
Highly Concurrent Logically Synchronous Multicast

Kenneth J. Goldman

July 3, 1989

Abstract

We deilne the logically synchronous muliirast problem, which imposes a natura] and useful structure
on message delivery order in an asynchronous system. In this problem, a computation proceeds
by a sequence of rnulticasts, in which a process sends a message to some arbitrary subset of the

processes, including itselL A logically synchronous rnu1tcast protocol must make t appear to ever)
process as if each mtilticast occurs simultaneousiy at all participants of that multicast (sender plus

receivers). Furthermoro. if a process continually wishes to send a message, it must eventually be
permitted to do so.

We present a highly concurrent solution in which each multicast requires at mt 4151 messages.
where S is the set of participants in that multicast. The protocol’s correctness is shown using a
remarkably simple problem specification stated in the I/O automaton modeL We also show that
implementing a waitfree solution to the logically synchronous multicast probjeni is inipossible.

The author is currently developing a simulation system for agorithms expressed as I/O au
tomata- We conc]ude the paper by describing how the loica1ly synchronous multicast protocol can

he used to distribute this simulation system.

Keywords: distributed computing, distributed algorithms, concurrency, synchronization, Jogical
time, discrete event simulation, input/output automata

@1989 Massachusetts Institute of Technology, Cambridge, MA 02139

This research was supported in part by the National Science Foundation under Greant CCR-86-
11442. by the Office of Naval Research under Contract N00014-85-K-0168, by the Defense Advanced
Researc]i Proiect.s Agency (DARPA under Contraci N00014-83-K-0125, and by an Office of Naval
Research graduate fellowship.

1 Introduction

We Lousider a set of n processes in an asynchronous svsern whose cortpuation proceeds by a
seoueac° of multicasts (or partial broadcasts). In each multicast. a process i sends a message in to

arbitrary subset S of the processes (including u). We say that a protocol solves the logically
synchronous multicast prob]em if it guarasitees the following conditions:

(1) Processes receive all messages in the same relative order. (Suppose messages rn and in’ are
both sent to processes a1 and a2. If a1 receives m before in’, then 112 does also, even if in
and in’ were sent by different processes.)

(2) If process it sends message in, it receives no messages between sending and receiving in.

(3) If process u continually wishes to send a message, then eventually u will send a message.

We ma.y informally summarize the first two conditions by saying that it appears to all processes
as if each rnulticast occurs simultaneousEy at all of its participants (sender pius receivers). Hence.
the name logically synchronous multicasL Note that the hypothis of the third conditioc does
not require that a continually wish to send the same message, but only some message. This is a
technical point that will be of importance later.

The problem lends itself to a highly concurrent solution, since any number of multicasts with
disjoint S sets should be able to proceed independently. Likewise, one would expect that the
communication costs of at’ algorithm to soLve this problem would be independent of u. We present
a solution to this problem that takes advantage of the concurrency inherent in the problem and
requires at most 4SI messages per multicast.

The strong properties of rneage delivery order imposed by the problem wouid make a fan!t
tolerant solution high]v attractive for many applications. However, the properties of the message
delivery order are strong enough to make a fault-tolerant solution impossible! By a reduction to
distributed consensus, we show that there exists no wait-free solution to the logically synchronous
mu!ticast probem.

Various other approaches to ordering messages in asynchronous systems have been studied.
Lamport [La) uses logical clocks to produce a total ordering on messages. Birman and Joseph
[BJ] present several types of fault tolerant protocols. Their ABCAST (atomic broadcast) protocol
guarantees that broadcast messages are delivered at all destinations in the same relative order,
or not at all. Their CBCAST (causal broadcast) protocol provides a similar, but slightly weaker,
ordering guarantee to achieve better performance. The CBCAST guarantees that if a process
broadcast sends a message in based on some other message in’ it had received earlier, then in will
be delivered after ‘ii’ at all destinations they share.

Like ours, the protocols of both [La] and [BJ] deliver messages to the destination processes
according to some global ordering. However, these protocols do not solve the logicailv synchronous
multicast problem because they allow messages to “cross each other. That is. in their protocols
a process u may send a message in an some time later receive a message ordered before in. Our
problem requires that when a process u sends a message in, it must have up to date” information,
meaning that It has already received all messages destined for it that ale ordered before m. (See
Condition (2) above.)

Multiway handshaking protocols have been studied extensively for implementations of CSP [Ho)
and ADA [DoD] (for example, see [Bal] and [Ba2]). These protocols enforce a very strict ordering on
system events, and therefore achieve less concurrency (than ours and the others mentioned above).
This is necessary because the models of CSP and ADA permit processes to block inputs. Since a
decision about whether or not to accept an input may depend (in general) on earlier events, each

procee can only schedule one event (input or output) at a time. Our problem permits processes
to schedule multiple input events at a time.

One interesting feature of our problem is that it lies in between the two general approaches de
scribed above. It permits more concurrency than the multiway handshaking protocols, yet imposes
a strong, useful structure on the message delivery order.

Other related work includes papers by Awerbuch [Awj and Misra [Mi], which study different
problems in the area of simulating synchronous systems on asynchronous ones. In both cases, the
computational models being simulated are very different from ours, but it is interesting to note
that some of Misras techniques, particular]y those for breaking deadlock, can be applied to our
problem.

The remainder of the paper is organized as follows. Section 2 provides a brief introduction to
the I/O automaton model. In Section 3, we present the architecture of the problem and a statement
of correctness in terms of the model. In Section 4, we formally present the algorithm using the
I/O automaton model. In Sections 5 and 6, we sketch a formal correctness proof and present the
message and time complexities. We prove in Section 7 that there exists no wait-free solution to the
logically synchronous multicast problem.

The author is currently developing a simulation system for algorithms expressed as systems of
I/O automata. The logically synchronous multicast problem was motivated by a desire to distribute
the simulation system on multiple processors using asynchronous communication. We condude the
paper h describing how the logically synchronous multicast protoco’ cart be used to achieve such
a distributed simulation.

2 The Model

The logically synchronous multicast probkm statement, protocol. and correctness proof are all
formally stated using the I/O Automaton model Lii. LT2]. We have chosen this model because it
encourages precise statements of the problems to be solved by modules in concurrent systems, allows
very carefal algorithm descriptions, and can be used to construct rigorous correctness proofs. In
addition, the model can be used for carrying out complexity analysis and for proving impossibility
results. The following introduction to the mode] is adapted from [LT3], which explains the model
in more detail, presents examples, and includes comparisons to other models.

2.1 I/O Automata

1,0 automata are best suited for modeling systems in which the components operate asynchronously.
Each system component is modeled as an I/O automaton, which is essentially a nondetermiuistc
(possiby infinite state) automaton with an action labeling each transition. An automaton’s actions
are classified as either ‘input’. ‘output’, or internal. An automaton can establish restrictions on
when it will perform an output or internal action, but it is unable to b]ock the performance of an
input action. An automaton is said to be closedif it has no input actions; it models a closed system
that does not interact with its environment.

Formally, an action signature S is a partition of a set acts(S) of actions into three disjoint
sets in(S), out(S), and int(S) of input actions, output actions. and internal actions, respectively.
We denote by ntiS) = in(s) U truE(S) the set of citernal actions. We denote by local(S) =
out(S)u int(S) the set of locally-controlled actions. Au I/O automaton consists of five components:

• an action signature sig(A).

• a spt sttes(A if slates,

2

• a nonempty set start(A) c statcs(A of start staks.

• a transition relation steps(A) C states(A) x acts(A) x stat es(A) with the property that for
every states! and input action ,r there is a transition (d,ir,s) in steps(A), and

• an equivalence relation part(A) partitioning the set locat(A) into at most a countable number
of equivalence classes.

The equivalence relation yrt(A) will be used in the definition of fair computation. We refer to an
element (s’, it-, s) of sups(A) as a. step of A. If (s’, r,s) s a step of A, then ‘1 is said to be cnabkd iii
1. Since every input action is enabled in every state, automata are said to be input-enabled. This
means that the automaton is unable to block its input.

An execution of A is a finite sequence So, ,r1, 9,, i,..., ,r,, s or an infinite sequence so, ,r1.s1,
‘r2,... of alternating states and actions of A such that is a step of .1 for every i and
5o E sturt(A). The schedule of an execution a is the subsequence of a consisting of the actions
appearing in a. The behavior of an execution or schedule a of .4 is the subsequence of a consisting
of cite mat actions. The same action may 0cc-Jr several times in an execution or a schedule: we
refer to a particular occurrence of an action as an event.

2.2 Composition

We can construct au automaton modeling a complex system by composing automata modeling the
smpier system components. When we compose a reflection of automata, we identify an output
action ir of one automaton with the input action r of each automaton having as an input action.
Consequently, when one automaton having as an output action performs r all automata having
r as an action perform ,r simultaneously (automata not having w as an action do nothing).

