
Paralation Views:
Abstractions for Efficient Scientific Computing

on the Connection Machine

Kernieth I Goldman

June 22, 1989

Abstract

An ideal parallel programming language for scientific applications should provide flexible ab
straction mechanisms for writing organized and readable programs, encourage a modular program
ming style that permits using libraries of tested routines, and, above all, pernut the programmer
to write efficient programs for the target machine. We use these criteria to evaluate the languages

Lisp, Connection Machine Lisp, and Paralation Lisp for writing scientific programs on the Con
nection Machine. As a vehicle for this exploration, we fix a particular non-trivial algorithm (LU
decomposition with partial pivoting) and study code for implementing it in the three languages.

Based on our findings, we propose two extensions to Paralation Lisp for writing scientific pro
grams. The first extension is a new mapping facililty, which reduces communication overhead from

OOg ii) to 0(1) in rnasiy situations. The second extension, called Paralation Views, is an enhance
ment of the Paralation Lisp shape facility. By allowing the programmer to view the same set of
data with multiple abstractions, this extension results in programs that are both more readable
and more efficient. A possible implementation strategy is presented. Paralation Views integrates
well with the existing Paraiation Lisp language and provides excellent support for modularity and
nested parallelism.

Keywords: programming languages, parallel programming languages, SIMD architectures, Con
nection Machine, scientific programming, data abstraction

@1989 Massachusetts Institute of Technology, Cambridge, MA 02139

This research was supported in part by the National Science Foundation under Greant CCR-86-
11442, by the Office of Naval Research under Contract N00014-85-K-O168, and by tire Defense
Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125.

1 Introduction

For a programming language to be acceptable to the scientific con:rnunitv. it must provide tools
for writing programs that run efficiently on the target machine. This reqi rement, whic]i cannot
be overemphasized, partially explains why FORTRAN has remained the overwhelming favorite for
writing sequential scientific programs. Of course, exible data abstraction mechanisms and support
for modular programs can result in considerable savings in initial design effort, debugging, and Later
modification of programs. But these features alone do not constitute a good language for scientific
programming; when given the choice between a Irifl-level larigLage with degraded performance
and a low-level language with good performance, the scientific co:nrn-jnity will invariably prefer the
latter.

However, we conte:[d that such a trade-off is not necessary- In this paper. we evaluate three
languages in terms of their utility for writing scier’tfic programs on a particular parael archie
ture. The languages, all derived from a common base language. range from relatively low-level to
relatively high-level. We consider the advantages and disadvantages of each language in terms of
its expressive power and its efficiency. Based on our findings, we propose enhancements to one
of the high-level languages that result in the ability to write programs with efficiency comparable
to that of programs written in the “low-level” language. Interestingly, these enhancements do not
take the form of low-level system calls or awkward hints to an optimizing compiler, but rather take
the form of additional abstraction ,nchonisrns that not only aLow programs to run faster. but also
result in code that is more moduar arid easier to read.

As our target machine architecture, we use the Connection Machine [5]. specifically the CM-2
r13]1 The Connection Machire is a SIMD cornpier (Single Ir.strcction. MutoIe Data) with 2’
processing eements, each having 64K bits of loca memory. The processors are arranged in a 12-
dimensional hypercube communication network, with 16 processors and one communications router
per chip. When the network is uncongested, communication may be considered to be a unit time
operation. User programs, which run on a front-end computer, cause instructions be broadcast to
the processing elements on a bus. This bus is also used to retrieve data from the processors for
delivery to the front-end.

In a SIMD compu.er, the processors execute the same instruction siinutaneousv. but the
results at each processor may depend upon data values in that processors local memory. Each
processor maintains a context bit, which indicates whether or not it is active. Certain instructions
are conditionul. executed only by active processors. The remainirg ir.structiois are unconditional,
executed by all processors. Tnst,uctions may cause local computation, communication, or a change
in the set of processors. In addition the Connection Machine provides a ‘wired-OR, which
allows certain global conditions to be computed quickly. For example, the wired-OR is useful for
determining when all processors have terminated an iterative computation.

The languages we consider are tLisp [14], Connection Maclilac Lisp [11, 1, and Paralation
Lisp [8, 91- All are based on Common Lisp [10], and all have implementations running on the
Connection Machine. In Lisp, the most low-level of the three, programmers explicitly control
the context bits of the processors using speciaJ functions, aid no data abstraction mecha&sms are
provided. Programs in tLisp tend to be monoJithc. but quite eñcient. Connection Machine Lisp
provides a single abstraction. cailed the rapping. which permits context to be selected implicitly.
However, significant cornnrnaication overhead often results from nanipuIating xapnngs. especialLy
when one wishes to work on only a portion of a Yapping. In addition, the xappirmg may not. ho

1This paper does riot. addre5s the question of whether or not the Connection Machine architecture is veIl-suited
for particular scientific applications, but simply takes the machine as a given and concentrates on the language issues.

the most usefu abstraction for many scientific applications. Finally. Paralation Lisp provides the
ralotion as the abstraction mechanism, and allows progranrners to creaSe paralations of arbitrary
shorK-s. wi.h particujar locality properties and access methods. A small set of powerftsl operators
for manipulating parala.tions are provided. The locality properties can result in improved efficiency,
but working with portions of a paralation remains diThcult and expensive. The power and generality
of the communication mechanism can result in unnecessary overhead.

Based on our observations about these languages, we propose two extensions to Paralation
Lisp. The first extension is a new mapping facililty that reduces communication overhead from
O(lgn) to Q(1 in many common situations. The second extension, called Pa,nlation Views, is
an enhancement of the shape facility that allows a given paraJation to be viewed not ony as a
single shape. but as multiple different shapes. Wi h this facility different views of the data may
be efflcientlv created during program execution usir.g a special set of operators (project, split.
and ettroct). Thus, at each point in a program. the abstraction appropriate for that stage of the
computation may be used. In addition. Paralation Views permits many operations to be performed
in placr that would otherwise incur expensive communication overhead. Therefore, programs using
this facil5ty are both more readable and more efficient. Paralation Views integrates well with the
existing language, and gives excellent support for modularity and nested parallelism.

The remainder of the paper is organized as follows. hi Section 2, we describe a particular al
gorithm that is used as a starting point for our discussion of the languages. An overview of each
language is presented jr Sectior. 3. and evalaations and comparisons are made based on aria1vsis of
correspo:iding code for the example algorithm. In Section 4, we present the new mapping facility
for reducing communication overhead In Section 5, we present Paralation Views, and Section 6
presents the exanipie algorithm written using Parajation Views. tn Secron , we discuss implemen
tation. Fnally, Section 8 describes a programming paradigm which is usefu for achieving nested
paralellism using Paralation Views. We conclude with a summary and some possible directions for
further research.

2 Au Example Algorithm

As a co,urnon thread throughout our discussion of the languages. we fix a particular non-trivial
algorithm that is amenable to efficient execution on he Connection Machine. The algorithm, LU
decomposition with partial pivoting, is non-trivial for several reasons. First, the communication
pattern is data dependent. One cannot predict which processors will send messages to which other
processors at a given stage of the algorithm unti actually reaching that stage. Second, it requires
the set of selected processors to vary throughout the execution; not all processors participate at all
times.

