".Trainn.r.status = Z for some r , and s".now -
s'.now 5 €1 + €2 -+ 6.

The Safety and Utility properties are stated inde-
pendently. The Safety Property is an assertion about
all states reached in a, saying that each satisfies the
critical safety property. In contrast, the Utility Prop-
erty is a temporal property with a somewhat more
complicated structure, which says that if the gate is
not up, then either there is a recent preceding state
or an imminent following state in which a train is in
I . The third condition takes care of the special case
where there is both a recent state and an imminent
state in which some train is in I; although these states
are not quite as recent or imminent as required by the
first two cases, there is insufficient time for a car to
pass through the crossing.

the state set and on the actions that are permitted to
occur. As a result, OpSpec is probably harder for an
application expert to understand than AxSpec. But it
is easier to use in proofs at least for the style of ver-
ification we are using). T 6 us we regard OpSpec as an
intermediate specification rather than a true problem
specification; we only require that @Spec implement
AxSpec, not necessarily vice versa, and that all imple-
mentations satisfy OpSpec.

The two specifications are also different in another
respect: while AxSpec preserves the independence of
the Safety and Utility Properties, OpSpec does not.
When a collection of separate properties are specified
by an automaton, the properties usually become in-
tertwined.

To obtain OpSpec, we first compose Trains, Gate,
and CompSpec, and then incorporate the Safety and
Utility Properties into the automaton itself. Formally,
the modified automaton is obtained from the compo-
sition by restricting it to a subset of the state set, then
adding some additional state components, and finally
modifying the definitions of the steps to describe their
dependence on and their effects on the new state com-
ponents. Although the composition of the three com-
ponent automata is an MMT automaton, the modified
version is not - it is a timed automaton.

First, to express the Safety Property, we restrict
the states to be those states of the composition that
satisfy the following invariant: "If 9 i n s . r . s t a t u s = I
for any r, then Gate.status = down.

Second, the time-bound restrictions expressed by
the Utility Property are encoded as restrictions on the
steps. The strategy is similar to that used to encode
MMT time bound restrictions into the steps of a timed
automaton - it involves adding explicit deadline com-
ponents. We describe the modifications in two pieces:

1. The time from when the gate starts going down
until some train enters I i s bounded by €1. To express
this restriction formally, we add to the state of the
composed system a new deadline last1 , representin
the latest time in the future that a train is guarantee!
to enter I . Initially, this is set to 00, meaning that
there is no such scheduled requirement. To add this
new component to OpSpec, we include the following
new effects in two of the actions:
Transitions:

lower
Effect:

if s.Goie.status E { u p , going-up}
and s.lantl = 00 then

s'.lastl = now + (1
enterI(r)

Effect:
s'.lastl = 05

4 Operational Spec
Unlike AxSpec, which consists of a timed automaton

together with some axioms that restrict the automa-
ton's executions, the operational specification OpSpec
is simply a timed automaton - all required properties
are built into the automaton itself as restrictions on

Also added is a new precondition: the time-passage
action cannot cause time to pass beyond lastl . This
means that whenever the gate starts moving down,
some train must enter I within time €1. The new effect
being added to the lower action just "schedules" the
arrival of a train in I .

125

. - . . .

2. From when the crossing becomes empty, either
the time until the gate is up is bounded b y or else
the time until a train is in I is bounded by & + 6 + €1.
Again, we express the condition by adding deadlines,
only this time the situation is trickier since two al-
ternative bounds exist rather than just one. We add
two new components, lastz(up) and lastz(l), both ini-
tially o. The first represents a milestone to be noted
- whether the gate reaches the up position by the des-
ignated time - rather than an actual deadline. In con-
trast, the second represents a real deadline - a time by
which a new train must enter I unless the gate reached
the up position by the milestone time last:!(up . To

following effects to three of the actions:
Transitions:

include these new components in OpSpec, we a d d the

exit(r)
Effect:

if s. Trains.r’.status # I for all r‘ # T then
s’.lastz(up) = now+ [2

s ’ . lash(I) = n o w + & + S + t i

U P
Effect:

if now 5 s.last2(up) then
s‘.lastz(up) = 00

s ‘ . lasb(I) = 03

enter I (r)
Effect:

s‘.fast2(ap) = 00
s’.last2(I) = cc

Also, as with lastl, an implicit precondition is
placed on the time-passage action, saying that time
cannot pass beyond lastZ(I). But because lastz(up) is
just a milestone to be recorded, no such limitation is
imposed for time passing beyond lastz(up).

