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ABSTRACT

In ad ho wireless networks, it is ruial to minimize

power onsumption while maintaining key network prop-

erties. This work studies power assignments of wireless

devies that minimize power while maintaining k-fault

tolerane. Spei�ally, we require all links established

by this power setting be symmetri and form a k-vertex

onneted subgraph of the network graph. This prob-

lem is known to be NP-hard. We show urrent heuristi

approahes an use arbitrarily more power than the opti-

mal solution. Hene, we seek approximation algorithms

for this problem. We present three approximation al-

gorithms. The �rst algorithm gives an O(k�) approxi-

mation where � is the best approximation fator for the

related problem in wired networks (the best � so far is

in O(log k).) Then, using a more ompliated algorithm

and areful analysis, we ahieve O(k) approximation for

general graphs. We then present simple and pratial

distributed approximation algorithms for the ases of 2-

and 3-onnetivity in geometri graphs. In addition, we

demonstrate how we an generalize this algorithm for k-

onnetivity in geometri graphs. Finally, we show that

these approximation algorithms ompare favorably with

existing heuristis. We note that all algorithms presented

in this paper an be used to minimize power while main-

taining k-edge onnetivity with guaranteed approxima-

tion fators.
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1. Introdution

In reent years, ad ho wireless networks have beome

an inreasingly ommon and important phenomenon due

to their appliations in battle�eld ommuniation and

disaster relief ommuniation ([10, 25℄). These networks

fae a variety of onstraints that do not our in wired

networks. Nodes in a wireless network are typially battery-

powered, and it is expensive and sometimes infeasible to

reharge the devie. Thus researh e�orts have foused

on designing minimum power algorithms for typial net-

work tasks suh as broadast transmission ([8, 21, 27℄)

and onnetivity/fault-tolerane ([1, 2, 4, 5, 18, 20, 24℄).

Ad ho wireless networks onsist of simple mobile de-

vies whih ommuniate via radio transmitters. A range

assignment for a network onsists of a power setting for

eah node, and the ost of a range assignment is either

the average power setting or the maximum power set-

ting in that assignment. Transmissions from a single

node in the network reah all nodes within the trans-

mission range. A node an vary its transmission range

by varying the power with whih it transmits a message.

A onsequene of this fat is that the ost of transmitting

a message is not dependent on the number of reeiving

nodes, but simply a funtion of their maximum distane

r from the sending node. Most wireless networks are

multi-hop. In other words, nodes an forward messages

as well as initiate them. In suh settings, it is possible

to broadast or maintain network onnetivity without

every node transmitting at maximum power. This allows

us to seek power-optimal range assignments for these and

related network issues.



Previous works have addressed the issue of power-optimal

range assignments that maintain onnetivity. As this

problem is NP-hard even in the Eulidean plane [11℄,

some approahes onentrate on heuristis. Rodoplu and

Meng [25℄, Wattenhofer et al. [28℄, and Li et al. [20℄ de-

velop one-based loal heuristis for onnetivity. In this

heuristi, eah node inreases transmission power un-

til some loal onditions are met. This algorithm has

a lear advantage of being loalized; however we show

that the power onsumption of the resulting solution an

be arbitrarily worse than that of the optimal solution.

Other papers have onentrated on providing provable

approximation algorithms. Kirousis et al. [18℄ show the

minimum spanning tree of the network graph yields a

2-approximation algorithm for minimum average power

onnetivity. Calinesu et al. [5℄ improve the approxi-

mation fator to 1:69 with a steiner tree-based algorithm

and also provide a more pratial 1:875-approximation

algorithm.

A natural generalization of the onnetivity require-

ment is k-onnetivity or k-fault tolerane. In a k-fault

tolerant network, ommuniation should not be disrupted

even when up to k�1 nodes fail. These networks also pro-

vide multi-path redundany for load balaning or trans-

mission error tolerane. As power-optimal onnetivity

is NP-hard, power-optimal k-fault tolerane is NP-hard

as well. Previous works have investigated heuristis for

this problem. Ramanathan and Rosales-Hain [24℄ on-

sider the speial ase of 2-fault tolerane and provide

a entralized spanning tree heuristi for minimizing the

maximum transmit power in this ase. Bahramgiri et

al. [2℄ generalize the one-based loal heuristi of Wat-

tenhofer et al. [28, 20℄ in order to solve the general k-

fault tolerant setting. However, both of these works are

heuristis and do not have provable bounds on the solu-

tion ost. For the heuristis due to Wattenhofer et al. [28,

20℄ and Bahramgiri et al. [2℄, we show there are exam-

ples for whih these heuristis perform arbitrarily worse

than the optimal solution. It was reently brought to our

attention that Lloyd et al. [22℄ independently present a

general result whih they prove gives an 8-approximation

for 2-fault tolerane, but they do not onsider general k-

fault tolerane.

This work investigates minimum average power sym-

metri k-fault tolerant range assignments. We present

three approximation algorithms for this problem. The

�rst two algorithms with approximation fators O(k log k)

and O(k), although entralized, work even in general

graphs. Then, we present simple and pratial distributed

approximation algorithms for the ases of 2- and 3-onnetivity

in geometri graphs. In addition, we demonstrate how

we an generalize this algorithm for k-onnetivity in ge-

ometri graphs. All algorithms in this paper an be ex-

tended to approximation algorithms for power-optimal

k-edge onnetivity. However, sine we are primarily

onerned with stati settings, node failures (due to lak

of power) are more ommon than edge failures. There-

fore, we fous on vertex onnetivity in this paper. In

Setion 2, we formally de�ne the k-fault tolerant topol-

ogy ontrol problem and the underlying wireless network

model. In Setion 3, we disuss two plausible approahes

to this problem and provide lower bounds for the approx-

imation fators of these approahes in the worst ase. In

Setion 4, we present our approximation algorithms and

prove the approximation fators. In Setion 5, we evalu-

ate the performane of our approximation algorithms by

omparing them to existing heuristis. Finally, in Se-

tion 6, we onlude with a disussion of future researh

diretions.

2. Preliminaries and Model

In this paper, we are mainly interested in stati sym-

metri multi-hop ad ho wireless networks with omni-

diretional transmitters. This is the model onsidered by

Blough et al. [4℄, Calinesu et al. [5℄, Kirousis et al. [18℄,

and others in their works on onnetivity. Algorithms

developed for this model have important pratial on-

siderations. Many existing routing protools are easily

aommodated in this model as links are established in

both diretions. Furthermore, many of the restritions

imposed by this model an be relaxed at the ost of ad-

ditional ommuniation. We briey restate the model

here.

Ad ho wireless networks onsist of a set of mobile

devies equipped with radio transmitters and reeivers.

Eah radio transmitter is assigned a power setting and

an orientation that de�ne the reeption area of its trans-

missions. Oriented transmitters save power by emitting

signals in a partiular diretion. In pratie, most trans-

mitters are omni-diretional, and this is the model we

assume for this paper (and in fat, all ited works assume

this model as well). In ideal settings, an omni-diretional

transmission of power r

2

will reah all reeivers within

a sphere of radius r. However, interferene from other

transmissions and bakground noise may attenuate this

signal. Typially, a node must transmit a message at

power r



, 2 �  � 4, to attain a transmission range of

distane r. The partiular exponent , referred to as the

power attenuation exponent, depends on the environmen-

tal onditions, and may vary from devie to devie.

