
ParSwarm: A C++ Framework for Evaluating Distributed
Algorithms for Robot Swarms

Zhi Wei Gan

MIT

Cambridge

Massachusetts, USA

zgan@mit.edu

Grace Cai

MIT

Cambridge

Massachusetts, USA

gracecai@mit.edu

Noble Harasha

MIT

Cambridge

Massachusetts, USA

nharasha@mit.edu

Nancy Lynch

MIT

Cambridge

Massachusetts, USA

lynch@csail.mit.edu

Julian Shun

MIT

Cambridge

Massachusetts, USA

jshun@mit.edu

Abstract
Due to the increasing complexity of robot swarm algorithms, ana-

lyzing their performance theoretically is often very difficult. Instead,

simulators are often used to benchmark the performance of robot

swarm algorithms. However, we are not aware of simulators that

take advantage of the naturally highly parallel nature of distributed

robot swarms. This paper presents ParSwarm, a parallel C++ frame-

work for simulating robot swarms at scale on multicore machines.

We demonstrate the power of ParSwarm by implementing two

applications, task allocation and density estimation, and running

simulations on large numbers of agents.

CCS Concepts
• Computing methodologies→ Shared memory algorithms; Dis-
tributed algorithms; Massively parallel algorithms.

Keywords
robot swarms, parallel algorithms, parallel simulations

ACM Reference Format:
Zhi Wei Gan, Grace Cai, Noble Harasha, Nancy Lynch, and Julian Shun.

2023. ParSwarm: A C++ Framework for Evaluating Distributed Algorithms

for Robot Swarms. In The 5th workshop on Advanced tools, programming
languages, and PLatforms for Implementing and Evaluating algorithms for
Distributed systems (ApPLIED 2023), June 19, 2023, Orlando, FL, USA. ACM,

New York, NY, USA, 5 pages. https://doi.org/10.1145/3584684.3597269

1 Introduction
Social insects like ants and bees are able to achieve spectacular feats

by distributing tasks to hundreds or thousands of individual agents.

Researchers are becoming increasingly interested in modeling these

insects [3, 4] and are even creating robot swarms of their own

that achieve tasks that are only possible with hundreds of agents,

such as “crop pollination, search and rescue missions, surveillance,

as well as high-resolution weather, climate, and environmental

monitoring” [1, 6].

Individual agents within robot swarms typically do not have

sophisticated long-range communication capabilities. Thus, they

are often unable to communicate with a central coordinator that

ApPLIED 2023, June 19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0128-3/23/06. . . $15.00
https://doi.org/10.1145/3584684.3597269

tells them what to do or where to go. For this reason, algorithms for

controlling these robot swarms are an emerging field that combines

ideas from robotics and distributed algorithms. However, due to

the complexity of robot swarm algorithms, analyzing their per-

formance theoretically is difficult. Applying theoretical results to

real-life experiments is also challenging because there are often

many parameters that have to be tuned in order optimize the per-

formance of the algorithm. Therefore, simulators are often used

to benchmark the performance of robot swarm algorithms. How-

ever, most simulators run sequentially and do not make use of the

naturally highly parallel nature of distributed robot swarms.

This paper presents ParSwarm, a highly parallel C++ framework

for simulating robot swarms at scale using multicore machines.

With the significant speedups that ParSwarm can provide to robot

swarm simulations, we can efficiently simulate large swarms of

agents. Researchers are able to quickly run experiments of differ-

ent sizes without having to analyze theoretical bounds to draw

meaningful conclusions about their algorithms.

The paper first introduces the theoretical model that is the basis

for ParSwarm in Section 2 before diving into the framework itself

in Section 3. Finally, we use ParSwarm to implement two applica-

tions, task allocation and density estimation, and benchmark their

performance on large numbers of agents in Section 4.

2 Background
In designing robot swarm algorithms, simulators serve as an im-

portant intermediary step between mathematical models and real-

life testing. The current state-of-the-art robot simulators support

physics simulations [10, 12] and are compatible with real-world

robots [13]. ARGoS [12] is a modular swarm simulator that allows

different physics engines to be used with different parts of the

environment. Stage [14] currently offers the best performance for

large swarms [5], supporting up to 10
5
agents at 1/50 of real-time

speed, which is slower than ParSwarm. In Stage, the highly parallel

nature of the robots is not fully utilized since only the behavior of

stationary agents can be evaluated in parallel.

ParSwarm aims to provide support for even larger scale robot

simulations while maintaining the ability to emulate sensors work-

ing in 2D and 3D environments.

