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ABSTRACT

In ad ho
 wireless networks, it is 
ru
ial to minimize

power 
onsumption while maintaining key network prop-

erties. This work studies power assignments of wireless

devi
es that minimize power while maintaining k-fault

toleran
e. Spe
i�
ally, we require all links established

by this power setting be symmetri
 and form a k-vertex


onne
ted subgraph of the network graph. This prob-

lem is known to be NP-hard. We show 
urrent heuristi


approa
hes 
an use arbitrarily more power than the opti-

mal solution. Hen
e, we seek approximation algorithms

for this problem. We present three approximation al-

gorithms. The �rst algorithm gives an O(k�) approxi-

mation where � is the best approximation fa
tor for the

related problem in wired networks (the best � so far is

in O(log k).) Then, using a more 
ompli
ated algorithm

and 
areful analysis, we a
hieve O(k) approximation for

general graphs. We then present simple and pra
ti
al

distributed approximation algorithms for the 
ases of 2-

and 3-
onne
tivity in geometri
 graphs. In addition, we

demonstrate how we 
an generalize this algorithm for k-


onne
tivity in geometri
 graphs. Finally, we show that

these approximation algorithms 
ompare favorably with

existing heuristi
s. We note that all algorithms presented

in this paper 
an be used to minimize power while main-

taining k-edge 
onne
tivity with guaranteed approxima-

tion fa
tors.
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1. Introdu
tion

In re
ent years, ad ho
 wireless networks have be
ome

an in
reasingly 
ommon and important phenomenon due

to their appli
ations in battle�eld 
ommuni
ation and

disaster relief 
ommuni
ation ([10, 25℄). These networks

fa
e a variety of 
onstraints that do not o

ur in wired

networks. Nodes in a wireless network are typi
ally battery-

powered, and it is expensive and sometimes infeasible to

re
harge the devi
e. Thus resear
h e�orts have fo
used

on designing minimum power algorithms for typi
al net-

work tasks su
h as broad
ast transmission ([8, 21, 27℄)

and 
onne
tivity/fault-toleran
e ([1, 2, 4, 5, 18, 20, 24℄).

Ad ho
 wireless networks 
onsist of simple mobile de-

vi
es whi
h 
ommuni
ate via radio transmitters. A range

assignment for a network 
onsists of a power setting for

ea
h node, and the 
ost of a range assignment is either

the average power setting or the maximum power set-

ting in that assignment. Transmissions from a single

node in the network rea
h all nodes within the trans-

mission range. A node 
an vary its transmission range

by varying the power with whi
h it transmits a message.

A 
onsequen
e of this fa
t is that the 
ost of transmitting

a message is not dependent on the number of re
eiving

nodes, but simply a fun
tion of their maximum distan
e

r from the sending node. Most wireless networks are

multi-hop. In other words, nodes 
an forward messages

as well as initiate them. In su
h settings, it is possible

to broad
ast or maintain network 
onne
tivity without

every node transmitting at maximum power. This allows

us to seek power-optimal range assignments for these and

related network issues.



Previous works have addressed the issue of power-optimal

range assignments that maintain 
onne
tivity. As this

problem is NP-hard even in the Eu
lidean plane [11℄,

some approa
hes 
on
entrate on heuristi
s. Rodoplu and

Meng [25℄, Wattenhofer et al. [28℄, and Li et al. [20℄ de-

velop 
one-based lo
al heuristi
s for 
onne
tivity. In this

heuristi
, ea
h node in
reases transmission power un-

til some lo
al 
onditions are met. This algorithm has

a 
lear advantage of being lo
alized; however we show

that the power 
onsumption of the resulting solution 
an

be arbitrarily worse than that of the optimal solution.

Other papers have 
on
entrated on providing provable

approximation algorithms. Kirousis et al. [18℄ show the

minimum spanning tree of the network graph yields a

2-approximation algorithm for minimum average power


onne
tivity. Calines
u et al. [5℄ improve the approxi-

mation fa
tor to 1:69 with a steiner tree-based algorithm

and also provide a more pra
ti
al 1:875-approximation

algorithm.

A natural generalization of the 
onne
tivity require-

ment is k-
onne
tivity or k-fault toleran
e. In a k-fault

tolerant network, 
ommuni
ation should not be disrupted

even when up to k�1 nodes fail. These networks also pro-

vide multi-path redundan
y for load balan
ing or trans-

mission error toleran
e. As power-optimal 
onne
tivity

is NP-hard, power-optimal k-fault toleran
e is NP-hard

as well. Previous works have investigated heuristi
s for

this problem. Ramanathan and Rosales-Hain [24℄ 
on-

sider the spe
ial 
ase of 2-fault toleran
e and provide

a 
entralized spanning tree heuristi
 for minimizing the

maximum transmit power in this 
ase. Bahramgiri et

al. [2℄ generalize the 
one-based lo
al heuristi
 of Wat-

tenhofer et al. [28, 20℄ in order to solve the general k-

fault tolerant setting. However, both of these works are

heuristi
s and do not have provable bounds on the solu-

tion 
ost. For the heuristi
s due to Wattenhofer et al. [28,

20℄ and Bahramgiri et al. [2℄, we show there are exam-

ples for whi
h these heuristi
s perform arbitrarily worse

than the optimal solution. It was re
ently brought to our

attention that Lloyd et al. [22℄ independently present a

general result whi
h they prove gives an 8-approximation

for 2-fault toleran
e, but they do not 
onsider general k-

fault toleran
e.

This work investigates minimum average power sym-

metri
 k-fault tolerant range assignments. We present

three approximation algorithms for this problem. The

�rst two algorithms with approximation fa
tors O(k log k)

and O(k), although 
entralized, work even in general

graphs. Then, we present simple and pra
ti
al distributed

approximation algorithms for the 
ases of 2- and 3-
onne
tivity

in geometri
 graphs. In addition, we demonstrate how

we 
an generalize this algorithm for k-
onne
tivity in ge-

ometri
 graphs. All algorithms in this paper 
an be ex-

tended to approximation algorithms for power-optimal

k-edge 
onne
tivity. However, sin
e we are primarily


on
erned with stati
 settings, node failures (due to la
k

of power) are more 
ommon than edge failures. There-

fore, we fo
us on vertex 
onne
tivity in this paper. In

Se
tion 2, we formally de�ne the k-fault tolerant topol-

ogy 
ontrol problem and the underlying wireless network

model. In Se
tion 3, we dis
uss two plausible approa
hes

to this problem and provide lower bounds for the approx-

imation fa
tors of these approa
hes in the worst 
ase. In

Se
tion 4, we present our approximation algorithms and

prove the approximation fa
tors. In Se
tion 5, we evalu-

ate the performan
e of our approximation algorithms by


omparing them to existing heuristi
s. Finally, in Se
-

tion 6, we 
on
lude with a dis
ussion of future resear
h

dire
tions.

2. Preliminaries and Model

In this paper, we are mainly interested in stati
 sym-

metri
 multi-hop ad ho
 wireless networks with omni-

dire
tional transmitters. This is the model 
onsidered by

Blough et al. [4℄, Calines
u et al. [5℄, Kirousis et al. [18℄,

and others in their works on 
onne
tivity. Algorithms

developed for this model have important pra
ti
al 
on-

siderations. Many existing routing proto
ols are easily

a

ommodated in this model as links are established in

both dire
tions. Furthermore, many of the restri
tions

imposed by this model 
an be relaxed at the 
ost of ad-

ditional 
ommuni
ation. We brie
y restate the model

here.

Ad ho
 wireless networks 
onsist of a set of mobile

devi
es equipped with radio transmitters and re
eivers.

Ea
h radio transmitter is assigned a power setting and

an orientation that de�ne the re
eption area of its trans-

missions. Oriented transmitters save power by emitting

signals in a parti
ular dire
tion. In pra
ti
e, most trans-

mitters are omni-dire
tional, and this is the model we

assume for this paper (and in fa
t, all 
ited works assume

this model as well). In ideal settings, an omni-dire
tional

transmission of power r

2

will rea
h all re
eivers within

a sphere of radius r. However, interferen
e from other

transmissions and ba
kground noise may attenuate this

signal. Typi
ally, a node must transmit a message at

power r




, 2 � 
 � 4, to attain a transmission range of

distan
e r. The parti
ular exponent 
, referred to as the

power attenuation exponent, depends on the environmen-

tal 
onditions, and may vary from devi
e to devi
e.

