
Distributed Computing (1991) 4:189207

�9 Springer-Verlag 1991

Highly concurrent logically synchronous multicast*
Kenneth J. Goldman

Department of Computer Science, Washington University, St. Louis, MO 63130, USA

Received July 3, 1989 / Accepted November 11, 1990

Kenneth J. Goldman received
the Sc.B. degree in Computer Sci-
ence from Brown University in 1984,
the S.M. degree in Electrical Engi-
neering and Computer Science from
the Massachusetts Institute of Tech-
nology in 1987, and the Ph.D. de-
gree in Electrical Engineering and
Computer Science from the Massa-
chusetts Institute of Technology in
1990. As part of his doctoral work,
he designed and implemented the
Spectrum Simulation System, a dis-
tributed algorithm development
tool based on the I/O automaton
model of Lynch and Tuttle. His

publications include papers in the areas of models for distributed
computing, database concurrency control, human interfaces, and
image processing. He is currently Assistant Professor in the Depart-
ment of Computer Science at Washington University in St. Louis.

Abstract. We define the logically synchronous multicast
problem, which imposes a natural and useful structure
on message delivery order in an asynchronous system.
In this problem, a computat ion proceeds by a sequence
of multicasts, in which a process sends a message to some
arbitrary subset of the processes, including itself. A logi-
cally synchronous multicast protocol must make it ap-
pear to every process as if each multicast occurs simulta-
neously at all participants of that multicast (sender plus
receivers). Furthermore, if a process continually wishes
to send a message, it must eventually be permitted to
do so.

* A preliminary version of this paper appeared in the Proceedings
of the 3rd International Workshop on Distributed Algorithms, Lec-
ture Notes in Computer Science 392, Bermond and Raynal, Eds.,
Springer-Verlag, Berlin, 1989, pp 94 109.

This research was conducted at the Massachusetts Institute
of Technology Laboratory for Computer Science and was sup-
ported in part by the National Science Foundation under Grant
CCR-86-11442, by the Office of Naval Research under Contract
N00014-85-K-0168, by the Defense Advanced Research Projects
Agency (DARPA) under Contract N00014-83-K-0125, and by an
Office of Naval Research graduate fellowship

We present a highly concurrent solution in which
each multicast requires at most 4lSI messages, where
S is the set of participants in that multicast. The proto-
col's correctness is shown using a careful problem specifi-
cation stated in the I /O au tomaton model. We conclude
the paper by describing how the logically synchronous
multicast protocol can be used for distributed simulation
of algorithms expressed as I /O automata.

Key words: Distributed algorithms - Multicast Syn-
chronization - Logical time - Input /output au tomata

1 Introduction

We consider a set of n processes in an asynchronous
system whose computat ion proceeds by a sequence of
multicasts (or partial broadcasts). In each multicast, a
process u sends a message m to an arbitrary subset S
of the processes (including u). We say that a protocol
solves the logically synchronous multicast problem if it
guarantees the following conditions:

(1) There exists a total order on all multicasts in a com-
putat ion such that the delivery order of multicast mes-
sages at each process is consistent with that total order.
(2) If process u sends message m, it receives no messages
between sending and receiving m.
(3) If process u continually wishes to send a message,
then eventually u will send a message.

The first two conditions say that it appears to all pro-
cesses as if each multicast occurs simultaneously at all
of its participants (sender plus receivers). Hence, the
name logically synchronous multicast. Note that the hy-
pothesis of the third condition does not require that u
continually wish to send the same message, but only some
message. This is a technical point that will be of impor-
tance later.

The problem lends itself to a highly concurrent solu-
tion, since any number of multicasts with disjoint S sets
should be able to proceed independently. Likewise, one

190

would expect that the communication costs of an algo-
rithm to solve this problem would be independent of
n. We present a solution that takes advantage of the
concurrency inherent in the problem and requires at
most 41S1 messages per multicast, provided that a pro-
cess does not "change its mind" about the set of partici-
pants.

Various approaches to ordering messages in asyn-
chronous systems have been studied. Lamport [19] uses
logical clocks to produce a total ordering on messages.
Birman and Joseph [5] present several types of fault-
tolerant protocols, where failures are assumed to be de-
tectable by timeouts. Their ABCAST (atomic broadcast)
protocol guarantees that broadcast messages are deliv-
ered at all destinations in the same relative order, or
not at all. Their CBCAST (causal broadcast) protocol
provides a similar, but slightly weaker, ordering guaran-
tee to achieve better performance. The CBCAST guaran-
tees that if a procees broadcasts a message m based on
some other message m' it had received earlier, then m
will be delivered after m' at all destinations they share.
Broadcast protocols may be used to achieve process syn-
chronization in distributed systems. For example,
Schneider presents a synchronization technique that as-
sumes a process may reliably broadcast a message to
all other running processes such that messages originat-
ing at a given process are received by other processes
in the order sent [28]. Joseph and Birman provide an
extensive dicussion of reliable broadcast protocols in
[18].

Like ours, the protocols of both [19] and [5] assign
a global ordering to messages. However, these protocols
do not solve the logically synchronous multicast problem
because they allow messages to "cross" each other. That
is, in their protocols a process u may send a message
m and at some time later receive a message ordered be-
fore m. Our problem requires that when a process u sends
a message m, it must have "up to date" information,
meaning that it has already received all messages des-
tined for u that are ordered before m. (See Condition
(2) above).

Motivated by CSP [17] and ADA [1], multiway
handshake protocols have been studied extensively. (For
examples, see [3], [4], and [7]). These protocols must
enforce a very strict ordering on system events, and
therefore achieve less concurrency than ours and the
others mentioned above. This is necessary because the
models of CSP and ADA permit any participant in a
handshake to block the handshake from occurring. Since
a decision about whether to accept or refuse a handshake
may depend (in general) on all earlier events, each pro-
cess can be involved in scheduling at most one hand-
shake at a time. For example, let event e be a handshake
having participant processes p, and P2. Process Pl can-
not permit process P2 to complete event e until pl knows
that no event e' to be ordered before e will cause e to
be refused by p~. In general, pl cannot permit P2 to
complete e until all events at pa ordered before e have
already occurred. Our problem admits more concur-
rency, since a process cannot refuse to accept a multicast
message. Whether or not a multicast occurs is entirely
under the control of the sender. Therefore, a process

can permit many multicasts destined for it to proceed
concurrently 1.

One interesting feature of our problem is that it lies
between the two general approaches described above.
As we have described, it permits concurrent scheduling
of events, yet imposes a strong, useful structure on the
message delivery order.

Other related work includes papers by Awerbuch [2]
and Misra [26J, which study different problems in the
area of simulating synchronous systems on asynchro-
nous ones. In both cases, however, the computational
models being simulated are very different from ours.
Awerbuch's goal is to take algorithms written for sys-
tems in which processes proceed in lock step, and simu-
late them on systems in which processes proceed asynch-
ronously. An algorithm is presented for generating
"pulse" messages to synchronize the computation. In
contrast, the purpose of logically synchronous multicast
is to provide the illusion of synchronous communication
among dynamically changing subsets of processes, as op-
posed to synchronized steps at all processors. Misra [26]
studies the problem of distributed discrete event simula-
tion. One important difference between Misra's work and
logically synchronous multicast is that Misra fixes the
communication pattern. This gives the problem addi-
tional structure, since each process expects messages only
from a (small) fixed subset of the other processes. In
the present work, we assume that a process may poten-
tially receive a multicast from any other process in the
system. In spite of this difference, some of Misra's tech-
niques, particularly those for breaking deadlock, can be
applied to our problem. This is discussed in Sect. 6.3.

The remainder of the paper is organized as follows.
Section 2 provides a brief introduction to the I/O au-
tomaten model. In Sect. 3, we present the architecture
of the logically synchronous multicast problem and a
statement of correctness in terms of the model. In Sect. 4,
we formally present the algorithm using the I/O automa-
ton model. In Sect. 5 and 6, we give a complete correct-
ness proof and analyze the message and time complexi-
ties.

The author has recently developed a simulation sys-
tem for algorithms expressed as systems of I/O automata
[14]. The logically synchronous multicast problem was
motivated by a desire to distribute the simulation on
multiple processors using asynchronous communication.
We conclude the paper by describing how the logically
synchronous multicast protocol can be used to achieve
such a distributed simulation.

2 The model

The logically synchronous multicast problem statement,
protocol, and correctness proof are all formally stated
using the I/O Automaton model [24, 25]. We have cho-
sen this model because it encourages precise statements
of the problems to be solved by modules in concurrent

1 These comments apply only to pessimistic protocols, in which
no rollback is allowed. If rollback is permitted, an optimistic strate-
gy for CSP-style synchronization could be achieved with more con-
currency, but at the expense of the overhead necessary for rollback

systems, allows very careful algorithm descriptions, and
can be used to construct rigorous correctness proofs.
In addition, the model can be used for carrying out com-
plexity analysis and for proving impossibility results. The
following introduction to the model is adapted from
[25], which explains the model in more detail, presents
examples, and includes comparisons to other models.

2.1 I / 0 automata

I/O au tomata are best suited for modelling systems in
which the components operate asynchronously. Each
system component is modeled as an I/O automaton,
which is essentially a nondeterministic (possibly infinite
state) au tomaton with an action labeling each transition.
An automaton 's actions are classified as either ' input ' ,
' ou tpu t ' , or ' internal ' . An au tomaton can establish re-
strictions on when it will perform an output or internal
action, but it is unable to block the performance of an
input action. An au tomaton is said to be closed if it
has no input actions; it models a closed system that
does not interact with its environment.

Formally, an action signature S is a partition of a
set acts(S) of actions into three disjoint sets in(S), out(S),
and int(S) of input actions, output actions and internal
actions, respectively. We denote by ext(S)= in(S)~ out(S)
the set of external actions. We denote by local(S)
=out(S) u int(S) the set of locally-controlled actions. An
I/O automaton A consists of five components:

an action signature sig(A),
a set states(A) of states,

- a nonempty set start(A)c_ states(A) of start states,
- a transition relation steps(A) c_ states(A) x acts(A) x

states(A) with the property that for every state s' and
input action rc there is a transition (s', re, s) in steps(A),
and
an equivalence relation part(A) partitioning the set
local(A) into at most a countable number of equiva-
lence classes.

The equivalence relation part(A) will be used in the defi-
nition of fair computat ion. Each class of the parition
may be thought of as a separate process. We refer to
an element (s', re, s) of steps(A) as a step of A. If (s',
re, s) is a step of A, then 7c is said to be enabled in s'.
Since every input action is enabled in every state, au-
tomata are said to be input-enabled. This means that
the au tomaton is unable to block its input.

An execution of A is a finite sequence s o , r h ,
sl , . . . , ~,, s, or an infinite sequence So, rtt, st , 7r2, ...
of alternating states and actions of A such that (si, rc~+ 1,
Si+l) is a step of A for every i and Soestart(A). The
schedule of an execution e is the subsequence of ~ consist-
ing of the actions appearing in c~. The behavior of an
execution or schedule e of A is' the subsequence of
consisting of external actions. The sets of executions, fi-
nite executions, schedules, finite schedules, behaviors,
and finite behaviors are denoted execs(A), finexecs(A),
scheds(A), finscheds(A), behs(A), and finbehs(A), respec-
tively. The same action may occur several times in an
execution or a schedule; we refer to a particular occur-
rence of an action as an event.

191

2.2 Composition

We can construct an au tomaton modelling a complex
system by composing au tomata modelling the simpler
system components. When we compose a collection of
automata , we identify an output action ~ of one automa-
ton with the input action rc of each au tomaton having
rc as an input action. Consequently, when one au tomaton
having rc as an output action performs ~, all au tomata
having ~ as an action perform ~ simultaneously (automa-
ta not having rc as an action do nothing).