LU decomposition is useful for solving systems of linear equations. A matrix L is unit lower
triangular if and only it all elements on its main diagonal are 1, and all elements above its main
diagonal are 0. A matrix (I is upper triangular if and only if all elements below its main diagonal
are 0. Consider the equation Ax = b where A is a:’ ii x n matrix aid & is a vector of engtl; n.
One way to sove for z is to perform the following steps. First. decompose the matrix .4 into a unit
lower triangular matrix L and an upper triangular matrix (I such that .1 = LU. 2 Then, solve for
yin Ly = 6 by forward eiminatioi.. Finally, solve fo x in (Zr = y by back substitution.

L U decomposition with parfial pivoting has been stidied extensively a.s a parallel algorithm
[2, 6]. The input to the algorithm is an m x n matrix A. The output matrix is obtained by

2We should note that an LU decomposition does not exist for some matrices [1]. The programs in this paper do
not check for this situation.

9

L1j-oEcosPosIrIo%(: nx
vector I: n x n. Temp: n x n
for i 0 to n — 2

do v, k — MAX-SCAN(i,A) / max-row 4/

t — —1.0/v
if (row(I) i and col(1) i) swap

then Temp — A
A A(k.col(I))
A(k.cM(I)) — Temp

if (row(1) > i and col(I) = i) /4 normalize *7
then A — A.t

if (row(I) >1 and cot(fl > i) 1* updu€ /
theTi A ‘— A ± A(row(1).i) Ai.ccI (I)

return A

MAX-SCAN(J, M ‘ax ‘a)
vector I: ‘ax ‘a, R: ‘ax ‘a

a—I
whUe (row(L) —k) ?

do if abs(M) < abs(M(1—k,i))
then M — M(I—ki)

R — R(—k,i
k — 2k

return M(n. i).R(n. i)

Figure 1: LU Decomposition Program in SIMP Pseudocode.

successively modifying .1 with a sequence of steps that is executed for each index I fron, 0 to ‘a —2:
1. Max-row: Find v, the maximum absolute value in column ion or below the main diagonal,

and let k i be the index of a row having v in column i.

2, Swap: Swap elements i through ‘a — 1 of rows i and k.

3. Normalize: Multiply all elements below the main diagorta] in column i by the value —1.0/v.

4. Update: For all i < r,c < ‘a, let A[r,cj = A[r,c] + A[r,i] • 1[i,c].

The resulting matrix (call it M) is not actually the LU decomposition of the original matrix A.
but is si:fli&ent for soivi rig systems of equa.tirn-s of the form Aa = 6. Let A’ be the input matrix
with whole rows reordered according to the sequence of swaps performed in the algorithm, and let
A’ = VU’. The values on and above the main diagonal of Al form U’, aid the negated values below
the, main d!agonac of 11 (with partia rows reordered as for form the matrix .1’? By slinflarly
reordering b, one can find x using forward elimination and back substitution as described above.

The SIMD pseudocode in Fgare I iustrates the steps for executing tins algorithm on the
Connection Machine. The pseudocode syntax is due to [4]. Vectors are allocated one element per
processor. “I” is a special vector that declares the maximum (and initial) set of active processors.

Pazrai pivoting may- save time and/or space or’ some systems 2, btL there sems to be no reason to avoidswapping enore rows ri Step on he Cai:ecri1rt Mar!’ ii-, - Tins would criabie one to read 1 Ii icct!y (on, Ioutput matrix wiIInut reorderitig. However, we do the pall pivoting for p,iii)Oses)1 liIISlT;,flOI].

3

On each processor, “I” contains the id of that processor, and row(I) and coifl) denote its grid
coordinates. Context is modified by the if statement and the while statement, which terminates
when rio processors are active, :Vector variable without a subscript refers to the elements of
that vector at active processors .Avector variab’e with a subscript denotes a “get” or “send,’ as
appropriate. The MAX-SCAN subroutine is an example of a logarithmic scan computation.

Throughout the paper. we assume that the elements of the input matrix are appropriatefv
distributed on the Connection Machine processors. one element per processor. We do not consider
how I/O is handled in any of the anguages. In addition, we do not address the questoE of warther
or not this particular algorithm is the best one for solving LU decomposition on the Connection
Machine, or even if LU decomposition is the best way to solve systems of linear equations on th
Connectioll Machine. We simply take the algorithm a a useful vehicle for exploring the languages.

3 Three Languages

This section compares three languages, *Lisp, Connectio9 Machine Lisp. and Paralation Lisp, in
terms of their abiliby to express efficient scientific programs for the Connection Machine. For each
language, we present a brief overview and discuss its particular strengths and wea1nesses. referring
to corresponding code for LU decomposition. Although glancing at the example program for eachlanguage is useful, it is not necessary to understand all the details ii’ order to benefit from the
discrission. In Section 3.4, we summarize our observations a”3 motivate the ideas presented in
later .ections.

3.1 *Ljsp

3.1.1 Language Overview

The parallel data structure of Lisp is the pt’ar, which represents a. s)ice’ of the Connector
Machine memory: a pvar is an array having one element at the same address in each processor.
At initialization time, one specifies whether pvars in a program are one- or two-dimensional. One
cannot mix the two types in the same program. The function *defvar creates a permanent pvar,
and *let creates a pvar in the current scope. In addition, a pvar can he created with a I! suffix
(called the “bang-basig” operator). For example, 3! ! creates a pvar in which every element contains
the value 3. (One might think of U as the front-end shouting to the processors!!)

Individual entries ofa pvar are accessible with pref and prof—grid. depending upon the number
of dimensions in use. For example. if mat is a two-dimensional pvar.

(setq (prof —grid mat 3 4) (pref-grid mat 5 4))

copies the value of mat in processor (5,4) to the location of mat in processor (3,4). At the timea pvar is created, the currently selected set (i.e.. the set of procecsors whose ccr:text bit is 1)
determines which processors contai:i values for tl,at pvar. Theref;ce, if processor (SAl or (&4)is not in the selected set when mat is creat’d, the above staternenL causes all en or. Processors
may discover their own addresses with the functions self—address ! and self—address—grid!!,
which takes a dime,sion argurment.

The currently selected set is modified by a set of special functions. For example. ilL the statem?flt
(tall body). every processor is active at the start of body. Within body, a statement of the
form (*when predicate nested-body) would cause all processors whose local variables do not satisfy
the predicate to he removed from the currently selected set before nested-body is executed. The

4

(.defun lu-decomp (mat-pvar n)
(*let ((temp mat-pvar)

(result))
(row (self-address-grid! C))
(ccl (seli’-addres-grid 1))

(declare (type (pvar double-float) temp)) optimizes operations on temp
(declare (typo (pvas double-float) result)) optimizes opcratious on result
(tall

(do ((10(1-’ i))
(i (1— n))

(result)
(*when (logaid!! (>!! row i!l) (rl! ccl II!)) max-row

(setq v (*max (abs!! temp)))
(ewhen (& temp vH)

srtqk (.r:i row))
(when logaid row i!) (>rr ccl i!) swap

seC resulr pref-grid!’ temp k’ co :,ioc]isicsr
(setf (pref-gridH temp k!! ccl nocoiiisions) t.emp))

(*when (logand!! (>!! row iN) (!! col i!)) normalize
(.set result (*!! temp (/ —10 v)!O))

(*when (logand!! (>!! row III) (>!! ccl i’m update
(set temp -,-! temp *!

(srd-gr:d!! result row i rriany-collisons)
(pref-grid resuit coi manv—coWsioiis)))fl))

Figure 2: LU Decomposition Program in Lisp.

currently selected set is dynarnicaLv scoped. A:er rested-Lw,dy terminates, the currently selected
set is restored to the vajue it ha.d before the *when.