Since at most one system component controls the performance of any given action, we cannot
allow A and B to be composed unless the locally controlled actions of A and B form disjoint sets.
Also. we require that each action of a composition must be an action of only finitely many of
the composition’s components. If A is the composition of a set Q of automata, then int(A)
U.4cq int(A’). oiit(A = UA’EQ out(A’), and in(A) = UAeq in(A’) —4qout4’. Given an
execution o = Kjsj... of A, let oIA be the sequence obtained by deleting r1A when z Es not
an action of A1 and replacing the remaining s] by [i].

2.3 Fairness

Of all the executions of an 1/0 automaton. we are primaiily interested in the 9air’ executions —

those that permit each of the automaton’s primitive componerts (i.e., its classes) to have uifiaitelv
many chances to perform output or internal actions. The definition of automaton composition says
that. an equivalence class of a component automaton becomes an equivalence class of a composition,
and hence that composition retains the essential structure of the system’s primitive components.
In the model, therefore, being fair to each component means being fair to each equivalence class of
locally-controlled actions. A fair execution of an automaton A is defined to be an execution a of
A such that the following conditions hold for each class C of pait(A);

1. If a is finite, then no action of C is enabled in the final state of a.

2. If a is infinite, then either a contains infinitety many events from C. or a contains infinitely
many occurrences of states in which no action of C is enabled.

We say that 9 is a fair behavior of A if 3 is the behavior of a fair execution of A, and we denote
the set of fair behaviors of A by fairbehs(A.

3

2.4 Problem Specification

A prob1em’ to be solved by an t/O automaton is forma3ized essentially as an arbitrary set of
(finite and infinite) sequences of external actions. An automaton is said to solve a problem P
provided that its set of fair behaviors is a subset of P. Although the model does not allow an
automaton to block its environment or eliminate undesirable inputs, we can formulate our problems
(i.e., correctness conditions) to require that an automaton exhibits some behavior only when the
environment observes certain restrictions on the production of inputs.

We want a problem specification to be an interface together with a set of behaviors. We therefore
define a schedule m,Ak H to consist of two components, an action signature sig(H), and a set
scheds(H) of schedules. Each schedule in scheds(H) is a finite or infinite sequence of actions of H.
5tbject to the same restrictions as automata, schedule modules may be composed to form other
schedu]e modules. The resulting signature is defined as for automata, and the schedules scheds(Hj
is the set of sequences /3 of actions of H such that for every module H’ in the composition, is
a schedule of H’.

It is often the case that an automaton behaves correctly only in the context of certain restrictions
on its input. A useful notion for discussing such restrictions is that of a module ‘preserving’ a
property of behaviors. A module preserves a property P Hf the module is not the first to violate
2: as long as the environment only provides inputs such that the cumulative behavior satisfies
P. the module will only perform outputs such that the cumulative behavior satisfies 2. One c
prove that a composition prerves a property by shoving that each of the component automata
preserves the property.

3 The Problem

In this section. we describe the architectnre of the problem axd then present a schedule module
defining correctness for a multicast protocol.

3.1 The Architecture

Let I = {1,.. . ,n}. Let S denote a universal set of text strings, and let M denote a universal
set of messages, where both sets contain the empty sequence (e). Let u, i € I, denote the n user
processes engaged in the computation, and let p, i E I, denote m additional processes. Together.
the nj’S are to solve the multicast problem, and each p is said to “work for” tz. Each of the ui’s
and pj’s is modelled as an automaton.

Each user lij directly communicates by shared actions with the process p only. (One may
think of -u, and P1 as running on the same processor.) The nj’S communicate with each other
asynchronously via a network, also modelled as an automaton, that guarantees eventual one-time
delivery of each message sent. Furthermore, we assume that all messages sent between each pair of
processes are delivered ill FIFO order.

The boundary between u and p is defined by several actions. To summarize the relationship
between ttj and m at each point in an execution, we say that p is in a certain region, according to
which of these actions have occurred. We will formalize this later. Figure 1 illustrates the actions
shared by j and p. and by P1 and the network. Figure 2 ilLustrates possible region changes for p1.
and the actop.s that cause them.

Initially, p is in its “passive” region (F). We say that p enters its “trying” region (T) when
user u issues a try(S c 1)1 action, indicating that u would like to send a multicast message to

‘That 1s 1v 8), where S Cl.

4

try1 done1

Figure 1: System Architecture. Arguments of actions are omitted.

processes named in the set 5. When it is ready to perform a multicast on behalf of it, process ji

issues a rtady action and is said to enter its “ready’ region (It). After receiving the ready action
as input, user u may issue a mtext1(m € S) action, where the argument indicates the desired len
of the multicast message. Upon receiving the mtezt action, p is said to enter its ‘bye” region (B).
where it completes the mutticast and returns to re&on P by issuing a done1 action.

In addition to these actions, we have relay(rrt e S) actions, which are outputs of p, and inputs
to u. The purpose of these actions, which may occur while p is in P or T. is to forward multicast
messages to ii1 that were sent to P1 by some process p on behalf of user u. The argument 7fl is
the text of the multicast message. To correspond with this additional type of action, we have a
“waiting” region (W), which is entered whenever p issues a relayl action while in T.2 In W, p, waits
to see if ‘u has “changed its mind” about the multicast after hearing the information contaiiwd in
th€ relay1 action. Either u1 still wishes to perform some multicast and issues a try1(S’) action, or
u decides not to do a mu]ticast after aU and issues an nterl1() action.

It might seem that one could eliminate region XV and the mtext() actions by having relath
actions take pi to region P. However, this would make it difficult to express the liveness notion that
it, must eventuafly be ajiowed to perform a mul:icast. provided that it continually wants to do so.
Region \V is used to signify that it1 has a choice of continuing to try or giving up.”

3.2 Correctness

Note that the actions under the control of the protocol axe exactly those actions that are the
outputs of the nj’S. We only wish to require that the protocol is correct when its environment,
namely the composition of the ui’s and the network, is well-behaved. We define schedule modules

2A relay, action from region P does not cause a region change.

send1 send, lit0
network

0

relay1

try mtext
P T R B

done;

Fignie 2: Region Changes for p. hi region P, a relay1 action does Eat cause a region change, and
can be thought of as a self-loop.

to specify the allowable behaviors of Each u and the network. Then we define a schedule module
for the muiticast protocol. We begin with the schedule modules for the ius.

Schedule Module U1: We define the signature of V as follows:
in(U1) = {relay,(m E S),ready1,done1}
out(U,) = {try1(S c I),rnlext(m E S)}

Before defining the set of schedules of U1, we define a “region sequence” to captllre the series of
region changes in a schedok, and then state a well-forrnednes condition which makes use of this
definition. Let the alphabet L = {P, T. R, B, W}. If L is a language. we let prjixes(L) denote the
set of all pretxes of strings in L. Let a be an arbitrary sequence of actions. We define the rgion
of i after a denoted r(t,a), to be an element oft defined recursively as follows. If aiLJ is empty
(c) then r(i,a) = P. If a = a’,r, then

r(i, a’) if ,r U1,
T ifw=try1,
It if ,r = ready,.
B if = mtcxt.
W if r = relay1 A r(i.a’)
P otherwise.

Given an arbitrary action sequence a and an index i € I, let the region sequence for i in
a, denoted region-sequence(i,a), be the string of characters over S constructed as follows. Let
intermediate string a be the concatenation of r(i, o’) for each prefix of a in order, starting with
r(ic and ending with r(i,o). Then, to obtain region-sequence(i,a), remove from a each tharacter
that is identical to its predecessor. Let a be an arbitrary sequence of actions. We say that a is
welL-formed for i if

1. If a = with lr = mlezt(m i), then r(io’) = It, and

2. region-sequence(i,a) E prefixes(L), where the language L over S is defined by the regular
expression PUTW)*TRBP + (TW)+BP)*.

mtex t (€)

ready1

6

The language L reflects the fart that u IS allowed to “change its mind” about sending a multicast
message whenever it is reLayed a. message. We can now define the set of schedules for U1.

Let a be a sequence of actions in sig(l). Then a E sclted.,(&c) if:

1. t preserves weii-foriuedness for i in a, and

2. region-sequence(ia) does not end in XV or R.

The first condition ‘viii be used in the safety proof, and the second in the liveness proof.

Schedule Module N: We now define a schedule module specifying the aiiowable behaviors of
the network. The signature is as follows;

miX) = {5end(m E M.i.j € fl}
out(.N) = {rcr(rn € M. i.j € 2)}

Network well-formedness; Let a be an arbitrary sequence of actions. Then a is said to be netuork
well-formed if

1. For each send(m, i.j) event in a, there exists at most one later rcv(m, i,j) event in a. (We
call this event the rn corresponding to semd(,n, ii).)

2. For each rcv(m,i,j) event in a, there exists an earlier nnd(m,i,j) event in a (called the
corresponding send).

3. If event rev(m,j,j) occurs in a before event rcv(m’, i,j), then their corresponding events
send(m,i,j) and send(rn’, i.j) occur in the same order.

These conditions say that each message is delivered at most once, no spurious messages are
delivered, and that messages between any pair of processes are delivered in the order sent.