We show that OpSpec implements AxSpec in the
following sense:

Lemma 4.1 For any admissible timed execution a of
OpSpec, there is an admissible timed execution a’ of
AxSpec such that (Y’I Trains x Gate = a1 Trains x Gate.
(This is the same as saying that a satisfies the two
properties given explicitly for AxSpec.)

Note that the relationship between OpSpec and
AxSpec is only one-way: there are admissible timed ex-
ecutions of AxSpec that have no executions of OpSpec
yielding the same projection. Consider, for example,
the following example. Suppose that after I becomes
empty, the system does a very rapid raise, lower, raise.
These could conceivably all happen within time e 2 af-
ter the previous time there was a train in I , which
would make this “waffling” behavior legal according
to AxSpec. However, when this loweroccurs, there is
no following entry of a train into I , which means that
this does not satisfy OpSpec.

5 Implementation
To describe our implementation SysImpl, we use

the same Trains and Gate automata but replace the

CompSpec component in OpSpec and AzSpec with a
new component Compimpl, a computer system imple-
mentation. CompImpl is a timed automaton with the
same interface as CompSpec. It keeps track of the
trains in R together with the earliest possible time
that each might enter I . (This time could be in the
past.) It also keeps track of the latest operation that
it has performed on the gate and the current time.

State:
for each train T :

r.statas E {not-here, R), initially not-here
r.sched-time, a nonneg. red number or 00, initially 00

gate-status E (u p , down}, initially up
now, initially 0

Transit ions:
enterR(r)

Effect:
s’.r.status = R
s‘.r.sched-time = now+ €1

exit(T)

Effect:
s’.r.status = not-here
s‘.r.sched-time = 00

lower
Precondition:

s.gate-status = up
3~ : s.r.sched-time 5 now + ?down + /3

s‘.gate-status = down
Effect:

raise
Precondition:

s.gate-status = down
$T : s.r.sched-time 5 now + ?up + 6 4- ?down

s’.gate-status = up
Effect:

4 A t)
Precondition:

t = s.now + At
if s.gate-status = up then

if s.gate-status = down then
t < s.r.sched-time - ?down for all r

3r : s.r.sched-time 5 S.nOW Tup + 6 + ?down
Effect:

s‘.now = t

Observe that the fact that CompImpl.gate-status =
up does not mean that Gate.siatus = up but just
that Ga2e.status E up, going-up}. A similar remark

r.sched-time keeps track of the earliest time that train
r might enter I . The system lowers the gate if the gate
is currently up (or going up) and some train might
soon arrive in I . Here “soon” means by the time the
computer system can lower the gate plus a little bit
more - this is where we consider the technical race
condition mentioned earlier. The system raises the
gate if the gate is currently down (or going down)
and no train can soon arrive in 1. This time, “soon”
means by the time the gate can be raised plus the
time for a car to pass through the crossing plus the

holds for CompImp I .gate-status = down. Note that

126

time for the system to lower the gate. The system
allows time to pass subject to two conditions. First,
if gate-status = up, then real time is not allowed to
reach a time at which it is necessary to lower the gate.
Second, if gate-status = down and the gate should be
raised, then time cannot increase at all (until the gate

is The ull system implementation, SysImpl, is just
the composition of the Trains, Gate and CompImpl
components.

6 Correctness Proof
The main correctness proof shows that every ad-

missible execution of SysImpl projects on the external
world like some admissible execution of OpSpec.