We onsider multi-hop networks, or networks in whih

devies ooperate to route eah others' messages. In this

way, the overall power usage of the network an be min-

imized. For example, onsider the problem of broadast-

ing a message from devie u and assume the transmis-

sion power grows like the range squared for all devies

(i.e.  = 2). Let devies u, v, and w be positioned at

the verties of a triangle suh that the distane between



u and v is 5 meters, v and w is 6 meters, and u and w

is 10 meters. Then if u wants to send the message to w

diretly, it will take 100 units of power, but by allowing

v to forward the message to w, the system uses just 61

units of power.

In most of this paper, we make the further assump-

tions that our networks are stati and that all established

links are bidiretional or symmetri. In a stati network,

the devies are stationary. If a devie moves, the range

assignment must be realulated in order to maintain de-

sired network properties. In the symmetri link model,

if a devie u is assigned to reeive transmissions from a

devie v, then it must also be able to transmit to devie

v. Although this restrition an theoretially be relaxed,

in pratie symmetri links greatly simplify routing pro-

tools and thus are desirable.

A wireless network an be modeled as a graph G(V;E)

where V is the set of mobile devies andE � V

2

is the set

of pairs of devies between whih ommuniation is pos-

sible. Note E does not neessarily equal V

2

as maximal

transmission ranges and environmental onditions may

impose onstraints on possible pairs of ommuniating

nodes. In general, this graph may be direted, but our

symmetri link onstraint allows us to eliminate all uni-

diretional edges. Typially, an edge (i; j) is assigned

a distane d(i; j), representing the distanes between de-

vies i and j, and ost p(i; j), representing the power set-

ting i and j must use to transmit to eah other. In most

ases, the edge distanes satisfy the triangle inequality,

and we refer to these graphs as geometri graphs. In the

ase of a uniform power attenuation exponent, this also

implies a relationship between edge osts. In some ases,

we plae no assumption on the relationship between edge

osts, and we refer to these graphs as general graphs.

A range assignment R is an assignment of power set-

tings R(i) to devies i. A subgraph H = (V;E

0

) where

E

0

� E of the network graph G = (V;E) de�nes a range

assignment R

E

0

where R

E

0

(i) = max

fj j (i;j)2E

0

g

p(i; j).

The ost of a subgraph is the average (or, equivalently,

the total) power assigned in its orresponding range as-

signment. We use the term power ost for this quantity

to di�erentiate between this ost and the so-alled nor-

mal ost of a graph, i.e., the ost funtion whih aptures

the notion of bandwidth usage and whih wired network

designers typially attempt to minimize. More formally,

Definition 1. In an undireted graph G = (V;E) with

edge osts p(i; j), the power ost of G is

P (G) =

X

i2V

max

fj j (i;j)2Eg

p(i; j):

Definition 2. In a graph G = (V;E) with edge osts

p(i; j), the normal ost of G is

C(G) =

X

(i;j)2E

p(i; j):

Using these de�nitions, we an de�ne two main prob-

lems. The problem we study in this paper is the undi-

reted minimumpower k-vertex onneted subgraph prob-

lem. A k-vertex onneted graph has k vertex-disjoint

paths between every pair of verties, or equivalently, re-

mains onneted when any set of at most k � 1 verties

is removed. Hene the subgraphs we �nd are k-fault tol-

erant.

Definition 3. An UndiretedMinimumPower k-Vertex

Conneted Subgraph (k-UPVCS) of a graph G = (V;E)

is a k-vertex onneted subgraph H = (V; F ), F � E,

suh that P (H) � P (H

0

) for any k-vertex onneted sub-

graph H

0

= (V; F

0

), F

0

� E.

This problem is losely related to the standard k-vertex

onneted subgraph problem whih orresponds to k-

fault tolerane in wired networks.

Definition 4. An UndiretedMinimumCost k-Vertex

Conneted Subgraph (k-UCVCS) of a graph G = (V;E)

is a k-vertex onneted subgraph H = (V; F ), F � E,

suh that C(H) � C(H

0

) for any k-vertex onneted sub-

graph H

0

= (V; F

0

), F

0

� E.

When k is not spei�ed, it is understood that k = 1.

Both the k-UPVCS and k-UCVCS problems are NP-

hard, and thus our work as well as previous works have

foused on �nding approximations for these problems.

An �-approximation algorithm is a polynomial time algo-

rithm whose solution ost is at most � times the optimal

solution ost.

The k-UCVCS problem has been well-studied. These

results are entral to our work, for, as in the ase of

onnetivity, a solution to the k-UCVCS problem turns

out to be an approximation for the k-UPVCS problem.

The problem has been onsidered both for general and

geometri graphs. Frank and Tardos [13℄ and Khuller

and Raghavahari [17℄ were among the �rst authors who

worked on the k-UCVCS problem. The best known ap-

proximation for general graphs with at least 6k

2

verties

is an O(log(k))-approximation due to Cheriyan et al. [7℄.

Their results use an iterative rounding method on a lin-

ear programming relaxation. Kortsarz and Nutov [19℄

study ombinatorial algorithms for di�erent variants of

the problem. They introdue a k-approximation algo-

rithm for general graphs (without any ondition on the

number of verties) and a (2 +

k�1

n

)-approximation for

graphs with metri osts. They also onsider the spe-

ial ases of k � 7 and present a d

k+1

2

e-approximation.

We use ideas from their algorithm to design an O(k)-

approximation for the k-UPVCS problem.

We also onsider edge failures and prove similar guar-

antees for power-optimum k-edge-onneted subgraphs.

We adapt the entralized algorithm to work in this ase.

Our distributed algorithm also gives the same perfor-

mane guarantee for k-edge onneted subgraphs.



3. Previous Approahes

As the k-UPVCS problem is NP-hard, an exat solu-

tion is infeasible. One line of previous work has foused

on approximate solutions. Approximations are often ob-

tained via a linear programming representation of the

problem. However, we show that for the k-UPVCS prob-

lem, a linear programming approah is unlikely to yield

a good approximation in the worst ase. Another line

of work has foused on providing heuristis whih work

well in pratie. However, heuristis do not have prov-

ably good solutions, and in fat, we an show that in

the worst ase, the urrent k-UPVCS heuristis perform

poorly.

It is important to note that the results in this setion

make laims about the worst ase performane of the

proposed algorithms. This does not imply poor behavior

on average or in typial situations. The typial ases an

only be analyzed through experiments, and those results

appear in Setion 5.

3.1 Linear Programming Approah

Many of the best known approximation algorithms are

based on linear programming (LP) approahes. In fat,

the best known k-UCVCS approximation algorithm (an

O(log k)-approximation algorithm by Cheriyan et al. [7℄)

is based on an LP formulation. In this and other LP-

based algorithms, the problem is formulated as an integer

LP. Then, the frational solution of the LP relaxation is

rounded to an integral solution and its value is used as

a lower bound in the analysis. The integrality gap of LP

formulation, i.e., the ratio between the optimal values

of the integral and frational solutions, is a lower bound

on the ahievable approximation fator. One might hope

for an LP-based approximation algorithm for k-UPVCS

with performane similar to that of k-UCVCS. However,

in the following we show that the natural integer LP

formulation for the k-UPVCS problem has an integrality

gap of 
(

n

k

), implying that there is no approximation

algorithm based on this LP with an approximation fator

better than 
(

n

k

).