Given the network well-formedness definition. we can define the set of schedules of N. Let a
be an sequence of actions of N. Then a € scheds(N) if

1. a is network well-formed, and

2. for each send(m, i,j) event in a, there exists a rcv(m,i,j) event later in a.

The second condition states that every message sent is eventuahy delivered.

Schedule Module M: We can now rephrase the correctness conditions thformallv stated ri

Section 1 in terms of the actions at the boundaries of the user processes. We do this with a
sc]iedule modu]e Al, which defines the multicast problem. Let sig U) = uj sig(U,).3 We Jeiie
the signature of Al as fo]iows:

in(M) = out(U) U out(Y)
out(M) = in(U) U in(N)

Let a be a sequence of actions of sig(M). Then a E scheds(M) 1fF:

1. Vi € I, M preserves well-formedness for i in a.

3That is, component-wise union: in(U) = LJEzin(UI), etc.

7

2. If a is well-formed for every € I and a is network well-formed, then Vj € I and Vm, in’ € 8,

(a) If relay1(m), relay(rn’), relay(rn), and relay(m’) occur in o, and if relay1(rn) precedes
rclaij1(m’), then relo.y,(nL) precedes re(av,(rn’).

(b) If mtext(m $ occurs in a. then no rela-y(m’ m) occurs between mtext(m) and
rday1(rn).

3. If aN e scheds(N) and Vi €7, ajU € scheds(U1), then the following hold:

(aJ If a try occurs ‘no and each relay, thereafter is immediately followed by a try in aU;,
then a rtady occurs later in a.

(h) If an mtent,(m €1 occurs in a and iry1(S) is the last preceding tryl action in a, then
a relay,(m) occurs later in a for each j € S.

Items (1) and (2) are the required safety properties, and item (3) is the required liveness property.
A multicast protocol is corrrct if it solves M.

4 The Algorithm

This section preseiits the multicast protocol. We present the algoritlrni by giving an explicit I/O
automaton for each p, i €1. We show in Section 5 that the composition of the nj’S solves the
schedule module Al and is therefore a correct protocol.

The algorithm is based on ogicai time. We define a logical time to be an (integer. process-id)
pair drawn from T ({1.2, .. .} U o) x I, auid we let local times he ordered lexicograohicallv.
Esserniaiiy, each process p, maintains alogica] time clock, and each multicast is assigned a unique
logical time. The process P1 relays a]l multicast messages destined for a1 in logical time order.4

4.1 An Informal Overview

We begin with a discussion of the main ideas of the algorithm, which is foUowed by the formal
automaton defirdtion. Unless otherwise noted, the word “process wiU refer to one of the processes
p,. i E I. Also, we use the words time” and ‘logical time” interchangeably.

On receiving a try(S) input, pi remembers S as its try-set. In region T, p tries to set up a
multicast for u to processes named in try-set, and it may request permission to do so from processes
Pid eI by sendiri ‘req-promise messages. Permission is granted from a process p, to p in the
form of a “promise’ message with an associated logical time t. The promise means that will
not perform any multicasts with a time greater than t until m either explictly relinquishes the
promise (by sending a “bye” message to p) or advances the promise (by sending an “adv-promise’
message with the later time). One may think of this promise as a roadblock that p erects in ui’s
computation at some future logical time. The process p doesn’t allow us’s computation to advance
past that time until the roadblock is removed or moved forwasd by v. Prncesses are guaranteed of
eventually getting a promise in response to every reqiest.

Every multicast performed by p, has an associated logical time (its btirrte), which is assied by
p, to be at least as lasge as both ps’s clock and the niaDumum logical time among all promises held
by p. Processes communicate their multicasts in “bye” messages, which have two arguments: the
text of the multicast and its assigned logical time. (Upon receipt of a bye” message, a process p
keeps the (text. time) pair in a p€nding set until the message is relayed to u1 It is safe to relay a

We never assign a time of cc to a mu1tcast message: it is used on’y as an upper bound.

8

message rn. when it is the message wit.h the smallest time in pending aaid a]] promises granted by
p. wih times lower than t have either been relinquished or axivanced past t.)

Afr4r receiving a promise from each process p, to whom a request was made. p is reav perform
a niulticast with btime = I provided that (1) irs pending set is empty. and (2) all promises Pi has
granted with times lower than t have either been reiaquihed or advanced past t. The second
condition is present to ensure that u, receives no new messages with Iogcal times less than t after

p1 deciães to send its multicast.
Finally. we explain those conditions under which p may advance promises. Suppose that

pi has received promises from au processes in its try-set, hut has determined that it is not yet
ready to perform a inuLticast to reinquish those pro:riises. ilL order to not unnecessarily block the
computation of those processes from which p has received promises, it may send “adv-promise”
messages to those processes. informing them of the earliest possibie time that P1 might actually use
as its btime. Without these messages. it would be possible for the computation to deadlock.5

4.2 The Detailed Algorithm

We now present the formal algorithm description. The state of p has several components: A
variable region E {P,T.W.R.B} is initially set to P. The variables try-set, requested, and requests
are subsets ofl. initial!y empty. The variable frfl €8 is initially the empty string (c). Two arrays
oflogical times indexed by I are kept: promises-to and p.-nnission-from. AU entries of these arrays
are initially greater than any possible logical tinme (,ii). Two additional logical time variables,

clock and btime. are initially (O.i). Finally, the variah]e pending is an initially empty set of (text

ES. time € T) pairs.
We let rnir(prornises-to) denote the smallest time among the entries in that array. Similary.

we let max(permission-from) denote the largest time less than (, n) among the entries in that
array; if all entries in that array are (, n). then max(permissiori-frorn) = (-x. n). Fina!iy. e
min(pcrtdinq) and max(pending) denote the pairs in the set having the least and greatest lo2J

times, respectively; if pending is empty, then both vaices are (c. (0. i)).
In addition to the above variables, tl:e algorithm description refers lo a pseudo-variable, try

lime, defined according to ps state components as foilows: fry-lime is the smallest loral tire

having process-id i such that

try-time max(clock, btime, max(permission.fmm)).

Automaton p has the following signature.

Input actions: try1(S CT)

intezt(m ES)
rcv(rn E M,j Eli)

Output actions: relay(rn ES)
ready
donej
send(m € M, i.j € I)

The transition relation for p, is shown in Figure .3. “F” and “E” denote precondition and effect,
respectively. An action is enabled in exactly those states in which the precondition is satisfied. If

5Cousider a situation in which p. arid p, ar trying to send multicasts such that each is in the other’s try-set.

Suppose that all promises received by p. are snLller thaii some promise received by p,. Ifp has granted p3 a pronmise
smaller than pd’s own try-time neither cart perform a multicast before the other.

9

Input Actions: Output Actions:

• try1(S) • relay1(m)
E: try-set = S u {i} P: region C {PT}

r€gzon = T (mt) = min(poiding)
t < rnin(promzscs-o)

• ,nteztjm)
E; pending = pending \ {(m. t)}

E.: Len = m clock =
if Tn = then try-set = if rrgwn = T then regon = Wbtimr = try-time
region = B • ready1

P: region=T
• rcv(req-promise,j eli) pending = 0

E: requests = requests U {i} min(promises-to) try-time
• rcv(bye(m CS, t 7)J El, 1) Vj C requested,

F: promises-to(jJ = (con) permission-from[j] < (con)
ifmethen E: region=R

pending = pending Li {(rn,t)} • done1
• rcv(adv-proniise(t C T),j Eli) P: re9tOfl = B

E: promises_to[j] = t requested = 0
E: region P

• rcu(promise(t C T)..j El, i)
E: pcrmzssiun-frornf = • send{promise(t C ‘T).i.j El)

P: j C nqtnsts
t > max(iry.l;menìax(pendzng)time)

F: requests = reqHesLs \ {j}
promises_ioU]

• send(req-prornisei.j €1)
P: rtgion C {T,W}

j requested
E: requested = reqiested u{j}

• send(adv-promise(t C T),i, .1 CI)
P: region C {TW}

Vk C try-set,
permzsswn-from{kj < (oo, n)

permission_fro,n[j] < try-time
= try-time

E: permission-fro,n[j = fry-time

• send(bye(in ES]t C ‘T)i,j €1)
F’: region = B

pe,inissionfrorrz’j < (cc n
t = &tirne
if (j C fry-set) then

in = text
else in =

E: req,sested = req,,estd \ {j}
pcrmzsszon.froTn[j = (cc n).

Figure 3: Transition relation for pi.

10

an action has no precondition, it is always enabled. When an action occurs, p’s state is modified
according to the assignments in Ihe effects clause. If a state component is not mentioned in the
effect clause, it is left unchanged by the action.

The equivalence classes of pa.rt(p1) are as fo]lows. The actions re1ay, ready1, and done1 are
together in one class. And for each j € I, there exist four classes containing the sets of actions
.send(promise(t T),ij), send(reqpromise,i,j). send(adv-promise(t € T),i.j). and send(bye(rn €
.5.1 E T),i,j).