We first state a collection of invariants, leading to a
proof of the safety property. All are proved by induc-
tion on the length of an execution. The first invariant
says that if a train is in the region and the gate is
either up or going up, then the train must still be far
from the crossing.

Lemma 6.1 In all reachable states of SysImpl, if
Traans.r.status = P and Gate.status E {up , going-up},
then Thtns.first(enterI(r)) > now + 7down.

The second invariant says that if a train is nearing
I and the gate is going down, then the gate is nearing
the down position. In particular, the earliest time at
which the train might enter I is strictly after the latest
time a t which the gate will be down.

Lemma 6.2 In all reachable states of SysImpl, if
Trains.r.status = P and Gate .status = going-down,
then Trains.first(enterI(r)) > Gate.last(down).

These invariants yield the main safety result:

Lemma 6.3 In all reachable states of SysImpl, if
Trains,r.status = I for any r , then Gate.status =
down.

To show the Utility Property, we present the simu-
lation mapping from SysImpl to OpSpec. Specifically,
if s and U are states of SysImpl and OpSpec, respec-
tively, then we define s and U to be related by relation
f provided that:

1.

2.

3.

4.

5 .

u.now = s.now.

U . Trains = s. Trains.2

u.Gate = s.Gate.

u.last1 2 mint s . Tkains.last(enterI(r))}.

Either
u.last2 I) 2 mint s . Trains.lasl(enterI(r))}, or
u.lastz(up) 2 n o w + yup and the raise precondi-
tion holds in s , or
u.lastz(up) 2 s.Gate.lasl(up) and s.Gate.status =
going-up.

2By this we mean that the entire state of the Trains automa-
ton, including the time components, is preserved.

The first three parts of the definition are self-
explanatory. The last two parts provide connections
between the time deadlines in the specification and im-
plementation. In the typical style for this approach,
the connections are expressed as inequalities. The
fourth condition bounds the latest time for some train
to enter I , a bound mentioned in the specification, in
terms of the actual time it could take in the imple-
mentation, namely, the minimum of the latest times
for all the trains in P. The fifth condition is slightly
more complicated - it bounds the time for either some
train to enter I or the gate to reach the up position.
There are two cases for the gate reaching the up posi-
tion - one in which the gate has not yet begun to rise
and the other in which it has.

Theorem 6.4 f is Q simulation mapping from
SysImpl t o OpSpec.

Proof: We show the three conditions required for a
simulation mapping, as defined in the Appendix.

Theorems 6.4 and A.l together imply that all ad-
missible timed traces of SysImpl are admissible timed
traces of OpSpec. This is not quite what we need.
However, we can obtain the needed correspondence
between SysImpl and OpSpec as a corollary, using gen-
eral results about composition of timed automata:

Corollary 6.5 For any admissible timed execution a
of SysImpl, there is an admissible timed execution a‘
of OpSpec such that a’ITrains x Gate = alTrains x
Gate.

Putting this together with Lemma 4.1, we obtain
the main theorem:

Theorem 6.6 For any admissible timed execution a
of SysImpl, there is an admissible timed execution a’
of AxSpec such that a’ITrains x Gate = alTrains x
Gate.

7 Realistic Models of the Real World
The models used above for the trains and gate are

rather abstract. An applications expert might prefer
more realistic models giving, for instance, exact or ap-
proximate positions for the trains and gate. However,
a formal methods expert would probably not want to
include such details, because they would complicate
the proofs. Fortunately, we can satisfy everyone.

For any real world component, it is possible to de-
fine a pair of models, one abstract and one more real-
istic. The only constraint is that the realistic model
should be an “implementation” of the abstract model,
i.e., its set of admissible timed traces should be in-
cluded in that of the abstract model. All the difficult
proofs are carried out using the abstract models, as
above. Then corollaries are given to extend the results
to the realistic models. This extension is based on gen-
eral results about composition of timed automata.

