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ABSTRACT

This paper verifies the design of an Attitude Control System (ACS). The ACS system consists of inertial instruments such as gyroscopes and gimbals, as well as processing modules that are used to maintain a stable platform in inertial space that is part of a full guidance system.  As a vehicle travels, it slowly veers off course.  The ACS system maintains a stable platform that acts as a reference so that the vehicle can keep its alignment in inertial space.  An important aspect of the system is performance in the presence of failures.  First, ACS should exhibit fault-tolerance towards failures, meaning that if a module fails, other modules should still be able to control the stable platform, though perhaps with less accuracy.  To meet this goal, ACS functions are performed by several independently operated modules that communicate by exchanging messages.  Second, ACS should be able to recover from power failures that may corrupt the system’s volatile memory.  In order to do this, each module must periodically save its state in non-volatile memory that can withstand a power failure, and retrieve this state afterward.  With many independently running modules and a complicated power failure recovery algorithm, the ACS system is hard to understand and therefore hard to validate.


In this paper, we model the ACS system using the hybrid input/output automaton (HIOA) model of Lynch, Segala, and Vaandrager.  The models decompose into the gyroscopes (GYRO), an attitude control processing (ACP) unit, the communication service between them, and a timer.  We establish the correctness and fault-tolerance of ACS by demonstrating the high degree of accuracy to which it maintains the course of a vehicle in inertial space even under power failure conditions.  The models incorporate timing and automaton composition, while the proofs use invariant assertions and simulation mappings.
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Introduction

In order to develop increasingly sophisticated, fault-tolerant, distributed systems, engineers today use a modular design for two reasons.  First, these designs split up a large project into smaller, more manageable pieces for easier implementation.  Second, these systems tend to be more extensible; often it is possible to increase the functionality of one unit without requiring redesign of the entire system.  It is likely that engineers will continue to use this design approach because these implementation benefits outweigh the increased difficulty in testing.  One complication that makes testing harder is that these systems have many separate, interacting pieces whose actions are loosely coupled at best.  In many cases, it has become unreasonable to exhaustively test the collective state space of all these pieces or to identify the critical system states.  Current conventional testing strategies like simulation lack the capability to deal with this problem.  Instead, to support the development of distributed systems, it is necessary to look at alternative methods for aiding design and analysis and for testing that the system meets its requirements. 

This paper aims to analyze the design and verify the behavior of one such system.  ACS is a distributed system designed at Draper Laboratories that aids in controlling the course of a vehicle.  The goal of this thesis is to thoroughly understand the degree of accuracy of this design in the presence of power failures.  At a high level, its performance is difficult to understand because ACS is made out of modules that operate independently to achieve fault-tolerance and for extensibility; however, the modules depend on one another for accurate information in order to perform their functions correctly.  The system design of ACS assigns each module a range of time to complete its functions with respect to a universal clock.  Ideally, the system can complete its tasks as quickly as 300 Hz.  ACS must deal with situations where modules miss their deadlines or provide inaccurate information to other modules because of power failures.  At a low level, ACS modules contain memory components and a communication medium that may lose information during power failures, making it difficult to determine the effect of a power failure on even a single module of the system.  In addition, recovery must be correlated for the system to function properly.  From both a high-level and low-level point of view, ACS is hard to verify through traditional simulation testing.  Since it is difficult to determine the actual state of ACS at each point in time, an alternative is to use invariant properties of the states of the system to characterize the overall behavior. 

In this paper, we model this complex system using the hybrid input/output automaton model (HIOA).  HIOA models for the state of a system can be used with formal mathematical proof techniques to verify expected behavior.  In previous work, HIOA has been used to formally verify the safety of several implemented automated transportation systems [1, 4, 5, 8].  More specifically, HIOA was used to pinpoint the minimal properties of a controller that were required to ensure safety, so that different implementations that met this specification is guaranteed to maintain safety.  In ACS, we have described key components of the system, and describe properties of its behavior.  We have explored the design and implementation of these components in detail. 

The steps for proving the behavior of the system using HIOA modeling are as follows.  First, we examine the major modules, including the gyroscopes (GYRO), a communication service, and a module for calculating attitude control instructions (ACP).  These models incorporate crucial behaviors of the system, such as timing and response to power failures.  We use these models to prove how often the system can correct for erroneous motion of the vehicle.  Second, we show that the design of each of the high-level ACS modules meets its specifications.  At this level, we verify the correctness of a checkpoint and rollback recovery algorithm for saving the state of the GYRO and ACP.  In addition, we verify the design of the communication service, which uses the hardened storage service and Ethernet.  Last, we verify the implementation of the hardened memory storage service used in the ACS system, which provides transaction semantics, despite that the single location being written to at the time of a power failure can be corrupted.  

This thesis is organized as follows.  Section 2 introduces the HIOA model features, while Section 3 gives an overview of the ACS system in non-technical terms.  Following is the main body of this thesis, which presents and verifies the ACS system design using HIOA.  Section 4 gives the high-level specifications for the physical modules of the system, analyzes the overall system, and includes proof sketches.  Section 5 describes the application framework design that makes up an ACS module.  Section 6 describes the implementation of two modules of ACS using that framework, while Section 7 examines the implementation of one of the components of that application framework.  Next, Section 8 examines the design of the communication service used by the two modules.  To complete verification of the ACS system, Section 9 explores the implementation of the hardened storage service in ACS.  Finally, Section 10 presents our conclusions and Section 11 describes further work. 

The Hybrid Input/Output Automaton Model

The Hybrid Input/Output Automaton (HIOA) modeling framework is a basic mathematical framework used to support description and analysis of hybrid systems, which are systems that are made out of both discrete and continuous components.    ACS is one example because it has software components that run discretely as well as real-world components with continuous behavior.  HIOA modeling is used to describe the ACS system at three levels of abstraction, and these models are used to verify the behavior.  This section introduces the HIOA modeling framework so that the reader knows how to read these models and understand the proof techniques used with them in this thesis; the reader should refer to [7] for a more detailed presentation of HIOA.  

An HIOA, A, is a (possibly) infinite state model of a system involving discrete and continuous behavior.  It formally consists of the following components:

· A set of variables.  Every variable is typed, meaning we will assign a finite or infinite set of values that that variable can take on.

· Three disjoint sets of input, output, and internal actions.  External actions of A consist of the input and output actions of the automaton.  

· A nonempty set of initial states of the variables.

· A set of discrete transitions, which are (state, action, state) triples.

· A set of trajectories over the variables of A.

In this thesis, the HIOA models can include the following five sections that contain all the components listed above.  We list and describe each of these sections:

· Constants: This section contains meaningful names for constant values used by the automaton.  It does not contain any essential part of the automaton listed on the previous page, and thus this section is included in an HIOA model only as necessary.  Nonetheless, Naming constants is as an abstraction.  

· Signature: This section lists the actions of the automaton and classifies them as input, output, or internal actions.  We include the types of any parameters of the actions in this section.

· State: This section contains all the variables, their corresponding types, and their initial values.  

· Transitions: This section includes the (state, action, state) triples for the actions listed in the “Signature” section.  All of these actions are atomic, meaning either the action does not occur at all or the entire transition occurs.  We present these transitions in a logical order, meaning, if we expect action a to take place before action b, we describe action a before action b.  In addition, we describe normal/steady-state behavior before power failure/transient behavior.  The input actions of the automata will have an “Effect” the moment they are received from other components; this “Effect” changes the state variables of the automaton.  On the other hand, when the “Precondition” of an internal or output action is met, or enabled, this action can take place, but it is not required to.  The next section, trajectories, can place constraints on when an automaton must perform an internal or output action that is enabled.   When these actions do take place, they also have an “Effect” that changes the state variables of the automaton.

· Trajectories: This section describes how external variables of the automaton can change.  For example, many of our components have a clock variable that changes at rate 1 with respect to time.  When we say that the clock variable stops when it is equal to a deadline and the other variables of the automaton meet some conditions, what this really means is that the automaton is required to perform actions until the conditions are no longer met.

A nice property of HIOA is that it allows specifying the minimal requirements needed to accomplish a system’s goal.  This is done by using nondeterminism or specifying that a variable can take any value in a set rather than just one specific value in that set.  An example is that in the specification for a component, a variable may be allowed to take on any value between 0 - 1.  An implementation of this component that assigns 0 or .5 to the value of that variable is correct.  Using nondeterminism, HIOA can deal with cases where the exact value of a variable is not known.  Thus, HIOA is well equipped to deal with systems with many components whose states are not strongly correlated, and where the exact state of the entire system is not known.

A hybrid execution of a HIOA is a sequence of transitions that describes a possible behavior of the system over time.  The system starts with an initial state and has a set of possible states that it can be in after an execution sequence, which are the reachable states.  The hybrid trace of the system is the externally visible part of an execution, or the sequence of actions the outside world sees.  To implement another HIOA, the sets of traces of the implementation must be a subset of the set of traces of the specification.  This means that the implementation must exhibit only behavior allowed by the specification.

In order to prove properties of a system, invariant assertions are given.  Applying all the possible hybrid executions to the start state of the system will give all the reachable states of the system.  An invariant assertion is a predicate on the states that is true in each of these reachable states.

An implementation of an automaton often involves a group of automata.  Automata can be composed if they do not have any common output actions and if their internal actions are disjoint from the actions of the other automata.  The set of actions of the composition of these components is the same as the union of these components minus all the input actions of the components that match output actions of other components in the system.  In other words, when considering the composition of a group of automata, we do not distinguish the input actions connected to automata in that composition, and consider only their inputs from automata not in that composition.

To prove that a design or implementation, A, implements a higher level automaton, B, we map the state of the implementation to the state of the specification; we call this mapping a simulation relation.  If we map the initial state of A using the simulation relation, we must get an initial state of B.  In addition, the simulation relation must still hold for any set of actions that A can take.  This means that if B takes the same set of actions as A, the state of A must still map to a current state of B.

1 The ACS Project Background

As a vehicle travels through space, it may be veered off course by uncontrollable external factors.  A guidance system automatically keeps the vehicle aligned with its target destination by correcting for this erroneous motion.  ACS is a crucial subsystem of a guidance system developed at Draper Laboratories and maintains the stability of a platform in inertial space by detecting any slight movements of the platform and applying a torque to push it back into place.  This stable platform allows the guidance system to detect the position and motion of the vehicle.  The ACS system serves then as an attitude reference system that demonstrates:

1. all-attitude inertial platform performance

2. the ability to exhibit fault tolerance to power failures

3. functional modularity in the design, with a goal of instrument independence

To accomplish the first goal, ACS makes use of a set of four concentric spheres called gimbals located within an inertial measurement unit (IMU).  Gimbals are attached to the stable member (SM), the inner gimbal (IG), the middle gimbal (MG) and the outer gimbal (OG), which is attached to the IMU case.  The set of four concentric gimbals have resolvers and motors attached to them.  The resolvers sense each gimbal’s angle, and then the motors can rotate the gimbals back in place.  Also attached to the platform is a set of two dual-axis, gyroscopes (GYRO). Once the platform is fixed and pointed at a location in inertial space, such as a distant star, rotational motion of the platform about three orthogonal axes is detected by the GYRO.  Angle data from the gimbals’ resolvers and any rotational motion sensed by the GYRO is sent to an attitude control processor (ACP) over Ethernet.  The ACP integrates this to calculate control instructions based on the data it has received, which it sends to the gimbals’ motors.  The motors counterbalance the platform by applying a torque to the gimbals in such a way as to zero out the rotational motion, thereby keeping the platform in fixed, inertial space.  

In order to demonstrate meeting the second of ACS's goals, power failure fault tolerance, both hardware and software functionality must be integrated to maintain stability, within strict performance constraints, of the stable member through a power failure interrupt, or PFI.  A PFI simulates a power failure that lasts 20(s. When a PFI occurs, the processing elements on the ACP and GYRO modules are shut off and a processor reset occurs.  Within a .417 ms after this 20(s PFI event, the ACS system must recover its state previously saved away in non-volatile, non-destructive read out (NVNDRO) memory, prior to the PFI.  The NVNDRO memory device is constructed such that only the memory location being written to at the time of the PFI can be corrupted.  All other memory locations remain intact.  The entire state of the system must be recovered from this memory for normal functioning to occur.  A mechanism for accomplishing this, using software and the NVNDRO device, is to triply store each piece of critical data within the system. (Critical data is defined as any data that if lost during a PFI event, would result in the inability of the ACS system to meet its performance goals, namely, maintaining the stable member in inertial space.)  During the recovery process, majority logic is applied to the triply stored data to restore all the memory locations to valid values, even though at most one was corrupted during the PFI.

To achieve the third goal above, namely, modularity in the design of ACS, the major subsystems within ACS are built around modules, which can be seen below in Diagram 3-1.  Modules are designed to have generic interfaces to such things as communications, power, timing, discrete signals, etc.  Instrument modules exist for the SM gimbals and the GYRO.  Other modules include the timing module to generate timing signals throughout the system, the Ethernet hub module to handle Ethernet communications, power modules to supply power to the electronics and instruments with the system, and so forth.  Software executes on processors on just two of the modules within ACS, the ACP module and the GYRO module.  All other modules implement algorithms in hardware. 



In the real system, as mentioned above, the gyroscopes and the gimbals provide information to the ACP over Ethernet.  The ACP performs its calculations by a deadline and sends control information back over Ethernet to the gimbals and gyroscopes to maintain inertial platform stability.  The Ethernet design uses a time division multiple access (TDMA) scheme that is deterministic.  Random bit errors are ignored for the purpose of this study and it is assumed that the communication design is reliable.  This study uses a simple application that executes on the GYRO, which updates the value of X, and we abstract away details of how this value of X is updated.  The value of X is sent to the ACP processor where another application can accumulate X, by setting a value, A, to be a function of A and X.  Again, for this study, we abstract away details of how the system uses A and X to calculate a new value of A.  We model this simple system of two applications that mimic a distributed algorithm, which integrates a gyroscope error generated on the GYRO module that runs on the ACP module, through a PFI.  If the attitude control mechanism described here were applied to an aircraft or missile, the closed loop behavior of the system including the plant, might be required to close the control loop within a specific period of time in order to maintain stability.  In ACS, this timing deadline for closing the loop between the plant and the processing elements is 1.25 ms.  This timing deadline is then apportioned to each of the GYRO and ACP critical time processes.  Timing information concerning the length and spacing of power failures and timing deadlines associated with control loops are artifacts associated with the particular instruments used and experimental setup of the ACS.

The ACS system design and implementation is modeled in this thesis using three levels of abstraction.  We present the system from the top down.  First, this thesis examines the high level view of the system that includes specifications for the behavior of the main modules of ACS.  These specifications are used to generate properties of the overall system.  Next, we “zoom” into the design of each of the modules in a lower level view.  We start with the GYRO and ACP, which have the same design, and then explore the communication service between them more closely.  This communication service is reliable in the absence of power failures, if we ignore the negligible probability of bit errors.  Ignoring this probability is justified based on the short time duration of a simulated mission.  However, in the event of power failures, the communication service can drop messages, and thus has been named the LossyNet.  We also assume that this system uses a checksum that is completely reliable in detecting when corrupted messages are on the network interface boards.  Although the checksum is not completely reliable, the changes that a corrupt message can still pass the checksum test is so small that we are justified in ignoring it.  Our goal is to show that these designs implement their specifications.  Finally, at the lowest level is a hardened storage service that deals with memory components that corrupt the location written at the time of a power failure.  We show that the implementation of this service provides the guarantees we specified.  

High-level View.  The high level view of ACS consists of the GYRO, ACP, a Timer, and a communication service called the LossyNet.  It is assumed that the gimbals, which are implemented in hardware, are thoroughly understood and tested by engineers, so they are modeled as the “outside world.”  This view of the system is used to generate the overall ACS system properties.  The goal is to demonstrate the ability of the ACS system to maintain the stable platform in inertial space, within a specified accuracy. 
Lower-level View.  The first part of the lower level view examines the design of the GYRO and ACP modules.  Both of these modules use the same hardware (for discussion within this context) with a common application framework and custom applications.  Additional core modules could be easily implemented using this design; a new custom application is all that is needed to create a different core module with unique functionality.  On each of these modules, the application framework handles recovering applications after a power failure and restoring the message services to be consistent with the recovered application state using a checkpoint and rollback recovery algorithm.  To show that these implementations meet the ACP and GYRO specifications, we show that the application framework can recover the applications correctly after a power failure using hardened storage, even though volatile memory may be corrupted.  We also explore the how the scheduler saves its own state.

Next, the design of the LossyNet is verified.  This communication service must provide FIFO delivery of the messages it sends.  In addition, it must cope with application state loss due to power failures.  When an application rolls back to a previous state, it may send duplicate messages and receive messages a second time.  The LossyNet deals with this case by dropping messages that it knows may be sent again and redelivering messages it knows have been lost.  The LossyNet’s design uses Ethernet with network interface boards containing volatile memory, but also uses hardened storage that can withstand power failures.

Lowest-level View.  The final step in the verification process of ACS is to examine the implementation of the hardened memory storage service.  ACS has hardened memory, which survives power failures with the exception of the single memory location being written to at the start of the power failure.  The hardware does not, however, know upon recovery what memory location was corrupted.  Despite this problem, software classes have been written to provide queue and transaction semantics of this hardened memory.  It is shown that these software classes implement the hardened storage service specifications.

The end result of this thesis is that it proves what system behavior occurs during certain failure conditions; intermediate results verify the behavior of individual system components.  When there are no failures, the guidance system is able to torque the gimbals at 300 Hz.  In addition, the system can endure power failures spaced at least 6.7 ms apart.  With this rate of failures, even in the worst case, the system still maintains the stable platform, although with an accuracy of 150 Hz.  The requirement for ACS is 20 ms between successive power failures, so we conclude that this design and implementation meets that requirement.
The High-Level ACS System Model

This section gives specifications for the real-world components of the ACS system implemented at Draper Laboratories.  The high-level ACS system of this paper consists of gyroscopes (the GYRO), an attitude control processor (the ACP), a communication service (the LossyNet), and a universal clock (the Timer.)  Everything else, such as the gimbals, is considered the “outside world.”  Ideally, this system outputs the correct torque for the gimbals at 300 Hz.  Time is partitioned into frames that last 1/2400 of a second each and a frame is split into 16 slots.  Because the gimbals must be torqued every 8 frames, we separate frames into sets of 8, which we call execution periods.  An execution period starts the moment the Timer executes tick(f, sc, mfc) or int-tick(f, sc, mfc) with f = 0 and sc = 0, and lasts until right before the next execution period begins.  The GYRO and ACP exchange application messages, M, on the hardened queue, q1, and has processors, acp-p and gyro-p respectively.  In this thesis, constant values are in bold-face type, while variables, automaton names, and actions are in italicized font.  
Diagram 4.1 shows the external actions of the high-level models for ACS components.  First, there is the Timer, which outputs tick(f, sc, mfc) to the three other components at the start of every new slot; f is the current frame, between 0-7, within the execution period;  sc is the current slot, between 0-15, within that frame; and mfc is the total number of frames that have passed, which increments without bound.  The GYRO measures the gyroscope error and sends it to the ACP. It outputs initTxngyro-p(), sendq1,gyro-p(m), commitgyro-p(), and startgyro-net-s() to the LossyNet.  The LossyNet outputs sendReturnq1,gyro-p() to the GYRO and also startacp-s() and recvLastq1,gyro-p(m) to the ACP.  The ACP’s function is to process messages from the GYRO and send torquing messages to the gimbals.  The ACP outputs initTxnacp-p(), requestRecvLastq1,gyro-p(), and commitacp-p() to the LossyNet, and activate(v) to the gimbals or outside world.  All of these components are prone to power failures due to sources external to the system; thus pfiStart() and pfiEnd() are input to every component.




