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ABSTRACT

This paper describes three distributed algorithms-the Hirshberg-Sinclair leader elec-

tion algorithm, Peterson’s leader election algorithm, and Dijkstra’s shortest paths algorithm-

using the I/O automaton model. This model has been developed and used as a means
of formally describing and reasoning about distributed algorithins. The specifications
have been coded into the Spectrum simulation system, which allows the user to simu-
late the execution of the algorithms and gain an intuitive understanding of them. The
paper discusses three points. The first one is the ease of translating the algorithms
into this model and into the Spectrum programming language and what is gained by
each description. The second is possible changes to the Spectrum interface which would
enhance its ease of use and utility. And the final one is recommendations for further
studies facilitated by both methods of description.
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Chapter 1

Introduction

1.1 Motivation

As distributed computing has become more commonplace within the field of computer
science, demand for efticient, correct algorithms has increased. Efficiency analysis and
correctness proof of algorithms have, of course, long been issues in sequential comput-
ing. Yet even in this more straightforward arena, correctness is often argued intuitively
rather than being proved using a more formal verification method. In distributed com-
puting intuition does not work as well since the human thought process lends itsell more
readily to thinking about events sequentially. It is difficult to keep track of issues such
as the inherent nondeterminism of events, variable message delays along a network,
different process speeds, and possible process failure. As a result, seemingly correct

distributed algorithms have been implemented, and found to be flawed at a later date.



Despite these factors, the majority of the work on distributed algorithimns still con-
tains only informal arguments for correctness. Unfortunately, previously available proof
methods for distributed algorithms were more obscure than their sequential counter-
parts. The proofs were only more complex and did not support intuitive understanding
of the algorithms.

As a solution to this problem, Lynch and Tuttle introduced the I/O automaton
model [LT86]. The model claims to enable one to do rigorous proofs of correctness
which follow the informal arguments of the designers more closely. The model allows
both hierarchical and modular reasoning, and supports the composition of automaton,
which corresponds to using multiple algorithims concurrently. This paper describes the
Hirshberg-Sinclair leader election algorithm, Peterson’s leader election algorithm, and
Dijkstra’s shortest paths algorithm using the 1/O automaton model to demonstrate
the facilities of the model. Such algorithms commonly form the basis of much more
complicated systems, and uncertainty about the correctness of such a building block
means that the correctness of the entire system would be left under question.

To further demonstrate the power of the I/O automaton model, Goldman has de-
veloped Spectrum, a simulation system which allows the user to execute code based
on the I/O automaton model [Gola] [Golb]. This not only facilitates debugging the
algorithm, but can in fact be very useful in gaining an intuitive understanding of the

actual working of the algorithin and analyzing message and time complexity.



1.2 I/0O Automata

Each component, or process, in the algorithm’s high level description will be modeled as
an 1/O automaton, a mathematical object similar to a traditional automaton, An I/O
automaton is unique, however, in that it allows an infinite state set. The automaton’s
actions can be of one of three types, input, output, or internal. The internal and output
actions are generated by the automaton and transmitted to the environment, whereas
input actions are generated by the environment and transmitted to the automaton, An
automaton can place restrictions on the output and internal actions, but may not block
input actions. Thus they are said to be input enabled. Handling of the input, once
accepted, is not constrained by the model.

I/O automata may be nondeterministic. The greater the nondeterminism, the
clearer the description and the greater the field of algorithms it describes. In addi-

tion, I/O automata may be composed to form another I/O automaton.

1.2.1 Definition

’

The following definition has been adapted from Lynch’s descriptions of the I/0 au-
tomaton as presented in the lecture notes compiled for M.I.T.’s Distributed Algorithms
course [LG88|.

S-the action signature-is an ordered triple consisting of three pairwise-disjoint sets
of actions, in(S), out(S), and int(S), referring to the input, output, and internal actions

of S, respectively. The external actions consist of both actions in in(S) as well as



those in cut(S), while the internal actions are those in int(S). The actions of S are the
combination of both external and internal actions and are written acts(sS).

An I/O automaton A consists of the following five components:

e an action signature, sig(4),
e a set of stutes, states(A), possibly infinite,
e a nonempty set start(A) C states(A) of start states,

e a transition relation steps(A) C states(A) x acts(sig(A)) x states(A), with the
property that for every state s' and input action 7 there is a transition (s',m,s) in

steps(A), and

e an equivalence relation part(4) on local(sig(A)), having at most countably many

equivalence classes.

A finite execution of A is a sequence sg, 7y, 31,2, ..., Tn, 8, Where 3¢ is the start state.
A fair ezecution of an automaton A is defined to be an execution a of A such that if
« is finite, then no action of C is enabled in the final state of a for each class C in
part(A). It is also possible to have fair infinite executions, but this paper is concerned

only with the finite case. A fair execution gives ‘fair turns’ to each class of part(A).



1.3 Spectrum

Tliere are two elements to running a simulation in Spectrum-the language which is
used to define automaton types and a configuration which is a collection of automaton
instances, composed or connected by directed edges. An automaton type defines the sig-
nature, states, transition relation, and action partition of an automaton. This definition
is good for each instance of that automaton type in the configuration. The signature,
transition relation, and classes may be different for two instances of the same automaton
type since the program may reference information present in the configuration.

The configuration defines relationships between automaton instances as il each in-
stance were a node in a graph Any given node may also be compozed of several other
nodes. The user defines the set of instances, their type, a string name for each, the com-
positional hierarchy, and a set of directed edges between instances. A unique automaton
id is assigned to each instance by the system.

An optional element of the configuration is a mapping from integer variubles which
are part of an automaton’s state information to either the center or the rim of the geo-
metric shape representing each automaton instance. Eight colors are presently avaiiable
and may be referenced by the integers zero to seven. For values of the variable greater
than seven, the element is colored with seven’s color. Additionally, there is a statement
in the language which allows the user to assign an integer, representing a color, to an
edge between any two automaton instances. Both of these facilities can be used flexibly

to show different aspects of the algorithm during simulation. An example of this feature



is explained for each of the algorithms discussed.

The code and a configuration must both be present in order to perform an execution
of the algorithm. Appendix D shows the look of the interface with both the setup and
simulate menus down.

The simulator is always in either CONFIGURE or SIMULATE mode. The code and
a configureation must both be present in order to perform an execution of the algorithm.
In order to loal a code or configuration file, one must be in CONFIGURE mode. Iu this
mode one may also construct a configuration using the mouse. Once a configuration
has been constructed it may be saved for later use. There is never any need to define
a configuration textually. Variables are mapped to process objects by openning up the
object with the mouse. One may then select the desired integer variables from a list of
those that make up the process’s state.

Once the necessary information is in palce there are several options for running a
simulation. These options are listed under the SIMULATE pulldown menu. One may
run the simulation without any pauses, pause at every step, or pausc at user defined
intervals., Additionally, one may choose to give processes turns in order or at random.
Appendix D shows the look of the interface with both the SETUP and SIMULATE

menus down.



Chapter 2

Hirsberg-Sinclair Leader Election

Algorithm

2.1 Description

The Hirshberg-Sinclair algorithm [HS80] was the first algorithm to show that it is pos-
sible to obtain a worst-case message complexity of O(nlogn), an improvement on Le
Lann-Chang-Roberts leader election algorithm with a worst-case message complexity

of O(n?). The Hirshberg-Sinclair algorithm has the following properties:

o Does not assume that the number of nodes in the ring is known.,
o Involves bidirectional message passing.

e Works asynchronously.
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e Uses an unbounded identifier set.

e Elects the node with the maximal identifier as the leader.

The difference between this algorithin and the Le Lann-Chang-Roberts algorithm is
that this algorithm assumes bidirectional message passing capability.

The way that the Hirshberg-Sinclair algorithm, as presented in [LG88], works is as
follows. Each process in the ring sends out a message to its left and to its right. Initially
this message is seut only to its immediate neighbors. Every time the sending process
is returned a message that it initiated, it initiates another message back in the same
direction, except this time it sends the messagz twice as far.

If a process receiving a message ever finds that the id of the process that ininitiated
the message is greater than its own id, then it realizes it cannot be elected and stops
initiating messages. Similarly, if the id of the process receiving a message is higher
than that of the process that initiated the message, then rather than continuing to
propagate the same message it turns the message back to the initiating process, telling
the initiating process that it cannot be elected and should thus stop initiating messages.

When a message from a given process makes it all the way around the ring without
being turned around, it means that this process must be the leader. Of course, all these
events are occurring asynchronously, but by the time a process is elected the leader, all

other processes will have died-stopped initiating messages.



2.2 In Terms of the I/O Automaton Model

The Hirshberg-Sinclair algorithm can be described in a straightforward, concise manner
using the I/O automaton model. The model facilitates a simple, modular description of
the algorithm. The description uses one automaton type, which will be named PROC

for process.

in(S)={forward_left((chan:automaton_id,to_go:integer,id:integer)),
forward_right ((chan:automaton_id,to_go:integer,id:integer)),
kill_left((chan:automaton_id,id:integer)),
kill_right ((chian:automaton_id,id:integer)),
ok_left((chan:automaton_id,id:integer)),
ok_right((chan:automaton_id,id:integer))}

out (S)={forward_left ((chan:automaton_id,to_go:integer,id:integer)),
forward_right ((chan:automaton_id,to_go:integer,id:integer)),
kill_left((chan:automaton_id,id:integer)),
kill_right ((chan:automaton_id,id:integer)),
ok_left((chan:automaton_id,id:integer)),

ok_right((chan:automaton_id,id:integer))}

int(5)={ }

Figure 2.1: Action Signature S for Hirshberg-Sinclair

The action signature, S, is shown in figure 2.1. All actions are external, of which
there are two types, torward and back. Forward left and forward right are the forward
actions, while the remaining ones are back actions. The forward actions are used when
a message is on its way out from the initiating process, while the back actions are used
when a message is on its way back to the initiating process.

The chan is the automaton id of the process to whom the message is directed, to go



is the distance around the ring that the message has yet to go, where any given process
is a distance of one from an immediate neighbor. And id is the unique id of the process
that initiated the message. The to go variable is not needed for messages that are on
their way back to the initiating process since these message will know they have reached
their destination when the id of the process receiving a message is the same as the id
carried by the message.

The actions occur in left /right pairs since the events in either direction out from a
process are parallel. The output forward actions are simply used to propagate a message
until a process receives a forward action as input and decides to turn it around, This
can happen in two way. The first way is that the id of the initiating process turns out
to be higher than the id’s of all the other processes that the message encounters on the
way out from the initiating process. In this case, either the ok left or ok right action is
output by the final process in the chain. The second way is that the id of one of the
processes that the message encounters on the way turns out to be higher than the id
of the initiating process. In this case, the process with the higher id immediately turns
the message around with either a kill left or kill right action.

If a process receives an ok action as input with the id carried in the message equiv-
alent to its own id, and it has not yet been killed by a message it received from its
neighbor on the other side, it initiates a new message. This message is now sent out
twice as far as the previous one in the direction from which the input came.

These actions continue until a process receives a forward message carrying an id



that is equal to its own. This means that a message that the process initiated has made
it all the way around the ring without encountering a process with a higher id, in which
case it would have been turned into a back message. Upon receipt of such a message
the execution of the algorithm should terminate. The process will elect itself the leader

by assigning its status to be “elected”, and all other processes will be dead.

id:integer = unique arbitrary integer
status:string = ‘‘waiting’’
distance_left:integer = 1
distance_right:integer = 1

pending_£1:set ((automaton_id,integer,integer))
pending_fr:set((automaton_id,integer,integer))
pending_kl:set ((automaton_id,integer)) = { }

{(in(self()),id,1)}
{(out(self()),id, 1)}

pending_kr:set((automaton_id,integer)) = { }
pending_ol:set((automaton_id,integer)) = { }
pending_or:set ((automaton_id,integer)) = { }

Figure 2.2: Start State Sy

In order to accomplish this, the state information shown in figure 2.2 needs to be
kept at every process with the accompanying initial values. The information keeps track
of the following. Id holds the process’s own unique id number. Such id’s are necessary
for any leader election algorithm. In this particular algorithin, of course, the process
with the highest id is the one elected. Status is initially “waiting”. If it comes to know
that there is a process in the ring with a higher id then it assigns itsell to be “dead”.
On the other hand, if it learns that it’s own id is the highest of any process in the ring,
then it assigns itself to be “elected”. The latter assignment should be the final step

that occurs in the execution of the algorithin. The two distance variables keep track



of how far out from the process in either direction the most recently initiated message
was sent in either the left or right direction. Initially both of these values arc one.

