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ABSTRACT

We consider the problem of a swarm of nanobots detecting and treat-
ing human cancer that is diffuse, dispersed in a region with multiple
separate cancer sites in need of treatment. We present a mathe-
matical model of nanobots and their colloidal environment that is
inspired by actual chemotactic nanoparticles, involving agents nois-
ily following chemical gradients (both attractively and repellently,
depending on the chemical). We present three incrementally sophis-
ticated algorithms that describe additional chemical payloads that
agents carry onboard, beyond the cancer-treating drug K, as well
as the rules for when agents drop their payloads: Algorithm KM,
in which agents simply ascend naturally existing chemical M sig-
nals that surround cancer sites; KMA, in which agents themselves
amplify these natural signals by dropping chemical A payloads
upon reaching a site; and KMAR, in which agents choose to either
amplify the signal by dropping chemical A or counteract/reduce the
signal by dropping chemical R, according to the current unsatisfied
demand of the site. We present simulation results for all of the algo-
rithms, across a set of distinct cancer arrangements, that track both
the achieved treatment success as well as the time/duration of the
treatment. KM has generally successful treatment unless the natural
M-signals are weak, in which case the treatment progresses too
slowly. KMA demonstrates a significant speedup in treatment time
(over KM), but also a drop in success except for the most concen-
trated cancer patterns. KMAR has relatively optimal performance
across all types of cancer patterns, demonstrating robustness and
adaptability in its mechanisms for nanobot coordination.
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1 INTRODUCTION

Motile nanoparticles suspended in a solution, or nanobots, possess
unique potential in various medical applications [2, 3]; however,
their small size yields limited capabilities in sensing, locomotion,
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and computation. Nanobots are being engineered to navigate within
the human body to locate sites of interest and deliver drugs in a
more targeted manner with fewer side side effects [1, 9, 17]; we
investigate this targeted drug delivery problem here, specifically for
cancer. We consider a stochastic process, with nanobots performing
chemotaxis [4, 7, 8, 11, 16] that we model as a biased random walk.
This work builds on our previous work [5], which defined a mathe-
matical model to characterize the movement of the nanoparticles
in [8] (similar to Algorithm KM here) and included a signal ampli-
fication mechanism similar to [13, 15] and KMA here. We extend
[5] to consider the multi-site case—not only a single target site—as
well as to include negative—not only positive—chemotaxis [10, 14]
(in KMAR). Having multiple, distinct cancerous sites introduces the
problem of optimally allocating treatment according to demands.
Results show that KM has successful treatment but is slow for
weak endogenous chemical signals. KMA significantly improves
efficiency over KM with its amplified attractive signals, but can be
unsuccessful if the amplification mechanism too strongly favors
one site, leaving the others untreated (this is a reduced issue when
one site has most of the demand). KMAR’s added mechanism of
dynamically favoring chemical signals towards sites still needing
treatment helps fix KMA’s above issues, while still being efficient.
The full version of this paper is available online [6].

2 MODEL

We present a continuous space R?, discrete time model for multi-
site cancer detection and treatment by nanobots in the human body.
There are a number of cancer sites, i.e., distinct clusters of contiguous
cancerous cells, each concentrated at a single point in R%. An agent
can detect the presence of a nearby cancer site once it is within
an e-distance, and plant there. Each agent carries a payload of a
drug for cancer treatment, chemical K, that it drops upon planting.
Signal chemicals are sensed by all agents and their gradients can be
followed directionally: ascended if attractive, descended if repellent.
No direct interaction or communication occurs between agents.
Centered at each cancer site is an endogenous gradient of at-
tractive signal chemical M, that is persistent/time-constant. The
strength of a site’s M-signal is directly proportional to its demand
Py;, ie., the amount of treatment it requires. One agent is needed
per unit of demand. The concentration of M at position x is yp(x) =
g 2 PMjexp(—106(||yj - x||2)?), where y; is cancer site j’s loca-
tion. The other signal chemicals we consider are both artificial
chemicals that are carried and electively dropped as payloads: an
attractive signal chemical A, and a repellent R. Unlike for chem-
ical M, A and R are not persistent; they dynamically dissipate
and diffuse over time, which we model via instantaneous point-
source diffusion [12]. The concentration of A at time ¢ at position
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(a) KMAR: b = 10; KMA: b =5; KM: b = 6.

(b) KMAR: b = 10; KMA: b =3.5; KM: b = 4.

(c) KMAR: b = 10; KMA: b = 6; KM: b = 6.