We 
onsider multi-hop networks, or networks in whi
h

devi
es 
ooperate to route ea
h others' messages. In this

way, the overall power usage of the network 
an be min-

imized. For example, 
onsider the problem of broad
ast-

ing a message from devi
e u and assume the transmis-

sion power grows like the range squared for all devi
es

(i.e. 
 = 2). Let devi
es u, v, and w be positioned at

the verti
es of a triangle su
h that the distan
e between



u and v is 5 meters, v and w is 6 meters, and u and w

is 10 meters. Then if u wants to send the message to w

dire
tly, it will take 100 units of power, but by allowing

v to forward the message to w, the system uses just 61

units of power.

In most of this paper, we make the further assump-

tions that our networks are stati
 and that all established

links are bidire
tional or symmetri
. In a stati
 network,

the devi
es are stationary. If a devi
e moves, the range

assignment must be re
al
ulated in order to maintain de-

sired network properties. In the symmetri
 link model,

if a devi
e u is assigned to re
eive transmissions from a

devi
e v, then it must also be able to transmit to devi
e

v. Although this restri
tion 
an theoreti
ally be relaxed,

in pra
ti
e symmetri
 links greatly simplify routing pro-

to
ols and thus are desirable.

A wireless network 
an be modeled as a graph G(V;E)

where V is the set of mobile devi
es andE � V

2

is the set

of pairs of devi
es between whi
h 
ommuni
ation is pos-

sible. Note E does not ne
essarily equal V

2

as maximal

transmission ranges and environmental 
onditions may

impose 
onstraints on possible pairs of 
ommuni
ating

nodes. In general, this graph may be dire
ted, but our

symmetri
 link 
onstraint allows us to eliminate all uni-

dire
tional edges. Typi
ally, an edge (i; j) is assigned

a distan
e d(i; j), representing the distan
es between de-

vi
es i and j, and 
ost p(i; j), representing the power set-

ting i and j must use to transmit to ea
h other. In most


ases, the edge distan
es satisfy the triangle inequality,

and we refer to these graphs as geometri
 graphs. In the


ase of a uniform power attenuation exponent, this also

implies a relationship between edge 
osts. In some 
ases,

we pla
e no assumption on the relationship between edge


osts, and we refer to these graphs as general graphs.

A range assignment R is an assignment of power set-

tings R(i) to devi
es i. A subgraph H = (V;E

0

) where

E

0

� E of the network graph G = (V;E) de�nes a range

assignment R

E

0

where R

E

0

(i) = max

fj j (i;j)2E

0

g

p(i; j).

The 
ost of a subgraph is the average (or, equivalently,

the total) power assigned in its 
orresponding range as-

signment. We use the term power 
ost for this quantity

to di�erentiate between this 
ost and the so-
alled nor-

mal 
ost of a graph, i.e., the 
ost fun
tion whi
h 
aptures

the notion of bandwidth usage and whi
h wired network

designers typi
ally attempt to minimize. More formally,

Definition 1. In an undire
ted graph G = (V;E) with

edge 
osts p(i; j), the power 
ost of G is

P (G) =

X

i2V

max

fj j (i;j)2Eg

p(i; j):

Definition 2. In a graph G = (V;E) with edge 
osts

p(i; j), the normal 
ost of G is

C(G) =

X

(i;j)2E

p(i; j):

Using these de�nitions, we 
an de�ne two main prob-

lems. The problem we study in this paper is the undi-

re
ted minimumpower k-vertex 
onne
ted subgraph prob-

lem. A k-vertex 
onne
ted graph has k vertex-disjoint

paths between every pair of verti
es, or equivalently, re-

mains 
onne
ted when any set of at most k � 1 verti
es

is removed. Hen
e the subgraphs we �nd are k-fault tol-

erant.

Definition 3. An Undire
tedMinimumPower k-Vertex

Conne
ted Subgraph (k-UPVCS) of a graph G = (V;E)

is a k-vertex 
onne
ted subgraph H = (V; F ), F � E,

su
h that P (H) � P (H

0

) for any k-vertex 
onne
ted sub-

graph H

0

= (V; F

0

), F

0

� E.

This problem is 
losely related to the standard k-vertex


onne
ted subgraph problem whi
h 
orresponds to k-

fault toleran
e in wired networks.

Definition 4. An Undire
tedMinimumCost k-Vertex

Conne
ted Subgraph (k-UCVCS) of a graph G = (V;E)

is a k-vertex 
onne
ted subgraph H = (V; F ), F � E,

su
h that C(H) � C(H

0

) for any k-vertex 
onne
ted sub-

graph H

0

= (V; F

0

), F

0

� E.

When k is not spe
i�ed, it is understood that k = 1.

Both the k-UPVCS and k-UCVCS problems are NP-

hard, and thus our work as well as previous works have

fo
used on �nding approximations for these problems.

An �-approximation algorithm is a polynomial time algo-

rithm whose solution 
ost is at most � times the optimal

solution 
ost.

The k-UCVCS problem has been well-studied. These

results are 
entral to our work, for, as in the 
ase of


onne
tivity, a solution to the k-UCVCS problem turns

out to be an approximation for the k-UPVCS problem.

The problem has been 
onsidered both for general and

geometri
 graphs. Frank and Tardos [13℄ and Khuller

and Raghava
hari [17℄ were among the �rst authors who

worked on the k-UCVCS problem. The best known ap-

proximation for general graphs with at least 6k

2

verti
es

is an O(log(k))-approximation due to Cheriyan et al. [7℄.

Their results use an iterative rounding method on a lin-

ear programming relaxation. Kortsarz and Nutov [19℄

study 
ombinatorial algorithms for di�erent variants of

the problem. They introdu
e a k-approximation algo-

rithm for general graphs (without any 
ondition on the

number of verti
es) and a (2 +

k�1

n

)-approximation for

graphs with metri
 
osts. They also 
onsider the spe-


ial 
ases of k � 7 and present a d

k+1

2

e-approximation.

We use ideas from their algorithm to design an O(k)-

approximation for the k-UPVCS problem.

We also 
onsider edge failures and prove similar guar-

antees for power-optimum k-edge-
onne
ted subgraphs.

We adapt the 
entralized algorithm to work in this 
ase.

Our distributed algorithm also gives the same perfor-

man
e guarantee for k-edge 
onne
ted subgraphs.



3. Previous Approa
hes

As the k-UPVCS problem is NP-hard, an exa
t solu-

tion is infeasible. One line of previous work has fo
used

on approximate solutions. Approximations are often ob-

tained via a linear programming representation of the

problem. However, we show that for the k-UPVCS prob-

lem, a linear programming approa
h is unlikely to yield

a good approximation in the worst 
ase. Another line

of work has fo
used on providing heuristi
s whi
h work

well in pra
ti
e. However, heuristi
s do not have prov-

ably good solutions, and in fa
t, we 
an show that in

the worst 
ase, the 
urrent k-UPVCS heuristi
s perform

poorly.

It is important to note that the results in this se
tion

make 
laims about the worst 
ase performan
e of the

proposed algorithms. This does not imply poor behavior

on average or in typi
al situations. The typi
al 
ases 
an

only be analyzed through experiments, and those results

appear in Se
tion 5.

3.1 Linear Programming Approa
h

Many of the best known approximation algorithms are

based on linear programming (LP) approa
hes. In fa
t,

the best known k-UCVCS approximation algorithm (an

O(log k)-approximation algorithm by Cheriyan et al. [7℄)

is based on an LP formulation. In this and other LP-

based algorithms, the problem is formulated as an integer

LP. Then, the fra
tional solution of the LP relaxation is

rounded to an integral solution and its value is used as

a lower bound in the analysis. The integrality gap of LP

formulation, i.e., the ratio between the optimal values

of the integral and fra
tional solutions, is a lower bound

on the a
hievable approximation fa
tor. One might hope

for an LP-based approximation algorithm for k-UPVCS

with performan
e similar to that of k-UCVCS. However,

in the following we show that the natural integer LP

formulation for the k-UPVCS problem has an integrality

gap of 
(

n

k

), implying that there is no approximation

algorithm based on this LP with an approximation fa
tor

better than 
(

n

k

).