During the normal running case, actions in ACS are carefully timed to occur within the first 3 frames of an execution period.  Diagram 4.2 above shows key timing constants in ACS.  The time when certain actions begin are start times consisting of a frame count and a slot count and are labeled above the time line.  Other crucial timing constants are deadlines, which are integers denoting how many slots after a start time a set of actions should complete.  These deadlines have been placed on the timeline with relation to their corresponding start times and are labeled below the timeline.  Starting from the left of the timeline, there is the gyroStartTime, which occurs at (0, 2).  The gyroDeadline is placed at (1,2), which is 16 slots after the gyroStartTime.  In addition, the startTransmitDeadline is at (1,7), 21 slots after the gyroStartTime.  The netDeliveryTime is at (1, 7) and the acpStartTime is at (1, 8), with the deliverDeadline 2 slots after at (1, 10) and the acpDeadline is 19 slots afterward at (2, 11).

This paragraph describes the external actions that occur in the ACS system, seen in Diagram 4.1, as they correspond to the timing constants shown in Diagram 4.2.  The system is driven by the Timer which outputs tick(f, sc, mfc).  When f and sc reach the start times, this triggers the other modules to perform certain actions by their given deadline.  First, when the Timer ticks with the gyroStartTime, the GYRO measures the gyroscope errors and outputs initTxngyro-p() and then sendq1,gyro-p(m) to the LossyNet, where m is a message.  The LossyNet acknowledges this last action by outputting sendReturnq1,gyro-p(), and finally the GYRO must output commitgyro-p() before or at the gyroDeadline.  Next, the GYRO outputs startgyro-net-s() to the LossyNet, which then must be ready to transmit the message by the startTransmitDeadline.  At the netDeliveryTime, LossyNet transmits a message over Ethernet.  When the Timer ticks the acpStartTime, the LossyNet gets m ready to be received by the ACP before deliverDeadline.  When it has finished, it outputs startacp-s() to the ACP, which starts processing and outputs initTxnacp-p().  Then it requests a message from the LossyNet by outputting requestRecvLastq1,acp-p(), and the LossyNet responds with recvLastq1,acp-p(m).  After receiving this message, the ACP can compute the gimbal and gyroscope torques torque and output activate(v) to the them.  Finally, the ACP outputs commitacp-p() to the LossyNet before the acpDeadline.

The preceding process can be interrupted by system-wide power failures that last at most 20 (s, just short of one slot, and where the time between successive power failures is at least 20 ms, a little over 48 frames.  We model the start of a power failure with pfiStart() and the end of the power failure with pfiEnd().    A pfiEnd() message will come within 20 (s after a pfiStart(), and the time between a pfiEnd() and the next following pfiStart() message is at least 20 ms.  The models respond to the pfiStart() and pfiEnd() messages just as they would in the actual system when power is lost.  The first 4 subsections following presents models for the high-level ACS components, while the last two subsections presents properties of the system.
1.1 The Timer
The Timer functions as a universal clock for the ACS system, which continues tracking time even during power failures.  It triggers other components to run at 300 Hz.  The Timer partitions an execution period, which last 1/300 of a second, into 8 frames and each frame is split up into 16 slots.  An execution period starts the moment the Timer executes tick(f, sc, mfc) or int-tick(f, sc, mfc) with f = 0 and sc = 0, and lasts until right before the next execution period begins.  A slot of time is the constant called slot-length and is equal to 25.875 μs.  The Timer also uses a constant called the timeToRecover, which is the amount of time the ACS system allocates for recovering the system after a power failure.  timeToRecover is equal to 1/2400 of a second, which is equal to a frame of time.  

The Timer keeps time by ticking each slot-length of time.  It has an external tick which it outputs to the three other components of the system, tick(f, sc, mfc) and also an internal tick, intTick(f, sc, mfc).  The Timer’s behavior is altered by power failures, and thus it has inputs pfiStart() and pfiEnd() from the outside world.

The Timer has 7 variables in its state.  It tracks two timing variables, frameCount that is an integer between 0-7 and slotCount that is an integer between 0-15.  In addition, the Timer also keeps a running count of the total number of frames that have ever passed, called the masterFrameCount.  The mode variable of the Timer’s state indicates the current running mode and can be equal to normal, fail, or recover.  The Timer also has a variable called now that corresponds with the actual time.  nextTick is the time when the next slot begins, and timeOfRecovery is the time when recovery must finish after a power failure.  With the exception of now, all variables are unchanging unless an action explicitly changes them.  now changes with rate 1 with respect to time.  The trajectory of now requires that when it is equal to nextTick, actions must fire until one of them sets now to a different value from nextTick.

Whenever the Timer’s mode is normal and now is equal to nextTick, meaning that another slot of time has just passed, the Timer outputs tick(f, sc, mfc).  This action advances the slotCount by 1 modulo 16, and whenever the slotCount is reset to 0, the frameCount increments modulo 8 and the masterFrameCount increments without bound.  To conclude this action, the Timer adds slot-length to nextTick to schedule the next tick(f, sc, mfc) output.  The Timer continues to operate in normal mode and thus execute the tick(f, sc, mfc) output action until a power failure occurs.  

At the start of the power failure, a pfiStart() input action causes the mode to become fail, which stops tick(f, sc, mfc) actions because the precondition that mode be normal is violated.  When the pfiEnd() input is received, signifying the end of the power failure, the mode becomes recover and timeOfRecovery is set to now plus timeToRecover.   When now is equal to nextTick but the mode is equal to fail or recover, the internal intTick(f, sc, mfc) action executes instead of tick(f, sc, mfc).  intTick(f, sc, mfc) has the exact same effects on slotCount, frameCount, masterFrameCount, and nextTick.  However, when the slotCount and frameCount are both reset to 0 in this action, if the mode is recover and nextTick reaches or exceeds the timeOfRecovery, then the mode becomes normal again.  While the mode is still recover or fail, intTick(f, sc, mfc) executes after another slot-length amount of time instead of the regular tick(f, sc, mfc) action.

Now changes with rate 1 with respect to now, as seen in the “Trajectories” section of the automaton.  When now is equal to nextTick, the automaton is required to execute the tick(f, sc, mfc) or intTick(f, sc, mfc) so that now is no longer equal to nextTick.
Timer

Constants:

slot-length = 25.875 μs

timeToRecover = 1/2400 of a second
Signature:

Input:


pfiStart()


pfiEnd()


Output:


tick(f, sc, mfc),  f( Z8, sc ( Z16, mfc ( Z
Internal:


intTick(f, sc, mfc),  f( Z8, sc ( Z16, mfc ( Z

State:

frameCount ( Z8, initially 0.

slotCount ( Z16, initially 0.

masterFrameCount ( Z, initially 0.

mode ( {normal, fail, recover}, initially normal.

now(
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 initially 0.

nextTick (
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initially now.
timeOfRecovery ( R, initially 0.

Transitions:

Output: tick(f, sc, mfc)


Precondition:



mode = normal


now = nextTick



f = frameCount



sc = slotCount



mfc = masterFrameCount


Effect:



slotCount := slotCount + 1 mod 16



if slotCount = 0 then 




frameCount := frameCount + 1 mod 8


masterFrameCount := 


masterFrameCount + 1



nextTick := nextTick + slot-length
Input: pfiStart()


Effect:



mode := fail


Input: pfiEnd()


Effect:



mode := recover


timeOfRecovery := now + timeToRecover


Internal: intTick(f, sc, mfc)

Precondition:



mode = fail or mode = recover 


now = nextTick



f = frameCount



sc = slotCount



mfc = masterFrameCount


Effect:


slotCount := slotCount + 1 mod 16



if slotCount = 0 then 




frameCount := frameCount + 1 mod 8


masterFrameCount := 



masterFrameCount + 1



if mode = recover and frameCount = 0




   and timeOfRecovery ( nextTick then





mode := normal


nextTick := nextTick + slot-length

Trajectories:


satisfies



d(now) = 1


stops when


now = nextTick

The GYRO
The GYRO’s function is to measure gyroscope errors on the stable platform, which indicates rotation in inertial space.  It has the timeToRecover, which is the time it takes for the system to recover, 1/2400 of a second.  The GYRO starts processing at the gyroStartTime, which has a frame count of 0 and a slot count of 2, and finishes processing within the gyroDeadline, which is 16 slots of time.  In addition, the GYRO also has a function, oper, which mimics calculating a gyroscope error, X, by mapping plant (that represents the rotational motion of the vechicle) and the old value of X to a new X.

The GYRO receives tick(f, sc, mfc) messages from the Timer.  It interacts directly with the LossyNet by outputting initTxngyro-p(), sendq1,gyro-p(m) (where m is an application message), commitgyro-p(), and startgyro-net-s(), and inputting sendReturnq1,gyro-p().  The GYRO has power failures that are represented by the inputs, pfiStart() and pfiEnd(), from the outside world.

The GYRO’s state includes a plant variable that represents the vehicle’s inertial platform angle error.  It uses this variable to calculate X, the gyroscope error.  The GYRO also has a variable xfc, which tracks the master frame count of the system.  The GYRO keeps backup copies of X and xfc in hardened memory that are called lastX and lastXfc.  The GYRO has a number of running modes, including waitStart, initTxn, send, waitSend, commit, signalStart, and finish.  It also has a failed variable, which is a Boolean value and disables all outputs when it is true.  Last, the GYRO has an internal clock that tracks time and that changes with rate 1 with respect to time.  The variables of the GYRO stored in volatile memory are lost at the start of a power failure, thus are set to an arbitrary value then.

This paragraph outlines the actions of the GYRO in the absence of power failures.  The GYRO starts in finish mode until it receives tick(f, sc, mfc) from the Timer and f and sc are both 0.  At this point, it sets mode to waitStart and sits idle until it receives tick(f, sc, mfc), where f and sc correspond to the gyroStartTime.  When this happens, the mode becomes initTxn, the clock is reset to 0, and xfc is set to mfc.  The initTxngyro-p() output is enabled which executes and sets mode to send and X to oper(X, plant).  Next, the sendq1,gyro-p(m) output occurs provided that the GYRO is not fail​ed, where m is a message containing the state variables, X, xfc, lastX, and lastXfc; the effect of this action is to set the mode to waitSend.  Next, the GYRO waits until it receives a sendReturnq1,gyro-p() input from the LossyNet, which causes the mode to become commit.  The commitgyro-p() is triggered, which causes the GYRO to set lastX equal to X and lastXfc equal to xfc and the mode to become signalStart. startgyro-net-s() is output and the mode remains finish until the next execution period.  These actions are required to take place by the time the clock reaches the gyroDeadline.  

Power failures alter the behavior of the GYRO and override any behaviors described in the preceding paragraph.  The pfiStart() input sets failed to true, which disables all outputs by violating one of their preconditions.  In addition, clock is set to 
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 to signify that the GYRO is no longer tracking time, and X and xfc are set to arbitrary values.  If the mode is not finish, it becomes initTxn.  The GYRO must input pfiEnd() next, signifying the end of the power failure.  At this point, X is set to lastX and failed becomes false.  The clock is set to negative the timeToRecover, meaning that if the mode is initTxn, then the automaton is required to finish the set of actions in the previous paragraph starting with outputting initTxngyro-p() after the number of slots in gyroDeadline plus the timeToRecover.

GYRO
Constants:


timeToRecover = 1/2400 of a second

gyroStartTime ( (Z8, Z16) = (0, 2)

gyroDeadline = 16 slots

oper = (X, plant -> X) a mapping from X and plant to X.  Simulates calculating angle errors. 

Signature:

Input:


tick(f, sc, mfc),  f( Z8, sc ( Z16, mfc ( Z

sendReturnq1,gyro-p()

pfiStart()


pfiEnd()


Output:


initTxngyro-p()

sendq1,gyro-p(m)  m ( M


commitgyro-p()


startgyro-net-s()

State:
plant ( 
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,  the vehicle’s angle error.

X ( 
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, initially 0.

xfc ( Z, initially 0. 
lastX, (
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, initially 0.

lastXfc ( Z, initially 0.
failed, a Boolean, initially false.

mode ( {waitStart, initTxn, send, waitSend, commit, signalStart, finish}, initially finish.

clock ( Z, initially arbitary.

Transitions:

Input: tick(f, sc, mfc)


Effect:



xfc := mfc



if (f, sc) = (0, 0) then




mode := waitStart


if (f, sc) = gyroStartTime then




mode := initTxn



clock := 0

Output: initTxngyro-p()


Precondition:



(failed


mode = initTxn


Effect:



X := oper(X, plant)



mode := send

Output: sendq1,gyro-p(m)


Precondition:



(failed



m = (X, xfc, lastX, lastXfc)



mode = send

Effect:




mode := waitSend

Input: sendReturnq1,gyro-p()


Effect:



mode := commit


Output: commitgyro-p()


Precondition:



(failed


mode = commit


Effect:



lastX := X



lastXfc := xfc


mode := signalStart

Output: startgyro-net-s()

Precondition:



(failed


mode = signalStart


Effect:



mode := finish
Input: pfiStart()


Effect:



X := arbitrary



xfc := arbitrary



clock := 
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if ((mode = finish) then




mode := initTxn



failed := true

Input: pfiEnd()

Effect:



failed := false



X := lastX


clock := -timeToRecover







Trajectories τ:

satisfies



d(clock) = 1


stops when

mode ( {initTxn, send, waitSend, commit, signalStart} and clock = gyroDeadline
The ACP
The ACP’s goal is to accumulate the GYRO’s angle errors and thus calculate the correct torque needed to maintain the stable platform of ACS.  The ACP starts processing at a constant called the acpStartTime, which is equal to a frame count of 1 and a slot count of 8.  It finishes processing by the acpDeadline of 19 slots.  The ACP uses a function oper2 to map the last torque sent, when it receives the last two messages, and a message to another torque.   
The ACP inputs tick(f, sc, mfc) from the Timer and pfiStart() and pfiEnd() from the outside world.  It outputs initTxnacp-p(), requestRecvLastq1,acp-p(), and commitacp-p() to the LossyNet and inputs startacp-s() and recvLastq1,acp-p(m) from it.  The most crucial action of the ACP is activate(v), which is output to the gimbals that are outside of the ACS system.

Included in the ACP’s internal state are three variables, A, afc, and recvXfc.  afc is the current master frame count, A is the torque that the ACP computes, and recvXfc is the last xfc value that the ACP has received from the GYRO.  The ACP also stores previous values of these variables in hardened memory, called lastAfc, lastA, and lastRecvXfc because these values are crucial in calculating the v in the activate(v) output.  The ACP has a mode that can take on the values of waitStart, initTxn, reqRecv, waitRecv, activate, commit, or finish.  It also has a failed variable that is a Boolean value that disables all outputs when it is true.  The ACP keeps an internal clock to track time so it can meet its timing deadlines.

The ACP continuously updates its value of afc when it receives tick(f, sc, mfc) from the Timer.  When it receives this message with f and sc both equal to zero, its mode becomes waitStart, and then the clock is reset to 0 at the acpStartTime.  It remains idle until it gets a startacp-s() input.  At this point, the ACP’s mode becomes initTxn.  This causes it to execute the output initTxnacp-p() to the LossyNet which sets the mode to reqRecv.  Next, requestRecvLastq1,acp-p() is enabled, which changes the mode to waitRecv.  After this, it waits until the LossyNet responds with recvLastq1,acp-p(m), where m contains values for X, xfc, lastX, and lastXfc.  The ACP processes this message by setting recvXfc to be m.xfc and calculates a new A by mapping (A, X, lastX, xfc, lastXfc, recvXfc, lastRecvXfc) to A using oper2.  It must compare recvXfc to lastRecvXfc so it knows if it missed a message from the GYRO, and if so, it updates the value of A using X and lastX.  Then, theTheThe ACP’s mode becomes activate, and it can then output activate(v) to the outside world, where v contains A, lastA, afc, and lastAfc.  This message contains the torque needed to adjust the gimbals, and causes the mode to become commit.  Last, the ACP finishes by outputting commitacp-p() to the LossyNet and updates the lastAfc to be afc and lastA to be A, and the mode becomes finish.  The ACP is required to output initTxnacp-p(), requestRecvLastq1,acp-p(), activate(v), and commitacp-p()  and inputs recvLastq1,acp-p(m) at or before the acpDeadline. 
When a pfiStart() is received, meaning that power has just gone off, the ACP’s failed variable becomes true and disables all outputs.   In addition, clock is set to 
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 to signify that the ACP is no longer tracking time.  A, afc, and recvXfc become arbitrary, and if the mode is not finish, it becomes waitStart.  When power goes back on, pfiEnd() is received and A becomes lastA and recvXfc becomes lastRecvXfc.  failed becomes false again.  Unlike the GYRO, the clock variable of this automaton stays at 
[image: image9.wmf]¥

, meaning that there is no guarantee how much this ACP completes in this execution period.  It may never receive a recvLastq1,acp-p(m) input back from the LossyNet if there is no message successfully sent after the power failure. 
ACP

Constants:


acpStartTime ( (Z8, Z16) = (1, 8)


acpDeadline = 19 slots

oper2 = (A, X, X, Z,Z,Z,Z -> A), a mapping from (A, X, lastX, xfc, lastXfc, recvAfc, lastRecvAfc)  to A.  

