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Abstract. We define the logically synchronous multicast 
problem, which imposes a natural and useful structure 
on message delivery order in an asynchronous system. 
In this problem, a computat ion proceeds by a sequence 
of multicasts, in which a process sends a message to some 
arbitrary subset of the processes, including itself. A logi- 
cally synchronous multicast protocol must make it ap- 
pear to every process as if each multicast occurs simulta- 
neously at all participants of that multicast (sender plus 
receivers). Furthermore,  if a process continually wishes 
to send a message, it must  eventually be permitted to 
do so. 
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We present a highly concurrent solution in which 
each multicast requires at most  4lSI messages, where 
S is the set of participants in that multicast. The proto-  
col's correctness is shown using a careful problem specifi- 
cation stated in the I /O au tomaton  model. We conclude 
the paper  by describing how the logically synchronous 
multicast protocol  can be used for distributed simulation 
of algorithms expressed as I /O automata.  
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1 Introduction 

We consider a set of n processes in an asynchronous 
system whose computat ion proceeds by a sequence of 
multicasts (or partial broadcasts). In each multicast, a 
process u sends a message m to an arbitrary subset S 
of the processes (including u). We say that a protocol  
solves the logically synchronous multicast problem if it 
guarantees the following conditions: 

(1) There exists a total order on all multicasts in a com- 
putat ion such that the delivery order of multicast mes- 
sages at each process is consistent with that total order. 
(2) If process u sends message m, it receives no messages 
between sending and receiving m. 
(3) If process u continually wishes to send a message, 
then eventually u will send a message. 

The first two conditions say that it appears to all pro- 
cesses as if each multicast occurs simultaneously at all 
of its participants (sender plus receivers). Hence, the 
name logically synchronous multicast. Note  that the hy- 
pothesis of the third condition does not require that u 
continually wish to send the same message, but only some 
message. This is a technical point that will be of impor-  
tance later. 

The problem lends itself to a highly concurrent solu- 
tion, since any number  of multicasts with disjoint S sets 
should be able to proceed independently. Likewise, one 
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would expect that the communication costs of an algo- 
rithm to solve this problem would be independent of 
n. We present a solution that takes advantage of the 
concurrency inherent in the problem and requires at 
most 41S1 messages per multicast, provided that a pro- 
cess does not "change its mind" about the set of partici- 
pants. 

Various approaches to ordering messages in asyn- 
chronous systems have been studied. Lamport  [19] uses 
logical clocks to produce a total ordering on messages. 
Birman and Joseph [5] present several types of fault- 
tolerant protocols, where failures are assumed to be de- 
tectable by timeouts. Their ABCAST (atomic broadcast) 
protocol guarantees that broadcast messages are deliv- 
ered at all destinations in the same relative order, or 
not at all. Their CBCAST (causal broadcast) protocol 
provides a similar, but slightly weaker, ordering guaran- 
tee to achieve better performance. The CBCAST guaran- 
tees that if a procees broadcasts a message m based on 
some other message m' it had received earlier, then m 
will be delivered after m' at all destinations they share. 
Broadcast protocols may be used to achieve process syn- 
chronization in distributed systems. For  example, 
Schneider presents a synchronization technique that as- 
sumes a process may reliably broadcast a message to 
all other running processes such that messages originat- 
ing at a given process are received by other processes 
in the order sent [28]. Joseph and Birman provide an 
extensive dicussion of reliable broadcast protocols in 
[18]. 

Like ours, the protocols of both [19] and [5] assign 
a global ordering to messages. However, these protocols 
do not solve the logically synchronous multicast problem 
because they allow messages to "cross" each other. That 
is, in their protocols a process u may send a message 
m and at some time later receive a message ordered be- 
fore m. Our problem requires that when a process u sends 
a message m, it must have "up  to date" information, 
meaning that it has already received all messages des- 
tined for u that are ordered before m. (See Condition 
(2) above). 

Motivated by CSP [17] and ADA [1], multiway 
handshake protocols have been studied extensively. (For 
examples, see [3], [4], and [7]). These protocols must 
enforce a very strict ordering on system events, and 
therefore achieve less concurrency than ours and the 
others mentioned above. This is necessary because the 
models of CSP and ADA permit any participant in a 
handshake to block the handshake from occurring. Since 
a decision about whether to accept or refuse a handshake 
may depend (in general) on all earlier events, each pro- 
cess can be involved in scheduling at most one hand- 
shake at a time. For  example, let event e be a handshake 
having participant processes p, and P2. Process Pl can- 
not permit process P2 to complete event e until pl knows 
that no event e' to be ordered before e will cause e to 
be refused by p~. In general, pl cannot permit P2 to 
complete e until all events at pa ordered before e have 
already occurred. Our problem admits more concur- 
rency, since a process cannot refuse to accept a multicast 
message. Whether or not a multicast occurs is entirely 
under the control of the sender. Therefore, a process 

can permit many multicasts destined for it to proceed 
concurrently 1. 

One interesting feature of our problem is that it lies 
between the two general approaches described above. 
As we have described, it permits concurrent scheduling 
of events, yet imposes a strong, useful structure on the 
message delivery order. 

Other related work includes papers by Awerbuch [2] 
and Misra [26J, which study different problems in the 
area of simulating synchronous systems on asynchro- 
nous ones. In both cases, however, the computational 
models being simulated are very different from ours. 
Awerbuch's goal is to take algorithms written for sys- 
tems in which processes proceed in lock step, and simu- 
late them on systems in which processes proceed asynch- 
ronously. An algorithm is presented for generating 
"pulse" messages to synchronize the computation. In 
contrast, the purpose of logically synchronous multicast 
is to provide the illusion of synchronous communication 
among dynamically changing subsets of processes, as op- 
posed to synchronized steps at all processors. Misra [26] 
studies the problem of distributed discrete event simula- 
tion. One important difference between Misra's work and 
logically synchronous multicast is that Misra fixes the 
communication pattern. This gives the problem addi- 
tional structure, since each process expects messages only 
from a (small) fixed subset of the other processes. In 
the present work, we assume that a process may poten- 
tially receive a multicast from any other process in the 
system. In spite of this difference, some of Misra's tech- 
niques, particularly those for breaking deadlock, can be 
applied to our problem. This is discussed in Sect. 6.3. 

The remainder of the paper is organized as follows. 
Section 2 provides a brief introduction to the I/O au- 
tomaten model. In Sect. 3, we present the architecture 
of the logically synchronous multicast problem and a 
statement of correctness in terms of the model. In Sect. 4, 
we formally present the algorithm using the I/O automa- 
ton model. In Sect. 5 and 6, we give a complete correct- 
ness proof and analyze the message and time complexi- 
ties. 

The author has recently developed a simulation sys- 
tem for algorithms expressed as systems of I/O automata 
[14]. The logically synchronous multicast problem was 
motivated by a desire to distribute the simulation on 
multiple processors using asynchronous communication. 
We conclude the paper by describing how the logically 
synchronous multicast protocol can be used to achieve 
such a distributed simulation. 

2 The model 

The logically synchronous multicast problem statement, 
protocol, and correctness proof are all formally stated 
using the I/O Automaton model [24, 25]. We have cho- 
sen this model because it encourages precise statements 
of the problems to be solved by modules in concurrent 

1 These comments apply only to pessimistic protocols, in which 
no rollback is allowed. If rollback is permitted, an optimistic strate- 
gy for CSP-style synchronization could be achieved with more con- 
currency, but at the expense of the overhead necessary for rollback 



systems, allows very careful algorithm descriptions, and 
can be used to construct rigorous correctness proofs. 
In addition, the model can be used for carrying out com- 
plexity analysis and for proving impossibility results. The 
following introduction to the model is adapted from 
[25], which explains the model in more detail, presents 
examples, and includes comparisons to other models. 

2.1 I / 0  automata 

I/O au tomata  are best suited for modelling systems in 
which the components  operate asynchronously. Each 
system component  is modeled as an I/O automaton,  
which is essentially a nondeterministic (possibly infinite 
state) au tomaton  with an action labeling each transition. 
An automaton 's  actions are classified as either ' input ' ,  
' ou tpu t ' ,  or ' internal ' .  An au tomaton  can establish re- 
strictions on when it will perform an output  or internal 
action, but it is unable to block the performance of an 
input action. An au tomaton  is said to be closed if it 
has no input actions; it models a closed system that 
does not interact with its environment. 

Formally, an action signature S is a partition of a 
set acts(S) of actions into three disjoint sets in(S), out(S), 
and int(S) of input actions, output actions and internal 
actions, respectively. We denote by ext(S)= in(S)~ out(S) 
the set of external actions. We denote by local(S) 
=out(S) u int(S) the set of locally-controlled actions. An 
I/O automaton  A consists of five components:  

an action signature sig(A), 
a set states(A) of states, 

- a nonempty  set start(A)c_ states(A) of start states, 
- a transition relation steps(A) c_ states(A) x acts(A) x 

states(A) with the property that for every state s' and 
input action rc there is a transition (s', re, s) in steps(A), 
and 
an equivalence relation part(A) partitioning the set 
local(A) into at most  a countable number  of equiva- 
lence classes. 

The equivalence relation part(A) will be used in the defi- 
nition of fair computat ion.  Each class of the parition 
may be thought of as a separate process. We refer to 
an element (s', re, s) of steps(A) as a step of A. If (s', 
re, s) is a step of A, then 7c is said to be enabled in s'. 
Since every input action is enabled in every state, au- 
tomata  are said to be input-enabled. This means that 
the au tomaton  is unable to block its input. 

An execution of A is a finite sequence s o , r h ,  
sl ,  . . . ,  ~,, s, or an infinite sequence So, rtt, st ,  7r2, ... 
of alternating states and actions of A such that (si, rc~+ 1, 
Si+l) is a step of A for every i and Soestart(A). The 
schedule of an execution e is the subsequence of ~ consist- 
ing of the actions appearing in c~. The behavior of an 
execution or schedule e of A is' the subsequence of 
consisting of external actions. The sets of executions, fi- 
nite executions, schedules, finite schedules, behaviors, 
and finite behaviors are denoted execs(A), finexecs(A), 
scheds(A), finscheds(A), behs(A), and finbehs(A), respec- 
tively. The same action may occur several times in an 
execution or a schedule; we refer to a particular occur- 
rence of an action as an event. 
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2.2 Composition 

We can construct an au tomaton  modelling a complex 
system by composing au tomata  modelling the simpler 
system components.  When we compose a collection of 
automata ,  we identify an output  action ~ of one automa-  
ton with the input action rc of each au tomaton  having 
rc as an input action. Consequently, when one au tomaton  
having rc as an output  action performs ~, all au tomata  
having ~ as an action perform ~ simultaneously (automa- 
ta not having rc as an action do nothing). 

Since we require that at most  one system component  
controls the performance of any given action, we must 
place some compatibili ty restrictions on the collections 
of au tomata  that may be composed. A countable collec- 
tion {Si}ie I of action signatures is said to be strongly 
compatible if for all i, j~  I satisfying i Cj  we have 

1. ou t (S i )  c~ out (Xj )  = O, 

2. int(Si) c~ acts(Sj) = 0, and 

no action is contained in infinitely many  sets acts(S~), 
i~I. We say that a collection of au tomata  are strongly 
compatible if their action signatures are strongly compat-  
ible. 

The composition S = I I  s~ of a countable collection 
i e l  

of strongly compatible action signatures {Si}i~ i is defined 
to be the action signature with 

- in(S)-- ~ in(Si)-  Q) out(Si), 
i ~ l  i e I  

out(S) = U out(Si), and 
i a l  

- int(S)= Q) int(Si). 
i e I  

The composition A = ~ A~ of a countable collection of 
i~ I  

strongly compatible a u t o m a t a  {Ai}ie I is the au tomaton  
defined as follows 2. 