We present a natural LP formulation of this problem

introdu
ed by Cheriyan et al. [7℄. We assign a zero-one

variable x

e

to ea
h edge e indi
ating whether edge e is

in the k-
onne
ted subgraph G

0

= (V;E

0

) of the input

graph G = (V;E). The 
ost of subgraph G

0

is

P

v2V

p

v

where p

v

is the maximum power of all edges adja
ent to

v in G

0

, i.e., p

v

� p(u; v)x

(u;v)

for all (u; v) 2 E. To

guarantee that solutions to the integer program repre-

sent k-
onne
ted subgraphs, we introdu
e a 
onstraint

ensuring that there are k vertex-disjoint paths between

every pair of verti
es (in fa
t, every pair of sets). De-

�ne a setpair S = (T;H) to be any pair of two disjoint

nonempty subsets T and H of verti
es. The idea is that

any su
h pair of sets must have k vertex disjoint paths

between them in order for G to be k-vertex 
onne
ted.

Let Æ(S) = Æ(T;H) be the set of all edges with one end-

point in T and the other in H. There are n � jH [ T j

verti
es outside H and T that 
an parti
ipate in paths

between H and T . Thus, there are at most n � jH [ T j

vertex-disjoint paths between H and T that leave H[T ,

and so there must be at least k � (n� jH [ T j) edges in

Æ(T;H). The setpair LP relaxation is as follows:

minimize

P

v2V

p

v

subje
t to

P

e2Æ(S)

x

e

� maxf0; k � (n� jH [ T j)g

for all setpairs S = (T;H)

p

v

� p(u; v)x

vu

for all v 2 V , (u; v) 2 E

0 � x

e

� 1

for all e 2 E

The above dis
ussion shows that these 
onstraints are

ne
essary for G

0

to be a k-
onne
ted subgraph. To see

that they are also suÆ
ient, we refer the reader to the

result of Cheriyan et al. [7℄.

Lemma 1. If n � 2k, the integrality gap of the above

linear programming is 
(

n

k

).

Proof. To prove that the integrality gap is 
(

n

k

), we

display an instan
e in whi
h the ratio between the fra
-

tional and integral solutions is large, say 
(

n

k

). Consider

the 
omplete graph. Assume all edge 
osts are equal to

one. A feasible fra
tional solution of the LP is x

e

=

k+1

n

and p

v

=

k+1

n

. In order to 
he
k that this solution

is feasible, we need to prove that for any setpair S =

(T;H),

P

e2Æ(T;H)

x

e

= jHjjT j

k+1

n

� k � (n � jH [ T j).

As jHjjT j � jH [ T j � 1, it is suÆ
ient to show that

k�(n�jH[T j) �

k

n

(jH[T j�1). We use the assumption

that 2k � n and the observation that jH [ T j � (k + 1)

as k � (n� jH [ T j) > 0. For 
larity of presentation, let

x = jH [ T j and note x � n. Then,

k � (n� x) � k �

2k

n

(n� x)

=

2k

n

x� k

= (

k

n

x� k) +

k

n

x

�

k

n

x

�

kx

n

+

x� (k + 1)

n

=

k + 1

n

(x� 1):

Here the �rst inequality follows from our assumption in

the statement of the lemma, the se
ond one follows sin
e

x � n and the third one follows sin
e x � k + 1. As

this solution is feasible, the 
ost of the optimal fra
tional

solution is at most n

k+1

n

= k + 1. In the optimal inte-

gral solution, there should be at least one edge in
ident

to ea
h vertex; thus the 
ost of an optimal integral solu-

tion is at least n sin
e p

v

� 1 for all v. Therefore, the

integrality gap is at least

n

k+1

= 
(

n

k

).



(a) The optimum

2-
onne
ted sub-

graph

(b) The output of

CBTC for k =

2 in whi
h ea
h

node in
reases its

power until the

angle is less than

2�

3�2

= 60

0

Figure 1: The illustration of CBTC lower bound

3.2 Heuristi
-Based Approa
h

One approa
h for the k-UPVCS problem is heuristi
-

based. Bahramgiri et al. [2℄ show that the 
one-based

topology 
ontrol algorithm of Wattenhofer et al. [28, 20℄

for UPVCS 
an be extended to an algorithm for k-UPVCS.

In the following, we state this algorithm, and then we


onstru
t examples whi
h demonstrate that the approx-

imation fa
tor for this algorithm is at least 
(

n

k

).

In the 
one-based topology 
ontrol (CBTC) algorithm,

ea
h node in
reases its power until the angle between

its 
onse
utive neighbors is less than some threshold. In

the following, we present a brief des
ription of this al-

gorithm. For details of CBTC and how to implement

it in a distributed fashion, we refer to Wattenhofer et

al. [28, 20℄. Node u sends aHello message to every other

node v using power p. Upon re
eiving a Hello message

from node u, node v replies with an A
k message. After

gathering the A
k messages, node u 
onstru
ts the set

of its neighbors, N(u), along with a set of ve
tors indi-


ating the dire
tion of ea
h neighbor. Node u in
reases

its power until the angle between any pair of adja
ent

neighbors is at most � for some �xed �. Now, let N

�

(u)

be the �nal set of neighbors 
omputed by a node u and

E

�

= f(u; v)jv 2 N

�

(u) and u 2 N

�

(v)g. Output graph

G

�

= (V;E

�

).

Wattenhofer et al. [28℄ have shown that for � �

2�

3

, the

subgraph G

�

produ
ed by this algorithm is 
onne
ted if

and only if G is 
onne
ted. Li et al. [20℄ show that the

theorem does not hold ne
essarily for � >

2�

3

and they

also extend the result to the dire
ted 
ase. Bahram-

giri et al. [2℄ generalize the �rst result for k-
onne
ted

subgraphs in the following way: for � �

2�

3k

, G

�

is k-


onne
ted if and only if G is k-
onne
ted. They also show

that the theorem does not hold ne
essarily for � >

2�

3k

if k is even and � >

2�

3(k�1)

if k is odd. Although

this heuristi
-based algorithm is very pra
ti
al in a dis-

tributed mobile setting, it does not have a reasonable

approximation guarantee. We show that this algorithm's

solution 
an be as mu
h as

n

k

times the optimal one.

Theorem 1. There are examples for whi
h the ap-

proximation fa
tor of CBTC algorithm for k-
onne
tivity

(k � 1) is at least 
(

n

k

), i.e., the ratio between the

power of the output of CBTC and the minimum power

k-
onne
ted subgraph is 
(

n

k

).

Proof. Consider the geometri
 graph G with n nodes

evenly spa
ed around a 
ir
le. Figure 1 shows an example

when the network has 8 nodes and 
ompares the optimal

2-
onne
ted subgraph with the output of CBTC for k =

2. In the CBTC algorithm, ea
h node in
reases its power

until the angle between any two 
onse
utive neighbors is

at most

2�

3k

. As a result, ea
h vertex is 
onne
ted to

n

2

�

n

3k

verti
es in ea
h half of the 
y
le whi
h yields a

regular graph of degree

n

2

�

n

3k

= 
(n). The power of

ea
h node is the length of the 
hord whi
h 
orresponds

to the ar
 of length (

1

2

�

1

3k

) of the perimeter. More

pre
isely, the length of this 
hord is 2R sin((

1

2

�

1

3k

)�).

A feasible solution is to 
onne
t ea
h vertex to d

k

2

e

neighbors on ea
h side. The resulting graph, a Harary

graph, is k-
onne
ted. The power of ea
h node is the

length of the 
hord 
orresponding to the ar
 of length

k

n

of the perimeter. The length of this 
hord is 2R sin((d

k

2

e)

�

n

).

Thus, the ratio between the output of CBTC and the op-

timum solution is 
(

n

k

) when n is large enough and k is

small sin
e sin(d

k

2

e

�

n

) ' (d

k

2

e

�

n

) and sin((

1

2

�

1

3k

)�) =

�(1), i.e., a 
onstant. This example shows that the ap-

proximation fa
tor of CBTC is at least 
(

n

k

).