Signature:

Input:


tick(f, sc, mfc), f( Z8, sc ( Z16, mfc ( Z


startacp-s()

recvLastq1,acp-p(m), m ( M


pfiStart()


pfiEnd()




Output:


initTxnacp-p()


requestRecvLastq1,acp-p()


activate(v), v ( V


commitacp-p()

State:

A( 
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, initially 0.

afc ( Z, initially null.

recvAfc ( Z, initially null.


lastA ( 
[image: image11.wmf]Â

, initially null.

lastAfc ( Z, initially null.
lastRecvAfc ( Z, initially null.
failed, a Boolean, initially false.

mode( {waitStart, initTxn, reqRecv, waitRecv, activate, commit, finish}, initially finish.

clock ( Z, initially arbitrary.

Transitions:

Input: tick(f, sc, mfc)


Effect:



afc := mfc



if (f, sc) = (0,0) then




mode := waitStart


if (f, sc) = acpStartTime then



clock := 0

Input: startacp-s()


Effect:


mode := initTxn
Output: initTxnacp-p()


Precondition:



¬failed


mode = initTxn


Effect:



mode := reqRecv

Output: requestRecvLastq1,acp-p()


Precondition:



¬failed


mode = reqRecv

Effect:



mode := waitRecv
Input: recvLastq1,acp-p(m)


Effect:



recvXfc := afc


A := oper2(A,  m.X, m.lastX, m.xfc, m.lastXfc,




   recvXfc, lastRecvXfc)



mode := activate
Trajectories τ:
Output: activate(v)


Precondition:



¬failed


mode = activate


v = (A, lastA,afc, lastAfc)

Effect:



mode := commit
Output: commitacp-p()


Precondition:



¬failed


mode = commit

Effect:



lastA := A



lastAfc := afc



lastRecvAfc := recvXfc


mode := finish
Input: pfiStart()


Effect:



A := arbitrary



afc := arbitrary 


recvXfc := arbitrary



clock := 
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if ((mode = finish) then




mode := waitStart


failed := true
Input: pfiEnd()


Effect:



A := lastA



failed := false


satisfies



d(clock) = 1


stops when


mode ( {waitStart, initTxn, reqRecv, waitRecv, activate, commit} and clock = acpDeadline

1.2 The LossyNet
The LossyNet is a delivery service that provides FIFO delivery and drops at most 1 message after a power failure.  The LossyNet uses a combination of transaction management and hardened storage to deliver messages reliably over Ethernet.  The LossyNet is carefully timed with the rest of the system and must keep track of the processing times for the other components.  It tracks the gyroStartTime, gyroDeadline, acpStartTime, and acpDeadline to coordinate with the rest of the system, as well as its own unique timing constants, the netDeliveryTime, startTransmitDeadline, and deliverDeadline.  The netDeliveryTime is at frame 1 and slot 7.  The startTransmitDeadline is 21 slots after the gyroStartTime, and the deliverDeadline is 2 slots after the acpStartTime.

The LossyNet inputs tick(f, sc, mfc) messages from the Timer and pfiStart() and pfiEnd() from the outside world.  It receives initTxngyro-p(), sendq1,gyro-p(m), commitgyro-p(), and startgyro-net-s() from the GYRO and initTxnacp-p(), requestRecvLastq1,acp-p(), and commitacp-p() from the ACP, and outputs sendReturnq1,gyro-p() to the former and recvLastq1,acp-p() and startacp-s() to the latter.  

The LossyNet has sendMode and recvMode variables to keep track of what to do; a clock variable to keep track of time; failed to track if power is on; and recovering that is a Boolean to track when the LossyNet is recovering after a power failure.  In addition, it has six state variables that it uses to store messages in various stages of delivery.  In the first stage of delivery, the messages are stored in sendTemp, a FIFO queue of M.  Next, the messages go onto the transmitStorage variable, which is also a FIFO queue of M.  One message at a time can go from the head of the transmitStorage to gyroNIB, which contains a single message.  The message in gyroNIB then goes onto the acpNIB, which then can be added to the end of the recvStorage.  After the message is processed it goes from recvStorage to processStorage; both are FIFO queues of M.  The stages of delivery ending in “Temp” and “NIB” correspond to temporary storage and network interface board consisting of volatile memory, while in the “Storage” phases, the messages are stored in non-volatile memory.  

The rest of the description of the LossyNet describes its behavior in the absence of power failures.  The LossyNet’s behavior is driven by the Timer.  It constantly receives tick(f, sc, mfc) messages from the Timer, which causes it to set recovering to false.  Depending on the values of f and sc, different actions can be triggered.  First, when f and sc correspond to the gyroStartTime, the clock is reset to 0 and sendMode becomes wait.  The LossyNet waits until the GYRO sends it the input, initTxngyro-p() and then sendq1,gyro-p(m).  This action causes the LossyNet to place m at the tail of its sendTemp variable and set sendMode to be sendReturn.  At this point, the sendReturnq1,gyro-p() output is enabled.  This action must fire before or when clock reaches the gyroDeadline.  When the GYRO responds with commitgyro-p(), all the messages in m are added to the end of the transmitStorage variable, sendTemp becomes empty, and sendMode is set to waitTransmit.  Next, a startgyro-net-s() output action is enabled, and it sets gyroNIB equal to the head of transmitStorage, removes the head of transmitStorage, and causes the sendMode to become idle.  This must execute before or when the clock becomes startTransmitDeadline.  The LossyNet then waits for a tick(f, sc, mfc) message signifying the netDeliveryTime, which sets the acpNIB equal to gyroNIB, which simulates transferring a message over TDMA Ethernet.  Then, the LossyNet receives a tick(f, sc, mfc) corresponding to the acpStartTime.  The clock is set to 0 while recvMode becomes signalStart.   This enables the startacp-s() that adds acpNIB to the end of recvStorage and sets recvMode equal to waitRecv, before the deliverDeadline.  The inputs initTxnacp-p() and then reqRecvLastq1,acp-p() are expected next, and the latter sets recvMode to be receive.  This enables the recvLastq1,acp-p(m) output action of the LossyNet that must fire before the acpDeadline.  This action takes the message that is at the end of recvStorage, transfers that message to the tail of processedStorage, and empties recvStorage.  Finally, when the LossyNet receives the input, commitacp-p(), it empties the processedStorage queue. 

In the event of a pfiStart() input, failed becomes true and disables all outputs.  gyroNIB and acpNIB becomes (, because these variables are stored in volatile memory and are lost when there is a power failure.  If the sendMode is idle, it is set to wait.  Similarly, if the recvMode is not signalStart or idle, it becomes wait.  When pfiEnd() is received, all messages in sendTemp are lost and all the messages in processedStorage are put onto the head of recvStorage.  failed is set to false, while recovering is set to true.  The clock becomes negative the timeToRecover.  The LossyNet has timeToRecover plus the gyroDeadline amount of time to complete all the actions it does before the gyroDeadline regularly.  In addition, it has to finish all the normal actions it does before the startTransmitDeadline and the deliverDeadline before the clock reaches those deadlines.  Because recovering is not true though, it does not need to complete the set of actions it has to complete by the acpDeadline.  It is not able to output recvLastq1,acp-p(m) sometimes after a power failure because an Ethernet transmit slot may have been missed.
LossyNet

Constants:


timeToRecover = 1/2400 of a second


gyroStartTime ( (Z8, Z16) = (0, 2)


gyroDeadline = 16 slots


startTransmitDeadline = 21 slots


netDeliveryTime ( (Z8, Z16) = (1, 7)


acpStartTime ( (Z8, Z16) = (1, 8)


deliverDeadline = 2 slots


acpDeadline = 19 slots

Signature:



Input:


tick(f, sc, mfc), f( Z8, sc ( Z16, mfc ( Z

initTxngyro-p()


sendq1,gyro-p(m), m ( M


commitgyro-p()


startgyro-net-s()


initTxnacp-p()


requestRecvLastq1,acp-p()


commitacp-p()


pfiStart()


pfiEnd()
Output:

sendReturnq1,gyro-p()


recvLastq1,acp-p(m), m ( M


startacp-s()

State:

sendTemp, a FIFO queue of M, initially empty.

transmitStorage, a FIFO queue of M, initially empty.

gyroNIB ( M ( (, initially (.

acpNIB ( M ( (, initially (.

recvStorage, a FIFO queue of M, initially empty.

processedStorage, a FIFO queue of M, initially empty.


sendMode ( {wait, sendReturn, waitTransmit, idle}, initially idle.

recvMode ( {wait, signalStart, idle, receive}, initially idle.

failed, a Boolean, initially false.

clock ( Z, initially arbitrary.

recovering, a Boolean, initially false.

Transitions:

Input: tick(f, sc, mfc)


Effect:



recovering := false



If (f, sc) = gyroStartTime then




clock := 0




sendMode := wait



Else if (f, sc) =  netDeliveryTime then




acpNIB := gyroNIB



Else if (f, sc) = acpStartTime then




clock := 0




recvMode := signalStart
Input: initTxngyro-p()

Input: sendq1,gyro-p(m), m ( M


Effect:



add m to the tail of sendTemp



sendMode := sendReturn

Output: sendReturnq1,gyro-p()


Precondition:



(failed


sendMode = sendReturn


Effect:



sendMode := wait

Input: commitgyro-p()

Effect:



while sendTemp is not empty

 remove head of sendTemp and place it on tail of transmitStorage



sendMode := waitTransmit
Input: startgyro-net-s()


Effect:


gyroNIB := the head of transmitStorage



remove the head of transmitStorage



sendMode := idle

Output: startacp-s()


Precondition:



(failed


recvMode = signalStart

Effect:



If ((acpNIB = () then




add acpNIB to the end of recvStorage


recvMode := wait

Input: initTxnacp-p()

Input: requestRecvLastq1,acp-p()


Effect:



recvMode := receive
Output: recvLastq1,acp-p(m)


Precondition:



(failed


recvMode = receive


m is at the end of recvStorage


Effect:



add m to the end of processedStorage

 
recvStorage := {}



recvMode := wait
Input: commitacp-p()


Effect:



processedStorage := {}



recvMode := idle
Input: pfiStart()


Effect:


gyroNIB := (

acpNIB := ( 


failed := true



If ((sendMode ( {waitTransmit, idle}) then




sendMode := wait



If ((recvMode ( {signalStart, idle}) then



recvMode := wait


clock := (
Input: pfiEnd()


Effect:



failed := false


sendTemp := {}


while processedStorage  is non-empty

remove tail of processedStorage and add it to head of recvStorage



recovering := true



clock := -timeToRecover
Trajectories τ:



satisfies


d(clock) = 1


stops when



sendMode ( {wait, sendReturn} and clock = gyroDeadline


sendMode = waitTransmit and clock = startTransmitDeadline



recvMode = signalStart and clock = deliverDeadline


recvMode ( {wait, receive} and clock = acpDeadline and (recovering

ACS System Properties

In this section, we compose the models of Sections 4.1- 4.4, and consider properties of the system in both the absence and presence of power failures.  In ACS, power failures are required to be at least 20 ms apart, but we can show correct behavior of the system for power failures that are spaced as close as 6.7 ms, which meets the requirements of ACS.  Time is partitioned into frames that last 1/2400 of a second each and a frame is split into 16 slots.  Because the gimbals must be torqued every 8 frames, we separate frames into sets of 8, which we call execution periods.  An execution period starts the moment the Timer executes tick(f, sc, mfc) or int-tick(f, sc, mfc) with f = 0 and sc = 0, and lasts until right before the next execution period begins.  We state timing and other key conditions that allow the properties to hold.  
· Property 1: Data Integrity of the LossyNet.    

For any recvLastq1,acp-p(m) output of the LossyNet, there is some corresponding sendq1,gyro-p(m) input to the LossyNet earlier in the execution sequence.

· Property 2: Ordering of Received Messages.

The m in recvLastq1,acp-p(m) that is output by the LossyNet is always the same m in the last sendq1,gyro-p(m) input to the LossyNet.

· Property 3: Number of Times Messages are Delivered.  

Asumming that no message is sent twice, if there exists an m’ such that there are two recvLastq1,acp-p(m’) outputs of the LossyNet, there must be a pfiStart() and pfiEnd() action between those two outputs and no commitacp-p() action between them.

· Property 4: Progress without Power Failures.

If no pfiStart() or pfiEnd() message occurs during an execution period, then there exists an m and a v such that GYRO outputs sendq1,gyro-p(m), and the ACP inputs recvLastq1,acp-p(m) and outputs activate(v) during that execution period.

· Property 5: Progress with Bounded Rate of Power Failures.

If the time between successive pfiStart() messages is at least 6.7 ms and the system outputs activate(v) at least 20 μs before the end of any execution period without power failures, then there exists an m and a v for each execution period such that the GYRO outputs sendq1,gyro-p(m), the ACP inputs recvLastq1,acp-p(m) and outputs activate(v) at least every other execution period.

Together, these properties show the behavior of the ACS system.  It correctly torques a set of gimbals at 300 Hz in the absence of power failures.  As long as successive power failures start at least 6.7 ms apart and the system can finish processing 20 μs before the end of an execution period without power failures, the system is guaranteed to torque the gimbals at a rate of at least 150 Hz even in the worst case.  In the following subsections, we present proof sketches for these properties.  Discussion of the behavior of the system with power failures that are less than 6.7 ms apart is in Section 4.6.  

1.2.1 Data Integrity of the LossyNet
Property 1: For any recvLastq1,acp-p(m) output of the LossyNet, there is some corresponding sendq1,gyro-p(m) input to the LossyNet earlier in the execution sequence.

Lemma 1: All messages in sendTemp, transmitStorage, recvStorage, and processedStorage are m’s from sendq1,gyro-p(m) inputs to the LossyNet.  
Induction on execution periods of the system is used to prove this lemma.  
· Inductive Hypothesis:  All messages in sendTemp, transmitStorage, recvStorage, and processedStorage are m’s from sendq1,gyro-p(m) inputs to the LossyNet.  

· Base Case:  Upon initiation, the sendTemp, transmitStorage, recvStorage, and processedStorage components of the LossyNet are all empty, so they do not contain any message that is not in a sendq1,gyro-p(m) input to the LossyNet.  
· Inductive Step:  During an execution period, a pfiEnd() input occurs or does not occur. We assume for the purposes of induction that the sendTemp, transmitStorage, recvStorage, and processedStorage parts of the LossyNet’s state contain only messages in m at the beginning of an execution period, and show that this remains true at the end of that execution period.

· Case 1:  In the given execution period, no pfiEnd() input occurs.  

Only m’s from sendq1,gyro-p(m) messages can be put in sendTemp, and only messages in sendTemp can be put in transmitStorage.  Therefore, at the end of this execution period, these two components satisfy our inductive hypothesis.  The system is carefully timed so that a message from transmitStorage is put on the gyroNIB, and only after, are the contents of gyroNIB put on the acpNIB.  After the acpNIB has a valid message, its contents are put on the recvStorage.  Again, only messages in recvStorage go onto processedStorage, so all the messages in recvStorage and processedStorage must come from sendq1,gyro-p (m) inputs.    
· Step 2:  In the given execution period, pfiEnd() is input to the LossyNet. 

All messages in sendTemp are wiped out after a power failure, so it contains no corrupt messages.  Messages in transmitStorage are added only from sendTemp, which only contains authentic messages, so tranmitStorage cannot contain corrupt messages either. Messages being added to the recvStorage are checked using a checksum method.  We assume that by using a checksum, we can always detect corrupt messages on the acpNIB and prevent them from being added to recvStorage.  Messages in processedStorage can only come from messages that were in recvStorage, so if messages in recvStorage are always authentic, then so are messages in processedStorage.

Lemma 1 tells us that only messages from sendq1,gyro-p(m) inputs to the LossyNet can be in recvStorage, and only these messages can be found in recvLastq1,acp-p(m) outputs of the LossyNet.  Therefore, all m’s in recvLastq1,acp-p(m) outputs of the LossyNet are from sendq1,gyro-p(m) inputs.
(
1.2.2 Ordering of Received Messages

Property 2: The m in recvLastq1,acp-p(m) that is output by the LossyNet is always the same m in the last sendq1,gyro-p(m) input to the LossyNet.

The proof of Property 2 uses two cases that depend on the given execution period.

· Case 1:  No pfiEnd() action occurs during the given execution period.  

First, the GYRO inputs sendq1,gyro-p(m) to the LossyNet.  Since no power failure occurs in this execution period, the message goes from sendTemp to transmitStorage to the gyroNIB to the acpNIB to the end of recvStorage before a recvLastq1,acp-p(m) action occurs.  This m then is in the recvLastq1,acp-p(m) output of the LossyNet in this execution period. 
· Case 2:  A pfiEnd() action occurs during the given execution period.

If there is no previous execution period before this one, then sendTemp, recvStorage, and processedStorage must be empty.  Otherwise, since power failures must be spaced at least 6.7 ms apart, and a pfiEnd() action occurs during this execution period, there can be no pfiEnd() action in the execution period before this one, allowing the system to run as expected.  Therefore, during this previous execution period, sendTemp is emptied because of the commitgyro-g() action, and no other messages are put in sendTemp.  There is also some recvLastq1,acp-p(m) action that places all messages in recvStorage in processedStorage, which is then emptied during the commitacp-p() input to the LossyNet.  Therefore, no messages can be in sendTemp, recvStorage or processedStorage at the beginning of the current execution period.  If a message can be successfully received during the current execution period, no pfiStart() message can occur before the netDeliveryTime, which means that a new message is successfully put into the transmitStorage and that new message is received in this execution period. 



(
1.2.3 Number of Times Messages are Delivered

Property 3: Asumming that no message is sent twice, if there exists an m’ such that there are two recvLastq1,acp-p(m’) outputs of the LossyNet, there must be a pfiStart() and pfiEnd() action between those two outputs and no commitacp-p() action between them.

In ACS, every m ( M contains the master frame count at the time it is sent, so no message is sent twice.
Lemma 2: Messages can be in only one of the following four stages of delivery at any point in time regardless of power failures: sendTemp, transmitStorage, recvStorage, or processedStorage.

We prove this lemma by showing that messages must be removed from sendTemp before it can be in transmitStorage, then removed from there before it can be in recvStorage, and then it cannot be in recvStorage and processedStorage at the same time.

· A message is removed from sendTemp as it is put on transmitStorage, so a message cannot simultaneously be in both of these stages of delivery.  

· If there is no power failure, then the message from transmitStorage that is put on the gyroNIB is removed from transmitStorage before that message is put on the acpNIB, so we know that a message cannot be both in the acpNIB and transmitStorage stages at the same time.  Otherwise, after a power failure, the message in the gyroNIB is corrupted and thus a message is again not in the acpNIB and transmitStorage at the same time.  

· Messages can be only in recvStorage after they have been on the acpNIB, so a message can be in the recvStorage only after it has been removed from the transmitStorage stage of delivery.  

· Messages in recvStorage and processedStorage are put on one phase at the same time they are taken out of the other stage, so there is no way a message can be in both of these stages at the same time.