We present a natural LP formulation of this problem

introdued by Cheriyan et al. [7℄. We assign a zero-one

variable x

e

to eah edge e indiating whether edge e is

in the k-onneted subgraph G

0

= (V;E

0

) of the input

graph G = (V;E). The ost of subgraph G

0

is

P

v2V

p

v

where p

v

is the maximum power of all edges adjaent to

v in G

0

, i.e., p

v

� p(u; v)x

(u;v)

for all (u; v) 2 E. To

guarantee that solutions to the integer program repre-

sent k-onneted subgraphs, we introdue a onstraint

ensuring that there are k vertex-disjoint paths between

every pair of verties (in fat, every pair of sets). De-

�ne a setpair S = (T;H) to be any pair of two disjoint

nonempty subsets T and H of verties. The idea is that

any suh pair of sets must have k vertex disjoint paths

between them in order for G to be k-vertex onneted.

Let Æ(S) = Æ(T;H) be the set of all edges with one end-

point in T and the other in H. There are n � jH [ T j

verties outside H and T that an partiipate in paths

between H and T . Thus, there are at most n � jH [ T j

vertex-disjoint paths between H and T that leave H[T ,

and so there must be at least k � (n� jH [ T j) edges in

Æ(T;H). The setpair LP relaxation is as follows:

minimize

P

v2V

p

v

subjet to

P

e2Æ(S)

x

e

� maxf0; k � (n� jH [ T j)g

for all setpairs S = (T;H)

p

v

� p(u; v)x

vu

for all v 2 V , (u; v) 2 E

0 � x

e

� 1

for all e 2 E

The above disussion shows that these onstraints are

neessary for G

0

to be a k-onneted subgraph. To see

that they are also suÆient, we refer the reader to the

result of Cheriyan et al. [7℄.

Lemma 1. If n � 2k, the integrality gap of the above

linear programming is 
(

n

k

).

Proof. To prove that the integrality gap is 
(

n

k

), we

display an instane in whih the ratio between the fra-

tional and integral solutions is large, say 
(

n

k

). Consider

the omplete graph. Assume all edge osts are equal to

one. A feasible frational solution of the LP is x

e

=

k+1

n

and p

v

=

k+1

n

. In order to hek that this solution

is feasible, we need to prove that for any setpair S =

(T;H),

P

e2Æ(T;H)

x

e

= jHjjT j

k+1

n

� k � (n � jH [ T j).

As jHjjT j � jH [ T j � 1, it is suÆient to show that

k�(n�jH[T j) �

k

n

(jH[T j�1). We use the assumption

that 2k � n and the observation that jH [ T j � (k + 1)

as k � (n� jH [ T j) > 0. For larity of presentation, let

x = jH [ T j and note x � n. Then,

k � (n� x) � k �

2k

n

(n� x)

=

2k

n

x� k

= (

k

n

x� k) +

k

n

x

�

k

n

x

�

kx

n

+

x� (k + 1)

n

=

k + 1

n

(x� 1):

Here the �rst inequality follows from our assumption in

the statement of the lemma, the seond one follows sine

x � n and the third one follows sine x � k + 1. As

this solution is feasible, the ost of the optimal frational

solution is at most n

k+1

n

= k + 1. In the optimal inte-

gral solution, there should be at least one edge inident

to eah vertex; thus the ost of an optimal integral solu-

tion is at least n sine p

v

� 1 for all v. Therefore, the

integrality gap is at least

n

k+1

= 
(

n

k

).



(a) The optimum

2-onneted sub-

graph

(b) The output of

CBTC for k =

2 in whih eah

node inreases its

power until the

angle is less than

2�

3�2

= 60

0

Figure 1: The illustration of CBTC lower bound

3.2 Heuristi-Based Approah

One approah for the k-UPVCS problem is heuristi-

based. Bahramgiri et al. [2℄ show that the one-based

topology ontrol algorithm of Wattenhofer et al. [28, 20℄

for UPVCS an be extended to an algorithm for k-UPVCS.

In the following, we state this algorithm, and then we

onstrut examples whih demonstrate that the approx-

imation fator for this algorithm is at least 
(

n

k

).

In the one-based topology ontrol (CBTC) algorithm,

eah node inreases its power until the angle between

its onseutive neighbors is less than some threshold. In

the following, we present a brief desription of this al-

gorithm. For details of CBTC and how to implement

it in a distributed fashion, we refer to Wattenhofer et

al. [28, 20℄. Node u sends aHello message to every other

node v using power p. Upon reeiving a Hello message

from node u, node v replies with an Ak message. After

gathering the Ak messages, node u onstruts the set

of its neighbors, N(u), along with a set of vetors indi-

ating the diretion of eah neighbor. Node u inreases

its power until the angle between any pair of adjaent

neighbors is at most � for some �xed �. Now, let N

�

(u)

be the �nal set of neighbors omputed by a node u and

E

�

= f(u; v)jv 2 N

�

(u) and u 2 N

�

(v)g. Output graph

G

�

= (V;E

�

).

Wattenhofer et al. [28℄ have shown that for � �

2�

3

, the

subgraph G

�

produed by this algorithm is onneted if

and only if G is onneted. Li et al. [20℄ show that the

theorem does not hold neessarily for � >

2�

3

and they

also extend the result to the direted ase. Bahram-

giri et al. [2℄ generalize the �rst result for k-onneted

subgraphs in the following way: for � �

2�

3k

, G

�

is k-

onneted if and only if G is k-onneted. They also show

that the theorem does not hold neessarily for � >

2�

3k

if k is even and � >

2�

3(k�1)

if k is odd. Although

this heuristi-based algorithm is very pratial in a dis-

tributed mobile setting, it does not have a reasonable

approximation guarantee. We show that this algorithm's

solution an be as muh as

n

k

times the optimal one.

Theorem 1. There are examples for whih the ap-

proximation fator of CBTC algorithm for k-onnetivity

(k � 1) is at least 
(

n

k

), i.e., the ratio between the

power of the output of CBTC and the minimum power

k-onneted subgraph is 
(

n

k

).

Proof. Consider the geometri graph G with n nodes

evenly spaed around a irle. Figure 1 shows an example

when the network has 8 nodes and ompares the optimal

2-onneted subgraph with the output of CBTC for k =

2. In the CBTC algorithm, eah node inreases its power

until the angle between any two onseutive neighbors is

at most

2�

3k

. As a result, eah vertex is onneted to

n

2

�

n

3k

verties in eah half of the yle whih yields a

regular graph of degree

n

2

�

n

3k

= 
(n). The power of

eah node is the length of the hord whih orresponds

to the ar of length (

1

2

�

1

3k

) of the perimeter. More

preisely, the length of this hord is 2R sin((

1

2

�

1

3k

)�).

A feasible solution is to onnet eah vertex to d

k

2

e

neighbors on eah side. The resulting graph, a Harary

graph, is k-onneted. The power of eah node is the

length of the hord orresponding to the ar of length

k

n

of the perimeter. The length of this hord is 2R sin((d

k

2

e)

�

n

).

Thus, the ratio between the output of CBTC and the op-

timum solution is 
(

n

k

) when n is large enough and k is

small sine sin(d

k

2

e

�

n

) ' (d

k

2

e

�

n

) and sin((

1

2

�

1

3k

)�) =

�(1), i.e., a onstant. This example shows that the ap-

proximation fator of CBTC is at least 
(

n

k

).

4. Approximations

In this setion, we present several approximation al-

gorithms for the k-UPVCS problem. We �rst disuss

the relationship between the normal ost and the power

ost of a graph, from whih an O(k�)-approximation for

the k-UPVCS problem immediately follows where � is

the best approximation fator for the k-UCVCS problem.