5 Proof of Correctness

Consider nrndule F, t]ie composition of all automata p, jeT. In this section, we show that module
F solves schedule module M, which implies the correctness of the logically synchronous multicast
protocol. The correctness proof follows the definition of schedule module M. Clearly, sig(P) =

sig(M). To show that P solves LW, we need to show that all fair behaviors of P satisfy the safety
conditions (1 and 2) and the liveness condition (3). We prove these in order. To distinguish the
state components of the different automata in F, we use subscripts. For example, region, is the
rtgion variabLe in the local state of automaton p1.

5.1 Safety Proof

We start with Condition (1), that P preserves well-formedness for all i € I. If w and LI are strings
over a common alphabet, we let w ow’ denote the concatenation of the two strings. The following
lemma states some useful properties of language L (from the denition of xve-formedness for ii.

Lemma 1: For all strings we preflxes(L.). the following properties hold:

1. If ends in T, then woR e preflxes(L).

2. If w ends in B, then woP € prefixes(L).

3. If wends in T, then woW € prefixes(L).

Proof. By inspection of the definition of L.

The next lemma relates the state of p after an execution a to the definition of r(i. a).

Lemma 2; Let a be an execution of Pending in states. Then for all i €1, s.region = r(, a).
Proof: By induction on the length of a.
Base case: If a is of length 1 (just an initial state), then r(i, a) = P by definition for aLl I El,

since the schedule of aI(’ isthe empty sequence. In every initial state, rior = P for all i € Iso
the lemma holds.

Inductiop: Let a = a’s. where the lemma holds for a’ ending in state s’, For all I, if r
sig(U), then s.rtgion. = s’.region. This satisfies the lemma, since r(,a) = rUn’) by deEnitioL if
r sigiU,).

Now, if ,r sig(U1), then there are five cases: If ,r is a try, action, then s.reJion, = T by
the effects clause of try1 actions. By definition, if w is a try1 action, then r(i, a) = T, so the
lemma holds. The ne,ct three cases, ready, mtezt1, and donc, are argued similarly. The final
case is rctay whose effects clause states that s region1 = ‘N if s’reqiorij = T, and that sregionj =
s’regiortj otherwise. Moreover, if s’.regivr T, then s’.regIon, = P since rcioy1 is enabied only
when region, € {P,T). Therefore. s.’gion. = r(i, a).

Ii

We are now ready to prove that module P satisfies Condition (1 of schedule module Al.

Theorem 3, Module F preserves well-formedness for i, for all I E I.
Proofr Consider execution a = o’ws of P, where ‘ is well-formed for all I € I and ends ii’ state

s’. Since mlext1 is not an output action of P we need not consider Part 1 of the well-formedness
definition. Similarly, for Part 2 we need only consider cases where it is an output of P. We know
by Lemma 2 that s.reg;onj = r(i, a). Also, we know that region-sequence(i, € preilxes(L), since
a’ is well-formed for i. There are three cases for it an output of P.

1. w = ready1: This is only enabled if s’.regionj = T. Therefore reonsequence(j,Q) ends in T.
So, by Condition 1 of Lemma 1, region-sequence(i,e’) oRE prefixes(), and this is precisely
region-sequence(I, a).

2. = done1: This is only enabled if s’.regio? = B. Therefore region-sequence(i. a’) ends in B.
So, by Condition 2 of Lemma 1, region-sequence(i.a’) oP E prefixes(L), and this is precise!y
region-sequence(i, a).

3. r = relay1: This is only enabled if s’.region1 = P or T. If s’.regiore1 = P, then region
sequence(i,a) = region-sequence(i, a’), which is in prefixes(L). If s’.regiortj = T, then region
5equence(i,a) ends in T. So, by Condition 3 of Lemma 1, region-sequence(i,a’) a W €
prefixes(L), and this is precisely region-sequence(i, a).

Given that modiñe F preserves well-formedness for all i € I, the folkowi,ig definition is useful for
restricting attention to the executions of P in which the environment is well-behaved. (Note that
because no rcv action s an output of P, it is not possible for P to violate network well-forrnedness.)

LEt a be an execution of P. We say that a is admissible if a is well-formed for every i E I and
a is network wed-formed.

To show that mod We P satisfies Condition (2a). that all multicast messages are delivered in the
same relative order, we use the following sequence of lemmas. The first lemma states some useful
facts about the ordering on events in executions of F.

Lemma 4: Let a be an admissible execution of P. Let a’ be a subexecution of F between two suc
cessive done1 actions (or between the beginning of a and the first done1 action). Then if a’ contains
any one of the following five actions, then it contains exactly one of each of them such that they
occur in the following order: send(req-promise.i.j). rcv(req-promise,i.j). snd(promse(1),j.
rcv(proznise(1)1. 1), and stnd(bye(m,jt)jj), Furthermore, if a send(adv-promise(t’),i, j) Occurs
in a’, then it occurs between the last two actions.

Proof,’ The proof s by induction, assuming that the conditions hold for the prefix of a up to
the beginning of a’.

First we show t.ha.t no two sendçreq-promise,i,j) events can occur. The action ‘r1 = &€nd(req
promise ly) is only enabled when region, = T and j requested1. When the action occurs, it
results in j € requestedj. The set requcstei4 can only be decreased when region1 = B. Therefore,
another action send(req-promise,i,j) cannot occur after r1 until p passes through some state in
which regiortj = B and then reaches a state in which region, = T. By well-formedness for i, this
cannot happen without an intervening done1.

Next, we show that i = .send(req-promise,i,j) occurs in a, then the next done1 event after it1
mast he preceded by s = send(by(m.t”).i,j). The action x has as an effect that j E requested1.

12

and done has as a precondition that reqeste4 is empty. Therefore, since ,r5 is the only action that
can remove j from requestedj, it must occur between i and ,r5.

Now we show that each event in the sequence must occur in order for the next to occur. By
the induction hypothesis all .send(req-promise.i.j) actions have their corresponding receives before
the start of a’. Therefore, by network wdl-formedriess, ,r2 = rcv(req-prornise,i.j) cannot occur
before Jr1 and only one r2 action occurs. Action it3 = send(promise(t),j,i) is only enabled when
I E requests, and the event results in is removal from that set. Since Jr2 is the only action
that can cause i & requests,, it must precede Jr. Again, by network wel]-formedness and the
induction hypothesis. we know that K3 must precede r4 = rcr(prornise(t).j. i). The action r5 =

send(byeim.t”,.i.j) has as a precondition that perrnission-f,rnnJ] (ao.n). Since r.5 has as an
effect that perrnission-frornj[jJ = (•.n). and since is the only action that can cause permission
frornj[f < (cc. ii), we know by the induction hypothesis that ptrrnission-ftrnj[j] = (.n) at the
beginning of a’. Therefore, ,r4 must precede r5.

Since send(adv-promise(’)i,j) has as a precondition that permission-fmrr,4j] < (cc. ii), we

know that it cannot occur before ,r4 or after r5.

The above lemma is used to show the existence or nonexistence of certain events in a portion
of ar. execution.

The following lemma states some important invariants on the state of P. The fifth invariant.
which states that the minimum time in the peiding set of a process p is always larger than the
clock of that process, is a key piece of the safety proof. Informally. it tells us that no multicast
message arrives “too late”.

Lemma 5: Let a be an admissible execution of P. Then for all i,j €1. the following properties
ho]d for all states sin a.

1. i E 8.reqttests s.promises.to;[i] = (oc, n)

2. s.promises-to[ij s.pernissiun-fromj[j]

3. s.clock < s.promises-to[i]

4. (s.regionj = B A j € s.try-set n s.requested) s.permission-frornj[j] s.btime1

5. s.pending 0 s.cIockj < min(s.pending1).time

Proof: Property (1) is proved by induction on the length of a. Ifs is an initial state, then for all i, j E
I, I 0 s.requestsj, so the statement holds vacuously. The only action which can add i to requestsj
is a rev(req-promise,i,j). So, for the induction step, let a = where r = rev(req-prornise,i,j)

and Property (1) holds for a’. Suppose (for contradiction) that &.prornises-to[i] < (x, ii). This
can only be true if there exists some Jr’, either a send(promise(t),j,i) or a rcv(adv-proniise(t).i,j).
in a’ such that no rcv(hye(m,t’),i,j) occurs between Jr’ and w. However, by Lemma 4, every
send(promise(t),j, I) or send(adv-proirnse(),i, fl must be followed by a send(bye(m, t’)i,) before

the next send(req-promise,i,j) occurs. And so by network welt-formedness, rcv(hye(m. t’).i,j) must
occur between lr’ and ,r, giving is a contradiction.

Property (2) is also proved by induction on the length of a. The base case, o only a start state.
ho]ds since pcnnission-fromlj = pn,,niscs-to3[i] = (.n) for all i.j I. Let a = a’s’rs be an

execution of P. where the property holds in state s’. Now, consider those four actions ir that can
potentially increase prorn:ses-to[i] or decrease permission-from,[j]:

13

1. If ir = s€nd(pro,nise(t).j, 1), then by Property (1) and the preconditions o ‘r, &‘.prornises
to,[iJ = (oo.n). Therefore, promises-to3[i] is not increased by lr.