Next, we show that there must be pfiStart() and pfiEnd() actions between recvLastq1,acp-p(m’) actions.

Lemma 3: In the absence of power failures, a message is placed in recvStorage at most once.

Without power failures, messages in the LossyNet go from one stage of delivery to the next without ever backtracking.  Combining this with the previous property then shows that each message is placed at most once in recvStorage in the absence of power failures.

Together, Lemmas 2 and 3 show that each message appears at the head of recvStorage at most once in the absence of power failures, and thus the same m cannot appear in two recvLastq1,acp-p(m) outputs of the LossyNet if there is no power failure between them. 

Finally, we show that there cannot be a commitacp-p() action between the two recvLastq1,acp-p(m’) actions.

Next, we prove that the LossyNet cannot repeat messages it has output in recvLastq1,acp-p(m) actions before a commitacp-p() action.  All messages in recvLast q1,acp-p(m) actions before a commitacp-p() are placed in processedStorage when they are output.  According to Lemma 2, messages can only be one of sendTemp, transmitStorage, recvStorage, or processedStorage at any time, so we know these messages cannot also be in sendTemp, transmitStorage, or recvStorage at that time.  When the commitacp-p() action takes place, all messages in processedStorage are removed.  After this, the only place in the LossyNet that these messages can be stored is possibly in the gyroNIB or acpNIB.  We know that a pfiStart() and pfiEnd() action must occur between two possible repeat recvLastq1,acp-p(m), which corrupts gyroNIB and acpNIB, so any message that is received before the commitacp-p() action must be out of the system afterwards and cannot be output again.

The specification for the ACP requires that after a power failure, it restores its state to lastA, which is the state of the ACP immediately after the last commitacp-p() action.  It repeats only messages received after this commitacp-p() action, since the ACP’s state no longer reflects receiving these messages.  




(
1.2.4 Progress without Power Failures

Property 4: If no pfiStart() or pfiEnd() message occurs during an execution period, then there exists an m and a v such that GYRO outputs sendq1,gyro-p(m), and the ACP inputs recvLastq1,acp-p(m) and outputs activate(v) during that execution period.

If no pfiStart() or pfiEnd() message occurs during an execution period, the system functions as normal.  At the start of each execution period, the GYRO outputs sendq1,gyro-p(m) to the LossyNet and inputs commitgyro-p() by the gyroDeadline.  Meeting that deadline allows the LossyNet to meet the startTransmitDeadline, by which the LossyNet is required to have put the message on the gyroNIB.  Then, at a designated time slot this message is transmitted over TDMA Ethernet to the acpNIB.  The LossyNet then handles saving this message into actual hardened memory components on the ACP.  The ACP then inputs recvLastq1,acp-p(m) and calculates the correct torque and output activate(v) to the gimbals and commitacp-p() to the LossyNet before the acpDeadline.  


(
1.2.5 Progress with Bounded Rate of Failures

Property 5: If the time between successive pfiStart() messages is at least 6.7 ms and the system outputs activate(v) at least 20 μs before the end of any execution period without power failures, then there exists an m and a v for each execution period such that the GYRO outputs sendq1,gyro-p(m), the ACP inputs recvLastq1,acp-p(m) and outputs activate(v) at least every other execution period.

Lemma 4: If the system outputs activate(v) at least 20 μs before the end of an exection period without power failures, then during any execution period where no pfiEnd() message occurs, but a pfiStart() message can occur,  the GYRO outputs sendq1,gyro-p(m), the ACP inputs recvLastq1,acp-p(m) and outputs activate(v).  

This lemma is similar to property 4.5.4, except now we allow a pfiStart() message as long as there is no pfiEnd() message during this execution period.  For a pfiStart() message to occur without a pfiEnd() message during the same execution period, the pfiStart() message must be 20 (s or less before the very end of the period.  Therefore, ensuring that the system outputs activate(v) before this power failure, or at least 20 (s before the end of the execution period satisfies this lemma.

Next, consider two power failures that are spaced at least 6.7 ms apart.  After the execution period during which the first pfiEnd() message occurs, there is at most 3.3 ms until the next execution period begins, which can be seen in the Timer specification.  No pfiEnd() message can occur in this next execution period,.  Due to property 3 then, the GYRO outputs sendq1,gyro-p(m), the ACP inputs recvLastq1,acp-p(m) and outputs activate(v) during this execution period without power failures.



(
 Informal Discussion of ACS behavior

 







Diagram 4-3 shows the best-case and worst-case behavior of the ACS System depending on the time between pfiStart() actions.  If the time between two pfiStart() actions is less  than the amount of time it takes the system to recover, 1 frame or .417 ms, the system does not have enough time between power failures to do anything but recover.  Thus, it cannot output activate(v) at all, so there is an infinite amount of time between activate(v) outputs.  Between .417 ms and 3.3 ms, in the worst-case, there is still no activate(v) output; an example of when this worst-case happens is when there is a power failure during every Ethernet transmit slot when messages from the GYRO are sent to the ACP.  We are not sure what the best-case behavior is for this interval.  When the time between pfiStart() actions is 3.3 ms or greater, the best-case scenario is that power failures always occur when the system is doing background processing, so the system still outputs activate(v) every 3.3 ms.  We are not sure what the worst-case behavior is when there is between 3.3 and 6.7 ms between power failures.  When there is 6.7 ms between power failures, in the worst-case, there is 6.7 ms between activate(v) outputs.  An example is again when a power failure occurs during every other Ethernet transmit slot for the GYRO to send messages to the ACP.  As the time between power failures increases beyond 6.7 ms, in the worst-case, the maximum amount of time between two consecutive activate(v) actions can still be 6.7 seconds, but the frequency with which there is 6.7 seconds between consecutive activate(v) actions decreases.  Thus the amortized amount of time between two consecutive activate(v) actions asymptotically approaches 3.3 ms as the minimum amount of time between power failures increases.  This transition may not actually be as smooth, or approach 3.3 ms as quickly, as seen on the graph.

When a power failure occurs within an execution period determines if the system can still output activate(v).  In the worst case, a power failure can disrupt an entire execution period and the ACP cannot output activate(v), which happens when the power failure occurs before the message from the GYRO gets saved in the recvStorage state of the LossyNet.  Since TDMA Ethernet is being used, the GYRO can transmit messages only during a designated time slot.  A power failure at the beginning of this execution period or in the last frame of the previous time frame can prevent the GYRO from getting a message to the network interface board by its time slot.  Also, the system could be down for that time slot.  Either way, the GYRO has to wait until the next execution period for its next assigned time slot to transfer a message to the ACP.  Even if a message is transmitted to the ACP successfully in an execution period, it is stored in volatile memory for a small amount of time before it is saved in the hardened queues of the ACP.  A power failure before that causes the ACP to lose that message.  The system is able to get a message onto the hardened memory of the ACP by the 10th slot of the 2nd frame of this 8 frame execution period.  Thus, only a power failure that occurs starting from the beginning of the last frame of the previous execution period to the 10th slot of the 2nd frame in the current execution period can invoke this worst-case behavior, which is less than one third of the time.  Power failures that occur after the 10th slot of the 2nd frame and before the 12th slot of the 3rd frame may cause the system to be late outputting activate(v), while power failures that start at all other times in the execution period has no effect on the system’s ability to output activate(v) on time.

2 ACS Module Design: The Application Framework 

This section presents the design of the ACS module, which is used to implement the GYRO and ACP specifications, and is also used in the LossyNet design.  The ACS module has a generic hardware design, an application framework, and customized applications.  The customized applications describe the special calculations the module performs, while the rest of the application framework provides checkpointing and power failure recovery of applications transparently to the programmers who write the applications.  The framework consists of Schedulers, HStoragehs, and Appi HIOA models.  

First, we describe some of the parts of the system and assign them a set of names.  Each physical module with an application framework, such as the GYRO or ACP, is identified by its processor.  Each scheduler has a universally unique name, and each application has a unique name too.  Applications save state using hardened storage services and can send application messages to one another using hardened queues.  We assign the following names to the system:  

· P, processor names

· S, scheduler names

· I, application names 

· M, application messages

· HS, hardened storage service names

· HQ, hardened queue names

Next, we give some of the relations between these parts of the system.  Each Schedulers sits on one processor.  Each Appi in ACS is run on a unique processor.  Each HStoragehs service has a set of queues that it manages and runs on one processor.  Each hardened queue has exactly one application that sends messages to it and one application that receives messages from it.  

· For all s ( S,

processor(s) ( P
· For all i ( I,

processor(i) ( P

· For all hs ( HS,

hQueues(hs) ( HQ

processor(hs) ( P

· For all q ( HQ,

sender(q) ( I

receiver(q) ( I

Three models are presented in this section: Schedulers where s ( S, HStoragehs where hs ( HS, and Appi where i ( I.  The Schedulers tells Appi’s when to execute and controls the transaction processing.  HStoragehs is a hardened storage service for applications; it uses transactions to save messages.  Appi’s are applications that perform calculations for attitude control and can be recovered by the ACS application framework.  Those applications determine the actual trace of that module.  A module is implemented on a processor, p ( P, includes a Schedulers where processor(s) = p, an HStoragehs where processor(hs) = p; and some Appi’s for which processor(i) = p.  All other automata are considered the “outside world.” 

Diagram 5-1 shows the possible actions of these automata that compose to form the GYRO, ACP, and parts of the LossyNet.  pfiStart() and pfiEnd() are input to all the automata in an ACS module.  tick(f, sc, mfc) are input to the Schedulers and Appi. The Schedulers can input starts() and output starts2​() as well.  It outputs initTxnp() and commit​p() to HStoragehs and to the external LossyNet.  It outputs appCalli() to Appi and inputs appReturni() from it.  Appi can output sendq,p(m), requestRecvq,p(), and requestRecvLastq,p() to HStoragehs and to the LossyNet as long as it inputs corresponding sendReturnq,p(), recvq,p(m), and recvLastq,p() actions.  The set of q’s in these messages that are input and output to the LossyNet differs from those in the actions of HStoragehs.  Appi’s can have additional inputs and outputs to the outside world, as denoted with the actions otherInputsi() and otherOutputsi().  A black box is drawn around this design and the black arrows going in and out of this black box are the external actions of the composition of these models.  



Diagram 5-2 gives an overview of the system under normal operating conditions.  First, the Schedulers initializes a transaction by outputting initTxnp().  Then, the Schedulers decides what Appi it runs next and outputs appCalli() to that application.  The application then does a number of actions which can include pairs of sendq,p(m)/sendReturnq,p(), requestRecvq,p()/recvq,p(m), requestRecvLastq,p()/recvLastq,p(m) actions with HStoragehs and the LossyNet and also other input and output actions with the outside world.  When that Appi returns, Schedulers can decide to run another application.  When the Schedulers has received an appReturni() message from the last application it wishes to run, it commits this transaction by outputting commitp(), which causes changes to the state of HStoragehs and the LossyNet.  

In the following subsections, we first give general descriptions for the Schedulers, HStoragehs, and Appi’s of the ACS application framework.  In Section 6, we fill in details of the specific Schedulers and Appi’s that fulfill the GYRO and ACP specifications.  Section 7 describes the design of Schedulers of Section 5.1 that uses a structure similar to the one just presented in Diagram 5-1.  Then, in Section 8, we describe the specific Schedulers’s and Appi’s that help fulfill the LossyNet specification.  

The Scheduler: Schedulers
The Schedulers controls the applications, hardened storage service, and the LossyNet.   The timeToRecover is equal to 1/2400 of a second.  The Schedulers has a schedule​s constant that is an array with application numbers, null, or scheduler numbers.  The constant startTimes is the time when Schedulers starts tracking time.  appAndDeadlines is a set of triples of (a, d, afterRecovery) where a represents an index of an application in schedule​s, d is the number of slots by which Schedulers must finish executing that application, and afterRecovery is a Boolean that states whether this application must still be run correctly after recovery.  The Scheduler​s has a Boolean waitStartSignals, which if true means the automaton should wait for a starts() input before starting, or else it starts at startTimes.

The Schedulers receives tick(f, sc, mfc), pfiStart(), and pfiEnd() from the outside world, and can input starts() and output starts2().  It outputs appCalli() and inputs appReturni() from Appi.  It outputs initTxnp() and commitp() to HStoragehs and the LossyNet.  

The Schedulers’s state includes four variables.  appNum is an index of the schedulep array, and is initially arbitrary.  lastAppNum saves a value of appNum.  The mode can be waitStart, initTxn, appCall, wait, commitTxn, finish, signalStart, or failed and is initially finish.  Finally, there is a clock to track time and recovering to denote recovery periods.

The Schedulers receives tick(f, sc, mfc) which sets recovering to false. When f and sc are both 0, the mode is set to waitStart and appNum is set to 1.  When f and sc correspond to startTimep, it resets the clock to 0.  It starts processing right away if waitStartSignals is false by setting mode to initTxn.  Otherwise, it waits for a starts() input to set mode to initTxn.  The initTxnp() output is then enabled, which causes the mode to become appCall.  Next, appCalli() can be output, which sets the mode to wait.  The Schedulers then inputs appReturni(), which causes it to increment appNum.  If schedules[appNum] is an application number, then the mode becomes appCall which causes it to repeat all the actions starting with appCalli().  However, if it is null, then the mode becomes commitTxn which enables the commitp() action.  That action causes the Schedulers to increment appNum and set lastAppNum to be appNum.  Now, if schedules[appNum] is null, that means there are no more applications to run, so mode becomes finish.  Otherwise, schedules[appNum] must be a scheduler number, so the mode becomes signalStart, and starts2() is output to signal Schedulers2 to start processing.  Schedulers is required to finish running certain applications before their deadline, according to the constant, appAndDeadlines. 
pfiStart() causes the mode to become failed, and the clock to become 
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, which disables all outputs.  When pfiEnd() is input, appNum is set to lastAppNum.  The mode becomes initTxn or waitStart if it was not finished processing before.  The clock becomes –timeToRecover, and so now the Scheduler has 1/2400 of a second plus the deadline amount of time to finish running all applications in appAndDeadlines if afterRecovery of that triple is true.

Schedulers 

Constants:


timeToRecover = 1/2400 of a second

schedules = an array of i ( I ( ( ( S, indexed starting at 1.

startTimes ( (Z8, Z16), the time when p starts its critical processing.

appAndDeadlines = set of triples of (a ( Z, d ( Z, afterRecovery:Boolean)


waitStartSignals, a Boolean that tells the Schedulers when to start processing.

Signature:

Input:


tick(f, sc, mfc), f( Z8, sc ( Z16, mfc ( Z


starts()


appReturni(), i ( I & processor(i) = processor(s)


pfiStart()


pfiEnd()


Output:





initTxnp(), p = processor(s)

appCalli(), i ( I & processor(i) = processor(s)


commitp(), p = processor(s)

starts2(), s2 ( S

State:


appNum ( Z, initially arbitrary.

lastAppNum ( Z, initially arbitrary.

clock ( Z, initially arbitrary.

mode ( {waitStart, initTxn, appCall, wait, commitTxn, finish, signalStart, failed}, initially finish.

recovering, a Boolean, initially false.

Transitions:

Input: tick(f, sc, mfc)


Effect:



recovering := false



If (f, sc) = (0, 0) then




mode := waitStart




appNum := 1


Else if (f, sc) = startTimes then




clock := 0




if (waitStartSignals then





mode := initTxn

Input: starts()


Effect:



mode := initTxn
Output: initTxnp()


Precondition:



mode = initTxn

Effect: 



mode := appCall
Output: appCalli()

Precondition:



mode = appCall


i = schedules[appNum]

Effect:



mode:= wait
Input: appReturni()


Effect:



appNum:= appNum + 1



if (schedules[appNum] =  () then




mode := commitTxn


else 




mode := appCall


Output: commitp()  


Precondition:



mode = commitTxn

Effect:



appNum:= appNum + 1



lastAppNum := appNum



if (schedules[appNum] =  () then




mode := finish


else 



mode := signalStart

Output: starts2()


Precondition:



mode = signalStart



s2 = schedules[appNum]

Effect:



mode := finish

Input: pfiStart()


Effect:



clock := 
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mode := failed

Input: pfiEnd()


Effect:



recovering = true



clock = -timeToRecover



appNum := lastAppNum



if (schedules[appNum] =  () then




mode := finish


else 




if (waitStartSignal then




mode := initTxn



else




mode := waitStart

Trajectories:


satisfies



d(clock) = 1


stops when



(recovering & mode ( {initTxn, appCall, wait, commitTxn} & 


( (a, d, afterRecovery) ( appAndDeadlines such that appNum ( a & clock = d 

recovering & mode ( {initTxn, appCall, wait, commitTxn} &


( (a, d, afterRecovery) ( appAndDeadlines such that appNum ( a & clock = d & afterRecovery

2.1 Hardened Storage: HStoragehs
HStoragehs is a service that other automata use to save messages reliably.  An application can use HStoragehs to save its own state, by sending a message to itself, or as storage to send messages that can endure power failures.  HS is the set of HStorage names, and hs is one of those names.  Each HStoragehs has hQueues(hs), which is a subset of hardened queue names.  It runs on processor(hs), which is in the set of processor names.  

HStoragehs inputs initTxnp() and commitp() from Scheduler​s, where p = processor(hs).  It receives sendq,p(m), requestRecvq,p(), and requestRecvLastq,p() from Appi automata, where q is in the set of hQueues(hs), and it responds with sendReturnq,p(), recvq,p(m), and recvLastq,p(m).  HStoragehs receives tick(f, sc, mfc), pfiStart() and pfiEnd() inputs from the outside world.

The state of HStoragehs includes the variable queue, which is the number of a hardened queue that it is modifying.  It also has a mode that indicates what it is currently doing.  In addition, it has three message storage components that each represents a different stage of delivery.  The first stage of delivery is sendTemp, which includes messages in sendq,p(m) inputs since the last initTxnp() action.  Next are mainMessageStorage, which contains messages in sendq,p(m) inputs before the last commitTxnp() action, but that cannot be in any recvq,p(m) or recvLastq,p(m) actions that precede a commitTxnp() action or in any  recvq,p(m) or recvLastq,p(m) since the last initTxnp() action.  Finally is receivedLog, which contains all messages in all recvq,p(m) or recvLastq,p(m) since the last initTxnp() action.