The pending sets are all sets of messages waiting to go out from the given process.
Initially the only nonempty sets are pending fl and pending fr, Flf{or ‘forward left’ and
fr for ‘forward right’. These hold the messages waiting to go out a distance of one from
the process. Self() refers to the automaton id of the process itself. In(self()) refers to
the left-hand neighbor of the process, and similarly out(sell()) refers to the right-hand
neighbor of the process.

By defining the action signature and process state in such manner, the actual action
descriptions become straightforward. Only the actions for inessages out to the left from
the initiating process will be discussed here, but the actions in the opposite directions
are exactly parallel. The {ull code listing appears in Appendix A.

The input actions are described in figure 2.3. Forward left may handle an incoming
message in any one of four ways. If the id of the message is its own id, it elects itself
the leader. Otherwise, if the id of the message is greater than its own, it kill itself. If to
go has not yet reached one, it sends the message forward to its left-hand neighbor. If
it has reached one, then this process is the one that needs to turn the message around,
performing an ok right output action. Conversely, if none of the former conditions hold,
then the id of the process must be greater than the id of the message, so a kill right
message is sent back to the initiating process.

If a process receives a kill right input, it checks to see if the il of the .nessage matches



forward_left((self(),to_go,id))
effect: if id=s’.id then
s.status=’’elected’’
elseif s’.id<id and to_go>1 then
s.status=’’dead’’
s.pending_f1l=s’.pending_f1 U {(in(self()),to_go-1,id)}
elseif s’.id<id and to_go=1 then
s.status=’’dead’’
s.pending_or=s’.pending_or U {(out(self()),id)}
else
s.pending_kr=s’.pending_kr U {(out(self()),id)}

kill_right ((self(),id))
effect: if s’.id=id then
s.status=’’dead’’

else
s.pending_kr=s’.pending_kr U {(out(self()),id)}
ok_right ((self(),id))
effect: if s’.id=id and s’.status=’’waiting’’ then
s.distance_right=s’.distance_right*2
s.pending_fl=s’.pending_f1l U {(in(self()),s.distance_right,s.id)}
elseif “(s’.id=s.id) then
s.pending_or=s’.pending_or U {(in(self()),id)}

Figure 2.3: Input Actions

its own id. If it does, then it kills itself. Otherwise it propagates the message to its
right-hand neighbor.

Similarly, ok right first checks if the id of the message matches its own id. If it
does and the process has not been killed since the message was first sent out, then it
initiates another message to its left-hand neighbor. This message is to travel twice as
far as the last message it initiated in this direction. If the message has not yet reached

the initiating process, it propagates the message to its right-hand neighbor. The one



additional possibility is that the id of the message matches the process’s own id, but

the process is now dead. In this case no action needs to be taken.

forward_left (x)

precondition: x is an element of s’.pending_f1l
effect: s.pending_fl=s’.pending fl-x
kill_right(x)

precondition: x is an element of s’.pending_kr
effect: s.pending_kr=s’,pending_kr-x
ok_right (x)

precondition: x is an element of s’.pending_or
effect: s.pending_or=s’.pending_or-x

Figure 2.4: Output Actions

The output actions are described in figure 2.4. These are all similar to one another
and very straightforward. Each output action is performed only if there is a message
waiting in the appropriate pending set. If so, it arbitrarily selects one of them, and
outputs it to the environment. When combined, these actions implement the Hirshberg-

Sinclair leader election algorithm in a modular, intuitive fashion.

2.3 Simulation

The Spectrum code for the simulation is listed in Appendix A. It is obtained directly
from the I/O automaton code and thus should not require additional explanation. Cer-
tain additional variables may exist Jue to constraints imposed by the language. For

example, a tuple cannot be defined in one statemer.t, so a temporary variable needs



to be created, the elements assigned one at a time, and then the temporary variable
inserted into the set. The only differences between the higher level description and the
Spectrum code are such long forms required for the Spectrum language.

What does require explanation, however, is the second listing of Spectrum code
for the Hirshberg-Sinclair algorithm included in Appendix A. The first listing works
correctly, but does not give informative integer variables to map to the colors available
for the siinulation. Certain modifications have been made to the code to produce an
intuitive feel for the algorithm when it is actually executed by the simulator.

First a stat int variable has been added. This variable maps an integer value to each
of the three possible states of the automaton. In the ring configuration this integer
variable is further mapped to the middle of the object representing a process in the
configuration. As a result, we can see whether any given automaton instance is waiting,
dead, or elected while the simulation is executing, simply by looking at the color at the
center of each process object. Presently the colors are mapped so that it is green while
waiting, black when dead, and red if elected.

Also, an integer variable, maz has been added to the state of the automaton. Maz
holds the value of the most significant digit, zero to seven, of the highest id it has yel
seen. Maz is mapped to the rim of each process object.

Finally, in order to see the leader process successfully send its message further and
further around the ring, an additional automaton type LEADER has heen created. This

automaton type is exactly identical to the PROC automaton type with the exception



that it is assigned what is known by the user to be the highest id of any of the automata
in the ring.

The id’s of all PROC types will be assigned such that they lie between 0 and 700.
The id of the LEADER type will be assigned such that it is greater than 700. Thus
not only will the LEADER be the process elected since it has the highest id number,
but it will also be the only process whose id number has 7 as the most significan. digit.
Through maz the user will be able to see this id propagate further and further around
the ring. If the color of the rim of any of the process objects changes to purple for 7, it
must have received a message from the LEADER.

The processes themselves do not distinguish between a LEADER process and a
PROC process, however, and thus are not given any information that would allow it
to somehow cheat. By making these changes, one is actually able to see the algorithm
progress—the higher id’s taking over, killing the appropriate processes along the way.
If the process with the highest id were to share its most significant digit with another
process, the user would not be able to see the one process’s id propagate around the

ring as clearly.



Chapter 3

Peterson Leader Election

Algorithm

3.1 Description

While the Hirshberg-Sinclair algorithm requires bidirectional message passing in order
to achieve O(nlogn) performance, Peterson developed an algorithm that would achieve
the same message complexity using only unidirectional message passing [Pet82]. The

algorithm has the following properties:

o Assumes that the number of nodes in the ring is unknown.
o Involves unidirectional message passing,.

e Works asynchronously.

24



e Uses an unbounded identifier set.

e [llects any node as the leader.

The Peterson algorithm, as presented in [LG88] works as follows. FEach process is
initially active. By the point an execution of the algorithm terminates, each process
has either become a relay, or has been elected leader of the ring. Relays act as dummy
processes, only passing along messages that they receive. The active processes are the
ones still in contention for the leader position. Once a leader has been elected, the
execution will terminate.

The algorithm is divided into asynchronously determined phases. In each phase the
number of active processes is divided in at least half, so logn is an upper bouad on the
number of requisite phases.

In the first phase each process sends its id two steps clockwise, allowing each process
to compare its own id to the id’s of its two counterclockwise neighbors. The process
remains alive only if the id of its closest active neighbor was the highest of the three.
In this case, it adopts its neighbors id and continues with the next phase. If not, it
becomes a relay.

At least half of the processes must become relays after each phase since only a given
process or its most closest active neighbor can stay active, not both. And of course, in
each phase at least the closest active clockwise neighbor of the process with the highest
id will remain active. Finally, all but one of the processes will have become a relay, and

in the next phase this process will be elected the leader.



3.2 In Terms of the I/O Automaton Model

Again, a concise, intuitive description of the algorithm is constructed using the I/O

automaton model. The one automaton type is named PROC for process.

in(S)={send_high((chan:automaton_id,phase:integer,id:integer))
send_low((chan:automaton_id,phase:integer,id:integer))}

out (S)={send_high((chan:automaton_id,phase:integer,id:integer))
send_low((chan:automaton_id,phase:integer,id:integer))}

int (S)={check_ status(),

do_wh(),
do_wl()}

Figure 3.1: Action Signature 5 for Peterson

This time there are three internal actions as well as the external actions, as can be
seen in figure 3.1. Send high is used when a process sends its own id out to its closest
active clockwise neighbor. Upon receiving such an input action, the process modifies its
own state information appropriately, and does a send low with the same id to its closest
active clockwise neighbor. Upon receiving a send low action, the process will modify its
own state information appropriately, but does not need to propagate the same id any
further.

The chan is the automaton id of the process to whom the message is directed. Phase
is the asynchronous phase to which the message belongs. Initially it will be zero. And
it is the id of the process that initiated the set of inessages with a send high action,

Each process waits to receive one input of each type such that the phase counter



coincides with its own current phase. If the process has sent out n send high messages,
then its phase will be n-- 1. Once it has receive two messages with phase equal ton -1,
the internal check status action is performed. Check status will either decide that the
process is to remain active, or turn it into a relay, if it is to remain active, the process
enters the next phase and initiates another send high message.

Additionally, since the phases are asynchronous, it is possible for a process to receive
an input message with phase m > n — 1, where again, n — 1 is the process’s own current
phase. In such a case the message is buffered within the process until the process’s
becomes m, and it is ready to handle the message. Do wh and do wl are the two
internal actions that process buffered messages at the appropriate times, where wh
stands for ‘waiting high’ and w! stands for ‘waiting low’. They are exactly symmetrical
to the two input actions, only they take messages {from an internal buffer rather than
from the external environment.

An execution of the algorithm terminates when a process receives its own id back
as the result of either a send high or do wh action. At this point this process will be
elected the leader, and all other processes should have becomie relays.

The information required to be held in the state of each process is shown in figure 3.2.
The purpose of each variable is as follows. id holds the process’s own unique id number,
Status is either “waiting”, “relay”, or “elected”. Phase is equivalent to n — 1, where n
is the number of send high messages that the process has initiated.

Received keeps track of the number of messages that the process has received for



id:integer = unique arbitrary integer

status:string = ’’waiting’’

phase:integer = 0

received:integer = 0

high:integer, undefined

low:integer, undefined

to_sh:set ((automaton_id,integer,integer)) = { }
to_sl:set((automaton_id,integer,integer)) = { }
waiting_high:set ((automaton_id,integer,integer)) = { }
waiting_low:set((automaton_id,integer,integer)) = { }
check_waiting:string = ‘‘no’’

Figure 3.2: Start State Sp

its current phase. Once received equals two, the process knows to perform the internal
action check status. At this time, high will contain the id of the process’s closest active
counterclockwise neighbor in the current phase, and low will contain the id of the next
closest active process in the current phase.

To sh is a set of messages waiting to be output through the send high action, and
to sl is a set of messages waiting to be output through the send low action,

Waiting low and waiting high are buffers for messages received with phase counters
higher than that of the process at the time. When the process may be ready to handle
buffered input, check waiting is set to be first “high” and then “low”. When it is “high”,
do wh is enabled, when it is “low”, do wl is enabled, and when it is “no”, neither is
enabled.

Again, though more state information is required for the Peterson algorithin than

was required for the Hirshberg-Sinclair algorithm, the actions themselves are straight-



forward. The code is listed in Appendix B.

send_high((self(),p,id))
effect: if s’.status=’’relay’’ then
s.to_sh=s’.to_sh U {(ocut(self()),p,id)}
elseif id=s’.id then
s.status=’’elected’’
elseif p=s.phase then
s.high=id
s.received=s’.received+1
s.to_sl=s’.to_sl U {(out(self()),p,id)}
elseif s’.status=’’active’’ then
s.waiting_high=s’.waiting_high U {(self(),p,id)}
send_low((self(),p,id))
effect: if s’.status=’’relay’’ then
s.to_sl=s’.to_sl U {(out(self()),p,id)
elseif p=s.phase then
s.low=id
s.received=s’.received+1

elseif s’.status=’’active’’ then
s.waiting_low=s’.waiting_low U {(self(),p,id)}

Figure 3.3: Input Actions

The input actions are described in figure 3.3. Send high may handle an incoming
message in any one of four ways. The first way occurs when the process has become
a relay. In this case it simply propagates the message in tact to the next clockwise
neighbor. The second possibility is that the id of the message matches its own id.
If so, then the process elects itself the leader. At this point all other process should
already be relays, and thus execution of the algorithm will terminate. This leaves two
possibilities, either the phase of the message matches the processes own phase and needs

to be handled right away, or the phase of the message is greater than the phase of the



process and needs to be buftered until it can be handled. If the precess is ready to
handle the message, then it sets high to be the id of the message, and iucrements the
received counter, as well as preparing a message to be output via the send low action
to the immediate clockwise neighbor, If the process is not ready to handle the message
then it simply insert the message in tact into the waiting high buffer.