2. If lr = rcv(promise(t),j, i), then s.permission-frorn4j] = t. By network wefi-formedness, K
= send(promise(t),j, 1) must occur earlier in a’. The oniy possible events that could occur be
tween and to make s.prornises-to,[i I are rcv(adv-promise(t’),i,j) or rcv(bve(m,t’).i.j).
By Lemma 4, we know that ,r’ = send(promise(t),j. i) must occur before K such that no
send(adv-promise(t’)i,j) or send(bye(m,t’),i,j) occurs between r’ and ir. Furthermore,
by the saute lemma, we know that a rcv(req-promise,i,j) occurs before K and after anysend(adv_prornise(t),i,j) or send(bye(m,t’),i,j). Hence, by network well-formedness, no
rcv(adv-proniise(t’),i,jJ or rcv(bye(m,t’),i,j) occurs between K’ and r.

3. If ,r = rcv(acLv-promise(t’i.j. then sprornises-to5[il = 9. By Lemma 4 asd network well
forinedness. the corresponding seud(adv-pro,mse(t’),i,j) must foliow a ‘ = send(romise(t),j. i)
such that no rcv(bye(rnt),i,j) occurs between them. By the preconditions of .send(adv
prornise(t’),i.j), t’ > t, and that action results in pcrrnission-frvmj(jj = t’. Furthermore,
any other send(adv-proirnse(t”),z.j) occuring in a’ after semd(a.dv-promise(t’),i,j) must have
t” > 1’. Therefore, the property holds.

4. If w rcv(hye(m,t),i,j), then sprornises-to,{i] = (,n). By networkwell-forrnedness, K must
be preceded by ‘ send(bve(rn,t)ij). resulting in perrnission-frorrj] = (sc. n). The only
action that could can decrease permission-fmrn4j] is a rcv(promise(t’)j,i), But by Lemma
1, any rcWpromise(t’).j, iJ occuring between w’ and ir must be preceded in that interval by
a send(req-promise,i.j) and a rn’(req-prornise,i,j). And this viob.tes wefl-formedness, so norcp(prornjse),j,j) occurs between,’ and ,r. Therefore s.permission-fromj{j] = (n).

Property (3) is also proved by induction on the length of a. The base case, a a start state, holds
since ctork = (O.j) and promises-to3[i1 = (, n) for all i El. Now, consider those actions that can
potentially increase clockj or decrease promi-9es1oi’. These are reloyj, 5end(promise(t).j,i). and
rcv(adv-proinise(tj.ij). By definition, the action relay4 sets clock to a value t, such that Vi E I.
pTvrnises-tO.i > t. The action send(promise(t).j. i) sets prornises-toj[i] = t and is enabled ouN
if t > try-Urne, which is at east clock5 by definition. Finally the action rcv(adv-prornise(t),i,j)
sets pro,nises-toj[i] = t. To show that t > clock3, we note that send(adv-promise(t),i,j) is en
abled at Pi only if permission-from1[j] < t. Therefore, by Property (2), t > pnmises-to3[i] when
send(adv-promise(t),i,j) occurs. And therefore, t > promises-to3[i] when rcv(dv-promise(t),i, j)
occurs, since Lemma 4 and network well-formedness tell us that neither a tcv(hye(m,tP),i,j) nor a
send(promise(t”).j, i) action can occur between send(adv-promise(i),i,j) and rcu(adv-prornise(t).i.j).

Property :4) is proved by a simple induction on the ength of . We observe that whenever
p, enters region B (an mtezt, action), try-time and btime are made equal and that btime remains
unchanged until afI.er p is no longer in region B. We also observe that by well-formedness for i, no
try1 actions can occur from region B, so try-setj is also fixed.

If p does not enter B from region P., then the action to enter B must be mtezt1(c), by well
formedness for i. therefore, by the effects clause of that action. try-sd, = , so the property holds
vacuously. If m does enter B from region R, then by the preconditions on ready,, promises are held
by p for all in try-sd1. And by the effects of ready1 and the definition of try-time, btime s set to
a. value at least as great as any of those promises. Therefore, the property holds on entering B.

By Lemma 4, no new promises from members of try-set are received by P1 while in B, since
promises have already been received. Therefore, it suffices to show that for all j € try-set, if
perrnission-frorn4j] is increased, then j is removed from requested until the next done1. Since

14

send(adv-promise(t).i.j) actions are not enabled from B, we only need consider send(bye(m,t).i.j).
Hnwpver. this action rpmoves j from requst6d. Since scnd(req-promise.i,j) is not enabied in B, j
cannot he replaced in rcquested before the next don.

Property (5) cast be shown by induction using the above invariants. Clearly, the property holds
in the initial state. Let a = a’s’ws bean execution of P. where the property holds in state s’. The
only action that can change clock3 is a relay3, which removes the element from pending having
the lowest time, and sets clock3 to that time. Therefore, by the induction hypothesis, the property
holds.

The action r = rcv(bye(rn €, t),i,j), for some i E I, is the on]y action that cast add elements to
pending3. Let s” be the state from which the corresponding .send(bye(m, t),i, j) occurs. Since in
implies that j E .s”.try-setj, we know from Property (4) that s”.perrnission.fromj[j t = s”.btime.
Therefore by Properly (2), s”.pro,nises_to,Ii t By Lemma 4 and network well-formedness. we
know tlat no nmd(promise(i’).j. 1) or rcv(adv-promise(’)i,j) action can occur between s” and s’
to could cause promisrs-to,i to increase past I. Therefore s’.ptmi.9estoJz; t. So, by Property
(3). s’.clock, < t. So, when occurs, (mi) is added to pending3 and the Property (5) holds in
states.

The following lemmas state that the state components clock and &time are nondecreasing.

Lemma B: Let a be an admissible execution of P. Then for all i E I, if state s’ precedes state ,s
in a, then s’.clockj s.clock,.

Proofi Consider the actions relay1,which are the only actions in which clock can be modified.
Whenever a relay1 action is enabled, pending1 is nonempty. By definition, a relay action results in
clock, being set to the minimum logical time in pending1. By Property (5) of Lemma 5, clock, is iess
than the miinum logical time in pending;. provided prndingj is nonempty. Therefore, wherever
c1ock is rnodifie, its value is increased.

Lemma 7: Let a be an admissible execution of P. Then for all i E I, if state s’ precedes state
ira. then s’,btime 5.bttrnt,.

Proof: Consider the actions mint, which an the only actions in which btime1 cat be modified.
These actions set btinic. to the value of try-time, which is no smaller than btime1 by definition. •

The following lemma states that each multicast message is assigned a unique logical time.

Lemma 8: Let a be an admissible execution of P. Let send(bye(m, t),i, j) and send(bye(m’, t’),i’, j’)
occur in a. If m m’ or i i’, then I I’.

Proof.- If £ i’, then clearly t I’ because they differ in the process-id. If rn $ m’ and i = I’ then
in and in’ are the text of different multicasts by vj. Without loss of generality, suppose rnlczt(r&
precedes mttxt(m’). Then, by Lemma? and the definit}on of try-time, the blime assigned to mis
greater tItan that assigned to m’. Therefore, I > I’.

The fol[owng two theorems prove that executions of P satis conditions (2a) and (2b) of
schedu]e module M.

Theorem 9: Let a be an admissible execution of P. Then Vj El and Vm,m’ eS, if rcloy(m),
relay1(rn’), relay3(,n), and relay3(m’) occur in a, and if relay(m) precedes relay(m’). then
relay3(ra) precedes relay3(rn’).

Proof: Prom Lemma 8, we know that In and In’ have different blunts, say t and t’. Without
loss of generality, let I’ > t. Suppose that for some j E I, retay3(m’) precedes i’elay3(m). By the
definition of the relay, action, the message with the smai]est logical time in nding; is delivered.

15

Therefore, in the state from which relay1(m’) occurs. (m,t) E pending1. The effects clause states
that rclayi(m’) results in cioc = t’. So, by Lemma 6, clock3 I’ at all later states in a. In
order for rein yi(m) to be enabled from one of these later states, it must be the case that evetuaJly
(m,t) e pending1. However, since t < ‘ and ciock C, this contradicts Property (5) of Lemma 5
that clock1 < min(pending).time. Therefore, retay1(m) precedes relay3(m’).

Theorem 10: Let a bean admissible execution of P. Then Vj E land Vm,m’ €8, if mtext1(m)
occurs in a, then no reiay1(m’) occurs between mtext1(m) and relay1(m).

Proofi Consider the state s from which mtezt(rn r) occurs, and let a’ be the prefix of a
ending in states. We know, from well-formedness for i, that r(i,a’) = U.. Consider the last action
readyL occurring in a’, and let -s’ be the resulting state. (M’e know such an action must occur, since
this is the only action that can result in region B..) We know, again by well-formedness for i, that
ftgzor = R at all states between s’ and s.