First, HStoragehs expects to receive an initTxnp() action which sets mode to wait.  Next, applications can start sending and receiving messages from HStoragehs.  It can input sendq,p(m) which causes (m, q) to be added to the end of sendTemp, queue to become q, and the mode to become sendReturn.  This enables the sendReturnq,p() action which sets the mode to wait.  It can also input reqRecvq,p() that enables the recvq,p(m), where m is the head of mainMessageStorage(q).   This action removes m from mainMessageStorage and places (m, q) at the tail of receivedLog, and sets mode to wait.  reqRecvLastq,p() enables recvLastq,p(m), where m is at the tail of mainMessageStorage(q), and causes all messages in mainMessageStorage(q) to be added to the end of receivedLog in order, and mode to again become wait.  When the mode is wait, more messages can be sent or received, but eventually a commitp() action is expected.    This removes all the messages in sendTemp places them in inTransitMessage, while all the messages in receivedLog are removed from HStorage permanently.   

Now, we trace a message, m, through HStorage.  When a message is sent from an application in a sendq,p(m) input, it is placed on sendTemp.  The next commitp() action removes m from sendTemp and places m on mainMessageStorage.  Then, a reqRecvq,p() action with m at the head of mainMessageStorage(q) or the next reqRecvLastq,p() action, takes m out of this stage of delivery and places m on receivedLog.  The next commitp() removes m from HStorage permanently.  

A pfiStart() input can interrupt these above actions by making the mode failed and disabling all outputs.  Then, a pfiEnd() input signals the end of the power failure, and empties sendTemp and places all messages in receivedLog back onto the head of inTransitMessages in order.  

HStoragehs

Signature:

***For all these actions, p = processor(hs)

Input:


Output:

initTxnp()

sendq,p(m), m ( M & q ( hQueues(hs)

requestRecvq,p(), q ( hQueues(hs) 

receiveRecvLastq,p(), q ( hQueues(hs)

commitp()

pfiStart()

pfiEnd()




sendReturnq,p(), q ( hQueues(hs)


recvq,p(m), m(M & q ( hQueues(hs) 


recvLastq,p(m), m ( M & q ( hQueues(hs)

State:


sendTemp, a FIFO queue of (m ( M, q ( Q) pairs, initially empty.


mainMessageStorage, a hash Table of FIFO queues of m ( M indexed by q ( HQ, initially empty.


receivedLog , a FIFO queue of messages of (m ( M, q ( Q) pairs, initially empty.


queue ( HQ, initially arbitrary.


mode, [idle, wait, sendReturn,  recvReturn, recvLastReturn, failed], initially idle.

Transitions:

Input: initTxnp()


Effect:



mode := wait
 

Input: sendq,p(m)


Effect:



add (m, q) to end of sendTemp


queue := q


mode := sendReturn
Output: sendReturnq,p()


Precondition:



q = queue



mode = sendReturn

Effect:



mode := wait 
Input: requestRecvq,p()


Effect:


queue := q


mode := recvReturn
Output: recvq,p(m)


Precondition:



mode = recvReturn



q = queue



m is at head of mainMessageStorage(queue)

Effect:

remove head of mainMessageStorage(queue), 


and add to end of receivedLog
mode := wait
Input: requestRecvLastq,p()


Effect:



queue := q 


mode := recvLastReturn

Output: recvLastq(m)


Precondition:



mode = recvLastReturn


q = queue



m is at tail of mainMessageStorage(queue)

Effect:

while mainMessageStorage(queue) is non-empty


remove head of mainMessageStorage(queue), 


and add to end of receivedLog


mode := wait
Input: commitp()


Effect:



while sendTemp is non-empty 

remove head elt of sendTemp and place on tail of mainMessageStorage(elt.q);


receivedLog := {}



mode := idle
Input: pfiStart()


Effect:



mode := failed
Input: pfiEnd()


Effect:



sendTemp := {}



while receivedLog is non-empty 

remove tail elt of receivedLog and add to head of mainMessageStorage(elt.q);


mode := idle

2.2 Applications: Appi
Applications represent software components on the ACS system.  Each application, i, is run on a certain processor, processor(i).  It has a set of hardened queues that it sends messages on, called sendQueuesi that consists of all hardened queues where the sender of the queue is i.  Similarly, it has recvQueuesi that it sends messages on consisting of all hardened queues where i is the receiver of that queue.  In addition, this application has a function, fi, which maps all the state of the application to another state. 

Appi receives appCalli() from the Schedulers, and responds to this with the output appReturni().    It outputs sendq,p(), requestRecvq,p(), and requestRecvLastq,p() to HStoragehs and to the LossyNet, and inputs sendReturnq,p(), recvq,p(), and recvLastq,p() in response.  It inputs pfiStart() pfiEnd(), and tick(f, sc, mfc) from the outside world.  It can also have additional inputs and outputs, which have abstractly been called otherInputsi() and otherOutputsi().

Appi’s state includes message, which is an application messages, and queue, which is a hardened queue.  Other parts of an application’s state is called otherStatei.  There is also mode, which can take on many values including otherModesi.  

Whenever the application receives tick(f, sc, mfc), the application updates its appfc value to mfc.  An application’s mode is idle until it receives appCalli(), which causes the mode to become run.  This triggers the internal action, appRuni().  This action updates message, queue, otherState, and mode by setting it equal to fi(message, queue, otherState, mode).  The next action of this application depends on what value mode is set to.  Setting mode to send enables the sendq,p(m) message, where q is equal to queue and m is equal to message.  A sendReturnq,p() response is expected after this action which sets the mode to sent and then updates its state again using fi.  recvRecvq,p() is enabled when the mode is recv, while recvRecvLastq,p() is enabled when the mode is recvLast.  recvq,p(m) or recvLastq,p() is input in response, which sets the mode to recvd or recvdLast and then the state is updated using fi.  otherOutputs() may be triggered too as a result of the new state and otherInputs() may be expected.  These actions could also effect the state of the application.  The last thing that could be enabled is appReturni(), if the mode is return.  

A pfiStart() message causes the mode to become failed, which disables all outputs.  All other parts of the state of this application become arbitrary.  When a pfiEnd() message occurs, the mode becomes idle.

Appi

Constants:


sendQueuesi = all q ( HQ such that sender(q) = i.


recvQueuesi  = all q ( HQ such that receiver(q) = i.


fi = (M, HQ, OSi, Z, {run, sent, recvd, recvdLast, recover, otherModes}-> 



M, HQ, OSi,{run, send, recv, recvLast, return, otherModes}) 

Signature:  * In all the actions of this automaton, p = processor(i)

Input:



tick(f, sc, mfc), f( Z8, sc ( Z16, mfc ( Z

appCalli()


sendReturnq,p(), q ( sendQueuesi

recvq,p(m), m ( M & q ( recvQueuesi

recvLastq,p(m), m ( M & q ( recvQueuesi

otherInputsi()

pfiStart()


pfiEnd()

Output:




appReturni()


sendq,p(m), m ( M & q ( sendQueuesi



requestRecvq,p(), q ( recvQueuesi

requestRecvLastq,p(), q ( recvQueuesi

otherOutputsi()

Internal:


appRuni()

State:

message ( M, intitially arbitrary.

queue ( HQ, initially arbitrary.

otherStatei ( OSi, initially osi.

appfc ( Z, initially arbitrary.


mode ( {idle, run, send, waitSend, sent, recv, waitRecv, recvd, recvLast, recvdLast, return, otherModesi, failed},  initially idle.

Transitions:

Input tick(f, sc, mfc)


Effect:



appfc := mfc 

Input: appCalli(fc)


Effect: 



appfc := fc


mode := run
Internal: appRuni()


Precondition:



mode = run

Effect: 



(message, queue, otherState, mode) := 



    fi(message, queue, otherState, mode)

Output: sendq,p(m)


Precondition: 



q = queue



mode = send


m = message


Effect:



mode := waitSend
Input: sendReturnq,p()

Effect:



queue := q



mode := sent



(message, queue, otherState, mode, appfc) := 



    fi(message, queue, otherState, mode)

Output: requestRecvq,p()


Precondition: 



mode = recv



q = queue

Effect:



mode := waitRecv
Input: recvq,p(m)


Effect:



queue := q



message := q



mode := recvd



(message, queue, otherState, mode, appfc) := 



    fi(message, queue, otherState, mode)
Output: requestRecvLastq,p()

Precondition: 



mode = recvLast



q := queue

Effect:



mode := waitRecv
Input: recvLastq,p(m)


Effect:



queue := q



message := q



mode := recvdLast



(message, queue, otherState, mode, appfc) := 



    fi(message, queue, otherState, mode)

Output: appReturni()


Precondition: 



mode = return

Effect:



mode := idle
Input: pfiStart()


Effect:



mode := failed



message, queue, and otherState := arbitrary

Input: pfiEnd()


Effect:



mode := idle
3 Implementation of the GYRO and ACP
This section gives the implementation of the GYRO and ACP using the ACS module design from Section 5.  In the following subsections, constants are defined for Schedulers and for Appi as needed to implement the GYRO and ACP.  The sets of queues in HStoragehs for each of these modules are also clearly described.  Then, a simulation relation for each of these implementations is proposed.  

3.1 Implementation of the GYRO 

This subsection describes the specific components that implement the GYRO.  We assign a name to processor of the GYRO, called gyro-p.  The GYRO includes Schedulergyro-s, HStoragegyro-hs, and Appgyro-i.  For gyro-s ( S, processor(gyro-s) = gyro-p; for gyro-hs ( HS, processor(gyro-hs) = gyro-p and  hQueues(gyro-hs) = {qgyro-i-state, q1}; for gyro-i ( I, processor(gyro-i) = gyro-p.  

The signature of Appgyro-i includes sendq1,gyro-p(m), where m ( M, and sendReturnq1,gyro-p().  Other reqRecvq,p()/recvq,p(m) and reqRecvLastq,p()/recvLastq,p(m) actions are input to other automata in the ACS module, and thus are not in the external actions of the composition of the automata that form the GYRO.

Although many other applications may be on the GYRO, we do not give specifications for these applications, as they are not necessary for implementing the high level specification.  However, our models are nondeterministic and allow these applications to exist and run when the processor is not busy running the applications we have described.  Thus, we can guarantee that the presence of these applications does not effect prevent the GYRO from implementing its specification.  In the following subsections, we specify the crucial components of the GYRO by defining the constants from the models in sections 5.1-5.3.
3.1.1 The Schedulergyro-s
We define the four constants for Schedulergyro-s:

· schedulegyro-s = [gyro-i, (, gyro-net-s]

This value for schedulegyro-s means that when the time reaches startTimegyro-s, it first initializes a transaction, runs Appgyro-i, and then commits the transaction.  After this, it signals Schedulergyro-net-s to start processing.  Another Schedulers could run other applications before this Schedulergyro-s, as long as this scheduler can still run its applications by their timing deadlines.  We did not describe any such Schedulers because it is not needed to implement the specifications.

· startTimegyro-s = gyroStartTime 
· appAndDeadlinegyro-s = {(1, gyroDeadline, true)}.  Appgyro-i  is run by the gyroDeadline, even after a power failure.

· waitStartSignalgyro-s = false.  This Scheduler​gyro-s starts executing at the gyroStartTime.
3.1.2 The Appgyro-i
Appgyro-i is the application on the GYRO that calculates the error of the stable platform in ACS and sends that information to the ACP.  It saves and retrieves its state on a hardened queue, called qgyro-i-state, and sends messages to the ACP on the hardened queue, q1.  

Whenever this application receives an appCallgyro-i() input, its mode becomes run.  This enables the internal appRungyro-i() action, and the application retrieves its state from a hardened queue.  To do this, queue becomes qgyro-i-state and the mode becomes recvLast.  Then, requestRecvLastq-gyro-i-state,gyro-p() is output, and recvLastq-gyro-i-state,gyro-p(m) is input.  m has two parts, m.X  and m.xfc.  Next, the application calculates the new value for X and sends this information to the ACP.  X becomes oper(X, plant); message becomes the newly calculated values for X, appfc, m.X and m.xfc; queue becomes q1; and the mode becomes send.  This message is then sent with the output sendq1,gyro-p(m).  When sendReturnq1,gyro-p() is input, then queue becomes qgyro-i-state and the mode becomes send and message becomes (X, appfc).  This causes this application to save its pertinent state, X and appfc, and it outputs sendq-gyro-i-state,gyro-p(message).  Finally, when sendReturnq-gyro-i-state() is input, the mode becomes return, and appReturngyro-i() is enabled.  The mode becomes idle until another appCallgyro-i() action occurs, or a pfiStart() action causes the mode to become failed.  A pfiEnd() message causes mode to become idle.  

The following values for the constants in Appgyro-i() give this behavior:

· Constants: oper = (X, plant -> X) a mapping from X and plant to X that simulates calculating angle errors.
· otherStategyro-i:
plant ( 
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,  the vehicle’s angle error.

X ( 
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, initially 0.

· otherModesgyro-i: none
· otherInputgyro-i: none

· otherOutputgyro-i: none

· sendQueuesgyro-i = {qgyro-i-state, q1}
· recvQueuesgyro-i = {qgyro-i-state}
· fgyro-i = includes the following mappings from (message, queue, (plant, X), mode, appfc) ( (message, queue, X, mode)
· (m ( M, q ( Q, (p ( 
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, x ( 
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), run, fc ( Z) ( (m,qgyro-i-state,x,recvLast)

· (m ( M, qgyro-i-state, (p ( 
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, x ( 
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), recvdLast, fc ( Z) (

((oper(m.X, p), fc, m.X, m.xfc), q1, oper(m.X, p), send)

· (m ( M, q1, (p ( 
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, x ( 
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), sent, fc ( Z) ( ((x, fc), qgyro-i-state, x, send)

· (m ( M, qgyro-i-state, (p(
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, x(
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), sent, fc(Z) ( (m, qgyro-i-state, x, return)

*** All other inputs for this function are not possible.

3.1.3 Simulation Relation for the GYRO
Here we give what we believe is the simulation relation that describes the state of the GYRO specification given the state of the implementation of the GYRO.  It has not been rigorously verified that this simulation relation holds, and it is possible that it requires some minor modifications to formally prove this implementation meets the GYRO specifications.  A: x denotes the x variable of the A automaton.  
· plant = Appgyro-i: plant
· X  =

· If Appgyro-i:mode=send,  Appgyro-i:X.

· If Appgyro-i:mode=return or (Schedulergyro-s:mode ( {appCall, wait, commitTxn} and Schedulergyro-s:appNum>1), m.x such that (m, q) is the last pair of HStoragegyro-hs:sendTemp with q = gyro-i-state.
· Otherwise, m.x where m is the tail of HStoragegyro-hs:mainMessageStorage(q1).

· xfc = Appgyro-i: appfc

· lastX=m.x where m is tail of HStoragegyro-hs:mainMessageStorage(qgyro-i-state).
· lastXfc=m.fc where m is tail of HStoragegyro-hs:mainMessageStorage(qgyro-i-state). 

· failed =
· If Schedulergyro-s:mode=failed, true.
· Otherwise, false.
· mode =
· If Schedulergyro-s:mode = waitStart, waitStart.
· If Schedulergyro-s: mode = initTxn, initTxn.
· If Schedulergyro-s: mode ( {appCall, wait} and Schedulergyro-s: appNum = 1 and Appgyro-i: mode ( {recvLast, waitRecv}, send.
· If Schedulergyro-s: mode ( {appCall, wait} and Schedulergyro-s: appNum = 1 and Appgyro-i: mode = send, 
· If Appgyro-i: q = q1, send.
· Else, waitSend.
· If Schedulergyro-s: mode ( {appCall, wait} and Schedulergyro-s: appNum = 1 and Appgyro-i: mode ( {waitSend}, waitSend.

· If Schedulergyro-s: mode ( {appCall, wait} and Schedulergyro-s: appNum = 1 and Appgyro-i: mode = return, commit.

· If Schedulergyro-s: mode ( {appCall, wait, commitTxn} and Schedulergyro-s: appNum = 2, commit. 
· If Schedulergyro-s: mode = signalStart, signalStart.
· If Schedulergyro-s: mode = finish, finish. 
· If Schedulergyro-s: mode = failed,

· If Schedulergyro-s: lastAppNum > 2, finish.

· Else, initTxn.

· clock ​​=Schedulergyro-s: clock
3.2 Implementation of the ACP
This subsection describes the specific components that implement the ACP.  We assign a name to processor of the ACP, called acp-p.  The ACP includes Scheduleracp-s, HStorageacp-hs, and Appacp-i.  Scheduleracp-s is discussed later in this section, and processor(acp-s) = acp-p.  HStorage​acp-hs has processor(acp-hs) = acp-p, and has hQueues(acp-hs) = {q1, qacp-i-state}.  Appacp-i has processor(acp-i) = acp-p.  Other applications can exist on the ACP, but only those used to satisfy the high level specification for the ACP are presented.

3.2.1 The Scheduleracp-s
Scheduleracp-s is similar to Schedulergyro-s.  We define the constants for Scheduleracp-s as follows:

· scheduleacp-s = [acp-i, (, (( or s)]

This value for scheduleacp-s means that the Scheduleracp-s initializes a transaction, runs Appacp-i, and then commits that transaction.  After this, Scheduleracp-s can do nothing and just become idle, or it could call another scheduler to run more applications on the ACP.  In reality, it does indeed run another set of applications, but since these are background applications that do not play a part in implementing the high-level specifications, they are not discussed.

· startTimeacp-s = acpStartTime 
· appAndDeadlineacp-s = {(
1, acpDeadline, false)}.  Appacp-i  is run by the acpDeadline, but not after a power failure.  

· waitStartSignalacp-s = true.  This scheduler waits until another scheduler finishes running and signals it to start processing before it does anything.
3.2.2 The Appacp-i
Appacp-i is the application on the ACP that receives messages from the GYRO and processes them to calculate the correct torque for the gimbals.  It saves and retrieves its state on a hardened queue, called qacp-i-state, and receives messages from the GYRO on the hardened queue, q1.  Its signature includes reqRecvLastq1,acp-p(), recvLastq1,acp-p(m) where m ( M,  and activate(v) that are output to the outside world.