The k-UPVCS approximation algorithm simply uses the

k-UCVCS approximation algorithm as a blak box sub-

routine. We observe that we an atually improve our ap-

proximation fator by analyzing a partiular k-UCVCS

algorithm more preisely.

Although this algorithm yields the best approximation

fator known and works even for general graphs, it has

the disadvantage of having a high ommuniation over-

head. Hene, we also present a simple approximation al-

gorithm with a slightly worse approximation fator whih

is appliable to geometri graphs and is distributed.

4.1 Global Approximation

As mentioned above, the normal ost and power ost of

graphs are losely related. In fat, Kirousis et al. [18℄ ex-



ploit this relationship to obtain a 2-approximation for the

UPVCS problem via a solution for the UCVCS, or min-

imum spanning tree, problem. As we use these relation-

ships in many of our algorithms and proofs, we present

them suintly here. Lemma 2 states that the power

ost of a graph is at most twie the normal ost of the

graph. Lemma 3 observes that, for trees, we an also

upper bound the normal ost by the power ost. Finally,

Lemma 4 uses the preeeding two lemmas to show that

a forest deomposition of a graph implies a relationship

between its normal and power ost.

Lemma 2. For any graph G, P (G) � 2C(G).

Proof. The proof is straightforward from the follow-

ing inequalities.

P (G) =

X

v2V

max

fu j (u;v)2Eg

p(u; v)

�

X

v2V

X

(u;v)2E

p(u; v)

= 2

X

e2E

p

e

= 2C(G)

Lemma 3. For any tree T , C(T ) � P (T ).

Proof. Root T at an arbitrary vertex r. Note the

power of eah node is at least the ost of its parent edge.

The statement follows.

Lemma 4. For any graph G whih an be written as a

union of t forests, C(G) � tP (G).

Proof. Write G = [

t

i=1

F

i

for forests F

i

. Then

C(G) �

t

X

i=1

C(F

i

)

�

t

X

i=1

P (F

i

)

�

t

X

i=1

P (G)

= tP (G)

where the seond inequality follows from Lemma 3 and

the third follows sine eah forest is a subgraph of G.

Using these lemmas, we an show that a k-UCVCS

subgraphG

C

is in fat a 2k approximation to a k-UPVCS

subgraph G

P

. Reall that an edge (u; v) of a k-vertex

onneted graph H is ritial if H� (u; v) is not k-vertex

onneted. Graph G is ritially k-vertex onneted if

and only if G is k-vertex onneted and all edges of G

are ritial. We use the following theorem to �nd a forest

deomposition of a ritial k-vertex onneted graph.

Theorem 2 (Mader [26℄). In a k-vertex onneted

graph, a yle onsisting of ritial edges must be inident

to at least one node of degree k.

Lemma 5. Any ritial k-vertex onneted graph, G,

an be written as the union of k forests.

Proof. Let F

0

be the subgraph indued by all verties

in G with degree greater than k. From Theorem 2 and

the fat that every edge of G is ritial, we know that

every yle in G ontains a vertex with degree at most

k, and so F

0

is a forest. However, F

0

does not touh all

the verties { namely it does not inlude the verties of

degree at most k. We an add edges from these verties

to F

0

as follows. Until there are no remaining untouhed

verties, �nd an untouhed vertex v

i

2 G � F

0

. If there

is an edge from v

i

to F

0

, add this edge to F

0

. Else,

hoose an arbitrary edge (v

i

; v

j

) and add this to F

0

. By

onstrution, the resulting graph is still a forest. The

remaining graph H

1

= G�F

0

has maximum degree k�1.

Let F

1

be a spanning forest of H

1

. Then H

2

= H

1

� F

1

has maximum degree k � 2. Using indution, we an

onstrut k�2 forests F

2

; : : : ; F

k�1

that over H

2

. Then

F

0

; : : : ; F

k�1

are k forests that over G.

We an now see that a k-UCVCS subgraph G

C

is in

fat a 2k approximation to a k-UPVCS subgraph G

P

:

P (G

C

) � 2C(G

C

) � 2C(G

P

)

� 2kP (G

P

)

where the last inequality follows from the fat that we

an assume a k-UPVCS subgraph is ritially k-vertex

onneted.

Theorem 3. The power of a k-UCVCS subgraph is at

most 2k times the power of a k-UPVCS subgraph.

Unfortunately, we an not solve the k-UCVCS prob-

lem exatly. However, it follows from Theorem 3 that an

�-approximation algorithm for the k-UCVCS problem is

a 2�k-approximation for the k-UPVCS problem. In gen-

eral graphs, Cheriyan et al. [7℄, give a log k-approximation

algorithm for the k-UCVCS problem for general graphs

with at least 6k

2

verties, implying an O(k log k) ap-

proximation algorithm for the k-UPVCS problem in suh

graphs. Kortsarz and Nutov [19℄ give a k-approximation

algorithm with no assumption on the size of the graph,

implying an O(k

2

) algorithm for the k-UPVCS problem

in any graph. In geometri graphs, the triangle inequal-

ity on edge lengths implies that the edge osts satisfy a

weak triangle inequality (see Corollary 1 in Setion 4.2).

In other words, edge osts 

ij

satisfy 

ik

� 2

�1

�(

ij

+

jk

)

where 2 �  � 4 is the power attenuation exponent.

A diret extension of the results in Khuller et al. [17℄

shows � = 2 + 2



(k � 1)=n for the k-UCVCS problem

in these graphs, implying an O(k) approximation for the

k-UPVCS problem.

It is worth mentioning that our approah for k-vertex

onnetivity an also be applied to obtain an O(k) ap-

proximation for k-edge onnetivity, another important



onept in fault-tolerant network design. Graph G is k-

edge onneted if it remains onneted after deleting any

set of k�1 edges. Formally, we an de�ne the undireted

minimum power k-edge onneted subgraph (k-UPECS)

and the undireted minimum ost k-edge onneted sub-

graph (k-UCECS) similar to the k-UPVCS problem and

the k-UPVCS problem, respetively. It turns out that

the k-UCECS problem is easier to approximate than the

k-UCVCS problem. In fat, onstant fator approxima-

tions are known even for general graphs ([15, 16℄). Goe-

mans and Williamson [15℄ use a primal-dual method and

Jain [16℄ uses an iterative rounding method to ahieve

a 2-approximation algorithm for this problem. Here, we

an design a 2�k-approximation for the k-UPECS prob-

lem from an �-approximation for the k-UCECS problem.

As a result we ahieve a 4k-approximation for the k-

UPECS problem using 2-approximations for the k-UCECS

problem ([15, 16℄). The proof is the same as the proof

for vertex onnetivity exept that we need to reprove

Lemma 5 for ritial k-edge onneted graphs.

Lemma 6. Any ritial k-edge onneted graph, G, an

be written as the union of k forests.

Proof. We use the following fat from graph the-

ory [12℄: Given a k-edge onneted graph G, let F

1

be a

maximal forest in G and F

i

(2 � i � k) be a maximal

forest in G � F

1

� F

2

� : : : � F

i�1

. Then, the union of

F

1

; : : : ; F

k

is k-edge onneted [12℄. Sine G is ritially

k-edge onneted and the union of F

i

's is a k-edge on-

neted subgraph of G, F

1

; : : : ; F

k

should over all the

edges of G.