Figure 1: Simulation results with 55 agents, comparing algorithms’ performance for different cancer arrangements (depicted by
small scatterplots). Fixed: @ = € = 2- 107>, ¢pax = 0.005, P4 = 10, Pgr = 50,74 = 10”. Plotted lines show average success over 20
trials; shaded regions are standard deviations. Points on main plots show when treatment stabilizes/finishes (treatment time).
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xis y) () = KA 5 B exp(=10°] g x|/ (4( = £5,)),
where Py is the payload size and ¢} ; is when the i"th A-payload was

dropped at site j. y}(;) (x) is defined analogously.
We now describe the update step for the locomotion of an indi-
vidual agent, i.e., the movement model. Consider agent i at time

t, with position xi(t) and orientation vector Hi(t). Let )/%)T (xi(t)) =
()

)/M(xi([)) + Y4 (xi(t)) - y}({)(xi(t)). Let p = V)/%)T(xi([)), and let

B ~ N(0,0?%) with variance o2 = 1011/(b||y|]). If )/{.g.l.(xi(t)) =0,
p ~ U(—m ) and p = (1,0). 9;”1) is updated such that f is the
angle formed between y and 91.(”1). Larger b values yield movement
that is more biased toward following the given chemical signal(s),
i.e., farther from standard Brownian motion. Taking a step of length
a in the direction of its orientation vector, agent i’s position is up-
dated as xi(Hl) = xi(t) + a(Gi(Hl) / ||9i(l+l)||2). To summarize, if
the attractive chemical signal (M plus A) dominates the repellent
signal (R) in steepness, then the agent is biased to move towards
the nearest local maximum of the attractive chemical gradient (e.g.,
the nearest cancer site). If the repellent signal dominates, the agent
is biased to move (roughly) away from the nearest cancer site.

We assume a bounded space [0, $max]?> € R?; the above update
step is repeated until a valid new location is produced. Nanobots
have a finite lifetime; we define a runtime cutofl/clearance time T*.

3 ALGORITHMS

The least sophisticated algorithm KM, in which agents simply as-
cend the stable, natural M-signals, is feasible and aligned with
current nanobot technologies. From KM to KMA, in an effort to im-
prove treatment time, we add A-payloads to amplify the M-signals.
From KMA to KMAR, in an effort to improve success, we also add
R-payloads which uniquely allow for agents to descend chemi-
cal gradients and thus, be driven away from sites that are already
treated. We acknowledge that each algorithm (in that order) is more
speculative than the next regarding individual nanobot capabilities.
An agent can only drop its payload(s) at one cancer site in total.

Algorithm KM: Agents only have payloads of chemical K.
When an agent reaches a cancer site, it releases its K-payload to
deliver treatment. There is no chemical A nor R anywhere.

Algorithm KMA: Each agent has a payload of chemical K and
a payload of chemical A. When an agent reaches a site, it releases
both payloads. There is no chemical R anywhere.

Algorithm KMAR: Each agent has one payload of each chemi-
cal, K, A, and R. When an agent reaches some site j at time ¢, it
immediately releases its K-payload. Then, if }/X*) (Yj)/Pm; <ram,
it also releases its A-payload, but does not release its R-payload.
Otherwise, it instead releases its R-payload, but not its A-payload.
That is, when the A-signal at a site is too strong, agents release R
in an effort to encourage agents to explore and administer treat-
ment elsewhere; chemical A is used here as a proxy to estimate the
current amount of treatment (K) already administered.

4 SIMULATION RESULTS

We fix a specific parameter setting for each algorithm (chosen based
upon preliminary results [6]) and compare their performance across
a set of distinct cancer site and demand arrangements; see Figure 1.
Agents have uniformly random initial positions.

For the more diffuse cancer arrangements (a) and (b), KMAR and
KM achieve the same, highest eventual success rate, though KMAR
is faster and thus outperforms KM for many clearance times. KMA
has lower achieved success than KM (and KMAR), but, because of
its fast progressing treatment, outperforms KM for some clearance
times. The sparse (a) yields higher overall treatment success for
KM and KMAR than the dense (b). For the concentrated cancer
arrangement (c), all algorithms perform similarly very well in both
success and treatment time, showing the largest improvement over
the simple random walk RW. Although KM achieves high success
here for all arrangements, it has increasingly slow progressing
treatment under weaker M-signals (a feature of the natural envi-
ronment). We consider only a single pass of treatment here, but
having multiple, repeated passes is also reasonable given nanobots’
nontoxicity. In this case, KMA has increased usefulness as it quickly
and reliably kills the main cancer site (with the leftover(s) handled
in later passes) via a less sophisticated algorithm than KMAR.
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