4. Approximations

In this se
tion, we present several approximation al-

gorithms for the k-UPVCS problem. We �rst dis
uss

the relationship between the normal 
ost and the power


ost of a graph, from whi
h an O(k�)-approximation for

the k-UPVCS problem immediately follows where � is

the best approximation fa
tor for the k-UCVCS problem.

The k-UPVCS approximation algorithm simply uses the

k-UCVCS approximation algorithm as a bla
k box sub-

routine. We observe that we 
an a
tually improve our ap-

proximation fa
tor by analyzing a parti
ular k-UCVCS

algorithm more pre
isely.

Although this algorithm yields the best approximation

fa
tor known and works even for general graphs, it has

the disadvantage of having a high 
ommuni
ation over-

head. Hen
e, we also present a simple approximation al-

gorithm with a slightly worse approximation fa
tor whi
h

is appli
able to geometri
 graphs and is distributed.

4.1 Global Approximation

As mentioned above, the normal 
ost and power 
ost of

graphs are 
losely related. In fa
t, Kirousis et al. [18℄ ex-



ploit this relationship to obtain a 2-approximation for the

UPVCS problem via a solution for the UCVCS, or min-

imum spanning tree, problem. As we use these relation-

ships in many of our algorithms and proofs, we present

them su

in
tly here. Lemma 2 states that the power


ost of a graph is at most twi
e the normal 
ost of the

graph. Lemma 3 observes that, for trees, we 
an also

upper bound the normal 
ost by the power 
ost. Finally,

Lemma 4 uses the pre
eeding two lemmas to show that

a forest de
omposition of a graph implies a relationship

between its normal and power 
ost.

Lemma 2. For any graph G, P (G) � 2C(G).

Proof. The proof is straightforward from the follow-

ing inequalities.

P (G) =

X

v2V

max

fu j (u;v)2Eg

p(u; v)

�

X

v2V

X

(u;v)2E

p(u; v)

= 2

X

e2E

p

e

= 2C(G)

Lemma 3. For any tree T , C(T ) � P (T ).

Proof. Root T at an arbitrary vertex r. Note the

power of ea
h node is at least the 
ost of its parent edge.

The statement follows.

Lemma 4. For any graph G whi
h 
an be written as a

union of t forests, C(G) � tP (G).

Proof. Write G = [

t

i=1

F

i

for forests F

i

. Then

C(G) �

t

X

i=1

C(F

i

)

�

t

X

i=1

P (F

i

)

�

t

X

i=1

P (G)

= tP (G)

where the se
ond inequality follows from Lemma 3 and

the third follows sin
e ea
h forest is a subgraph of G.

Using these lemmas, we 
an show that a k-UCVCS

subgraphG

C

is in fa
t a 2k approximation to a k-UPVCS

subgraph G

P

. Re
all that an edge (u; v) of a k-vertex


onne
ted graph H is 
riti
al if H� (u; v) is not k-vertex


onne
ted. Graph G is 
riti
ally k-vertex 
onne
ted if

and only if G is k-vertex 
onne
ted and all edges of G

are 
riti
al. We use the following theorem to �nd a forest

de
omposition of a 
riti
al k-vertex 
onne
ted graph.

Theorem 2 (Mader [26℄). In a k-vertex 
onne
ted

graph, a 
y
le 
onsisting of 
riti
al edges must be in
ident

to at least one node of degree k.

Lemma 5. Any 
riti
al k-vertex 
onne
ted graph, G,


an be written as the union of k forests.

Proof. Let F

0

be the subgraph indu
ed by all verti
es

in G with degree greater than k. From Theorem 2 and

the fa
t that every edge of G is 
riti
al, we know that

every 
y
le in G 
ontains a vertex with degree at most

k, and so F

0

is a forest. However, F

0

does not tou
h all

the verti
es { namely it does not in
lude the verti
es of

degree at most k. We 
an add edges from these verti
es

to F

0

as follows. Until there are no remaining untou
hed

verti
es, �nd an untou
hed vertex v

i

2 G � F

0

. If there

is an edge from v

i

to F

0

, add this edge to F

0

. Else,


hoose an arbitrary edge (v

i

; v

j

) and add this to F

0

. By


onstru
tion, the resulting graph is still a forest. The

remaining graph H

1

= G�F

0

has maximum degree k�1.

Let F

1

be a spanning forest of H

1

. Then H

2

= H

1

� F

1

has maximum degree k � 2. Using indu
tion, we 
an


onstru
t k�2 forests F

2

; : : : ; F

k�1

that 
over H

2

. Then

F

0

; : : : ; F

k�1

are k forests that 
over G.

We 
an now see that a k-UCVCS subgraph G

C

is in

fa
t a 2k approximation to a k-UPVCS subgraph G

P

:

P (G

C

) � 2C(G

C

) � 2C(G

P

)

� 2kP (G

P

)

where the last inequality follows from the fa
t that we


an assume a k-UPVCS subgraph is 
riti
ally k-vertex


onne
ted.

Theorem 3. The power of a k-UCVCS subgraph is at

most 2k times the power of a k-UPVCS subgraph.

Unfortunately, we 
an not solve the k-UCVCS prob-

lem exa
tly. However, it follows from Theorem 3 that an

�-approximation algorithm for the k-UCVCS problem is

a 2�k-approximation for the k-UPVCS problem. In gen-

eral graphs, Cheriyan et al. [7℄, give a log k-approximation

algorithm for the k-UCVCS problem for general graphs

with at least 6k

2

verti
es, implying an O(k log k) ap-

proximation algorithm for the k-UPVCS problem in su
h

graphs. Kortsarz and Nutov [19℄ give a k-approximation

algorithm with no assumption on the size of the graph,

implying an O(k

2

) algorithm for the k-UPVCS problem

in any graph. In geometri
 graphs, the triangle inequal-

ity on edge lengths implies that the edge 
osts satisfy a

weak triangle inequality (see Corollary 1 in Se
tion 4.2).

In other words, edge 
osts 


ij

satisfy 


ik

� 2


�1

�(


ij

+


jk

)

where 2 � 
 � 4 is the power attenuation exponent.

A dire
t extension of the results in Khuller et al. [17℄

shows � = 2 + 2




(k � 1)=n for the k-UCVCS problem

in these graphs, implying an O(k) approximation for the

k-UPVCS problem.

It is worth mentioning that our approa
h for k-vertex


onne
tivity 
an also be applied to obtain an O(k) ap-

proximation for k-edge 
onne
tivity, another important




on
ept in fault-tolerant network design. Graph G is k-

edge 
onne
ted if it remains 
onne
ted after deleting any

set of k�1 edges. Formally, we 
an de�ne the undire
ted

minimum power k-edge 
onne
ted subgraph (k-UPECS)

and the undire
ted minimum 
ost k-edge 
onne
ted sub-

graph (k-UCECS) similar to the k-UPVCS problem and

the k-UPVCS problem, respe
tively. It turns out that

the k-UCECS problem is easier to approximate than the

k-UCVCS problem. In fa
t, 
onstant fa
tor approxima-

tions are known even for general graphs ([15, 16℄). Goe-

mans and Williamson [15℄ use a primal-dual method and

Jain [16℄ uses an iterative rounding method to a
hieve

a 2-approximation algorithm for this problem. Here, we


an design a 2�k-approximation for the k-UPECS prob-

lem from an �-approximation for the k-UCECS problem.

As a result we a
hieve a 4k-approximation for the k-

UPECS problem using 2-approximations for the k-UCECS

problem ([15, 16℄). The proof is the same as the proof

for vertex 
onne
tivity ex
ept that we need to reprove

Lemma 5 for 
riti
al k-edge 
onne
ted graphs.

Lemma 6. Any 
riti
al k-edge 
onne
ted graph, G, 
an

be written as the union of k forests.

Proof. We use the following fa
t from graph the-

ory [12℄: Given a k-edge 
onne
ted graph G, let F

1

be a

maximal forest in G and F

i

(2 � i � k) be a maximal

forest in G � F

1

� F

2

� : : : � F

i�1

. Then, the union of

F

1

; : : : ; F

k

is k-edge 
onne
ted [12℄. Sin
e G is 
riti
ally

k-edge 
onne
ted and the union of F

i

's is a k-edge 
on-

ne
ted subgraph of G, F

1

; : : : ; F

k

should 
over all the

edges of G.