- sig(A)= I~ sig(Ai), 
i e I  

- states(A)= I~ states(Ai), 
i e I  

- start(A)= I]  start(Ai), 
i e l  

- steps(A) is the set of triples (gl, re, s2) such that, for 
all i~I, if neacts(Ai) then (sl[i] ,  re, s2 [i])esteps(Ai), 
and if Tc(~acts(Ai) then Sl [i] =g2 [i], and 

- part(A)= ~) part(Ai). 
i e I  

Given an execution ~=~0rCl Sl ... of A, let e[A i (read 
"e  projected on A: ' )  be the sequence obtained by delet- 
ing rcj~j, when rc:~acts(Ai) and replacing the remaining 
gj by gi[i]. 

2 Here start(A) and states(A) are defined in terms of the ordinary 
Cartesian product, while sig(A) is defined in terms of the composi- 
tion of actions signatures just defined. Also, we use the notation 
g[~] to denote the ith component of the state vector g 
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2.3 Fairness 

Of all the executions of an I/O automaton,  we are pri- 
marily interested in the ' fa i r '  executions - those that 
permit each of the automaton 's  primitive components  
(i.e., its classes or processes) to have infinitely many  
chances to perform output  or internal actions. The defi- 
nition of au tomaton  composit ion says that an equiva- 
lence class of a component  au tomaton  becomes an equiv- 
alence class of a composition, and hence that composi- 
tion retains the essential structure of the system's primi- 
tive components.  In the model, therefore, being fair to 
each component  means being fair to each equivalence 
class of locally-controlled actions. A fair execution of 
an au tomaton  A is defined to be an execution c~ of A 
such that  the following conditions hold for each class 
C of part(A): 

1. If e is finite, then no action of C is enabled in the 
final state of ~. 
2. If e is infinite, then either c~ contains infinitely many  
events from C, or e contains infinitely many  occurrences 
of states in which no action of C is enabled. 

We denote the set of fair executions of A by fairexecs(A). 
We say that ~ is a fair behavior of A if fl is the behavior 
of a fair execution of A, and we denote the set of fair 
behaviors of A by fairbehs(A). Similarly,/3 is a fair sched- 
ule of A if ~ is the schedule of a fair execution of A, 
and we denote the set of fair schedules of A by fair- 
scheds(A). 

2.4 Problem specification 

A ' p r o b l e m '  to be solved by an I/O automat ion is forma- 
lized as a set of (finite and infinite) sequences of external 
actions. An au tomaton  is said to solve a problem P pro- 
vided that it set of fair behaviors is a subset of P. Al- 
though the model does not allow an au tomaton  to block 
its environment or eliminate undesirable inputs, we can 
formulate our problems (i.e., correctness conditions) to 
require that an au tomaton  exhibits some behavior only 
when the environment observes certain restrictions on 
the product ion of inputs. 

We want a problem specification to be an interface 
together with a set of behaviors. We therefore define 
a schedule module H to consist of two components,  an 
action signature sig(H), and a set scheds(H) of schedules. 
Each schedule in scheds (H) is a finite or infinite sequence 
of actions of H. Subject to the same restrictions as au- 
tomata,  schedule modules may be composed to form 
other schedule modules. The resulting signature is de- 
fined as for automata ,  and the set scheds(H) is the set 
of sequences ]~ of actions of H such that for every module 
H'  in the composition, ~ l g '  is a schedule of H'.  

It  is often the case that an au tomaton  behaves cor- 
rectly only in the context of certain restrictions on its 
input. A useful notion for discussing such restrictions 
is that of a module 'preserving '  a proper ty  of behaviors. 
A set of sequences ~ is said to be prefix-closed if f l ~  
whenever both ~ is a prefix of c~ and ~ e ~ .  A module 
M (either an au tomaton  or schedule module) is said to 
be prefix-closed provided that finbehs(M) is prefix- 

closed. Let M be a prefix-closed module and let ~ be 
a nonempty,  prefix-closed set of sequences of actions 
from a set ~b satisfying ~c~int(M)=O. We say that M 
preserves ~ if/? ~ 145 e ~ whenever fl I �9 e ~ ,  ~ e out (M), and 
~rclMefinbehs(M). Informally, a module preserves a 
property ~ iff the module is not the first to.violate ~ :  
as long as the environment only provides inputs such 
that the cumulative behavior satisfies ~ ,  the module will 
only perform outputs such that the cumulative behavior 
satisfies ~ .  One can prove that  a composit ion preserves 
a property by showing that each of the component  au- 
tomata  preserves the property.  

3 The problem 

In this section, we describe the architecture of the logi- 
cally synchronous multicast problem and then present 
a schedule module to define correctness for a multicast 
protocol. 

3.1 The architecture 

Let J = {1 . . . . .  n}. Let ~ denote a universal set of text 
strings (containing the empty string 0, and let J/t denote 
a universal set of messages. Let ui, i ~ J ,  denote the n 
user processes engaged in the computation,  and let Pi, 
i ~ J ,  denote n additional processes. Together, the pi's 
are to solve the multicast problem, where each pi is said 
to "work  for" u~. Each of the u]s and p]s is modelled 
as an automaton.  

Each user u~ directly communicates by shared actions 
with the process Pi only. (One may think of ui and Pi 
as running on the same processor). The p~'s communicate 
with each other asynchronously via a network, also mo- 
delled as an automaton,  that guarantees eventual one- 
time delivery of each message sent. Furthermore,  we as- 
sume that all messages sent between each pair of pro- 
cesses are delivered in F I F O  order. 

The boundaries between u~ and p~ and between p~ 
and the network are defined by several actions, as illus- 
trated in Fig. 1. To summarize the relationship between 
u~ and pi at each point in an execution, we say that 
p~ is in a certain region, according to which of these 
actions has occurred most  recently. (We will formalize 

( 

try i 

-:,,cvi sen .   rc, 
network ) 

Fig. I. System architecture. Arguments of actions are omitted 
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Fig. 2. Region changes for pl 

this later). Figure 2 illustrates the possible region changes 
for pz, and the actions that cause them. 

Initially, p~ is in its "passive" region (P). We say that 
p~ enters its " t rying"  region iT) when user u~ issues a 
tryi(S c_ j )3  action, indicating that ui would like to send 
a multicast message to processes named in the set S. 
When it is ready to perform a multicast on behalf of 
uz, process p~ issues a ready~ action and is said to enter 
its " ready"  region (R). The readyz action constitutes per- 
mission for ul to actually send the multicast. That  is, 
after receiving the ready~ action as input, user u~ may 
issue a multicast-sendz (m~SP) action, where the argument 
indicates the desired text of the multicast message. Upon  
receiving the multicast-send~ action, p~ is said to enter 
its "multicast" region (M), where it completes the multi- 
cast and returns to region P by issuing a donei action. 
Region M is present to ensure that each multicast for 
u~ is completed before the next multicast is requested 
by ui. 

In addition to these actions, there are multicast- 
rcv~ ( m e ~ )  actions, which are outputs of Pi and inputs 
to ui. The purpose of these actions, which may occur 
while pi is in P or T, is to forward multicast messages 
to uz that were sent to p~ by some process pj on behalf 
of user uj. The argument m is the text of the multicast 
message. To correspond with this additional type of ac- 
tion, we have a "wait ing" region (W), which is entered 
whenever p~ issues a multicast-rcv~ action while in T 4. 
In W, pi waits to see if u~ has "changed its mind"  about  
its own multicast after hearing the information contained 
in the multicast-rcv~ action. Either ul still wishes to per- 
form some multicast and issues a try~(S') action, or u~ 
decides not to do a multicast after all and issues a 
backout~ action. A backout~ action sends p~ to region M 
(rather than directly to region P) so that pi may "clean 
up"  from the failed multicast attempt before the next 
try i action occurs. 

It might seem that one could eliminate region W 
and the backout~ actions by having rnulticast-rcv~ actions 
take p~ to region P. However, this would make it difficult 
to express the liveness notion that ui eventually must 
be allowed to perform a multicast, provided that it con- 
tinually wants to do so. Region W is used to signify 
that u~ has a choice of continuing to try or "giving up". 
As a separate modification of this architecture, one might 
consider elimination of the ready~ and multicast-send~ ac- 

3 That is, tryi(S), where S_c~ 
4A muhicast-rcvl action from region P does not cause a region 
change 
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tions in favor of including the desired text of the multi- 
cast as a second argument to the tryz actions. However, 
as we will see, the ready~ and muhicast-send~ actions serve 
as useful "commit"  points in stating both the safety and 
liveness conditions of the problem. They also provide 
a convenient way to separate the successful multicasts 
from the unsuccessful tryi attempts in reasoning about 
algorithm executions. 

3.2 Correctness 

Since the only actions under the control of the protocol 
are the outputs of the pz's, we only wish to require that 
the protocol behaves correctly when its environment, 
namely the composition of the ui's and the network, is 
well-behaved. To this end, we define schedule modules 
that specify the allowable behaviors of each u~ and the 
network. Based on these, we define a schedule module 
for the multicast protocol. We begin with the schedule 
modules for the ui's. 

Schedule module U~. We define the signature of U/ as 
follows: 

in(U/) = {multicast-rcvi(me SQ, readyi, donei} 
out(U/)= { tryi(S c_ J ), multicast-sendi(me SP), backouti} 

Before defining the set of schedules of U~, we define a 
"region sequence" to capture the series of region changes 
in a schedule and then state a well-formedness condition 
that makes use of this definition. Let the alphabet Z = {P, 
T, R, M, W, X}. Let c~ be an arbitrary sequence of actions. 
We define the region of  i after c~, denoted r(i, c 0, to be 
an element of Z defined recursively as follows. If e lU/ 
is empty (e), then r(i, c0=P. If c~=:(~, then, ignoring 
arguments to action names, 

r(i, o 0 = 

' r (i, o~') 
P 

T 
R 
M 

W 
X 

if rc(~acts(Ui), 
if (re=donei A r(i, ct')=M) 

v (re =multicast-rcvi A r(i, c()= P), 
if re =tryi A r(i, cQe{P,W}, 
if re =readyi A r(i, ~')=T,  
if (re = multicast-sendi A r(i, e') = R) 

v (r~=backouti A r(i, e ' )=W),  
if re =multicast-rcvi A r(i, c()= T, 
otherwise. 

Given an arbitrary action sequence ~ and an index 
i e J ,  we define the region sequence for i in ~, denoted 
region-sequence(i, c~), to be the concatenation of r(i, c() 
for each prefix of e in order, starting with r(i, e) and 
ending with r(i, c~). Note close correspondence between 
Fig. 2 and the definition of region-sequence. 

Let e be an arbitrary sequence of actions. We say 
that ~ is user well-formed for i iff 

1. for all tryi(S) actions in e, i tS ,  and 
2. region-sequence(i, ~) does not contain the symbol X. 

We can define the set of schedules for U/. Let c~ be 
a sequence of actions in sig (U/). Then ~escheds(u/) iff 
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1. U~ preserves user well-formedness for i in ~, and 
2. region-sequence(i, ~) does not end in W or R. 

The first property is used to help define the safety condi- 
tions for the logically synchronous multicast problem, 
since a multicast protocol  must perform correctly only 
if its environment is well behaved. The second property, 
used in defining the liveness conditions, says that a user 
process cannot  " s t op"  in regions W or R. This is used 
to express the notion that  a multicast protocol must 
guarantee progress only if users trying to send multicasts 
eventually respond to multicast-rcv and ready actions. 