The bangbang operator is used to express parallel computations. The statement

(seta pvar—a C.!! pvar-a pvar—b))

increments the values in pvar-a by the values in war-b (n the currenCy aCtive processors. Corn
munication is accomp’ished similarly with pref! ! and pref—grid! . To optimize communication,
the programmer may specify “no-colilsions,” “many-collisions,” or “collisions-allowed” as an op
tional argument, according to the number of reads from the same location. For data aggregation.
tLisp provides a set of functions which operate on the cnirrently selected set. For example. (*min
pvar—a) returns the smallest vajue in pvar—a among a active processors. In addition, the fijuc
tions sca& and scan—grid!! are available for per:orrrting a scail cozuoutatior, on a pvar with a
combining function chosen from a predefined set (e.g, +, , etc). The programmer may rot supply
an arbitrary function to scan!!.

3.1.2 Discussion: Why Lisp programs are non-modular

Figure 2 contains the tLisp program for LI: decomposE.tioa. One striking feature about Lip k
that writing efficient progranis is fairly easy, because the machine model is completely trarspareit.
The programmer has complete control over how the data is distribited on the processors. Processor
selection is made explicit, and it is obvious when’ the cciii muiricatioix is taking place. Ili ‘its to lie
compiler, like the types of pvars and corn mu :iica’lohi coLision rates. provi ile add itior[ai control.

0

Tins closeness to the machine model also causes some problems. In. the LU decomposition exam
pie. we were iorlunate enough to have a two-dimensional grid as our only data structure. However.
programs that use niore complicated data structures or mix different types of data structures must
perform awkward address computations. A related problem, that causes Lisp programs to be
rather monolithic, is that one can’t isolate a portion of the data and pass it to a function as a new
structure. Lt is possible in *Lisp to select a set of processors and then call a procedure, hut the
procedurn is forced to work wi!.lin the coordinate system of the larger structure. One cannot create
a library of routines that operare on vectors, and ther pass pieces of rows or columns of matrices
to them.

Also contributing to the non-modularity of programs is a peculiar interaction between the
apEcaflve style of lisp and the nested selection operators of tLisp. This interaction makes it
difficult to use an applicative style. Instead. I he comfortable programnilng paradigm is: set context.
compote, set variables, set context, etc. In support, of this claim, consider the following applicative
style code fragment that attempts to compute Step 1 of the example algorithm.
(*utin (*when (=H matrix (max

(*when (logandfl (H co]. U!) (>!! row i!U) (*defvas p matrix))))
(*defvar q row)))

The *max expression is supposed to find the maximum value v in column i, on or below the main
diagonal. The surrounding *min is supposed to find the smalLest index among rows having v in
column i on or below the main diagonal. But this is not what happens. Because the selected set
is resiored on return from the inner •when, the pvar p is Rot dened for all the seLected processors
when the maximum is taken. Therefore, the *max clause references undefined values! Even if we
suppose that the *max clause returns the correct value v, the final value returned is still not thedesired miex, but instead is the mnin’um row index among all elements with value -v in the entire
matrix. This is again because context is restored upon return front the inner *vhen.

One possible so)ution is to avoid epiicit context selection in programs by providing higher-level
language features that permit selection to be accomplished implicitly. This approach is taken by
the next language we consider.

3.2 Connection Machine Lisp

Connection Machine Lisp provides a single data abstraction, the zapping (read “zapping”), which
maps a domain of values to a range of values. Since exactly one value from the range is specified foreach vaue n ihe domain, a xapping is a mathematical function. Xappings are written as foiows.
{ a—iS b—32}

A zet is a xappiug in which each domain element maps to itselL A xappitlg whose domain is aprefix of the non-negative integers is called a zector. and may be abbreviated as a sequeuce of
vaiues in square brackets. A constant xapping maps all indices to the same value. For example.
{—c} evaluates to cat all indices. The function xref is used to eva ate a xapping at a particuJarindex. Complex data structures are created by nesting xappings. A matrix might be representedas a xector of xectors, where each inner xector is a row of the matrix.

Besides simp!v tvphig them in. xapp:Igs may he created with iota and the a operator. Thefunction iota takes a integer length as input and returns a xecor xet of that length. For example,
(iota 4) returns the xector [0 1 2 3]. The a operator is a powerful tool that takes a value andproduces a constant xappir&g with that value. Extending Lisp to allow xappings in the position offanction calls enables the o operator to be used for performing functions element-wise on a xappingor set of xappings. to produce a new xapping. For examp.e,

6

(a* (iota 4) ct3) = [0 3 6 9]
(a+ (iota 4) (iota 6)) [0 2 4 6]

Notice that the function is applied oniy to the values whose indices are in the intersection of the
two domains. The o operator may he factored out of expressions. using • as its inverse. The first
expression above is equivalent to a (• (iota 4) 3)

Parallel tommnication is accomplished with tIre .3 operator, which lakes a combining [unction
a destination cappilig d, arnl a source xapping x. One can think of the elements p —. q of

destination xappilLg d as saying, “send (xref x p) to processor q.” If q occurs more than once as
a value in ci, then the values sent to q are combined according to f. So, in the resulting xapping,
the domain is determined by thc values of 1. and the range is de:crrnir.ed by the values of r. For
ox amp I e.

(3 ‘{ a—O b—i c—1 d—.3} ‘{ a—37 b—’4 c—*16 d—9 3) { O—37 1—64 3—9}

Aggregation on a single xapping is also accomplished with the j3 operator. An expression of the
form (/3f x) returns the value produced by combining all the values of xapping x with function f.
For example. (8mm x) would return the minimum value in xapp!ng x Mw combininz function
may be supplied.

CM Lisp provides a number of operators for xappings. For exarple, zunion takes two xappings
and a combining function, and returns the union. The combining function is applied when the
same index occurs in both xappings. A special combining function, 0, signals an error if it is called.
The function over is defined in term of xunion:

(defun over (a t) (zunion U’(lar,bda x y) x) a b)

It simply takes the union of the two xapings. takir.g the value of the first when an index is defined
ri both. The function in, defined ir. terms of ci, intersects the don:ains of two xappings and takes

the values from the first. Other functions inc]ude shift which subtracts a specified integer from
all the indices of a xector. In our example program, we use the functions outer—product and
transpose, which work as their names suggest.

3.2.1 Discussion: Why xappings are not enough

Processor selection is implicit in CM Lisp. By operating on a particuiar data struct.Jre, one
impilcitly selects the relevant processors. Therefore, it is relatively easy to use an applicative style
in CM Lisp. In addition, the ability to create new xappings containing portions of old xappings
and passing them as arguments means that programs can be structured in a modular way. These
cla[ms are supported by the example program in F3gure 3. (The input matrix to the lu-decamp
function is a xector of xectors. whose inner xectors form the rows of the matrix.)