Send low can be handled in three possible ways, If the process has become a relay,
then the message is propagated in tact to the next clockwise neighbor. Otherwise
either the phase of the message matches the phase of the process or it is greater. If
it matches, then low is set to be the id of the message and the received counter is

incremented. Otherwise the message is buffered in tact in waiting low.

send_high(x)

precondition: x is an element of s’.send_high
effect: s.send_high=s’.send_high-x
send_low(x)

precondition: x is an element of s’.send_low
effect: s.send_low=s’.send_low-x

Figure 3.4: Output Actions

The output actions are described in figure 3.4. They perform the same function
as the output actions from the Hirshberg-Sinclair algorithm. Each output action is
performed only if there is a message waiting in the appropriate pending set. If so, it
arbitrarily selects one of them, and outputs it to the environment,

The three internal actions are described in figure 3.5. Check status is activated when



a messages corresponding to the current process phase have been received from both
the closest active counterclockwise neighbor and the next closest active counterclockwise
neighbor and the status of the process is still “active”.

In such a case, received is reinitialized to zero. Check waiting is set to “high” since
it is possible that messages for the next phase are already buflered within the process
state. And the id of the closest active counterclockwise neighbor is compared to the
other two id’s. If it is not the greatest of the three than the process becomes a relay.
If it is the greatest of the three, however, then the process adopts the highest id as its
own, increments the phase counter, and prepares to initiate another send high message
to its immediate clockwise neighbor.

Do wh is only enabled when check waiting equals “high”. It sets check waiting to
“low” and then looks for an element in the buffer with a phase counter equal to the
present phase counter of the process. If such a message is found, it is first deleted from
the buffer and then handled as if it had just been received by the process through a send
high action. The only difference is that if such a message is found, then by definition
the phase of the message equals the current phase of the process, and the possibility
that they are not equal does not need to be handled.

Similarly, Do wl is only enabled when check waiting equals “low™. It sets check
waiting to “no” and then looks for an element in the buffer with a phase counter equal
to the present phase counter of the process. If such a message is found, it is first deleted

from the buffer and then handled as if it had just been receive by a send low action,



except for two modifications. The first modification is the same as that for do wh~the
case where the two phases do not match does not need to be handled. The second
difference is that if the process is a relay, then it is necessary to enable do wh again

since it will not be enabled by check status.

3.3 Simulation

The Spectrum code for the simulation of Peterson’s algorithm is listed in Appendix B.
Again, it follows directly from the I/O automaton code and thus should not require ad-
ditional explanation. The only differences are the long forms required for the Spectrum
language.

As before, two listings of Spectrum code appear in the appendix. The first one is the
minimal code that will work correctly on its own. The second listing has been produced
by enhancing the first one for visual purposes. When run with the proper configuration,
it should aid in giving the user an intuitive feel for the algorithm.

Only one addition was made for this case, and that was to add a stat int variable
to the state S. This variable is equal to 7 for purple when the process is waiting,
0 for black when the process has become a relay, and 4 for green if the process is
elected. This variable was mapped to the center of each object representing a node in
the configuration.

The preexisting phase variable was mapped to the rim of each node object. This

way one is able to tell how many processes were still active after each phase, and how



many phases were necessary before the leader was elected.



check_status()
precondition: s’.received=1 and s’.status=’’active’’
effect: s.received=0
s.check_waiting=’’high’’
if (s’.high > max(s’,id,s’.low) then
s.id=s’.high
s.phase=s’,phase+l1
s.to_sh=s’.to_sh U {(out(self()),s.phase,s.id)}
else
s.status=’’relay’’

do_wh()
precondition: s’.check_waiting=’’high’’
effect: s.check_waiting=’’low’’
if there exists an element x of s.waiting high s.t.
X.phase=s’ .phase then
s.waiting_high=s’.waiting_high-x
if s’.status=’’relay’’ then
s.to_sh=s’.to_sh U {(out(self()),x.phase,x.id)}
elseif x.id=s.id then
s.status=’’elected’’
else
s.high=x.id
s.received=s’.received+l
s.to_sl=s’.to_sl U {(out(self()),x.phase,x.id)}

do_wl()
precondition: s’.check_waiting=’’low’’
effect: s.check_waiting=’’no’’
if there exists an element x of s.waiting_high s.t.
x.phase=s’ .phase then
s.waiting_low=s’.waiting_low-x
if s’.status=’'relay’’ then
s.to_sl=s’.to_sl U {(out(self()),x.phase,x.id)}
s.check_waiting=’’high’’
else
s.low=x.id
s.received=s’.recoived+1

Figure 3.5: Internal Actions



Chapter 4

Dijkstra BFS Shortest Paths

Algorithm

4.1 Description

This shortest paths algorithm [Awe], referred to as the Dijkstra algorithm due to its
similarity to the algorithm Dijkstra presented in [DS80], is included to serve as a contrast
to the leader election algorithms, and show that the I/O automaton model is also
appropriate for such graph algorithms. The algorithm is classified according to the

following properties:
e Assumes that the size and structure of the network are unknown.
e Involves bidirectional message passing across links.

e Works asynchronously.
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o Works with both directed and undirected graphs.

o Creates a shortest paths tree, rooted at a predetermined source node.

The same algorithm will work on either a directed or undirected graph without any
changes. The directed graph problem still requires bidirectional communication across
link. If it is operating upon an undirected graph, nodes are still referred to as having
children and parents. If there is an edge between a and b in graph G, then a and b are
said to be both one anoiher’s parent and child.

The algorithm begins at a predetermined source node. During execution, the algo-
rithm build a shortest path tree, rooted at this node. Initially the tree is empty, and
upon termination of the algorithm it is the complete BFS shortest paths tree. At any
given time during the execution, the present tree rooted at the source is a sub-tree of
the final one, and froin there on the tree can only grow.

The source node acts to both initiate messages and to synchronize the execution.
Successive levels of the shortest paths tree are determined in a breadth first manner.
The source node begins by sending out messages to find the first level of the tree. Once
it knows that this level has been completed, it initiates messages to add nodes at the
next level of the tree. This continues until the source knows that all of the nodes in
the graph have been added to the tree, and at this point the execution of the algorithm
terminates.

The source node discovers nodes at layer [ in the tree by sending out messages to

all nodes at layer [ — 1 in the tree. As described earlier, if the source node is working



on layer [, this means that all nodes at layers n < | have already been added to the
tree. Once the nodes at layer [ — 1 receive the messages sent out from the source they
send out exploratory messages to all of their children. Each child that has not yet been
added to the tree is hooked on at this layer, choosing the sender of the exploratory
message as its parent, and sending back a positive acknowledgment to the probe. If the
child has already been added to the tree that it sends back a negative acknowledgment
to the probe. Upon receiving a negative acknowledgment, the process removes the node
from its set of children.

Once a node receives responses to all the messages it sent out, it sends a response
to its own parent telling the parent whether or not any new nodes were added at layer
l. Once the source node collects respouses from all its children, it determines whether
any new nodes were added to the shortest paths tree. If not, then all the nodes must
already have been added, meaning the tree is complete, and the execution terminates.

Otherwise, the the source begins on the [ — 1 iteration.

4.2 In Terms of the I/O Automaton Model

The I/O automaton description of the Dijkstra algorithms requires two automaton
types, one named SOURCE and the other PROC. As described in the previous section,
the two automata type are necessary since the source performs a different function in
the algorithm than the other processes. Since the source node is the one to initiate

messages, it will be discussed first.



4.2.1 Automaton Type SOURCE

in(S)={ack((chan:automaton_id,from:automaton_id,n:integer)),
back((chan:automaton_id,new?:boolean))}

out (S)={probe((chan:automaton_id,from:automaton_id)),
forward((chan:automaton_id))}

int (S)={make_pending(),
terminate()}

Figure 4.1: Action Signature S for Dijkstra SOURCE

The action signature S for the SOURCE automaton is given in figure 4.1. If the
source is the only node in the graph, then the execution will terminate imimediately.
Otherwise it begins be ouputting a probe to each of its children, and the children send
back ack’s to the probe’s. All the responses to probe’s by the source should be positive,
meaning they all take the source to be their parent and add themselves to the shortest
paths tree. At this point make pending prepares another set of messages to go out. The
forward output actions sends these messages out, and the back input action collects the
responses. Once all responses have been collected, either the make pending or terminate
internal action is perforined depending on whether or not any new nodes were found at
the previous level.

The chan variable is, as in the previous two cases, the automaton id of the process
to whom the message is directed. Fromis the automaton id of the process who sent the
message. This variable is required for probe’s and ack’s, so that a process knows who

to make its parent, or who to remove from its set of children, when appropriate. N, in



integer form, and new?, in boolean form, record whether any new nodes were added to

the tree at the current level along the path from which the message is returning.

status:string = ‘ ‘waiting’’

new?:boolean = false

distance:integer = 1

pending:set (automaton_id) = children(self())
returned:integer = 0

Figure 4.2: Start State Sp

The start state for any process of type SOURCE is shown in figure 4.2. Status
remains “waiting” until the execution is ready to terminate, at which time it becomes
“done”. New? is true if and only if at least one node was added to the shortest paths
tree at the current level. Distance records the level of the tree that is currently being
explored. Pending is a set of automaton id’s of the source’s children to whom messages
are waiting to be delivered through one of the output actions. And returned keeps track

of the number of responses received to messages sent out at the current level.

ack((self(),f,n))
effect: s.new?=true
s.returned=s’.returned+1

back((self(),n))
effect: s.new?=s’.new? or n
s.returned=s’.returned+i1

Figure 4.3: Input Actions

The input actions for the source, shown in figure 4.3, are particularly siiuple. In both



cases, the response counter, returned is incremented, and new is set to show whether
any new nodes have yet been found at the current level. When receiving an ack the
source can assume that new will be true, since all of the source’s children will take the
source to be their parent. In the case of the back action, new? is set to true if at least
one of the responses that came back was also true. Beginning with the value equal to
false, and then continuing to update it by performing OR operations upon it and the

response received, accomplishes this objective.

probe((x,f))

precondition: x element of s’.pending
s’ .distance=1
f=self ()

effect: s.pending=s’.pending-x

forward((x))

precondition: x element of s’.pending
s’ .distance>1

effect: s.pending=s’.pending-x

Figure 4.4: Output Actions

The output actions, shown in figure 4.4, do slightly more than the output actions for
the two leader election algorithins. Both actions reference the same pending set. The
messages sent to these automata are probe’s if the first level is currently being explored,
and simple forward messages otherwise.

The internal actions are described in figure 4.5. When responses have been collected
from all of the source’s children, either make pending or terminate is executed, depending

on whether or not any new nodes were added to the trec at the iteration just completed.



make_pending()
precondition: s’.returned=size(children(self()))
s’ .new?=true
effect: s.returned=0
s.distance=s’.distance+1
s.new?=false
s.pending=children(self())
terminate()
precondition: s’.returned=size(children(self()))
s’ .new?=false
effect: s.status=’’done’’

Figure 4.5: Internal Actions

Make pending does the majority of the work for the source. If new nodes were added to
the tree at the iteration just completed, then make pending increments distance, which
keeps track of the level of the tree currently being explored and reinitializes the other
state variables. If no new nodes were found, then terminate assigns the source’s status
to be “done”, and at this point each node should know its parent and children in the

shortest paths tree.

4.2.2 Automaton Type PROC

The action signature S for the PROC automaton is given in figure 4.6. The functions
of the input actions ack and back as well as the output actions probe and forward are
the same as the corresponding actions for the SOURCE automaton. The processes do

not need the internal actions of the source automaton, since these were actions that



in(S)={probe((chan:automaton_id,from:automaton_id)),
forward((chan:automaton_id))},
ack((chan:automaton_id,from:automaton_id,n:integer)),
back((chan:automaton_id,new?:boolean))}
out (S)={probe((chan:automaton_id,from:automaton_id)),
forward((chan:automaton_id))},

ack((chan:automaton_id,from:automaton_id,n:integer)),
back((chan:automaton_id,new?:boolean))}

int(5)={ }

Figure 4.6: Action Signature S for Dijkstra PROC

initiated messages and served as synchronizers, functions unique to the source. The
PROC’s do, however, require two additional input actions and two additional output
actions.

The first action performed by a PROC automaton will be to receive a probe input.
As a result of any such input, it will return an ack to the sender. If the ack is the first
one sent, then it is positive, meaning the node has adopted the sender of the probe as
the node’s parent. All subsequent ack’s will bg negative, meaning the process already
has a parent, and the sender should delete the node from the sender’s set of children.