For example, we can define a new type of gate com-
ponent, Gate‘, similar to the Gate defined above, but
having a more detailed model of gate position. Gate’

127

is also a timed automaton. Fix any constant ybown,
0 5 7bOwn 5 ydown. Define gd to be a function map-
ping [o, ‘y&Own] to [o, 901. Function gd is defined so that
gd(0) = 90, gd(YhoVn) = 0, and gd is monotone non-
increasing and continuous. gd(t) gives the position of
the gate after it has been going down for time t . Simi-
larly, fix a constant yh?, 0 yup 5 yup , and define g,,
to be a function mapping [0 , y h p] to [0,90]. Function
gu is defined so that g,(O) = 0, gu(yhp) = 90, and gu
is monotone nondecreasing and continuous.

The actions of Gate’ are the same as for Gate. The
state is also the same, with the addition of one new
component pos E 0,901 to represent the gate posi-

the same as for Gate, except that 7hown and 7hp are
used in place of ?down and ?up; they are omitted be-
low. The up and down transitions contains new pre-
conditions stating that the correct position has been
reached. The time-passage transitions adjust pos.
Transitions:

tion, initially 90. 4 he lower and raise transitions are

down
Precondition:

s.atatu8 = going-down
3.p05 = 0

Effect:
s’.status = down
s’./ast(down) = 00

U P
Precondition:

s.status = going-up
S . p O 3 = 90

Effec t :
s’.atatrs = up
3’. last(up) = 00

4 A t)
Precondition:

t = now+ At
t 5 s. /ast(down)
t 5 s.last(up)

s’.now = t
i f s.status = going-zlp then

elseif s.status = going-down then

Effec t :

s‘ .pos=max{s.pos,gu(t - (s. /ast(up) -rbp))}

s‘.pos=min{s.pos, g d (t - (s.last(down) -7’ d o w n)))

Thus, unlike the more abstract automata consid-
ered so far, Gate’ allows interesting state changes to
occur in conjunction with time-passage actions. Note
that Gate’ contains a rather arbitrary decision about
what happens if a lower event occurs when the gate is
in an intermediate position. It says that the gate stays
still for the initial time that it would take for the gate
to move down to its current position if it had started
from position 0. Alternative modeling choices would
also be possible. A similar remark holds for raise.

We relate the new gate model to the old one. See
the Appendix for the notation.

Lemma 7.1 attraces(Gate‘) attraces(Gate) .

Now, let SysImpl‘ be the composition of Trains,
Gate’, and CompImpl, and let AzSpec’ be the compe
sition of Trains, Gate‘, and CompSpec, with Safety and
Utility Properties added as in AzSpec. Using Theorem
6.6 and general results about composition of timed au-
tomata. we obtain:

Theorem 7.2 For a n y admissible timed execution (Y

of SysImpl’, there is an admissible timed execution cy‘
of AxSpec‘ such that ail Trains x Gate’ = aITrains x
Gate’.

8 Concluding Remarks
We have applied a formal method based on timed

automata, invariants, and simulation mappings to
model and verify the Generalized Railroad Crossing.
Here, we extrapolate from this experience and attempt
to evaluate the method for modeling and verifying
other real-time systems. We also describe future work.

Generality. Can the method be used to describe all
acceptable implementations? It seems so. Timed au-
tomata can have an infinite number of states and both
discrete and continuous variables. Further, they can
express the maximum allowable nondeterminism, use
symbolic parameters to represent system constants,
and represent asynchronous cornmunicalion. Thus
the method is significantly more general than model
checking approaches, which typically require a finite
number of states and constant timing parameters.

Readability. Are the formal descriptions easy to
understand? The environment model and the system
implementation model are easy to understand, since
these are naturally modeled as automata. The re-
quirements specifications do not look so natural when
expressed as automata; an axiomatic form seems eas-
ier to understand. However, if one starts with an
axiomatic specification, then one has to rewrite the
specification as an automaton. It may be difficult to
determine that the automaton specification is equiv-
alent to (or implements) the axiomatic specification.

Information. Does the proof yield information
other than just the fact that the implementataon is
correct? Does it provide insight into the reasons that
the implementation works? Yes. The invariants and
simulations that require considerable effort to produce
yield payoffs by providing very useful documentation.
They express key insights about the behavior of the
implementation. In contrast, model checkers yield no
such byproducts, only an assertion that the implemen-
tation satisfies the desired properties.