2.1 Modeling Robot Swarms
Cai et al. proposed a model for general robot swarm problems [3, 4].

This section gives a high-level introduction to this model, which

will be the basis for the ParSwarm framework. The model is a

probabilistic, synchronous distributed system. Its behavior is de-

fined by the agents, the environment, and the agent-environment

interactions that are specific to each experiment.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3584684.3597269
https://doi.org/10.1145/3584684.3597269
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584684.3597269&domain=pdf&date_stamp=2023-06-20

ApPLIED 2023, June 19, 2023, Orlando, FL, USA Gan et al.

Concretely, the model operates on an environment that is mod-

eled as a directed graph 𝐺 = (𝑉 , 𝐸). For example, for an 𝑁 ×𝑀 2D

torus grid, a vertex (𝑥,𝑦) ∈ 𝑉 has edges to the vertices ((𝑥 +1) mod

𝑁,𝑦), ((𝑥−1) mod 𝑁,𝑦), (𝑥, (𝑦+1) mod 𝑀) and (𝑥, (𝑦−1) mod 𝑀).
A particular configuration of this model is described by some en-

vironment graph 𝐺 as well as a set of agents that can manipulate

vertices (locations) on the graph.

In particular, the system moves through a sequence of configu-

rations using a sequence of probabilistic global transitions. These

global transitions are resolved from a set of local transitions which

are generated by agents.

Given some integer parameter 𝐼 , each agent has a defined local-
mapping, whichmaps vertices around an agent (the vertices [𝑚𝑥 ,𝑚𝑦]
such that 𝑥 − 𝐼 ≤ 𝑚𝑥 ≤ 𝑥 + 𝐼 and 𝑦 − 𝐼 ≤ 𝑚𝑦 ≤ 𝑦 + 𝐼 if the par-

ticular agent is at vertex (𝑥,𝑦)) to its associated information. Each

agent then uses their local-mapping to generate a local transition

using a user-defined function that describes the agent’s new state,

a new vertex state for the vertex it is currently on, as well as a new

direction for the agent to move in.

Then, a user-defined resolution function accepts or rejects pro-

posed local transitions generated by each agent. For example, if

two agents are trying to move to the same vertex, some resolution

rule may prohibit two agents from being on the same vertex at the

same time. So, one agent’s local transition would be accepted while

the other’s is rejected.

2.2 Parallelism
This paper will use the standard work-span model for analyzing

shared-memory parallel algorithms. The work is defined to be the

total number of operations in the computation and the span is

defined to be the longest dependent path in the computation [8].

Prefix sum takes as input a sequence 𝐴 of length 𝑛, an identity

element 𝑒 , and an associative binary operator +, and returns the

sequence 𝐴′
of length 𝑛 where 𝐴′ [𝑖] = 𝑒 + ∑

𝑗<𝑖 𝐴[𝑗] as well as
the overall sum 𝑒 +∑𝑛−1

𝑖=0 𝐴[𝑖]. Filter takes a sequence 𝐴 of length

𝑛 and a predicate function 𝑓 as input, and outputs a sequence 𝐴′

containing all 𝑎 ∈ 𝐴 such that 𝑓 (𝑎) return true, in the same relative

order as they appear in𝐴. Both prefix sum and filter take𝑂 (𝑛) work
and 𝑂 (log𝑛) span [8]. Semisort takes a sequence 𝐴 as input, and

reorders 𝐴 such that equal-valued elements appear contiguously.

The semisort algorithm runs in 𝑂 (𝑛) expected work and 𝑂 (log𝑛)
span with high probability [7].

3 ParSwarm
We introduce the ParSwarm framework, a high-performance paral-

lel C++ implementation of the model defined in Section 2. We use

C++ templates, which allows for user-defined code to be efficiently

incorporated into the framework at compile-time instead of at run-

time, which would be the case if polymorphism were used instead.

We leverage the shared-memorymulti-core programming paradigm,

where each process spawns any number of threads that all have

read/write access to any location in a global memory. The ParSwarm

code is publicly available at https://github.com/zhiweigan/geo-

swarm-framework.

The goal of the ParSwarm framework is to minimize the amount

of parallel code that a user has to write to model complex agent func-

tionalities. ParSwarm enables users to develop high-performance

Algorithm 1 Simulate

1: config = initialize new configuration

2: Add agents to config
3: Initialize vertices on config
4: while not config.is-finished() do
5: config.transition()

programs for simulating robot swarms while requiring only mini-

mal knowledge about parallel programming. ParSwarm currently

supports agents operating on both 2D and 3D torus grids.