In subsequent phases, the process will receive forward messages from its parent.
The first time it receives such a message, it sends out probe’s to all of its children
and receives back acks that it handles appropriately. At subsequent stages the process
simply propagates the forward messages to all of it children in the shortest paths tree,

and then waits to collect responses from all of them in the form of a back input. Once



all the responses have been collected the process itself performs a back output action.

new?:boolean = false

distance:integer = 0

parent:automaton_id, undefined

children:set (automaton_id) = children(self())
pending:set (automaton_id) = children
returned:integer = 0
to_ack:set(automaton_id) = { }
back_ok:booleicn = false

Pigure 4.7: Start Stute Sp

The start state for each process of type PROC is shown in figure 4.7. new? is true
if and only if the process knows of at least one node having been added to the shortest
paths tree at the current level. Distance records the | — m where [ is the level of the
tree that is currently being explored, and m is the nodes own level in the tree. if m is
unknown, then distance will be zero.

Parent is set to the automaton id of the process’s parent node in the tree as soon
as one has been adopted. Children is initially the set of automaton id’s of the children
of the node in the configuration. By the time distance equals two, children will contain
the automatou id’s of only the children of the node in the shortest paths tree.

Pending is a set of automaton id’s of the source’s children to whom messages are
waiting to be delivered through one of the output actions, probe or forward. And
returned keeps track of the number of responses received to messages sent out at the
current level.

To ackis a set of automaton id’s of processes to whose probes the automaton has yet



to respond through an ack output action. And back ok is true if and only if a forward

input has been received, but a back output has not yet been sent.

probe((self(),f))
effect: s.to_ack=s’.to_ack U £

forward((self()))
effect: s.pending=s’.children
s.back_ok=true
ack((self(),f,n))
effect: if n=0 then
s.new=true
s.returned=s’.returned+1
else
s.children=s’.children-f
back((self(),n))

effect: s.new=s’.new or n
s.returned=s’.returned+1

Figure 4.8: Input Actions

The input actions for PROC’s, shown if figure 4.8 are an extension of the input
actions to the source. Upon receiving a probe the automaton id of the sender is added
to the set of automaton id’s of processes to whose probes the automaton has yet to
respond through a ack output action.

If a forward input is received then, the process knows that it must send either a
probe or forward message to all of its children, so their automaton id’s are inserted into
pending. Back ok is set to true since a forward message has been received, but a hack

message has not yet been returned.



There are two possible outcomes when an ack is received by a process, The first
one occurs when the sender has adopted the process as its parent and is thus sending
back a positive acknowledgment. In this case n will equal zero. New is set to true, since
the process knows that a child was added to the shortest paths tree in this iteration,
and the counter of the number of children who have responded is incremented by one.
Conversely, the second outcome occurs when the ack is a negative acknowledgment.
This means that the sender has already adopted a different node as its parent. In this
case the sender’s automaton id is removed frown the process’s set of children.

The back input behaves in exactly the same manner as the input action back for the
SOURCE.

Probe and forward, two of the output actions, shown in figure 4.9, are the same
as the corresponding output actions of the source. Ackis output if a probe has been
received to which a response has not yet been output. S'.distance will equal zero if and
only if the node does not yet have a parent. In this case a positive ack is sent back,
distance is set to one, and the sender of the probe is set to be the parent of the process.
If the process already has a parent then a negative ack is sent back. In either case, the

automaton id of the process to whom the acknowledgment is being sent is deleted from

the set to ack.



4.3 Simulation

Two listings of Spectrum code for the Dijkstra algorithm appear in Appendix C. The
first one is the minimal code that will work correctly on its own. The second listing
contains three enhancements that should help give the user an intuitive feel for the
algorithm.

The first enhancement is an additional integer variable, in tree, to the state of both
the SOURCE and the PROC automaton types. In tree is 0 before the node has been
added to the shortest paths tree, and 7 after. This variable is then mapped to the
center color of the configuration object representing a process in Spectrum. The center
will appear black before the node has been added to the shortest paths tree and purple
afterwards.

The second enhancement was to add another integer variable, level, which stores
the node’s level in the shortest paths tree, the root being at level zero. This variable is
mapped to the rim color of the configuration object representing a process in Spectrum,
All nodes at the same level in the tree will have the same rim color. Since there are
only eight colors available, if there are more than eight levels in the tree, then the level
variable starts back at zero. This variable is not meant to accurately hold the level of
the node in the tree, but is meant simply as a visual device.

Finally one line was added to the code. This line colors the edges in the configuration
that are also edges in the shortest paths tree. If an edge is not in the tree, then it remains

black, otherwise it becomes purple.



probe((x,f))

precondition: x elament of s’.pending
s’.distance=1
f=self()

effect: s.pending=s’.pending-x

forward((x))

precondition: x element of s’.pending
s’ .distance>1

effect: s.pending=s’.pending-x

ack((x,f,n))
precondition: x element of s’.to_ack
f=self()
n=s’.distance
effect: s.to_ack=s’.to_ack-x
if s’ .distance=0 then
s.distance=1
s.parent=x

back((x,n))
precondition: s’ .,returned=size(s’.children)
x=s’,parent
n=s’.new?
s’ .back_ok
effect: s.returned=0
s.distance=s’.distance+1
s.new?=false
s.back_ok=false

Figure 4.9: Output Actions



Chapter 5

Conlclusion

5.1 Comments on Experience with Spectrum

While Spectrum is a powerful tool for simulating distributed algorithms, it is surpris-
ingly easy to use. This ease of use is due to several factors. First of all, the window is
very well lid out. It looks clear and unencumbered. Additionally, the system is driven,
for the most part, by mouse input. It is especially convenient to be able to create a
configuration with the mouse, and save it for later use. One does not need to handle
specifying a configuration through some obscure method in a file.

This system is still relatively new, however, and there are certain enhancements
that may make it more powerful as a tool and also easier to use. Certain changes are
already in the planning stages, such as adding a scheduler. Such a scheduler would

make it possible to do time complexity analysis. Also, syntactic sugar for assignments
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and computations would make the code listings more readable, particularly the more
complicated the algorithms implemented. Discussed below are some additional ideas

that could be useful.

5.1.1 Loading Files

Loading in files can be somewhat cumbersome at times, Especially since Spectrum is
an interpreted language, one can have to attempt reloading the same file many times
consecutively. In such cases it would be helpful if the previous file name specified were
saved as a default value for later use.

The ability to set paths would make loading files even more convenient. These
paths would be checked by the system when a file name was specified. This way if
one were running from a directory other than the one where the files were stored, a
long path name would not have to be typed even once, much less time are time. This
addition would be advantageous for other than just the obvious reason. The top of the
Spectrum display shows the code and configuration files presently loaded, including the
path. There is a limited amount of space for these names., When either name is too
long, the right-hand side, the filename itself, is cut off. Also, this addition would make
it more viable to have the interface give the user a menu of possible files to load. The

user would then simply click on the desired file name.



5.1.2 Feedback to Input

There are small number of cases where the system’s feedback to user input could be
better. First of all, if the user types an underscore at the input line, as part of the name
of a file, the underscore is not visible.

More importantly, when an simulation of an algorithm is begun, the user should
receive some sort of message saying that the algorithm is executing. If the either the
user has not mapped variables to the colors of the nodes, or the variables mapped do not
change until a fair way into the execution, there is no immediate sign that the execution
has in fact begun. The only way the user can know that the program is running is to
open up an automaton instance and see if the state is changing,.

Lastly, if the user is in SIMULATE rather than CONFIGURE mode, the items
under SETUP are not available. The system still allows one to bring down the SETUP
menu, however, and does not given any message if the user attempts to load or save a

file. It should be made clearer that these choices are presently unavailable.

5.1.3 Changing Configurations

When a user load a configuration file, its name is displayed in the upper right-hand
corner of the Spectrum window. If the configuration is then saved under a different
name, possibly after modifying it, the displayed file name does not change. It would
seem reasonable that it should since the configuration the user is now working with is

the one that was just saved.



In terms of ease of changing the configuration, it would be helpful if the Delete option
allowed one to erase all or some section of the elements displayed in the configuration
window. The user could click the mouse button and then drag it, creating an enclosing
rectangle. When the button was released, everything within the rectangle would be
deleted.

An Undo option could also come in handy, especially if the previously mentioned
addition were made, and the user could delete large amounts of information at once.
It is easy to forget that one is in Delete mode, rather than say Connect mode, and

accidentally erase information that would be cumberscine, if not difficult, to reconstruct.

5.1.4 Execution

The ability to manually change state information while running the code would provide
greater flexibility in studying executions. This enhancement would allow the user to
pinpoint problems or play with variations of the algorithm without actually changing

the code before knowing what change is necessary or preferred.

5.2 Further Studies Facilitated by Descriptions

The I/0 automaton model has allowed a formal, intuitive description of the three al-
gorithms. As a result, it would be a natural next step to set up an invariant and
prove correctness on the high level /O automaton code, as well as proving time and

message complexity bounds. Additionally, once the scheduler is added to the system,



one can study the time complexity behavior one actually sees, given maximum message
delivery and process step times. The performace using the simulator can then be com-
pared against the average and worst case performance that would be expected for the
algorithm.

Finally, the system also allows composition of automaton. This would lend itself
well to studying two or more algorithms working together. Say a leader was needed to
run another algorithm, which is usually the case in any complex distributed system.
One could first run a leader election algorithm, and then the algorithms that require
a leader. Rather than weaving the two pieces of code together into one algorithm, it
would make more sense to have one element of a composed pair run leader election and
then hand control over to the other process through a leader output action. The other
process would be told who the leader was and would thus be able to run the dependent
algorithms. This allows the retention of modularity and a more involved study of the

best way to have several algorithms work together.

5.3 Summary

This paper described three distributed algorithms-the Hirshberg-Sinclair leader elec-
tion algorithm, the Peterson leader election algorithm, and the Dijkstra shortest paths
algorithms, Each algorithm was presented formally using the 1/0 automaton model,
and the formal description was explained in detail. In addition, the I/O automaton de-

scription was translated into Spectrum code, and examples were given of the intuitive



feel that the simulation could provide the user. The simulator can also be a powerful
tool for doing a more complete study of the algorithms.

All three algorithms lent themselves quite well to the I/O automaton model. While
the benefits of writing the algorithms as I/O automata may be somewhat diflerent
than writing Spectrum code to simulate execution of the algorithms, the two modes
of description complemented one another well. If the ultimate goal is to simulate an
algorithm on Spectrum, it is still beneficial to write the higher level I/O automaton
description. This preparation generally results in tighter, more modular Spectrum code
since one is not mired down by the details of the language. Similarly, if one wishes only
to study the algorithm at the higher level, it is still useful to perform the simulation in
order gain a clearer intuitive understanding and debug possible problems.

Included as well are notes on experience with Spectrum, which is still a relatively
new system. Overall it was found to be powerful, and yet surprisingly straightforward
to use. Many enhancements are already planned for the next implementation of the
system. Certain other additions were discussed that would make the systemn more
convenient to work with, as well as more flexible as a tool.

And finally, the descriptions of algorithms discussed in this paper are only a starling
point. The model opens up an entire field of formal studies that can be carried out on
distributed algorithms, without becoming bogged down in the logistics of the method
of study, and losing touch with the intuitive workings of the algorithms themselves.

The ultimate advantage of these methods of describing distributed algorithms will be



increased confidence in distributed systems that are actually put into use.