We define schedule module U to be the composit ion 

ie,f 

Schedule module N. We now define a schedule module 
specifying the network. The signature is as follows: 

in(N) ={send(m~gC, i,j~or 

out(N) = {rcv(m~J/g, i, j eJ ) }  

To define the allowable schedules of the network, we 
use a correspondence relation similar to that of [10]. A 
correspondence relation between the send and rcv events 
in a sequence captures the correspondence between the 
send and receipt of a message. Consider the following 
properties that may hold for a particular correspondence 
relation for a given sequence ~: 

(S1) g i x , i 2 , j l , j 2 c , , r  , Vml ,m2 e ~ / / / ,  if event 7Cl=send(ml, 
il,jl) corresponds to even t  rc2=rcl)(m2, i2,J2), then 
ml = m 2 ,  i 1 = i 2 , j l  = J 2 ,  and ~tl precedes =2 in ~t. 

($2) g i , j e J ,  gme~/ ' ,  each roy(m, i,j) corresponds to ex- 
actly one send(m, i, j). 

($3) gi,jeor Vme~{,  each send(m, i,j) corresponds to at 
most  one rcv(m, i,j). 

($4) Vi , jeA,  gm, m'e~/{, if event rcv(m,i,j) occurs in 
before event rcv(m',i,j), then their corresponding 
events send(m, i,j) and send(m', i,j) occur in the same 
order. 

(L) V i , j ~ ,  gm~Jd, each send(m,i,j) event has a corre- 
sponding rcv (m, i,j) event. 

The first four properties (S1-$4) are safety properties. 
They say that a message is delivered only after it is sent, 
that no spurious messages are delivered, that a message 
is delivered at most  once (for each time it is sent), and 
that messages between a pair of processes are delivered 
in the order sent. Property (L) is a liveness property;  
it says that each message sent is eventually delivered. 

If e is a sequence of actions of N, we say that c~ 
is network well-formed iff there exists a correspondence 
relation for e that satisfies properties S1 $4. Moreover,  
c~escheds(N) iff the correspondence relation also satisfies 
property (L). Property (L) will be used only in the liveness 
proof. 

Schedule module M. The correctness conditions for the 
logically synchronous multicast problem can now be 
stated formally in terms of the actions at the boundaries 
of the user processes. We do this with a schedule module 
M that defines the multicast problem. We define the sig- 

nature of M as follows: 

in(m) = o u t ( U )  w out(N) 

out (m) = in (U) w in (N) 

In defining the schedules of M, we use a correspon- 
dence relation technique (similar to the one used to de- 
fine schedule module N) to capture the correspondence 
between each multicast-send event and the resulting mul- 
ticast-rcv events. Let ~ be a sequence of actions of sig(M), 
and let correspondence relation cs relate the multicast- 
send and multicast-rcv events of ~. We say that cg is a 
proper correspondence relation for ~ iff it satisfies the 
following properties: 

1. Vi, j ~ J ,  Vm, m'~5 P, if event nl=multicast-sendi(m) 
corresponds to event ~2=multicast-rcvj(m'), and tryi(S ) 
is the last tryi action in c~ before rrl, then m=m' and 
jeS. 
2. Vi, j ~ J ,  Vm~5 e, each multicast-rcv~(m) corresponds 
to exactly one multicast-sendi(m). 
3. Vi, j e J ,  Vm~5 P, each multicast-sendi(m) corresponds 
to at most  one multicast-rcvj(m). 

Informally, these properties say that (1) a 
multicast-rcvj(m) must contain the same text argument 
as its corresponding send, and that j must name one 
of the destination processes, (2) a multicast-rcv event cor- 
responds to exactly one multicast-send, and (3) a given 
multicast-send event corresponds to at most one multi- 
cast-rcvj for each possible destination process u i. 

Let ~ be a sequence of actions of sig(M), let cg be 
a proper  correspondence relation for c~, and let ~ be 
a total order on all multicast-send events in e. We say 
that -< is a proper total order for cg and ~ if]" the following 
property holds: V i, j, k e J ,  m, m' ~ 5 p, if multicast-send i (m) 
and multicast-sendj(m') occur in ~ with corresponding 
receives multicast-rcvk(m) and multicast-rcvk(m') and if 
orders multicast-send~(m) before multicast-send~(m'), then 
multicast-rcvk (m) occurs in c~ before multicast-rcvk (m'). In- 
formally, this says the order of multicast deliveries at 
each user process must be consistent with the total order 
~ .  One may notice that a proper  total order is not neces- 
sarily consistent with the order of multicasts sent by 
each individual process. This consistency requirement 
is handled separately by condition (2c) below. 

Let ct be a sequence of actions of sig(M). Then 
eescheds(M) iff there exists a correspondence relation 
cg and total order ~ such that the following conditions 
hold. 

1. ViE J ,  M preserves user well-formedness for i in e. 
2. I f e  is user well-formed for every i e J  and ~ is network 

well-formed, then 
(a) cg is a proper correspondence relation for e, 
(b) ~ is a proper total for cg and c~, and 
(c) Vine5 p, if n=multicast-send~(m) occurs in e, then 

no multicast-rcv~ occurs between ~ and the multi- 
cast-rcvi(m) corresponding to ~. 

3. If elNEscheds(N) and Vie J ,  elUiescheds(Ui), then 
the following hold: 
(a) Vie J ,  if a try~ occurs in e, then either a backout~ 

or a reacty~ occurs later in e. 



(b) V i i i ,  VS_cJ, if a multicast-sendi(m) occurs in 
and try~(S) is the last preceding try~ action in c~, 
then a corresponding multicast-rcv;(m) occurs 
later in e for eachj~S.  

Items (1) and (2) are the required safety properties. 
Part (2c) is needed to ensure that user processes have 
"up  to date" information when sending a multicast mes- 
sage. This also ensures that multicast messages sent by 
a given process are delivered in the order sent. Item 
(3) is the required liveness property. Part (3a) says that 
if a user process does not back out of its attempt to 
perform a multicast, then eventually it will receive per- 
mission to send the multicast. Part (3b) says that if a 
multicast is sent by a user process, then eventually all 
destination user processes will receive it. Note that the 
hypothesis of item (3) is needed to ensure that liveness 
properties hold for the users and the network. That is, 
we require that a solution to the multicast problem guar- 
antee progress only if the users and the network satisfy 
their liveness requirements, namely that every user re- 
sponds to multicast-rcv and ready actions and that every 
message is eventually delivered. A multicast protocol is 
correct iff it solves M. 

4 The algorithm 

This section presents the multicast protocol. We present 
the algorithm by giving an explicit I/O automaton for 
each pi, i e J .  We show in Sect. 5 that the composition 
of the p~'s solves the schedule module M and is therefore 
a correct protocol. 

The algorithm is based on logical time. We define 
a logical time to be an (integer, process-id) pair drawn 
from J = ( { 1 ,  2 . . . .  } woo) x ~r and we let logical times 
be ordered lexicographically. Essentially, each process 
p~ maintains a logical time clock, and each multicast 
is assigned a unique logical time 5. The process p~ delivers 
all multicast messages destined for u~ in logical time 
order. 

The state of each automaton pi has several compo- 
nents. The variable region~{P, T, W, R, B} is initially 
set to P and holds the current region of p~ as described 
in Sect. 3.1. The variables try-set, need-set, requested, and 
requests are subsets of J ,  initially empty. The try-set 
names the processes to whom u~ would like to send a 
multicast, and the need-set contains the union of all 
values of try-set since p~ was last in region P. The two 
sets requested and requests name the processes to whom 
p~ has sent requests for "promises" and the processes 
from whom pi has received such requests. We will explain 
promises shortly. The variable textE5 f is initially unde- 
fined, and is used to hold the text of the latest multicast 
by u~. Two arrays of logical times indexed by J are 
kept:promises-to and promises-from. The entries of these 
arrays, initially (o% n), are used to keep track of the 
times of promises granted and received, respectively. 
Two additional logical time variables, clock and mctime, 
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are initially (0, i). The clock contains the time of latest 
multicast received by u~, and mctime contains the time 
of the latest multicast sent by u~. Finally, the variable 
pending is an initially empty set of (texteSP, t ime~3-) 
pairs. This set contains all multicast messages received 
by pi but not yet delivered to u~. 

We let min(promises-to) denote the least time among 
the entries in the promises-to array. Similarly, we let 
max(promises-from) denote the greatest time less than 
(0% n) among the entries in the promises-from array; if 
all entries in that array are (0% n), then max(promises- 
from) = (0, i). Finally, we let min (pending) and max(pend- 
ing) denote the pairs in the pending set having the least 
and greatest logical times, respectively; if pending is 
empty, then both values are (e, (0, i)). 

The transition relation for p~ is shown in Fig. 3. " P "  
and " E "  denote precondition and effect, respectively. An 
action is enabled in exactly those states s' for which the 
precondition is satisfied. If an action has no precondi- 
tion, it is enabled in all states. When an action occurs, 
p[s new state s is determined according to the statements 
in the effects clause. States s and s' agree on components 
not assigned values in the effects clause. Automaton p~ 
has the following signature. 

Input actions: try i (S c_ J)  
backout~ 
multicast-sendi (m ~ 6 0 
rcv(m6d//,j~J, i) 

Output actions: multicast-rcvi (m E 5 0 
readyi 
donei 
send(m~Jg, i, j e J )  

The equivalence classes of part(pi) are as follows. The 
actions multicast-rcvi, readyi, and done~ are together 
in one class. And for each j e J ,  there exist four classes 
containing the sets of actions send(promise(t~J),i,j), 
send(req-promise, i,j), send(adv-promise(t~ Y),  i,j), and 
send(multicast(m~SP, t sY ) ,  i, j). This choice of a parti- 
tion simplifies reasoning about what actions must even- 
tually occur in an execution. However, the necessary live- 
ness properties could also be guaranteed with only two 
classes: one for send(promise(t~J), i, j) actions, using 
a queue to ensure fairness to each j, and one class for 
all remaining output actions. 

To describe the logically synchronous multicast pro- 
tocol, we chronicle the events that take place between 
u~'s multicast request and the completion of the multi- 
cast. To more fully understand this description, it is rec- 
ommended that the reader follow along in the code for 
p~ given in Fig. 3. Unless otherwise noted, the word "pro-  
cess" refers to one of the processes p~, i ~ J .  Also, we 
use the words " t ime"  and "logical t ime" interchange- 
ably. 

To initiate the request to perform a multicast, ui 
issues a try~(S) action, where S is the set of indices of 
user processes that are to receive the multicast. 6 The 

s We never use oo in the time of a multicast message; it is used 
only as a place holder 6 Recall from the definition of ~ that i~S 
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Input Actions: 

- t r y i ( S  ) 

E: s . t r y - s e t = S  
s .need-set  = s ' .need-set  w S 
s.region = T 

O u t p u t  A c t i o n s :  

send( req -promise ,  i, j e  J )  
P: s ' . r eg ione{T ,  W} 

j E s ' . need-se t \ s ' . r eques ted  
E: s .requested = s ' .requested w {j} 

- rcv ( req -promise ,  j ~ J ,  i) 
E: s .requests  = s ' .requests  w {j} 

- r c v ( p r o m i s e ( t ~ 3 - ) , j e J ,  i) 
E: s .promises - f rom [ j]  = t 

send (promise (t 6 J ) ,  i, j ~ J )  
P: j e s ' . r e q u e s t s  

t > max(Ib- t ime(s ' ) ,  max(s ' .pending) . t ime)  
E: s.requests  = s ' . r eques t s \  { j}  

s .promises- to  [j] = t 

- mul t icas t -sendi(m)  
E: s . t e x t = m  

s.region = M 

- r c v ( m u l t i c a s t ( m e S : ,  t e J ) , j e J ,  i) 
E: s .promises- to  [j] =(oo, n) 

i f  m v a e then 
s.pending = s ' .pending w {(m, t)} 

- readyi 
P: s' .region = T 

s ' .pending = 0 
rain (s ' .promises-to) >_ lb-t ime (s') 
V jEs ' . t ry -se t ,  

s ' .promises- f rom [j] < ( oo , n) 
E: s .mct ime = lb-t ime(s ')  

s .region = R 

- backout~ 
E: s . try-set  = 0 

s.region = M 

- r c v ( a d v - p r o m i s e ( t e J - ) , j e J ,  i) 
E: s .promises- to  [j] = t 

send (multicast (me 5 P, t ~ g ) ,  i, j ~ J )  
P: s' .region = M 

s ' .promises- from [j] < (oo, n) 
t = s ' .mct ime 
i f  ( j ~ s ' . t r y - s e t )  then 

m : s ' . t e x t  

else  m = e 
E: s .requested = s ' . r eques t ed \  { j}  

s .promises- f rom [j] = ( oo, n) 