Algorithm 1 shows the simplified pseudo-code for the the user-

defined simulate file, which is the entry point for the program. An

empty configuration has to first be created (Line 1). The empty

configuration initializes an empty 2D or 3D torus grid with as-

sociated helper functions to add agents and edit vertices on the

graph (Lines 2–3). Then, agents have to be added and specific vertex

states can be changed. The program then enters the simulation loop

(Lines 4–5). On each round of the simulation, the simulator runs

the transition() function which is provided by the framework.

After each transition, it checks if the configuration’s user-defined

is-finished() function returns true, and if so the simulation ends.

3.1 User-Defined Functions
For each agent, the user defines an internal state astate as well as

two functions, generate-message() and generate-transition().
On each round, agents can optionally generate a message for other

agents in its vicinity to read. Then, the generate-transition()
function is given the agent’s local-mapping, which contains the

states of neighboring cells of the grid as well as the messages that

were generated by agents that are currently positioned on those

cells. The generate-transition() function proposes a transition

for the agent, which consists of

(1) A new state for the agent,

(2) A suggested new vertex state, and

(3) An edge to a neighboring vertex for the agent to traverse in

the next round.

Each vertex on the grid also has a user-defined internal state lstate
that can be read and modified by each agent.

The configuration itself then has to take the transitions that the

agents generate and resolve them using the update-agents() and

update-locations() functions that the user defines. The frame-

work parallelizes the transition generation as well as the agent and

location updates behind the scenes without requiring any addi-

tional user code. This function is further detailed in Section 3.2. The

user defines the is-finished() function, which determines when

the simulation terminates.

3.2 Transition
This section introduces the function transition(). The function
handles updating the overall configuration based on the proposed

transitions generated by each agent. The implementation uses the

parallel primitives introduced in Section 2.2.

Algorithm 2 shows the pseudocode for the transition function.

Every iteration of the parfor loops can be run in parallel. None of

the loops have different iterations that write to the same memory

location, nor does any iteration depend on the execution of another.

Each agent is equipped with its own random number generator,

seeded with its identifier. The default rand() function in C++ has

https://github.com/zhiweigan/geo-swarm-framework
https://github.com/zhiweigan/geo-swarm-framework

ParSwarm: A C++ Framework for Evaluating Distributed Algorithms for Robot Swarms ApPLIED 2023, June 19, 2023, Orlando, FL, USA

contention on multiple threads, so we instead use a good hash

function for randomness.

Line 1 semisorts the agents by their location, placing co-located

agents contiguously in memory. Lines 2–11 determine the number

of agents that reside in each location. Lines 2–5 keep track of the

indices at which neighboring vertices differ. Since the agents are

semisorted by location, the difference between any two adjacent

indices is also the number of agents currently on that location.

These counts are calculated in Lines 6–9. A parallel filter (Line 6) is

first needed to make all non-zero elements of diffIdx adjacent to

one another so that the counts can be calculated in parallel (Lines 8–

9). The prefix sums on Lines 10–11 are needed so that counts[𝑖]
returns the starting index of the agents at the 𝑖’th location and

isDiff[𝑖] is used to index the location of the 𝑖’th agent. These

computed arrays (counts, offsets, and is-diff) can be used to

(1) find the number of agents at each location, (2) iterate through

the agents at each location, and (3) determine the location of each

unique location.

Lines 12–13 generate messages for each agent. Each location

has an associated vector of messages, so Lines 14–16 deposit the

messages at the particular location sequentially (this could be par-

allelized in theory). Lines 17–18 use the generated messages to gen-

erate transitions for each agent. On Lines 19–20, for each unique

location, the framework iterates through agents on the location

and accepts or rejects proposed agent transitions. On Lines 21–22,

based on the accepted agent transitions, each agent is iterated over

and their states will be updated accordingly.

The following theorem gives the work and span bounds of the

transition function.

Theorem 3.1. Let 𝛼 be the number of agents, 𝛼𝑚𝑎𝑥 be the max-
imum number of agents at a location, ℓ be the number of locations,
𝑈𝑤 be the maximum work of a user-defined function, and 𝑈𝑠 be the
maximum span of a user-defined function. The transition function
takes𝑂 (𝑈𝑤 (𝛼+ℓ)) expected work and𝑂 (𝑈𝑠 +log(𝛼)+log(ℓ)+𝛼max)
span with high probability.