Power. Can the method be used to verify all imple-
mentations? Simulation methods (extended beyond
what is described in this paper, to include “back-
ward” as well as “forward” simulations) are theoreti-
cally complete for showing admissible timed trace in-
clusion. They also seem to be powerful in practice,
although they might sometimes benefit from combi-
nation with other verification methods, such as model

128

checking, process algebra, temporal logic or partial or-
der techniques. Model checking alone is less powerful
in practice, since it only checks whether a subfamily
of solutions satisfy some specific properties.

Ease of Carrying out the Proof. How hard is it
to construct a proof using this method? Can typical
engineers learn to do this? Constructing these proofs,
though not difficult, required significant work. The
hardest parts were getting the details of the models
right and finding the right invariants and simulation
mapping. This is an art rather than an automatic
procedure. The actual proofs of the invariants and
the simulation were tedious but routine.

Carrying out such a modeling and verification ef-
fort requires the ability t$o do formal proofs, which
m a t engineers are not trained to do. In contrast, us-
ing a model checker, an engineer can check automati-
cally whether a iven “model” satisfies the properties
of interest. (Mofel checkers are aiready being used in
practice by engineers to check the correctness of cer-
tain implementations, e.g., of circuits.) On the other
hand, the proofs developed using the method of this
paper are amenable to mechanical proof checking. So,
automated support can be provided to engineers at-
tempting to develop formal proofs.

Scalability. Does the formalism scale up to handle
larger problems? We don’t yet know. Just reasoning
about this relatively simple problem was quite com-
plex. A bigger system will mainly add complexity in
the form of more system components and more ac-
tions, which leads in turn to more invariants, more
components in the simulation mapping, and more
cases in the proofs. But, in contrast to model check-
ing, the blowup should not be exponential. Nonethe-
less, use of the method for larger problems should be
coupled with various methods of decomposing a prob-
lem, so one need not reason about an entire complex
system at once. Additional levels of abstraction and
use of parallel composition should help.

Ease of Change. How easy i s it t o modify the speci-
fications and the proofs? Separating the system model
from the environment model and splitting the envi-
ronment model into the individual gate model and
train model makes it easy to change the descriptions.
Should one want to use a more complex train model
(for example, trains move backward as well as for-
wardb, one can easily substitute the revised model
for t e original. Expressing the required properties
axiomatically and independently makes it easier to
change the requirements.

Changes to the specifications and implementations
require, of course, changes to the proofs. If the
changes are fairly small, we expect most of the prior
work to survive, and the stylized form of the proof
provides useful structure for managing the modifica-
tions. Here is a place where mechanical aid would be
most helpful - proofs could be rerun quickly to dis-
cover which parts need to be changed.

Future work. Our plans include:

1 Trying this method on larger examples from real-
time process control and time-based communica-
tion. In real-time process control, transportation
problems are especially interesting to us. New
complications are expected to arise when the con-
tinuous quantities of interest include velocity and
acceleration as well as time and position.

2. Developing computer assistance for carrying out
and checking the proofs. We plan to use the
proof systems PVS [18] and Larch [4] to check
the proofs and to assess the utility of mechanical
proof systems for such proofs.

3. Trying to systematize the reasoning about the
correspondence between the axiomatic and oper-
ational specifications.

References
R. Cleaveland, J. Parrow, and B. Steffen. The con-
currency workbench: A semantics-based tool for the
verification of concurrent systems. ACM Trans. Prog.
Lang. and Sys., 15(1):36-72, Jan. 1993.

Oxford Formal Systems (Europe) Ltd. Failure Diver-
gence Refinement, user manual and tutorial, 1992.

R. Gerber and I. Lee. A proof system for communicat-
ing shared resources. In Proc. l f t h IEEE Real-Time
Systems Sump., pages 288-299, 1990.