By the preconditions of ready1. it is true that s’.perrnission-frorn4j] < (,n), for afl j E
s’.requestcdj. Therefore, since no send(req-promise,i,j) actions are enabled from R, we know by
Lemma 4 that no promises are received by P1 between s’ and s. Therefore, since btime1 cannot change
in B. and clock1 cannot change until a relay1 occurs, we can conclude by the definition of try-time

that try-time1 is fixed between s’ and s unless a relay1 occurs. Again by the preconditions on ready1,
s’.pending, = and .9’.promises-to4j] s’.try-tirne, for all j €1. Also, any send(promise(tfl,i,j)
must h4ve P > try-time. so by Properties (2) and (4) of Lemma 5, any rcv(bve(m’.t”).j.i) must
have t” > s’.try-time. Therefore, no relay1 can occur and tng-tirne is fixed between s’ ajd s.

Now, when mtext(rn) occurs after states, the btime for mis set tot s’.try-time> spromises
toi[i, Vi €1. So. by Lemma 7, all later send(promise(t’),i. j) must have t’ > f. Again, by Properties
2j and (4) of Lemma,. any rcv(bye(rW,t”)j, I.) after s must have t” > f. Since any ‘ii’ with a
btime less than t must have been relayed to UI prior to s’ (by precondition on ready1), we know
that no relay(m) occurs between rniext(m) and relay1(m).

5.2 Liveness Proof

We no” proceed with the liveness proof. The foUowing definition will be convenient for limiting
ourselves to the discussion of executions in which the environmeat is swell-behaved”. Let a be an
fair execution of P. We say that a is well-behaved if aIU1 € scheds(bç) for aU i E I and aI:V €
scheds(Y). Note that every well-behaved execution is an admissible execution, by the definitiond
of U1 and N, and the fact that P preserves weu-forrnedness for all i € I. The following Eernma
states that if a promise is requested, then eventual]y it is granted.

Lemma 11: Let a be a well-behaved execution of F. If event ,r send(req-promise,i,j) occurs
in a then a later rcv(promise(t),j,i) occurs in a.

Proof: By the definition of scheds(N), a ,r’ — rcv(req-promise,i, j) occurs in a after K. By the
transition relation for p3, requestsj[i] < (co, n) in the state after (specfficaily, its value is t). and
oniy a 5cnd(promiset)J. i) acUo,i can cause rrquests,fil = (, ii). Therefore. stnd(pron.ise(l).j. I)
is enabled in all states alter ‘ until it occurs. By the definition of scheds(]V). a corresponding
rcv(promise(t).j, i) occurs later in a.

The following lemma states a property of executions of P that is useful in proving Lerr.iw 11

Lemma 12: Let a he a well-behaved execution of P. If a try, action occurs in a, then either a
mtext(c) action occurs later in a, or there must exist a point later in a after which the folio-wing

16

condition holds for all states sup to the next ready1 action: Vj E s.req’aested, s.permission-from4j]
< (o,u).

Proof Suppose not. If no intext1(c) action occurs in a after the try1 event, then by well
fortnedness for i, s’.region E {T,W} in all states s’ after the try1 until a ready1 occurs. However,
by our supposition, no state after the try satisfies the conditions for state s in the statement of
the lemma, so ready1 is not enabled in any state after the try1. So, S’ region, € {T,W} in all states
s’ after the try.

Therefore, for all such states s’ for all j € I, either j s’.rcquested,. and send(req-promise,i,j)
is enabled or j € s’.requested and send(req-promise,i,j) occurs before .s’ since the last preceding
done1, if one occurs. Therefore, by Lemma 11, a rcv(promise(t)j,i) action must occur in a since
the last send(bye(m, t’),i,j) event (if one occurs). So eventually, per,nission-frorr[j] < (, n) for
all j € I. We note that no action can occur at p in region T or V to cause at entry in the
permission-fioml array become (, n). Therefore, we have reached a contradiction. •

Informally, the following lemma states that given certain simple conditions, processes cannot
get stuck in their trying regions.

Lemma 13: Let a be a well-behaved execution of P. let -s be some state in that execution, and
fix] 1 such that j C .1 if s.regionj E {T,i’} and for all states s’ after s, try-time3 does not
increase beyond some time L Then eventually all ,ntext3 occurs after s for all j E .9.

Pmof. Assume (for contradiction) that there exists some set 7’ C J such that no rntex
occ-am after s’ for all j 3’. If no rnte:t; action occurs, then it must be the case that no ready,
action occurs: by definition of scheds(1’,). region-sequence(i,ct U) may fbi end in R. so by we]]
formedns for j. a mtext must follow every ready. Therefore, it suffices to show that a ready,
occurs for some j € 3’.

Let a’ be the portion of a after which (I) all processes k not in .7’ have either increased ry-tzrflek
beyond t or have issued rntextk actions. (2) all the processes j C I have reached their maximum ivy
time;6. and (3 all the corresponding rcv(bye(rr&. t”).L, I) and rer(adv-promise(l’),k. I) actions have
occurred. Note that since tr,-times are tagged with process-ids. they are all unique. Now consider.
among the j € 3’, the one such that try4ime is least. Since all other processes k have either
increased their try-tim beyond try-time3 or issued mlextk actions, and since all the corresponding
rcv(adv-prornise(t’),k.i) and rcv(bve(m,t”),k,l) actions have occurred, we know that for all k €1.
prom ises-to[k try-time5. Therefore. on]y pending, 0 could prevent rady from occurring.

However, since try-time1 clockj in all states and for all k, promises-to3{k] try-time1,nothing
prevents relay5 actions from occurring to empty pending2. Therefore, a ready, must eventually
occur, giving us a contradition.

The next two theorems correspond to Conditions (3a3 and (Sb) of schedule module M.

-Theorem 14: Let a be a well-behaved execution of P. If a try, occurs in a and each relay,
thereafter is followed immediately by a try1 in a U. then a ready, occurs later in a.

Proof Suppose (for contradiction) that no ready1 occurs late, in a. Since a try1 immedi
ately follows each relay, in aIU,. no mteztl(e) can occur, by well-formedness for i. Therefore.
by Lemma 12. there must exist a state s’ a a such that Vj € s.rtqueated, s.permi.sion-jromJj]
< (:. nL for all states s between s’ and the next ready1 action. Since we have assumed that no
ready1 action occurs, the property holds for aU states after ‘. Given this fact and the precorditions

6V,e kLcw this must happen eventually because none can grow pan i and try-time cajinot be decreased in rPgiars
I or

17

on ready& there are only two ways in which the rody1 action could not be enabled. Either pendinffi
is not empty or prornises-to4j] < try-time, for some j. If for all j, promises-to€[j] try-timq, then
nothing would prevent reiay actions from occurring to empty pendingj, since try-time1 clkj by
definition. Therefore, the only possibility is that forever after some point in a, pronzises-to4i <
try-tirnej for some (one or more) j. Since p only issues promises for times greater than try-time,
there is a fixed number of processes j “in the way” of a ready1 action. Furthermore, we know
I.hat none of these processes .j eventually have try-times larger than try-time1,or else a. send(adv
promise(try-time,).j,i) action would become enabled, and the corresponding rev would eventually
occur, causing prornises-to1[jJ > try-time. Similarly, none of these processes may issue mtext3(m)
actions, since that would enable a send(bye(m, t),j, i) action and the corresponding re-v would cause
promises-to1[j] = (oc, n). However, by Lemma 13, a mtext must occur for each process j standing
iii the way, giving us our contradiction.

Theorem 15: Let a be an execution of P, where alt!1 € sch€ds(U1)for all i E I and alN €
scheds(N). If a mtext1(,n €) occurs in a and try1(S) is the last preceding ryj action in a, then
a relay(m) occurs later in a for each j E S.

Proof. After ,ntert(rn E) occurs ri a, we know that a ready1 must precede it, by well
formedr.ess for i. So, by the preconditions of ready1, all j €requeste4, permission-fitm < (oc,n).
Therefore, the actions srnd(bve(m.t)i.j) remain enabled until they occur. And by definition of
N, the corresponding rcv(bye(m.t).Lj) actions must eventually occur.

Once rcr(be(m,tJ,i,j) occurs, the only way for relay(m) to be prevented is for promises
to3lk.) to be less thax I, for some k E I. Note any new promises granted by p, must be greater
than t until relay(m) occurs, since t max(pending). Therefore, by Theorem 14 and the result
of the preceding paragraph, all promises granted by pj for times less than must eventually be
relinquished. At that point promises-to,[k] t, V/c € I, so eventually reIay(m) occurs.

Theorem 16; Module P solves schedule module M. Proof Follows immediately from Theorems
3, 9, 10, 14, and 15 and the definition of M.

6 Complexity Analysis

In this section. we analyze the message and time complexities of the multicast protocol.
Let system A be the composition of modules U1,i € I, module N, and modules p1,i El.
Let a be a execution of system A. We say that a is an undeviating execution for I if every pair

of actions try,(S) and try(5) either have a done1 between them Or S = 5’.
That is. in an undeviating execution for u does not “change its mind” about whether to issue

a multicast message or which users to whom the the multicast should be sent.