Proof. The semisort on Line 1 takes 𝑂 (𝛼) expected work and

𝑂 (log𝛼) span with high probability. The parallel loop on Lines 2–5

takes 𝑂 (𝛼) work and 𝑂 (1) span. The filter on Line 6 and prefix

sum on Line 11 take 𝑂 (𝛼) work and 𝑂 (log𝛼) span. The loop on

Lines 8–9 take𝑂 (ℓ) work and𝑂 (1) span. The prefix sum on Line 10

takes 𝑂 (ℓ) work and 𝑂 (log ℓ) span. The loops on Lines 12–13 and

Lines 17– 22 takes𝑂 (𝑈𝑤 (𝛼 + ℓ)) work and𝑂 (𝑈𝑠) span. Lines 14–16
take 𝑂 (𝛼max) work and span, assuming constant-sized messages.

The total work and span of the transition function is𝑂 (𝑈𝑤 (𝛼 + ℓ))
and 𝑂 (𝑈𝑠 + log(𝛼) + log(ℓ) + 𝛼max), respectively. □

The overall work and span of a ParSwarm simulation is the

product of the bounds in Theorem 3.1 and the number of iterations

until termination.

4 Experiments and Results
In this section, we present two applications, task allocation [3] and

density estimation [11], implemented using the ParSwarm frame-

work. For both simulations, we use a 2D torus grid environment.

We were able to replicate these simulations with very few lines of

non-boilerplate code (≈ 200 lines for task allocation and ≈ 50 lines

Algorithm 2 Transition

1: agents = semisort(agents, key=agent.location)
2: parfor each agent 𝑖 do
3: if agents[𝑖].location ≠ agents[𝑖 + 1].location then
4: diffIdx[𝑖] = 𝑖 + 1

5: isDiff[𝑖] = 1

6: offsets = filter(diffIdx)
7: unique-locations = |offsets|
8: parfor 𝑖 from 1 to unique-locations do
9: counts[𝑖] = offsets[𝑖] − offsets[𝑖 − 1]

10: startIdx = prefixSum(counts)
11: vtxId = prefixSum(isDiff)
12: parfor each agent 𝑖 do
13: msgs[𝑖] = agents.generate-message()

14: parfor 𝑖 from 0 to unique-locations do
15: for 𝑗 from startIdx[vtxId[i]] to startIdx[vtxId[i+1]] do
16: deposit(&local-mapping, msgs[j])

17: parfor each agent 𝑖 do
18: transitions[𝑖] = agents.generate-transition(&local-mapping)

19: parfor each unique-location 𝑖 do
20: update-location(𝑖)

21: parfor each agent 𝑖 do
22: update-agent(𝑖)

for density estimation) while being able to easily scale to larger

simulations with 10
7
agents.

We ran our experiments on a machine with 24 cores, with a

2.2GHz Intel Xeon Processor (E5-2699 v4) and 96 GiB of main mem-

ory. We use parallel primitives from the ParlayLib [2] library. Our

programs are compiled with g++ (version 7.5.0).

4.1 Task Allocation
The application showcases the parallel speedups that the framework

is currently able to achieve. The setup of this problem is as follows.

On an 𝑁 ×𝑀 torus grid with 𝛼 agents, there are 𝑇 tasks that have

some demand 𝑑 > 0. The demand of all tasks sum to a total of 𝐷 .

Every agent starts at the same home vertex and follows a simple

set of rules to traverse the grid until it finds a vertex that has a non-

zero residual demand, and stays on that vertex until the simulation

completes. For this experiment, each agent performs a random

walk to traverse the grid until a task vertex with non-zero residual

demand appears in its local-mapping.

Each agent has a destination task and a committed task that are

both initially set to null. If there is a task nearby, the generate-
transition() function sets it as the agent’s destination task and

moves towards it every round. Otherwise, it chooses a random

direction and moves in that direction for a pre-defined number

of rounds. If the agent is on a task vertex with non-zero residual

demand, it proposes to commit to the task in its agent transition.

If the update-location(i) function is called on a task vertex, it

iterates over the agents that are on that location and accepts all

transitions until the residual demand is reduced to 0. The updated

residual demand is calculated at the end of the function. If 𝑖 is not

a task vertex or it is a task vertex with residual demand 0, then it

accepts all transitions. The update-agent(i) function resolves all

accepted transitions and sets the agent to be inactive if it has a com-

mitted task. The is-finished() function scans through the task

vertices and agents, returning true if all vertices have zero residual

ApPLIED 2023, June 19, 2023, Orlando, FL, USA Gan et al.