Appendix A

HirShberg-Sinclair Code

A.1 Minimal Spectrum Code

[

% data equates

[/

DATA mf tuple(chan:automaton_id, id:integer, to_go:integer)
DATA mb tuple(chan:automaton_id, id:integer)

[/

% action signature

h

ACTION initially()
ACTION forward_left mf
ACTION forward_right mf
ACTION kill_left mb
ACTION kill_right mb
ACTION ok_left mb
ACTION ok_right mb

55



AUTOMATON PROC
A
% automaton

h

state information

STATE tuple(id:integer, status:string,

[/

distance_left:integer, distance_right:integer,
pending_f1l:set(mf), pending_fr:set(mf),
pending_kl:set(mb), pending_ kr:set(mb),
pending_ol:set(mb), pending_oxr:set(mb)

t£:mf, tb:mb)

Y, start state

h

INPUT initially

EFF

% set ‘id’ to be unique random number

assign(s.id,int_plus(int_times(int_random(o,7).100),
str_to_int(name(self()))))

assign(s.status,"waiting")

Y, set dist 1st mossage to be sent out either direction.

assign(s.distance_left,1)

assign(s.distance_right,1)

Y, assign component of message

assign(s.tf.chan,set_random(in(self())))

assign(s.tf.id,s.id)

assign(s.tf.to_go,1)

% send message to neighbors

assign(s.pending_fl,set_single(s.tf))

assign(s.tf.chan,set_random(out(self())))

assign(s.pending_fr,set_single(s.tf))

% initialize other pending message sets to empty

set_init(s.pending_k1)

set_init(s.pending_kr)

set_init(s.pending_ol)

set_init(s.pending_or)



h
% input actions

%

%

/s message on its way out from the initiating proc

h

INPUT forward_left WHERE eq(self(),a.chn)

EFF

% message has made it &ll the way around the ring

% -> elect self to be th. leader

ifthenelse(eq(a.id, s.id),
assign(s.status,"elected")

/ message still on its way out and its id > proc’s id

h -> kill proc

% -> propagate same message to left-hand neighbor

ifthenelse(bool_and(less(s.id,a.id),less(1,a.to_go)),
{assign(s.status,"dead")
assign(s.tf.chan,set_random(in(self())))
assign(s.tf.to_go,int_minus(a.to_go,1))
assign(s.tf.id,a.id)
set_insert(s.pending_£1,s.tf)},

/i message needs to be turned back and its id > proc’s id

% -> kill proc

h -> send message to initiating proc saying no proc’s with

A higher id’s than its own were encountered.

ifthenelse(bool_and(less(s.id,a.id),eq(1,a.to_go)),
{assign(s.status,"dead")
assign(s.tb.chan,set_random(out(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_or,s.tb)},

h proc’s id > msg id

h -> tell initiating proc to kill itself.

{assign(s.tb.chan,set_random(out(self())))

assign(s.tb.id,a.id)

set_insert(s.pending_kr,s.tb)})))



INPUT forward_right WHERE eq(self(),a.chan)
EFF ifthenelse(eq(a.id, s.id),

assign(s.status,"elected"),

ifthenelse(bool_and(less(s.id,a.id),less(1,a.to_go)),
{assign(s.status,"dead")
assign(s.tf.chan,set_random(out(self())))
assign(s.tf.to_go,int_minus(a.to_go,1))
assign(s.tf.id,a.id)
set_insert(s.pending_fr,s.tf)},

ifthenelse(bool_and(less(s.id,a.id),eq(1,a.to_go)),
{assign(s.status,"dead")
assign(s,.tb.chan,set_random(in(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_ol,s.tb)},

{assign(s.tb.chan,set_random(in(self())))

assign(s.tb.id,a.id)

set_insert(s.pending_kl1l,s.tb)})))



[/

/i message on way back to initiating proc, telling it to kill itself.

h

INPUT kill_left WHERE eq(self(),a.chan)

EFF /i message reached initiating proc
% -> kill proc
ifthenelse(eq(s.id,a.id),
assign(s.status,"dead"),

/s message net yet to initiating proc
h -> propagate same message
{assign(s.tb,.chan,set_random(in(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_kl,s.tb)})

INPUT kill_right WHERE eq(self(),a.chan)
EFF ifthenelse(eq(s.id,a.id),
assign(s.status,"dead"),
{assign(s.tb.chan,set_random(out(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_kr,s.tb)})



h
% message on way back to initiating proc, telling it ok so far.
h
INPUT ok_left WHERE eq(self(),a.chan)
EFF /y message reached initiating proc and proc still alive
% -> send message twice as far out in same direction
ifthenelse(bool_and(eq(s.id,a.id),eq(s.status,"waiting")),
{assign(s.distance_right,int_times(s.distance_right,2))
assign(s.tf.chan,set_random(out(self())))
assign(s.tf.id,s.id)
assign(s.tf.to_go,s.distance_right)
set_insert(s.pending_fr,s.tf)},
/s message not yet to initiating proc
% -> propagate same message
ifthen(bool_not(eq(s.id,a.id)),
{assign(s.tb.chan,set_random(in(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_ol,s.tb)}))

INPUT ok_right WHERE eq(self(),a.chan)

EFF ifthenelse(bool_and(eq(s.id,a.id),eq(s.status,"waiting")),
{assign(s.distance_left,int_times(s.distance_left,2))
assign(s.tf.chan,set_random(in(self())))
assign(s.tf.id,s.id)
assign(s.tf.to_go,s.distance_left)
set_insert(s.pending_fl,s.tf)},

ifthen(bool_not(eq(s.id,a.id)),
{assign(s.tb.chan,set_random(out(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_or,s.tb)}))



[/

% output actions

%

[/
) pending set not empty
% -> select message from set at random
% -> output selected message
[/
CLASS
OUTPUT forward_left
PRE bool_not(set_empty(s.pending_£1))
SEL assign(a,set_random(s.pending_£1))
EFF set_delete(s.pending_£1,a)
CLASS
OUTPUT forward_right
PRE bool_not(set_empty(s.pending_fr))
SEL assign(a,set_random(s.pending_f£x))
EFF set_delete(s.pending_fr,a)
CLASS
OUTPUT kill_left
PRE bool_not(set_empty(s.pending_k1))
SEL assign(a,set_random(s.pending_kl1))
EFF set_delete(s.pending_kl,a)
CLASS
DUTPUT kill _right
PRE bool_not(set_empty(s.pending_kr))
SEL assign(a,set_random(s.pending_kr))
EFF set_delete(s.pending_kr,a)
CLASS
OUTPUT ok_left
PRE bool_not(set_empty(s.pending_ol))
SEL assign(a,set_random(s.pending_ol))
EFF set_delete(s.pending_ol,a)
CLASS
OUTPUT ok_right
PRE bool_not(set_empty(s.pending_or))
SEL assign(a,set_random(s.pending_or))

EFF set_delete(s.pending_or,a)



A.2 Code with Additions for Simulation Purposes
"

% equates & action sig
% remuin unchanged

[

AUTOMATON PROC
STATE tuple(id:integer, status:string,

distance_left:integer, distance_xright:integer,
pending_fl:set(mf), pending_fr:set(mf),
pending_kl:set(mb), pending_kr:set(mb),
pending_ol:set(mb), pending_or:set(mb)
tf:mf, tb:mb,
h
% 2 vars added to state for simulation purposes:
% max, holds most significant digit of highest id yet seen
% stat_int, 4(green) <-> status=‘‘waiting’’

% 0(black) <-> status='‘dead’’
A 3(red) <-> status=‘‘elected’’
%

max:integer, stat_int:integer)



[/

7 maintain simulation variable, stat_int, at proper value
prop

[/
MAINTAIN

ifthenelse(eq(s.status,"waiting") ,assign(s.stat_int,4),
ifthenelse(eq(s.status,"dead"),assign(s.stat_int,0),
assign(s.stat_int,3)))

INPUT initially

EFF

[

/ most sig digit of proc’s id chosen s.t. it is greater
/i than or equal to O, but less than 7-reserved for leader.

assign(s.id,int_plus(int_times(int_random(0,6),100),
str_to_int(name(self()))))

[/

/y max so far assigned to be this most sig digit

h

assign(s.max,int_div(s.id,100))
assign(s.status,"waiting")
assign(s.distance_left,1)
assign(s.distance_right,1)
assign(s.tf.chan,set_random(in(self())))
assign(s.tf.id,s.id)
assign(s.tf.to_go,1)
assign(s.pending_f1l,set_single(s.tf))
assign(s.tf.chan,set_random(out(self())))
assign(s.pending_fr,set_single(s.tf))
set_init(s.pending_k1)
set_init(s.pending_kr)
set_init(s.pending_ol)
set_init(s.pending_or)



INPUT forward_left WHERE eq(self(),a.chan)
EFF ifthenelse(eq(a.id, s.id),
assign(s.status,"elected"),
ifthenelse(bool_and(less(s.id,a.id),less(1,a.to_go)),
{assign(s.status,"dead")
h
% higher id seen
% -> update value of max
h
ifthen(less(s.max,int_div(a.id,100)),
assign(s.max,int_div(a.id,100)))
assign(s.tf.chan,set_random(in(self())))
assign(s.tf.to_go,int_minus(a.to_go,1))
assign(s.tf.id,a.id)
set_insert(s.pending_£f1,s.tf)},
ifthenelse(bool_and(less(s.id,a.id),eq(1,a.to_go)),
{assign(s.status,"dead")
h
% higher id seen
% -> update value of max
h
ifthen(less(s.max,int_div(a.id,100)),
assign(s.max,int_div(a.id,100)))
assign(s.tb.chan,set_random(out(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_or,s.tb)},
{assign(s.tb.chan,set_random(out(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_kr,s.tb)})))



INPUT forward_right WHERE eq(self(),a.chan)
EFF ifthenelse(eq(a.id, s.id),

assign(s.status,"elected"),

ifthenelse(bool_and(less(s.id,a.id),less(1,a.to_go)),
{assign(s.status,"dead")
h
% higher id seen
% -> update value of max
h
ifthen(less(s.max,int_div(a.id,100)),

assign(s.max,int_div(a.id,100)))

assign(s.tf.chan,set_random(out(self())))
assign(s.tf.to_go,int_minus(a.to_go,1))
assign(s.tf.id,a.id)
set_insert(s.pending_fr,s.tf)},

ifthenelse(bool_and(less(s.id,a.id),eq(1,a.to_go)),
{assign(s.status,"dead")

[/

% higher id seen

% -> update value of max
/]

ifthen(less(s.max,int_div(a.id,100)),
assign(s.max,int_div(a.id,100)))
assign(s.tb.chan,set_random(in(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_ol,s.tb)},
{assign(s.tb,.chan,set_random(in(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_kl,s.tb)})))

[}

h

/i rest of input actions and all output actions
4 remain unchanged

)



[

h

/i exact same code as for proc automaton type, with one exception:

4 most significant digit of its id = 7, while most significant digit

% of proc id’s < 7, max is initialized to 7, and since leader will

A never see a value higher than 8, there is no need to update max’s val,

/ this is so that the message from the leader can be seen clearly being

J  sent further and further around the ring,

[/

AUTOMATON LEADER

STATE tuple(id:integer, status:string,

distance_left:integer, distance_right:integer,
pending_fl:set(mf), pending_fr:set(mf),
pending_kl:set(mb), pending_kr:set(mb),
pending_ol:set(mb), pending_or:set(mb)
tf:mf, tb:mb, max:integer, stat_int:integer)

MAINTAIN
ifthenelse(eq(s.status,"waiting"),assign(s.stat_int,4),
ifthenelse(eq(s.status,"dead"),assign(s.stat_int,0),

assign(s.stat_int,3)))

INPUT initially
EFF %

% assign id s.t. most sig digit = 7
A
assign(s.id,int_plus(700,str_to_int(name(self()))))
h
% initialize max to be 7.
h
assign(s.status,"waiting")
assign(s.distance_left,1)
assign(s.distance_right,1)
assign(s,tf,chan,set_random(in(self())))
assign(s.tf,id,s.id)
assign(s.tf.to_go,1)
assign(s.pending_f1,set_single(s.tf))
assign(s.tf.chan,set_random(out(self())))
assign(s.pending_fr,set_single(s.tf))



INPUT forward_left WHERE eq(self(),a.chan)

EFF

ifthenelse(eq(a.id, s.id),
assign(s.status,"elected"),
ifthenelse(bool_and(less(s.id,a.id),less(1,a.to_go)),
{assign(s.status,"dead")
assign(s.tf.chan,set_random(in(self())))
assign(s.tf.to_go,int_minus(a.to_go,1))
assign(s.tf.id,a.id)
set_insert(s.pending_f1,s.tf)},
ifthenelse(bool_and(less(s.id,a.id),eq(1,a.to_go)),
{assign(s.status,"dead")
assign(s.tb.chan,set_random(out(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_or,s.tb)},
{assign(s.tb.chan,set_random(out(self())))
assign(s.tb.id,a.id)
set_insert(s,pending_kr,s.tb)})))

INPUT forward_right WHERE eq(self(),a.chan)

EFF

ifthenelse(eq(a.id, s.id),
assign(s.status,"elected"),
ifthenelse(bool_and(less(s.id,a.id),less(1,a.to_go)),
{assign(s.status,"dead")
assign(s.tf.chan,set_random(out(self())))
assign(s.tf.to_go,int_minus(a.to_go,1))
assign(s.tf.id,a.id)
set_insert(s.pending_fr,s.tf)},
ifthenelse(bool_and(less(s.id,a.id),eq(1,a.to_go)),
{assign(s.status,"dead")
assign(s.tb.chan,set_random(in(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_ol,s.tb)},
{assign(s.tb.chan,set_random(in(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_kl,s.tb)})))