6.1 Message Complexity:

There are four types of messages sent in the algorithm: req-promise, promise, advpromise, and
bye messages. If u issues lr = try1(S) in art execution of system A, then we say that the following
messages occur as a result of K: any requests byp1 for promises from anypj,j ES, any promises sent
in response to those requests. any promise advancements by p to any PIES, and any bye niessages
sent from p to pj,j E S. That is, we charge each tryl action with those messages required to
coinD!ete the corresponding mairicast.

Theorem 17: Let a be an undeviating execution for i. where aU1 contains air try(S). Then
at most 4II network messages occur as a result of ‘i-.

iS

Proof By Lemma 4, we know that at most one send(req-promised,j), one send(promise(t),j, i)
and one send(bye(rn, t’).i, fl occur between K and the successful (or unsuccessful) completion of
the ,nulticast. Now we show that at most one send(adv-promise(t”),,j) is required. Since the
execution is undeviating we do not require that any promises be requested (or received) from
process other than those named in S. Since no adv-prornise.s are sent until promises are received
from all in S. all promises need be advanced at most once, to the same logical time. •

Note that in the nondeterministic algorithm we have presented, it is possible that more promises
are requested than are actually needed. However, one could add a variable to keep track of a
maximal set of processes that have been named in try(S) actions since the last dnn1 and require
that promises only be requested from members of that set.

In executions that do not have the undeviating property, more messages may be required. Ir.
the worst case, the try-.et grows by one with each try1 action until 151 = n•, all promises granted by
the new process exceed the old try-time and are received before the next try,, and all promises are
advanced after each promise is received. In this worst-ca.se scenario, the number of req-promise.
promise, and byemessages are the same as above, but the number of adv-promise messages is 0(n2).
However, one would expect such extreme behavior to be highly unlike’y. (Alternative methods of
promise advancement are outlined in Section 6.3.)

6.2 Time Complexity:

To analyze the time complexity, we need to make stronger assumptions than the eventuality condi
tions used for the liveness proofs. Let d be an upper bound on the time between a send event and
the corresponding rev (i.e., the message delay). We assume that process step time is insignificant in
comparison to ci. (For example, we assume that the time between receiving a request for a promise
and sending the promise is negLigable.)

First, we need to compute an upper bound on the time for a process with the lowest try-time
to be able to send a multica.st message once it has received all the necessary promises.

Lemma 18: Let a be an undeviating execution for i. If at real time r, p is in state & such that
s.promises-jmuwj] < (, ii) for all j E requested1U .tryst, and p’ makes no requests for promises
after state s. If p has the minimum try-time among all j €1 such that s.reoiort E {T.W). then
ready1 occurs by time r + 3d.

Proof Within time ci after s, all rcv(bye(m,t),j. 1) actions occur for all processes j such that
s.rcgion. e {P.R,B} with t < s.try-time,. Furthermore, for all processes j such that s.rtgion; E
{T.W}, actions rcv(adv-orornise(t’),j. i). t’ > s.try-tirrie1 occur with[n time 3d (one delay for p,s
promise requests. one delay for the promise messages, and one delay for the adv-promise message).
Therefore, by time ri-3d, it is the case that mir.(promits-to1)> s.try-tirne,. So. all the multicas
messages waltin ri pending, can he immediately reta ed. Therefore the preconditions for ready,
are satisfied.

We say that m depends on p if both have region € {T,R} and fry-timej >prornises-to[j]. We
say that p indirectly dcpend.c on p1 if there is a sequence P1. pi P2,.. p such that p depends on
Pi, Pi depends on P2, etc.

Lemma 19: Let a be an undeviating execution for all I e I. If at real time r, p is in state
such that s.promises-from4jj < (oo, ii) for all j E requested1 U s.trysetj and m makes no requests
for promises after state s. Let z be the largest number of processes on which P1 indirectly depends
between state s and the next ready1. Then a ready1 occurs by time r + 4dz + 2d

19

Proof As before, by time r + 3d. rcr(adv-promise(t’),j,i) actions occur for all p3 on which m
depends. Furthermore, for ally process Pk on which P3 depends (such that p, depends on p,) p
receives pt’s promise request by time r + 2d, for after that time has received all its promises from
the members of its try-set. Therefore, by time r + d(z + 2), the try-times of all processes on which
P1 indirectly depends have been determined. Consider pj, the process with the lowest try-time on
which pj depends. By Lemma 18, we know that ready1 occurs by time r + d(z + 2) + 3d. Since any
later promises received by pj are sent after this rczdy1, we know that p cannot again depend on
pj until after ready1 occurs. We continue applying the same argument to the process Pm with the
next lowest try-time until a ready occurs. Therefore, ready1 occurs by time r ÷ d(2 + 2) + z(3d).

Thus, the time complexity depends on the concurrency inherent in the pattern of the multicast
messages. since this is what determines the dependency order. Since z can be at most r.. the delay
is at most 4nd + 2d.

Note that the worst-case time complexity matches one’s expectations about what must happen
when a]l n processes attempt to send multicast messages to every process. A simple inductive
argument shows that any pessimistic protocol requires an O(dn) delay in this worst-case scenario:
Since all processes send to all other processes, the conditions of the problem require that the
protoco[enforce a total order on the multicasts. Thus, the process u whose message is the kth
message in the total order must wait at least d(k — 1) time before sending its rnessae, or else it
cou]d not have received all k — 1 messages ordered before it. (This, of course, assumes that all
messages take the maximum time d to arrive.)

The worst-case scenario for an execution without the undeviating property is rather cemp1icaed.
Process pi, say, gives promises to all the other processes. Then, processes m through Pr. each change
their minds n times about their try-set before finally performing multicasts in turn while p, waits.
On receipt of PR’S multicast message, u1 changes its mind about its try-set and issues a new try.
But in the mean time. Pi gives new promises to all the other processes P2, . . p,1. Then pi requests
promises from its new try-set and, receiving those promises, advances its try-time past all the new
promises it has granted. Thus, the same procedure can start over and repeat itself for a total of n
times, since a1 call change its mind at most n times before a ready1 finally occurs. This worst-case
scenario results in a delay of O(n3d). However, the scenario is, at the very]east, unlikely.

For a deeper understanding of the true time complexity of the algorithm. one might state a
measure of the concurrency inherent in the pattern of try actions and derive a time complexity in
terms of that measure.

6.3 Possible Optirnizations

To simplify the presentation of the algorithm, we chose to only send one message in a relay1 action.
And for the sake of generality, we chose to let p send itself messages over the network. As a minor
modification, one might wish to send a sequence of messages. In addition, one might not want p
to send any messages to itself.

A more sigmificaait modification would involve not waiting for promises requested from processes
not in one’s try set. That is. ready wou!d become enabled once promises have been received from
all the processes named in the try-sd. even if p has requested a promise that has not yet been
received. Then pi would send out “bye” messages to every process in requested, regardless of whether
the promise had been received. This modification would require some mechanism for dealing with
promises that come in late. One migbt keep track of the number of earlier done, actions and tag
each request with that number; that tag would be appended to the corresponding promise by the
granting process. In this way, promises arriving from an earlier multicast attempt could be ignored.

20

Vc mentioned earlier that there are other ways in which promise advancement might be handled.
For example. one mighi not wish to wait until promises have been received from all the mezhers
Jr. the try-set before advanding promises. Aiternative1y. one might a processes request promise
advancement from those processes blocking its computation More specifically. the following options
are possible.

I. Advancement on demand: If a process p is in T with try-time = t. and has given a promise
to p for a time t’ less than t. then p may send p a message. asking it to advance the
promise. Upon receiving such a message. if p has try-timt > t’, then it wiU send p1 a promise
advancement messige.

2. Spontaneous advancement: This method allows p to nondeterministically send advancement
messages when it notices that it is holding a promise with a time less than its try-time.

Deadlock avoidance methods similar to these are discussed in [Mi], although the problem studied
there is different. In both cases, there is a trade-off between the message and time complexities:
as one becomes more agressive about advancing promises to reduce time delays, the number of
messages increases.

7 Impossibility Result

Recall that our correctness proof depended upon certain liveness assumptions about the user pro
cesses. Namely, the user processes are not allowed to stop at certain points in their executions.
It turns out that that these assumptions are. in fact, necessary in order to solve the logically
synchronous multicast problem.

In this section. we show that it is not possih[e to implement a solution to the logically syn
cI:ro:ious multicast problem that tolerates even a single stopping fault of a user process. That is, we
prove that there exists no wait-free implementation of a logically synchronous mtilticast protocol.

The proof proceeds by a reduction, using techniques developed by Herlihy [He]. We first demon
strate that logica’ly synchronous multicast can be used to solve distributed consensus. We then
appeal to the known result that distributed consensus cannot be solved in a wait-free manner [FLP].

The consensus problem is defined as follows. Consider n user processes uj.. . ,u,, where each ltj

has an initial value v {O,1} and output actions decide (0) and decide(1) to announce its decision.
A consensus protocol is correct if it satisfies the following properties.