Xaopings are intented to hide the machire model. The programmer thinks only in terms of
abstract operaTions on xappings. An unfortunate side-effect of this particular design, however,
is that things that should be easy to do on the Connection Machine become very difficult and
expensive in CM Lisp. Selecting groups of processors for in-place parallel operations is one of the
strengths of the Connection Machine. Yet most of the code in our example algorithm is concerned
with maaiipuating the xappings in order to extract the right pecet of data before operating on
them, and then putting the computed data back in the right place. This makes it difficult to glance
at the program and find the under1vng algorhlun.

fake a deep breath asd consider the norm routine in Figure 3. The function takes an index
i, a size n, and a square matrix mat (organized as a xector of rows), and is supposed to multiply

(deflin mask (i n)
(shift (iota (— nfl) —ifl)

(defun bigger (x y)
(f (< (abs (car x3) tabs (uir y))) y x))

(defun max-row (in mat.)
(let ((cal (clit (xref (transpose mat) 3 (iota ifl3)

(cadr (3bigger (in col (mask i n))fl))
(defun swap(i n mat)

(let* ((rowi (xref mat i))
(k (max-row i n mat))
(rows (if (eqi i k) rowi

(flC{i—k ,k—,i} (xunion #© rowi (xref mat kfl)
a(over •(irl rows (mask i)) •rnatfl))

(defun norm i n mat)
fleEt ((V (7-1 (xref (xref mat i) I)))

(linat (transpose mat))
(coil (xref tmat i))
(newcol (over (a. (in cdi (mask (÷ Ii) nfl v) corn)

(transpose (over { ,newco} tniat)))
(defun update (i n mat)

(let (Cm (mask (+ i 1) ii))

(a (in (xref mat i) ni))
(h (in {xref (transpose mat) i) lfl)))

a(xunion 4-I- •(outer-product a b) •mat)))))
(de fun u— deco,np (matrix ix)

(let ((mat matrix))
(do ((I 0 (+1 i)))

(eqi 1(1— n)
(mal)

(seto mat (update i r. (norm i n (swap i n mat))))))

Figure 3 LU Decomposition Program in Connection Machne Lisp.

the elements in column i beiow the main diagonal by —1.0/matf ii]. First, two levels of indexingare required to obtain v = mat[i, I]. Then, mat is trassposed in preparation for extracting the 11h
column as cariable coil. Next, a. mask xapping is computed for intersection with coli to prothiuea xappiug containing only the elements below the main diagonal. The real work of multiplicationis then done. (One could easily miss the * and ov in the fourth line.;’ The resulting xappir.g isplaced over the old column to form n wcol. Finally, a nested xapping of one element is crea.te4 toplace the ,,,ewcol over the transposed matrix to form a new matrix, which is then re-transposed andreturned. Besides being awkward for the programmer, these rnanpulations are expensive at runlime. The program performs two transpose operations two over operatons, one mask creation,and one mask application. The over operations could he inexpensive, provided that the pairs ofxappings are aligned properly. i[owever, CM Lisp makes no guaraaitees about locality, Arid anyhigh-level implementation of transpose would certainly incur cornrnnnicaton costs. Just creatingthe mask takes two O(lg a) steps (iota and shift). And communical ion cost is incurred in orderto apply it. Thus, lasguage problems cause aD algorithmic step that should take constant time toactually take O(lg it) time.

Another problem with the xappir.g ahst; action is that urniti dimension ai stru rtures must be

S

created by nesting. This makes operating on an entire structure rather awkward. The programmer
must keep track ol how many Jevels deep the a opcrator should be applied. For example, consider
these four matrices, each represented as xappings of xappings:

F a b ci Fa b cl [a b C
e B= d C=Jd e H e fLg h j [iJ h ij h

A programmer might write (over A B) intending to conpute matrix C, but would actually get
matrix D. (The correct statement would be (aover A B).)

Lucidly, the problem is not that abstractions are a bad idea for parallel languages. but that
the xapping is not a flexible enough abstraction. One coud imagine a language like CM Lisp that
allowed one to avoid the masking problem as follows. Suppose one could a-apply a function to
a xapping suet, that the results of the function were conditional on the index of its argument. A
function of the form “if index > i, then,., else.. .“ could help to solve the problem we saw above.
In addition, one might provide tools for creating “lore complex data structures with user-defined
access methods and locality properties. Such ideas are explored by the next language we consider.

3.3 Parahition Lisp

The Paralation Model [8] is intended to be a machine-independent model of programming, but we
consider it here only in terms of the Connection Machine. The abstraction mechanism provided
by Paralation Lisp 8, 9j is called the parniatiun. a contraction of paraUeP’ and reIation.” A
paralation consists of a number of sites, which are numbered sequentially from zero, and a number
of fields. The paralation’s length (number of sites) is fixed when the paralation is created, but fields
can be created dynamically. A field has one value (of any type) at each site. Every parab.tion
has an index field, which contains the site-id at each site; this field is created and returned by the
make—paralation function, which takes a length as its argument. Additional fields can be created
with the elwise function, which takes a List of fields of a paralation. performs an element-wise
computation on those fields, and returns the result as a new field in that paralation. The lines

Csetq my—par (malce—paralation 5))
(setq times2 Ceiwise (my—par) (* my—par 2)))
(setq sum (elwise Ctirnes2 my—par) C+ tixnes2 my-par)))

produce the following paraatior.:

my-oar times2 sum

TH
4 8 12

Aggregaton is performed with the no! function, which applies a combining function to the
elements of a paralation field and returns the result. Communication is accomplished by the
function <— (“move”) whic.h takes up to four argi,moi,ts: a source held, a CoiIII)iiiing fu ‘,cflon. a
default field, and a mapping. A mapping is a colLection of directed arrows from the sites of the
source field’s paralation to the sites of a destination pasalation. There is no restriction on the
number of arrows originating from or arriving at a given site. The move function creates a new

9

field in the destination paralatioti specified by the mapping, and then sends the data in the sourcefIeld to the sites of the new field according to the pattern of the mapping arrows. If more than onearrow Emanates fr,nri a given site, the data from the source field is sent to all the correspondingdestination sites. If more than ore arrow arrives at a given site, the data is combined according tothe specified combining function which can be arbitrary. If no arrow arrives at a given site, thedata, at that site in the default field is used. In general, a move operation requires O(lg n) time,Note that <— is more general than 5 communication of CM Lisp because a data item can be sentto more than one place.
A mapping is ulost commonly created with the match function, which takes a source ad idestination field, and produces as arrow from a source site p to a destination site q if ad oily ifthe source field at p contains the same value as the source feld at q. This can be quite useful forsymbolic computation (e.g.. dictionary Iook’apY Producing a maping with match involves sortingand requires O(lg n) time. Special-purpose rnappi:mgs :nay also be created with the functions chooseand collapse, which create new paralations when used with <—.

The Paralation Lisp shape facility permits the optimization of commonly-used communicaHotis patterns and the definition of natural coordinate systems for accessing paralations. Themake—shaped—paralation function takes a list of mappings (from a field to itself) and returnsa new paralation of the appropriate length. For example. a ring-shaped paralation might havemappings to rotate a field one position in the clockwise and counter-clockwise directions. Thesemappings can later be used by supplying an index to the shape—flap function. In addition to mappings, access functions ma> be associated with a paralation. The standard Common Lisp functionelt is used to access paralation fields by site-id. If he desires, the programmer can define an fretfunction for a paralation to perform access in different coordinate system, and may supply a printfunction to print out the fields of a paralation differently. In this way, a grid-shaped paralation maybe accessed using row and column indices and may be printed in a form reminiscent of its shape.While shape mappings are snppli’d when a paralation is created, the access functions are addedto existing paralations with define-shape—access, which may also be invoked on an unshapedparalation Implementations of Paralation Lisp may provide libraries of fnnctions for creatingpa.ralations of various shapes.
Faralation Lisp has a notion of locality. Field entries for the same site in the same paralationare ronsderod to be flFat each ofller. In addition, the sites connected by mappings supplied for ashaped paraJation are considered to he near each other. The compiler may lay out the paralationon the machine so that the arrows of the mappings ase ‘short” Data in different paralations areconsidered to be jar.