- mult icast-rcvi(m) 
P: s ' . reg ione{P ,  T} 

(m, t) = min (s' .pending) 
t < rain (s ' .promises-to) 

E: s p e n d i n g =  s ' . pend ing \ { (m,  t)} 
s.clock = t 
if s' .region = T then s.region = W 

- donei 
P: s' .region = M 

s ' .requested = 0 
E: s .need - se t=O 

s.region = P 

Fig. 3. Transition relation for p~ 

- s e n d ( a d v - p r o m i s e ( t e J ) ,  i , j ~ J )  
P: s . reg ion~{T ,  W} 

V k ~ s'.tr y-  set,  
s ' .promises- f rom [k] < (oo, n) 

s ' .promises- fr  om [j] < Ib-time (s') 
t = lb-t ime (s') 

E: s .promises - f rom [j] = lb-t ime(s ')  

tryi(S) action causes p~ to remember S as its try-set ,  insert 
the elements of S into its need-set ,  and enter its trying 
region (T). In region T, Pi begins to send "req-promise" 
messages to each member of need-set ,  keeping track, in 
the component  requested,  of those requests already made 
in order to avoid sending duplicate requests. Each pro- 
cess p~ receiving a "req-promise" message eventually re- 
sponds by sending back a "promise"  message with an 

associated logical time t. v The promise means that pj 
will not perform or deliver any multicasts with a time 
greater than t until Pi either relinquishes the promise 
(by sending a "mult icast"  message to pj) or advances 

v Note that  Pi sends "req-promise" messages to itself in order to 
simplify the presentation of the algorithm. A simple optimization 
would be to eliminate these messages, as well as the "promise"  
messages that pl sends to itself in response 
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the promise (by sending an "adv-promise"  message with 
the later time). One may think of a promise as a road- 
block that p~ erects in uj's computat ion at some future 
logical time. The process p~ doesn't  allow uSs computa-  
tion to advance past that time until the roadblock is 
removed or advanced by pi. 

In order to ensure that progress is made, we would 
like each process to grant its promises with logical times 
that are "far enough in the future" to not impede its 
own progress. Therefore, for each j in ~ ,  it is useful 
to have a function lb-time that maps the states of pj 
to logical times. One may think of lb-time as a lower 
bound on the logical time that p~ could assign to its next 
multicast. If  s is a state of p j, we define Ib-time for pj 
in state s to be the least logical time having process-id 
j such that 

lb-timej(s) >_ max(s.clock, s.mctime, max(s.promises-from)). 

The subscript and/or  argument  of the Ib-time function 
are sometimes omitted when their values are clear from 
context. We use the lb-time function to assign times to 
promises as follows: The time associated with a promise 
granted by p~ from state s is chosen by pj to be greater 
than the greatest logical time associated with any mes- 
sage in its s.pending, and also to be greater than Ib-time(s). 

Each process keeps track of both the times for prom- 
ises it has granted to other processes (in the promises-to 
array) and the times for promises it has received from 
other processes (in the promises-from array). After receiv- 
ing a promise from each process P i in its try-set, p~ can 
issue a ready~ action and assign mctime to the current 
value of Ib-time, provided that (1) p~'s pending set is 
empty, and (2) all promises Pi has granted with times 
lower than lb-time have either been relinquished or ad- 
vanced past Ib-time. The second condition is present to 
ensure that ui receives no multicast messages with logical 
times less than t after p~ decides to send its multicast. 
Note  that once mctime is assigned in a ready~ action, 
it remains fixed for all further processing of u~'s current 
multicast. Specifically, any further change in the Ib-time 
leaves the mctime unaffected. 

When a ready~ action occurs, u~ can no longer back 
out from sending a multicast. The readyi action leaves 
p~ in the ready region (R), where it waits for u~ to respond 
with a multicast-send~ (m) action. When this action occurs, 
p~ enters the multicast region (M) and records the desired 
text of the multicast in its text component.  In region 
M, pi sends "mul t icas t"  messages to all processes pj from 
whom it holds promises. These messages have two pur- 
poses. First, they communicate  the text and mctime of 
the multicast. Second, they relinquish the promises. If 
p~ holds a promise from pj but j is not in try-set (we 
will see shortly how this may happen), the text argument  
of the multicast message is set to e, indicating that the 
promise should be relinquished but that no multicast 
should be delivered to uj. After pi has relinquished all 
the promises it requested, it may issue a done~ action 
and return to its passive region. 

When a process pj receives a multicast(m, t) message 
from p~, it notes that its promise to p~ has been relinqu- 
ished, and, if m va ~, inserts the pair (m, t) into its pending 
set. The message m is eventually delivered to uj in a 

multicast-rcvj(m) action when t is the least time among  
the times in pfs  pending set and pj has no outstanding 
promises with times less than t. These conditions are 
necessary to ensure that any later (m', t') pair received 
by pj will have t' > t so that multicast messages are deliv- 
ered in logical time order. 

So far in this discussion, we have ignored the fact 
that many  multicasts may be proceeding concurrently. 
Two complications arise as a result of this concurrency. 
The first relates to the delivery of a multicast message 
to a user while that user is itself waiting to send a multi- 
cast, and the second results from the need to break dead- 
lock situations that result from the granting of promises. 
We now consider each of these complications in turn. 

If Pi is in region T and issues a multicast-rcvi(m) ac- 
tion, it enters the waiting region (W) where it waits for 
a response from ui. Process ui, on the basis of the new 
message m, may decide either to continue trying to per- 
form a multicast or to back out. In case of the former, 
u~ issues a try~(S') action, where S' is not necessarily the 
same as S s. This try~ action is treated just as before. 
If u~ decides to back out, it instead issues a backouti 
action, causing pi's try-set to become empty and causing 
p~ to enter region M, where it proceeds to relinquish 
its promises as usual. 

In the course of concurrent scheduling of multicasts, 
deadlock situations may arise from the granting of p rom-  
ises. Consider a situation in which pi and pj are trying 
to send multicasts such that each is in the other's try-set. 
Suppose that  all promises received by p~ (including the 
one received from p j) are less than some promise received 
by pj. Then p~'s lb-time is less than that of pj. If  p~ has 
granted pj a promise less than pi's own Ib-time, then 
neither can perform a multicast before the other because 
each must wait for the other to relinquish its promises. 
Such deadlock situations are avoided by promise ad- 
vancement as follows. Suppose that p~ has received prom- 
ises from all processes in its try-set, but has determined 
that it is not yet ready to perform a multicast to relinqu- 
ish those promises. In order not to block unnecessarily 
the computat ion of each process p~ from which p~ has 
received a promise, p~ may send pj an "adv-promise"  
message, informing it of pg's current lb-time. U p o n  receiv- 
ing in "adv-promise"  message from p~, p~ notes that  its 
promise to p~ has been advanced. This may permit pj 
to deliver additional multicast messages from its pending 
set and/or  proceed with its own multicast. In the liveness 
proof, we will show that  these "adv-promise"  messages 
are sufficient to guarantee progress. 

In studying the algorithm, one will notice a great 
deal of nondeterminism in the ordering of events. For  
example, we have not specific the order in which prom-  
ises are requested from different processes. As a result 
of this nondeterminism, the correctness proof  of the algo- 
ri thm is more general, covering many  possible implemen- 
tations of the algorithm. 

s Recall that our liveness condition says that even if ui "changes 
its mind" about the particular multicast it wishes to send, as long 
as it continually has some multicast that it wishes to send, eventual- 
ly it must be permitted to do so. The ability to change the set 
of recipients explains how pl may hold promises from processes 
not named in its try-set 
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5 Proof of correctness 

Let module P be the composit ion of all au tomata  p~, 
i e J .  In this section, we show that module P solves 
schedule module M, which implies that the logically syn- 
chronous multicast protocol  is correct. The organization 
of the correctness proof  closely follows the definition 
of schedule module M. Clearly, s ig(P)= sig(M). To show 
that P solves M, we need to show that all fair behaviors 
of P satisfy the safety conditions (1 and 2) and the live- 
ness condition (3). We prove these in order. Throughout  
the proof, we use subscripts to distinguish the state com- 
ponents of the different au tomata  in P. For  example, 
region~ is the region variable in the local state of automa-  
ton p~. 

5.1 Safety proof 

As we have said, the safety proof  consists of showing 
that all executions of P satisfy conditions (1) and (2) 
of schedule module M. We start by proving condition 
(1), that P preserve user well-formedness for all i ~ J .  
Following this, we state some properties of well-formed 
executions that will be used in the proof  of condition 
(2), as well as in the liveness proof. A key part  of proving 
condition (2) is showing the existence of a proper corre- 
spondence relation c~ on the multicast-send and multi- 
cast-rcv events in any execution ~ of P, and also showing 
the existence of a proper  total order on the multicast-send 
events in e. To accomplish this, we exhibit particular 
constructions that produce a correspondence relation c~ 
and an ordering <~ for any execution ~ of P. We then 
show that <~ is indeed a total order and finally that 
condition (2) is satisfied. We prove the three parts of 
condition (2) with the help of several intermediate lem- 
m a s .  

We now turn to the proof  of condition (1). The fol- 
lowing relationship between the state of p~ and the defini- 
tion of r(i, ~) can be shown by induction on the length 
of ~. 

Lemma 1. Let ~ be a prefix of an execution of P that 
is user well-formed for all i~J;, and let s be the last state 
of ~. Then for all i ~ ,  s.regionz=r(i, ~). 

From the above lemma, it follows that module P 
satisfies condition (1) of schedule module M. Again, the 
proof  is a simple induction on the length of the execution. 

Theorem 2. Module P preserves user well-formedness for 
i, for all i e~ .  

We know that module P preserves user well-formed- 
ness for all i ~ .  Furthermore,  since no rcv action is 
an output of P, it is not possible for P to violate network 
well-formedness. Therefore, in the remaining proofs we 
can restrict our attention to well-formed executions only. 
This motivates the following convenient definition. Let 

be an execution of P. We say that ~ is admissible iff 
is user well-formed for every ie~; and ~ is network 

well-formed. The following lemma states some properties 
of admissible executions that will be used throughout 
the proof. 

Lemma 3. Let ~ be an admissible execution of P. For 
any i 6 J ,  let ~' be a subexecution of P between two succes- 
sive donei events, (or between the beginning of ~ and the 
first donei event). Then V j~J ,  if ~' contains an event hav- 
ing any of the following forms, then it contains exactly 
one event of each form such that they occur in the follow- 
ing order: send(req-promise, i, j), rcv(req-promise, i, j), 
send(promise(t), j, i), rcv(promise(t), j, i), and send(multi- 
cast(m, t '), i, j), where m6SP, t, t" 63-. Furthermore, any 
events of the form send (adv-promise (t'), i, j), t' ~ 3--, occur- 
ring in ~' must appear between the last two of the above 
events. 

Proof The proof  is by induction, assuming that the con- 
ditions hold for i in the prefix of e up to the beginning 
of ~'. 

First we show that no two send(req-promise, i, j) 
events can occur in ~'. The action ~1 = send(req-promise, 
i, j) is only enabled when regioni=T and jr 
When the action occurs, it results in j~requested~. Ele- 
ments may be deleted from the set requested~ only while 
region~ = M. Therefore, another  action send(req-promise, 
i, j) cannot  occur after ~1 until p~ passes through some 
state in which region~=M and then reaches a state in 
which region~ = T. By Lemma 1 and the definition of user 
well-formedness, this cannot  happen without an inter- 
vening donei. 