Since we require that at most one system component
controls the performance of any given action, we must
place some compatibili ty restrictions on the collections
of au tomata that may be composed. A countable collec-
tion {Si}ie I of action signatures is said to be strongly
compatible if for all i, j~ I satisfying i Cj we have

1. ou t (S i) c~ out (Xj) = O,

2. int(Si) c~ acts(Sj) = 0, and

no action is contained in infinitely many sets acts(S~),
i~I. We say that a collection of au tomata are strongly
compatible if their action signatures are strongly compat-
ible.

The composition S = I I s~ of a countable collection
i e l

of strongly compatible action signatures {Si}i~ i is defined
to be the action signature with

- in(S)-- ~ in(Si)- Q) out(Si),
i ~ l i e I

out(S) = U out(Si), and
i a l

- int(S)= Q) int(Si).
i e I

The composition A = ~ A~ of a countable collection of
i~ I

strongly compatible a u t o m a t a {Ai}ie I is the au tomaton
defined as follows 2.

- sig(A)= I~ sig(Ai),
i e I

- states(A)= I~ states(Ai),
i e I

- start(A)= I] start(Ai),
i e l

- steps(A) is the set of triples (gl, re, s2) such that, for
all i~I, if neacts(Ai) then (sl[i] , re, s2 [i])esteps(Ai),
and if Tc(~acts(Ai) then Sl [i] =g2 [i], and

- part(A)= ~) part(Ai).
i e I

Given an execution ~=~0rCl Sl ... of A, let e[A i (read
"e projected on A: ') be the sequence obtained by delet-
ing rcj~j, when rc:~acts(Ai) and replacing the remaining
gj by gi[i].

2 Here start(A) and states(A) are defined in terms of the ordinary
Cartesian product, while sig(A) is defined in terms of the composi-
tion of actions signatures just defined. Also, we use the notation
g[~] to denote the ith component of the state vector g

192

2.3 Fairness

Of all the executions of an I/O automaton, we are pri-
marily interested in the ' fa i r ' executions - those that
permit each of the automaton 's primitive components
(i.e., its classes or processes) to have infinitely many
chances to perform output or internal actions. The defi-
nition of au tomaton composit ion says that an equiva-
lence class of a component au tomaton becomes an equiv-
alence class of a composition, and hence that composi-
tion retains the essential structure of the system's primi-
tive components. In the model, therefore, being fair to
each component means being fair to each equivalence
class of locally-controlled actions. A fair execution of
an au tomaton A is defined to be an execution c~ of A
such that the following conditions hold for each class
C of part(A):

1. If e is finite, then no action of C is enabled in the
final state of ~.
2. If e is infinite, then either c~ contains infinitely many
events from C, or e contains infinitely many occurrences
of states in which no action of C is enabled.

We denote the set of fair executions of A by fairexecs(A).
We say that ~ is a fair behavior of A if fl is the behavior
of a fair execution of A, and we denote the set of fair
behaviors of A by fairbehs(A). Similarly,/3 is a fair sched-
ule of A if ~ is the schedule of a fair execution of A,
and we denote the set of fair schedules of A by fair-
scheds(A).

2.4 Problem specification

A ' p r o b l e m ' to be solved by an I/O automat ion is forma-
lized as a set of (finite and infinite) sequences of external
actions. An au tomaton is said to solve a problem P pro-
vided that it set of fair behaviors is a subset of P. Al-
though the model does not allow an au tomaton to block
its environment or eliminate undesirable inputs, we can
formulate our problems (i.e., correctness conditions) to
require that an au tomaton exhibits some behavior only
when the environment observes certain restrictions on
the product ion of inputs.

We want a problem specification to be an interface
together with a set of behaviors. We therefore define
a schedule module H to consist of two components, an
action signature sig(H), and a set scheds(H) of schedules.
Each schedule in scheds (H) is a finite or infinite sequence
of actions of H. Subject to the same restrictions as au-
tomata, schedule modules may be composed to form
other schedule modules. The resulting signature is de-
fined as for automata , and the set scheds(H) is the set
of sequences]~ of actions of H such that for every module
H' in the composition, ~ l g ' is a schedule of H'.

It is often the case that an au tomaton behaves cor-
rectly only in the context of certain restrictions on its
input. A useful notion for discussing such restrictions
is that of a module 'preserving ' a proper ty of behaviors.
A set of sequences ~ is said to be prefix-closed if f l ~
whenever both ~ is a prefix of c~ and ~ e ~ . A module
M (either an au tomaton or schedule module) is said to
be prefix-closed provided that finbehs(M) is prefix-

closed. Let M be a prefix-closed module and let ~ be
a nonempty, prefix-closed set of sequences of actions
from a set ~b satisfying ~c~int(M)=O. We say that M
preserves ~ if/? ~ 145 e ~ whenever fl I �9 e ~ , ~ e out (M), and
~rclMefinbehs(M). Informally, a module preserves a
property ~ iff the module is not the first to.violate ~ :
as long as the environment only provides inputs such
that the cumulative behavior satisfies ~ , the module will
only perform outputs such that the cumulative behavior
satisfies ~ . One can prove that a composit ion preserves
a property by showing that each of the component au-
tomata preserves the property.

3 The problem

In this section, we describe the architecture of the logi-
cally synchronous multicast problem and then present
a schedule module to define correctness for a multicast
protocol.

3.1 The architecture

Let J = {1 n}. Let ~ denote a universal set of text
strings (containing the empty string 0, and let J/t denote
a universal set of messages. Let ui, i ~ J , denote the n
user processes engaged in the computation, and let Pi,
i ~ J , denote n additional processes. Together, the pi's
are to solve the multicast problem, where each pi is said
to "work for" u~. Each of the u]s and p]s is modelled
as an automaton.

Each user u~ directly communicates by shared actions
with the process Pi only. (One may think of ui and Pi
as running on the same processor). The p~'s communicate
with each other asynchronously via a network, also mo-
delled as an automaton, that guarantees eventual one-
time delivery of each message sent. Furthermore, we as-
sume that all messages sent between each pair of pro-
cesses are delivered in F I F O order.

The boundaries between u~ and p~ and between p~
and the network are defined by several actions, as illus-
trated in Fig. 1. To summarize the relationship between
u~ and pi at each point in an execution, we say that
p~ is in a certain region, according to which of these
actions has occurred most recently. (We will formalize

(

try i

-:,,cvi sen . rc,
network)

Fig. I. System architecture. Arguments of actions are omitted

rrt~~ ~T~treadyi "~Mj
done i

Fig. 2. Region changes for pl

this later). Figure 2 illustrates the possible region changes
for pz, and the actions that cause them.

Initially, p~ is in its "passive" region (P). We say that
p~ enters its " t rying" region iT) when user u~ issues a
tryi(S c_ j)3 action, indicating that ui would like to send
a multicast message to processes named in the set S.
When it is ready to perform a multicast on behalf of
uz, process p~ issues a ready~ action and is said to enter
its " ready" region (R). The readyz action constitutes per-
mission for ul to actually send the multicast. That is,
after receiving the ready~ action as input, user u~ may
issue a multicast-sendz (m~SP) action, where the argument
indicates the desired text of the multicast message. Upon
receiving the multicast-send~ action, p~ is said to enter
its "multicast" region (M), where it completes the multi-
cast and returns to region P by issuing a donei action.
Region M is present to ensure that each multicast for
u~ is completed before the next multicast is requested
by ui.

In addition to these actions, there are multicast-
rcv~ (m e ~) actions, which are outputs of Pi and inputs
to ui. The purpose of these actions, which may occur
while pi is in P or T, is to forward multicast messages
to uz that were sent to p~ by some process pj on behalf
of user uj. The argument m is the text of the multicast
message. To correspond with this additional type of ac-
tion, we have a "wait ing" region (W), which is entered
whenever p~ issues a multicast-rcv~ action while in T 4.
In W, pi waits to see if u~ has "changed its mind" about
its own multicast after hearing the information contained
in the multicast-rcv~ action. Either ul still wishes to per-
form some multicast and issues a try~(S') action, or u~
decides not to do a multicast after all and issues a
backout~ action. A backout~ action sends p~ to region M
(rather than directly to region P) so that pi may "clean
up" from the failed multicast attempt before the next
try i action occurs.

It might seem that one could eliminate region W
and the backout~ actions by having rnulticast-rcv~ actions
take p~ to region P. However, this would make it difficult
to express the liveness notion that ui eventually must
be allowed to perform a multicast, provided that it con-
tinually wants to do so. Region W is used to signify
that u~ has a choice of continuing to try or "giving up".
As a separate modification of this architecture, one might
consider elimination of the ready~ and multicast-send~ ac-

3 That is, tryi(S), where S_c~
4A muhicast-rcvl action from region P does not cause a region
change

193

tions in favor of including the desired text of the multi-
cast as a second argument to the tryz actions. However,
as we will see, the ready~ and muhicast-send~ actions serve
as useful "commit" points in stating both the safety and
liveness conditions of the problem. They also provide
a convenient way to separate the successful multicasts
from the unsuccessful tryi attempts in reasoning about
algorithm executions.

3.2 Correctness

Since the only actions under the control of the protocol
are the outputs of the pz's, we only wish to require that
the protocol behaves correctly when its environment,
namely the composition of the ui's and the network, is
well-behaved. To this end, we define schedule modules
that specify the allowable behaviors of each u~ and the
network. Based on these, we define a schedule module
for the multicast protocol. We begin with the schedule
modules for the ui's.

Schedule module U~. We define the signature of U/ as
follows:

in(U/) = {multicast-rcvi(me SQ, readyi, donei}
out(U/)= { tryi(S c_ J), multicast-sendi(me SP), backouti}

Before defining the set of schedules of U~, we define a
"region sequence" to capture the series of region changes
in a schedule and then state a well-formedness condition
that makes use of this definition. Let the alphabet Z = {P,
T, R, M, W, X}. Let c~ be an arbitrary sequence of actions.
We define the region of i after c~, denoted r(i, c 0, to be
an element of Z defined recursively as follows. If e lU/
is empty (e), then r(i, c0=P. If c~=:(~, then, ignoring
arguments to action names,

r(i, o 0 =

' r (i, o~')
P

T
R
M

W
X

if rc(~acts(Ui),
if (re=donei A r(i, ct')=M)

v (re =multicast-rcvi A r(i, c()= P),
if re =tryi A r(i, cQe{P,W},
if re =readyi A r(i, ~')=T,
if (re = multicast-sendi A r(i, e') = R)

v (r~=backouti A r(i, e ')=W),
if re =multicast-rcvi A r(i, c()= T,
otherwise.

Given an arbitrary action sequence ~ and an index
i e J , we define the region sequence for i in ~, denoted
region-sequence(i, c~), to be the concatenation of r(i, c()
for each prefix of e in order, starting with r(i, e) and
ending with r(i, c~). Note close correspondence between
Fig. 2 and the definition of region-sequence.

Let e be an arbitrary sequence of actions. We say
that ~ is user well-formed for i iff

1. for all tryi(S) actions in e, i tS , and
2. region-sequence(i, ~) does not contain the symbol X.

We can define the set of schedules for U/. Let c~ be
a sequence of actions in sig (U/). Then ~escheds(u/) iff

194

1. U~ preserves user well-formedness for i in ~, and
2. region-sequence(i, ~) does not end in W or R.

The first property is used to help define the safety condi-
tions for the logically synchronous multicast problem,
since a multicast protocol must perform correctly only
if its environment is well behaved. The second property,
used in defining the liveness conditions, says that a user
process cannot " s t op" in regions W or R. This is used
to express the notion that a multicast protocol must
guarantee progress only if users trying to send multicasts
eventually respond to multicast-rcv and ready actions.

We define schedule module U to be the composit ion

ie,f

Schedule module N. We now define a schedule module
specifying the network. The signature is as follows:

in(N) ={send(m~gC, i,j~or

out(N) = {rcv(m~J/g, i, j eJ) }

To define the allowable schedules of the network, we
use a correspondence relation similar to that of [10]. A
correspondence relation between the send and rcv events
in a sequence captures the correspondence between the
send and receipt of a message. Consider the following
properties that may hold for a particular correspondence
relation for a given sequence ~:

(S1) g i x , i 2 , j l , j 2 c , , r , Vml ,m2 e ~ / / / , if event 7Cl=send(ml,
il,jl) corresponds to even t rc2=rcl)(m2, i2,J2), then
ml = m 2 , i 1 = i 2 , j l = J 2 , and ~tl precedes =2 in ~t.