Returning to our algorithm for the k-UPVCS prob-

lem, one an see that we simply use an algorithm for

the k-UCVCS problem as a blak box. We an improve

the approximation fator if we atually analyze the in-

ternals of the underlying k-UCVCS algorithm. We fol-

low the k-approximation algorithm introdued by Kort-

sarz and Nutov [19℄ to approximate k-UCVCS subgraphs.

Their algorithm, whih we refer to as Algorithm Global

k-UPVCS, �rst �nds a 2-approximation to the heap-

est normal ost k-outonneted subgraph H rooted at an

arbitrary vertex r using a subroutine whih we refer to

as A(r;G). A k-outonneted subgraph rooted at r is a

subgraph with k internal vertex disjoint paths between

r and every other vertex v 2 G. They show that suh a

graph has a over of size at most k � 2 where a over is

a set of edges that an be added to a graph to make it

k-onneted. The algorithm omputes a k � 2 over F

0

for H and �nally replaes eah edge (u; v) 2 F

0

by the k

vertex disjoint paths from u to v with the heapest (nor-

mal) ost (as they mention, these paths an be found in

polynomial time via a min-ost k-ow algorithm). One

an easily observe that adding these k disjoint paths in-

stead of eah edge of the over preserves k-onnetivity.

For a formal desription of this algorithm, see Figure 2.

Algorithm Global k-UPVCS(G(V;E))

// hoose arbitrary root r

r 2 V

// �nd k-outonneted subgraph H

// and overing set F

0

using subroutine A(r;G)

H;F

0

 A(r;G)

for (u; v) 2 F

0

// �nd k vertex disjoint paths F

uv

with the heapest

// (normal) ost from u to v in G

F

uv

 k vertex disjoint paths with heapest ost

end

// replae edges in over by the sets of

// heapest k vertex disjoint paths

for (u; v) 2 F

0

H  H [ F

uv

end

output G

k

= H

Figure 2: A formal desription of Algorithm

Global k-UPVCS

k �

2 8

3 16

4 20

5 24

6 32

7 36

Table 1: Improved approximation fator � of Al-

gorithm Global k-UPVCS for k � 7

We show that this algorithm of Kortsarz and Nutov is

in fat an 8(k�1)-approximation for the k-UPVCS prob-

lem in general graphs. For the speial ases of k 2 f4; 5g

and k 2 f6; 7g, Kortsarz and Nutov [19℄ show the over-

ing set of a k-outonneted graph has size 1 and 2 respe-

tively, implying better approximations in these ases.

Table I lists the approximation fator of this algorithm

for various k, taking into aount these speial ases. For

the important ase of k = 2, this algorithm yields an 8-

approximation. Lloyd et al. [22℄ independently obtained

a di�erent 8-approximation algorithm for the 2-UPVCS

problem.

Theorem 4. Algorithm Global k-UPVCS returns a k-

vertex onneted subgraph G

k

whose power ost is at most

8(k � 1) times the power of a k-UPVCS subgraph for

k � 2.

Proof. We deompose G

k

into H and F � [

uv

F

uv

and bound the ost of eah part separately. Let G

opt

be

a k-UPVCS subgraph. First we bound P (H) in terms of

P (G

opt

). Let H

opt

be the minimum normal ost graph

that has k edge disjoint paths between r and eah v 2

V � frg. We know P (H) � 2C(H) � 4C(H

opt

) as

A(r;G) is a 2-approximation. Notie any k-vertex on-

neted graph also has k edge disjoint paths between r

and eah v 2 V � frg. Therefore C(H

opt

) � C(G

k

)



for any k-vertex onneted graph G, and in partiular

for G

opt

. Thus P (H) � 4C(G

opt

). Note we an as-

sume G

opt

is ritially k-onneted, and so, by Lemma 5,

we an deompose G

opt

into k forests. By Lemma 4,

C(G

opt

) � kP (G

opt

). Putting together these inequali-

ties, we see P (H) � 4C(G

opt

) � 4kP (G

opt

).

Now we bound P (F ) in terms of P (G

opt

). We write

F as a union of the k � 2 sets of edges F

uv

orrespond-

ing to the F

uv

in the algorithm. Reall eah F

uv

is the

minimum normal ost set of k vertex-disjoint paths be-

tween u and v where (u; v) 2 F

0

. Now P (F ) � 2C(F ) �

2

P

(u;v)2F

0

C(F

uv

). Let G

uv

be the minimum power ost

set of k vertex-disjoint paths between u and v. Then

C(F

uv

) � C(G

uv

). Graph G

uv

an be written as the

union of two trees, T

u

= G

uv

�fvg and T

v

= G

uv

�fug,

so by Lemma 4, C(G

uv

) � 2P (G

uv

). Now G

opt

must

ontain k vertex disjoint paths between every pair of

verties, and so P (G

uv

) � P (G

opt

). Combining these

inequalities, we see

P (F ) � 2

X

(u;v)2F

0

C(F

uv

)

� 2

X

(u;v)2F

0

C(G

uv

)

� 4

X

(u;v)2F

0

P (G

uv

)

� 4

X

(u;v)2F

0

P (G

opt

)

� 4(k � 2)P (G

opt

):

Our �nal approximation fator is P (G

k

) � P (H)+P (F ) �

8(k � 1)P (G

opt

) as stated.

We show that, in a sense, this approximation fator is

tight. In other words, a k-UCVCS subgraph an have

power ost O(k) times the power ost of a k-UPVCS

subgraph. Consider the example graph G illustrated in

Figure 3. Here we have n opies of a graph H

i

whih all

share a ommon subgraph K

k

, the omplete graph on k

nodes with zero-ost edges. Eah graph H

i

ontains a set

U

i

of k nodes, all of whih are onneted to all the nodes

in K

k

by zero-ost edges. Finally, there is a speial node

v

i

whih is onneted to all nodes in K

k

by a set of ost

1 edges F

i;1

and to all nodes in U

i

by a set of ost 1� �

edges F

i;(1��)

for some � 2 (0; 1).

Note H = K

k

[

n

i=1

H

i

is a k-onneted graph of ost

zero. Thus any graph whih inludes k edges from v

i

toH

will be a k-onneted subgraph of G. As a k-onneted

subgraph of G must have minimum degree k, this suf-

�ient ondition is also neessary, and so the k-UCVCS

subgraph of G is G

C

= H[

n

i=1

F

i;(1��)

. A similar reason-

ing shows G

P

= H [

n

i=1

F

i;1

is the k-UPVCS subgraph.

Now we ompute the power osts of these two subgraphs.

In G

C

, eah node in a set U

i

has power ost (1� �) and

eah speial node v

i

has power ost (1� �). The nodes in

nK

H H H

(a) External

struture of G

k

vU

k edges of cost 1

K

k edges of cost < 1

...

(b) Struture of sub-

graph H

i

of G

Figure 3: Struture of G

the ommon substruture K

k

have power ost 0. Thus

P (G

C

) = nk(1� �) + n(1� �):

In G

P

, eah speial node v

i

has power ost 1 and all

the nodes in the ommon subgraph K

k

have power ost

1. However, the nodes in the U

i

sets have power ost 0.

Therefore,

P (G

P

) = n(1) + k(1):

Taking the ratio as n goes to in�nity and � goes to zero,

we see P (G

C

) = (k + 1)P (G

P

) in the limit. Thus an

approah that uses the k-UCVCS subgraph as a solution

for the k-UPVCS problem an never ahieve an approx-

imation fator better than O(k).