This paragraph describes the behavior of Appacp-i.  Whenever this application receives an appCallacp-i(), it enables the appRungyro-i() action, which enables the requestRecvLastq-acp-i-state,acp-p() output.  Next, the application inputs recvLastq-acp-i-state,acp-p(m), where m contains values for A and recvXfc.  This action enables requestRecvLastq1,acp-p() to get the last message from the GYRO.  A recvLastq1,acp-p(m) input is received in response.  The application uses this message to calculate A and then enables the activate(v) action.  The activate(v) action triggers, and signals the application to save its state by setting mode to send and message to be the pair (A, recvXfc), and queue to be qacp-i-state.  After that, it outputs sendq-acp-i-state,acp-p() and receives a sendReturnq-acp-i-state,acp-p() input, which sets mode to be return.  Finally, the application outputs appReturnacp-i() and the mode becomes idle.  When a pfiStart() message occurs, mode becomes failed, and the sequence of actions above is halted.  Then, a pfiEnd() action is input, and the mode becomes idle.  The following values for constants give this behavior: 

· Constants: oper2 = (A, X, X,Z, Z, Z, Z -> A), a mapping that calculates torque.
· otherState:
A( 
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, initially 0.

recvAfc ( Z, initially null.
· otherModes: activate
· otherInput: none

· otherOutput: activate(v), v ( V
Transition of activate(v):


Precondition:



v := message


mode = activate


Effect:



mode := send

· sendQueuesacp-i = {qacp-i-state}
· recvQueuesacp-i = {qacp-i-state, q1}
· facp-i includes the following mappings from (message, queue, (A, recvAfc), mode, appfc) ( (message, queue, (A, recvAfc), mode)

· (m(M, q(Q, (a(
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, xfc(Z), run, fc(Z) ( (m,qacp-i-state,(a,xfc),recvLast)

· (m(M, qacp-i-state, (a(
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, xfc(Z), recvdLast, fc(Z) ( 



(m,q1, (m.A, m.recvAfc), recvLast)

· (m(M, q1, (a(
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, afc(Z), recvdLast, fc(Z) ( (oper2(a, m.X, m.lastX, m.xfc, m.lastXfc, afc, fc), qacp-i-state, (oper2(a, m.X, m.lastX, m.xfc, m.lastXfc, afc, fc), fc), activate)

· (m(M, qacp-i-state, (a(
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, afc(Z),sent, fc(Z) ( 


(m, qacp-i-state, (a, afc), return, fc)

***All other inputs for facp-i are not possible.

3.2.3 Simulation Relation for the ACP
We present what we believe is the simulation relation that maps the state of the implementation of the ACP to the state of the specification for the ACP.  If something is equal to the x variable of the A automaton, we say it is equal to A: x.  It has not been rigorously verified that this simulation relation holds, and it is possible that it requires some minor modifications to formally prove this implementation meets the ACP specifications.

· A = 
· If Appacp-i:mode ( {activate, send},  Appacp-i:A.

· If Appacp-i:mode ( {waitSend, return} or (Scheduleracp-s:mode ( {appCall, wait, commitTxn} and Scheduleracp-s:appNum>1), m.A such that (m, q) is the last pair of HStorageacp-hs:sendTemp with q = qacp-i-state.
· Otherwise, m.A where m is the tail of HStorageacp-hs:mainMessageStorage(qacp-i-state).
· afc = Appacp-i:appfc

· recvAfc =
· If Appacp-i:mode ( {activate, send},  Appacp-i:recvXfc.

· If Appacp-i:mode ( {waitSend, return} or (Scheduleracp-s:mode ( {appCall, wait, commitTxn} and Scheduleracp-s:appNum>1), m.recvAfc such that (m, q) is the last pair of HStorageacp-hs:sendTemp with q = qacp-i-state.
· Otherwise, m.recvAfc where m is the tail of HStorageacp-hs:mainMessageStorage(qacp-i-state). 

· lastA=m.A, where m is tail of HStorageacp-hs:mainMessageStorage(qacp-i-state).
· lastAfc=m.afc, where m is tail of HStorageacp-hs:mainMessageStorage(qacp-i-state). 

· lastRecvAfc=m.recvAfc, where m is tail of HStorageacp-hs:mainMessageStorage(qacp-i-state).
· failed =

·  If Appacp-i: mode=failed, true.
· Otherwise, false. 
· mode =

· If Scheduleracp-s:mode=waitStart, waitStart.
· If Scheduleracp-s: mode = initTxn, initTxn.
· If Scheduleracp-s: mode ( {appCall or wait} and Scheduleracp-s: appNum = 1 and Appacp-i: mode ( {run, recvLast}, reqRecv.
· If Scheduleracp-s: mode ( {appCall or wait} and Scheduleracp-s: appNum = 1 and Appacp-i: mode ( {waitRecv}, 
· If Appacp-i: q = qacp-i-state, reqRecv.
· Else, waitRecv.
· If Scheduleracp-s: mode ( {appCall or wait} and Scheduleracp-s: appNum = 1 and Appacp-i: mode = activate, activate.
· If Scheduleracp-s: mode ( {appCall or wait} and Scheduleracp-s: appNum = 1 and Appacp-i: mode ( {send, waitSend, return}, commit.
· If Scheduleracp-s: mode = commitTxn, commit. 
· If Scheduleracp-s: mode ( {finish, signalStart}, finish.
· If Scheduleracp-s: mode = failed
· If lastAppNum > 2, then finish.
· Else, waitStart
· clock = 
· If Scheduleracp-s: recovering = true, then 
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.
· Else Scheduleracp-s: clock.
The Schedulers Implementation

In reality, the scheduler application in ACS cannot save its state atomically as an atomic action.  Instead, it saves and retrieves its state from hardened queues.  As seen in Diagram 7-1, the implementation of Schedulers is made up of a structure similar to that of an ACS Module.  Instead of the Schedulers, it has a WeakSchedulers.  It also includes two special apps, called Apps-save-state and Apps-retr-state, and a hardened storage service, called HStorages-hs.  HStorages-hs has hQueues(hs) = qs-state.  The WeakSchedulers inputs getAppNums() from Apps-save-state and outputs appNums(a) in response.  In addition, inputs setAppNums(a) from Apps-retr-state.  The two applications have no outputs to the outside world.  First, we define the WeakSchedulers, and then we give Apps-save-state and Apps-retr-state.





The WeakSchedulers
The WeakSchedulers is almost identical to the Schedulers; the main difference is that it does not have the appNum := lastAppNum and lastAppNum := appNum lines.  It has two constants that differ from that of Schedulers, including weakSchedules and weakAppAndDeadlines.  weakSchedules is schedules with s-retr-state and s-save-state prepended, while weakAppAndDeadlines is appAndDeadlines with all the application numbers increased by two to account for the new applications that are prepended.  

It also has getAppNums() and setAppNums(a) inputs as well as a appNums(a) output.  getAppNum() enables appNum(a), where a is the value of the appNum variable.  setAppNums(a) sets the value of appNum to a.  It starts by running the second application in weakSchedules during normal operation, but then runs the first application after there is a power failure.  
WeakSchedulers 

Constants:


timeToRecover = 1/2400 of a second


weakSchedules = an array of i ( I ( ( ( S, indexed starting at 1 



= [s-retr-state, s-save-state, schedules] 

weakAppAndDeadlines = set of pairs of (a( Z, d ( Z, afterRecovery), representing App’s, when they must complete, and if they need to run correctly during recovery.

 
For each (a, d, b) in appAndDeadlines, there is a pair (a+2, d,b) in weakAppAndDeadlines
weakStartTimes ( (Z8, Z16) = startTimes


weakWaitStartSignals, a Boolean, = waitStartSignals

Signature:

Input:


tick(f, sc, mfc), f( Z8, sc ( Z16, mfc ( Z


starts()


appReturni(), i ( I & processor(i) = processor(s)


pfiStart()


pfiEnd()


getAppNums()


setAppNums(a), a ( Z
Output:





initTxnp()


appCalli(), i ( I & processor(i) = processor(s)

commitp()


starts2(), s2 ( S


appNums(a), a ( Z

State:


appNum ( Z, initially arbitrary.

recovering, a Boolean, initially false.

clock ( Z, initially arbitrary.
mode ( {waitStart, initTxn, appCall, wait, commitTxn, finish, signalStart, failed, giveAppNum}, initially finish.
Transitions:

Input: tick(f, sc, mfc)


Effect:



recovering := false



If (f, sc) = (0, 0) then




mode := waitStart




appNum := 2


Else if (f, sc) = weakStartTimes then




clock := 0




if ( weakWaitStartSignal then





mode := initTxn

Input: starts()


Effect:



mode := initTxn
Output: initTxnp()


Precondition:



mode = initTxn

Effect: 



mode := appCall
Output: appCalli(fc), fc ( Z

Precondition:



mode = appCall


i = weakSchedules[appNum]

Effect:



mode:= wait
Input: appReturni(), i ( I & processor(i) = processor(s)


Effect:



If appNum = 1 then




if (weakSchedulep[appNum] =  () then





mode := finish



else 





if ( weakWaitStartSignal then






mode := initTxn





else






mode := waitStart



Else




appNum:= appNum + 1




if (weakSchedulep[appNum] =  () then





mode := commitTxn




else 




mode := appCall
Output: commitp()  


Precondition:



mode = commitTxn

Effect:



appNum:= appNum + 1


if (weakSchedulep[appNum] =  () then




mode := finish


else 



mode := signalStart

Output: starts2()


Precondition:



mode = signalStart



s2 = schedulep[appNum]

Effect:



mode := finish

Input: pfiStart()


Effect:



clock := 
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mode := failed

Input: pfiEnd()


Effect:



recovering := true



clock := -timeToRecover



mode := appCall



appNum := 1
Input: getAppNums()


Effect:



mode := giveAppNum

Output: appNums(a)


Precondition:



a = appNum



mode = giveAppNum


Effect:



mode := wait

Input: setAppNums(a)


Effect:



appNum := a

Trajectories:

satisfies



d(clock) = 1


stops when



mode = giveAppNum



(recovering & mode ( {initTxn, appCall, wait, commitTxn} & 


( (a, d, afterRecovery) ( weakAppAndDeadlines such that appNum ( a & clock = d 

recovering & mode ( {initTxn, appCall, wait, commitTxn} &

( (a, d, afterRecovery) ( weakAppAndDeadlines such that appNum ( a & clock = d & afterRecovery
The Apps-save-state
Apps-save-state​ saves the state of the Schedulergyro-s that needs to survive a power failure, appNum, in a hardened queue.  Calling this application last in a transaction performs lastAppNum := appNum in the commit() action of the Schedulers.  

Whenever this application receives an appCalls-save-state(), the mode is set to run.  This triggers appRuns-save-state (), which sets mode to getAppNum and enables getAppNums().  appNums(a) is input in response, which sets appNum to a, queue to qs-state, and mode to send.  Next, sendq-s-state,processor(s)(appNum) is output.  Then, HStorages-hs inputs sendReturns-state,processor(s)(), which causes the mode to become return, thus enabling the appReturns-save-state() action.  When that executes, the mode then becomes idle until another appCalls-save-state() input is received.  The above behavior is interrupted when a pfiStart() input is received, and mode is set to failed until pfiEnd() is input is received, which sets mode to idle.  
The following values for Apps-save-state yield this behavior:
· otherStates-save-state: appNum

· otherModess-save-state: getAppNum, waitAppNum
· otherInputs-save-state: appNums(a), a ( Z
Transition of appNums(a):


Effect:



appNum := a



queue := qs-state


mode := send

· otherOutputs-save-state: getAppNums()

Transition of getAppNums():


Precondition:



mode := getAppNum

Effect:


mode := waitAppNum
· sendQueuess-save-state = {}
· recvQueuess-save-state = {qs-state}
· fs-save-state includes the following mappings from (message, queue, appNum, mode, appfc) ( (message, queue, appNum, mode):
· (m ( M, q ( Q, a ( Z, run, fc ( Z) ( (m, q, a, getAppNum)

· (m ( M, q ( Q, a ( Z, sent, fc ( Z) ( (m, q, a, return)

***All other inputs for fs-save-state are not possible.

3.3 The Apps-retr-state
Apps-retr-state is very similar to Apps-save-state​, except it retrieves the stored state of the appNum variable of Schedulers from a hardened queue instead of saving it.  It performs the appNum := lastAppNum line in the pfiEnd() input of Schedulers(). 

Whenever this application receives an appCalls-retr-state(), the mode is set to run.  appRuns-retr-state() is then enabled, which sets queue to be qs-state and mode to be recvLast.  Next, the automaton outputs requestRecvLastq-s-state,processor(s)() and receive recvLast q-s-state,processor(s)(m) in response.  That input action sets appNum to m, and then sets the mode to setAppNum.  This enables the setAppNums(a) output, where a is equal to appNum.  This actions sets mode to return.  The appReturngyro-s-retr-state() output is then enabled.   When a pfiStart() action is input, the mode becomes failed.  Next, a pfiEnd() action is input, which ends with the mode equal to idle.  
The following values for Appi gives this behavior:

· otherStates-retr-state: appNum

· otherModess-retr-state: setAppNum
· otherInputs-retr-state: none

· otherOutputs-retr-state: setAppNums(a), a ( Z
Transition of setAppNums(a):


Precondition:



a = appNum



mode = setAppNum


Effect:



mode := return
· sendQueuess-retr-state = {}

· recvQueuess-retr-state = {qs-state}

· fs-retr-state includes the following mappings from (message, queue, appNum, mode, appfc) ( (message, queue, appNum, mode).
· (m ( M, q ( Q, a ( Z, run, fc ( Z) ( (m, qgyro-s-state, a, recvLast)
· (m ( M, q ( Q, a ( Z, recvdLast, fc ( Z) ( (m, q, m, setAppNum)

***All other inputs for fgyro-s-retr-state are not possible.

3.4 Simulation Relation for Implementation of Scheduler​s
This section gives the simulation relation for the Implementation of Schedulers, but no formal proof is given to show that it holds.  Forward simulation is probably needed to show this.
· appNum = WeakSchedulers: appNum
· clock = WeakSchedulers: clock
· recovering = WeakSchedulers: recovering
· mode 
· If WeakSchedulers: mode ( {waitStart, initTxn, commitTxn, finish, signalStart, failed, appCall, wait}, then WeakSchedulers: mode.

· Else wait. 
· lastAppNum = m where m is tail of HStorages-hs:mainMessageStorage(qs-state).
The LossyNet Design

The LossyNet Design consists of software components on the GYRO, network interface boards with Ethernet connections, and software on the ACP.  On the GYRO is an ACS Module with Schedulergyro-net-s, HStoragegyro-net-hs, and Appgyro-aci.  The network interface boards are connected by Ethernet and these three components are modeled by an automaton called NIB2Ethernet2NIBgyro-acp.  On the ACP is another ACS Module with Scheduleracp-net-s, HStorageacp-net-hs, Appacp-aci.  In Diagram 8-1 below are these components.  We show only the composition of the components on the GYRO and ACP, as the design consisting of those automata is in Section 5 of this thesis.  

An application on the GYRO outputs putq1() to the Nib2Ethernet2Nibq1.  An application on the ACP outputs getq1() to the Nib2Ethernet2Nibq1, and inputs getReturnq1(m) in response.  Nib2Ethernet2Nibq1 inputs tick(f, sc, mfc), pfiStart(), and pfiEnd() from the outside world.

Components of the LossyNet on the GYRO
The components of the LossyNet on the GYRO are another ACS module, and includes Schedulergyro-net-s, such that processor(gyro-net-s) = gyro-p; HStoragegyro-net-hs where processor(gyro-net-hs) = gyro-p and hQueues(gyro-net-hs); and all Appgyro-aci where processor(gyro-aci) = gyro-p.  We discuss the behavior of Schedulergyro-net-s and Appgyro-aci below, while the model for HStoragegyro-net-hs is in Section 5.2.

3.4.1 The Schedulergyro-net-s
Schedulergyro-net-s starts running applications when Schedulergyro-s finishes running, and is in reality implemented with one scheduler on the GYRO that runs all these applications.  We have modeled them as two separate schedulers to separate the functionality of the applications it runs into those that affect the GYRO’s calculations from those that handle communications.  When Schedulergyro-s is finished running, it inputs startgyro-net-s() to signal Scheduler​gyro-net-s to start running.  The following values for the constants for Schedulergyro-net-s are:

· schedulegyro-net-s = schedulegyro-s = [gyro-aci, (, (( or s)]

After the time reaches startTimegyro-aci, this scheduler resets its clock to zero, but waits for a startgyro-net-s() input before it starts processing.  Then, it initializes a transaction, runs Appgyro-aci, and then commits the transaction.  Now, after this, the schedulegyro-s can schedule background applications or become idle without affecting this design’s ability to implement the GYRO and LossyNet specifications. 
· startTimegyro-net-s = gyroStartTime 
· appAndDeadlinegyro-net-s = {(1, startTransmitDeadline, true)}.  Appgyro-aci is run by the startTransmitDeadline.

· waitStartSignalgyro-net-s = true.  This scheduler waits until another scheduler finishes running and signals it to start processing before it does anything. 

3.4.2 The Appgyro-aci
Appgyro-aci takes a message from q1 on gyro-p and puts it onto the network interface boards of the GYRO so that it can then be transmitted over Ethernet to the ACP.  

When Appgyro-aci receives a appCallgyro-aci() message, it then executes the internal appRun() action.  Then, it set the mode to recvLast and queue to q1.  This enables the output, requestRecvLastq1,gyro-p(), for which recvLastq1,gyro-p(m) is received in response.  This action sets mode to put, message to m, and queue remains q1.  Next, the output action putq1(m) is executed, where m is message, and mode becomes return.  This enables the appReturngyro-aci() action, and the mode becomes idle.  A pfiStart() message  can occur at any time, which sets mode to be failed, stops all enabled output actions, and causes the application to lose the rest of its state.  The pfiStart() message just sets the mode to idle.  

The following values for constants in the Appi model gives this behavior:  

· otherState: none
· otherModes: put
· otherInput: none

· otherOutput: putq1(m), m ( M

Transition of putq1(m):


Precondition:


mode = put


m = message


Effect:



mode := return
· sendQueuesacp-i = {qacp-i-state}
· recvQueuesacp-i = {qacp-i-state, q1}
· fgyro-aci includes the following mappings from (message, queue, (, mode, appfc) ( (message, queue, (, mode)

· (m(M, q(Q, (, run, fc(Z) ( (m,q1, (,recvLast)

· (m(M, q1, (, recvdLast, fc(Z) ( (m, q1, (, put)

·  (m(M, q(Q, (, recover, fc(Z) ( (m, q, (, idle)

***All other inputs for fgyro-aci are not possible.

3.5 The Network Interface Boards and Ethernet: Nib2Ethernet2Nibq1
For each q ( HQ where ((sender(q) = receiver(q)), there  is a Nib2Ethernet2Nibq automaton, which models the slot on the network interface board on the processor of the sender of that queue, the slot of the network interface board of the processor of the receiver of that queue, and the Ethernet connection between them.  The Nib2Ethernet2Nibq automaton is used to send messages between two processors.  There is a slot on the network interface boards of these two processors that has specifically been designated to transmit messages for a specific hardened queue.  These boards use volatile memory, thus messages on the network interface boards are lost when a power failure occurs.  The Ethernet connection between the boards uses a time division multiple access scheme to prevent collisions.  The time slot that has been designated to transmit a message from a particular hardened queue is the constant called transmitTimeq.  For Nib2Ethernet2Nibq1, transmitTimeq1 is equal to the netDeliveryTime.  In the actual system, bit errors can occur which can corrupt a message even when power is on.  We assume that the probability of bit errors occurring is so small, that it can be modeled as zero.  In addition, a checksum is used to check a message to make sure it is authentic.  This checksum is not completely reliable, but we assume that the probability of it being off is so small that it can also be modeled as 0.  
Nib2Ethernet2Nibq inputs tick(f, sc, mfc), pfiStart(), and pfiEnd() from the outside world.  It also inputs putq(m) and getq() from other components in the LossyNet, and responds to the latter by outputting getReturnq(). 