($2) g i , j e J , gme~/ ' , each roy(m, i,j) corresponds to ex-
actly one send(m, i, j).

($3) gi,jeor Vme~{, each send(m, i,j) corresponds to at
most one rcv(m, i,j).

($4) Vi , jeA, gm, m'e~/{, if event rcv(m,i,j) occurs in
before event rcv(m',i,j), then their corresponding
events send(m, i,j) and send(m', i,j) occur in the same
order.

(L) V i , j ~ , gm~Jd, each send(m,i,j) event has a corre-
sponding rcv (m, i,j) event.

The first four properties (S1-$4) are safety properties.
They say that a message is delivered only after it is sent,
that no spurious messages are delivered, that a message
is delivered at most once (for each time it is sent), and
that messages between a pair of processes are delivered
in the order sent. Property (L) is a liveness property;
it says that each message sent is eventually delivered.

If e is a sequence of actions of N, we say that c~
is network well-formed iff there exists a correspondence
relation for e that satisfies properties S1 $4. Moreover,
c~escheds(N) iff the correspondence relation also satisfies
property (L). Property (L) will be used only in the liveness
proof.

Schedule module M. The correctness conditions for the
logically synchronous multicast problem can now be
stated formally in terms of the actions at the boundaries
of the user processes. We do this with a schedule module
M that defines the multicast problem. We define the sig-

nature of M as follows:

in(m) = o u t (U) w out(N)

out (m) = in (U) w in (N)

In defining the schedules of M, we use a correspon-
dence relation technique (similar to the one used to de-
fine schedule module N) to capture the correspondence
between each multicast-send event and the resulting mul-
ticast-rcv events. Let ~ be a sequence of actions of sig(M),
and let correspondence relation cs relate the multicast-
send and multicast-rcv events of ~. We say that cg is a
proper correspondence relation for ~ iff it satisfies the
following properties:

1. Vi, j ~ J , Vm, m'~5 P, if event nl=multicast-sendi(m)
corresponds to event ~2=multicast-rcvj(m'), and tryi(S)
is the last tryi action in c~ before rrl, then m=m' and
jeS.
2. Vi, j ~ J , Vm~5 e, each multicast-rcv~(m) corresponds
to exactly one multicast-sendi(m).
3. Vi, j e J , Vm~5 P, each multicast-sendi(m) corresponds
to at most one multicast-rcvj(m).

Informally, these properties say that (1) a
multicast-rcvj(m) must contain the same text argument
as its corresponding send, and that j must name one
of the destination processes, (2) a multicast-rcv event cor-
responds to exactly one multicast-send, and (3) a given
multicast-send event corresponds to at most one multi-
cast-rcvj for each possible destination process u i.

Let ~ be a sequence of actions of sig(M), let cg be
a proper correspondence relation for c~, and let ~ be
a total order on all multicast-send events in e. We say
that -< is a proper total order for cg and ~ if]" the following
property holds: V i, j, k e J , m, m' ~ 5 p, if multicast-send i (m)
and multicast-sendj(m') occur in ~ with corresponding
receives multicast-rcvk(m) and multicast-rcvk(m') and if
orders multicast-send~(m) before multicast-send~(m'), then
multicast-rcvk (m) occurs in c~ before multicast-rcvk (m'). In-
formally, this says the order of multicast deliveries at
each user process must be consistent with the total order
~ . One may notice that a proper total order is not neces-
sarily consistent with the order of multicasts sent by
each individual process. This consistency requirement
is handled separately by condition (2c) below.

Let ct be a sequence of actions of sig(M). Then
eescheds(M) iff there exists a correspondence relation
cg and total order ~ such that the following conditions
hold.

1. ViE J , M preserves user well-formedness for i in e.
2. I f e is user well-formed for every i e J and ~ is network

well-formed, then
(a) cg is a proper correspondence relation for e,
(b) ~ is a proper total for cg and c~, and
(c) Vine5 p, if n=multicast-send~(m) occurs in e, then

no multicast-rcv~ occurs between ~ and the multi-
cast-rcvi(m) corresponding to ~.

3. If elNEscheds(N) and Vie J , elUiescheds(Ui), then
the following hold:
(a) Vie J , if a try~ occurs in e, then either a backout~

or a reacty~ occurs later in e.

(b) V i i i , VS_cJ, if a multicast-sendi(m) occurs in
and try~(S) is the last preceding try~ action in c~,
then a corresponding multicast-rcv;(m) occurs
later in e for eachj~S.

Items (1) and (2) are the required safety properties.
Part (2c) is needed to ensure that user processes have
"up to date" information when sending a multicast mes-
sage. This also ensures that multicast messages sent by
a given process are delivered in the order sent. Item
(3) is the required liveness property. Part (3a) says that
if a user process does not back out of its attempt to
perform a multicast, then eventually it will receive per-
mission to send the multicast. Part (3b) says that if a
multicast is sent by a user process, then eventually all
destination user processes will receive it. Note that the
hypothesis of item (3) is needed to ensure that liveness
properties hold for the users and the network. That is,
we require that a solution to the multicast problem guar-
antee progress only if the users and the network satisfy
their liveness requirements, namely that every user re-
sponds to multicast-rcv and ready actions and that every
message is eventually delivered. A multicast protocol is
correct iff it solves M.

4 The algorithm

This section presents the multicast protocol. We present
the algorithm by giving an explicit I/O automaton for
each pi, i e J . We show in Sect. 5 that the composition
of the p~'s solves the schedule module M and is therefore
a correct protocol.

The algorithm is based on logical time. We define
a logical time to be an (integer, process-id) pair drawn
from J = ({ 1 , 2 } woo) x ~r and we let logical times
be ordered lexicographically. Essentially, each process
p~ maintains a logical time clock, and each multicast
is assigned a unique logical time 5. The process p~ delivers
all multicast messages destined for u~ in logical time
order.

The state of each automaton pi has several compo-
nents. The variable region~{P, T, W, R, B} is initially
set to P and holds the current region of p~ as described
in Sect. 3.1. The variables try-set, need-set, requested, and
requests are subsets of J , initially empty. The try-set
names the processes to whom u~ would like to send a
multicast, and the need-set contains the union of all
values of try-set since p~ was last in region P. The two
sets requested and requests name the processes to whom
p~ has sent requests for "promises" and the processes
from whom pi has received such requests. We will explain
promises shortly. The variable textE5 f is initially unde-
fined, and is used to hold the text of the latest multicast
by u~. Two arrays of logical times indexed by J are
kept:promises-to and promises-from. The entries of these
arrays, initially (o% n), are used to keep track of the
times of promises granted and received, respectively.
Two additional logical time variables, clock and mctime,

195

are initially (0, i). The clock contains the time of latest
multicast received by u~, and mctime contains the time
of the latest multicast sent by u~. Finally, the variable
pending is an initially empty set of (texteSP, t ime~3-)
pairs. This set contains all multicast messages received
by pi but not yet delivered to u~.

We let min(promises-to) denote the least time among
the entries in the promises-to array. Similarly, we let
max(promises-from) denote the greatest time less than
(0% n) among the entries in the promises-from array; if
all entries in that array are (0% n), then max(promises-
from) = (0, i). Finally, we let min (pending) and max(pend-
ing) denote the pairs in the pending set having the least
and greatest logical times, respectively; if pending is
empty, then both values are (e, (0, i)).

The transition relation for p~ is shown in Fig. 3. " P "
and " E " denote precondition and effect, respectively. An
action is enabled in exactly those states s' for which the
precondition is satisfied. If an action has no precondi-
tion, it is enabled in all states. When an action occurs,
p[s new state s is determined according to the statements
in the effects clause. States s and s' agree on components
not assigned values in the effects clause. Automaton p~
has the following signature.

Input actions: try i (S c_ J)
backout~
multicast-sendi (m ~ 6 0
rcv(m6d//,j~J, i)

Output actions: multicast-rcvi (m E 5 0
readyi
donei
send(m~Jg, i, j e J)

The equivalence classes of part(pi) are as follows. The
actions multicast-rcvi, readyi, and done~ are together
in one class. And for each j e J , there exist four classes
containing the sets of actions send(promise(t~J),i,j),
send(req-promise, i,j), send(adv-promise(t~ Y), i,j), and
send(multicast(m~SP, t sY) , i, j). This choice of a parti-
tion simplifies reasoning about what actions must even-
tually occur in an execution. However, the necessary live-
ness properties could also be guaranteed with only two
classes: one for send(promise(t~J), i, j) actions, using
a queue to ensure fairness to each j, and one class for
all remaining output actions.

To describe the logically synchronous multicast pro-
tocol, we chronicle the events that take place between
u~'s multicast request and the completion of the multi-
cast. To more fully understand this description, it is rec-
ommended that the reader follow along in the code for
p~ given in Fig. 3. Unless otherwise noted, the word "pro-
cess" refers to one of the processes p~, i ~ J . Also, we
use the words " t ime" and "logical t ime" interchange-
ably.

To initiate the request to perform a multicast, ui
issues a try~(S) action, where S is the set of indices of
user processes that are to receive the multicast. 6 The

s We never use oo in the time of a multicast message; it is used
only as a place holder 6 Recall from the definition of ~ that i~S

196

Input Actions:

- t r y i (S)

E: s . t r y - s e t = S
s .need-set = s ' .need-set w S
s.region = T

O u t p u t A c t i o n s :

send(req -promise , i, j e J)
P: s ' . r eg ione{T , W}

j E s ' . need-se t \ s ' . r eques ted
E: s .requested = s ' .requested w {j}

- rcv (req -promise , j ~ J , i)
E: s .requests = s ' .requests w {j}

- r c v (p r o m i s e (t ~ 3 -) , j e J , i)
E: s .promises - f rom [j] = t

send (promise (t 6 J) , i, j ~ J)
P: j e s ' . r e q u e s t s

t > max(Ib- t ime(s ') , max(s ' .pending) . t ime)
E: s.requests = s ' . r eques t s \ { j}

s .promises- to [j] = t

- mul t icas t -sendi(m)
E: s . t e x t = m

s.region = M

- r c v (m u l t i c a s t (m e S : , t e J) , j e J , i)
E: s .promises- to [j] =(oo, n)

i f m v a e then
s.pending = s ' .pending w {(m, t)}

- readyi
P: s' .region = T

s ' .pending = 0
rain (s ' .promises-to) >_ lb-t ime (s')
V jEs ' . t ry -se t ,

s ' .promises- f rom [j] < (oo , n)
E: s .mct ime = lb-t ime(s ')

s .region = R

- backout~
E: s . try-set = 0

s.region = M

- r c v (a d v - p r o m i s e (t e J -) , j e J , i)
E: s .promises- to [j] = t

send (multicast (me 5 P, t ~ g) , i, j ~ J)
P: s' .region = M

s ' .promises- from [j] < (oo, n)
t = s ' .mct ime
i f (j ~ s ' . t r y - s e t) then

m : s ' . t e x t

else m = e
E: s .requested = s ' . r eques t ed \ { j}

s .promises- f rom [j] = (oo, n)

- mult icast-rcvi(m)
P: s ' . reg ione{P , T}

(m, t) = min (s' .pending)
t < rain (s ' .promises-to)

E: s p e n d i n g = s ' . pend ing \ { (m, t)}
s.clock = t
if s' .region = T then s.region = W

- donei
P: s' .region = M

s ' .requested = 0
E: s .need - se t=O

s.region = P

Fig. 3. Transition relation for p~

- s e n d (a d v - p r o m i s e (t e J) , i , j ~ J)
P: s . reg ion~{T , W}

V k ~ s'.tr y- set,
s ' .promises- f rom [k] < (oo, n)

s ' .promises- fr om [j] < Ib-time (s')
t = lb-t ime (s')

E: s .promises - f rom [j] = lb-t ime(s ')

tryi(S) action causes p~ to remember S as its try-set , insert
the elements of S into its need-set , and enter its trying
region (T). In region T, Pi begins to send "req-promise"
messages to each member of need-set , keeping track, in
the component requested, of those requests already made
in order to avoid sending duplicate requests. Each pro-
cess p~ receiving a "req-promise" message eventually re-
sponds by sending back a "promise" message with an

associated logical time t. v The promise means that pj
will not perform or deliver any multicasts with a time
greater than t until Pi either relinquishes the promise
(by sending a "mult icast" message to pj) or advances

v Note that Pi sends "req-promise" messages to itself in order to
simplify the presentation of the algorithm. A simple optimization
would be to eliminate these messages, as well as the "promise"
messages that pl sends to itself in response

197

the promise (by sending an "adv-promise" message with
the later time). One may think of a promise as a road-
block that p~ erects in uj's computat ion at some future
logical time. The process p~ doesn't allow uSs computa-
tion to advance past that time until the roadblock is
removed or advanced by pi.