Next, we show that if rc 1 = send(req-promise, i, j) oc- 
curs in ~, then the next done~ event after ~1 must be 
preceded by ~5 =send(multicast(m, t"), i, j). The action 
rq has as an effect that jerequested~, and done~ has as 
a precondition that requested~ is empty. Therefore, since 
~5 is the only action that can remove j from requested~, 
it must occur between rot and donee. 

Now we show that each event in the sequence must 
occur in order for the next to occur. By the induction 
hypothesis, all send(req-promise, i, j) actions that occur 
before c( have their corresponding receives occur before 
c(. Therefore, by network well-formedness, ~2 
= rcv(req-promise, i, j) cannot occur before ~z~, and only 
one ~2 action occurs. Action rc3=send(promise(t), j, i) 
is only enabled when i~requestsj, and the event results 
in i's removal from that set. Since 7-g 2 is the only action 
that can cause i~requests~, it must precede ~3. Again, 
by network well-formedness and the induction hypothe- 
sis, we know that rc a must precede ~4=rcv(promise(t), 
j, i). The action 7cs=send(multicast(m, t"), i, j) has as 
a precondition that promises-from~ [j] < (o% n). Since 7c 5 
has as an effect that promises-fromi [j] =(0% n), and since 
rc 4 is the only action that can cause promises-fromi [j] 
<(0% n), we know by the induction hypothesis that 
promises-from~ [j] = (00, n) at the beginning of ~'. There- 
fore, re4 must precede ~5. 

Since send(adv-promise(t'), i, j) has as a precondition 
that promises-fromi [j] <(o% n), we know that it cannot 
occur before re4 or after ~5. [] 

In the remainder of the proof, we often use the above 
lemma to show the existence or nonexistence of particu- 
lar events in a port ion of an execution. 

Conditions (2) and (3) of schedule module M refer 
to the existence of a correspondence relation and a total 



order. In completing the proof, it is helpful to fix particu- 
lar constructions for these as follows. Let ~ be an execu- 
tion of P. For  all i e J ,  if n is a multicast-send~ event 
occurring in c~ and s is the state immediately preceding 
n, then we define time(n, ~) to be s.mctime~. Similarly, 
if n is a multicast-rcvi event occurring in c~ and s is the 
state immediately following n, then we define time(n, c~) 
to be s.clock~. We fix the correspondence relation cg~ 
as follows: For  all i, jeor  and for all m~5  ~, events nl 
=multicast-send~(m) and nz=multicast-rcvj(m) corre- 
spond in ~ iff time(hi, e)=time(n2, ~). We fix ~ to 
be the ordering as follows: For  all n l ,  7c2 multicast-send 
actions in e, 7[ 1 ~c~ 7[2 iff time(ha, c 0 < time(n2, ~). 

Before proceeding with the three parts of condition 
(2), we must first show that ~ is indeed a total order 
on the multicast-send events. Recall that the construction 
of -<~ is based upon assigning logical times to each multi- 
cast-send~ event according to the value of mctime~ in the 
preceding state. In the next lemma, we show that the 
state component  mctimei is nondecreasing. 

Lemma 4. Let ~ be an admissible execution of P. Then 
for all iEJ ,  if state s' precedes state s in c~, then 
s'.mctime~ <_ s.mctimei. 

Proof The actions ready~ are the only actions that modify 
mctime~. These actions set s.mctime~ to the value of 
lb-timei(s'), which is no less than s'.mctimei by defini- 
tion. []  

With this 1emma, we can now show that each multicast 
is assigned a unique logical time by the protocol.  

Lemma 5. Let ~ be an admissible execution of P. Let 
n=multieast-sendi(m) and n'=multicast-sendj(m') be two 
events in c~. Then time(n, e)r cQ. 

Proof There are two cases, depending on whether or 
not n and n' are outputs of different user processes. If 
i r  then we know trivially that time(n, e)r c~) 
because they differ in the process-id. (The state compo-  
nent mctimei is assigned only to values in the range of 
Ib-timei, and these values have i as the process-id by 
definition). 

If i=j, then assume, without loss of generality, that 
n' precedes n in c~. F rom the definition of user well- 
formedness, we know that at least one ready~ action oc- 
curs between n' and n. Let s' be the state from which 
the last such ready~ action occurs, and let s be the result- 
ing state. We know from Lemma 4 that s'.mctime~ is no 
less than the value of mctime~ in the state after n'. There- 
fore, if we can show that s'.mctime~< s.mctimei, then we 
will have proven that time(W, ~)< time(n, o O. By the pre- 
condition of ready~, we know that in state s', p~ must 
hold a promise from itself for some logical time t. By 
Lemma 3 and user well-formedness for i, we know that 
pi's promise to itself is sent (and received) between the 
last preceding done~ action and state s'. Also by user 
well-formedness, we know that no ready~ action occurs 
between this done~ action and state s', so the value of 
mctime~ is constant over that execution interval. When- 
ever pi sends a promise, the promise is assigned a time 
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strictly greater than pi's own lb-time, which is, by defini- 
tion, at least as large as its own mctime. Therefore, 
t > s'.mctime. Since p~ holds a promise for time t in state 
s', we know that lb-timei(s') > t. Therefore, since the readyi 
action assigns mctime~ to the value of Ib-time~, we know 
that s.mctime~ > s'.mctime~. [] 

This immediately implies the desired result that the 
construction of M produces a total order on the multi- 
cast-send events: 

Corollary 6. Let ~ be an admissible execution of P. Then 
-(~ is a total order on the multicast-send events in c~. 

Proof Immediate  from Lemma 5 and the definition of 
-<~. [] 

Having shown that -<, is a total order, we can turn 
to the main task of proving condition (2) of schedule 
module M. We begin with condition (2 a). 

Theorem 7. Let c~ be an admissible execution of P. Then 
cg~ is a proper correspondence relation .for ~. 

Proof Let n=multicast-sendi(m) be an event in c~, and 
let tryi(S) be the last preceding tryi action. By Lemma 
5, we know that n is assigned a unique logical time t 
by the protocol. By the definition of pi and specifically 
the preconditions of the send(multicast(m, t), i, j) action, 
we know that at most  one send(multicast(mr t), i, j) 
action occurs in c~ for each jES  (and that none occurs 
for jq~S). By network well-formedness, we know that at 
most  one rcv(multicast(m, t), i, j) occurs in c~ for each 
of these sends. So (m, t) is added to pending~ at most  
once in e, for each jES  (and never for j(~S). Therefore, 
by the definition of multicast-rcv, at most  one 
multicast-rcvj(m) action corresponds to n for each j~S,  
and no such actions correspond to n forjq~S. This proves 
that cg~ satisfies properties 1 and 3 of the definition of 
a proper  correspondence relation. 

We now show proper ty  2. By the construction of 
cg~, each multicast-rcv has an associated logical time and 
corresponds only to those multicast-send actions as- 
signed this time. By Lemma 5, each multicast-send has 
a unique logical time, so each multicast-rcv can corre- 
spond to at most  one multicast-send. It  remains to be 
shown that each multicast-rcv has at least one corre- 
sponding multicast-send. Let s' be the state from which 
a multicast-rcv~(m) action occurs and let s be the resulting 
state. Then by the definition of that action, it must  be 
that (m, t)~s'.pendingj and s.clock~=t. Therefore, a 
rcv(multicast(m, t), i, j) must have occurred prior to s'. 
By network well-formedness, this event must have been 
preceded by a send(multicast(m, t), i,j), which could only 
have been enabled as a result of a multicast-send~(m) ac- 
tion with an assigned logical time of t. This is the desired 
corresponding action. []  

The next part  of the proof  is to show that Ms is 
a proper  total order for cg~ and ~. In order to accomplish 
this, we first prove a lemma that  state some important  
invariants on the state of P. The fifth invariant, which 
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states that the minimum time in the pending set of a 
process Pi is always larger than the clock of that process, 
is a key piece of the safety proof. Informally, it tells 
us that no multicast message arrives " too  late". This 
is used to prove a second lemma, that the clock compo- 
nent of a process is nondecreasing. This will enable us 
to show the desired property of Ms. 

Lemma 8. Let ~ be an admissible execution of P. Then 
for all i, j ~ J ,  the following properties hold for all states 
s i ne .  
1. i~ s.requestsj~ s.promises-toj [i] = ( ~ ,  n) 
2. s.pr omises-t o j [i] _< s.pr omises-fr omi [j] 
3. s.clockj < s.promises-toj [i] 
4. (s.region i E { R, M} /x j  ~ s.try-seti c~ s.requestedi) 

s.promises-fromi [j] <_ s.mctimei 
5. s.pending j # O ~ s.clock j < min ( s.pending j).time 

Proof Each property is proved by a separate induction 
on the length of a 9. 

Property (1). If s is an initial state, then for all i, 
j ~ J ,  i(~s.requestsj, so the statement holds vacuously. The 
only action that can falsify s.promises-toj[i] = ( ~ ,  n) is 
senct(promise(t), i, j), but this action removes i from 
s.requestsj. The only action that can add i to requestsj 
is a rcv(req-promise, i, j). So, for the induction step, let 

= ~'~s, where ~ = rcv(req-promise, i, j) and Property 
(1) holds for e'. Suppose (for contradiction) that s.prom- 
ises-toj [i] < ( ~ ,  n). This can only be true if there exists 
some ~', either a send(promise(t), j, i) or a rcv(adv-pro- 
mise(t), i, j), in ~' such that no rcv(multicast(m, t'), i, 
j) occurs between n' and n. However,  by Lemma  3, every 
send(promise(t), j, i) or send(adv-promise(t), i, j) must 
be followed by a send(multicast(m, t'), i, j) before the 
next send(req-promise, i, j) occurs. So by network well- 
formedness, rcv(multicast(m, t'), i, j) must occur between 
~' and n, giving us a contradiction. 

Property (2). The base case, e only a start state, holds 
since promises-fromi [j] = promises-toj [i] = ( ~ ,  n) for all 
i, j ~ J .  Let a=a ' s ' n s  be an execution of P, where the 
property holds in state s'. Now, consider those four ac- 
tions ~ that can potentially increase promises-toj[i] or 
decrease promises-fromi [j] : 

1. If ~=send(promise(t),  j, i), then by Property (1) and 
the preconditions on ~, s' .promises-toj[i]=(~, n). 
Therefore, promises-toj [i] is not increased by n. 

2. If n = rcv(promise(t), j, i), then s.promises-fromi [j] = t. 
By network well-formedness, ~'=send(promise(t), j, 
i) must occur earlier in ~', leaving promises-toj[i] =t. 
The only possible events that could occur between 
~' and ~ to make s.promises-toj[i]#t are rcv(adv- 
promise(t '), i, j) or rcv(multicast(m, t'), i, j). By Lem- 
ma 3, we know that ~' must occur before ~ such that 
no send(adv-promise(t'), i, j) or send(multicast(m, t'), 
i, j) occurs between n' and ~. By the same lemma, 
we know that a ~"=rcv(req-promise, i, j) occurs 
before ~' such that no send(adv-promise(t'), i, j) or 

9 This is in contrast to proofs in which the inductive hypothesis 
includes all of the invariants 

send(multicast(m, t'), i, j) occurs between ~" and ~'. 
Hence, by network well-formedness, no rcv(adv-pro- 
mise(t'), i,j) or rcv(multicast(m, t'), i,j) occurs between 
n' and n. 

3. If ~z=rcv(adv-promise(t'), i, j), then s.promises- 
toj [i] = t'. By Lemma 3 and network well-formedness, 
the corresponding send(adv-promise(t'), i, j) must fol- 
low a ~ ' =  send (promise (t), j, i) such that no rcv (multi- 
cast(m, t'"), i,j) occurs between them. By the precondi- 
tions of send(adv-promise(t'), i, j), t '>t,  and that ac- 
tion results in promises-fromi[j]=t'. Furthermore,  
any other send(adv-promise(t"), i, j) occurring in ~' 
after send(adv-promise(t'), i, j) must have t">t' .  
Therefore, the property holds. 