4.2 Distributed Approximation

In this setion, we assume that our graph is geomet-

ri (i.e. the edge lengths satisfy the triangle inequality)

and the power attenuation exponent is uniform. In other

words, the ost of an edge e of length r

e

is r



e

for some ,

2 �  � 4. As shown in Lemma 7, this implies that the

edge osts satisfy a weak triangle inequality.

Lemma 7. If x

0

�

P

k

i=1

x

i

, then x



0

� k

�1

P

k

i=1

x



i

.

Proof. Dividing both sides of the inequality by k



,

we see

�

x

0

k

�



�

 

P

k

i=1

x

i

k

!



�

P

k

i=1

x



i

k

by the onvexity of the funtion f(x) = x



.

Corollary 1. In a geometri graph with edge lengths

r

ij

, the edge osts p

ij

= r



ij

satisfy a weak triangle in-

equality:

8(i; j); (j; k); (i; k) 2 E;

p

ik

� 2

�1

� (p

ij

+ p

jk

):

For simpliity, we will �rst desribe an algorithm for

the 2-UPVCS problem. As Theorem 5 states, the algo-



Algorithm Distributed 2-UPVCS(G(V;E))

// ompute the minimum spanning tree

T

MST

 Algorithm MST(G(V;E))

for node u 2 T

MST

// �nd neighbors of u

N  fvj(u; v) 2 T

MST

g

// add arbitrary path onneting neighbors

label verties in N in an arbitrary order

E  E [ f(v

1

; v

2

); : : : ; (v

jNj�1

; v

jNj

)g

end

Figure 4: A formal desription of Algorithm Dis-

tributed k-UPVCS for k = 2

rithm uses just a onstant fator more power than the op-

timal on�guration. Our algorithm uses as a subroutine

Algorithm MST, an algorithm for omputing the mini-

mum spanning tree of the input graph. It then adds a

path amongst the neighbors of eah node in the returned

tree. See Figure 4 for a formal desription.

This algorithm has the signi�ant advantage that it is

distributed, i.e., eah node an ompute its power setting

with just a small number of messages to other nodes. In

wireless networks with no entral authority, global om-

putations are quite expensive and so the low ommunia-

tion overhead of this algorithm makes it very attrative

in pratial settings. In addition, the low ommuniation

overhead of this algorithm makes it easier to implement

in a mobile setting. Indeed, one the minimum spanning

tree has been omputed, eah node just needs to know its

neighbors and their neighbors in order to deide at what

power to transmit. The minimum spanning tree itself

an be omputed by the distributed minimum spanning

tree algorithm of Gallager et al. [14℄ in just 5n log n+2m

messages (where n = jV j, the number of devies, and

m = jEj, the number of valid ommuniation links). The

number of required messages an be redued by �nding

an approximate minimum spanning tree, although this

will a�et the approximation fator of the resulting algo-

rithm. Sine we only need O(n) messages one we have

the minimum spanning tree, the overall number of mes-

sages is O(n log n+m).

Theorem 5. For any geometri graph G, Algorithm Dis-

tributed 2-UPVCS returns a 2-vertex onneted subgraph

G

2

whose power P (G

2

) is a 2(4 �2

�1

+1)-approximation

of the power of a 2-UPVCS subgraph.

Proof. We use the fat that P (G) � 2C(G) and

bound C(G). Note for any graph G with subgraphs

H

1

; : : : ; H

n

suh thatG = [

n

i=1

H

i

, C(G) �

P

n

i=1

C(H

i

).

Let T

MST

be the minimum spanning tree of G omputed

by Algorithm MST in the �rst step of our algorithm and

F = G

2

� T

MST

be the graph we added to T

MST

in the

for-loop of our algorithm. Then C(G

2

) � C(T

MST

) +

C(F ). To bound C(F ) in terms of C(T

MST

), onsider

edge (u; v) 2 F . It was added to reate a path among

the neighbors of some vertex, say, w. Thus (w; u) and

(w; v) are in T

MST

. We say (w; u) and (w; v) pay for

(u; v). Notie eah edge (x; y) 2 T

MST

pays for at most

four edges in F { two edges for whih x is the ommon

neighbor and two edges for whih y is the ommon neigh-

bor. These four edges orrespond to edges adjaent to y

and x on the two paths of neighbor verties of x and y,

respetively. By the weak triangle inequality, it follows

that C(F ) � 4 � 2

�1

C(T

MST

). Therefore,

P (G

2

) � 2C(G

2

)

� 2(4 � 2

�1

+ 1)C(T

MST

)

� 2(4 � 2

�1

+ 1)C(T

UPV CS

)

� 2(4 � 2

�1

+ 1)P (T

UPV CS

)

� 2(4 � 2

�1

+ 1)P (G

2�UPV CS

)

where G

2�UPV CS

is a 2-UPVCS subgraph and the last

inequality follows sine G

2�UPV CS

is also a solution to

the UPVCS problem.

Finally, we note that G

2

is indeed a spanning 2-vertex

onneted subgraph. Sine T

MST

spans G, learly G

2

spans G. Furthermore, the removal of any single node

leaves the graph onneted beause of the path amongst

its neighbors.

It is slightly triky to generalize this algorithm for

k � 3. The main diÆulty arises from the fat that the

tree itself is just 1-onneted. Thus the neighbor sets

of verties an be too loalized. In order to make the

output graph k-onneted, we must have an additional

step in our algorithm that adds neighbors to guarantee a

good intersetion of neighbor sets throughout the graph.

We would like to add these neighbors without inurring

too muh ost. We will bound the additional ost in a

manner similar to the bound argument for P (F ), namely

we will harge the additional ost to the edges of T

MST

.

However, we must be areful to harge eah edge only

a small number of times in order to get a good approx-

imation fator. We an aomplish this by using the

extended family of a vertex as its additional neighbors.

Spei�ally, given a vertex x with less than k neigh-

bors, we perform a depth-�rst searh starting at the next

sibling x

1

of x and then the next sibling x

2

of x

1

, ..., and

�nally the parent of x until we have visited k verties

(so long as k is onstant, this step is loally distributed).

We add edges from x to eah of these k verties. Now all

verties have at least k neighbors. For eah vertex x, we

add the following k-onneted graph (a Harary graph) to

its neighbors N : form an arbitrary yle C amongst the

verties in N ; onnet eah vertex y 2 C to the �rst d

k

2

e

verties on eah side of y. Repeating this proedure for

every vertex will make the entire graph k-onneted.

1

1

In fat, Harary graphs are de�ned di�erently when k,

the number of nodes, is odd. However, the slightly al-

tered de�nition provided here enables us to prove a better



Figure 5: Adding neighbors to verties in T

MST

(the intermediary graph before adding yles

among neighbors)

A ounting argument along with the weak triangle in-

equality shows that eah edge gets harged k

O()

times.

Indeed, eah edge of the minimum spanning tree pays

for at most O(k

2

) neighbor edges, and eah edge in this

new graph (minimum spanning tree plus neighbor edges)

pays for at most O(k

2

) Harary edges. In both ases, the

added edges span at most k edges in the original graphs,

giving a distributed k

O()

-approximation algorithm.

Theorem 6. For any geometri graph G, there is a

distributed algorithm whih outputs a k-vertex onneted

subgraph whose power is a k

O()

-approximation of the

power of a k-UPVCS subgraph.