J. V. Guttag and J . J. Homing. Larch: Languages and
Tools for Formal Specification. Springer-Verlag, 1993.

C. Heitmeyer and R. Jeffords. Formal specification
and verification of real-time systems: A comparison
study. Technical report, NRL, Wash., DC, 1994. In
preparation.
C. Heitmeyer and N. Lynch. The Generalized Rail-
road Crossing: A case study in formal verification of
real-time systems. Technical Report MIT/LCS/TM-
51, Lab. for Comp. Sci., MIT, Cambridge, MA, 1994.
Also Technical Report 7619, NRL, Wash., DC 1994.

C. Heitmeyer and J. McLean. Abstract requirements
specifications: A new approach and its application.
IEEE Trans. Softw. Eng., SG9(5), September 1983.

C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw.
A benchmark for comparing different approaches for
specifying and verifying real-time systems. In Proc.,
10th Intern. Workshop on Real-Time Operating Sys-
tems and Software, May, 1993.

C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, Englewood Cliffs, NJ, 1985.

F. Jahanian and A. K. Mok. Safety analysis of timing
properties in real-time systems. IEEE Tmns. Softw.
Eng., SE-12(9), September 1986.

S. Kromodimoeljo, W. Pase, M. Saaltink, D. Craigen,
and I. Meisels. A tutorial on EVES. Technical report,
Odyssey Research Associates, Ottawa, Canada, 1993.

129

N. Lynch and H. Attiya. Using mappings to prove
timing properties. Distrib. Comput., 6:121-139, 1992.

N . Lynch and M. Tuttle. An introduction to In-
put/Output automata. C WI-Quarterly, 2(3):219-246,
September 1989. Centrum voor Wiskunde en Infor-
matica, Amsterdam, The Netherlands.

Nancy Lynch. Simulation techniques for proving
properties of real-time systems. In REX Workshop
’93, Lecture Notes in Computer Science, Mook, the
Netherlands, 1994. Springer-Verlag. To appear.

Nancy Lynch and Frits Vaandrager. Forward and
backward simulations - Part 11: Timing-based sys-
tems. Submitted for publication.

Nancy Lynch and Frits Vaandrager. Forward and
backward simulations for timing-based systems. In
Proceedings of REX Workshop “Real- Time: Theory in
Practice”, volume 600 of Lecture Notes in Computer
Science, pages 397-446, Mook, The Netherlands, June
1991. Springer-Verlag.

Michael Merritt, Francesmary Modugno, and Mark R.
Tuttle. Time constrained automata. In J . C. M.
Baeten and J. F. Goote, editors, CONCUR’91: 2nd
International Conference on Concurrency Theory,
volume 527 of Lecture Notes in Computer Science,
pages 408-423, Amsterdam, The Netherlands, August
1991. Springer-Verlag.

S. Owre, N. Shankar, and J. Rushby. User guide for
the PVS specification and verification system (Draft).
Technical report, Computer Science Lab, SRI Intl.,
Menlo Park, CA, 1993.

N. Shankar. Verification of real-time systems using
PVS. In Proc. Computer Aided Verification (CAV
’93), pages 280-291. Springer-Verlag, 1993.

The Timed Automaton Model
This section contains the formal definitions for the

timed automaton model, taken from [14].

Timed Automata. A timed automaton A con-
sists of a set states(A) of states, a nonempty set
start(A) states(A) of start states, a set acts(A)
of actions, including a s ecial time-passage action U ,
a set steps(A) of steps bransition.), and a mapping
nowA : states(A) -+ RLO. (eo denotes the nonneg-
ative reals.) The actions are partitioned into exter-
nal and internal actions, where U is considered ex-
ternal; the visible actions are the non-u external ac-
tions; the visible actions are partitioned into input
and output actions. The set steps(A) is a subset of
states(A) x acts(A) x states(A). We write s AA s’ as
shorthand for (s, x , s’) E steps(A) and usually write
s.nowA in place of nowA(s). We sometimes suppress
the subscript or argument A.

