
Highly Concurrent Logically Synchronous Multicast

K e n n e t h J. Goldman*
M.I .T . Labora to ry for Compu te r Science

Cambr idge , MA 02139 USA

Abs t rac t

We define the logically synchronous multicast problem, which imposes a natural and
useful structure on message delivery order in an asynchronous system. In this problem, a
computation proceeds by a sequence of multicasts, in which a process sends a message to
some arbitrary subset of the processes, including itself. A logically synchronous multicast
protocol must make it appear to every process as if each multicast occurs simultaneously at
all participants of that multicast (sender plus receivers). Furthermore, if a process continually
wishes to send a message, it must eventually be permitted to do so.

We present a highly concurrent solution in which each multicast requires at most 4]S I
messages, where S is the set of participants in that multicast. The protocol's correctness is
shown using a remarkably simple problem specification stated in the I/O automaton model.
We also show that implementing a wait-free solution to the logically synchronous multicast
problem is impossible.

The author is currently developing a simulation system for algorithms expressed as I/O
automata. We conclude the paper by describing how the logically synchronous multicast
protocol can be used to distribute this simulation system.

1 I n t r o d u c t i o n

We consider a set of n processes in an asynchronous system whose computat ion proceeds by a
sequence of muIticasts (or partial broadcasts). In each multicast, a process u sends a message
m to an arbitrary subset S of the processes (induding u). We say that a protocol solves the
logically synchronous multicast problem if it guarantees the following conditions:

(1) Processes receive all messages in the same relative order. (Suppose messages m and m'
are both sent to processes ul and u2. If ul receives m before m', then u2 does also, even
if m and m' were sent by different processes.)

(2) If process u sends message m, it receives no messages between sending and receiving m.

(3) If process u continually wishes to send a message, then eventually u will send a message.

We may informally summarize the first two conditions by saying that it appears to all processes
as if each multicast occurs simultaneously at all of its participants (sender plus receivers). Hence,
the name logically synchronous multicast. Note that the hypothesis of the third condition does
not require that u continually wish to send the same message, but only some message. This is
a technical point that will be of importance later.

*This research was supported in pa.l't by the National Science Foundation under Greant CCR-86-11442, by the
Office of Naval Research under Contract N00014-85-K-0168, by the Defense Advanced Research Projects Agency
(DARPA) under Contract N00014-83-K-0125, and by an Office of Naval Research graduate fellowship.

95

The problem lends itself to a highly concurrent solution, since any number of multicasts
with disjoint S sets should be able to proceed independently. Likewise, one would expect that
the communication costs of an algorithm to solve this problem would be independent of n.
We present a solution to this problem that takes advantage of the concurrency inherent in the
problem and requires at most 4[S 1 messages per multicast. The strong properties of message
delivery order imposed by the problem would make a fault-tolerant solution highly attractive
for many applications. However, the properties of the message delivery order are strong enough
to make a fault-tolerant solution impossible! By a reduction to distributed consensus, we show
that there exists no wait-free solution to the logically synchronous raulticast problem.

Various other approaches to ordering messages in asynchronous systems have been studied.
Lamport [La] uses logical clocks to produce a total ordering on messages. Birman and Joseph [B J]
present several types of fault tolerant protocols. Their ABCAST (atomic broadcast) protocol
guarantees that broadcast messages are delivered at all destinations in the same relative order,
or not at all. Their CBCAST (causal broadcast) protocol provides a similar, but slightly weaker,
ordering guarantee to achieve better performance. The CBCAST guarantees that if a process
broadcast sends a message m based on some other message m ~ it had received earlier, then m
will be delivered after m I at all destinations they share.

Like ours, the protocols of both [La] and [B J] deliver messages to the destination processes
according to some global ordering. However, these protocols do not solve the logically syn-
chronous multicast problem because they allow messages to "cross" each other. That is, in their
protocols a process u may send a message m and some time later receive a message ordered
before m. Our problem requires that when a process u sends a message m, it must have "up
to date" information, meaning that it has already received all messages destined for u that are
ordered before m. (See Condition (2) above.)

Multiway handshaking protocols have been studied extensively for implementations of CSP
[Ho] and ADA [DoD] (for example, see [Bal] and [Ba2]). These protocols enforce a very strict
ordering on system events, and therefore achieve tess concurrency (than ours and the others
mentioned above). This is necessary because the models of CSP and ADA permit processes to
block inputs. Since a decision about whether or not to accept an input may depend (in general)
on earlier events, each process can only schedule one event (input or output) at a time. Our
problem permits processes to schedule multiple input events at a time.

One interesting feature of our problem is that it lies in between the two general approaches
described above. It permits more concurrency than the multiway handshaking protocols, yet
imposes a strong, useful structure on the message delivery order. Other related work includes
papers by Awerbuch [Aw] and Misra [Mi], which study different problems in the area of sim-
ulating synchronous systems on asynchronous ones. In both cases, the computational models
being simulated are very different from ours, but it is interesting to note that some of Misra's
techniques, particularly those for breaking deadlock, can be applied to our problem.

The remainder of the paper is organized as follows. Section 2 provides a brief introduction
to the I /O automaton model. In Section 3, we present the architecture of the problem and a
statement of correctness in terms of the model. In Section 4, we formally present the algorithm
using the I /O automaton model. In Sections 5 and 6, we sketch a formal correctness proof and
present the message and time complexities. We prove in Section 7 that there exists no wait-free
solution to the logically synchronous multicast problem.

The author is currently developing a simulation system for algorithms expressed as systems
of I /O automata. The logically synchronous multicast problem was motivated by a desire to
distribute the simulation system on multiple processors using asynchronous communication. We
conclude the paper by describing how the logically synchronous multicast protocol can be used
to achieve such a distributed simulation.