4. If ~=rcv(multicast(m, t), i, j), then s.promises-toj[i] 
= (o9, n). By network well-formedness, ~z must be pre- 
ceded by ~'=send(multicast(m, t), i, j), resulting in 
promises-fromi[j] = ( ~ ,  n). The only action that can 
decrease promises-fromi[j] is a rcv(promise(t'), j, i). 
But by Lemma 3, any rcv(promise(t'), j, i) occurring 
between ~' and 7c must be preceded in that interval 
by a send(req-promise, i, j) and a rcv(req-promise, 
i, j). But this violates network well-formedness ($4), 
so no rcv(promise(t'), j, i) occurs between ~' and n. 
Therefore s.promises-fromi [j] = ( ~ ,  n). 
Property (3). The base case, e a start state, holds 

since clock~=(O, j) and promises-toj[i]=(~, n) for all 
i ~ J .  Now, consider those actions that can potentially 
increase clockj or decrease promises-toj[i]. These are 
multicast-rcvj, send(promise(t), j, i). and rcv(adv-prom- 
ise(t), i, j). By definition, the action multicast-rcvj sets 
clock to a value t, such that Vieor promises-toj[i]>t. 
The action send(promise(t), j, i) sets promises-toj[i]=t 
and is enabled only if t > lb-timej, which is at least clockj 
by definition. Finally, the action rcv(adv-promise(t), i, 
j) sets promises-toj[i]=t. To show that t>clockj,  we 
note that send(adv-promise(t), i, j) is enabled at Pi 
only if promises-fromi [j] < t. Therefore, by Property (2), 
t > promises-toj [i] when send(adv-promise(t), i, j) occurs. 
And therefore, t>promises-toj[i] when rcv(adv-pro- 
raise(t), i, j) occurs, since Lemma 3 and network well- 
formedness tell us that neither a rcv(multicast(m, t'), i, 
j) nor  a send(promise(t'), j, i) action can occur between 
send(adv-promise (t), i, j) and rcv (adv-promise (t), i, j). 

Property (4). The base case, e a start state, holds 
since regioni = P. Let e = ~'~s, where the property holds 
after ~'. There are two cases. 

We first consider the case in which Pl enters region 
R, and subsequently enters region M. In this case, 
= readyi, so the property holds by the preconditions and 
effects of readyi. In that action, lb-time and mctime are 
made equal, and we note that mctime remains unchanged 
until after Pi exits region M. We also observe that by 
user well-formedness for i, no tryi actions can occur from 
regions R or M, so try-seti is fixed in R and M. By 
Lemma 3, no new promises from members  of try-set are 
received by p~ while in R or M, since those promises 
have already been received (by precondition of readyi). 
Therefore, to show that the proper ty  holds after all ex- 
tensions of e in which p~ remains in R or M, we need 
only show that for all jetry-set,  if promises-fromi[j] is 
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increased, then j  is removed from requested until the next 
donee. Since send(adv-promise(t), i, j) actions are not en- 
abled from M, we need only consider send(multicast(m, 
t), i, j). However, this action removes j from requested. 
Since send(req-promise, i, j) is not enabled in M, j cannot 
be replaced in requested before the next donee. 

For  the second case, p~ does not enter M from region 
R. In this case, rc must be backout~, by user well-formed- 
ness for i. Therefore, by the effects clause of that action, 
try-seti=O, so the property holds vacuously until the 
next donee. 

Property (5). Clearly, the property holds in the initial 
state. Let ~ = e' s' 7c s be an execution of P, where the prop- 
erty holds in state s'. The only action that can change 
clock~ is a multicast-rcv~, which removes the element from 
pending~ having the least time, and sets clock~ to that 
time. By Lemma 5, no two multicast-send actions are 
assigned the same logical time. So by Lemma 3, at most 
one send(multicast(m, t), i, j) occurs for a given time t. 
And by network well-formedness, at most one rcv(multi- 
cast(m, t), i,j) occurs. Therefore, no two items in pendingj 
have the same logical time. So by the induction hypothe- 
sis, the property holds. 

The action rc=rcv(multicast(mCe, t), i, j), for some 
i ~ ,  is the only action that can add elements to pendingj. 
Let s" be the state from which the corresponding send- 
(multicast (m, t), i, j) occurs. Since m ~ e implies that j e s". 
try-set~, we know from Property (4) that 
s".promises-fromi [j] <_ t = s".mctimei. Therefore, by Prop- 
erty (2), s".promises-to~ [-i] <_ t. By Lemma 3 and network 
well-formedness, we know that no send(promise(t'), j, i) 
or rcv(adv-promise(t'), i, j) action can occur between s" 
and s' that could cause promises-toj[i] to increase past 
t. Therefore s'.promises-toj[i]<_t. So, by Property (3), 
s'.clock~ < t. When rc occurs, (m, t) is added to pending~, 
so Property (5) holds in state s. [] 

We now show that the clock state component is nonde- 
creasing. 

Lemma 9. Let ~ be an admissible execution of  P. Then 
for all ic~r if state s' precedes state s in ~, then 
s'.clocki <_ s.clocki. 

Proof  Consider the actions multicast-rcv~, which are the 
only actions in which clock~ can be modified. Whenever 
a muhicast-rcvi action is enabled, pending~ is nonempty. 
By definition, a multicast-rcv~ action results in clock~ be- 
ing set to the minimum logical time in pending~. By Prop- 
erty (5) of Lemma 8, clocki is less than the minimum 
logical time in pending~, provided pendingi is nonempty. 
Therefore, whenever clocki is modified, its value is in- 
creased. [] 

Proof We need to show that Vi, j, k ~ J  and Vm, m'~5 P, 
if rc = multicast-sendi(m) and ~' = multicast-send i(m') occur 
in c~ with corresponding receives ~=multicast-rcvk(m) 
and ~'=multicast-rcvk(m'), and if -<~ orders ~' before 
re, then ~' occurs before ~. 

From Lemma 5, we know that ~z and ~z' have associat- 
ed unique logical times. Let these be t and t', respectively. 
Since M~ orders n' before ~r, we know that that t>t ' .  
Furthermore, by the definition of cg~, we know that 
cIockk=t in the state immediately after ~ and that 
clockk=t' in the state immediately after ft. Lemma 9 
tells us that clockk is nondecreasing. Therefore, 7~' must 
occur before ~. [] 

Finally, we prove property (2 c) to complete the safety 
proof. 

Theorem 11. Let c~ be an admissible execution of  P with 
correspondence relation <g~. Then V j 6 J  and Vm, m'~SP, 
if ~z = multicast-sendi(m) occurs in ~, then no 
multicast-rcvi(m') occurs between ~ and the corresponding 
r = multicast-rcvi (m). 

Proof Consider the state s from which rc occurs, let c( 
be the prefix of e ending in state s, and let t = s.mctimei 
=-time(n, ~'). We know, from user well-formedness for 
i, that r(i, e ' )=  R. Consider the last action readyi occur- 
ring in e', and let s' be the resulting state. (We know 
such an action must occur, since this is the only action 
that can result in region R.) We know, again by user 
well-formedness for i, that regioni=R at all states be- 
tween s' and s. 

Suppose (for contradiction) that a multicast-rcvi(m') 
occurs between n and ~. F rom the definition of readyi, 
we know that s'.pendingi--O. Therefore, the only way 
for the multicast-rcv~(m') to occur between s' and ~ is 
for a rcv(multicast(m'r t"), j, i) with t " < t  to occur 
first in that interval. By the preconditions of ready~, s'. 
promises-toi[j] >_Ib-time(s'[i)= t, for all j e J .  Further- 
more, any later send(promise(t'), i, j) must have t' 
>Ib-time~, which is greater than mctimei in every state 
by definition. From Lelnma 4, we know that mctime~ 
is nondecreasing, so mctime~>t in all states after s'. 
Therefore, by Properties (2) and (4) of Lemma 8, no send- 
(multicast(m'v ae, t"), j, i) with t"< t can occur after s'. 
(We ignore send(multicast(e, t"), j, i) actions here because 
a rcv(multicast(e, t),j, i) action does not cause an element 
to be inserted into the pending set). So the only way 
for a rcv(multicast(m', t"),j, i) with t"< t to occur between 
s' and r~ is for its corresponding send to occur before 
s'. If this is the case, then by Properties (2) and (4) of 
Lemma 8, s'.promises-to~Fj] <_ t". But this violates the 
precondition for the ready~ action that occurs from 
state s'. [] 

We can now prove property (2b) of schedule module 
M. 

Theorem 10. Let ~ be an admissible execution of  P. Then 
~ is a proper total order for c~ and ~. 

5.2 Liveness proof 

The liveness proof consists of showing that executions 
of P satisfy condition (3) of schedule module M. We 
prove the two parts of condition (3) in order. Since the 
protocol is required to make progress only if the user 
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processes and the network satisfy their liveness proper-  
ties, we will restrict our  attention to only those execu- 
tions in which the environment is live. This motivates 
the following definition. Let ~ be a fair execution of P. 
We say that c~ is well-behaved iff ~[U~scheds(U~) for all 
i e J  and c~[N~scheds(N). Note  that every well-behaved 
execution is an admissible execution, by the definitions 
of U~ and N, and the fact that P preserves user well- 
formedness for all i e J .  

Before proving condition (3 a), we prove four interme- 
diate lemmas. The following lemma states that if a prom- 
ise is requested, then eventually it is granted. 

Lemma 12. Let c~ be a well-behaved execution of P. I f  
event ~z=send(req-promise, i, j) occurs in c~ then a later 
rcv(promise(t),j, i) occurs in ~ for some teJ - .  

Proof By the definition of scheds(N), a n'=rcv(req- 
promise, i, j) occurs in e after re. By the transition relation 
for p~, i~requestsj in the state after n'. Only a send(prom- 
ise (t), j, i) action can cause ir requestsj. Therefore, a send- 
(promise(t), j, i) action is enabled in all states after ~' 
until one occurs. Since e is a fair execution and send- 
(promise(t), j, i). actions are in their own class of the 
partition, such an action eventually occurs. The defini- 
tion of scheds(N) tells us that a corresponding rcv(prom- 
ise(t), j, i) occurs later in e. [~ 

The following simple lemma states that if a try~ action 
occurs, then eventually either need-seh becomes fixed, 
or else a later ready~ or backout~ action occurs. 

Lemma 13. Let ~ be a well-behaved execution of P, and 
let cg be a suffix of ~ beginning with a try i action, for 
i ~ J .  I f  no backouti or readyi action occurs in c( then 
there exists a state in c~' after which need-set~ is fixed. 

Proof If no backout~ or ready~ action occurs in c(, then 
from the definitions of p~ and user well-formedness we 
know that no element is deleted from set need-set~ in 
e'. Therefore, since need-set~ can contain at most  n ele- 
ments, we know that there exists a state in e' after which 
need-set~ is not changed. [] 

The next lemma states that a process can eventually 
accumulate promises from all processes named in its 
need-set. This fact will be useful in proving Lemma 15. 

Lemma  14. Let ~ be a well-behaved execution of P, and 
let c( be a suffix of ~ beginning with a try i action. I f  
neither a backouh nor a readyi action occurs in ~', then 
there must exist a point in c( after which the following 
condition holds for all states s: Vj~s.need-seti, 
s.promises-fromi [j] < ( oo, n). 