The state of Nib2Ethernet2Nibq includes three variables.  Two represent the slots on the network interface boards, nibsender-q and nib​receiver-q, which takes on the value of an application message and have null as initial values.  flagGet takes on a Boolean value to signal when to execute getReturnq(m) and is initially false.

This automaton first receives a putq(m) message from the sender(q), which causes nibsender-q to take on the value of m.  Next, it receives tick(f, sc, mfc) where (f, sc) corresponds to the transmitTimeq.  This action sets nibreceiver-q to be equal to nibsender-q.  When getq() is input, then flagGet becomes true, enabling the output, getReturnq(m) where m is equal to nibreceiver-q, which then sets flagGet back to false.  A power failure can interrupt this sequence of actions.  pfiStart() sets flagGet to false, and the other values become null.  pfiEnd() has no effect.

Nib2Ethernet2Nibq

Constants:

transmitTimeq ( (Z8, Z16)

Signature:

Input:


tick(f, sc, mfc), f( Z8, sc ( Z16, mfc ( Z

putq(m)

getq()


pfiStart()


pfiEnd()


Output:


getReturnq(m)

States:
nibsender-q ( M, initially (.
nibreceiver-q ( M, initially (.
flagRead, a Boolean, initially false.

Transitions:

Input: putq(m)


Effect:



nibsender-q := m

Input: tick(f, sc, mfc)


Effect:



if (f, sc) =  netDeliveryTime then



nibreceiver-q := nibsender-q

Input: getq()


Effect:



flagRead := true

Output: getReturnq(m)

Precondition:



flagRead = true



m = nibreceiver-q

Effect:



flagRead := false

Input: pfiStart()


Effect:



nibsender-q := (


nibreceiver-q := (


flagRead := false



flagRead := false

Input: pfiEnd()

Trajectories τ:

satisfies



no variables changing


stops when


flagRead = true

Components of the LossyNet on the ACP 

On the ACP are Scheduleracp-net-s, such that processor(acp-net-s) = acp-p; HStorageacp-net-hs where processor(acp-net-hs) = acp-p and hQueues(acp-net-hs) = q1; and all Appacp-aci where processor(acp-aci) = acp-p.
3.5.1 The Scheduleracp-net-s
Scheduleracp-net-s is similar to Schedulergyro-net-s, and just runs additional applications on the ACP, like Scheduleracp-s from section 5.5.1 does.  In reality, there is just one scheduler, but we would like to separate its functionality.  First, Scheduleracp-net-s runs Appacp-aci, and then Scheduleracp-s runs Appacp-aci .  This requires the values for the following constants:

· scheduleacp-net-s = [acp-aci, (, acp-s]

This value for scheduleacp-net-s means that when the time reaches startTimegyro-s, Scheduleracp-net-s first initializes a transaction, runs Appacp-aci, and then commits the transaction.  Then, the Scheduleracp-s outputs startacp-s() and its mode becomes idle.  Scheduler​acp-s could then signal another scheduler to run more applications, and another scheduler could run before this one, as long as it leaves enough time for each scheduler to meet its timing deadlines. 

· startTimegyro-net-s = acpStartTime 
· appAndDeadlineacp-s = {(1, startTransmitDeadline, true)}.  Appacp-aci is run by the startTransmitDeadline.   

· waitStartSignalgyro-net-s = false.  This scheduler immediately starts processing. 

3.5.2 The Appacp-aci
Appacp-aci takes messages off the network interface board of the ACP and places it onto a hardened queue on the ACP.  Those messages can then be received by applications on acp-p.

When Appgyro-aci receives a appCallgyro-aci() message, it executes the internal appRun() action, which sets the mode to get and queue to q1.  This enables the output, getq1(), to Nib2Ethernet2Nibq1, which responds with getReturnq1(m).  This action sets mode to send and message to m, while queue remains q1.  Next, sendq1,acp-p(message) is output.  When sendReturnq1,acp-p() is input in response, the mode is set to return.  This enables the appReturngyro-aci() action, and the mode becomes idle.  A pfiStart() message  can occur at any time, which sets mode to be failed, stops all enabled output actions, and causes the application to lose the rest of its state.  The pfiEnd() actions just sets the mode to idle.  
The following values for constants in the Appi model gives this behavior:  

· otherStateacp-aci: none

· otherModesacp-aci: get
· otherInputacp-aci: getReturnq1(m)


Transition of getReturnq1(m)




Effect:





message := m


mode := send
· otherOutputacp-aci: getq1()

Transition of getq1():


Precondition:



mode = get


Effect:



mode := wait

· sendQueuesacp-aci = {q1}
· recvQueuesacp-aci = {}
· facp-aci includes the following mappings from (message, queue, (, mode, appfc) ( (message, queue, (, mode)

· (m(M, q(Q, (, run, fc(Z) ( (m, q1, (, get)

·  (m(M, q1, (,sent, fc(Z) ( (m, q1, (, return)

· (m(M, q(Q, (, recover, fc(Z) ( (m, q, (, idle)

***All other inputs for facp-i are not possible.

Simulation Relation for the LossyNet
We present what we believe is the simulation relation that maps the state of the implementation of the LossyNet to the state of its specification.  It has not been rigorously verified that this simulation relation holds.  It is possible that it requires some minor modifications to formally prove this implementation meets its specifications.

· sendTemp = HStoragegyro-net-hs:sendTemp
· transmitStorage = HStoragegyro-net-hs:mainMessageStorage
· gyroNIB = Nib2Ethernet2Nibq1:nibsender-q
· acpNIB = Nib2Ethernet2Nibq1:nibreceiver-q

· recvStorage = HStorageacp-net-hs:mainMessageStorage
· processedStorage = HStorageacp-net-hs:receivedLog
· clock =

· If Schedulergyro-net-s:mode = idle, Scheduleracp-net-s: clock

· Otherwise, Schedulergyro-net-s: clock
· recovering = Schedulergyro-net-s:recovering
· failed = 
· If Schedulergyro-net-s: mode = failed, true.
· Else, false.
· sendMode =
· If Schedulergyro-net-s: mode = waitStart and HStorageacp-net-hs: mode = wait, wait.
· If Schedulergyro-net-s: mode = waitStart and HStorageacp-net-hs: mode = sendReturn, sendReturn.
· If Schedulergyro-net-s: mode = waitStart and HStorageacp-net-hs: mode = idle, waitTransmit.
· If Schedulergyro-net-s: mode ( {initTxn, appCall, wait, commitTxn}, waitTransmit.
· If Schedulergyro-net-s: mode ( {finish, signalStart}, idle.
· If Schedulergyro-net-s: mode = failed,
· If Schedulergyro-net-s: lastAppNum > 1, idle.
· Else if Schedulergyro-net-s: lastAppNum = 1, wait.
· recvMode = 
· If Scheduleracp-net-s: appNum < 3, signalStart.
· If Scheduleracp-net-s: appNum ( 3, HStorageacp-net-hs: mode = wait, waitTransmit.
· If Scheduleracp-net-s: appNum ( 3, HStorageacp-net-hs: mode = recvLastReturn, receive.
· If Scheduleracp-net-s: appNum ( 3, HStorageacp-net-hs: mode = idle, idle.
The HStoragehs Implementation

The implementation of HStorage is difficult because it is required to store multiple messages atomically, even though the hardened memory it uses cannot be written to atomically.  Power failures can corrupt the location being written to at the time of power failure, possibly creating a nonsense value in memory.  The system deals with memory corruption by using redundancy in a number of creative ways, which is seen as we explore this implementation more thoroughly.

HStoragehs consists of a transaction stack, some transactions, and a set of hardened queues.  The transaction stack stores pointers to transactions, where T is the set of transaction names.  The transactions hold information about what changes to hardened queues should be executed atomically.  The hardened queues are special data structures used to store application messages.  Before they were just identified by a hardened queue number as an abstraction.  In reality, any hardened queue that has the sender and receiver on different processors has two physical hardened queues with that number.  A hardened queue number and a processor number are needed to identify a physical hardened queue.  
The following new components are modeled in this section:

· TxnStackhs, hs ( HS.
· Txnt, t ( T
· HQueueq,p, q ( HQ & p ( P
Every transaction is part of a single hardend storage component, denoted by the following property:

· For t ( T,

· hStorage(t) ( HS
HStoragehs consists of TxnStackhs, all Txnt for which hStorage(t) = hs, and HQueueq,p where q ( hQueues(hs) and p = processor(hs).

The next three subsections present these components, as seen in diagram 9-1.  A dotted line is draw around these three components, to emphasize the trace of their composition that is the same as the HStorage specification in section 5.2.  First, there is the TxnStack, which inputs initTxnp(), commitp(), pfiStart(), and pfiEnd() from the outside world.  It outputs addSendQueuet(q), addRecvQueuet(q), commitTxnt(), and cancelTxnt() to Txn’s.  Txn’s also input pfiStart() and pfiEnd() from the outside world; outputs addQueueReturnq,p(), commitSendq,p(), cancelSendq,p(), commitRecvq(), and cancelRecvq,p() to the HQueue’s; and outputs commitTxnReturnt() to the TxnStack.   HQueue’s also input pfiStart() and pfiEnd() from the outside world, as well as sendq,p(m), requestRecvq,p(), and requestRecvLastq,p().  It responds to those last three inputs by outputting sendReturnq,p(), recvq,p(m), and recvLastq,p(m).  It also outputs sentp(q) and recvdp(q) to the TxnStack, and commitSendReturnq,p() and commitRecvReturnq,p() to Txn.










Diagram 9-2 shows expected order of internal actions of the HStorage implementation under normal operating conditions.   First, TxnStack inputs initTxnp() and places a new transaction at the top of its stack.  Next, the outside world sends or receives messages.  Then, HQueue can input sendq,p(m), requestRecvq,p(), or requestRecvLastq,p() from the outside world.  HQueue responds by outputting sentp(q) or recvdp(q) to the TxnStack.   


 Next, the TxnStack outputs addSendQueuet(q) or addRecvQueuet(q) to the Txn at the top of its stack.  That Txn outputs addQueueReturnq,p() to HQueue, which outputs sendReturnq,p(), recvq,p(m), or recvLastq,p(m) to the outside world.  When the outside world wishes to commit this transaction, commitp() is input to the TxnStack.  The TxnStack outputs commitTxnt() to the Txn at the top of its stack.  Then, Txn outputs commitSendq,p() to each HQueueq,p that has input sendq,p() in this transaction and inputs commitSendReturnq,p() in response, while it outputs commitRecvq,p() to each HQueueq,p that has input a requestRecvq,p() or requestRecvLastq,p() in this transaction and inputs commitRecvReturna,p​().  When it is done, it outputs commitTxnReturnt() to the TxnStack.

When a pfiStart() message is received, the mode’s of all the automata go to failed and locations in memory that are being written to can be corrupted.  When pfiEnd() is received, all Txn’s and HQueue’s mode’s goes to idle.  TxnStack thens repair the pointer to the top of its stack using a special method discussed in Section 9.1.  Then it outputs commitTxnt() to the transaction at the top of its stack, if just before the pfiStart() message, it received a commitp() input, but had not yet received a commitTxnReturnt() input.  This causes the Txn to output commitSendq,p() and commitRecvq,p() to HQueue’s, and then finally, it outputs commitTxnReturnt() to the TxnStack, and the recovery sequence is over. If a commit was not in progress, then the TxnStack outputs cancelTxnt() to the transaction at the top of its stack.  This time, Txn outputs commitSendq,p() and commitRecvq,p() to HQueue’s, and when it is complete, the recovery sequence when no commit was in progress is over.

3.6 Transaction Stack: TxnStackhs
The transaction stack is used to manage transactions.  TxnStackhs has an array of T’s, called transactionshs.  It has a stack of active transaction names, and the value of the pointer to the top of the txnStack must be saved reliably.  
In order to handle write errors that may occur, the txnStack stores the pointer to the top of the txnStack three times.  It writes three copies of the new value of the stack pointer over three copies of the old value in consecutive order.   If there is a failure during this writing process, one of these values can be corrupted to be a completely junk value.  It is necessary to retrieve a pointer value that is definitely the old or new value of the pointer.  Diagram 7-3 shows the values that can end up in each of the memory locations, depending on when the power failure occurred.  Upon recovery, the txnStack compares the last two locations it writes the variable in.  If these two values are equal, then it restores all three pointers to be the value in the last two locations.  Otherwise, as we can see in diagram 9-3, the value of the newest transaction pointer is in the first memory location, so we write the new value into the three memory locations.

The TxnStack inputs initTxnp(), commitp(), pfiStart(), and pfiEnd() from the outside world.  It inputs sentp(q) and recvdp() from the HQueue’s.  It outputs addSendQueuet(q), addRecvQueuet(q), commitTxnt(), and cancelTxnt() to the Txn’s, and inputs commitTxnReturnt().  It has tripleStoreWrite1(), tripleStoreWrite2(), and tripleStoreWrite3() internal actions.
TxnStack has a variable, txn-stack, which is an array of T and is initially empty.  txnPointer1, txnPointer2, and txnPointer3 are integers which are the pointer to the top of the txn-Stack, saved in hardened memory.  setPtrVal is the value to set those three pointers to.  mode represents what the automaton is doing at the moment.  queue is a hardened queue number, and txn is an index to the transactionshs array.  committing is a Boolean that keeps track if a commit operation is in progress, and is initially false.  Since it is stored in the physical system as 1 bit in hardened memory, it is changed in one atomic action.

The TxnStack receives initTxnp() from the outside world.  This causes it to increment txn and setPtrVal.  txnStack[setPtrVal] is then set to transactionshs[txn], and the mode becomes tripleStore1.  This invokes the tripleStoreWrite1() internal action, which sets txnPointer1 to setPtrVal.  Next, tripleStoreWrite2() sets txnPointer2 to txnPointer1, and finally tripleStoreWrite3() sets txnPointer3 to txnPointer1.  Now, the automaton waits until it receives sentp(q) or recvdp(q) from an HQueue, and it responds by outputting either addSendQueuet(q) or addRecvQueuet(q) to Txnt, where t is equal to txnStack[txnPointer1].  Finally, it should receive commitp() from the outside world.  This causes it to set committing to true, and mode to commit.  Then it outputs commitTxnt(), again where t is equal to txnStack[txnPointer1].  When it receives commitTxnReturnt(), then it sets committing to false, decrements setPtrVal, and sets mode to tripleStore1.  This starts the internal actions that set the values of txnPointer1, txnPointer2, and txnPointer3 to setPtrVal.

Power failure can interrupt the behavior described above.  A pfiStart() input corrupts the value of txnPointer1, txnPointer2, or txnPointer3 if it is received when one of these values is being written to.  The action sets the mode to failed, and thus stops any outputs of the automaton too.  pfiEnd() repairs the values of the transaction pointers using the triple store comparison algorithm described in the beginning of this TxnStack description.  If commiting is true, meaning that a commit operation was in progress when the pfiStart() input occurred, then TxnStack redoes the commit operation by calling commitTxnt().  Otherwise, it cancels the transaction at the top of the transaction stack by outputting cancelTxnt().

TxnStackhs
Constants:


transactionshs an array of T.

Signature:

Input:



initTxnp(), p = processor(hs)

sentp(q), q ( hQueues(hs) & p = processor(hs)


recvdp(q), q ( hQueues(hs) & p = processor(hs)


commitp(), p = processor(hs)



commitTxnReturnt(), t is in transactionshs

pfiStart()


pfiEnd()











Output:


addSendQueuet(q), t is in transactionshs



and q ( hQueues(hs)



addRecvQueuet(q), t is in transactionshs



and q ( hQueues(hs)


commitTxnt(),t is in transactionshs 


cancelTxnt(), t is in transactionshs
States:

txn-stack, an array of T, initially empty.

txnPointer1 ( Z, initially 0.

txnPointer2 ( Z, initially 0.

txnPointer3 ( Z, initially 0.
setPtrVal ( Z, initially 0.


mode ( [idle, wait, tripleStore1, tripleStore2, tripleStore3, addSendQueue, addRecvQueue,  commit, failed, cancel], initially idle.
queue ( HQ, initially arbitrary.

txn ( Z, initially 0.

committing, a Boolean, initially false.
Transitions:

Input: initTxnp()


Effect:  



txn := txn + 1 



setPtrVal := setPtrVal + 1



txn-stack[setPtrVal] := transactionshs[txn]


mode := tripleStore1
Input: sentp(q)

Effect:



queue := q




mode := addSendQueue
Output: addSendQueuet(q)


Precondition:



t = txn-stack[txnPointer1]



q = queue



mode = addSendQueue

Effect:



mode := wait
Input: recvdp(q)


Effect:



queue := q





mode := addRecvQueue
Output: addRecvQueuequeue,txn()


Precondition:



t = txn-stack[txnPointer1]



q = queue


mode = addRecvQueue

Effect:



mode := wait
Input: commitp()



Effect:  



commiting := true



mode := commit



Output: commitTxnt()


Precondition:



t = txn-stack[txnPointer1]


mode = commit


Effect:



mode := wait

Input: commitTxnReturnt()


Effect:



commiting := false



setPtrVal := setPtrVal - 1



mode := tripleStore1

Internal: tripleStoreWrite1()


Precondition:


mode = tripleStore1


Effect:


txnPointer1 := setPtrVal



mode := tripleStore2


Internal: tripleStoreWrite2()


Precondition:


mode = tripleStore2


Effect:



txnPointer2 := txnPointer1



mode := tripleStore3
Internal: tripleStoreWrite3()


Precondition:


mode = tripleStore3


Effect:



txnPointer3 := txnPointer1



mode := idle
Input: pfiStart()


Effect:



If mode = tripleStore1 then




txnPointer1 := arbitrary



Else if mode = tripleStore2 then




txnPointer2 := arbitrary



Else if mode = tripleStore3 then




txnPointer3 := arbitrary



mode := failed

Input: pfiEnd()


Effect:



If  txnPointer2 = txnPointer3 then






txnPointer1 := txnPointer2



Else




txnPointer2 := txnPointer1




txnPointer3 := txnPointer1 



If committing = true then




mode := commit



Else




mode := cancel

Output: cancelTxnt()


Precondition:



t = txn-stack[txnPointer1]


mode = cancel


Effect:



setPtrVal := setPtrVal - 1



mode := tripleStore1

3.7 Transaction: Txnt
The purpose of a transaction is to manage a set of hardened queues so that changes to these queues either all occur at once or not at all, even after power failures occur.  The transaction keeps pointers to all the HQueue’s that are modified, and then commits or cancels all the changes to the HQueue’s.  This transaction is in the implementation of hStorage(t) ( HS.  

