
RAMBO: A Robust, Reconfigurable
Atomic Memory Service for Dynamic Networks ∗

Seth Gilbert
EPFL, Lausanne, Switzerland
seth.gilbert@epfl.ch

Nancy A. Lynch
MIT, Cambridge, USA

lynch@theory.lcs.mit.edu

Alexander A. Shvartsman
U. of Connecticut,
Storrs, CT, USA

aas@cse.uconn.edu

Abstract

In this paper, we present RAMBO, an algorithm for emulating a read/write distributed shared memory in a dynamic,
rapidly changing environment. RAMBO provides a highly reliable, highly available service, even as participants join, leave,
and fail. In fact, the entire set of participants may change during an execution, as the initial devices depart and are replaced
by a new set of devices. Even so, RAMBO ensures that data stored in the distributed shared memory remains available and
consistent.

There are two basic techniques used by RAMBO to tolerate dynamic changes. Over short intervals of time, replication
suffices to provide fault-tolerance. While some devices may fail and leave, the data remains available at other replicas. Over
longer intervals of time, RAMBO copes with changing participants via reconfiguration, which incorporates newly joined
devices while excluding devices that have departed or failed. The main novelty of RAMBO lies in the combination of an
efficient reconfiguration mechanism with a quorum-based replication strategy for read/write shared memory.

The RAMBO algorithm can tolerate a wide variety of aberrant behavior, including lost and delayed messages, partici-
pants with unsynchronized clocks, and, more generally, arbitrary asynchrony. Despite such behavior, RAMBO guarantees
that its data is stored consistency. We analyze the performance of RAMBO during periods when the system is relatively
well-behaved: messages are delivered in a timely fashion, reconfiguration is not too frequent, etc. We show that in these
circumstances, read and write operations are efficient, completing in at most eight message delays.

Keywords: dynamic distributed systems, atomic register, distributed shared memory, fault-tolerance, reconfigurable,
eventual synchrony

∗Preliminary versions of this work appeared as the following extended abstracts: (a) Nancy A. Lynch, Alexander A. Shvartsman: RAMBO: A Re-
configurable Atomic Memory Service for Dynamic Networks. DISC 2002: 173-190, and (b) Seth Gilbert, Nancy A. Lynch, Alexander A. Shvartsman:
RAMBO II: Rapidly Reconfigurable Atomic Memory for Dynamic Networks. DSN 2003: 259-268. This work was supported in part by the NSF ITR Grant
CCR-0121277. The work of the second author was additionally supported by the NSF Grant 9804665, and the work of the third author was additionally
supported in part by the NSF Grants 9984778, 9988304, and 0311368.

1 Introduction
In this paper, we present RAMBO, an algorithm for emulating a read/write distributed shared memory in a dynamic,
constantly-changing setting. (RAMBO stands for “Reconfigurable Atomic Memory for Basic Objects.) Read/write shared
memory is a fundamental and long-studied primitive for distributed algorithms, allowing each device to store and retrieve
information. Key properties of a distributed shared memory include consistency, availability, and fault tolerance.

We are particularly interested in dynamic environments in which new participants may continually join the system, old
participants may continually leave the system, and active participants may fail. For example, during an execution, the entire
set of participating devices may change, as the initial participants depart and a new set of devices arrive to take their place.
Many modern networks exhibit this type of dynamic behavior. For example, in peer-to-peer networks, devices are continually
joining and leaving; peers often remain in the network only long enough to retrieve the data they require. Or, as another
example, consider mobile networks; devices are constantly on the move, resulting in a continual change in participants. In
these types of networks, the set of participants is rarely stable for very long. Especially in such a volatile setting, it is of
paramount importance that devices can reliably share data.

The most fundamental technique for achieving fault-tolerance is replication. The RAMBO protocol replicates the shared
data at many participating devices, thus maximizing the likelihood that the data survives. When the data is modified, the
replicas must be updated in order to maintain the consistency of the system. RAMBO relies on classical quorum-based
techniques to implement consistent read and write operations. In more detail, the algorithm uses configurations, each of
which consists of a set of members (i.e., replicas), plus sets of read-quorums and write-quorums. (A quorum is defined as
a set of devices.) The key requirement is that every read-quorum intersects every write-quorum. Each operation retrieves
information from some read-quorum and propagates it to some write-quorum, ensuring that any two operations that use the
same configuration access some common device, i.e., the device in the intersection of the two quorums. In this way, RAMBO
ensures that the data is accessed and modified in a consistent fashion.