Proof If no backouh or ready~ action occurs in ~' then 
by user well-formedness for i, regionie {T, W} in all states 
of e'. F rom Lemma 13, there exists a state s' in e' after 
which need-set~ is fixed. Let ~" be the suffix of c( begin- 
ning with state s'. Then for each state s" in c~" and for 
each j~s'.need-set, there are two possibilities: either (1) 

jCs'.requestedi, and send(req-promise, i, j) is enabled or 
(2) jes'.requestedi and send(req-promise, i, j) occurs be- 
fore s' (and after the last preceding donei, if one occurs). 
In case (1), we know that a send(req-promise, i, j) must 
eventually occur since ~ is a fair execution and such 
actions form their own class of the partition. So, in either 
case, Lemma 12 tells us that a rcv(promise(t),j, i) action 
must occur in ~ (after the last done~ event, if one occurs). 
So eventually, promises-fromi[j] <(o% n) for all j~need- 
set. No action can occur at p~ in region T or W to cause 
an entry in the promises-fromi array to become ( ~ ,  n). 
Thus, we have the desired result. []  

The final intermediate lemma states that if a process 
is at tempting to perform a multicast, then eventually 
its lb-time will stop increasing or the process will perform 
a multicast. 

Lemma 15. Let c~ be a well-behaved execution of P, and 
let ~' be a suffix of ~ beginning with a try i action. I f  
neither a backouti nor a ready~ action occurs in c~', then 
there exist a logical time t ~ Y  and a state s in c( such 
that Ib-time~ = t in all states after s. 

Proof If no backout i or readyi action occurs in e', then 
from Lemmas  13 and 14 we know that there exists a 
state s in e' after which need-set~ is fixed and pi holds 
promises from all processes named in need-set~. Let t 
= Ib-time~(s). In order to show that Ib-timei cannot grow 
past t in e', we need to show that no new promises 
arrive at p~, that p~ does not advance any promises past 
t, and that clocki and mctime~ do not increase past t. 
Clearly, since need-set~ is fixed and p/ holds promises 
from each process named in need-set~, no new promises 
are requested and no new promises arrive. And by defini- 
tion, pi never advances a promise beyond its current 
lb-time. Since p~ holds a promise from itself (for a time 
< t), we know by Property (3) of Lemma 8 that clock~ 
cannot grow past t. Finally, since mctimei is only modi- 
fied by a ready~ action, we know that this is fixed as 
well. []  

The next two theorems correspond to Conditions 
(3a) and (3b) of schedule module M. In the first, we 
assume that there exists a set of blocked processes, and 
derive a contradiction by showing that the process with 
the least lb-time must eventually make progress. The 
promise advancement  mechanism is crucial to this result, 
because it allows a process to discover that it is the 
one with the least lb-time. From the previous result, we 
know that only a finite number  of these promise ad- 
vancement messages are sufficient to ensure that progress 
is made. 

Theorem 16. Let c~ be a well-behaved execution of P. I f  
a tryl occurs in c~, then either a backouti or a readyi occurs 
later in c~. 

Proof Suppose (for contradiction) that there exists a set 
J___J such that V j ~ J ,  a tryj occurs in c~ and no later 
backoutj or readyj occurs in e. F rom Lemmas 14 and 



15, we know that there exists a suffix c( of ~ such that 
for all j ~ j ,  

1. lb-time i is fixed in e', and 
2. for all states of c(, pj holds a promise from every pro- 
cess and named in try-seti c_ need-setj. 

Let i E ~  be the index of the process with the least lb-time 
in c(, and let t be this lb-time. To derive a contradiction, 
we wish to show that a readyz action occurs in c(. 

Given the preconditions on ready~, there are only 
two ways in which the readyi action could not be en- 
abled: Either (1) promises-toi [j] < lb-timei for some j ~ J ,  
or (2) pendingi is not empty. We consider these in order. 
By the preconditions on granting a promise, any new 
promises granted by Pi in e' have logical times greater 
than t, so we need only consider promises granted before 
c~'. Each process k ~ J \ J  makes progress (i.e., has a 
backoutk or ready~ action), and therefore reaches region 
M, where it eventually relinquishes every promise held. 
So, any promise that p~ has granted to any process 
p k ~ J \ J  for a time less than t must eventually be relin- 
quished. We have already said that the remaining pro- 
cesses p j e J  hold promises from all processes named 
in their try-sets. Therefore, since e is a fair execution, 
a send(adv-promise(t'), j, i) occurs with t' being the logi- 
cal time at which lb-timej is fixed. By the definition of 
N, a corresponding rcv(adv-promise(t'), j, i) occurs later 
in c~. Since p~ has the least lb-time among processes named 
in J ,  we know that t' > t in all cases. Therefore, all prom- 
ises that pi has granted to other processes for times less 
than t are eventually relinquished or advanced past t. 
So, for all j ~ J ,  promises-toi[j] >_ Ib-timei. Therefore, by 
Property (5) of Lemma 8, nothing prevents multicast-rcv~ 
actions from occurring to empty pending~, since 
lb-timei > clock~. Thus, since e is a fair execution, ready~ 
eventually becomes enabled and must eventually oc- 
cur. []  

Finally, we show condition (3 b), that a multicast mes- 
sage is eventually delivered to all the destination pro- 
cesses. 

Theorem 17. Let c~ be a well-behaved execution of P. I f  
a multicast-sendi(m) occurs in c~ and tryi(S ) is the last 
preceding try~ action in ct, then a multicast-rcvj(m) occurs 
later in c~ for each j~S. 

Proof If multicast-sendi(m) occurs in e, we know that 
a ready~ must precede it, by user well-formedness for 
i. By the preconditions of ready~, for all jEtry-seti=S, 
promises-fromi[j] <(0% n). Therefore, the actions send- 
(multicast(m, t), i, j) remain enabled until they occur. 
And by definition of N, the corresponding rcv(multi- 
cast(m, t), i, j) actions must eventually occur. 

Once a rcv(multicast(m, t), i, j) occurs, the only way 
for the multicast-rcvj(m) to be prevented is for 
promises-toj[k] to be less than t, for some k ~ J .  Note 
that any new promises granted by pj must be greater 
than t until multicast-rcv~(m) occurs, since t< max(pend- 
ing). Therefore, by Theorem 16 and the result of the 
preceding paragraph, all promises granted by pj for times 
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less than t must eventually be relinquished. At that point, 
promises-toj[k]>_t, V k ~ J ,  so eventually multicast- 
rcvj(m) occurs. []  

Theorem 18. Module P solves schedule module M. 

Proof Follows immediately from Theorems 2, 7, 10, 11, 
16, and 17 and the definition of M. []  

6 Complexity analysis 

In this section, we analyze the message and time com- 
plexities of the multicast protocol. Let system A be the 
composition of P and any two automata that solve 
schedule modules U and N. Let ~ be an execution of 
system A. We say that ~ is an undeviating execution for 
i iff every pair of actions tryi(S ) and tryi(S' ) either have 
a donei between them or S = S'. That  is, in an undeviating 
execution for i,u~ does not "change its mind"  about 
whether to issue a multicast message or to whom the 
multicast should be sent. 

6.1 Message complexity 

There are four types of messages sent in the algorithm: 
req-promise, promise, adv-promise, and multicast mes- 
sages. If ui issues rc=try~(S) in an execution of system 
A, then we say that the following messages occur as 
a result of ~: any requests by p~ for promises from any 
p j, jeS ,  any promises sent in response to those requests, 
any promise advancements by pi to pj, j~S,  and any 
multicast messages sent from p~ to pj, jeS .  That  is, we 
charge each try~ action with those messages required to 
complete the corresponding multicast. 

Theorem 19. Let c~ be an undeviating execution for i, where 
e]Ui contains a ~=tryi(S ). Then at most 4]SI network 
messages occur as a result of ~. 

Proof By Lemma 3, we know that for each j~S,  at most 
one send(req-promise, i, j), one send(promise(t), j, i) and 
one send(multicast(m, t'), i, j) occur between rc and the 
completion of the multicast. Now we show that at most 
one send(adv-promise(t"), i,j) occurs. Since the execution 
is undeviating, promises are requested (and received) 
only from processes named in S. Since no adv-promises 
are sent until promises are received from all processes 
named in S, all promises are advanced at most once, 
to the same logical time. [] 

In executions that do not have the undeviating prop- 
erty, more messages may be required. In the worst case, 
the try-set grows by one with each tryi action until IsI 
= n, the promise granted by the new process each time 
exceeds the old lb-time and is received before the next 
tryi, and all promises are advanced after each promise 
is received. In this worst-case scenario, the number of 
req-promise, promise, and multicast messges are the 
same as above, but the number of adv-promise messages 
is O(n2). In situations where this sort of behavior is ex- 
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pected, one might choose another  strategy for advancing 
promises. Alternative methods of promise advancement  
are outlined in Sect. 6.3. 

6.2 7~me complexity 

To study the time complexity of the algorithm, we need 
a method for associating real times with points in an 
execution. If e is an execution, we say that r t  is a real 
time assignment for c~ if r t maps each event ~ in ~ to 
a real time rt(rc, c~) such that the sequence of times (1) 
is nondecreasing over the entire execution and (2) in- 
creases without bound if ~ is infinite. If c~ is an execution, 
r t is a real time assignment for c~, and ~z' and rc are 
events in e, we say that the time between ~' and ~ is 
[rt(rc, a)-rt(7c', ~)1. We define the state of c~ at real time 
r to be the state s as follows: if r is less than the real 
time of the first event in e, then s is the initial state. 
If r is greater than the time of the last event in e, then 
s is the last state of a. Otherwise, s is the state occurring 
between the two events re' and rc in ~ such that rt(rc', 
e) < r < r t(~, c 0. A more general approach for adding real 
time to the I/O au tomaton  model is presented in [-27], 
but the above definitions will be sufficient here. 

In order to derive meaningful time bounds for the 
algorithm, we need to make stronger assumptions about  
message delivery than the eventuality conditions used 
for the liveness proofs. Therefore, we let d be an upper 
bound on the time between a send event and the corre- 
sponding rcv (i.e., the message delay). We assume that 
process step time is insignificant in comparison to d, 
so we do not impose any lower bound on the time be- 
tween two successive steps of the algorithm. In fact, to 
simplify the analysis, we require that if an output  action 
of P is enabled in state s at time r, then either that 
action occurs at time r, or that action becomes disabled 
by some other action occurring at time r. Informally, 
this says that the only delays are in the message system; 
all processing of a message occurs instantaneously with 
the receipt of that message. For  example, no time elapses 
between receiving a request for a promise and sending 
out the promise. We also require that each user respond 
to multicast-rcv and ready actions immediately. That  is, 
if a multicast-rcv~ action occurs at real time r, then the 
resulting try~ or backouti action occurs at realt time r. 
Similarly, if a readyi action occurs at real time r, then 
the resulting multicast-send~ occurs at real time r. We 
will restrict our attention to executions of A with real 
time assignments satisfying the above properties. 

We wish to derive an upper  bound on the time be- 
tween making a request to perform a multicast (a tryi 
action) and getting permission to perform the multicast 
(a readyi action). To accomplish this, we first compute 
an upper bound on the time for the process with the 
least lb-time to be able to perform a multicast once it 
has received all the necessary promises. 

Lemma 20. Let c~ be an undeviating execution for i with 
real time assignment ft. Let s be a state in c~ such that 

1. for all jEs.try-seti, s.promises-fromi [j] < (o% n), and 
2. for all j e J  with s.regionje{T, W}, lb-timei(s) 
<_ lb-timej(s). 

I f  r is the real time of state s, then there exists an event 
~=readyi in ~ such that r < r t ( ~ ,  ~ ) < r +  3d. 