In order to ensure that progress is made, we would
like each process to grant its promises with logical times
that are "far enough in the future" to not impede its
own progress. Therefore, for each j in ~ , it is useful
to have a function lb-time that maps the states of pj
to logical times. One may think of lb-time as a lower
bound on the logical time that p~ could assign to its next
multicast. If s is a state of p j, we define Ib-time for pj
in state s to be the least logical time having process-id
j such that

lb-timej(s) >_ max(s.clock, s.mctime, max(s.promises-from)).

The subscript and/or argument of the Ib-time function
are sometimes omitted when their values are clear from
context. We use the lb-time function to assign times to
promises as follows: The time associated with a promise
granted by p~ from state s is chosen by pj to be greater
than the greatest logical time associated with any mes-
sage in its s.pending, and also to be greater than Ib-time(s).

Each process keeps track of both the times for prom-
ises it has granted to other processes (in the promises-to
array) and the times for promises it has received from
other processes (in the promises-from array). After receiv-
ing a promise from each process P i in its try-set, p~ can
issue a ready~ action and assign mctime to the current
value of Ib-time, provided that (1) p~'s pending set is
empty, and (2) all promises Pi has granted with times
lower than lb-time have either been relinquished or ad-
vanced past Ib-time. The second condition is present to
ensure that ui receives no multicast messages with logical
times less than t after p~ decides to send its multicast.
Note that once mctime is assigned in a ready~ action,
it remains fixed for all further processing of u~'s current
multicast. Specifically, any further change in the Ib-time
leaves the mctime unaffected.

When a ready~ action occurs, u~ can no longer back
out from sending a multicast. The readyi action leaves
p~ in the ready region (R), where it waits for u~ to respond
with a multicast-send~ (m) action. When this action occurs,
p~ enters the multicast region (M) and records the desired
text of the multicast in its text component. In region
M, pi sends "mul t icas t" messages to all processes pj from
whom it holds promises. These messages have two pur-
poses. First, they communicate the text and mctime of
the multicast. Second, they relinquish the promises. If
p~ holds a promise from pj but j is not in try-set (we
will see shortly how this may happen), the text argument
of the multicast message is set to e, indicating that the
promise should be relinquished but that no multicast
should be delivered to uj. After pi has relinquished all
the promises it requested, it may issue a done~ action
and return to its passive region.

When a process pj receives a multicast(m, t) message
from p~, it notes that its promise to p~ has been relinqu-
ished, and, if m va ~, inserts the pair (m, t) into its pending
set. The message m is eventually delivered to uj in a

multicast-rcvj(m) action when t is the least time among
the times in pfs pending set and pj has no outstanding
promises with times less than t. These conditions are
necessary to ensure that any later (m', t') pair received
by pj will have t' > t so that multicast messages are deliv-
ered in logical time order.

So far in this discussion, we have ignored the fact
that many multicasts may be proceeding concurrently.
Two complications arise as a result of this concurrency.
The first relates to the delivery of a multicast message
to a user while that user is itself waiting to send a multi-
cast, and the second results from the need to break dead-
lock situations that result from the granting of promises.
We now consider each of these complications in turn.

If Pi is in region T and issues a multicast-rcvi(m) ac-
tion, it enters the waiting region (W) where it waits for
a response from ui. Process ui, on the basis of the new
message m, may decide either to continue trying to per-
form a multicast or to back out. In case of the former,
u~ issues a try~(S') action, where S' is not necessarily the
same as S s. This try~ action is treated just as before.
If u~ decides to back out, it instead issues a backouti
action, causing pi's try-set to become empty and causing
p~ to enter region M, where it proceeds to relinquish
its promises as usual.

In the course of concurrent scheduling of multicasts,
deadlock situations may arise from the granting of p rom-
ises. Consider a situation in which pi and pj are trying
to send multicasts such that each is in the other's try-set.
Suppose that all promises received by p~ (including the
one received from p j) are less than some promise received
by pj. Then p~'s lb-time is less than that of pj. If p~ has
granted pj a promise less than pi's own Ib-time, then
neither can perform a multicast before the other because
each must wait for the other to relinquish its promises.
Such deadlock situations are avoided by promise ad-
vancement as follows. Suppose that p~ has received prom-
ises from all processes in its try-set, but has determined
that it is not yet ready to perform a multicast to relinqu-
ish those promises. In order not to block unnecessarily
the computat ion of each process p~ from which p~ has
received a promise, p~ may send pj an "adv-promise"
message, informing it of pg's current lb-time. U p o n receiv-
ing in "adv-promise" message from p~, p~ notes that its
promise to p~ has been advanced. This may permit pj
to deliver additional multicast messages from its pending
set and/or proceed with its own multicast. In the liveness
proof, we will show that these "adv-promise" messages
are sufficient to guarantee progress.

In studying the algorithm, one will notice a great
deal of nondeterminism in the ordering of events. For
example, we have not specific the order in which prom-
ises are requested from different processes. As a result
of this nondeterminism, the correctness proof of the algo-
ri thm is more general, covering many possible implemen-
tations of the algorithm.

s Recall that our liveness condition says that even if ui "changes
its mind" about the particular multicast it wishes to send, as long
as it continually has some multicast that it wishes to send, eventual-
ly it must be permitted to do so. The ability to change the set
of recipients explains how pl may hold promises from processes
not named in its try-set

198

5 Proof of correctness

Let module P be the composit ion of all au tomata p~,
i e J . In this section, we show that module P solves
schedule module M, which implies that the logically syn-
chronous multicast protocol is correct. The organization
of the correctness proof closely follows the definition
of schedule module M. Clearly, s ig(P)= sig(M). To show
that P solves M, we need to show that all fair behaviors
of P satisfy the safety conditions (1 and 2) and the live-
ness condition (3). We prove these in order. Throughout
the proof, we use subscripts to distinguish the state com-
ponents of the different au tomata in P. For example,
region~ is the region variable in the local state of automa-
ton p~.

5.1 Safety proof

As we have said, the safety proof consists of showing
that all executions of P satisfy conditions (1) and (2)
of schedule module M. We start by proving condition
(1), that P preserve user well-formedness for all i ~ J .
Following this, we state some properties of well-formed
executions that will be used in the proof of condition
(2), as well as in the liveness proof. A key part of proving
condition (2) is showing the existence of a proper corre-
spondence relation c~ on the multicast-send and multi-
cast-rcv events in any execution ~ of P, and also showing
the existence of a proper total order on the multicast-send
events in e. To accomplish this, we exhibit particular
constructions that produce a correspondence relation c~
and an ordering <~ for any execution ~ of P. We then
show that <~ is indeed a total order and finally that
condition (2) is satisfied. We prove the three parts of
condition (2) with the help of several intermediate lem-
m a s .

We now turn to the proof of condition (1). The fol-
lowing relationship between the state of p~ and the defini-
tion of r(i, ~) can be shown by induction on the length
of ~.

Lemma 1. Let ~ be a prefix of an execution of P that
is user well-formed for all i~J;, and let s be the last state
of ~. Then for all i ~ , s.regionz=r(i, ~).

From the above lemma, it follows that module P
satisfies condition (1) of schedule module M. Again, the
proof is a simple induction on the length of the execution.

Theorem 2. Module P preserves user well-formedness for
i, for all i e~ .

We know that module P preserves user well-formed-
ness for all i ~ . Furthermore, since no rcv action is
an output of P, it is not possible for P to violate network
well-formedness. Therefore, in the remaining proofs we
can restrict our attention to well-formed executions only.
This motivates the following convenient definition. Let

be an execution of P. We say that ~ is admissible iff
is user well-formed for every ie~; and ~ is network

well-formed. The following lemma states some properties
of admissible executions that will be used throughout
the proof.

Lemma 3. Let ~ be an admissible execution of P. For
any i 6 J , let ~' be a subexecution of P between two succes-
sive donei events, (or between the beginning of ~ and the
first donei event). Then V j~J , if ~' contains an event hav-
ing any of the following forms, then it contains exactly
one event of each form such that they occur in the follow-
ing order: send(req-promise, i, j), rcv(req-promise, i, j),
send(promise(t), j, i), rcv(promise(t), j, i), and send(multi-
cast(m, t '), i, j), where m6SP, t, t" 63-. Furthermore, any
events of the form send (adv-promise (t'), i, j), t' ~ 3--, occur-
ring in ~' must appear between the last two of the above
events.

Proof The proof is by induction, assuming that the con-
ditions hold for i in the prefix of e up to the beginning
of ~'.

First we show that no two send(req-promise, i, j)
events can occur in ~'. The action ~1 = send(req-promise,
i, j) is only enabled when regioni=T and jr
When the action occurs, it results in j~requested~. Ele-
ments may be deleted from the set requested~ only while
region~ = M. Therefore, another action send(req-promise,
i, j) cannot occur after ~1 until p~ passes through some
state in which region~=M and then reaches a state in
which region~ = T. By Lemma 1 and the definition of user
well-formedness, this cannot happen without an inter-
vening donei.

Next, we show that if rc 1 = send(req-promise, i, j) oc-
curs in ~, then the next done~ event after ~1 must be
preceded by ~5 =send(multicast(m, t"), i, j). The action
rq has as an effect that jerequested~, and done~ has as
a precondition that requested~ is empty. Therefore, since
~5 is the only action that can remove j from requested~,
it must occur between rot and donee.

Now we show that each event in the sequence must
occur in order for the next to occur. By the induction
hypothesis, all send(req-promise, i, j) actions that occur
before c(have their corresponding receives occur before
c(. Therefore, by network well-formedness, ~2
= rcv(req-promise, i, j) cannot occur before ~z~, and only
one ~2 action occurs. Action rc3=send(promise(t), j, i)
is only enabled when i~requestsj, and the event results
in i's removal from that set. Since 7-g 2 is the only action
that can cause i~requests~, it must precede ~3. Again,
by network well-formedness and the induction hypothe-
sis, we know that rc a must precede ~4=rcv(promise(t),
j, i). The action 7cs=send(multicast(m, t"), i, j) has as
a precondition that promises-from~ [j] < (o% n). Since 7c 5
has as an effect that promises-fromi [j] =(0% n), and since
rc 4 is the only action that can cause promises-fromi [j]
<(0% n), we know by the induction hypothesis that
promises-from~ [j] = (00, n) at the beginning of ~'. There-
fore, re4 must precede ~5.

Since send(adv-promise(t'), i, j) has as a precondition
that promises-fromi [j] <(o% n), we know that it cannot
occur before re4 or after ~5. []

In the remainder of the proof, we often use the above
lemma to show the existence or nonexistence of particu-
lar events in a port ion of an execution.