We leave the detailed proof of this result to the full

version of the paper. However, we desribe the algo-

rithm for the speial ase k = 3. In this ase, we must

add one neighbor to eah node. We will �nd this ad-

ditional neighbor amongst the siblings (or grandparent

if there are no siblings). This proess is illustrated in

Figure 5. Figure 6 ontains a formal desription of this

algorithm. This algorithm is based on a distributed min-

imum spanning tree algorithm whih an be omputed

with O(n log n + m) messages. After the omputation

of the minimum spanning tree, the remainder of the al-

gorithm is loally distributed. Even the neighbor addi-

tion step must query at most one neighbor whih is at

most a distane of two from the original vertex. There-

fore, these remaining steps use just O(n) messages, and

the total message omplexity of the algorithm is again

O(n log n+m).

Theorem 7. For any geometri graph G, Algorithm

Distributed 3-UPVCS returns a 3-vertex onneted sub-

graph G

3

whose power P (G

3

) is at most 2(1 + 7 � 2

�1

+

12 � 4

�1

) times the power of a 3-UPVCS subgraph.

Proof. The proof is very similar to the proof of The-

orem 5. Again, we use the fat that P (G

3

) � 2C(G

3

)

and bound C(G

3

). Let N be the set of edges added in

the �rst for-loop to reate neighbors and O be the set

of edges added in the seond for-loop to reate yles

amongst neighbors. Thus, G

3

= T

MST

[ N [ O, and so

bound on the power onsumption of the resulting graph.

Algorithm Distributed 3-UPVCS(G(V;E))

// ompute the minimum spanning tree

T

MST

 Algorithm MST(G(V;E))

root T

MST

at arbitrary vertex r

label nodes v

1

; : : : ; v

n

2 V in an arbitrary order

// add a neighbor to eah vertex

G

0

3

 T

MST

for node u 2 T

MST

� frg

if u has siblings then

add edge (u; v) to G

2

where v is

suessor of u in yli ordering indued

by vertex labelling restrited to sibling set

else

add edge (u; v) to G

2

where v is

grandparent of u

end

// add a yle among neighbors of verties

for node u 2 G

0

3

N  fvj(u; v) 2 G

0

3

g

label verties in N in an arbitrary order

E  E [ f(v

1

; v

2

); : : : ; (v

jNj�1

; v

jNj

); (v

jNj

; v

1

)g

end

Figure 6: A formal desription of Algorithm k-

UCVCS for k = 3

C(G

3

) � C(T

MST

) + C(N) + C(O). We bound C(N) in

terms of C(T

MST

) by harging edges in T

MST

for edges in

N . We laim eah edge (u; v) an be harged at most 3

times | twie for edges added amongst siblings and one

for an edge added from the hild of u to its grandparent

v. Note eah added edge spans at most two original

edges, and so by the weak triangle inequality, this im-

plies C(N) � 3 � 2

�1

C(T

MST

). Now we bound C(O) in

terms of C(N [ T

MST

). As argued in the proof of Theo-

rem 5, eah edge in N [T

MST

an be harged for at most

four edges in O, and eah added edge spans at most two

edges from N [ T

MST

. Therefore, by the weak triangle

inequality, C(O) � 4 � 2

�1

(C(N) +C(T

MST

)), and so

P (G

3

) � 2C(G

3

)

� 2(C(T

MST

) +C(N) + C(O))

� 2(1 + 4 � 2

�1

)(C(T

MST

) + C(N))

� 2(1 + 4 � 2

�1

)(1 + 3 � 2

�1

)C(T

MST

)

� 2(1 + 7 � 2

�1

+ 12 � 4

�1

)P (G

OPT

)

where G

OPT

is a 3-UPVCS subgraph and the last in-

equality follows from a reasoning similar to that in the

proof of Theorem 5.

Finally, we note that G

3

is indeed a spanning 3-vertex

onneted subgraph. Sine T

MST

spans G, learly G

3

spans G. Furthermore, the removal of any two nodes

leaves the graph onneted. More preisely, we an on-

sider two ases. In the �rst ase, we remove two non-

adjaent verties u and v in T

MST

. Here beause of the

yles amongst the neighbors and the path from u to v in

T

MST

, the graph remains onneted. In the seond ase,

we remove two adjaent verties u and v in T

MST

(thus



without loss of generality, we an assume u is the parent

of v in T

MST

.) Again in this ase, beause of adding a

sibling or grandparent of eah vertex to set of its neigh-

bors and then adding the yle amongst its neighbors,

we have onnetivity of the remaining graph.

We note this is not neessarily the best approximation

fator one an prove for this algorithm (mainly beause

we ompare our solutions with optimal 1-onneted sub-

graph (MST) and not optimal 2- or 3-onneted sub-

graphs). In fat our pratial results in Setion 5 show

that we often perform muh better than CBTC algo-

rithm and the performane is omparable to the entral-

ized algorithm. In addition, this algorithm is both dis-

tributed and highly loalized in the sense that after the

distributed omputation of the spanning tree and sele-

tion of the root, all operations an be performed loally.

For this reason, we believe this algorithm is very suitable

for pratial situations.

We emphasize that after omputing the MST, the re-

maining steps of the algorithm are based on loal infor-

mation and an be implemented loally (as long as k is

a onstant). To the best of our knowledge there is no lo-

ally omputable algorithm or approximation algorithm

for MST. However, if we are willing to forgo the approxi-

mation guarantee, we an make our algorithm ompletely

loal by using a loal heuristi for MST like CBTC as the

initial 1-onneted graph in our algorithm.

Finally, we note that sine we ompare the solution

to MST and a k-vertex onneted graph is also k-edge

onneted, this distributed algorithm gives the same ap-

proximation guarantee for the power optimum k-edge

onneted subgraph problem (k-UPECS).

5. Performane Evaluation

In the previous setion, we proved a theoretial bound

on the performane of our algorithms. In this setion, we

observe that our algorithms even perform well in pra-

tie. In order to understand the e�etiveness of our algo-

rithms, we ompare them to a previous heuristi, namely

the Cone-Based Topology Control heuristi of Watten-

hofer et al. [28℄ and Li et al. [20℄ and Bahramgiri et al. [2℄.

5.1 Experimental Environment

We generate random networks, eah with 100 nodes.

The maximum possible power at eah node is �xed at

E

max

= (250)

2

. With our assumed power attenuation

exponent  = 2, this implies a maximum ommuniation

radius R of 250 meters. We evaluate the performane of

our algorithms on networks of varying density. Note we

expet, and in fat observe, that the performane of all

algorithms improves as density, and thus the number of

extraneous edges, inreases. In order to obtain a given

density (from 6 nodes per transmission area to 30), we

position 100 nodes randomly in an appropriately sized

square. We assume the MAC layer is ideal. These net-

works are similar to the sample networks used by Wat-

tenhofer et al. [28℄ and Cartigny et al. [6℄.

As a performane measure, we ompute the average

expended energy ratio (EER) of eah algorithm for these

random networks:

EER =

Average Power

E

max

� 100:

This measure ompares the average power of a node in

the network to the maximum power of a node in the

network; we would like this ratio to be small.

5.2 Observations

The three algorithms we onsider in this experiment

are the Cone-Based Topology Control [2℄ heuristi re-

apped in Setion 3.2, the Distributed k-UPVCS algo-

rithm introdued in Setion 4.2, and the Global k-UPVCS

algorithm introdued in Setion 4.1. Figure 5.2, Table

5.1, and Table 5.1 depit all these results.

Here, we disuss the results for 2-UPVCS and 3-UPVCS.