INPUT kill_left WHERE eq(self(),a.chan)
EFF ifthenelse(eq(s.id,a.id),
assign(s.status,"dead"),
{assign(s.tb.chan,set_random(in(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_kl,s.tb)})

INPUT kill_right WHERE eq(self(),a.chan)
EFF ifthenelse(eq(s.id,a.id),
assign(s.status,"dead"),
{assign(s.tb.chan,set_random(out(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_kr,s.tb)})

INPUT ok_left WHERE eq(self(),a.chan)

EFF ifthenelse(bool_and(eq(s.id,a.id),eq(s.status,"waiting")),
{assign(s.distance_right,int_times(s.distance_right,2))
assign(s.tf.chan,set_random(out(self())))
assign(s.tf.id,s.id)
assign(s.tf.to_go,s.distance_right)
set_insert(s.pending_fr,s.tf)},

ifthen(bool_not(eq(s.id,a.id)),
{assign(s.tb.chun,set_random(in(self())))
assign(s.tb.id,n.id)
set_insert(s.pending_ol,s.tb)}))

INPUT ok_right WHERE eq(self(),a.chan)

EFF ifthenelse(bool_and(eq(s.id,a.id),eq(s.status,"waiting")),
{assign(s.distance_left,int_times(s.distance_left,2))
assign(s.tf.chan,set_random(in(self())))
assign(s.tf.id,s.id)
assign(s.tf.to_go,s.distance_left)
set_insert(s.pending_f1l,s.¢f)},

ifthen(bool_not(eq(s.id,a.id)),
{assign(s.tb.chan,set_random(out(self())))
assign(s.tb.id,a.id)
set_insert(s.pending_or,s.tb)}))



CLASS
OUTPUT forward_left

PRE bool_not(set_empty(s.pending_£1))
SEL assign(a,set_random(s.pending_£1))
EFF set_delete(s.pending_f1,a)
CLASS
OUTPUT forward_right
PRE bool_not(set_empty(s.pending_£fr))
SEL assign(a,set_random(s,pending_£fr))
EFF set_delete(s.pending_fr,a)
CLASS
OUTPUT kill_left
PRE bool_not(set_empty(s.pending_kl1))
SEL assign(a,set_random(s.pending_k1))
EFF set_delete(s.pending_kl,a)
CLASS
OUTPUT kill_right
PRE bool_not(set_empty(s.pending_kr))
SEL assign(a,set_random(s.pending_kr))
EFF set_delete(s.pending_kr,a)
CLASS
QUTPUT ok_left
PRE bool_not(set_empty(s.pending_ol))
SEL assign(a,set_random(s.pending_ol))
EFF set_delete(s.pending_ol,a)
CLASS
OUTPUT ok_right
PRE bool_not(set_empty(s.pending_or))
SEL assign(a,set_random(s.pending_or))

EFF set_delete(s.pending_or,a)



A.3 High Level I/O Automaton Code

Action Signature

AUTOMATON PROC
Input: forward_left((chan:automaton_id,to_go:integer,id:integer))
forward_right((chan:automaton_id,to_go:integer,id:integer))
kill_left((chan:automaton_id,id:integer))
kill_right((chan:automaton_id,id:integer))
ok_left((chan:automaton_id,id:integer))
ok_right((chan:automaton_id,id:integer))

Output: forward_.left((chan:automaton_id,to_go:integer,id:integer))
forward_right((chan:automaton_id,to_go:integer,id:integer))
kill_left((chan;automaton_id,id:integer))
kill_right((chan:automaton_id,id:integer))
ok_left((chan:automaton_id,id:integer))
ok_right((chan:automaton_id,id:integer))

AUTOMATON PROC

The state s of each PROC contains the following information and
initial values:

id:integer = unique random integer
Automaton with highiest id is elected the leader.
status:string = ‘‘waiting’’
Becomes ‘‘relay’’ iff. comes to know of proc with higher id.
Becomes ‘‘elected’’ iff. realises that its id is highest in the ring.
distance_left:integer = 1
distance_right:integer = 1
Distance out from proc that previous message was sent in each
direction, where immediate neighbor is at a distance of 1,
pending_fl:set((automaton_id,integer,integer)) = {(in(self()),id,1)}
pending_fr:set((automaton_id,integer,integer)) = {(out(self()),id,1)}

pending_kl:set((automaton_id,integer)) = { }
pending_kr:set((automaton_id,integer)) = { }
pending_ol:set((automaton_id,integer)) = { }
pending_or:set((automaton_id,integer)) = { }

Sets of messages waiting to go out.



)
% input actions
h

[/
/s message on its way out from the initiating proc
’
forward_left((self(),to_go,id))
effect: ), message has made it all the way around the ring
% -> elect self to be the leader
if id=s’.id then
s.status='‘elected’’
/ message still on its way out and its id > proc’s id
4 -> kill proc
% -> propagate same message to left-hand neighbor
elseif s’.id<id and to_go>1 then
s.5tatus="‘‘dead’’
s.pending_fl=s’.pending_£f1 U {(in(self()),to_go-1,id)}
7 message neods to be turned back and its id > proc’s id
% -> kill proc
h -> send message to initiating proc saying no proc’s with
A higher id’s than its own were encountered,
elseif s’.id<id and to_go=1 then
s8.s8tatus=‘‘dead’’
s.pending_or=s’,pending_or U {(out(self()),id)}
h proc’s id > msg id
% -> tell initiating proc to kill itself.
else
s.pending_kr=s’.pending_kr U {(out(self()),id)}

forward_right((self(),to_go,id))
effect: if id=s’.id then
s.status=‘‘elected’’
elseif s’.id<id and to_go>1 then
s.status=‘‘dead’’
s.pending_fr=s’,pending_fr U {(out(self()),to_go-1,id)}
elseif s’.id<id and to_go=1 then
s.status=""'dead’’
s.pending_ol=s’.pending_ol U {(in(self()),id)}
else
s.pending_kl=s’.pending k1 U {(in(self()),id)}



[/
/i message on way back to initiating proc, telling it to kill itself.
[/
kill left((self(),id))
effect: ), message reached initiating proc
% -> kill proc
if s’.id=id then
s.status=‘‘dead’’
/i message net yet to initiating proc
s -> propagate same message
else
s.pending_kl=s’.pending_k1 U {(out(self()),id)}

kill_right((self(),id))
effect: if s’.id=id then
s.status=‘‘dead’’
else
s.pending_kr=s’.pending_kr U {(out(self()),id)}

[/
/s message on way back to initiating proc, telling it ok so far.
[/
ok_left((self(),id))
effect: ) message reached initiating proc and proc still alive
h -> send message twice as far out in same direction
if g8’.id=id and s’.status='‘waiting’’ then
s.distance_left=s’.distance_left*2
s.pending_fr=s’.pending_fr U {(out(self()),s.distance_left,s.id)}
/i message not yet to initiating proc
% -> propagate same message
elseif ~(s’.id=s.id) then
s.pending_ol=s’.pending_ol U {(out(self()),id)}

ok_right((self(),id))
effect: if s’.id=id and s’.status=‘‘waiting’’ then
s.distance_right=s’,distance_right»2
s.pending_fl=s’.pending_f1 U {(in(self()),s.distance_right,s.id)}
elseif “(s’.id=s.id) then
s.pending_or=s’.pending_or U {(in(self()),id)}



[/
% output actions

[/

[/

h

i pending set not empty

h -> select message from set at random
% -> output selected message

[/

forward_left(x)
precondition: x is an element of s’.pending_f1
effect: s.pending_fl=s’.pending_f£1l-x

forward_right(x)
precondition: x is an element of s’.pending_fr
effect: s.pending_fr=s’,.pending_fr-x

kill_left(x)
precondition: x is an element of s’.pending_kl
effect: s.pending_kl=s’.pending_kl-x

kill_right(x)
precondition: x is an element of s’.pending_kr
effect: s.pending_kr=s’.pending_kr-x

ok_left(x)
precondition: x is an element of s’.pending_ol
effect: s.pending_ol=s’.pending_ol-x

ok_right(x)
precondition: x is an element of s’.pending_or
effect: s.pending_or=s’.pending_or-x



Appendix B

Peterson Code

B.1 Minimal Spectrum Code
%

% data equates
/

DATA message tuple(phase:integer, id:integer, chan:automaton_id)

%

i action signature

[

ACTION initially()
ACTION send_high message
ACTION send_low message
ACTION check_status()
ACTION do_wh()

ACTIOR do_wl()
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AUTOMATON PROC
]

% automaton state information

[/

STATE tuple(status:string, phase:integer, id:integer,
received:integer, high:integer, low:integer,
to_sl:set(message), to_sh:set(message),
random:integer, temp:message, child:automaton_id,
waiting_high:set(message), waiting_low:set(message),
check_waiting:string)

/4

/, start state

/]

INPUT initially

EFF assign(s.

assign(s
assign(s
assign(s
assign(s.
assign(s.

status, "active")

.phase, 0)
.random,int_random(0,8))
.id, int_plus(int_times(s.random,100),

str_to_int(name(self()))))
received,0)
child,set_random(out(self())))

set_init(s.to_sl)

assign(s.
assign(s.
assign(s.
assign(s.

temp.chan,s.child)
temp.phase,s.phase)
temp.id,s.id)
to_sh,set_single(s.temp))

set_init(s.waiting_high)
set_init(s.waiting_low)

assign(s.

check_waiting,"no")



[/
L]
% input actions

h

[/
% message from next active counterclockwise neighbor
h
INPUT send_high WHERE eq(self(),a.chan)
EFF i processor relay
h -> propagate msg in tact to clockwise neighbor
ifthenelse(eq(s.status,"relay"),
{assign(s.temp.chan,s.child)
assign(s.temp.phase,a.phase)
assign(s,temp.id,a.id)
set_insert(s.to_sh,s.temp)},
% proc id = msg id
% -> elect self to be the leader
ifthenelse(eq(a.id,s.id),
assign(s.status,"elected"),
% proc phase = msg phase

% -> save msg id in s.high for later comparison
% -> increment received counter
% -> do send_low output to clockwise reighbor

ifthenelse(eq(a.phase,s.phase),
{assign(s.high,a.id)
assign(s.received,int_plus(s.received,1))
assign(s.temp.chan,s.child)
assign(s.temp.phase,a.phase)
assign(s.temp.id,a.id)
set_insert(s.to_sl,s.temp)},

/i proc phase < msg phase, but proc still active

% -> buffer message until it can be handled

ifthen(eq(s.status,"active"),
{assign(s.temp.chan,self())
assign(s.temp.phase,a.phase)
assign(s.temp.id,a.id)
set_insert(s.waiting_high,s.temp)l}))))



[/

', message from next after next active counterclockwise neighbor

[/

INPUT send_low WHERE eq(self(),a.chan)

EFF

 processor relay

% -> propagate msg in tact to clockwise neighbor

ifthenelse(eq(s.status,"relay"),
{assign(s.temp.chan,s,child)
assign(s.temp.phase,a.phase)
assign(s.temp.id,a.id)
set_insert(s.to_sl,s.temp)},

%' proc phase = msg phase

% -> save msg id in s.low for later comparison

% -> increment received counter

ifthenelse(eq(a.phase,s.phase),
{assign(s.low,a.id)
assign(s.received,int_plus(s.received,1))},

% proc phase < msg phase, but proc still active

% -> buffer message until it can be handled

ifthen(eq(s.status,"active"),
{assign(s.temp.chan,self())
assign(s.temp.phase,a.phase)
assign(s.temp.id,a.id)
set_insert(s.waiting_low,s.temp)})))



’

% internal actions

h

 send_low and send_high received for current phase

OUTPUT check_status

i

[

CLASS
PRE
EFF

eq(s.received,?2)

i reinit received counter to zero for next phase

assign(s.received,0)

h check buffer of send_high msg’s after checking status

assign(s.check_waiting,"high")

% next active neighbor id > max(other two id’s)

h -> remain active

h -> adopt id of next active neighbor as own id

h -> increment phase counter

4 -> initiate send_high msg for current proc phase

ifthenelse(bool _aund(greater(s.high,s.id),

greater(s.high,s.low)),

{assign(s.id,s.high)
assign(s.phase,int_plus(s.phase,1))
assign(s.temp.chan,s.child)
assign(s.temp.phase,s.phase)
assign(s.temp.id,s.id)
set_insert(s.to_sh,s.temp)},