This quorum-based replication strategy ensures the availability of data over the short-term, as long as not too many
devices fail or depart. As long as all the devices in at least one read-quorum and one write-quorum remain, we say that the
configuration is viable, and the data remains available.

Eventually, however, configuration viability may be compromised due to continued changes in the set of participants.
Thus, RAMBO supports reconfiguration, that is, replacing one set of members/quorums with an updated set of mem-
bers/quorums. In the process, the algorithm propagates data from the old members to the new members, and allows devices
that are no longer members of the new configuration to safely leave the system. This changeover has no effect on ongoing
data-access operations, which may continue to store and retrieve the shared data.

1.1 Algorithmic Overview
In this section, we present a high-level overview of the RAMBO algorithm. RAMBO consists of three sub-protocols: (1)
Joiner , a simple protocol for joining the system; (2) Reader-Writer , the main protocol that implements read and write
operations, along with garbage-collecting old obsolete configurations; and (3) Recon , a protocol for responding to reconfig-
uration requests. We now describe how each of these components operates.

Joiner. The first component, Joiner , is quite straightforward. When a new device wants to participate in the system, it
notifies the Joiner component of RAMBO that it wants to join, and it initializes RAMBO with a set of seed devices that have
already joined the system. We refer to this set of seed devices as the initial world view. The Joiner component contacts
these devices in the initial world view and retrieves the information necessary for the new device to participate.

Reader-Writer. The second component, Reader-Writer , is responsible for executing the read and write operations, as
well as for performing garbage collection.

A read or write operation is initiated by a client that wants to retrieve or modify an element in the distributed shared
memory. Each operation executes in the context of one or more configurations. At any given time, there is always at least
one active configuration, and sometimes more than one active configuration (when a new configuration has been proposed,
but the old configuration has not yet been removed). Each read and write operation must use all active configurations.
(Coordinating the interaction between concurrent operations and reconfiguration is one of the key challenges in maintaining
consistency while ensuring continued availability.)

Each configuration specifies a set of members, i.e., replicas, that each hold a copy of the shared data. Each operation
consists of two phases: a query phase, in which information is retrieved from one (or more) read-quorums, and a propagate
phase, in which information is sent to one (or more) write-quorums; for a write operation, the information propagated is the
value being written; for a read operation, it is the value that is being returned.

1

The Reader-Writer component has a secondary purpose: garbage-collecting old configurations. In fact, an interest-
ing design choice of RAMBO is that reconfiguration is split into two parts: producing new configurations, which is the
responsibility of the Recon component, and removing old configurations, which is the responsibility of the Reader-Writer
component. The decoupling of garbage-collection from the production of new configurations is a key feature of RAMBO
which has several benefits. First, it allows read and write operations to proceed concurrently with ongoing reconfigurations.
This is especially important when reconfiguration is slow (due to asynchrony in the system); it is critical in systems that have
real-time requirements. Second, it allows the Recon component complete flexibility in producing configurations, i.e., there
is no restriction requiring configurations to overlap in any way. Since garbage collection propagates information forward
from one configuration to the next, the Reader-Writer ensures that consistency is maintained, regardless.

The garbage-collection operation proceeds much like a read or write operation in that it consists of two phases: in the
first phase, the initiator of the gc operation contacts a set of read-quorums and write-quorums from the old configuration,
collecting information on the current state of the system; in the second phase, it contacts a write-quorum of the new con-
figuration, propagating necessary information to the new participants. When this is completed, the old configuration can be
safely removed.

Recon. The third component, Recon , is responsible for managing reconfiguration. When a participant wants to reconfigure
the system, it proposes a new configuration via a recon request. The main goal of the Recon component is to respond to these
requests, selecting one of the proposed configurations. The end result is a sequence of configurations, each to be installed
in the specified order. At the heart of the Recon component is a distributed consensus service that allows the participants to
agree on configurations. Consensus can be implemented using a version of the Paxos algorithm [39].

1.2 RAMBO Highlights
In this section, we describe the guarantees of RAMBO and discuss its performance. In Section 2, we discuss how these
features differ from other existing approaches.