A timed automaton satisfies five axioms: [All I f s E
start then s.now = 0. [A21 If s -L s‘ and x # U then

s.now = s’.now. [A31 If SA s’ then s.now < s’,now.
[A41 If s 5 s“ and s” 5 s‘, then s A s‘.

The statement of [A51 requires the preliminary def-
inition of a trajectory, which describes restrictions on
the state changes that can occur during time-passage.
Namely, if I is any interval of RZo, then an I-trajectory
is a function w : I --+ states, such that w(t).now = t
for all t E I, and w(t1) w(t2) for all t l , t 2 E I with
tl < t 2 . That is, w assigns, to each time t in interval
I , a state having the given time t as its now compo-
nent. This assignment is done in such a way that time-
passage steps can span between any pair of states in
the range of w. If w is an I-trajectory and I is left-
closed, then let w.fstaie be the first state of w , while if
I is right-closed, then let w.lstate denote the last state
of w. If I is a closed interval, then an I-trajectory w
is said to span from state s to state s’ if w.fstate = s
and w.lstate = s’. The final axiom is: [A51 If SA s‘
then there exists a trajectory that spans from s to s‘.

Timed Executions and Timed Traces A timed
execution fragment is a finite or infinite alternating
sequence a = woa1w1a2w2 ‘ . ., where

Each wl is a trajectory and each x, is a non-time-
passage action.

If a is a finite sequence, then it ends with a trajectory.

If zu, is not the last trajectory in a, then its domain is
a closed interval. If w, is the last trajectory, then its
domain is left-closed (and either right-open or right-
closed).

If w, is not the last trajectory in a, then
wl ./staterJ+! w,+l .fstate.

A timed execution is a timed execution fragment for
which the first state of the first trajectory, W O , is a
start state. In this paper, we restrict attention to the
admissible timed executions, i.e., those in which the
now values occurring in the states approach 00. We
use the notation atexecs(A) for the set of admissible
timed executions of timed automaton A. A state of a
timed automaton is defined to be reachable if it is the
final state of the final trajectory in some finite timed
execution of the automaton.

To describe the problems to be solved by timed au-
tomata, we require a definition for their visible be-
havior. We use the notion of iimed traces, where the
timed trace of any timed execution is just the sequence
of visible events that occur in the timed execution,
paired with their times of occurrence. The admissi-
ble timed traces of the timed automaton are just the
timed traces that arise from all the admissible timed
executions. We use the notation attraces(A) for the set
of admissible timed traces of timed automaton A. If a
is any timed execution, we use the notation ttrace(a)
to denote the timed trace of a.

We define a function tame that maps any non-
time-passage event in an execution to the real time
at which it occurs. Namely, let x be any non-time
passage event. If x occurs in state s , then define
time(a) = s.now.

130

Composition. Let A and B be timed automatasat-
isfying the following compatibility conditions: A and B
have no output actions in common, and no internal ac-
tion of A is an action of B , and vice versa. Then the
composition of A and B , written as A x B , is the timed
automaton defined as follows:

statee(A x B) = { (S A , S B) E states(A) x states(B) :

start(A x E) = start(A) x start(B);
acts(A x B) = acts(A) U acts(B); an action is ezternal
in A x B exactly if it is external in either A or E ; a
visible action of A x B is an output in A x B exactly
if it is an output in either A or B and is an input
otherwise;
(S A , SB) - % X B (sk , sb) exactly if

S A . n O W A = sB.noufB};

1. S A AA sk if T E acts(A), else S A = s;, and

2. SB 2~ s& if x E acta(B), else SB = sb;

(B A , s B) . n O w A x B = S A . n O W A .

Then A x B is a timed automaton. If cy is a timed
execution of A x B, cylA and alB denote the projec-
tions of cy on A and B. For instance, a l A is defined by
projecting all states in a on the state of A , removing
actions that do not belong to A and collapsing consec-
utive trajectories. We also use the projection notation
for sequences of actions; e.g., PIA denotes the subse-
quence of /3 consisting of actions of A .