Returning to our algorithm for the k-UPVCS prob-

lem, one 
an see that we simply use an algorithm for

the k-UCVCS problem as a bla
k box. We 
an improve

the approximation fa
tor if we a
tually analyze the in-

ternals of the underlying k-UCVCS algorithm. We fol-

low the k-approximation algorithm introdu
ed by Kort-

sarz and Nutov [19℄ to approximate k-UCVCS subgraphs.

Their algorithm, whi
h we refer to as Algorithm Global

k-UPVCS, �rst �nds a 2-approximation to the 
heap-

est normal 
ost k-out
onne
ted subgraph H rooted at an

arbitrary vertex r using a subroutine whi
h we refer to

as A(r;G). A k-out
onne
ted subgraph rooted at r is a

subgraph with k internal vertex disjoint paths between

r and every other vertex v 2 G. They show that su
h a

graph has a 
over of size at most k � 2 where a 
over is

a set of edges that 
an be added to a graph to make it

k-
onne
ted. The algorithm 
omputes a k � 2 
over F

0

for H and �nally repla
es ea
h edge (u; v) 2 F

0

by the k

vertex disjoint paths from u to v with the 
heapest (nor-

mal) 
ost (as they mention, these paths 
an be found in

polynomial time via a min-
ost k-
ow algorithm). One


an easily observe that adding these k disjoint paths in-

stead of ea
h edge of the 
over preserves k-
onne
tivity.

For a formal des
ription of this algorithm, see Figure 2.

Algorithm Global k-UPVCS(G(V;E))

// 
hoose arbitrary root r

r 2 V

// �nd k-out
onne
ted subgraph H

// and 
overing set F

0

using subroutine A(r;G)

H;F

0

 A(r;G)

for (u; v) 2 F

0

// �nd k vertex disjoint paths F

uv

with the 
heapest

// (normal) 
ost from u to v in G

F

uv

 k vertex disjoint paths with 
heapest 
ost

end

// repla
e edges in 
over by the sets of

// 
heapest k vertex disjoint paths

for (u; v) 2 F

0

H  H [ F

uv

end

output G

k

= H

Figure 2: A formal des
ription of Algorithm

Global k-UPVCS

k �

2 8

3 16

4 20

5 24

6 32

7 36

Table 1: Improved approximation fa
tor � of Al-

gorithm Global k-UPVCS for k � 7

We show that this algorithm of Kortsarz and Nutov is

in fa
t an 8(k�1)-approximation for the k-UPVCS prob-

lem in general graphs. For the spe
ial 
ases of k 2 f4; 5g

and k 2 f6; 7g, Kortsarz and Nutov [19℄ show the 
over-

ing set of a k-out
onne
ted graph has size 1 and 2 respe
-

tively, implying better approximations in these 
ases.

Table I lists the approximation fa
tor of this algorithm

for various k, taking into a

ount these spe
ial 
ases. For

the important 
ase of k = 2, this algorithm yields an 8-

approximation. Lloyd et al. [22℄ independently obtained

a di�erent 8-approximation algorithm for the 2-UPVCS

problem.

Theorem 4. Algorithm Global k-UPVCS returns a k-

vertex 
onne
ted subgraph G

k

whose power 
ost is at most

8(k � 1) times the power of a k-UPVCS subgraph for

k � 2.

Proof. We de
ompose G

k

into H and F � [

uv

F

uv

and bound the 
ost of ea
h part separately. Let G

opt

be

a k-UPVCS subgraph. First we bound P (H) in terms of

P (G

opt

). Let H

opt

be the minimum normal 
ost graph

that has k edge disjoint paths between r and ea
h v 2

V � frg. We know P (H) � 2C(H) � 4C(H

opt

) as

A(r;G) is a 2-approximation. Noti
e any k-vertex 
on-

ne
ted graph also has k edge disjoint paths between r

and ea
h v 2 V � frg. Therefore C(H

opt

) � C(G

k

)



for any k-vertex 
onne
ted graph G, and in parti
ular

for G

opt

. Thus P (H) � 4C(G

opt

). Note we 
an as-

sume G

opt

is 
riti
ally k-
onne
ted, and so, by Lemma 5,

we 
an de
ompose G

opt

into k forests. By Lemma 4,

C(G

opt

) � kP (G

opt

). Putting together these inequali-

ties, we see P (H) � 4C(G

opt

) � 4kP (G

opt

).

Now we bound P (F ) in terms of P (G

opt

). We write

F as a union of the k � 2 sets of edges F

uv


orrespond-

ing to the F

uv

in the algorithm. Re
all ea
h F

uv

is the

minimum normal 
ost set of k vertex-disjoint paths be-

tween u and v where (u; v) 2 F

0

. Now P (F ) � 2C(F ) �

2

P

(u;v)2F

0

C(F

uv

). Let G

uv

be the minimum power 
ost

set of k vertex-disjoint paths between u and v. Then

C(F

uv

) � C(G

uv

). Graph G

uv


an be written as the

union of two trees, T

u

= G

uv

�fvg and T

v

= G

uv

�fug,

so by Lemma 4, C(G

uv

) � 2P (G

uv

). Now G

opt

must


ontain k vertex disjoint paths between every pair of

verti
es, and so P (G

uv

) � P (G

opt

). Combining these

inequalities, we see

P (F ) � 2

X

(u;v)2F

0

C(F

uv

)

� 2

X

(u;v)2F

0

C(G

uv

)

� 4

X

(u;v)2F

0

P (G

uv

)

� 4

X

(u;v)2F

0

P (G

opt

)

� 4(k � 2)P (G

opt

):

Our �nal approximation fa
tor is P (G

k

) � P (H)+P (F ) �

8(k � 1)P (G

opt

) as stated.

We show that, in a sense, this approximation fa
tor is

tight. In other words, a k-UCVCS subgraph 
an have

power 
ost O(k) times the power 
ost of a k-UPVCS

subgraph. Consider the example graph G illustrated in

Figure 3. Here we have n 
opies of a graph H

i

whi
h all

share a 
ommon subgraph K

k

, the 
omplete graph on k

nodes with zero-
ost edges. Ea
h graph H

i


ontains a set

U

i

of k nodes, all of whi
h are 
onne
ted to all the nodes

in K

k

by zero-
ost edges. Finally, there is a spe
ial node

v

i

whi
h is 
onne
ted to all nodes in K

k

by a set of 
ost

1 edges F

i;1

and to all nodes in U

i

by a set of 
ost 1� �

edges F

i;(1��)

for some � 2 (0; 1).

Note H = K

k

[

n

i=1

H

i

is a k-
onne
ted graph of 
ost

zero. Thus any graph whi
h in
ludes k edges from v

i

toH

will be a k-
onne
ted subgraph of G. As a k-
onne
ted

subgraph of G must have minimum degree k, this suf-

�
ient 
ondition is also ne
essary, and so the k-UCVCS

subgraph of G is G

C

= H[

n

i=1

F

i;(1��)

. A similar reason-

ing shows G

P

= H [

n

i=1

F

i;1

is the k-UPVCS subgraph.

Now we 
ompute the power 
osts of these two subgraphs.

In G

C

, ea
h node in a set U

i

has power 
ost (1� �) and

ea
h spe
ial node v

i

has power 
ost (1� �). The nodes in

nK

H H H

(a) External

stru
ture of G

k

vU

k edges of cost 1

K

k edges of cost < 1

...

(b) Stru
ture of sub-

graph H

i

of G

Figure 3: Stru
ture of G

the 
ommon substru
ture K

k

have power 
ost 0. Thus

P (G

C

) = nk(1� �) + n(1� �):

In G

P

, ea
h spe
ial node v

i

has power 
ost 1 and all

the nodes in the 
ommon subgraph K

k

have power 
ost

1. However, the nodes in the U

i

sets have power 
ost 0.

Therefore,

P (G

P

) = n(1) + k(1):

Taking the ratio as n goes to in�nity and � goes to zero,

we see P (G

C

) = (k + 1)P (G

P

) in the limit. Thus an

approa
h that uses the k-UCVCS subgraph as a solution

for the k-UPVCS problem 
an never a
hieve an approx-

imation fa
tor better than O(k).