Conditions (2) and (3) of schedule module M refer
to the existence of a correspondence relation and a total

order. In completing the proof, it is helpful to fix particu-
lar constructions for these as follows. Let ~ be an execu-
tion of P. For all i e J , if n is a multicast-send~ event
occurring in c~ and s is the state immediately preceding
n, then we define time(n, ~) to be s.mctime~. Similarly,
if n is a multicast-rcvi event occurring in c~ and s is the
state immediately following n, then we define time(n, c~)
to be s.clock~. We fix the correspondence relation cg~
as follows: For all i, jeor and for all m~5 ~, events nl
=multicast-send~(m) and nz=multicast-rcvj(m) corre-
spond in ~ iff time(hi, e)=time(n2, ~). We fix ~ to
be the ordering as follows: For all n l , 7c2 multicast-send
actions in e, 7[1 ~c~ 7[2 iff time(ha, c 0 < time(n2, ~).

Before proceeding with the three parts of condition
(2), we must first show that ~ is indeed a total order
on the multicast-send events. Recall that the construction
of -<~ is based upon assigning logical times to each multi-
cast-send~ event according to the value of mctime~ in the
preceding state. In the next lemma, we show that the
state component mctimei is nondecreasing.

Lemma 4. Let ~ be an admissible execution of P. Then
for all iEJ , if state s' precedes state s in c~, then
s'.mctime~ <_ s.mctimei.

Proof The actions ready~ are the only actions that modify
mctime~. These actions set s.mctime~ to the value of
lb-timei(s'), which is no less than s'.mctimei by defini-
tion. []

With this 1emma, we can now show that each multicast
is assigned a unique logical time by the protocol.

Lemma 5. Let ~ be an admissible execution of P. Let
n=multieast-sendi(m) and n'=multicast-sendj(m') be two
events in c~. Then time(n, e)r cQ.

Proof There are two cases, depending on whether or
not n and n' are outputs of different user processes. If
i r then we know trivially that time(n, e)r c~)
because they differ in the process-id. (The state compo-
nent mctimei is assigned only to values in the range of
Ib-timei, and these values have i as the process-id by
definition).

If i=j, then assume, without loss of generality, that
n' precedes n in c~. F rom the definition of user well-
formedness, we know that at least one ready~ action oc-
curs between n' and n. Let s' be the state from which
the last such ready~ action occurs, and let s be the result-
ing state. We know from Lemma 4 that s'.mctime~ is no
less than the value of mctime~ in the state after n'. There-
fore, if we can show that s'.mctime~< s.mctimei, then we
will have proven that time(W, ~)< time(n, o O. By the pre-
condition of ready~, we know that in state s', p~ must
hold a promise from itself for some logical time t. By
Lemma 3 and user well-formedness for i, we know that
pi's promise to itself is sent (and received) between the
last preceding done~ action and state s'. Also by user
well-formedness, we know that no ready~ action occurs
between this done~ action and state s', so the value of
mctime~ is constant over that execution interval. When-
ever pi sends a promise, the promise is assigned a time

199

strictly greater than pi's own lb-time, which is, by defini-
tion, at least as large as its own mctime. Therefore,
t > s'.mctime. Since p~ holds a promise for time t in state
s', we know that lb-timei(s') > t. Therefore, since the readyi
action assigns mctime~ to the value of Ib-time~, we know
that s.mctime~ > s'.mctime~. []

This immediately implies the desired result that the
construction of M produces a total order on the multi-
cast-send events:

Corollary 6. Let ~ be an admissible execution of P. Then
-(~ is a total order on the multicast-send events in c~.

Proof Immediate from Lemma 5 and the definition of
-<~. []

Having shown that -<, is a total order, we can turn
to the main task of proving condition (2) of schedule
module M. We begin with condition (2 a).

Theorem 7. Let c~ be an admissible execution of P. Then
cg~ is a proper correspondence relation .for ~.

Proof Let n=multicast-sendi(m) be an event in c~, and
let tryi(S) be the last preceding tryi action. By Lemma
5, we know that n is assigned a unique logical time t
by the protocol. By the definition of pi and specifically
the preconditions of the send(multicast(m, t), i, j) action,
we know that at most one send(multicast(mr t), i, j)
action occurs in c~ for each jES (and that none occurs
for jq~S). By network well-formedness, we know that at
most one rcv(multicast(m, t), i, j) occurs in c~ for each
of these sends. So (m, t) is added to pending~ at most
once in e, for each jES (and never for j(~S). Therefore,
by the definition of multicast-rcv, at most one
multicast-rcvj(m) action corresponds to n for each j~S,
and no such actions correspond to n forjq~S. This proves
that cg~ satisfies properties 1 and 3 of the definition of
a proper correspondence relation.

We now show proper ty 2. By the construction of
cg~, each multicast-rcv has an associated logical time and
corresponds only to those multicast-send actions as-
signed this time. By Lemma 5, each multicast-send has
a unique logical time, so each multicast-rcv can corre-
spond to at most one multicast-send. It remains to be
shown that each multicast-rcv has at least one corre-
sponding multicast-send. Let s' be the state from which
a multicast-rcv~(m) action occurs and let s be the resulting
state. Then by the definition of that action, it must be
that (m, t)~s'.pendingj and s.clock~=t. Therefore, a
rcv(multicast(m, t), i, j) must have occurred prior to s'.
By network well-formedness, this event must have been
preceded by a send(multicast(m, t), i,j), which could only
have been enabled as a result of a multicast-send~(m) ac-
tion with an assigned logical time of t. This is the desired
corresponding action. []

The next part of the proof is to show that Ms is
a proper total order for cg~ and ~. In order to accomplish
this, we first prove a lemma that state some important
invariants on the state of P. The fifth invariant, which

200

states that the minimum time in the pending set of a
process Pi is always larger than the clock of that process,
is a key piece of the safety proof. Informally, it tells
us that no multicast message arrives " too late". This
is used to prove a second lemma, that the clock compo-
nent of a process is nondecreasing. This will enable us
to show the desired property of Ms.

Lemma 8. Let ~ be an admissible execution of P. Then
for all i, j ~ J , the following properties hold for all states
s i ne .
1. i~ s.requestsj~ s.promises-toj [i] = (~ , n)
2. s.pr omises-t o j [i] _< s.pr omises-fr omi [j]
3. s.clockj < s.promises-toj [i]
4. (s.region i E { R, M} /x j ~ s.try-seti c~ s.requestedi)

s.promises-fromi [j] <_ s.mctimei
5. s.pending j # O ~ s.clock j < min (s.pending j).time

Proof Each property is proved by a separate induction
on the length of a 9.

Property (1). If s is an initial state, then for all i,
j ~ J , i(~s.requestsj, so the statement holds vacuously. The
only action that can falsify s.promises-toj[i] = (~ , n) is
senct(promise(t), i, j), but this action removes i from
s.requestsj. The only action that can add i to requestsj
is a rcv(req-promise, i, j). So, for the induction step, let

= ~'~s, where ~ = rcv(req-promise, i, j) and Property
(1) holds for e'. Suppose (for contradiction) that s.prom-
ises-toj [i] < (~ , n). This can only be true if there exists
some ~', either a send(promise(t), j, i) or a rcv(adv-pro-
mise(t), i, j), in ~' such that no rcv(multicast(m, t'), i,
j) occurs between n' and n. However, by Lemma 3, every
send(promise(t), j, i) or send(adv-promise(t), i, j) must
be followed by a send(multicast(m, t'), i, j) before the
next send(req-promise, i, j) occurs. So by network well-
formedness, rcv(multicast(m, t'), i, j) must occur between
~' and n, giving us a contradiction.

Property (2). The base case, e only a start state, holds
since promises-fromi [j] = promises-toj [i] = (~ , n) for all
i, j ~ J . Let a=a ' s ' n s be an execution of P, where the
property holds in state s'. Now, consider those four ac-
tions ~ that can potentially increase promises-toj[i] or
decrease promises-fromi [j] :

1. If ~=send(promise(t), j, i), then by Property (1) and
the preconditions on ~, s' .promises-toj[i]=(~, n).
Therefore, promises-toj [i] is not increased by n.

2. If n = rcv(promise(t), j, i), then s.promises-fromi [j] = t.
By network well-formedness, ~'=send(promise(t), j,
i) must occur earlier in ~', leaving promises-toj[i] =t.
The only possible events that could occur between
~' and ~ to make s.promises-toj[i]#t are rcv(adv-
promise(t '), i, j) or rcv(multicast(m, t'), i, j). By Lem-
ma 3, we know that ~' must occur before ~ such that
no send(adv-promise(t'), i, j) or send(multicast(m, t'),
i, j) occurs between n' and ~. By the same lemma,
we know that a ~"=rcv(req-promise, i, j) occurs
before ~' such that no send(adv-promise(t'), i, j) or

9 This is in contrast to proofs in which the inductive hypothesis
includes all of the invariants

send(multicast(m, t'), i, j) occurs between ~" and ~'.
Hence, by network well-formedness, no rcv(adv-pro-
mise(t'), i,j) or rcv(multicast(m, t'), i,j) occurs between
n' and n.

3. If ~z=rcv(adv-promise(t'), i, j), then s.promises-
toj [i] = t'. By Lemma 3 and network well-formedness,
the corresponding send(adv-promise(t'), i, j) must fol-
low a ~ ' = send (promise (t), j, i) such that no rcv (multi-
cast(m, t'"), i,j) occurs between them. By the precondi-
tions of send(adv-promise(t'), i, j), t '>t, and that ac-
tion results in promises-fromi[j]=t'. Furthermore,
any other send(adv-promise(t"), i, j) occurring in ~'
after send(adv-promise(t'), i, j) must have t">t' .
Therefore, the property holds.

4. If ~=rcv(multicast(m, t), i, j), then s.promises-toj[i]
= (o9, n). By network well-formedness, ~z must be pre-
ceded by ~'=send(multicast(m, t), i, j), resulting in
promises-fromi[j] = (~ , n). The only action that can
decrease promises-fromi[j] is a rcv(promise(t'), j, i).
But by Lemma 3, any rcv(promise(t'), j, i) occurring
between ~' and 7c must be preceded in that interval
by a send(req-promise, i, j) and a rcv(req-promise,
i, j). But this violates network well-formedness ($4),
so no rcv(promise(t'), j, i) occurs between ~' and n.
Therefore s.promises-fromi [j] = (~ , n).
Property (3). The base case, e a start state, holds

since clock~=(O, j) and promises-toj[i]=(~, n) for all
i ~ J . Now, consider those actions that can potentially
increase clockj or decrease promises-toj[i]. These are
multicast-rcvj, send(promise(t), j, i). and rcv(adv-prom-
ise(t), i, j). By definition, the action multicast-rcvj sets
clock to a value t, such that Vieor promises-toj[i]>t.
The action send(promise(t), j, i) sets promises-toj[i]=t
and is enabled only if t > lb-timej, which is at least clockj
by definition. Finally, the action rcv(adv-promise(t), i,
j) sets promises-toj[i]=t. To show that t>clockj, we
note that send(adv-promise(t), i, j) is enabled at Pi
only if promises-fromi [j] < t. Therefore, by Property (2),
t > promises-toj [i] when send(adv-promise(t), i, j) occurs.
And therefore, t>promises-toj[i] when rcv(adv-pro-
raise(t), i, j) occurs, since Lemma 3 and network well-
formedness tell us that neither a rcv(multicast(m, t'), i,
j) nor a send(promise(t'), j, i) action can occur between
send(adv-promise (t), i, j) and rcv (adv-promise (t), i, j).

Property (4). The base case, e a start state, holds
since regioni = P. Let e = ~'~s, where the property holds
after ~'. There are two cases.

We first consider the case in which Pl enters region
R, and subsequently enters region M. In this case,
= readyi, so the property holds by the preconditions and
effects of readyi. In that action, lb-time and mctime are
made equal, and we note that mctime remains unchanged
until after Pi exits region M. We also observe that by
user well-formedness for i, no tryi actions can occur from
regions R or M, so try-seti is fixed in R and M. By
Lemma 3, no new promises from members of try-set are
received by p~ while in R or M, since those promises
have already been received (by precondition of readyi).
Therefore, to show that the proper ty holds after all ex-
tensions of e in which p~ remains in R or M, we need
only show that for all jetry-set, if promises-fromi[j] is

201

increased, then j is removed from requested until the next
donee. Since send(adv-promise(t), i, j) actions are not en-
abled from M, we need only consider send(multicast(m,
t), i, j). However, this action removes j from requested.
Since send(req-promise, i, j) is not enabled in M, j cannot
be replaced in requested before the next donee.