3.3.1 Discussion: Why too much power can hurt
A Payala.tion Lisp program for LU decomposition is shown in Figure 4. The input matrix isassumed to he a grid-shaped paralation. The program is relatively easy to read and understand.largely because of the ability to reference the matrix using a nat urn! coordiiate system. Even thoughthe program makes no use of predefined grid-shaped Ilapj>ings for communication, it benefits fromthe locality inftrmnaton supphed by those mappings.
A close look at the example program revca!s only one use of <— and no use of match, evenLiiouh the algorithm does quite a lot of communication. The reason is efficiency. Rather thanuse these expensive operators, fref are used to accomplish communication. Although this (hack)seems against the grain of the paraiation philosophy, it makes the program run significantly faster.Consider the following alternative version of I he swap routine.

(defii n alt -swap (i row Col mat!

10

(defun bigger (a h)
(if (> (abs (second b)) (abs (second a))) b a))

(defun max-row (I row col mat)
(let ((col- (elwise (row col) Gogad (> row i) vol fl))

(pairs (<— (elwise (row mat) (list row mat by (chse col-i)fl)
(vref pairs :wth #higger :els€ 0)))

(defun swap (i row vol mat)
(let ((Ic (max-row i row col mat)))

(clwise (row ccl) (vend ((logand (= row i) (>= ccl I)) (fref mat k col)
((logand (= row k) (>= caL i)) (fref mat i col))
(t (fref mat row

(deEm norm (i row vol mat)
(let ((t (/ —LU (fref mat ii))))

(eIwist(ro;c co mat) (if (logand (= ccl i) (> row i)) (* ma t) rnarJj)
(defun update (i row vol mat.

(elwise (row cal mat) (if (logand (> cal i) (> row i))
(-i- mat (* (fref nat row i) (fref mat i cal))) mat)))

(defun Iu-ckcomp (values)
{lets ((mat (ciwise (‘lues) values))

(n (sqrt (length flat)))
(self (site-names mat);
(row (elwise (self) (rst self)))
(col (elwise (self) (second self))))

(do ((i 0 (1+ 1))) (= i (sqrt (length maQ)) mat
(setq mat (update i row col (norm i row col (swap i row cal matfi)))))

Figure 4: LU Decomposition Program in Paralation Lisp. The functions swap and alt-swap are
inrerchangable.

(let* ((Ic (max-row i row col mat))
(newrow (elwise (row cal) (coimd ((logand (r row i) (>= ed i)) k)

((logand (= row k) (>= col 0)1)
(t row))))

(origin (eiwise (row ccl) (list row co))
(dest (elwise (newrow cal) (list uewrow coO)))

(<— mat :by (match dest origin))))

The routine is longer than the one in the exanmpe because it needs to set up the key fields for the
match. To compute the relative speeds of the two functions, assume that our matrix exactly fits
on the Coqnectior Machine, with oae element per processor. The match furction. which produces
a canoiiicajized mapping by means of two sorting steps. takes roughly 60 milliseconds (the timn for
two sorts on the Connection Machine L13]). In general, the <— operation also performs a sort, but we
will assume that the compiler is smart enough not to sort if a combining function is not supplied. It
takes 260 to 820 microseconds for all processors to send one message to some other processor. The
frets in the exanipe program would probaby be implemented as a get which translates rougl:ly to
two send operations. Since there are two sets of frets ir. swap fiat acuafly cause cofl’Inuliicatioii4.

Since mat is not aul elwise variable, fref must be ned in the default vase of the rr,nditioiid I, even thtnpftl, rio
romnh,Inicaton occurs.

11

I Language Lisp CM Lisp Paralation Lisp
Parallel Variables pva: xapping, xector. xet paralation field
creation *deivar tier. H iota, a make-paraiaxion, elwise
strucl.nre fixed linear or grid nested xappings user-defined shape
access pref, pref-grid xref elt, fref

coordinates fixed index xapping domain user coordinates
Processor Selection *all *when , etc. implicit implicit
Parallel Computation a, • elwise
Comrntsnicatioii pref!!. pref-gr[dH df d x <— with mapping
Aggregation scanH, scari-gridi (Jf r) <- with mapping.

max. trnin, etc. vref. choose
comhinir.g function fixed set arbitrary arbitrary

Figure 5: Language Summary Table

the entire communication takes about 2 milliseconds. Therefore, the alt—swap routine would run
thirty times more slowly than swap

So. efficient Paralation Lisp programs are characterized by (1) working on entire data structures
(as opposed to passing portions of them as new paralatior. to more general routines) and (2) using
fref for communication (as opposed to the general communication primitives provided by the
language)- Programmers are forced into this ugly tvIe for two related reasons. The first is that
match and <— are too powerful. ar.d therefore too expensive for many common communication
patterns. The second is that creation of new paralations for working on portions of data is more
expensive than doing the computation in place. The communication for creating new paralations
and then placing the computed results back into the original data structure are high, especially since
the language regards the new paralations as “unrelated” to (and therefore far from) the original
data structure.

3.4 Comparisons

All three aiiguages we have exp]ored provide a parallel data structure and provide operators
for element-wise computation, global colninunicatior:. and aggregation. (See Figure .5.)

The explicit processor sejectiori of Lisp makes programs efficient. However, exp!icit processor
selectioij together with the lack of an abstraction mechanism make it difficult to write moduJar
programs. because portions of data caiinot be conveniently passed as new structures to procedures.
These difficulties are somewhat relieved by Connection Machine Lisp, which uses the xapping
abstraction to permit implicit processor selection. Although it is possible to pass portions of data
as ne’v structures, it is quite awkward to specify the right portion to use. This is because multi
dimensional data structures can only be created by nested xappings. In addition, creating new
data structures make one a bit nervous, because hie language niakes no guarantees about the
ocalitv relationships hptweer. different data struc:lIres. In Paraation Lisp, the multi-dimensional
access prohems are solved by the shapt facility. Ar.d the notion of locality permits the compiler
to ecenIly distribute a data structure on the Connection Machire processors. A desire to have
a minima’ r, umber of primitives forces the com]iiun]catlon operators of Parajation Lisp to be too
general and expensive for inasiy situations. Also, efficiency is sacrificed for modularity, since creating
new data paralations as arguments to procedures a-nd then replacing the results in the original
structure is expensive.

12

At this point, a scient.is/programrner would justifiab)y choose *L.isp out. of an unwlIingness
to sacrifice speed for modu]arity and abstraction. The dedsion would not be not easy, though,
because it is desirable to write modular programs that use libraries of general-purpose routines.
In the next two sections, we propose enhancements to Faralation Lisp that permit one to write
programs that are both efficient and modular.

4 Fast Mapping Creation

We have seen that the basic communication mechanism in Paralation Lisp involves creating a
mapping by means of a match on two fields. Computing a mapping this way is expensive, roquiring
O(lg n) time, where n is the length of the larger paralatiort. This cost is particularly disconcerting
when compared with the time actually required to move the usefti data. whk.h is a constant en
the network is uncongested.

To make matters worse, in many cornpuations. the overhead caused by the expensive march
is not neccessary because the desthtaton site for each data. value can he computed locally at the
source. In such cages, it is possible to get around this problem by using setf and fret instead
of using <— and match. (Recall the two versions of the Paralation Lisp swap routine.) But this
solution does not admit a combining function. A solution more in the spirit of the Paralatio[r Model
would be to provide an additional function for creating a mapping, in which the destination sites
are computed locally. We propose the function

(fast-map dest—field source—field)

where dest—field is a field in the destination paralation d, and source—field is a field in the
source paralation s such that each field element contains a site-id in the destination paralation. This
function produces a mapping (in constant time) with the obvious properties: When the flapping
is used in conjunction with <—, it causes the data horn the given field ins to be copied to the sites
in d according to the site ids in the source—field at the time the mapping is created.