Figure 1: A plot of the parallel speedup for each part of the transition
function, as well as the speedup of the overall code.

demand or if all agents are committed to a task. The framework

function generate-message() is empty for this application.

On a 50× 50 grid with 100 agents, 16 tasks and a total demand of

80, ParSwarm achieved a 500× speedup over a sequential Python

implementation by Cai et al. [4], completing the simulation in 19

milliseconds (the Python implementation took over 10 seconds

to complete). In addition to the speedup from parallelization, the

speedup can also be attributed to a modified way of computing

transitions. The sequential implementation iterates over every cell

of the grid and operates on agents separately, while ParSwarm

semisorts agents before each round so agents can find agents within

its local mapping to generate transitions in parallel. This means

ParSwarm does not need to iterate over the whole grid, which is

much larger than the number of agents.

To benchmark the parallel speedup, we ran a simulation of the

task allocation problem with a larger instance of the problem (𝑁 =

𝑀 = 1000, 𝛼 = 10
7
, 𝑇 = 2 × 10

6
, and 𝐷 = 7 × 10

6
) for 100 iterations

on an increasing number of cores. Wemeasured the time that it took

to complete each part of the transition function (sorting, generating

transitions, and updating agents and locations). We repeated each

measurement 5 times and calculated the mean. This particular

problem did not make use of message passing so Lines 12–16 were

omitted. A plot of the parallel speedup is shown in Figure 1. Each

trial on 1 core took 48 minutes, whereas it only took 2.2 minutes

on 24 cores. The speedups of each of the steps as well as the overall

speedup is at least 18, indicating very good scalability.

4.2 Density Estimation
Weuse the density estimation application to showcase the simplicity

of the framework and the strengths of conducting an experiment

with many agents. The application works as follows: given an

𝑁 ×𝑀 2D torus grid with 𝛼 agents, the agent density of the system

is defined to be 𝛼/(𝑁 ×𝑀). Each agent on this torus grid is tasked

with estimating the agent density of the system. A simple algorithm

for estimating the density was presented by Musco et al. [11].

In their paper, each agent runs a random walk in 4 directions

on the 2D grid. At each step, each agent counts the number of

agents that share its position and increments a variable 𝑐 by that

amount. At the end of 𝑇 rounds, its density estimate is returned

as 𝑐/𝑇 . According to Musco et al. [11], for any 𝛿 > 0 the density

estimate
˜𝑑 is within the range of [(1 − 𝜖)𝑑, (1 + 𝜖)𝑑], where 𝜖 =

Θ(
√︁
log (1/𝛿) log (2𝑇)/𝑇𝑑), with probability at least 1 − 𝛿 .

Figure 2: A histogram of the agents’ estimated densities. The height
of the red histogram has been scaled by 0.01 since there are 100×
more agents in that experiment.

The implementation for this application using ParSwarm took

fewer than 50 lines of non-boilerplate code. Each agent’s generate-
transition() function creates a transition that simply chooses

a random cardinal direction for the agent to walk in. update-
location(i) iterates through every agent on its location and in-

crements the number of agent collisions. Every agent transition

is accepted. The update-agent(i) function resolves all accepted

transitions. The is-finished() function returns true if the num-

ber of rounds has exceeded𝑇 . The framework functions generate-
message() is empty for this application.

After implementing the problem in the framework for general

𝑁,𝑀, 𝛼 , and𝑇 , we chose to run two experiments: in the first exper-

iment, we set 𝑁 = 𝑀 = 100 and 𝛼 = 10
3
; in the second experiment,

we set 𝑁 = 𝑀 = 1000 and 𝛼 = 10
6
. In both experiments,𝑇 = 50 and

the exact density is 0.1. The first experiment completed in 50 mil-

liseconds, and the second completed in 4,500 milliseconds. Figure 2

shows the results of the density estimate of each agent for the two

experiments.

In Figure 2, the gray histogram shows the density estimates for

the first experiment. As we can see the distribution of the densities

in gray is not centered around 0.1 as we expect them to be. The

variation of densities is also not uniform and it would be difficult to

tell that the experimental results align with the theoretical bounds

that were produced.

However, this is not the case for the red histogram for the second

experiment, where the mean is clearly around 0.1 and there is

minimal variation around the mean. This experiment shows the

strength of running an experiment with many more agents, which

is enabled by ParSwarm, because it is easier to show that the density

estimates are concentrated around the mean.