For the second case, p~ does not enter M from region
R. In this case, rc must be backout~, by user well-formed-
ness for i. Therefore, by the effects clause of that action,
try-seti=O, so the property holds vacuously until the
next donee.

Property (5). Clearly, the property holds in the initial
state. Let ~ = e' s' 7c s be an execution of P, where the prop-
erty holds in state s'. The only action that can change
clock~ is a multicast-rcv~, which removes the element from
pending~ having the least time, and sets clock~ to that
time. By Lemma 5, no two multicast-send actions are
assigned the same logical time. So by Lemma 3, at most
one send(multicast(m, t), i, j) occurs for a given time t.
And by network well-formedness, at most one rcv(multi-
cast(m, t), i,j) occurs. Therefore, no two items in pendingj
have the same logical time. So by the induction hypothe-
sis, the property holds.

The action rc=rcv(multicast(mCe, t), i, j), for some
i ~ , is the only action that can add elements to pendingj.
Let s" be the state from which the corresponding send-
(multicast (m, t), i, j) occurs. Since m ~ e implies that j e s".
try-set~, we know from Property (4) that
s".promises-fromi [j] <_ t = s".mctimei. Therefore, by Prop-
erty (2), s".promises-to~ [-i] <_ t. By Lemma 3 and network
well-formedness, we know that no send(promise(t'), j, i)
or rcv(adv-promise(t'), i, j) action can occur between s"
and s' that could cause promises-toj[i] to increase past
t. Therefore s'.promises-toj[i]<_t. So, by Property (3),
s'.clock~ < t. When rc occurs, (m, t) is added to pending~,
so Property (5) holds in state s. []

We now show that the clock state component is nonde-
creasing.

Lemma 9. Let ~ be an admissible execution of P. Then
for all ic~r if state s' precedes state s in ~, then
s'.clocki <_ s.clocki.

Proof Consider the actions multicast-rcv~, which are the
only actions in which clock~ can be modified. Whenever
a muhicast-rcvi action is enabled, pending~ is nonempty.
By definition, a multicast-rcv~ action results in clock~ be-
ing set to the minimum logical time in pending~. By Prop-
erty (5) of Lemma 8, clocki is less than the minimum
logical time in pending~, provided pendingi is nonempty.
Therefore, whenever clocki is modified, its value is in-
creased. []

Proof We need to show that Vi, j, k ~ J and Vm, m'~5 P,
if rc = multicast-sendi(m) and ~' = multicast-send i(m') occur
in c~ with corresponding receives ~=multicast-rcvk(m)
and ~'=multicast-rcvk(m'), and if -<~ orders ~' before
re, then ~' occurs before ~.

From Lemma 5, we know that ~z and ~z' have associat-
ed unique logical times. Let these be t and t', respectively.
Since M~ orders n' before ~r, we know that that t>t ' .
Furthermore, by the definition of cg~, we know that
cIockk=t in the state immediately after ~ and that
clockk=t' in the state immediately after ft. Lemma 9
tells us that clockk is nondecreasing. Therefore, 7~' must
occur before ~. []

Finally, we prove property (2 c) to complete the safety
proof.

Theorem 11. Let c~ be an admissible execution of P with
correspondence relation <g~. Then V j 6 J and Vm, m'~SP,
if ~z = multicast-sendi(m) occurs in ~, then no
multicast-rcvi(m') occurs between ~ and the corresponding
r = multicast-rcvi (m).

Proof Consider the state s from which rc occurs, let c(
be the prefix of e ending in state s, and let t = s.mctimei
=-time(n, ~'). We know, from user well-formedness for
i, that r(i, e ')= R. Consider the last action readyi occur-
ring in e', and let s' be the resulting state. (We know
such an action must occur, since this is the only action
that can result in region R.) We know, again by user
well-formedness for i, that regioni=R at all states be-
tween s' and s.

Suppose (for contradiction) that a multicast-rcvi(m')
occurs between n and ~. F rom the definition of readyi,
we know that s'.pendingi--O. Therefore, the only way
for the multicast-rcv~(m') to occur between s' and ~ is
for a rcv(multicast(m'r t"), j, i) with t " < t to occur
first in that interval. By the preconditions of ready~, s'.
promises-toi[j] >_Ib-time(s'[i)= t, for all j e J . Further-
more, any later send(promise(t'), i, j) must have t'
>Ib-time~, which is greater than mctimei in every state
by definition. From Lelnma 4, we know that mctime~
is nondecreasing, so mctime~>t in all states after s'.
Therefore, by Properties (2) and (4) of Lemma 8, no send-
(multicast(m'v ae, t"), j, i) with t"< t can occur after s'.
(We ignore send(multicast(e, t"), j, i) actions here because
a rcv(multicast(e, t),j, i) action does not cause an element
to be inserted into the pending set). So the only way
for a rcv(multicast(m', t"),j, i) with t"< t to occur between
s' and r~ is for its corresponding send to occur before
s'. If this is the case, then by Properties (2) and (4) of
Lemma 8, s'.promises-to~Fj] <_ t". But this violates the
precondition for the ready~ action that occurs from
state s'. []

We can now prove property (2b) of schedule module
M.

Theorem 10. Let ~ be an admissible execution of P. Then
~ is a proper total order for c~ and ~.

5.2 Liveness proof

The liveness proof consists of showing that executions
of P satisfy condition (3) of schedule module M. We
prove the two parts of condition (3) in order. Since the
protocol is required to make progress only if the user

202

processes and the network satisfy their liveness proper-
ties, we will restrict our attention to only those execu-
tions in which the environment is live. This motivates
the following definition. Let ~ be a fair execution of P.
We say that c~ is well-behaved iff ~[U~scheds(U~) for all
i e J and c~[N~scheds(N). Note that every well-behaved
execution is an admissible execution, by the definitions
of U~ and N, and the fact that P preserves user well-
formedness for all i e J .

Before proving condition (3 a), we prove four interme-
diate lemmas. The following lemma states that if a prom-
ise is requested, then eventually it is granted.

Lemma 12. Let c~ be a well-behaved execution of P. I f
event ~z=send(req-promise, i, j) occurs in c~ then a later
rcv(promise(t),j, i) occurs in ~ for some teJ - .

Proof By the definition of scheds(N), a n'=rcv(req-
promise, i, j) occurs in e after re. By the transition relation
for p~, i~requestsj in the state after n'. Only a send(prom-
ise (t), j, i) action can cause ir requestsj. Therefore, a send-
(promise(t), j, i) action is enabled in all states after ~'
until one occurs. Since e is a fair execution and send-
(promise(t), j, i). actions are in their own class of the
partition, such an action eventually occurs. The defini-
tion of scheds(N) tells us that a corresponding rcv(prom-
ise(t), j, i) occurs later in e. [~

The following simple lemma states that if a try~ action
occurs, then eventually either need-seh becomes fixed,
or else a later ready~ or backout~ action occurs.

Lemma 13. Let ~ be a well-behaved execution of P, and
let cg be a suffix of ~ beginning with a try i action, for
i ~ J . I f no backouti or readyi action occurs in c(then
there exists a state in c~' after which need-set~ is fixed.

Proof If no backout~ or ready~ action occurs in c(, then
from the definitions of p~ and user well-formedness we
know that no element is deleted from set need-set~ in
e'. Therefore, since need-set~ can contain at most n ele-
ments, we know that there exists a state in e' after which
need-set~ is not changed. []

The next lemma states that a process can eventually
accumulate promises from all processes named in its
need-set. This fact will be useful in proving Lemma 15.

Lemma 14. Let ~ be a well-behaved execution of P, and
let c(be a suffix of ~ beginning with a try i action. I f
neither a backouh nor a readyi action occurs in ~', then
there must exist a point in c(after which the following
condition holds for all states s: Vj~s.need-seti,
s.promises-fromi [j] < (oo, n).

Proof If no backouh or ready~ action occurs in ~' then
by user well-formedness for i, regionie {T, W} in all states
of e'. F rom Lemma 13, there exists a state s' in e' after
which need-set~ is fixed. Let ~" be the suffix of c(begin-
ning with state s'. Then for each state s" in c~" and for
each j~s'.need-set, there are two possibilities: either (1)

jCs'.requestedi, and send(req-promise, i, j) is enabled or
(2) jes'.requestedi and send(req-promise, i, j) occurs be-
fore s' (and after the last preceding donei, if one occurs).
In case (1), we know that a send(req-promise, i, j) must
eventually occur since ~ is a fair execution and such
actions form their own class of the partition. So, in either
case, Lemma 12 tells us that a rcv(promise(t),j, i) action
must occur in ~ (after the last done~ event, if one occurs).
So eventually, promises-fromi[j] <(o% n) for all j~need-
set. No action can occur at p~ in region T or W to cause
an entry in the promises-fromi array to become (~ , n).
Thus, we have the desired result. []

The final intermediate lemma states that if a process
is at tempting to perform a multicast, then eventually
its lb-time will stop increasing or the process will perform
a multicast.

Lemma 15. Let c~ be a well-behaved execution of P, and
let ~' be a suffix of ~ beginning with a try i action. I f
neither a backouti nor a ready~ action occurs in c~', then
there exist a logical time t ~ Y and a state s in c(such
that Ib-time~ = t in all states after s.

Proof If no backout i or readyi action occurs in e', then
from Lemmas 13 and 14 we know that there exists a
state s in e' after which need-set~ is fixed and pi holds
promises from all processes named in need-set~. Let t
= Ib-time~(s). In order to show that Ib-timei cannot grow
past t in e', we need to show that no new promises
arrive at p~, that p~ does not advance any promises past
t, and that clocki and mctime~ do not increase past t.
Clearly, since need-set~ is fixed and p/ holds promises
from each process named in need-set~, no new promises
are requested and no new promises arrive. And by defini-
tion, pi never advances a promise beyond its current
lb-time. Since p~ holds a promise from itself (for a time
< t), we know by Property (3) of Lemma 8 that clock~
cannot grow past t. Finally, since mctimei is only modi-
fied by a ready~ action, we know that this is fixed as
well. []

The next two theorems correspond to Conditions
(3a) and (3b) of schedule module M. In the first, we
assume that there exists a set of blocked processes, and
derive a contradiction by showing that the process with
the least lb-time must eventually make progress. The
promise advancement mechanism is crucial to this result,
because it allows a process to discover that it is the
one with the least lb-time. From the previous result, we
know that only a finite number of these promise ad-
vancement messages are sufficient to ensure that progress
is made.

Theorem 16. Let c~ be a well-behaved execution of P. I f
a tryl occurs in c~, then either a backouti or a readyi occurs
later in c~.

Proof Suppose (for contradiction) that there exists a set
J___J such that V j ~ J , a tryj occurs in c~ and no later
backoutj or readyj occurs in e. F rom Lemmas 14 and

15, we know that there exists a suffix c(of ~ such that
for all j ~ j ,

1. lb-time i is fixed in e', and
2. for all states of c(, pj holds a promise from every pro-
cess and named in try-seti c_ need-setj.

Let i E ~ be the index of the process with the least lb-time
in c(, and let t be this lb-time. To derive a contradiction,
we wish to show that a readyz action occurs in c(.