The combining function and default fields of <— retain the same reanings as when <— is appied
to a mapping created with match. The usual procedure for using fast—map would be to create
the source-field with elvise. To facilitate fast mapping creation for shaped paralations, the
shape designer might supply a site-ref function, which takes a shaped paralation and access
coordinates as arguments and computes the corresponding site-id. Note that fref could be trivially
implemented on top of site-ref.

S Paralation Views

We have seen that performing an aggregate operation on only a portion of a paralation field is
rather difficult and expensive, especially when side-effects are desired. One cannot pass a portion
of a paralation field as the argument of a procedure without creating a new parala.tion of smaller
size, moving the data to that smaller paralation. and then moving the data back to the original
paralation after the procedure returns.

Of course. one is allowed to nest paraiations. but this nesting has a fixed structure, and often
one iikes to view the data in dfferer:t ways at dierent times. For example, one iright arrange
a matrix as a nested paralatioii whose elements each contain a paralation with the elements of
that row. This makes operating on a particular row relatively easy. But working with a particular
column becomes very difficult! We saw a similar problem with Connection Machine Lisp.

1.3

H71’ 121 0lfli2j

___ _______
___ ___

3j4j5

_ _ _

2)I1H

HH7a.IN

i LLjJH

___ ___ ___

Figure 6; Three views of a matrix.

In this section. we propose Paralatior, Views. au enhancement to Paralation Lisp that ailows a
kiven data set to be viewed in multiple ways.

5.1 What is a View?

We define a ritw to be a partitior. of the sites of a paralation, called its parent, into a set of classes.
We represent a view as a nested paralation, whose elements are the classes of the partition. Each
class paralation has as its sites the corresponding sites of the parent paralation (renumbered from
zero). In the existing Paralation Lisp language, one call partition the data of a paralation into
several ordinary paraiations using <— with choose. However, there are two important distinctions
between views and ordinary paralations.

• Semantic distinction: A class shares portions of the parent’s Jklds with the parent paralation.

• Locality distinction: The sites of a class are located on the same physical processor as the
corrtsponding sites of the parent paralation.

These properties of a view permit many common operations to be easily performed in place, without
the communication overhead that would result if ordinary paraiations were used. Notice that the
second property may result in the sites of a shaped class being physically farther apart than one
might like because of the phvsira arrangement of the parent paralation Section 7.2 discusses one
method for alleviating this problem.

Figure 6 shows three possWle views of a 3x3 matrix. The sites in tie cia.sses of each view would
be located on the same processor as the corresponding matrix elements of the parent paraiation,
and would share the corresponding field entries at those sites. Note that the site numbers of class
elements are renumbered from zero, and that classes may have a different shape from the parent.

5.2 Creating Views

In this section, we explain the methods by which views are created, introducing syntax as necessary.Views may he created in three different ways. project, split, and extiact. Several views of the same
paralaiQrI may exist simultaneously. In additon s.Lce views and c1ases are both paralations. ore
could conceivably create veiws of tlteru. as veil.

14

5.2.1 Project

For shaped paralations. one may project on a coordinate (or set of coordinates). The classes of
the view contain elements whose value(s) for that coordinate (or set of coordinates) are equal. For
example. the line

(setq rows (project tat ‘Ct nil) ‘ring))

projects on the first coordinate of a grid-shaped paralation mat to get a view rows whose classes
are the rows of the grid (as in Figure Gb). The second argument is a list of booleans indicating
on which coordinates to project. The third argument is the desired shape type for the resulting
classes. For the moment, one may think of the shape type as simply defining a set of mappings
and access methods (print function, fref, etc.) for the resulting classes. Later, we will see how
the shape type of a view might be used as locaiity information by the compiler. To refer to the
third row of mat, one would write (elt rows 2). When multiple coordinates are projected, fret
is used to access particular cLasses of the view.

Projection is usefu for working on slices of mu1tid,neusionai structures. for example. ore
might like to filter and normalize each frame of a digitized movie (projecting on z) and then apply
a temporai filter to each pixel (projecting on x and y).

5.2.2 Split

A second way to create a view of a paralation is to split5 it according to subranges of the access
coordinates. For example, consider

(setq m3rgrids (split ten—mat ‘(3 7) ‘(2 4 6) ‘rectangle))

where ten—mat is a to by 10 grid-shaped paralation. The resulting view, mygrids, partitions mat
into 12 classes according to three subrages of row coordinates (0.2, 3.6, 7.9) and four subranges
of column coordinates (0.1, 2.3, 4.5, 6.9). To access a particular class, one uses fret with indices
corresponding to the subrange in each dimension. For example, (fret mygrids 2 2) refers to the
class of mat whose row coordinates are in the range 7.9 and whose column coordinates are in the
range 4.5. The view in Figure 6c could be produced by (split mat ‘(1) ‘(1) ‘rectangle).

Splitting is particularly usefil for divide and conquer algorithms. Some parallel divide and
conquer aigorithrns for image processing are described in 2].

5.2.3 Extract:

The most arbitrary (and most expensive) way to create a. view is to extract it by specifying a field of
non-negative integers, and assigning all sites having the same value in that field to the same class.
For example, suppose that values is a field of integers and prime is a primality testing function,
and consider the fol]owing statements.

(setq decider (elwise (values)
(cond ((< values 0) 7) ((prime values) 2) (t 6))))

(setq too (extract decider ‘unshaped))
(setq positive—primes (elt fcc 2))

5Not to be confused tth the split operation of [3.

15

The unshaped6 paralatiot positive—primes cor.tains a sites vhose values field contaiws a non
negative integer satisfying the prime tester. Notice that the values used to access the different
classes of too are the values from the decider field. Of course, later changes to that field do not
affect class membership in too. Also, note that the length of an extracted view is one greater than
the maximum value in the field supplied to the extract function, even though some of the classes
may be empty. Here, the length of too is S. aid Celt foo 5) is a paralation of length zero. The
view in Figure 6d could be produced by

(let (decider (elwise (site—flares)
(cond ((= (first site—names) (second site—names)) 0) Ct 1))))

(extract decider ‘unshaped)

As an example application, consider a map of climate data represented as a paralation, where
fields contain information such as altitude, average temperature. and average annual rainfall. One
might use ranges of some variables to slice up the map into regions! and then apply aggregation
functions to each slice in parallel.

5.3 Operating on Views

&e have said that views share fields with the parent. Given a class of a view, one can access the
corresnonding portion of some fiehi of the views parent using the function take, whkh we now
define with an example. Suppose that the view paralation my—view has my—data as one of the fields
of its parent. Then the line

Ceiwise (take my-data (elt my-view 3)) (analyze my—data))

causes the analyze function to be applied element-wise to the data elements corresponding to the
fourth class of my-view. One might also write

Ceiwise (take my-data (elt my—view 3)) (setq my—data (analyze my—data)))

to update the values of mv-data in piace. Another useful way to use views is to operate on each of
the classes in paraile). For example,

(elwise (my—view) (vref (take my—data my—view) with #‘max))

returns a paralation containing the maximum data item in each view. Note that operations on
the eements of a class are performed within the coordinate system of that class, and nut in the
coordhiaie system of the parent. This is one reason that views are so expressive, as we will see in
rae next section.