4.2 Distributed Approximation

In this se
tion, we assume that our graph is geomet-

ri
 (i.e. the edge lengths satisfy the triangle inequality)

and the power attenuation exponent is uniform. In other

words, the 
ost of an edge e of length r

e

is r




e

for some 
,

2 � 
 � 4. As shown in Lemma 7, this implies that the

edge 
osts satisfy a weak triangle inequality.

Lemma 7. If x

0

�

P

k

i=1

x

i

, then x




0

� k


�1

P

k

i=1

x




i

.

Proof. Dividing both sides of the inequality by k




,

we see

�

x

0

k

�




�

 

P

k

i=1

x

i

k

!




�

P

k

i=1

x




i

k

by the 
onvexity of the fun
tion f(x) = x




.

Corollary 1. In a geometri
 graph with edge lengths

r

ij

, the edge 
osts p

ij

= r




ij

satisfy a weak triangle in-

equality:

8(i; j); (j; k); (i; k) 2 E;

p

ik

� 2


�1

� (p

ij

+ p

jk

):

For simpli
ity, we will �rst des
ribe an algorithm for

the 2-UPVCS problem. As Theorem 5 states, the algo-



Algorithm Distributed 2-UPVCS(G(V;E))

// 
ompute the minimum spanning tree

T

MST

 Algorithm MST(G(V;E))

for node u 2 T

MST

// �nd neighbors of u

N  fvj(u; v) 2 T

MST

g

// add arbitrary path 
onne
ting neighbors

label verti
es in N in an arbitrary order

E  E [ f(v

1

; v

2

); : : : ; (v

jNj�1

; v

jNj

)g

end

Figure 4: A formal des
ription of Algorithm Dis-

tributed k-UPVCS for k = 2

rithm uses just a 
onstant fa
tor more power than the op-

timal 
on�guration. Our algorithm uses as a subroutine

Algorithm MST, an algorithm for 
omputing the mini-

mum spanning tree of the input graph. It then adds a

path amongst the neighbors of ea
h node in the returned

tree. See Figure 4 for a formal des
ription.

This algorithm has the signi�
ant advantage that it is

distributed, i.e., ea
h node 
an 
ompute its power setting

with just a small number of messages to other nodes. In

wireless networks with no 
entral authority, global 
om-

putations are quite expensive and so the low 
ommuni
a-

tion overhead of this algorithm makes it very attra
tive

in pra
ti
al settings. In addition, the low 
ommuni
ation

overhead of this algorithm makes it easier to implement

in a mobile setting. Indeed, on
e the minimum spanning

tree has been 
omputed, ea
h node just needs to know its

neighbors and their neighbors in order to de
ide at what

power to transmit. The minimum spanning tree itself


an be 
omputed by the distributed minimum spanning

tree algorithm of Gallager et al. [14℄ in just 5n log n+2m

messages (where n = jV j, the number of devi
es, and

m = jEj, the number of valid 
ommuni
ation links). The

number of required messages 
an be redu
ed by �nding

an approximate minimum spanning tree, although this

will a�e
t the approximation fa
tor of the resulting algo-

rithm. Sin
e we only need O(n) messages on
e we have

the minimum spanning tree, the overall number of mes-

sages is O(n log n+m).

Theorem 5. For any geometri
 graph G, Algorithm Dis-

tributed 2-UPVCS returns a 2-vertex 
onne
ted subgraph

G

2

whose power P (G

2

) is a 2(4 �2


�1

+1)-approximation

of the power of a 2-UPVCS subgraph.

Proof. We use the fa
t that P (G) � 2C(G) and

bound C(G). Note for any graph G with subgraphs

H

1

; : : : ; H

n

su
h thatG = [

n

i=1

H

i

, C(G) �

P

n

i=1

C(H

i

).

Let T

MST

be the minimum spanning tree of G 
omputed

by Algorithm MST in the �rst step of our algorithm and

F = G

2

� T

MST

be the graph we added to T

MST

in the

for-loop of our algorithm. Then C(G

2

) � C(T

MST

) +

C(F ). To bound C(F ) in terms of C(T

MST

), 
onsider

edge (u; v) 2 F . It was added to 
reate a path among

the neighbors of some vertex, say, w. Thus (w; u) and

(w; v) are in T

MST

. We say (w; u) and (w; v) pay for

(u; v). Noti
e ea
h edge (x; y) 2 T

MST

pays for at most

four edges in F { two edges for whi
h x is the 
ommon

neighbor and two edges for whi
h y is the 
ommon neigh-

bor. These four edges 
orrespond to edges adja
ent to y

and x on the two paths of neighbor verti
es of x and y,

respe
tively. By the weak triangle inequality, it follows

that C(F ) � 4 � 2


�1

C(T

MST

). Therefore,

P (G

2

) � 2C(G

2

)

� 2(4 � 2


�1

+ 1)C(T

MST

)

� 2(4 � 2


�1

+ 1)C(T

UPV CS

)

� 2(4 � 2


�1

+ 1)P (T

UPV CS

)

� 2(4 � 2


�1

+ 1)P (G

2�UPV CS

)

where G

2�UPV CS

is a 2-UPVCS subgraph and the last

inequality follows sin
e G

2�UPV CS

is also a solution to

the UPVCS problem.

Finally, we note that G

2

is indeed a spanning 2-vertex


onne
ted subgraph. Sin
e T

MST

spans G, 
learly G

2

spans G. Furthermore, the removal of any single node

leaves the graph 
onne
ted be
ause of the path amongst

its neighbors.

It is slightly tri
ky to generalize this algorithm for

k � 3. The main diÆ
ulty arises from the fa
t that the

tree itself is just 1-
onne
ted. Thus the neighbor sets

of verti
es 
an be too lo
alized. In order to make the

output graph k-
onne
ted, we must have an additional

step in our algorithm that adds neighbors to guarantee a

good interse
tion of neighbor sets throughout the graph.

We would like to add these neighbors without in
urring

too mu
h 
ost. We will bound the additional 
ost in a

manner similar to the bound argument for P (F ), namely

we will 
harge the additional 
ost to the edges of T

MST

.

However, we must be 
areful to 
harge ea
h edge only

a small number of times in order to get a good approx-

imation fa
tor. We 
an a

omplish this by using the

extended family of a vertex as its additional neighbors.

Spe
i�
ally, given a vertex x with less than k neigh-

bors, we perform a depth-�rst sear
h starting at the next

sibling x

1

of x and then the next sibling x

2

of x

1

, ..., and

�nally the parent of x until we have visited k verti
es

(so long as k is 
onstant, this step is lo
ally distributed).

We add edges from x to ea
h of these k verti
es. Now all

verti
es have at least k neighbors. For ea
h vertex x, we

add the following k-
onne
ted graph (a Harary graph) to

its neighbors N : form an arbitrary 
y
le C amongst the

verti
es in N ; 
onne
t ea
h vertex y 2 C to the �rst d

k

2

e

verti
es on ea
h side of y. Repeating this pro
edure for

every vertex will make the entire graph k-
onne
ted.

1

1

In fa
t, Harary graphs are de�ned di�erently when k,

the number of nodes, is odd. However, the slightly al-

tered de�nition provided here enables us to prove a better



Figure 5: Adding neighbors to verti
es in T

MST

(the intermediary graph before adding 
y
les

among neighbors)

A 
ounting argument along with the weak triangle in-

equality shows that ea
h edge gets 
harged k

O(
)

times.

Indeed, ea
h edge of the minimum spanning tree pays

for at most O(k

2

) neighbor edges, and ea
h edge in this

new graph (minimum spanning tree plus neighbor edges)

pays for at most O(k

2

) Harary edges. In both 
ases, the

added edges span at most k edges in the original graphs,

giving a distributed k

O(
)

-approximation algorithm.

Theorem 6. For any geometri
 graph G, there is a

distributed algorithm whi
h outputs a k-vertex 
onne
ted

subgraph whose power is a k

O(
)

-approximation of the

power of a k-UPVCS subgraph.