Given the preconditions on ready~, there are only
two ways in which the readyi action could not be en-
abled: Either (1) promises-toi [j] < lb-timei for some j ~ J ,
or (2) pendingi is not empty. We consider these in order.
By the preconditions on granting a promise, any new
promises granted by Pi in e' have logical times greater
than t, so we need only consider promises granted before
c~'. Each process k ~ J \ J makes progress (i.e., has a
backoutk or ready~ action), and therefore reaches region
M, where it eventually relinquishes every promise held.
So, any promise that p~ has granted to any process
p k ~ J \ J for a time less than t must eventually be relin-
quished. We have already said that the remaining pro-
cesses p j e J hold promises from all processes named
in their try-sets. Therefore, since e is a fair execution,
a send(adv-promise(t'), j, i) occurs with t' being the logi-
cal time at which lb-timej is fixed. By the definition of
N, a corresponding rcv(adv-promise(t'), j, i) occurs later
in c~. Since p~ has the least lb-time among processes named
in J , we know that t' > t in all cases. Therefore, all prom-
ises that pi has granted to other processes for times less
than t are eventually relinquished or advanced past t.
So, for all j ~ J , promises-toi[j] >_ Ib-timei. Therefore, by
Property (5) of Lemma 8, nothing prevents multicast-rcv~
actions from occurring to empty pending~, since
lb-timei > clock~. Thus, since e is a fair execution, ready~
eventually becomes enabled and must eventually oc-
cur. []

Finally, we show condition (3 b), that a multicast mes-
sage is eventually delivered to all the destination pro-
cesses.

Theorem 17. Let c~ be a well-behaved execution of P. I f
a multicast-sendi(m) occurs in c~ and tryi(S) is the last
preceding try~ action in ct, then a multicast-rcvj(m) occurs
later in c~ for each j~S.

Proof If multicast-sendi(m) occurs in e, we know that
a ready~ must precede it, by user well-formedness for
i. By the preconditions of ready~, for all jEtry-seti=S,
promises-fromi[j] <(0% n). Therefore, the actions send-
(multicast(m, t), i, j) remain enabled until they occur.
And by definition of N, the corresponding rcv(multi-
cast(m, t), i, j) actions must eventually occur.

Once a rcv(multicast(m, t), i, j) occurs, the only way
for the multicast-rcvj(m) to be prevented is for
promises-toj[k] to be less than t, for some k ~ J . Note
that any new promises granted by pj must be greater
than t until multicast-rcv~(m) occurs, since t< max(pend-
ing). Therefore, by Theorem 16 and the result of the
preceding paragraph, all promises granted by pj for times

203

less than t must eventually be relinquished. At that point,
promises-toj[k]>_t, V k ~ J , so eventually multicast-
rcvj(m) occurs. []

Theorem 18. Module P solves schedule module M.

Proof Follows immediately from Theorems 2, 7, 10, 11,
16, and 17 and the definition of M. []

6 Complexity analysis

In this section, we analyze the message and time com-
plexities of the multicast protocol. Let system A be the
composition of P and any two automata that solve
schedule modules U and N. Let ~ be an execution of
system A. We say that ~ is an undeviating execution for
i iff every pair of actions tryi(S) and tryi(S') either have
a donei between them or S = S'. That is, in an undeviating
execution for i,u~ does not "change its mind" about
whether to issue a multicast message or to whom the
multicast should be sent.

6.1 Message complexity

There are four types of messages sent in the algorithm:
req-promise, promise, adv-promise, and multicast mes-
sages. If ui issues rc=try~(S) in an execution of system
A, then we say that the following messages occur as
a result of ~: any requests by p~ for promises from any
p j, jeS , any promises sent in response to those requests,
any promise advancements by pi to pj, j~S, and any
multicast messages sent from p~ to pj, jeS . That is, we
charge each try~ action with those messages required to
complete the corresponding multicast.

Theorem 19. Let c~ be an undeviating execution for i, where
e]Ui contains a ~=tryi(S). Then at most 4]SI network
messages occur as a result of ~.

Proof By Lemma 3, we know that for each j~S, at most
one send(req-promise, i, j), one send(promise(t), j, i) and
one send(multicast(m, t'), i, j) occur between rc and the
completion of the multicast. Now we show that at most
one send(adv-promise(t"), i,j) occurs. Since the execution
is undeviating, promises are requested (and received)
only from processes named in S. Since no adv-promises
are sent until promises are received from all processes
named in S, all promises are advanced at most once,
to the same logical time. []

In executions that do not have the undeviating prop-
erty, more messages may be required. In the worst case,
the try-set grows by one with each tryi action until IsI
= n, the promise granted by the new process each time
exceeds the old lb-time and is received before the next
tryi, and all promises are advanced after each promise
is received. In this worst-case scenario, the number of
req-promise, promise, and multicast messges are the
same as above, but the number of adv-promise messages
is O(n2). In situations where this sort of behavior is ex-

204

pected, one might choose another strategy for advancing
promises. Alternative methods of promise advancement
are outlined in Sect. 6.3.

6.2 7~me complexity

To study the time complexity of the algorithm, we need
a method for associating real times with points in an
execution. If e is an execution, we say that r t is a real
time assignment for c~ if r t maps each event ~ in ~ to
a real time rt(rc, c~) such that the sequence of times (1)
is nondecreasing over the entire execution and (2) in-
creases without bound if ~ is infinite. If c~ is an execution,
r t is a real time assignment for c~, and ~z' and rc are
events in e, we say that the time between ~' and ~ is
[rt(rc, a)-rt(7c', ~)1. We define the state of c~ at real time
r to be the state s as follows: if r is less than the real
time of the first event in e, then s is the initial state.
If r is greater than the time of the last event in e, then
s is the last state of a. Otherwise, s is the state occurring
between the two events re' and rc in ~ such that rt(rc',
e) < r < r t(~, c 0. A more general approach for adding real
time to the I/O au tomaton model is presented in [-27],
but the above definitions will be sufficient here.

In order to derive meaningful time bounds for the
algorithm, we need to make stronger assumptions about
message delivery than the eventuality conditions used
for the liveness proofs. Therefore, we let d be an upper
bound on the time between a send event and the corre-
sponding rcv (i.e., the message delay). We assume that
process step time is insignificant in comparison to d,
so we do not impose any lower bound on the time be-
tween two successive steps of the algorithm. In fact, to
simplify the analysis, we require that if an output action
of P is enabled in state s at time r, then either that
action occurs at time r, or that action becomes disabled
by some other action occurring at time r. Informally,
this says that the only delays are in the message system;
all processing of a message occurs instantaneously with
the receipt of that message. For example, no time elapses
between receiving a request for a promise and sending
out the promise. We also require that each user respond
to multicast-rcv and ready actions immediately. That is,
if a multicast-rcv~ action occurs at real time r, then the
resulting try~ or backouti action occurs at realt time r.
Similarly, if a readyi action occurs at real time r, then
the resulting multicast-send~ occurs at real time r. We
will restrict our attention to executions of A with real
time assignments satisfying the above properties.

We wish to derive an upper bound on the time be-
tween making a request to perform a multicast (a tryi
action) and getting permission to perform the multicast
(a readyi action). To accomplish this, we first compute
an upper bound on the time for the process with the
least lb-time to be able to perform a multicast once it
has received all the necessary promises.

Lemma 20. Let c~ be an undeviating execution for i with
real time assignment ft. Let s be a state in c~ such that

1. for all jEs.try-seti, s.promises-fromi [j] < (o% n), and
2. for all j e J with s.regionje{T, W}, lb-timei(s)
<_ lb-timej(s).

I f r is the real time of state s, then there exists an event
~=readyi in ~ such that r < r t (~ , ~) < r + 3d.

Proof. For all j ~ J , if s.regionj~{P, R, B} and
s.promises-toi [j] < (o% n), then by time r + d, a rcv (multi-
cast(m, t), j, i) action occurs for some rues P and t e J .
Furthermore, for all j ~ J , if s.regionj~{T, W} and
s.promises-toi [j] < (o% n), then a rcv(adv-promise(t'), j,
i) action with t ' > lb-timei(s) occurs by time r + 3d (one
delay for pj's promise requests, one delay for the promise
messages, and one delay for the the adv-promise mes-
sage). Any promise granted by Pi after state s must have
a time greater than lb-timei(s), since no action can occur
from region T or W to decrease the value of lb-time~.
Therefore, by time r + 3 d , it is the case that
min(promises-toi) > lb-time~(s). So, all the multicast mes-
sages waiting in pendingi are delivered by time r + 3 d.
Thus, the preconditions for readyi are satisfied by time
r + 3d and the action must occur. []

Let ~ be an execution of P. We say that p~ depends
on pj in state s of :~ iff s.regionie{T, W}, s.regionj~{T,
W}, and lb-timei(s)>s.promises-toi[j]. We say that Pi in-
directly depends on Pk in state s iff there is a sequence
P~, P j,, Pj , Pk such that pi depends on p j,, P J1 depends
on P J2, etc. One may think of this sequence as a waiting
chain, in which each process is waiting to receive a multi-
cast message from the next process in the chain before
it may proceed with its own multicast.

The following theorem says that if z is the length
of the longest waiting chain originating at Pi in an unde-
viating execution and p~ holds promises from all
members of its try-set, then p~ must wait at most 3 d(z + 1)
time units before completing its multicast.

Theorem 21. Let ~ be an undeviating execution for all
i ~ J . Suppose that at real time r, pi is in state s such
that s.promises-fromi [j] < (0% n) for all j~s.try-seti. Let
z be the greatest number of processes on which Pi indirectly
depends between state s and the next readyi. Then a ready~
occurs by time r + 3d(z + 1).

Proof. At most time 2d is required from the time a pro-
cess requests promises until those promises are received.
Therefore, if a process pj depends on process Pk, it must
be that P5 receives a promise request from Pk within time
2d of the tryj event. (If the promise request arrived later,
then pj's lb-time would already be fixed and pj would
grant a promise for a greater time, contradicting the
hypothesis that pj depends on Pk). So, extending this ar-
gument, the lb-times for all processes in the longest wait-
ing chain originating at p~ must be fixed by real time
r+2dz . So, by Lemma 20, we know that if Pl is the
process in the waiting chain with the least lb-time, then
a ready~ action must occur by time r + 2 d z + 3 d, shorten-
ing the length of the waiting chain by one. Similarly,
the next process in line must issue its ready action within
3d time units, and so on. Therefore, a readyi occurs by
time r + 2dz + 3 d z = r + 5dz.

However, one can improve on this bound by noticing
that by the end of the 3d maximum time units between
the time the last process in the chain obtains all of its
promises until its ready~ occurs, all the remaining pro-
cesses in the chain will have received any adv-promise
messages due them. Therefore, each remaining process
waits only for the multicast messages from the processes
on which it directly depends. These messages require
at most d time units each, and there are z of them in
the chain. This gives us a time bound of
2 d z + 3 d + d z = 3 d (z + l) . []

It should not be surprising that the time complexity
depends heavily upon pattern of the multicast requests,
since this is what determines the dependency order. Since
z can be at most n, the delay is at most 3d(n+ 1).

Note that the worst-case time complexity matches
one's expectations about what must happen when all
n processes attempt to send multicast messages to every
process. A simple inductive argument shows that any
protocol requires an f2(dn) delay in this worst-case scen-
ario: since all processes send to all other processes, the
conditions of the problem require that the protocol en-
force a total order on the multicasts. Thus, the process
u whose message is the U h message in the total order
must wait at least d (k - 1) time before sending its mes-
sage, or else it could not have received all k - 1 messages
ordered before it. (This, of course, assumes that all mes-
sages take the maximum time d to arrive).

The worst-case scenario far an execution without the
undeviating property is rather complicated. Process Pl,
say, grants promises to all the other processes. Then,
processes P2 through p, each change their minds n times
about their try-sets before finally performing multicasts
in turn while Pl waits. On receipt of p,'s multicast mes-
sage, ul changes its mind about its try-set and issues
a new try~. But before requesting the additional promises,
Pl first grants new promises to all the other processes
P2 p,. Then pl requests promises from its new try-set
and, receiving those promises, advances its lb-time past
all the new promises it has granted. Thus, the same pro-
cedure can start over and repeat itself for a total of n
times, since Ul can change its mind at most n times before
a readyi finally occurs. This worst-case scenario results
in a delay of O (n 3 d).

One interesting question is whether a deeper under-
standing of the time complexity of the algorithm could
be obtained by stating a measure of the concurrency
inherent in the pattern of try actions and deriving a time
complexity in terms of that measure. That is, one might
measure how well the algorithm performs for a given
pattern of multicast requests, and compare this to an
optimal strategy for handling that particular pattern.
Ideally, an algorithm would perform optimally for all
possible request patterns. One complication in this sort
of analysis is that the behavior of the protocol itself may
influence the pattern of requests.