1. Agreement: TI any user outputs decide(v), then that is the only decision value of any process.

2. Validity: If all processes start with v, then v is the only possible decision value.

3. Termination: All processes eventually output some decision.

We say that an implementation is trait-free if a process cart complete an operation within finite
tine, regardless of the exerution speeds of the other processes. Equivalently. an implementation
is wait-free if a process can eventual!y complete an operation even if some number of the other
processes halt at arbitrary times.

For consensus, completing an operation means beginning the protocol and at some time later
outpntt:rg a decision. For logically synchronous nulticast, completing an operation means issuing
a try output from region P and later receiving a done.

21

Lemma 20: If there exists a wait-free implementaüon of logically synchronous multicast, then
there exists a wait-free implementation of distributed consensus.

Proof Consider the following algorithm for reaching consensus among the ii user processes
a1,.. a,. in system A, where each u has an initial value v in {O,1}. First, each process u issues
trg1(I). Upon receiving a ready,, process u issues mtext(v1i. Upon receiving its first relay1(v).
process lij uses v as its decision value. (After receiving a rlay1, if u is in region W, it issues a
mtext:(c))

Agreement: Since all multicast messages are de!ivered in the same relative order to a1 asr
processes, they all decide on the same value. Validity: If all users start with 0. then the decision
will be 0, since that is the only value sent in a niulticast by any user. Similarly if all users start
with 1, then the decision wilt be 1. Termination; By the liveness condition, some process P1 will
eventually issue a ready1, and eventually all processes u will receive a re1ay(v) for some v. a

Theorem 21: There exists no wait-free implementation of ocally synchronous multicast.
Proof Suppose there were. Then by Lemma 20 there exists a wait-free implementation of

distributed consensus. But it is known that there exists no wait-free implementation of distributed
consensus [FLP].

8 Conclusion

We have def.ned the logically synchronous multicast problem and presented a highly concurrent so
luton. To conclude the paper. we illustrate an application of this protoc& in the area of distributed
simulation. Namely we consider distributed simulation of 1/0 automata.

The 1/0 automaton model has proven useful for describing algorithms and proving their cor
rectness (for examples, see [BI, FLS, CL, La, LM. LMF, LMWF, LT1, LW, WLLJ). Therefore, we
believe that a simulation system based on that model would be a useful tool to aid in the study and
ur.derstandirig of complicated algorithms. Distributing the simulation, besides being an interesting
exercise in itself, can also reduce the simulation time.

Recall from the definition of the I/O automaton model that input actions of automata are always
enabled, and tha.t as, action shared by a set S of automata is the output of only one automaton
and occurs simultaneously at all automata in S. In general. the actions enabled in a given state of
an automaton may depend upon all previous actions occurring at that automaton. Furthermore,
the fairness condition requires that given an automaton A and an execution a of A, if some class
CE part(A) has an action enabled in a states of a, then either no action InC is enabled in some
states’ occurring in a after s’. or an action from C occurs in a after state s.

We wish to construct a distributed system for simulating fair executions of a given automaton
A. where A has some finite number of components A1,A2,. - ,A,. To sntplify the discussion, We
shall assume that each component A1 has exactly one class in its partition. (The generalization
allowing each component to have a finite number of classes is straightforward.)

We simply “plug in” a particular transition relation for each u in system A such that all of its
schedules are in scheds(U1): We assign process a, to simulate component A1. when A1 has art action

enabled. ‘1 may issue a try,(S) action, where S is the set of autonata having as an acuon:
Then, upon receiving a ready input, u issues an rntext(r). where ,r is the action associated with
the previous try1. Furthermore, u1 can issue a mtartV) only if no actions are enabled in A,. The
relay1(r’) input actions are used to drive the simulation of A1. When a relay(r’) action occurs,
process u updates its state based on action ,r’ occurring in A1.

Tln a real implementation, one might have the system determine S based on 7r.

22

Given the schedue module 31 defined earlier, one can verify that the this distributed simula
tion satisfies the definitions of the model as described above. As far as Par]] of the components
of the simulation can tell, each action ,r occurring in the simulation happens simultaneously at
every component having K in its signature. It is interesting to see how this construction and the
ilveness condition of the multicast problem work together to satisfy the fairness condition of the
I/O automaton mode!.

A’though the problem described in this paper has an application to te simt]ation system just
described, we have presented it here as a general problem in a modu!ar framework. The problem
stateme,g, the aZgoritlin-i and its correctness proof, and the impossibility wsuit are therefore general
results, independent of any particular system or appiical.ion.

Acknowledgements

I would Like to thank ilagit Attiya and Jennifer Welch for suggesting the impossibility result, and
Nancy Lynch and Mark Tuttle for their he!oful comments on earier drafts.

References

[Aw] Awerbuch, B. Complexity of Network Synchronization. JACM 32(4), October, 1985, pp.
8O4823.

[Bal] Bagrodia, R. A distributed algorithm to implement the generalized alternative command of
CSP. The 6th Intavational Conference on Distributcd computing Systems. May 986. pp.
422-427.

Ba2 Bagrodia. R. A distributed algorithm to implement N-party rendezvous. The 7th conferer
on Foundations of Soft wore Technology and Computer Science Pune, India, December 1987.
Lecture Notes in Computer Science 287, Springer Verlag, 1987.

[BJ] Birinan, K.P., arid Joseph, TA. Reliable Communication in the Presence of Failures. ACM
Transactions on Computer Systems, 5(1):47—76. 1987.

[Ui] Bloom, B. Constructing Two-Writer Atomic Registers. 6th AcM SIGACT-SIGOPS Sym
posium on Principles of Distributed Computing. Vancouver, British Columbia. Canada. Au
gust, 1987, pp. 249-259. Also. to appear in Special Issue of IEEE Transactionson Computing.
on Parallel and Distributed Algorithms.

[DoD] Department of Defense, Ada Programming Language, ANSI/MIL-STD-1815A-1983.

[ELS] Fekete, A., Lynch, N., and Shrira, L.A Modular Proof of Correctness for a Network Synchro
nizer. 2nd Intcrnationai lvorkshop on Distribu:cd Algorithms, Amsterdam, The Netherlards.
July4 987.

FLP Fischer, M., Evucft, N.. arid Paterson, it. Impossibility of distributed consensus with one
family faulty process. Journal of the A CM, 32(7):374—382, 1985.

[GL] Goldman, K.J., and Lynch, NA. Quorum Consensus in Nested Transaction Systems. 6th
ACM SIGACT-SIGUPS Symposium on Principles of Distributed Computing,Vancouver,
British Columbia. Canada, August. 1.987.

23

[Re] Herlihy, M. Impossibility and Universality Results for Wait-Th-ee Synchronization. In Pro
ceedings of 7th ACM SIGA CT-SIGOPS Symposium on Principles of Distributed Computing.
Toronto, Ontario, Canada, August, 1988, pp. 276-290.

Ho] Hoare, C. A. R. Communicating Sequential Processes. Prentice-Hall, 1985.

Lal Lamport, L. Time, docks, and the ordering of events hi a distributed system. Communca
tions of the ACM, ‘27(7):558—565, 1978.

{LG] Lynch, NA., and Goldman, 1(1. Distributed Algorithms. MIT Research Seminar Series
MIT/L.CS/RSS-5. May 1989.

LM1 Lynch, NA., and Merritt, M. Introduction to the Theory of Nested Traaisattons. I€DT86
International Conference on Database Theory. Rome, Italy. September, 1986, pp. 278-305.
Also, MIT/LCS/TR-367 Jury 1986. A revised version will appear in Theoretical Computer
Science.

LMF Lynch. N.. Mansour. V.. and Fekete, A. Data Link Layer: Two Impossibility Results, In
Proceding3 of 7th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com
puting. Toronto. Ontario. Canada. August. 1988. pp. 149-170.

[LMWF] Lynch, N., Merritt, M., Weihl, W., and Fekete, A. Atomic Transactions. In progress.

[LT1] Lynch, NA., and Tttttle, MR. Hierarchical Correctness Proofs for Distributed Algorithms.
Masters Thesis. Massachusetts Institute of Techno]ogy, April. 1987. MIT/LCS/TR-387.
April. 1987.

[LT2] Lynch, NA., and Tuttle, MR. Hierarchical Correctness Proofs for Distributed Algorithms.
In Proceedings of 6th ACM SIGA CT-SIGOPS Symposium on Principles of Distributed Com
puting. Vancouver, British Columbia, Canada, August, 1987, pp. 137151.

LT31 Lynch. NA., and Tuttle, XLR. An introduction to Input/Output Automata. CM’! Quarterly.
CWI Amsterdam. September 1989. to appear.

[LW] Lynch, NA., and Welch, JL. Synthesis of Efficient Drinking Philosophers Algorithms. In
progress.

rMii Misra. I. Distributed Discrete-Event Similation. Computing Suroeys, 18(1)39—65, 1986.

[WLL1 Welch. J.. Lamport. L., and Lynch, N. A Lattice-Strucrured Proof of a Minimum Spanr.ing
Tree Algorithm. In Proceedings of 7th ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing. Toronto, Ontario, Canada, August, 1988, pp. 28-43.

24