Txnt inputs addSendQueuet(), addRecvQueuet(), commitTxnt(), and cancelTxnt() from TxnStackhs, where hs is equal to hStorage(t), and outputs commitTxnReturnt() in response to the third input mentioned.  It outputs addQueueReturnq,p(), commitSendq,p(), commitRecvq,p(), cancelSendq,p(), and cancelRecvq,p() to HQueue’s, where q ( hQueues(hStorage(t)) and p is equal to processor(hStorage(t)).  From the outside world, it inputs pfiStart() and pfiEnd().

Txn has two FIFO queues containing elements in HQ, called hq-send and hq-recv.  Both queues are initially empty and are implemented as hardened queues.  The state of the Txn also includes mode that can take on the following values: wait, addQueueReturn, commitSend, commitRecv, commitReturn, failed, cancelSend, and cancelRecv.  The mode is initially wait.  The variable queue takes on the value of a hardened queue number.

Whenever a change is made of an HQueueq,p, where q ( hQueues(hStorage(t)) and p = processor(hStorage(t)),  and t is at the top of the transaction stack of TxnStackhStorage(t) addSendQueuet(q) or addRecvQueuet(q) is input to the Txnt.  The former input causes q to be added to the tail of hq-send, while the latter adds q to the tail of hq-recv.  Both actions set queue to q and mode to addQueueReturn.  That enables addQueueReturnq,p(), which then sets mode to wait.  This process may repeat more times, but eventually commitTxnt() is input.  That action sets the mode to commitSend.  commitSendq,p() is enabled whenever mode is commitSend, where q is at the head of hq-send.  When that action takes place, its effect is to remove q from hq-send, and wait for a commitSendReturnq,p() input.  If there are no more elements in hq-send, then the mode becomes commitRecv.  Otherwise, commitSendq,p() is enabled again, with the next q on hq-send.  commitRecvq,p() and commitRecvReturnq,p() is an almost identical action and keeps firing when there are still elements in hq-recv, but the mode is set to commitReturn when these actions complete.  That enables the commitTxnReturnt() action, signaling that commiting the transaction is complete.

Power failures interrupt the behavior discussed above.  pfiStart() sets mode to failed and disables all outputs.  pfiEnd() sets the mode to wait.  Next, TxnStack either inputs commitTxnt(), which has the effect described in the previous paragraph, or cancelTxnt().  That action has the identical effect as commitTxn​t(), except now cancelSendq,p() is output to every q in hq-send, and cancelRecvq,p() is output  to every q in hq-recv.
Txnt
Signature: q ( hQueues(hStorage(t)) & p = processor(hStorage(t)) in all the following inputs and outputs.

Input:



addSendQueuet(q)


addRecvQueuet(q)


commitSendReturnq,p()


commitRecvReturnq,p()


commitTxnt()






pfiStart()


pfiEnd()


cancelTxnt()


Output:


addQueueReturnq,p()


commitSendq,p()


commitRecvq,p()


commitTxnReturnt()


cancelSendq,p()


cancelRecvq,p()

States:
hq-send, a FIFO queue of  HQ, initially empty.

hq-recv, a FIFO queue of  HQ, initially empty.


mode ( {wait, addQueueReturn, commitSend, commitRecv, commitReturn, failed, cancelSend, cancelRecv}, initially wait.

queue ( HQ, initially arbitrary.

Transitions:

Input: addSendQueuet(q)


Effect:



add q to tail of hq-send



queue := q



mode := addQueueReturn

Input: addRecvQueueq,t()


Effect:



add q to end of hq-recv



queue := q



mode := addQueueReturn

Output: addQueueReturnq,p()


Precondition:



p = processor(hStorage(t))



q = queue



mode := addQueueReturn

Effect:



mode := wait
Input: commitTxnt()


Effect:



mode := commitSend

Output: commitSendq,p()


Precondition:



q is at head of hq-send



p = processor(hStorage(t))


mode = commitSend

Effect:


remove q from the head of hq-send



mode := wait

Input: commitSendReturnq,p()


Effect:



if hq-send is empty then




mode := commitRecv



else




mode := commitSend

Output: commitRecvq,p()


Precondition:



q is at head of hq-recv


p = processor(hStorage(t))



mode = commitRecv

Effect:



remove q from the head of hq-recv


mode := wait


Input: commitRecvReturnq,p()


Effect:



if hq-recv is empty then




mode := commitReturn



else




mode := commitRecv

Output: commitTxnReturnt()


Precondition:



mode = commitReturn

Effect:



mode := wait

Input: pfiStart()


Effect:



mode := failed

Input: pfiEnd()


Effect:



mode := wait

Input: cancelTxnt()


Effect:



mode := cancelSend

Output: cancelSendq()


Precondition:



q is at head of hq-send



p = processor(hStorage(t))


mode = cancelSend

Effect:



remove q from the head of hq-send


If  hq-send is empty then




mode := cancelRecv

Output: cancelRecvq()


Precondition:



q is at head of hq-recv



p = processor(hStorage(t))


mode = cancelRecv

Effect:



remove q from the head of hq-recv


If hq-recv is empty then




mode := wait 

Hardened Queues, HQueueq,p
Hardened queues are arrays in hardened memory used to store messages, and thus has to deal with errors in writes when power failures occurs.  Pointers to the hardened queue keep track of where to place a message in the queue and where to retrieve a message.  A message must be written successfully to the hardened queue before that pointer is updated, so no bad messages can appear in the hardened queues, provide that the pointer values are correct.  However, pointer values can be corrupted if they were being written when a power failure starts.  Redundancy is used to cope with write errors.  There are two copies of each of these pointers, a current pointer and a commit pointer.  When a commit operation is in progress, which the TxnStackhs keeps track of, the commit pointers are modified while the current pointers stay the same.  Otherwise, the current pointers can be modified, but the commit pointers remain the same.  After a power failure, it is possible to always have a good value for each pointer.  If a commit was in progress, the current pointer is guaranteed to be uncorrupted, otherwise the commit pointer is guaranteed to be uncorrupted 

A hardened queue number and a processor number are necessary to identify this automaton.   Each hardened queue number has a sender and a receiver associated with it.  When ((sender(q) = receiver(q)), there are two HQueue’s  for that hardened queue number, one on the processor of the sender and one on the processor of the receiver.  HQueue’s are actually circular arrays, meaning that the pointer values to this array go up indefinitely even though the array has only a finite capacity.  The number of elements an HQueue can store is the constant called nq.  When actually accessing the array, the pointer value modulo nq is used.

HQueueq,p inputs sendq,p(m), requestRecvq,p(), requestRecvLastq,p(), pfiStart(), and pfiEnd() from the outside world and outputs sendReturnq,p(), recvq,p(m), and recvLastq,p() in response.  It signals the TxnStack() when it sends and receives messages by outputting sentp() and recvdp() to the TxnStack.  It inputs commitSendq,p(), commitRecvq,p(), cancelSendq,p(), and cancelRecvq,p() from Txn, and outputs commitSendReturnq,p(), and commitRecvReturnq,p().

There are a total of six variables in the state of a hardened queue.   queue represents the array in hardened memory that contains application messages and is indexed from 1 to nq.  There is a mode variable that can be any of the following values: ackSent, waitSend, doSendReturn,ackRecv, ackRecvLast, waitRecvd, waitRecvdLast, doRecv, doRecvLast, wait, and failed.  The last four variables are pointers to various elements of the queue.  send-current points to where sender to place the next message on the queue.  receive-current points to the next message to be received.  send-commit points after all the messages the sender sent before the last commitSendp() .  receive-commit points after all the messages that were read before the last commitp() input.
HQueue's maintain the following invariant on the ordering of the aforementioned pointers:

send-current ( send-commit ( receive-current ( receive-commit
This allows us to divide messages as being in three distinct sections of the HQueue, which represents the three stages of delivery of a message.  These stages are:

· send-current to send-commit - This is equal to the volatileMessages of the HStorage specification.

· send-commit to receive-current - These messages correspond to the mainMessageStorage of the HStorage specification.

· receive-current to receive-commit - This section corresponds to the receivedLog part of the HStorage specification.

This paragraph outlines the actions of the HQueueq,p() automaton in the normal case without power failures.  First, either a sendq,p(m), requestRecvq,p(), or requestRecvLastq,p() input is expected from the outside world.  A sendq,p(m) input checks to make sure that there is at least one message stored in the queue, and if so, it sends queue[send-current mod nq] equal to m.  The mode is set to ackSent.  This enables the sentp(q) output, sets mode to waitSend, and the addQueueReturnq,p() input is received next.  Then, sendReturnq,p() is output, send-current is incremented, and mode becomes wait.  A requestRecvq,p() or requestRecvLasta,p() input cases enables the recvdp(q) output, if there are messages in the queue that are ready to be read.  addQueueReturnq,p() is input next, and enables recvq,p(m) or recvLastq,p(m).  recvq,p(m) has m equal to queue[receive-current mod nq], increments receive-current, and sets mode to wait.  recvLastq,p(m) has m equal to queue[(send-commit - 1) mod nq], sets receive-current equal to send-commit, and sets mode to wait.  After the outside world wished the commit the current transaction and this queue has been used to send or receive messages in the transaction, then it inputs commitSendq,p() and/or commitRecvq,p().  This enables the commitSendReturnq,p() and/or commitRecvReturnq,p() output, which sets send-commit equal to send-current and/or receive-commit equal to receive-current.  

pfiStart() corrupts whatever the queue is writing at the time and set the mode to failed.  If a message is being written into the queue, then that message becomes arbitrary.  Pointer values can also be corrupted.  pfiEnd() sets the mode to wait.  Two special recovery inputs can be received, cancelSendq,p() and cancelRecvq,p().  The former sets send-current equal to send-commit while the latter sets receive-current equal to send-commit.

HQueueq,p
Constants:


nq ( Z - the maximum number of messages that can be stored in this hardened queue

Signature:

Input:

sendq,p(m), m ( M 

requestRecvLastq,p()


requestRecvq,p()


addQueueReturnq,p()

commitSendq,p()

commitRecvq,p()

pfiStart()

pfiEnd()

cancelSendq,p()

cancelRecvq,p()


Output:


sentp(q)


recvdp(q)


sendReturnq,p()


recvq,p(m), m ( M

recvLastq,p(m), m ( M

commitSendReturnq,p()

commitRecvReturnq,p()

States: 

queue, an array of nq elements of M, initially empty.  

send-commit ( Z, initially1.

receive-commit ( Z, initially1.

send-current ( Z, initially1.

receive-current( Z, initially1.

mode ( {ackSent, waitSend, doSendReturn, ackRecv, ackRecvLast, waitRecvd, waitRecvdLast, doRecv, doRecvLast, wait, failed}, initially wait.

Transitions:

Input: sendq,p(m)

Effect:


If (send-current–receive-commit+1 < nq) then



  
queue[send-current mod nq] := m





mode := ackSent
Output: sentp(q)


Precondition:



mode = ackSent

Effect:



mode := waitSent
Input: addQueueReturnq,p()

Effect:



If mode = waitSend then



  
mode := doSendReturn



If mode = waitRecvd then




mode := doRecv



Else




mode := doRecvLast
Output: sendReturnq,p() 


Precondition:



mode := doSendReturn

Effect:



send-current := send-current + 1



mode := wait
Input: requestRecvq,p()


Effect:



If send-commit > receive-current then




mode := ackRecv
Input: requestRecvLastq,p()


Effect:



If send-commit > receive-current then



mode := ackRecvLast
Output: recvdp(q)


Precondition:



mode = ackRecvd or mode = ackRecvdLast


Effect:



If mode = ackRecvd then




mode := waitRecvd



Else




mode := waitRecvdLast
Output: recvq,p(m)


Precondition:


m = queue[receive-current mod nq]



mode = doRecv

Effect:



receive-current := receive-current + 1



mode := wait


Output: recvLastq,p(m)


Precondition:



m = queue[(send-commit – 1)mod nq]



mode = doRecvLast

Effect:



receive-current := send-commit


mode := wait
Input: commitSendq,p()


Effect:



mode := commitSendReturn

Output: commitSendReturnq,p()


Precondition:



mode = commitSendReturn


Effect:



send-commit := send-current



mode := wait
Input: commitRecvq,p()


Effect:



mode := commitRecvReturn






receive-commit := receive-current

Output: commitRecvReturnq,p()


Precondition:



mode = commitRecvReturn


Effect:



receive-commit := receive-current



mode := wait


Input: pfiStart()


Effect:



If mode = ackSent then




queue[send-current mod nq] := arbitrary



Else if mode = doSendReturn then




send-current := arbitrary



Else if mode ( {doRecv, doRecvLast} then




recv-current := arbitrary



Else if mode := commitSendReturn then




send-commit := arbitrary


Else if mode := commitRecvReturn then




receive-commit := arbitrary


mode := failed

Input: pfiEnd()


Effect:



mode := wait

Input: cancelSendq,t()


Effect:



send-current := send-commit 
Input: cancelRecvq,t()






Effect:






receive-current := receive-commit

3.8 Simulation Relation for HStoragehs
We present what we believe is the simulation relation that maps the state of the implementation of HStoragehs to the state of its specification.  It has not been rigorously verified that this simulation relation holds.  It is possible that it requires some minor modifications to formally prove this implementation meets its specifications.

· sendTemp = all messages from the send-current to the send-commit pointers of the hardened queues.

· mainMessageStorage = all messages from the sent-commit to the recv-current pointers of the hardened queues.

· receivedLog = all messages from the recv-current to the recv-commit pointers of the hardened queues.

· queue = 

· If (TxnStackhs: mode= wait, TxnStackhs:queue.

· Otherwise, Txnt :queue, where t is TxnStackhs:txnStack[txnPointer1]

· mode = 
· If TxnStackhs: mode ( {idle, tripleStore1, tripleStore2, tripleStore3, cancel}, idle.
· If TxnStackhs: mode = wait, wait.
· If TxnStackhs: mode = addSendQueue, sendReturn
· If TxnStackhs: mode = addRecvQueue, and HQueueTxnStack-hs:queue,p: mode = waitRecvd,  recvReturn.
· If TxnStackhs: mode = addRecvQueue, and HQueueTxnStack-hs:queue,p: mode = waitRecvdLast, recvLastReturn.
· If TxnStackhs: mode = failed, failed.
 Conclusion

The primary objective of this work is to provide a convincing example of reasoning carefully about a modular system that employs a distributed algorithm.  A precise specification of the ACS communications and checkpoint and rollback algorithm, with verification that the algorithm satisfies the specification, has been accomplished. The system implements FIFO queues, message logging, and transaction processing to accomplish its goal of preserving system state across power failures, using nonvolatile memory storage devices.  All of these have been modeled in HIOA. 

A secondary objective of this work is to demonstrate the ability to increase software production quality through reduction in defects early in development, thereby lowering overall development costs. ACS was designed and implemented independently of this HIOA approach.  However, HIOA could have been used in the design phase of the project to provide early visibility into the expected system behavior, lowering costs for design stage validation of the approach. 

Finally, HIOA modeling provides a framework with which to capture the behavior of a system and to carefully reason about it.  HIOA captures the behavior of components of the system as input/output automata with actions and states that have discrete and continuous behavior. The most important benefit of this approach is that it allows modeling the system at many levels of abstraction, reducing complexity at each level of abstraction while concurrently supporting modularity.  As long as a new implementation of any component of the system still meets its specification, properties of the system are still guaranteed. The use of mathematical proof techniques with the models provides design engineers with a high degree of confidence in the design early on.  Invariants of the system behavior are given, rather than just the behavior for a finite number of test cases (e.g. in simulation).  Tools are being developed to aid in proving properties of HIOA automata, but were not used in this thesis.  Ongoing work on the tool set could increase the effectiveness of using HIOA on future projects.   

In the case of ACS, we have created a high-level view of the system components that captures key requirements.  This view includes models for a Timer, GYRO, ACP, and the communication service between the GYRO & ACP (the LossyNet). These models were used to determine the behavior of the overall system, examine the design of all the major components, including the GYRO, the ACP, and the LossyNet, and show they meet their specifications.  In this thesis, it is shown that ACS meets its main requirement, which is to maintain accuracy in the presence of power failures that last up to 20 μs and are at least 20 ms apart.  Without power failures, ACS torques the gimbals and commands the gyroscope to maintain the stable platform at 300 Hz.  In addition, we have been able to prove that the system can endure power failures that last 20 μs and are as close as 6.7 ms apart and still maintain the stable platform at least 150 Hz in the worst case.
Further Work

In current work with Draper Laboratories, HIOA has been used to model system behavior involving both discrete and continuous components using a coordinated, deterministic communication design that demonstrates fault tolerance using checkpointing and rollback recovery.  Future guidance systems will likely incorporate many of the advantageous design guidelines employed in ACS such as modularity, but perhaps may use different algorithms for implementing fault tolerance and communications.  For example, the next design may employ an asynchronous communications design in order to preserve processing throughput in resource limited environments.  In this case, the use of HIOA can be even more valuable than what has been demonstrated in this paper for verification purposes.  HIOA can be used starting at the design phase to help guide engineers to reason about how to create a new guidance system design whether it employs synchronous or asynchronous communications, checkpointing and rollback, or some other means of preserving state across expected power failures.  While simulation can test only specific test cases, HIOA allows specifying many possible behaviors of a system and looking at properties that all those behaviors demonstrate, potentially a very valuable tool in the systems design process.  
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Diagram 4.1: High-Level ACS System
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Diagram 4-2: Important Times and Deadlines in ACS
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Repeated as many times as app requires before returning. Other input or output actions that go to the outside world are also possible.





Diagram 5-2 Normal Operation of the ACS Application Framework
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Diagram 5-1 ACS Module Design
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Diagram 7-1 The Scheduler Design
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Diagram 4-3: Best-Case and Worst-Case Behavior of the ACS System











Diagram 3.1: Modular Partitioning of the ACS System
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Diagram 8-1 Components of the LossyNet
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Diagram 9-1: HStorage Implementation Trace











Diagram 9-2 HStorage Implementation Actions
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Diagram 9-3: Triple Storage Mechanism
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