6.3 Possible optimizations

We begin with two simple optimizations. To simplify
the presentation of the algorithm, we chose to deliver

205

only one message in a multicast-rcvi action. As a minor
modification, one might wish to send a sequence of mes-
sages in each action. Also for the sake of exposition,
we chose to let pi send itself messages over the network.
A real implementation, however, would not actually send
such messages but simply do some local computation.

A more significant modification would involve not
waiting for promises requested from processes not in
one's try set. That is, donei would become enabled after
p~ no longer holds any promises, even if p~ has requested
a promise that has not yet been received. One way to
achieve this would be for Pz to send out "mult icast"
messages to every process in requested, regardless of
whether the promise had actually been received. This
modification would require some mechanism for dealing
with promises that come in late. One might keep track
of the number of earlier donez actions and tag each re-
quest with that number; that tag would be appended
to the corresponding promise by the granting process.
In this way, promises arriving from an earlier multicast
attempt could be ignored.

We mentioned earlier that there are other ways in
which promise advancement might be handled. For ex-
ample, one might not wish to wait until promises have
been received from all the members in the try-set before
advancing promises. Alternatively, one might have a
process request promise advancement from those pro-
cesses blocking its computation. More specifically, the
following options are possible.

1. Spontaneous advancement: This method allows p~ to
nondeterministically send advancement messages
when it notices that it is holding a promise with a
time less than its lb-time.

2. Advancement on demand: If a process pj is in T with
lb-time= t, and has given a promise to p~ for a time
t' less than t, then pj may send p~ a message, asking
it to advance the promise. Upon receiving such a mes-
sage, if p~ has lb-time > t', then it will send pj a promise
advancement message.

Deadlock avoidance methods similar to these are dis-
cussed in [26]. In both cases, there is a trade-off between
the message and time complexities: as one becomes more
aggressive about advancing promises to reduce time de-
lays, the number of messages increases.

As a final modification, one might allow a process
to make strategic promise requests from processes not
in its need-set. In this way, if u~ changes its mind about
its try-set, pz may not need to wait for additional prom-
ises. Of course, requesting too many unneeded promises
could adversely affect overall performance by needlessly
blocking other processes.

7 Conclusion

We have defined the logically synchronous multicast
problem and presented a solution that takes advantage
of the concurrency inherent in the problem. The strong
properties of message delivery order imposed by the
problem would make a fault-tolerant solution highly at-

206

tractive for many applications. However, in a completely
asynchronous system with undetectable process failures,
the properties of the message delivery order are strong
enough to make a fault-tolerant solution impossible. The
proof of this fact is a reduction to distributed consensus
using techniques from [16]. Dolev, Dwork, and Stock-
meyer show that if processes can broadcast messages
such that message delivery at all processes is consistent
with some total order on the broadcasts, then it is possi-
ble to implement a distributed consensus protocol that
tolerates any number of stopping faults [8]. (Each pro-
cess simply broadcasts its initial value, and the value
in the first message received is used as the decision value).
We know that there does not exist a protocol for distrib-
uted consensus that tolerates even one stopping fault
[12]. Therefore, it is impossible to construct a fault-toler-
ant broadcast protocol in which message delivery at all
processes is consistent with a single total ordering of
the broadcasts. Since the logically synchronous multicast
problem requires message delivery to be consistent with
a total ordering of the multicasts (plus other conditions),
it also does not admit a fault-tolerant solution. However,
in spite of this impossibility result, there do exist useful
applications of the logically synchronous multicast pro-
tocol we have presented. To conclude the paper, we illus-
trate an application of this protocol in an area where
we need not be concerned with process failure. Specifi-
cally, we consider distributed simulation of I/O automa-
ta.

The I/O au tomaton model has proven useful for de-
scribing algorithms and proving their correctness (for
examples, see I-6, 9, 11, 13, 15, 22, 20, 23, 21, 24, 29,
30]). Therefore, we have developed a simulation system
based on that model to aid in the design and understand-
ing of distributed algorithms [14]. Distributing the simu-
lation, besides being an interesting exercise in itself, can
also reduce the simulation time.

Recall from the definition of the I/O au tomaton mod-
el that input actions of au tomata are always enabled,
and that an action shared by a set S of au tomata is
the output of only one au tomaton and occurs simulta-
neously at all au tomata in S. In addition, the actions
enabled in a given state of an au tomaton may, in general,
depend upon all previous actions occurring at that au-
tomaton. Furthermore, the fairness condition requires
that given an au tomaton d and an execution c~ of ~r
if some class C~part(~r has an action enabled in a state
s of e, then either no action in C is enabled in some
state s' occurring in e after s, or an action from C occurs
in e after state s.

We wish to construct a distributed system for simu-
lating fair executions of a given au tomaton ~r where
d has some finite number of components a l l ,
d 2 , ..., sr To simplify the discussion, we shall assume
that each component ~r has exactly one class in its parti-
tion. (The generalization allowing each component to
have a finite number of classes is straightforward.) To
accomplish this, we simply "plug in" a particular transi-
tion relation for each user process u~ in system A such
that all of its schedules are in scheds(Ui): We assign pro-
cess uz to simulate component d~. When s~cz has an ac-

tion rc enabled, ui may issue a tryi(S) action, where S
is the set of au tomata having = as an action. 1~ Then,
upon receiving a readyi input, u~ issues a multicast-
send(re), where rc is the action associated with the pre-
vious try~. We permit u~ to issue a backout~ only if no
actions are enabled in d i . The multicast-rcvi(n') input
actions are used to drive the simulation of d~. When
a multicast-rcvz(n') action occurs, process u~ updates its
state based on action n' occurring in d i .

Given the schedule module M defined earlier, one
can verify that this distributed simulation satisfies the
definitions of the I/O au tomaton model. As far as each
of the components of the simulation can tell, each action
rc occurring in the simulation happens simultaneously
at every component having n in its signature. It is inter-
esting to see how this construction and the liveness con-
dition of the multicast problem work together to satisfy
the fairness condition of the I/O au tomaton model.

Although the problem described in this paper has
an application to the simulation system just described,
we have presented it here as a general problem in a
modular framework. The problem statement, the algo-
rithm, and the correctness proof are therefore general
results, independent of any particular system or applica-
tion.

Acknowledgements. I would like to thank Hagit Attiya and Jennifer
Welch for insightful dicussions, and Nancy Lynch, Mark Tuttle
and Ellen Witte for their helpful comments on earlier drafts. I
also thank the referees for their detailed suggestions.

References

1. Ada programming language. Tech Rep ANSI/MIL-STD-
1815A-1983, Department of Defense

2. Awerbuch B: Complexity of network synchronization. J ACM
32 (4): 804~823 (1985)

3. Back RJR, Kurki-Suonio R: Distributed cooperation with ac-
tion systems. ACM Trans Program Lang Syst 10(4):513 554
(1988)

4. Bagrodia R: On the design of high performance distributed
systems. Ph.D. dissertation, University of Texas, Austin, 1987

5. Birman KP, Joseph TA: Reliable communication in the pres-
ence of failures. ACM Trans Comput Syst 5(1):47 76 (1987)

6. Bloom B: Constructing two-writer atomic registers. IEEE Trans
Comput (Special Issue on Parallel and Distributed Algorithms)
37(12): 15061514 (1988). Also in 6th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, Van-
couver, British Columbia, Canada, August 1987, pp 249 259

7. Buckley GN, Silberschatz A: An effective implementation for
the generalized input-output construct of CSP. ACM Trans
Program Lang Syst 5(2):223 235 (1983)

8. Dolev D, Dwork C, Stockmeyer L: On the minimal synchron-
ism needed for distributed consensus. J ACM 34(1):77-97
(1987)

9. Fekete A, Lynch N: The need for headers: an impossibility
result for communication over unreliable channels. In: Goos
G, Hartmanis J (eds) CONCUR '90, Theories of concurrency:
unification and extension. (Lect Notes Comput Sci, vol 458)
Springer, Berlin Heidelberg New York 1990, pp 199 216
Fekete A, Lynch N, Mansour Y, Spinelli J: The data link layer: 10.

lo In a real implementation, one might have the system determine
S based on

207

the impossibility of implementation in face of crashes. Tech
Memo MIT/LCS/TM-355.b, MIT Laboratory for Computer
Science, August 1989 (submitted for publication)

11. Fekete A, Lynch N, Shrira L: A modular proof of correctness
for a network synchronizer. In: The 2nd International Work-
shop on Distributed Algorithms, July 1987. Amsterdam, The
Netherlands

12. Fischer M J, Lynch NA, Paterson MS: Impossibility of distrib-
uted consensus with one faulty process. J ACM 32(2):374-382
(1985)

13. Goldman K, Lynch N: Modelling shared state in a shared ac-
tion model. In: Proceedings of the 5th Annual IEEE Sympo-
sium on Logic in Computer Science, June 1990

14. Goldman KJ: Distributed algorithm simulation using Input/
Output automata. Tech Rep MIT/LCS/TR-490, MIT Labora-
tory for Computer Science, July 1990. Ph.D. Thesis

15. Goldman K J, Lynch NA: Quorum consensus in nested transac-
tion systems. In: Proceedings of the 6th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing,
pp 27~41, August 1987. A full version is available as MIT Tech
Rep MIT/LCS/TR-390

16. Herlihy M: Impossibility and universality results for wait-free
synchronization. In: Proceedings of the 7th ACM SIGACT-
SIGOPS Symposium on Prinicples of Distributed Computing,
pp 276-290, August 1988

17. Hoare CAR: Communicating sequential processes. Prentice-
Hall, Englewood Cliffs, New Jersey, 1985

18. Joseph TA, Birman KP: Reliable broadcast protocols. In: Mul-
lender (ed) An advanced course on distributed computing, chap
14. ACM Press, 1989

19. Lamport L: Time, clocks, and the ordering of events in a distrib-
uted system. Commun ACM, 27(7):558-565 (1978)

20. Lynch N, Merritt M: Introduction to the theory of nested trans-
actions. In: International Conference on Database Theory,

pp 278-305, Rome, Italy, September 1986. Also, expanded ver-
sion in Tech Rep, MIT/LCS/TR-367, MIT Laboratory for
Computer Science, July 1986. Revised version in Theor Comput
Sci 62(1988): 123-185

21. Lynch N, Merritt M, Weihl W, Fekete A: Atomic transactions.
(in progress)

22. Lynch N, Goldman K J: Distributed algorithms. Tech Rep
MIT/LCS/RSS-5, MIT Laboratory for Computer Science, May
! 989. MIT Research Seminar Series

23. Lynch N, Mansour Y, Fekete A: Data link layer: two impossi-
bility results. In: Proceedings of the 7th ACM SIGACT-SI-
GOPS Symposium on Principles of Distributed Computing,
pp 149 170, August 1988

24. Lynch NA, Tuttle MR: Hierarchical correctness proofs for dis-
tributed algorithms. In: Proceedings of the 6th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing,
pp 137-151, August 1987. A full version is available as MIT
Tech Rep MIT/LCS/TR-387

25. Lynch NA, Tuttle MR: An introduction to input/output au-
tomata. CWI-Quarterly 2 (3) (1989)

26. Misra J: Distributed discrete-event simulation. Comput Surv
1 (18): 39-65 (1986)

27. Modugno F, Merritt M, Tuttle MR: Time constrained automa-
ta. Unpublished manuscript, November 1988

28. Schneider FB: Synchronization in distributed programs. ACM
Trans Program Lang Syst 2(4): 179-195 (1982)

29. Welch J, Lamport L, Lynch N: A lattice-structured proof of
a minimum spanning tree algorithm. In: Proceedings of the
7th ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, pp 28~43, August 1988

30. Welch J, Lynch NA: Synthesis of efficient drinking philoso-
phers algorithms. Tech Rep MIT/LCS/TM-417, MIT, Labora-
tory for Computer Science, November 1989 (submitted for pub-
lication)