% otherwise

h -> proc becomes a relay

assign(s.status,"relay"))



%

% check buffer of send_high msg’s

h
CLASS

OUTPUT do_wh

PRE
EFF

eq(s.check_waiting,"high")

% check buffer of send_low msg’s after send_high msg’s
assign(s.check_waiting,"low")

% buffer not empty

h -> select msg in set with lowest phase counter
% -> delete this msg from set
%“ -> handle msg as if just received from send_high

ifthen(bool_not(set_empty(s.waiting_high)),
{assign(s.temp,set_minimum(s.waiting_high))
set_delete(s.waiting_high,s.temp)
ifthenelse(eq(s.status,"relay"),
{assign(s.temp.chan,s.child)
set_insert(s.to_sh,s.temp)},
ifthenelse(eq(s.temp.id,s.id),
assign(s.status,"elected"),
ifthenelse(eq(s.temp.phase,s.phase),
{assign(s.high,s.temp.id)
assign(s.received,int_plus(s.received,1))
assign(s.temp.chan,s.child)
set_insert(s.to_sl,s.temp)},
ifthen(eq(s.status,"active"),
set_insert(s.waiting_high,s.temp)))))})



[

 check buffer of send_low msg’s

h
CLASS
OUTPUT do_wl
PRE eq(s.check_waiting,"low")
EFF i next either check status, or wait for input

assigr(s.check_waiting,"no")
% buffer not empty

h -> select msg in set with lowest phase counter

h -> delete this msg from set

4 -> handle msg as if just received from send_low,

h except if proc is relay,

h check send_high buffer again,

A since it will not be enabled by check_status

ifthen(bool_not(set_empty(s.waiting_low)),
{assign(s.temp,set_minimum(s.waiting_low))
set_delete(s.waiting_low,s.temp)
ifthenelse(eq(s.status,"relay"),
{assign(s.temp.chan,s.child)
set_insert(s.to_sl,s.temp)},
ifthenelse(eq(s.temp.phase,s.phase),
{assign(s.low,s.temp.id)
assign(s.received,int_plus(s.received,1))},
ifthen(eq(s,status,"active"),
sei_insert(s.waiting_low,s.temp))))})



)
[/
[/

[/
)
[/
/
[/

output actions

pending set not empty
-> select message from set at random
-> output selected message

CLASS
OUTPUT
PRE
SEL
EFF

CLASS
OUTPUT
PRE
SEL
EFF

send_high
bool_not(set_empty(s.to_sh))
assign(a,set_random(s.to_sh))
set_delete(s.to_sh,a)

send_low
bool_not(set_empty(s.to_sl))
assign(a,set_random(s.to_sl))
set_delete(s.to_sl,a)



B.2 Code with Additions for Simulation Purposes
%

 equate & action sigs
% remain unchanged

[/

AUTOMATON PROC
STATE tuple(status:string, phase:integer, id:integer,

received:integer, high:integer, low:integer,
to_sl:set(message), to_sh:pet(message)
random:integer, temp:message, child:automaton_id,
waiting_high:set(message), waiting_low:set(message),
check_waiting:string,
%
h 1 var added to state for simulation purposes:
4 stat_int, 7(purple) <-> status=‘‘active’’
h O(black) <-> status=‘‘relay’’
% 4(green) <-> status=‘‘elected’’
stat_int:integer)

%
% maintain simnlation variable, stat_int, at proper value
h
MAINTAIN
ifthenelse(eq(s.status,"active"),assign(s.stat_int,7),
ifthenelse(eq(s.status,"relay"), assign(s.stat_int,0),
assign(s.stat_int,4)))

A
/i all input, internal, and output actions
4  remain unchanged

[



B.3 High Level I/O Automaton Code

Action Signatures

AUTOMATON PROC
Input: send_high((automaton_id, integer, integer))

send_low((automaton_id, integer, integer))
Internal: check_status()
do_wh()
do_wl()

Output: send_high((automaton_id, integer, integer))
send_low((automaton_id, integer, integer))



AUTOMATON PROC

The state s of each PROC contains the following information and
initial values:

status:string="active"
"relay" iff. there is not possibility that it will be
chosen as the leader. '"elected" iff. process has been elected
as the leader.
phase:integer=0
Acts as a method of synchronizing the messages. If process
further back in the ring has already taken 5 steps, while another
process has only taken 2, the messages that the second process
receives still need to be handled in order. The phase ensures
that this is done,
id:integer=unique random number
Current id, used to make comparisons and elect leader.
received:integer=0
Number of messages received with current phase.
high:integer=undefined
Id of next active process at given phase.
low:integer=undefined
Id of next-next active process at given phase.
to_sh:set((automaton_id.intoger,integer))={(out(self()),phase,id)}
Messages waiting to go a distance of one out from current
Process.
to_sl:set((automaton_id,integer,integer))={}
Messages waiting to go a distance of two out from current
process.
waiting_high:set((automaton_id,integer,integer))={}
Messages received from send_high action with a higher phase than
the process was ready to handle at the time of receipt.
waiting_low:set((automaton_id, integer, integer))={}
Messages received from send_low action with a higher phase than
the process was ready to handle at the time of receipt.
check_waiting:string="no"
“no”  ~-> No need to check waiting queues.
"high" -> Check waiting_high.
"low" -> Check waiting_low.



[/
% input actions
[/
h
% message from next active counterclockwise neighbor
[/
send_high((self(),t,id))
effect; ), processor relay
%“ ~> propagate msg in tact to clockwise neighbor
if 8’.status="relay" then
s.to_sh=a8’.to_sh U {(out(self()),t,id)}
% proc id = msg id
% -> elect sel)f to be the leader
elseif id=s’.id then
g8.status="elected"
% proc phase = msg phase
% ~> save msg id in s.high for later comparison
% -> increment received counter
% -> do send_low output to clockwise neighbor
elseif t=s.phase then
s.high=id
s.received=s’.received+1
s8.to_gl=s’.to_sl U {(out(self()),t,id)}
% proc phase < msg phase, but proc still active
% -> buffer message until it can be handled
elseif s.status="active" then
s.waiting_high=s’.waiting_high U {(self(),t,id)}
[/
% message from next after next active counterclockwise neighbor
h
send_low((sel£(),t,id))
effect: ), processor relay
% -> propagate msg in tact to clockwise neighbor
if s’.status="relay" then
s.to_sl=s’.to_sl U {(out(self()),t,id)}
% proc phase = msg phase

% -> save msg id in s.low for later comparison
4 -> increment received counter
elseif t=s.phase then

s.low=id

s.received=s’.received+1
h proc phase < msg phase, but proc still active
% -> buffer message until it can be handled
olseif s.status="active" then
s.waiting_low=s’.waiting_low U {(self(),t,id)}



%
% internal actions

Z

h

% send_low and send_high received for current phase

h

check_status()

precondition: 8’ .received=2 and s’.status="active"

effect: !, reinit received counter to zero for next phase
s.Teceived=0
% check buffer of send_high msg’s after checking status
s.check_waiting="high"
% next activs neighbor id > max(other two id’s)

% -> remain active
% -> adopt id of next active neighbor as own id
% -> increment phase counter

% -> initiate send_high msg for current proc phase
if (s’.high > max(s’.id, s’.low)) then
s8.id=s’.high
s.phase=s8’.phase+l
s.to_sh=s’.to_sh U {(out(self()),s.phase,s.id)}
/. otherwise
%/  -> proc becomes a relay
else
s.s8tatus="relay"



h

% check buffer of send_high msg’'s

[/
do_sh()
precondition: s8’.check_waiting="high"
effect: ), check buffer of send_low msg’s after send_high msg’s
s.check_waiting="low"
% buffer contains msg whose phase = current proc phase
h -> delete this msg from set
% -> handle msg as if just received from send_high,
h knowing that id phase = proc phase
if there exists an x element of s.waiting_high s.t.
x.phase=s.phase then
s.waiting_high=s’.waiting_high-x
if s’ .status="relay" then
s.to_sh=8’.to_sh U {(out(self()),x.phase,x.id)}
elseif x.id=s’.id then
s.status="elected"
else
s.high=x.id
s.received=s’.received+1
s.to_sl=s’.to_sl U {(out(self()),x.phase,x.id)}
h
/s check buffer for send_low msg’s
[/
do_s1()
precondition: s8’.check_waiting="low"
effect: ), next either check status, or wait for input

s.check_waiting='"no"
% buffer contains msg whose phase = current proc phase

% -> delete this msg from set

% -> handle msg as if just received from send_low,

h knowing that id phase = proc phase,

% oxcept if proc is relay,

h check send_high buffer again,

A since it will not be enabled by check_status

if there exists an x element of s.waiting_low s.t.
x.phage=s.phase then

s.waiting_low=s’.waiting_low-x

if s’.status="relay" then
s.to_sl=s’,to_sl U {(out(self()),x.phaseXS,x.id)}
s.check_waiting="high"

else
s.low=x.id
s.received=s’ ,received+1



h
% output actions
h

%

% pending set not empty

h -> select message from set at random
% -> output selected message

[

send_high(x)
precondition: x element of s’.to_sh
effect: s.to_sh=s’.to_sh-x

send_low(x)
precondition: x element of s’.to_sl
effect: s.to_sl=s’.to_sl-x



Appendix C
Dijkstra Code

C.1 Minimal Spectrum Code
%

4 data equates

h

DATA mp tuple(chan:automaton_id, from:automaton_id)

DATA mf tuple(chan:automaton_id)

DATA mb tuple(chan:automaton_id, new:boolean)

DATA ma tuple(chan:automaton_id, from:automaton_id, new_int:integer)

h

% action signature

h

ACTION initially()
ACTION probe mp
ACTION forward mf
ACTION back mb
ACTION make_pending()
ACTIOR ack ma

ACTION terminate()
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AUTOMATON SOURCE

h

7 automaton state information

h

INPUT initially

EFF assign(s.status,"waiting")

assign(s.new, false)
assign(s.distance,1)
assign(s.pending, out(self()))
assign(s.returned,0)

h
% input actions

//

h

 response to forward output

h
INPUT back WHERE eq(a.chan, self())
EFF / set s.new to true if at least one new node found so far

assign(s.new, bool_or(s.new, a.new))
/i increment response counter
assign(s.returned, int_plus(s.returned,1))

h

/ response to probe output

h

INPUT ack WHERE eq(a.chan, self())

EFF % each child of source will be added to tree at this iteration
assign(s.new, true)
% increment response counter
assign(s.returned, int_plus(s.returned,1))



)

% internal actions

"
h

h
/i responses collected to all msgs sent out and new node found
%
CLASS
OUTPUT make_pending
PRE bool_and(eq(s.returned, set_size(out(self()))),
eq(s.new,true))
EFF % increment distance var, and reinit other values
assign(s.returned,0)
assign(s.distance, int_plus(s.distance,1))
assign(s.new,false)
assign(s.pending,out(self()))
4

/i responses collected to all msgs sent out, no new nodes found
%
CLASS
OUTPUT terminate
PRE bool_and(eq(s.returned, set_size(out(self()))),
bool_and(eq(s.new,false),
eq(s.status,"waiting")))
EFF % execution completed
assign(s.status,"done")



[/
(]
i output actions

//

[/
i msgs waiting to go out, first level of tree already in place

[

CLASS
OUTPUT forward
PRE bool_and(bool_not(set_empty(s.pending)),
greater(s.distance,1))
SEL assign(a.chan,set_random(s.pending))
EFF set_delete(s.pending,a.chan)
[/
/ msgs waiting to go out, first level of tree being determined
[/
CLASS
OUTPUT probe
PRE bool_and(bool_not(set_empty(s.pending)),
eq(s.distance,1))
SEL assign(a.chan,set_random(s.pending))

assign(a.from,self())
EFF set_delete(s.pending,a.chan)



AUTOHATON PROC

h

% automaton state information

A

STATE tuple(new:boolean, distance:integer, children:set(automaton_id),
pending:set(automaton_id), returned:integer,
parent:automaton_id, to_ack:set(automaton_id),
back_ok:boolean, root:automaton_id)

h

% start state

%

INPUT initially

EFF assign(s.new,false)

assign(s.distance,0)
assign(s.children,out(self()))
assign(s.root, set_random(all_of_type("SOURCE")))
ifthen(set_el(s.children,s.root),set_delete(s.children,s.root))
assign(s.back_ok,false)
set_init(s.pending)
assign(s.returned,0)
set_init(s.to_ack)