We leave the detailed proof of this result to the full

version of the paper. However, we des
ribe the algo-

rithm for the spe
ial 
ase k = 3. In this 
ase, we must

add one neighbor to ea
h node. We will �nd this ad-

ditional neighbor amongst the siblings (or grandparent

if there are no siblings). This pro
ess is illustrated in

Figure 5. Figure 6 
ontains a formal des
ription of this

algorithm. This algorithm is based on a distributed min-

imum spanning tree algorithm whi
h 
an be 
omputed

with O(n log n + m) messages. After the 
omputation

of the minimum spanning tree, the remainder of the al-

gorithm is lo
ally distributed. Even the neighbor addi-

tion step must query at most one neighbor whi
h is at

most a distan
e of two from the original vertex. There-

fore, these remaining steps use just O(n) messages, and

the total message 
omplexity of the algorithm is again

O(n log n+m).

Theorem 7. For any geometri
 graph G, Algorithm

Distributed 3-UPVCS returns a 3-vertex 
onne
ted sub-

graph G

3

whose power P (G

3

) is at most 2(1 + 7 � 2


�1

+

12 � 4


�1

) times the power of a 3-UPVCS subgraph.

Proof. The proof is very similar to the proof of The-

orem 5. Again, we use the fa
t that P (G

3

) � 2C(G

3

)

and bound C(G

3

). Let N be the set of edges added in

the �rst for-loop to 
reate neighbors and O be the set

of edges added in the se
ond for-loop to 
reate 
y
les

amongst neighbors. Thus, G

3

= T

MST

[ N [ O, and so

bound on the power 
onsumption of the resulting graph.

Algorithm Distributed 3-UPVCS(G(V;E))

// 
ompute the minimum spanning tree

T

MST

 Algorithm MST(G(V;E))

root T

MST

at arbitrary vertex r

label nodes v

1

; : : : ; v

n

2 V in an arbitrary order

// add a neighbor to ea
h vertex

G

0

3

 T

MST

for node u 2 T

MST

� frg

if u has siblings then

add edge (u; v) to G

2

where v is

su

essor of u in 
y
li
 ordering indu
ed

by vertex labelling restri
ted to sibling set

else

add edge (u; v) to G

2

where v is

grandparent of u

end

// add a 
y
le among neighbors of verti
es

for node u 2 G

0

3

N  fvj(u; v) 2 G

0

3

g

label verti
es in N in an arbitrary order

E  E [ f(v

1

; v

2

); : : : ; (v

jNj�1

; v

jNj

); (v

jNj

; v

1

)g

end

Figure 6: A formal des
ription of Algorithm k-

UCVCS for k = 3

C(G

3

) � C(T

MST

) + C(N) + C(O). We bound C(N) in

terms of C(T

MST

) by 
harging edges in T

MST

for edges in

N . We 
laim ea
h edge (u; v) 
an be 
harged at most 3

times | twi
e for edges added amongst siblings and on
e

for an edge added from the 
hild of u to its grandparent

v. Note ea
h added edge spans at most two original

edges, and so by the weak triangle inequality, this im-

plies C(N) � 3 � 2


�1

C(T

MST

). Now we bound C(O) in

terms of C(N [ T

MST

). As argued in the proof of Theo-

rem 5, ea
h edge in N [T

MST


an be 
harged for at most

four edges in O, and ea
h added edge spans at most two

edges from N [ T

MST

. Therefore, by the weak triangle

inequality, C(O) � 4 � 2


�1

(C(N) +C(T

MST

)), and so

P (G

3

) � 2C(G

3

)

� 2(C(T

MST

) +C(N) + C(O))

� 2(1 + 4 � 2


�1

)(C(T

MST

) + C(N))

� 2(1 + 4 � 2


�1

)(1 + 3 � 2


�1

)C(T

MST

)

� 2(1 + 7 � 2


�1

+ 12 � 4


�1

)P (G

OPT

)

where G

OPT

is a 3-UPVCS subgraph and the last in-

equality follows from a reasoning similar to that in the

proof of Theorem 5.

Finally, we note that G

3

is indeed a spanning 3-vertex


onne
ted subgraph. Sin
e T

MST

spans G, 
learly G

3

spans G. Furthermore, the removal of any two nodes

leaves the graph 
onne
ted. More pre
isely, we 
an 
on-

sider two 
ases. In the �rst 
ase, we remove two non-

adja
ent verti
es u and v in T

MST

. Here be
ause of the


y
les amongst the neighbors and the path from u to v in

T

MST

, the graph remains 
onne
ted. In the se
ond 
ase,

we remove two adja
ent verti
es u and v in T

MST

(thus



without loss of generality, we 
an assume u is the parent

of v in T

MST

.) Again in this 
ase, be
ause of adding a

sibling or grandparent of ea
h vertex to set of its neigh-

bors and then adding the 
y
le amongst its neighbors,

we have 
onne
tivity of the remaining graph.

We note this is not ne
essarily the best approximation

fa
tor one 
an prove for this algorithm (mainly be
ause

we 
ompare our solutions with optimal 1-
onne
ted sub-

graph (MST) and not optimal 2- or 3-
onne
ted sub-

graphs). In fa
t our pra
ti
al results in Se
tion 5 show

that we often perform mu
h better than CBTC algo-

rithm and the performan
e is 
omparable to the 
entral-

ized algorithm. In addition, this algorithm is both dis-

tributed and highly lo
alized in the sense that after the

distributed 
omputation of the spanning tree and sele
-

tion of the root, all operations 
an be performed lo
ally.

For this reason, we believe this algorithm is very suitable

for pra
ti
al situations.

We emphasize that after 
omputing the MST, the re-

maining steps of the algorithm are based on lo
al infor-

mation and 
an be implemented lo
ally (as long as k is

a 
onstant). To the best of our knowledge there is no lo-


ally 
omputable algorithm or approximation algorithm

for MST. However, if we are willing to forgo the approxi-

mation guarantee, we 
an make our algorithm 
ompletely

lo
al by using a lo
al heuristi
 for MST like CBTC as the

initial 1-
onne
ted graph in our algorithm.

Finally, we note that sin
e we 
ompare the solution

to MST and a k-vertex 
onne
ted graph is also k-edge


onne
ted, this distributed algorithm gives the same ap-

proximation guarantee for the power optimum k-edge


onne
ted subgraph problem (k-UPECS).

5. Performan
e Evaluation

In the previous se
tion, we proved a theoreti
al bound

on the performan
e of our algorithms. In this se
tion, we

observe that our algorithms even perform well in pra
-

ti
e. In order to understand the e�e
tiveness of our algo-

rithms, we 
ompare them to a previous heuristi
, namely

the Cone-Based Topology Control heuristi
 of Watten-

hofer et al. [28℄ and Li et al. [20℄ and Bahramgiri et al. [2℄.

5.1 Experimental Environment

We generate random networks, ea
h with 100 nodes.

The maximum possible power at ea
h node is �xed at

E

max

= (250)

2

. With our assumed power attenuation

exponent 
 = 2, this implies a maximum 
ommuni
ation

radius R of 250 meters. We evaluate the performan
e of

our algorithms on networks of varying density. Note we

expe
t, and in fa
t observe, that the performan
e of all

algorithms improves as density, and thus the number of

extraneous edges, in
reases. In order to obtain a given

density (from 6 nodes per transmission area to 30), we

position 100 nodes randomly in an appropriately sized

square. We assume the MAC layer is ideal. These net-

works are similar to the sample networks used by Wat-

tenhofer et al. [28℄ and Cartigny et al. [6℄.

As a performan
e measure, we 
ompute the average

expended energy ratio (EER) of ea
h algorithm for these

random networks:

EER =

Average Power

E

max

� 100:

This measure 
ompares the average power of a node in

the network to the maximum power of a node in the

network; we would like this ratio to be small.

5.2 Observations

The three algorithms we 
onsider in this experiment

are the Cone-Based Topology Control [2℄ heuristi
 re-


apped in Se
tion 3.2, the Distributed k-UPVCS algo-

rithm introdu
ed in Se
tion 4.2, and the Global k-UPVCS

algorithm introdu
ed in Se
tion 4.1. Figure 5.2, Table

5.1, and Table 5.1 depi
t all these results.

Here, we dis
uss the results for 2-UPVCS and 3-UPVCS.