For 2-UPVCS, the average power assigned by Global k-

UPVCS is from 4% to 15% of the maximum possible

power, E

max

(i.e., the EER is between 4 and 15). The

average power for Distributed k-UPVCS is from 7% to

32% of E

max

whereas for Cone-Based Topology Control,

it is from 58% to 90%. For 3-UPVCS, the average power

assigned is from 5% to 20% for Global k-UPVCS, from

9% to 39% for Distributed k-UPVCS, and from 75% to

100% for Cone-Based Topology Control. These numbers

show that Global k-UPVCS and Distributed k-UPVCS

onsistently outperform Cone-Based Topology Control in

regards to average power.

As we expet, Global k-UPVCS outperforms Distributed

k-UPVCS in most instanes. It is not surprising to see

that the best algorithm is the totally globalized one, i.e.,

we an make better hoies by ignoring the ommunia-

tion omplexity. However, Distributed k-UPVCS is still

very ompetitive with Global k-UPVCS. In fat, while

the performane of Global k-UPVCS ranges from 4% of

E

max

for dense networks to 20% of E

max

for sparse net-

works, the performane of Distributed k-UPVCS ranges

from 7% for dense networks to 35% for sparse networks.

Hene, Global k-UPVCS spends at most 75% less than

Distributed k-UPVCS. In ontrast, Distributed k-UPVCS

never uses more than twie the power of Global k-UPVCS.

Note that the input networks are geometri, thus the the-

oretial performane guarantee of Distributed k-UPVCS

proved in Setion 4.2 holds.

Global k-UPVCS and Distributed k-UPVCS both out-

perform Cone-Based Topology Control in all ases. How-

ever, the improvement of our algorithms is most obvi-

ous in sparse networks. For sparse graphs and espeially

for 3-UPVCS, the Cone-Based Topology Control average

power usage is very lose to the maximum power whih

shows the main aw of this heuristi and the advantage of



Density Degree Cone-Based Topology Control:ERR Distributed k-UPVCS:ERR Global k-UPVCS:ERR

6 15.56 90.4726 31.3103 15.8636

10 21.62 89.9237 18.6790 11.2938

14 34.02 74.7904 13.4375 7.2419

18 38.72 62.0195 10.9241 6.1628

22 45.24 63.0056 9.0454 4.5905

26 51.26 60.9590 7.8912 4.4476

30 54.56 58.8282 7.0988 3.6705

Table 2: Expended Energy Ratio  = 2 for 2-UPVCS (k=2)

Density Degree Cone-Based Topology Control:ERR Distributed k-UPVCS:ERR Global k-UPVCS:ERR

6 15.56 99.5252 35.2772 20.1612

10 21.62 99.6080 25.9680 17.3236

14 34.02 90.2409 15.4045 11.0623

18 38.72 81.9197 13.5849 8.5273

22 45.24 84.0958 10.1658 6.4635

26 51.26 80.3984 8.5393 6.6278

30 54.56 75.1298 8.3860 5.3084

Table 3: Expended Energy Ratio  = 2 for 3-UPVCS(k=3)

our algorithms. The di�erene between Global k-UPVCS

and Distributed k-UPVCS dereases as density inreases

whih implies that Distributed k-UPVCS is more om-

petitive to Global k-UPVCS in dense graphs.

Finally, it is worth mentioning that although our dis-

tributed algorithms in this paper show muh better per-

formane than the CBTC algorithm, CBTC is fully lo-

ally omputable and for dynami settings (not stati

ones that we onsidered in this paper) suh loal ap-

proahes are more desirable. Our algorithm whih seems

more distributed than loal (beause of omputing MST)

has some maintenane overhead whih needs to be on-

sidered further in dynami settings. However, we suspet

that for the k-UPVCS problem, loally omputable algo-

rithms an not guarantee onstant fator approximation.

6. Conlusion

In this paper, we onsidered power minimization for

k-fault tolerant topology ontrol in ad ho wireless net-

works. We mentioned the omplexity issues of this prob-

lem and showed that previous heuristis and approahes

do not give us good approximation fators. We demon-

strated two approximation algorithms whih give usO(k)-

and k

O()

-approximation fators, the seond of whih an

be easily implemented in a distributed ad ho wireless

network.

Compared to previous methods, we admit that the

distributed algorithm is not as loally implementable as

CBTC and it is more suitable for stati ad-ho networks.

However, it gives us a framework to inrease the onne-

tivity of the network using the loal information. Fur-

thermore, if we use a good 1-onneted subgraph like

MST, the pratial results and worst-ase theoretial om-

parison show that the performane of this algorithm is

muh better than that of CBTC.

Obtaining an approximation algorithm with fator bet-

ter than 8(k � 1), espeially with a fator � = o(k),

for undireted minimum power k-vertex onneted sub-

graph (k-UPVCS) is an interesting open question. As

we showed, the solution to undireted minimum ost

k-vertex onneted subgraph (k-UCVCS) an not give

o(k)-approximation fator for k-UPVCS. Also, a natural

generalization of (log k)-approximation algorithm for k-

UCVCS an not give us better than 
(

n

k

)-approximation

algorithm. Other interesting open questions inlude ob-

taining approximation algorithms with onstant fator

ratio for geometri undireted minimum power k-vertex

onneted subgraph and undireted minimum power k-

edge onneted subgraph. We give O(k)-approximation

algorithms for these problems; however we suspet that

there are onstant fator approximation algorithms for

these problems, espeially sine there are onstant fator

approximation algorithms for the minimum normal ost

variants of these problems. For the direted versions of

these problems, to the best of our knowledge, almost

nothing is known and any progress in this regard would

be interesting. In fat, we believe for geometri graphs,

along with the 12-approximation of Wan et al. [27℄ for

the broadast problem, our Distributed k-UPVCS algo-

rithm from Setion 4.2 an be generalized for the direted

version.

The minimum range assignment problem when the sta-

tions are loated along a line at arbitrary distane apart

have been subjet to several reent studies [3, 9, 18, 23℄.

Kirousis et al. [18℄ showed an O(n

4

) time dynami pro-

gramming algorithm to �nd a minimum ost range as-

signment of ollinear points ensuring that the resulting

direted network is strongly onneted. We strongly be-

lieve that using the same approah, undireted minimum

power (1-)vertex onneted subgraph of ollinear points
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Figure 7: The omparison between Cone-Based Topology Control (o) (low performane), Distributed

k-UPVCS (+) (middle performane), and Global k-UPVCS (*) (high performane)

an be solved in polynomial time. It would be interesting

to know whether or not the result an be generalized to

k-UPVCS of ollinear points for k > 1.

As mentioned before, so far all approximation (not

heuristi) solutions for the range assignment problem are

based on minimum spanning trees or approximations of

minimal spanning trees, whih are globalized. Our ap-

proximation for k-UPVCS uses the minimum (or any

approximation for minimum) spanning tree as a blak

box, and the rest of the operations are very simple loal

ones. Thus using our approah, any loalized algorithm

for minimum spanning trees in ad ho wireless networks

an result in loalized approximation algorithm for k-

UPVCS.

Finally, in broadast oriented protools, we have the

same objetives of topology ontrol oriented protools,

mentioned in this paper, but we onsider the broadast

proess from a given soure node and we want to have k-

disjoint paths from the soure to some or all other nodes.

Obtaining approximation algorithms for this setting is

another possible extension of our results (Notie that for

the ase of k = 1, there exists suh an algorithm using a

redution to minimum direted steiner tree [21℄.)
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