Safety Guarantees. RAMBO guarantees atomicity (i.e., linearizability), regardless of network behavior or system timing
anomalies (i.e., asynchrony). Messages may be lost, or arbitrarily delayed; clocks at different devices may be out-of-
synch and may measure time at different rates. Despite these types of non-ideal behavior, every execution of RAMBO is
guaranteed to be atomic, meaning that it is operationally equivalent to an execution of a centralized shared memory. The
safety guarantees of RAMBO are captured by Theorem 6.1 in Section 6.

Performance Guarantees. We next consider RAMBO’s performance. In order to analyze the latency of read and write
operations, we make some further assumptions regarding RAMBO’s behavior, for example, requiring it to regularly send
gossip messages to other participants. We also restrict the manner in which the join protocol is initialized: recall that
each join request includes a seed set of participates that have already joined the system; we assume that these sets overlap
sufficiently such that within a bounded period of time, every node that has joined the system is aware of every other node
that has joined the system.

There are a few further key assumptions, specifically related to reconfiguration and the availability of the proposed
configurations. In particular, we assume that every configuration remains viable until sufficiently long after the next new
configuration is “installed.” This is clearly a necessary restriction: if a non-viable configuration (consisting, perhaps, of too
many failed devices) is proposed and installed, then it is impossible for the system to make progress. We also assume that
reconfigurations are not initiated too frequently, and that every proposed configuration consists of devices that have already
completed the join protocol.

We show that when these assumptions hold, read and write operations are efficient. With regards to network and timing
behavior, we consider two separate cases. In Section 9, we assume that the network is always well-behaved, delivering
messages reliably within d time. Moreover, we assume that every process has a clock that measures time accurately (with
respect to real time). Under these synchrony assumptions, we show that old configurations are rapidly garbage-collected
when new configurations are installed (see Lemma 9.6), and that every read and write operation completes within 8d time
(see Theorem 9.7).

We also consider the case where the network satisfies these synchrony requirements only during certain intervals of the
execution: during some periods of time, the network may be well-behaved, while during other periods of time, the network
may lose and delay messages. We show that during periods of synchrony, RAMBO stabilizes soon after synchrony resumes,
guaranteeing as before that every read and write operation completes within 8d time (see Theorem 10.20).

2

Key Aspects of RAMBO. A notable feature of RAMBO is that any configuration may be proposed at any time. In par-
ticular, there is no requirement that quorums in a new configuration intersect quorums from an old configurations. In fact,
a new configuration may include an entirely disjoint set of members from all prior configurations. RAMBO achieves this
by depending on garbage collection to propagate information from one configuration to the next (before removing the old
configuration); by contrast, several prior algorithms depend on the fact that configurations intersect to ensure consistency.

This capacity to propose any configuration provides the client with great flexibility when choosing new configurations.
Often, the primary goal of the client is to choose configurations that will remain viable for as long as possible; this task is
simplified by allowing the client to include exactly the set of participants that it believes will remain extant for as long as
possible. (While the selection of configurations is outside the scope of this paper, we discuss briefly in Section 8 the issues
associated with choosing good configurations.)

Another notable feature of RAMBO is that the main read/write functionality is only loosely coupled with the reconfigura-
tion process. Read and write operations continue, even as a reconfiguration may be in progress. This provides two benefits.
First, even very slow reconfigurations do not delay read and write operations. When the network is unstable and network
latencies fluctuate, the process of agreeing on a new configuration may be slow. Despite these delays, read and write op-
erations can continue. Second, by allowing read and write operations to always make progress, RAMBO guarantees more
predictable performance: a time-critical application cannot be delayed too much by unexpected reconfiguration.

1.3 Roadmap
In this section, we provide an overview of the rest of the paper, which is organized as follows:

• Sections 2–3 contain introductory material and other necessary preliminaries:

In Section 2, we discuss some interesting related research, and some other approaches for coping with highly-dynamic
rapidly changing environments. In Section 3 we present further preliminaries on the system model and define some
basic data types.

• Sections 4–7 present the RAMBO algorithm, and show that it guarantees consistent read and write operations:

In Section 4 we provide a formal specification for a global service that implements a reconfigurable atomic shared
memory. We also present a specification for a Recon service that manages reconfiguration; this service is used as a
subcomponent of our algorithm. Each of these specifications includes a set of well-formedness requirements that the
user of the service must follow, as well as a set of safety guarantees that the service promises to deliver.

In Section 5 we present two of the RAMBO sub-protocols: Reader-Writer and Joiner . We present pseudocode, using
the I/O automata formalism, and discuss some of the issues that arise. In Section 6, we show that these components,
when combined with any Recon service, guarantee atomic operations. In Section 7, we present our implementation of
Recon and show that it satisfies the specified properties. Together, Sections 5 and 7 provide a complete instantiation
of the RAMBO protocol.