%
% input actions

[/

0,
h
% probe from parent candidate
h
INPUT probe WHERE eq(a.chan, self())
EFF J, insert in set of probes to be acknowledged
set_insert(s.to_ack,a.from)

h

/i message from parent

h

INPUT forward WHERE eq(a.chan, self())

EFF % sent msgs out to all children

assign(s.pending,s.children)
4 since forward received, back not yet sent, back_ok=true.
assign(s.back_ok,true)

h

% acknowledgment of probe by child candidate
h

INPUT ack WHERE eq(a.chan, self())

EFF /i positive acknowledgment
% -> remember new node found
4 -> increment response counter

ifthenelse(eq(a.new_int,0),
{assign(s.new,true)
assign(s.returned,int_plus(s.returned,1))},
i negative acknowledgment
h -> delete child from proc’s set of children
set_delete(s.children,a.from))

%

i response from forward output

%

INPUT back WHERE eq(a.chan, self())

EFF % set s.new to true if at least one new node found so far

assign(s.new, bool_or(s.new,a.new))
% increment response counter
assign(s.returned, int_plus(s.returned,i))



h
/i output actions

h
h

i msgs waiting to go out, level of tree baing determined=1+level of node

[/

CLASS
OUTPUT probe
PRE bool_and(bool_not(set_empty(s.pending)),
eq(s.distance,1))
SEL assign(a.chan, set_random(s.pending))
assign(a.from,self())

EFF set_delete(s.pending,a.chan)

A

/s msgs waiting to go out, level of tree being determined>i+level of node

/

CLASS
OUTPUT forward
PRE bool _and(bool_not(set_empty(s.pending)),
greater(s.distance,1))
SEL assign(a.chan, set_random(s.pending))

EFF set_delete(s.pending,a.chan)



[/

%, probes not yet responded to

/

CLASS
OUTPUT ack
PRE bool_not(set_empty(s.to_ack))
SEL assign(a.chan, set_random(s.to_ack))
assign(a.from, self())
assign(a.new_int, s.distance)
EFF set_delete(s.to_ack, a.chan)
% first probe being acknowledged
% -> increment distance counter
%4 -> adopt sender of probe as parent
ifthen(eq(s.distance,0),
{assign(s.distance,1)
assign(s.parent,a.chan)})
[/
% forward input received, msgs sent to children, all responses collected
h
CLASS
OUTPUT back
PRE bool_and(eq{s.returned, set_size(s.children)),s.back_ok)
SEL assign(a.chan, s.parent)
assign(a.new, s.new)
EFF / increment distance counter and reinit other vars

assign(s.returned,0)

assign(s.distance, int_plus(s.distance,1))
assign(s.new,false)
assign(s.back_ok,false)



C.2 Code with
"

Additions for Simulation Purposes

% level variable needs to be sent as part of the message when a
%y probe is output so that the receiving process knows to make its
/i own level one greater, when appropriate

[/

DATA mp tuple(chan:automaton_id, from:automaton_id, level:integer)
DATA mf tuple(chan:automaton_id)

DATA mb tuple(chan:automaton_id, new:boolean)

DATA ma tuple(chan:automaton_id, from:automaton_id, new_int:integer)

/]
/ action sig
% remains unchanged

[/

AUTOMATON SQURCE

STATE tuple(status:string, new:boolean, distance:integer,
pending:set(automaton_id), returned:integer

[/

% 2 vars added to state for simulation purposes:
4 in_tree, O(black) <-> node not yet in shortest paths tree

/

% level,

[/

7(purple) <-> once node add to shortest paths tree
holds the level of the node in the tree mod 8

in_tree:integer, level:integer)

INPUT initially
EFF assign(s
assign(s
assign(s
assign(s
assign(s
//
/i source
% as the
h

assign(s

assign(s.

.status,"waiting")
.new, false)
.distance,1)

.pending, out(self()))
.returned,0)

start off in the tree from the beginning,
root, which is level O,

.level,0)

in_tree,7)



[

[/
’

[/
[/
[/
[/

all input and internal actions
remain unchanged

CLASS
OUTPUT probe
PRE bool_and(bool_not(set_empty(s.pending)),
eq(s.distance,1))

SEL assign(a.chan,set_random(s.pending))
assign(a.from,self())
/)
% if node is adopted as parent of recipient,
% recipient will know to make its own level equal 1.
h
assign(a.level,1)

EFF set_delete(s.pending,a.chan)

output forward action
remains unchanged



AUTOMATON PROC

STATE tuple(nsw:boolean, distance:integer, children:set(automaton_id),
pending:set (automaton_id), returned:integer,
parent:automaton_id, to_ack:set(automaton_id),
back_ok:boolean, root:automaton_id,

YA
% 2 vars added to state for simulation purposes:
Y% in_tree, O(black) <-> node not yet in shortest paths tree

A T(purple) <-> once node add to shortest paths tree
% level, holds the level of the node in the tree mod 8
h

level:integer, in_tree:integer)

h
%, use distance variable to determine whether or not node is yet in tree.
A if node has been added to tree, distance variable will have been
%/ incremented. if distance is still O, then node must not yet be in tree.
h
MAINTAIN

ifchenelse(eq(s.distance,0), assign(s.in_tree,0),

assign(s.in_tree,7))

% start state
% remains unchanged

h
INPUT probe WHERE eq(a.chan, self())
EFF set_insert(s.to_ack,a.from)
h
% if node does not yet have a partent,
% it will be added to tree at level carried in msg.
A
ifthen(eq(s.distance,0), assign(s.level,a.level))
EFF assign(s.new, bool_or(s.new,a.new))
assign(s.returned, int_plus(e.returned,1))
h

% rest of input actions
%  remain unchanged

h



CLASS
OUTPUT probe

PRE bool_and(bool_not(set_empty(s.pending)),
eq(s.distance,1))
SEL assign(a.chan, set_random(s.pending))
assign(a.from,self())
h

% if node is adopted as parent of recipient,
% recipient will know to meke its cwn level equal a,level
h
ifthenelse(eq(s.level,7),
assign(a.level,0),
assign(a.level, int_plus(s,level,1)))

EFF set_delete(s.pending,a.chan)
CLASS
OUTPUT ack
PRE bool_not(set_empty(s.to_ack))
SEL assign(a.chan, set_random(s.to_ack))

assign(a.from, self())
assign(a.new_int, s.distance)
EFF set_delete(s.to_ack, a.chan)

ifthen(eq(s.distance,0),
{assign(s.distance,1)
assign(s.parent,a.chan)
h
 color edges in the shortest paths tree purple
h
edge_val(s.parent,self(),7)})

%
% rest of output actions
% remain unchanged

[/



C.3 High Level I/O Automaton Code

Action Signature

AUTOMATON SOURCE
Input: ack(automaton_id, automaton_id, integer)
back(automaton_id, boolean)
Internal: make_pending()
terminate()
Output: probe(automaton_id, automaton_id)
forward(automaton_id)

AUTOMATON PROC

Input: probe(automaton_id, automaton_id)
forward(automaton_id)
ack(automaton_id, automaton_id, integer)
back(automaton_id, boolean)

Output; probe(automaton_id, automaton_id)
forward(automaton_id)
ack(automaton_id, automaton_id, integer)
back(automaton_id, hoolean)

The state s of the SOURCE contains the following information and
dinitial values:

status:string="gaiting"
"done" iff. the simulation has been completed.
new?:boolean=false
True iff. at least one new node yet added to shortast paths
tree at current level.
distance:integer=1
Level of tree, rooted at SOURCE, to which next set of mess&ges
must travel.
pending:set(automaton_id)=children(self())
Automaton id’s of nodes to which messages are waiting to go
out.
returned:integer=0
Number of responses received to messages sent out at current
level.



[/
L]
% input actions

[/
[/

% response to probe output

h

ack(soelf(),f,n)

effect: ), each child of source will be added to tree at this iteration
s.new?=true
% increment response counter
s.returned=s’ .returned+1

)

% response to forward output

h

back(self(),n)

effect: J, set s.new? to be true if at least one new node found so far
s.new?=s’.new? or n
% increment response counter
s.returned=s’,returned+1



[/

% internal actions

[/

L
h
% responses collected to all msgs sent out and new node found
h
make_pending()
precondition: s’ .returned=size(children(self()))
s’.new?=true

effect: s.returned=0
s.distance=s’.distance+1
s.new?=false
s.pending=children(self())
h

%, responses collected to all msgs sent out, no new nodes found
h
terminate()
precondition: s’ .returned=size(children(self()))
s’ .new?=false
s’ .status="waiting"
effect: s.status="done"



h
L]
% output actions

h

[/
%, msgs waiting to go out, first level of tree being determined
[/
probe(x,f)
precondition: x element of s’.pending
s’ .distance=1
f=self()
effect: s.pending=s’.pending-x

U
h
% msgs waiting to go out, first level of tree already in place
[/
forward(x)
precondition: x element of s’.pending
s’.distance>1
effect: s.pending=s’.pending-x



AUTOMATON PROC

The state s of each PROC contains the following information and
initial values:

new?:boolean=false
True iff. at least one new node yet added to shortest paths
tree at current level.

distance:integer=0
Distance from node, out from SOURCE, which current set of
messages need to travel.

children:set(automaton_id)=children{(self())
Initially set of all children of node in configuration other
than the SOURCE and finally all children of node in the
shortest paths tree.

pending:set(automaton_id)={}
Automaton id’s of nodes to which messages are waiting to go
out.

returned:integer=0
Number of responses received to messages sent out at current
level.

parent:automaton_id=undefined
Set to automaton id of parent of node in shortest paths tree,
once known.

to_ack:set(automaton_id)={}
Responses to probes waiting to go back.

back_ok:boolean=false
Used when process has no children of its own in order to know
when to respond to a forward message. true iff. forward input
received and back output not yet sent.



[/
,
% input actions

[/

/

/ probe from parent candidate

h

probe(self(),f)

effect: ) insert in set of probes to be acknow]adged
s.to_ack=s’.to_ack U f

[/

i message from parent

[/

forward(self())

effect: ), send msgs out to all children
s.pending=s’.children
% since forward received, back not yot sent, back_ok=true
s.back_ok=true

L)
h
/ acknowledgment of probe by child candidate

[/

ack(self(),f,n)

effect: ), positive acknowledgment
4 -> remember rew node found
i -> increment response counter
if n=0 then

5.new=true
s.returned=s’.returned+1
/i negative acknowledgment
A -> delete child from proc’s set of children
else
s.children=s’,children-f

h

J response from forward output

h

back(self(),n)

effect: / set s.new to be true if at least one new node found so far
s.returned=s’.returned+1
% increment reponse counter
s.new?=s’.new? or n



[/
L)
 output actions

%

¢
h
 msgs waiting to go out, level of tree being determined=1+level of node
[/
probe(x,f)
precondition: x element of s’.pending
s’ .distance=1
f=self()
effect: s.pending=s’.pending-x

[/
% msgs waiting to go out, level of tree being determined>i+level of node
[/
forward(x)
precondition: x element of s’.pending
s’.distance>1
effect: s.pending=s’.pending-x



h
% probes not yet responded to
h
ack(x,f,n)
precondition: x element of s’.to_ack
f=self()
n=s’.distance
effect: s,to_ack=s’.to_ack-x
% first probe being acknowledged
Y, -> increment distance counter
% -> adopt sender of probe as parent
if s’.distance=0 then
s.,distance=1
§.parent=x

h
% forward input received, msgs sent to children, all responses collected
h
back(x,n)
precondition: s’.returned=size(s’.children)
x=s’ .parent
n=s’.new?
s’ .back_ok
effect: , increment distance counter and reinit other vars
s.returned=0
s.distance=s’,distance+1
s.new?=false
s .back_ok=false
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D.1 SETUP Menu Down

SPECTRUM no-config.con
CONFIGURE _

Load Types

Load Configuradon.
Save Configuraton

BOVAD <N N[ o bus

tuse  tuce  twe  tuce  tume  tuoe Connect  Disconnect
- . . Change Type Change Host
- -1~ -2- -3- -4- -5 6= -7- Move Copy

Quit




D.2 SIMULATE Menu Down

no-types. SPECTRUM no-config.con
CONFIGURE _

Sing's-Step
E

Condnuous

Reandomized
Round Robin

Set pause
Set skip
Autosave
Trace

tl Create Delete

twe  tuve Connect  Disconnect
. . Change Type Change Host
e Move Copy

Quit
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