For 2-UPVCS, the average power assigned by Global k-

UPVCS is from 4% to 15% of the maximum possible

power, E

max

(i.e., the EER is between 4 and 15). The

average power for Distributed k-UPVCS is from 7% to

32% of E

max

whereas for Cone-Based Topology Control,

it is from 58% to 90%. For 3-UPVCS, the average power

assigned is from 5% to 20% for Global k-UPVCS, from

9% to 39% for Distributed k-UPVCS, and from 75% to

100% for Cone-Based Topology Control. These numbers

show that Global k-UPVCS and Distributed k-UPVCS


onsistently outperform Cone-Based Topology Control in

regards to average power.

As we expe
t, Global k-UPVCS outperforms Distributed

k-UPVCS in most instan
es. It is not surprising to see

that the best algorithm is the totally globalized one, i.e.,

we 
an make better 
hoi
es by ignoring the 
ommuni
a-

tion 
omplexity. However, Distributed k-UPVCS is still

very 
ompetitive with Global k-UPVCS. In fa
t, while

the performan
e of Global k-UPVCS ranges from 4% of

E

max

for dense networks to 20% of E

max

for sparse net-

works, the performan
e of Distributed k-UPVCS ranges

from 7% for dense networks to 35% for sparse networks.

Hen
e, Global k-UPVCS spends at most 75% less than

Distributed k-UPVCS. In 
ontrast, Distributed k-UPVCS

never uses more than twi
e the power of Global k-UPVCS.

Note that the input networks are geometri
, thus the the-

oreti
al performan
e guarantee of Distributed k-UPVCS

proved in Se
tion 4.2 holds.

Global k-UPVCS and Distributed k-UPVCS both out-

perform Cone-Based Topology Control in all 
ases. How-

ever, the improvement of our algorithms is most obvi-

ous in sparse networks. For sparse graphs and espe
ially

for 3-UPVCS, the Cone-Based Topology Control average

power usage is very 
lose to the maximum power whi
h

shows the main 
aw of this heuristi
 and the advantage of



Density Degree Cone-Based Topology Control:ERR Distributed k-UPVCS:ERR Global k-UPVCS:ERR

6 15.56 90.4726 31.3103 15.8636

10 21.62 89.9237 18.6790 11.2938

14 34.02 74.7904 13.4375 7.2419

18 38.72 62.0195 10.9241 6.1628

22 45.24 63.0056 9.0454 4.5905

26 51.26 60.9590 7.8912 4.4476

30 54.56 58.8282 7.0988 3.6705

Table 2: Expended Energy Ratio 
 = 2 for 2-UPVCS (k=2)

Density Degree Cone-Based Topology Control:ERR Distributed k-UPVCS:ERR Global k-UPVCS:ERR

6 15.56 99.5252 35.2772 20.1612

10 21.62 99.6080 25.9680 17.3236

14 34.02 90.2409 15.4045 11.0623

18 38.72 81.9197 13.5849 8.5273

22 45.24 84.0958 10.1658 6.4635

26 51.26 80.3984 8.5393 6.6278

30 54.56 75.1298 8.3860 5.3084

Table 3: Expended Energy Ratio 
 = 2 for 3-UPVCS(k=3)

our algorithms. The di�eren
e between Global k-UPVCS

and Distributed k-UPVCS de
reases as density in
reases

whi
h implies that Distributed k-UPVCS is more 
om-

petitive to Global k-UPVCS in dense graphs.

Finally, it is worth mentioning that although our dis-

tributed algorithms in this paper show mu
h better per-

forman
e than the CBTC algorithm, CBTC is fully lo-


ally 
omputable and for dynami
 settings (not stati


ones that we 
onsidered in this paper) su
h lo
al ap-

proa
hes are more desirable. Our algorithm whi
h seems

more distributed than lo
al (be
ause of 
omputing MST)

has some maintenan
e overhead whi
h needs to be 
on-

sidered further in dynami
 settings. However, we suspe
t

that for the k-UPVCS problem, lo
ally 
omputable algo-

rithms 
an not guarantee 
onstant fa
tor approximation.

6. Con
lusion

In this paper, we 
onsidered power minimization for

k-fault tolerant topology 
ontrol in ad ho
 wireless net-

works. We mentioned the 
omplexity issues of this prob-

lem and showed that previous heuristi
s and approa
hes

do not give us good approximation fa
tors. We demon-

strated two approximation algorithms whi
h give usO(k)-

and k

O(
)

-approximation fa
tors, the se
ond of whi
h 
an

be easily implemented in a distributed ad ho
 wireless

network.

Compared to previous methods, we admit that the

distributed algorithm is not as lo
ally implementable as

CBTC and it is more suitable for stati
 ad-ho
 networks.

However, it gives us a framework to in
rease the 
onne
-

tivity of the network using the lo
al information. Fur-

thermore, if we use a good 1-
onne
ted subgraph like

MST, the pra
ti
al results and worst-
ase theoreti
al 
om-

parison show that the performan
e of this algorithm is

mu
h better than that of CBTC.

Obtaining an approximation algorithm with fa
tor bet-

ter than 8(k � 1), espe
ially with a fa
tor � = o(k),

for undire
ted minimum power k-vertex 
onne
ted sub-

graph (k-UPVCS) is an interesting open question. As

we showed, the solution to undire
ted minimum 
ost

k-vertex 
onne
ted subgraph (k-UCVCS) 
an not give

o(k)-approximation fa
tor for k-UPVCS. Also, a natural

generalization of (log k)-approximation algorithm for k-

UCVCS 
an not give us better than 
(

n

k

)-approximation

algorithm. Other interesting open questions in
lude ob-

taining approximation algorithms with 
onstant fa
tor

ratio for geometri
 undire
ted minimum power k-vertex


onne
ted subgraph and undire
ted minimum power k-

edge 
onne
ted subgraph. We give O(k)-approximation

algorithms for these problems; however we suspe
t that

there are 
onstant fa
tor approximation algorithms for

these problems, espe
ially sin
e there are 
onstant fa
tor

approximation algorithms for the minimum normal 
ost

variants of these problems. For the dire
ted versions of

these problems, to the best of our knowledge, almost

nothing is known and any progress in this regard would

be interesting. In fa
t, we believe for geometri
 graphs,

along with the 12-approximation of Wan et al. [27℄ for

the broad
ast problem, our Distributed k-UPVCS algo-

rithm from Se
tion 4.2 
an be generalized for the dire
ted

version.

The minimum range assignment problem when the sta-

tions are lo
ated along a line at arbitrary distan
e apart

have been subje
t to several re
ent studies [3, 9, 18, 23℄.

Kirousis et al. [18℄ showed an O(n

4

) time dynami
 pro-

gramming algorithm to �nd a minimum 
ost range as-

signment of 
ollinear points ensuring that the resulting

dire
ted network is strongly 
onne
ted. We strongly be-

lieve that using the same approa
h, undire
ted minimum

power (1-)vertex 
onne
ted subgraph of 
ollinear points
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Figure 7: The 
omparison between Cone-Based Topology Control (o) (low performan
e), Distributed

k-UPVCS (+) (middle performan
e), and Global k-UPVCS (*) (high performan
e)


an be solved in polynomial time. It would be interesting

to know whether or not the result 
an be generalized to

k-UPVCS of 
ollinear points for k > 1.

As mentioned before, so far all approximation (not

heuristi
) solutions for the range assignment problem are

based on minimum spanning trees or approximations of

minimal spanning trees, whi
h are globalized. Our ap-

proximation for k-UPVCS uses the minimum (or any

approximation for minimum) spanning tree as a bla
k

box, and the rest of the operations are very simple lo
al

ones. Thus using our approa
h, any lo
alized algorithm

for minimum spanning trees in ad ho
 wireless networks


an result in lo
alized approximation algorithm for k-

UPVCS.

Finally, in broad
ast oriented proto
ols, we have the

same obje
tives of topology 
ontrol oriented proto
ols,

mentioned in this paper, but we 
onsider the broad
ast

pro
ess from a given sour
e node and we want to have k-

disjoint paths from the sour
e to some or all other nodes.

Obtaining approximation algorithms for this setting is

another possible extension of our results (Noti
e that for

the 
ase of k = 1, there exists su
h an algorithm using a

redu
tion to minimum dire
ted steiner tree [21℄.)
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