6 LU Decomposition Revisited

Figure 7 contains an LU decomposition program written using Paralation Views and fast-map.
lTriike the programs we have seen thus far, this LU decompositon program is recursive. It was easy
to write this way because, the view facility permits a greater degree of modularity than we have
seen in any of the other languaies. Subroutines cal: work within their own coordinate systems, vet
ii. is not awkward to call them on selected portions of data. It is no’. necessary to replace the data
6One would expect tl,at classes created by extract would be unshaped. However, like project and split, we

permit a shape to be specified. In all three cases, it is the responsibility of the programmer to ensure that thedimensions of the resultitig classes conform to th specified shapes.

16

(defun bigger (a b)
(if (> (abs (second b)) (abs (second a))) b a))

(defun max-entry (vector)
(vref (elwise ((idx (index vector)) vector)

(list index value)) wth #bigger else 0)))
(defun swap (fleidi fieId2)

(let ((temp fieldl))
(setq uicidi (<— fi&d2 (fast-map fieldi index field2fl))
(setq lleId2 (<— temp (fast-map field2 (index Heidi))fl))

(defun update (mat left top)
(let. ((self (site-names mat))

(row (elwise (self) (first self)))
(col (ciwise (seIf3 (second stlf)fl)

(serq mat (ewise (row col mat) (+ mat (. et left row) (cIt top colflflfl)
(defun lu-decomp (mat)

(if ((length rtafl 1) mat
(let. ((rows (project mat (t nil) unshaped))

(cc.Is (project, mat ‘(nil t) unshaped))
(quad (split mat ‘(11) grid))
(max-pair (max-entry (eft cois 0))))

(swap (take mat (dt rows 0)) (tue mat (elt rows (cadr max_pair))))
(elwise (vector (take mat (fref quad 1 0)))

(setq vector (w v (/ -1.0 (car max-pair)))))
(update (take mat (fref quad 11)) take mat (fref quad 1 0)) (take mat (Ire1 quad 0 1)))
(lu-decomp (take mat (freT quad 1 1))))))

Figure 7: LU Decomposition Program using Parajation Views.

after procedure calls because operaUon can be performed in place. Note the generality of swap
routine, which simply takes two paralation fields and swaps their values. Also, the flax rou:ine
simply takes a vector, without extra iodices. It is easy to see how a !ibrary of useful operations on
vectors, matrices, etc. could be exploited using views.

The frequent appearance of take in programs is somewhat annoying. One might imagine a
shorthand ejwjse notation in which the first element-wise variable set the context for the rest of
the elwise. RecaUing the example of the previous section, the two hnes

(elwise (take my—data (elt my—view 3)) (setq my—data (analyze my—data)))
(elwise ((elt my—view 3) my—data) (setq my-data (analyze zy-data)))

would be equivalent. Using the standard elwise naming shorthand, one could also assign a variable
name to the class, and refer to its indices element-wise in the computation.

Of course, all of this expressive power is only useful if views can he implemented efficiently.

7 Implementation

In this section, we suggest a possible impementauon stratej for Paralation Views. We first
describe data structures for supporting the required view operations. Then we discuss a way in
which adding standard views to the shapes library can provide additional locaLity information to
the compiler.

LI

7.1 Data Structures

An ituporta t consideration in designing an implementation for Paralation Views is that a singleview creation may result in a large number of new paralations. For example, projecting on onecIirer.son oc anti yn matrix wou!d create n -4-I. new paraations.A naive approach might create n--lnew data structures (serially) on the front-end to keep track of these paralations. but this couldcause proNeins with the asymptotic complexity of algorithms. An otherwise O(lg n) algorithmcould take O(nlgn) time. A similar problem would occur in a divide and conquer algorithm usingspl!ttbg to create paralations.
For the above reasons, we would like to keep view creation as cheap as possible, even if this meansstoring more information on the processing ejemeuts. As it turns out, storing more information onthe processors also makes implementation of element-wise operations on classes relatively simpleand speeds communication within classes. This is especially important when many classes are beingoperated on I,’ parallel (see Section 8). The front-end must store enough information about a viewto select particular classes or particular elements of classes, and it must be able to identify thefields of the parent of a view. rn addition, the processors must store enough information so thatc]ass sites can efficiently locate other sites within their class (for sending or getting data).
‘lEe current implementation of Parajation Lisp uses sfgments 73j to represent nested paraia.tions.T]iis successfully minimizes the information stored on the front-end and is useful for scan operations.However, segments would only apply to views if each class of a view consisted of contiguous shesof the parent. Since this is not the case, we need a more general strategy. Suppose that for eachview, the frond-end stores a single record containing the name of i.he parent and a representationof the information used to create the view. For projection, the list of projected coordinates (e.g.,

(t nil)) would be kept. For splitting, the list of subranges would be kept. And for extraction, themaximum value in the decider field would be kept. In addition, the front-end woud keep pointersto three new fields of information to be used locally by the processors, as follows:

Indicator field: This identifies the class to which the given site belongs. For orojections. thisis a list of that sites values for the coordinates being projected on. For splits, this i thecorresponding subrange of the coordinates. And for extractions, this is a copy of the deciderfield.

• Site field: This is the site number withir the view. For projections and splits, this can beeasiy caculaed from the parent site number and the information in the indicator field, giventhat shape designers supply certain functions described below. For extract, filling this fieldwould rPquire an eflumpratiolt operation for each class. We. do not expect extraction to beinexpensive if the number of classes is large.

• Length field: This is the length of the class of which tire site is a member. For projectionsand splits, this can be computed directly from the indicator field. For extraction, this woaldhave to be broadcast from the front-end.

The paralation in Figure 8 shows the indicator, site, and length fields for the views in Figure 6.To support the necessary calculations for filling in these fields when the parent paralatioi’ isshaned. we recuire that shape access methods nclue three additional functious. TLe first functiontakes a site-id and range of user coordinates and produces a new site-id as if the sites in that. rangewere numbered from zero. (Note that this can be used for projections as vell as splits.) The secondfunction is the inverse of this. The third function simply takes a range of user coordinates andreturns the number of sites in that range. For reasonable shapes, these functions would be quiteiniple and efficient.

1_8

‘ site sitc-r.artues 1 nd-b site-b len-b md-c site-c Jpn-r ind-d site-d len-HC’ (00) 0 0 3 (Q0)(00) 0 1 0 0 3
1 (01) 0 I 3 (12R00) 0 2 1 0 6
2 (02) 0 2 3 (12)(OD) 1 2 1 1 6
3 (10) 1 0 3 (00)(12) 0 2 1 2 6
4 (1 1) 1 I 3 (I 2 11 2) 0 4 0 1 3
5 (12) 1 2 3 (12)02) I 4 1 3 6
6 20) 2 0 3 00)(t2) 1 2 I 1 6
7 (2i) 2 1 3 (12)(12) 2 4 1 5 6
8 (22) 2 2 3 (12)(12) 3 4 0 2 3

Figure S: Fields for three views of a matrix.

Given the above fields and related functions, it is easy to see how processor selection, logarithmic
scans. and interprocessor communication could he handled eciently for projected views and split
views. Interprocessor communication for extracted views, however. wouid be expensive even if the
pattern of communication within the classes is known. This is because there are no ranges that
can be supplied to the above functions to quickly find other elements of a class in terms of the
parent’s coordinate system. One would have to use the match and <— move operators. or (worse
an implementation of f ref using associative lookup.