Proof. For  all j ~ J ,  if s.regionj~{P, R, B} and 
s.promises-toi [j] < (o% n), then by time r + d, a rcv (multi- 
cast(m, t), j, i) action occurs for some rues  P and t e J .  
Furthermore,  for all j ~ J ,  if s.regionj~{T, W} and 
s.promises-toi [j] < (o% n), then a rcv(adv-promise(t'), j, 
i) action with t ' >  lb-timei(s) occurs by time r +  3d (one 
delay for pj's promise requests, one delay for the promise 
messages, and one delay for the the adv-promise mes- 
sage). Any promise granted by Pi after state s must have 
a time greater than lb-timei(s), since no action can occur 
from region T or W to decrease the value of lb-time~. 
Therefore, by time r + 3 d ,  it is the case that 
min(promises-toi) > lb-time~(s). So, all the multicast mes- 
sages waiting in pendingi are delivered by time r +  3 d. 
Thus, the preconditions for readyi are satisfied by time 
r + 3d and the action must occur. [] 

Let ~ be an execution of P. We say that p~ depends 
on pj in state s of :~ iff s.regionie{T, W}, s.regionj~{T, 
W}, and lb-timei(s)>s.promises-toi[j]. We say that Pi in- 
directly depends on Pk in state s iff there is a sequence 
P~, P j,, Pj . . . . .  , Pk such that pi depends on p j,, P J1 depends 
on P J2, etc. One may think of this sequence as a waiting 
chain, in which each process is waiting to receive a multi- 
cast message from the next process in the chain before 
it may proceed with its own multicast. 

The following theorem says that if z is the length 
of the longest waiting chain originating at Pi in an unde- 
viating execution and p~ holds promises from all 
members  of its try-set, then p~ must wait at most 3 d(z + 1) 
time units before completing its multicast. 

Theorem 21. Let ~ be an undeviating execution for all 
i ~ J .  Suppose that at real time r, pi is in state s such 
that s.promises-fromi [j] < (0% n) for all j~s.try-seti. Let 
z be the greatest number of processes on which Pi indirectly 
depends between state s and the next readyi. Then a ready~ 
occurs by time r + 3d(z + 1). 

Proof. At most  time 2d is required from the time a pro- 
cess requests promises until those promises are received. 
Therefore, if a process pj depends on process Pk, it must 
be that P5 receives a promise request from Pk within time 
2d of the tryj event. (If the promise request arrived later, 
then pj's lb-time would already be fixed and pj would 
grant a promise for a greater time, contradicting the 
hypothesis that pj depends on Pk). So, extending this ar- 
gument, the lb-times for all processes in the longest wait- 
ing chain originating at p~ must be fixed by real time 
r+2dz .  So, by Lemma 20, we know that if Pl is the 
process in the waiting chain with the least lb-time, then 
a ready~ action must  occur by time r + 2 d z + 3 d, shorten- 
ing the length of the waiting chain by one. Similarly, 
the next process in line must issue its ready action within 
3d time units, and so on. Therefore, a readyi occurs by 
time r + 2dz  + 3 d z = r  + 5dz. 



However, one can improve on this bound by noticing 
that by the end of the 3d maximum time units between 
the time the last process in the chain obtains all of its 
promises until its ready~ occurs, all the remaining pro- 
cesses in the chain will have received any adv-promise 
messages due them. Therefore, each remaining process 
waits only for the multicast messages from the processes 
on which it directly depends. These messages require 
at most d time units each, and there are z of them in 
the chain. This gives us a time bound of 
2 d z + 3 d + d z = 3 d ( z + l ) .  [] 

It should not be surprising that the time complexity 
depends heavily upon pattern of the multicast requests, 
since this is what determines the dependency order. Since 
z can be at most n, the delay is at most 3d(n+  1). 

Note that the worst-case time complexity matches 
one's expectations about what must happen when all 
n processes attempt to send multicast messages to every 
process. A simple inductive argument shows that any 
protocol requires an f2(dn) delay in this worst-case scen- 
ario: since all processes send to all other processes, the 
conditions of the problem require that the protocol en- 
force a total order on the multicasts. Thus, the process 
u whose message is the U h message in the total order 
must wait at least d ( k - 1 )  time before sending its mes- 
sage, or else it could not have received all k -  1 messages 
ordered before it. (This, of course, assumes that all mes- 
sages take the maximum time d to arrive). 

The worst-case scenario far an execution without the 
undeviating property is rather complicated. Process Pl, 
say, grants promises to all the other processes. Then, 
processes P2 through p, each change their minds n times 
about their try-sets before finally performing multicasts 
in turn while Pl waits. On receipt of p,'s multicast mes- 
sage, ul changes its mind about its try-set and issues 
a new try~. But before requesting the additional promises, 
Pl first grants new promises to all the other processes 
P2 . . . . .  p,. Then pl requests promises from its new try-set 
and, receiving those promises, advances its lb-time past 
all the new promises it has granted. Thus, the same pro- 
cedure can start over and repeat itself for a total of n 
times, since Ul can change its mind at most n times before 
a readyi finally occurs. This worst-case scenario results 
in a delay of O (n 3 d). 

One interesting question is whether a deeper under- 
standing of the time complexity of the algorithm could 
be obtained by stating a measure of the concurrency 
inherent in the pattern of try actions and deriving a time 
complexity in terms of that measure. That is, one might 
measure how well the algorithm performs for a given 
pattern of multicast requests, and compare this to an 
optimal strategy for handling that particular pattern. 
Ideally, an algorithm would perform optimally for all 
possible request patterns. One complication in this sort 
of analysis is that the behavior of the protocol itself may 
influence the pattern of requests. 

6.3 Possible optimizations 

We begin with two simple optimizations. To simplify 
the presentation of the algorithm, we chose to deliver 
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only one message in a multicast-rcvi action. As a minor 
modification, one might wish to send a sequence of mes- 
sages in each action. Also for the sake of exposition, 
we chose to let pi send itself messages over the network. 
A real implementation, however, would not actually send 
such messages but simply do some local computation. 

A more significant modification would involve not 
waiting for promises requested from processes not in 
one's try set. That  is, donei would become enabled after 
p~ no longer holds any promises, even if p~ has requested 
a promise that has not yet been received. One way to 
achieve this would be for Pz to send out "mult icast"  
messages to every process in requested, regardless of 
whether the promise had actually been received. This 
modification would require some mechanism for dealing 
with promises that come in late. One might keep track 
of the number of earlier donez actions and tag each re- 
quest with that number;  that tag would be appended 
to the corresponding promise by the granting process. 
In this way, promises arriving from an earlier multicast 
attempt could be ignored. 

We mentioned earlier that there are other ways in 
which promise advancement might be handled. For  ex- 
ample, one might not wish to wait until promises have 
been received from all the members in the try-set before 
advancing promises. Alternatively, one might have a 
process request promise advancement from those pro- 
cesses blocking its computation. More specifically, the 
following options are possible. 

1. Spontaneous advancement: This method allows p~ to 
nondeterministically send advancement messages 
when it notices that it is holding a promise with a 
time less than its lb-time. 

2. Advancement on demand: If a process pj is in T with 
lb-time= t, and has given a promise to p~ for a time 
t' less than t, then pj may send p~ a message, asking 
it to advance the promise. Upon receiving such a mes- 
sage, if p~ has lb-time > t', then it will send pj a promise 
advancement message. 

Deadlock avoidance methods similar to these are dis- 
cussed in [26]. In both cases, there is a trade-off between 
the message and time complexities: as one becomes more 
aggressive about advancing promises to reduce time de- 
lays, the number of messages increases. 

As a final modification, one might allow a process 
to make strategic promise requests from processes not 
in its need-set. In this way, if u~ changes its mind about 
its try-set, pz may not need to wait for additional prom- 
ises. Of course, requesting too many unneeded promises 
could adversely affect overall performance by needlessly 
blocking other processes. 

7 Conclusion 

We have defined the logically synchronous multicast 
problem and presented a solution that takes advantage 
of the concurrency inherent in the problem. The strong 
properties of message delivery order imposed by the 
problem would make a fault-tolerant solution highly at- 
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tractive for many  applications. However, in a completely 
asynchronous system with undetectable process failures, 
the properties of the message delivery order are strong 
enough to make a fault-tolerant solution impossible. The 
proof  of this fact is a reduction to distributed consensus 
using techniques from [16]. Dolev, Dwork,  and Stock- 
meyer show that if processes can broadcast  messages 
such that message delivery at all processes is consistent 
with some total order on the broadcasts, then it is possi- 
ble to implement a distributed consensus protocol  that 
tolerates any number  of stopping faults [8]. (Each pro- 
cess simply broadcasts  its initial value, and the value 
in the first message received is used as the decision value). 
We know that there does not exist a protocol for distrib- 
uted consensus that tolerates even one stopping fault 
[12]. Therefore, it is impossible to construct a fault-toler- 
ant broadcast  protocol  in which message delivery at all 
processes is consistent with a single total ordering of 
the broadcasts. Since the logically synchronous multicast 
problem requires message delivery to be consistent with 
a total ordering of the multicasts (plus other conditions), 
it also does not admit  a fault-tolerant solution. However, 
in spite of this impossibility result, there do exist useful 
applications of the logically synchronous multicast pro- 
tocol we have presented. To conclude the paper, we illus- 
trate an application of this protocol in an area where 
we need not be concerned with process failure. Specifi- 
cally, we consider distributed simulation of I/O automa-  
ta. 

The I/O au tomaton  model has proven useful for de- 
scribing algorithms and proving their correctness (for 
examples, see I-6, 9, 11, 13, 15, 22, 20, 23, 21, 24, 29, 
30]). Therefore, we have developed a simulation system 
based on that model to aid in the design and understand- 
ing of distributed algorithms [14]. Distributing the simu- 
lation, besides being an interesting exercise in itself, can 
also reduce the simulation time. 

Recall from the definition of the I/O au tomaton  mod-  
el that input actions of au tomata  are always enabled, 
and that an action shared by a set S of au tomata  is 
the output of only one au tomaton  and occurs simulta- 
neously at all au tomata  in S. In addition, the actions 
enabled in a given state of an au tomaton  may, in general, 
depend upon all previous actions occurring at that au- 
tomaton.  Furthermore,  the fairness condition requires 
that given an au tomaton  d and an execution c~ of ~r 
if some class C~part(~r has an action enabled in a state 
s of e, then either no action in C is enabled in some 
state s' occurring in e after s, or an action from C occurs 
in e after state s. 

We wish to construct a distributed system for simu- 
lating fair executions of a given au tomaton  ~r where 
d has some finite number  of components  a l l ,  
d 2 ,  ..., sr  To simplify the discussion, we shall assume 
that each component  ~r has exactly one class in its parti- 
tion. (The generalization allowing each component  to 
have a finite number  of classes is straightforward.) To 
accomplish this, we simply "plug in" a particular transi- 
tion relation for each user process u~ in system A such 
that all of its schedules are in scheds(Ui): We assign pro- 
cess uz to simulate component  d~.  When s~cz has an ac- 

tion rc enabled, ui may  issue a tryi(S ) action, where S 
is the set of au tomata  having = as an action. 1~ Then, 
upon receiving a readyi input, u~ issues a multicast- 
send(re), where rc is the action associated with the pre- 
vious try~. We permit u~ to issue a backout~ only if no 
actions are enabled in d i .  The multicast-rcvi(n' ) input 
actions are used to drive the simulation of d~.  When 
a multicast-rcvz(n') action occurs, process u~ updates its 
state based on action n' occurring in d i .  

Given the schedule module M defined earlier, one 
can verify that this distributed simulation satisfies the 
definitions of the I/O au tomaton  model. As far as each 
of the components  of the simulation can tell, each action 
rc occurring in the simulation happens simultaneously 
at every component  having n in its signature. It is inter- 
esting to see how this construction and the liveness con- 
dition of the multicast problem work together to satisfy 
the fairness condition of the I/O au tomaton  model. 

Although the problem described in this paper has 
an application to the simulation system just described, 
we have presented it here as a general problem in a 
modular  framework. The problem statement, the algo- 
rithm, and the correctness proof  are therefore general 
results, independent of any particular system or applica- 
tion. 
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