MMT Automata. We use the special case of MMT
automata defined in [12, 141. An MMT automaton
is an 1/0 automaton [13] together with upper and
lower bounds on time. An 1 / 0 automaton A con-
sists of a set states(A) of states, a nonempty set
start(A) E states A) of start states, a set acts A) of ac-

the external actions are further partitioned into in-
put and output actions a set steps(A) of steps, and

put and internab actions into at most countably many
equivalence classes. The set steps(A) is a subset of
sta.tes(A x acts(A) x s tates(A); an action T is said to

state s’ such that (8, T, s’) E steps(A), i.e., such that
s 4 ~ 6’. A set of actions is said to be enabled in s
provided that at least one action in that set is enabled
in s. The automaton must be input-enabled, which
means that T is enabled in s for every state s and in-
put action T . The final component, part, is sometimes
called the task partition. Each class in this partition
groups together actions that are supposed to be part
of the same “task”.

An MMT automaton is obtained by augmenting
an 1/0 automaton with certain up er and lower time
bound information. Let A be an $0 automaton with
only finitely many partition claases. For each class
C, define lower and upper time bounds, lower(C)
and U per(C), where 0 5 lower(C) < 00 and 0 <
upper(%) 5 00; that is, the lower bounds cannot be
infinite and the upper bounds cannot be 0.

tions (partitione 6 into external and i n t e n a I actions;

a partition part A) o f t k e locally controlled (i.e., out-

be enab I ed in a state s provided that there exists a

A timed execution of an MMT automaton A is
defined to be an alternating sequence of the form
S O , (TI, t l) , S I , + . . where the T’S are input, output or in-
ternal actions (but not time-passage actions). For each
j, it must be that s’ “j+! S j + l . The successive times are
nondecreasing, and are required to satisfy the given
lower and upper bound requirements. Finally, admis-
sability is required: if the sequence is infinite, then the
times of actions approach 00.

Each timed execution of an MMT automaton A
gives rise to a timed trace, which is just the subse-
quence of external actions and their associated times.
The admissible timed traces of the MMT automaton A
are just the timed traces that arise from all the timed
executions of A .

I t is not hard to transform any MMT automa-
ton A into a naturally-corresponding timed automa-
ton A’. First, the state of the MMT automaton A is
augmented with a now component, plus first C) and

the earliest and latest time in the future that an ac-
tion in class C is allowed to occur. The time-passage
action U is also added. The first and last components
get updated in the natural way by the various steps,
according to the lower and upper bounds specified in
the MMT automaton A . The time-passage action has
explicit preconditions saying that time cannot pass
beyond any of the last (C) values, since these repre-
sent deadlines for the various tasks. Restrictions are
also added on actions in any class C , saying that the
current time now must at least equal f i rs t (C) . The
resulting timed automaton A’ has exactly the same
admissible timed traces as the MMT automaton A .

Invariants and Simulation Mappings. We de-
fine an invariant of a timed automaton to be any
property that is true of all reachable states.

The definition of a simulation mapping is para-
phrased from [16, 15, 141. We use the notation f [s] ,
where f is a binary relation, to denote {U : (s, U) E f}.
Suppose A and B are timed automata and I A and IB
are invariants of A and B. Then a simulation mapping
from A to B with respect to IA and IB is a relation f
over states(A) and states(B) that satisfies:

1. If U E f [s] then u.now = s.now.

2. If s E start(A) then f [s] n start(B) # 0.
3. If s AA s’, s , s’ E IA, and U E f [s] n le, then there

exists U’ E f [s ’] such that there is a timed execution
fragment from U to U’ having the same timed visible
actions as the given step.

Note that T is allowed to be the time-passage action
in the third item of this definition. The most impor-
tant fact about these simulations is that they imply
admissible timed trace inclusion:

Theorem A . l If there is a simulation mapping
from tamed automaton A to timed automaton B,
with respect t o any invariants, then attraces(A) C.
attraces(B) .

last(C components for each class of the tas k parti-
tion. 4 he f irs t (C) and lasl(C) components represent

131