7.2 The Shape Library and View Locality Information

From both a user-interface point of view and an efficiency point of view, it would be useful to
associate commonly used views with shapes in the same way that commonly used mappings are
curreuCy associated wit.h shapes. We wou!d modify the functionmaice-shaped-paralation to take
two arguments, a list of mappings and a list of views. The views could be accessed using a function
shape—view in the same way that mappings are now accessed with shape-map.

If the compiler knows that a certain shape will be viewed in certain ways, it can make use of
the locality information provided by the Inappngs associated with the classes of the views. For
example, if the compi]er knows that a matrix is going to be viewed as a collection of rings using a
projection on x, it can lay out the matrix on the Connection Machine hypercube so that the first
element of each column is near the last element of each column.

As a side note, we suggest that the declaration of access methods and locality information shouid
he better integrared (perhaps using a singie futicton nsLead of two) so that user-coordinates could
be used to define mappings and views in a more convenient way. The current language permits
access methods to be added only after the the paralation (and its corresponding mappings) have
areadv been created.

8 Achieving Nested Parallelism

Paralation Views provides an ideal setting in which to perform parallel procedure calls on differeflt
portions of a data set. For example, we saw earlier that one cart easily express parallel aggregation
on alL the rows of a matrix. Views are true partitoiis of the parent. The sites of classes do rot
overlap, so scars and elemeijt-wise computations on classes can proceed in parallel. But not allimaginable operations on one data set admit para.l]el execution on many data, sets. For ex;irnple,coiisder a procedure that, given a vector, computes t2ie maximum vairie r,,;1 in thai. vector by

19

scan computation and then broadcasts an instruction to divide all the elements of the vector by
tmar An elviso ca] of this procedure on multiple vectors would necossar]v result in serialization
of the second step, because the front-end would have to broadcast a different v to the elements
of each vector.

2 A procedure can be executed in parallel on multiple data sets only if all immediate data con
tamed in instructions broadcast by the front-end is constant over the parallel invocations. This
leads us to a programming paradigm we call compute-aggregate-flood (CAF). as opposed to compute-
aggregate-broadcast CAB) of [7. The basic idea of this paradigm is that the results of an ag
gregation step (scan computation) are not broadcast to the processors by the front end, but are
flooded back to the processors using another scan in the reverse direction. In this way, the front-end
is o]Uy respoLsibie for issuing data-independent i:istructons. The programmer could write proce
dures using this paradigm, or possibly an optimizing compiler could convert a CAB procedure to
a CAF procedure if it is recognized that the procedure is invoked in parallel. Of course, one has to
he careful not to blindly convert programs in this way. When the number of parallel invocations
is small. it may be more efficient to do a constant-time broadcast serially than do a logarithmic
flooding operation in parallel. However, it might be possible to optimize the flooding phase using
low-eve! inst’uctons to the Connection Machine routers.

Most aggregation operations on the Connection Machine are accomplished with logarithmic
scans, which can easily take place on multiple data sets in parallel. However, certain operations
tan be optimized using the “wired-OR” capability, which does not end itself to parailel execution.
Even so, there are some cases in which the “wired-OR” could be used effectively in parallel procedure
calls. For example. a common use of the wired-OR is to detect termination of an iterative procedure.
It could still be used to detect termination on parallel invocations of that procedure, provided that
either

1. extra iterations of the algorithm are acceptable and the conditions for signalling termination
are stable, or

2. processors terminate independently.

If either of these conditions hold, one simply iterates until termination is detected accross all
invocations.

9 Conclusion

We have examined three larguages in terms of their ability to express efficient scientific programs
for the Connection Machine. We conr]uded that the exp]icit processor selection of *Lisp produces
efficient but monolithic programs, while the abstraction mechanisms of Connection Machine Lispaid Paralation Lisp provide implicit processor seiectiorL and increased mod-ñari:y at the expense of
efficiency. Ihe inefficiencies result from an inability to apply functions to portions of data structures
without awkward’y moving the data to new structures and then moving the results back afterwards.
The Paralation Lisp shape facility provides a flexible abstraction mechanism that appears to have
potential for improving the efficiency of programs.

We :ireseiied Parala’io:i Views, an enhancemei: to the shape facility of Paralation Lisp thatpermtts eEdent in-place compu:ator.s on portions of data structures to be expressed in a straightforward manner with a small set of operators. We saw that the view abstraction integrates wellwith the existing Paralation Lisp language and provides excellent support for modularity and nestedparalIolim.

20

A possibe approach to irnD1eneri1ug Paralation Views was suggested. but many of the de:ats
still need to be wxked out. Fo- example. we need to study ways to efficiently handle creating
views of classes, both singly and in paralleL This is partiru!arly important when the split operation
is used to create views in a recursive program. Other work might include integratiag the access
method defnitions with locality and view descriptions so that mapoings and views could be more
easily created ri terms of user access coordinates.

The Paralation Model is intended to be machine-independent. It would be interest.iig to see if
Paralation Views is a practical idea for other architectures.

Acknowledgements

I thank my area examination committee, Barbara Liskov, Arvind, and Rishiyur Nikhil, for sug
gesting that I study these languages. I also thank Sally Goldman for her comments on an earlier
draft, and Ken Steele for a discussion about LU decomposition aLgorithms.

References

[1] Aho, A., Hopcroft. J.. and Ullman 3. The Design and Analysis of Computer Algorithms.
Addison-Wesley. :974. Chapter 6.

[2 Arvind and Exanadharn. K. Future Scientiftc Programming o Parallel Machines. M.I.T. Lab
oratory for Computer Science, Computation Structures Group Memo 272. March 1987 (revised
February 1938).

[3] BleIloch, C. and Little, J. Parallel Solutions to Geometric Problems on the Scan Model of
Computation. M.I.T. Artificial Intelligence Laboratory Memo 952, February, 1988.

[11 Corrnen, T., Leiserson, C., and Rivest, R. Algorithms for Parallel Computers, Chapter 32. In
progress.

(1 HiUis. W.fl.. The Connection Afachiie, ACM Distinguished Dissertation, MIT Press. 1985.

[61 Karp.A. Programming for Parallelism. IEEE Computer, Vol. 20. No.5. pp.43-57 (May. 1987).

[7] Nelson, P., and Snyder, L. Programming Paradigms for Nonshared Memory Parallel Comput
ers. From The Characteristics of Parallel Algorithms. Jamesori. Cannon. and Dougas. eds.
MIT Press. 1987.

8] Sabot, C. An Architecture-Independent Model for Parallel Programming. Ph.D. Thesis, liar
yard University, DiviEion of Applied Sciences TR--Oft-8S, February 1988.

[9] Sabot, C. Paraia.tion Lisp Reference Manual. Thinking Machines Corporation Technical Report
PL87—1l, May 5, 1988.

[10] Steele, C. Common Lisp, The Language. Digital Press, 1984.

11] Steele, C., Hillis, W. Connection Machine Lisp: Fine-Grained Parallel Symbolic Processing.
In Proc. of 1980 ACM Conference on Lisp and Functional Programming, pp. 279—297

:12] Stout. Q. Properties of Divide—and—Conquer Algorithms for Image Processing. In Prcc. of
1985 IEEE Workshop of Computer Architecture for Pattern JIflÜIYS2S and image Database
Management, pp. 203—209.

21

[13] Thinking Machines Corporation. Connection Machine Model CM-2 Technical Summary.
Thinking Machines Technical Report HA87—4, April 1987.

p143 Thinking Machines Corporation. Lisp Reference Manual, Version 4.0, 1987.

22