Musco et al. [11] gave proofs for the 3D torus density estimation

case, which we confirmed with another experiment similar to this

one. Musco et al. also discussed the possibility of noisy collision

detection (i.e., detecting collisions with some probability 𝑝) and we

found empirically that the density is around 𝑝 · 𝑑 .
5 Conclusions and Future Work
We presented ParSwarm, a publicly-available parallel C++ frame-

work that massively speeds up robot swarm simulations on 2D and

3D torus environments. We used ParSwarm to implement the task

allocation and density estimation applications, and showed that our

ParSwarm: A C++ Framework for Evaluating Distributed Algorithms for Robot Swarms ApPLIED 2023, June 19, 2023, Orlando, FL, USA

framework is able to scale to large numbers of agents while achiev-

ing good parallel speedups. For density estimation, we showed that

our empirical results match what is predicted by theory.

Kiszli et al. showed that simple swarm algorithms may fail when

the number of agents increase past a certain threshold [9]. We plan

to run more experiments with more agents for other algorithms

to show behavior that may not otherwise be evident in a small

number of agents. In the near future, we also plan to add more

environments beyond the 2D and 3D torus.

Acknowledgements This research is supported by DOE Early

Career Award #DE-SC0018947, NSF CAREER Award #CCF-1845763,

and NSF Award #CCF-2003830.

References
[1] Florian Berlinger, Melvin Gauci, and Radhika Nagpal. 2021. Implicit coordination

for 3D underwater collective behaviors in a fish-inspired robot swarm. Science
Robotics 6, 50 (2021).

[2] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib - A

Toolkit for Parallel Algorithms on Shared-Memory Multicore Machines. In ACM
Symposium on Parallelism in Algorithms and Architectures. 507–509.

[3] Grace Cai, Noble Harasha, and Nancy Lynch. 2023. A Comparison of New

Swarm Task Allocation Algorithms in Unknown Environments with Varying

Task Density. In International Conference on Autonomous Agents and Multiagent
Systems.

[4] Grace Cai and Nancy Lynch. 2022. A Geometry-Sensitive Quorum Sensing

Algorithm for the Best-of-N Site Selection Problem. In Swarm Intelligence. 1–13.

[5] Cindy Calderón-Arce, Juan Carlos Brenes-Torres, and Rebeca Solis-Ortega. 2022.

Swarm Robotics: Simulators, Platforms and Applications Review. Computation
10, 6 (2022).

[6] Yufeng Chen, Huichan Zhao, Jie Mao, Pakpong Chirarattananon, E. Farrell Hel-

bling, Nak-seung Patrick Hyun, David R. Clarke, and Robert J. Wood. 2019.

Controlled flight of a microrobot powered by soft artificial muscles. Nature 575,
7782 (Nov. 2019), 324–329.

[7] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-Down Parallel

Semisort. In ACM Symposium on Parallelism in Algorithms and Architectures.
24–34.

[8] Joseph Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley Profes-

sional.

[9] Zalan Kiszli, Seongin Na, and Farshad Arvin. 2022. Toward aMyriad Robot Swarm

Aggregation. In International Conference on Control and Robotics Engineering. 1–4.
[10] N. Koenig and A. Howard. 2004. Design and use paradigms for Gazebo, an open-

source multi-robot simulator. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, Vol. 3. 2149–2154 vol.3.

[11] Cameron Musco, Hsin-Hao Su, and Nancy A. Lynch. 2017. Ant-inspired density

estimation via random walks. Proceedings of the National Academy of Sciences
114, 40 (sep 2017), 10534–10541.

[12] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy,

Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick

Ducatelle, Mauro Birattari, Luca Maria Gambardella, and Marco Dorigo. 2012.

ARGoS: a Modular, Parallel, Multi-Engine Simulator for Multi-Robot Systems.

Swarm Intelligence 6, 4 (2012), 271–295.
[13] E. Rohmer, S. P. N. Singh, and M. Freese. 2013. CoppeliaSim (formerly V-REP): a

Versatile and Scalable Robot Simulation Framework. In International Conference
on Intelligent Robots and Systems.

[14] Richard Vaughan. 2008. Massively multi-robot simulation in stage. Swarm
Intelligence 2, 2 (01 Dec 2008), 189–208.

	Abstract
	1 Introduction
	2 Background
	2.1 Modeling Robot Swarms
	2.2 Parallelism

	3 ParSwarm
	3.1 User-Defined Functions
	3.2 Transition

	4 Experiments and Results
	4.1 Task Allocation
	4.2 Density Estimation

	5 Conclusions and Future Work
	References