• Sections 8–10 analyze the performance of RAMBO:

We analyze performance conditionally, based on certain failure and timing assumptions that are described in Section 8.
In Section 9 we study the case where the network is well-behaved throughout the execution, while in Section 10 we
consider the case where the network is eventually well-behaved. In both cases, we show that read and write operations
complete within 8d, where d is the maximum message latency.

• Section 11 summarizes the paper, and discuss some interesting open questions.

2 Related Work and Other Approaches
In this section, we discuss other research that is relevant to RAMBO. In the first part, Section 2.1, we focus on several
important papers that introduced key techniques related to replication, quorum systems, and reconfiguration. In the second
part, Section 2.2, we focus on alternate techniques for implementing a dynamic distributed shared memory. Specifically,
we describe how replicated state machines and group communication systems can both be used to implement a distributed
shared memory, and how these approaches differ from RAMBO. In the third part, Section 2.3, we present an overview of
some of the research that has been carried out subsequent to the original publication of RAMBO.

3

2.1 Replication, Quorum Systems, and Reconfiguration
We begin by discussing some of the early work on quorum-based algorithms. We then proceed to discuss dynamic quorum
systems, group communication services, and other reconfigurable systems.

Quorum Systems. Upfal and Wigderson demonstrated the first general scheme for emulating shared-memory in a message-
passing system [61]. This scheme involves replicating data across a set of replicas, and accessing a majority of the replicas
for each request. Attiya, Bar-Noy and Dolev generalized this approach, developing a majority-based emulation of atomic
registers that uses bounded time-stamps [10]. Their algorithm introduced the two-phase paradigm in which information is
gathered in the first phase from a majority of processors, and information is propagated in the second phase to a majority of
processors. It is this two-phase paradigm that is at the heart of RAMBO’s implementation of read and write operations.

Quorum systems [25] are a generalization of simple majorities. A quorum system (also called a coterie) is a collection of
sets such that any two sets, called quorums, intersect [22]. (In the case of a majority quorum system, every set that consists
of a majority of devices is a quorum.) A further refinement of this approach divides quorums into read-quorums and write-
quorums, such that any read-quorum intersects any write-quorum. Each configuration used by RAMBO consists of such a
quorum system. (Some systems require in addition that any two write-quorums intersect; this is not necessary for RAMBO.)

Quorum systems have been widely used to ensure consistent coordination in a fault-prone distributed setting. Quorums
have been used to implement distributed mutual exclusion [22] and data replication protocols [17, 31]. Quorums have
also been used in the context of transaction-style synchronization [13]. Other replication techniques that use quorums
include [1,2,4,12,28]. An additional level of fault-tolerance in quorum-based approaches can be achieved using the Byzantine
quorum approach [7, 47].

There has been a significant body of research that attempts to quantify the fault-tolerance provided by various quorum
systems. For example, there has been extensive research studying the trade-off between load, availability, and probe com-
plexity in quorums systems (see, e.g., [52–54]). Quorum systems have been studied under probabilistic usage patterns, and
in the context of real network data, in an attempt to evaluate the likelihood that a quorum system remains viable in a real-
life setting (see, e.g., [9, 42, 53, 57]). While the choice of configurations is outside the scope of this paper, the techniques
developed in these papers may be quite relevant to choosing good configurations that will ensure sufficient availability of
quorums.

Dynamic Quorum Systems. Previous research has considered the problem of adapting quorum systems dynamically as
an execution progresses. One such approach is referred to as “dynamic voting” [32, 33, 43]. Each of these schemes places
restrictions on the choice of quorum systems, often preventing such a system from being used in a truly dynamic environment.
They also often rely on locking (or mutual exclusion) during reconfiguration, thus reducing the fault tolerance. For example,
the approach in [33] relies on locking and requires (approximately) that at least a majority of all the processors in some
previously updated quorum remain alive. The approach in [43] does not rely on locking, but requires at least a predefined
number of processors to always be alive. The online quorum adaptation of [12] assumes the use of Sanders [59] mutual
exclusion algorithm, which again relies on locking.

Other significant recent research on dynamic quorum systems includes [3, 51]. These papers each present a specific
quorum system and examine its performance (i.e., load, availability, and probe complexity) in the context of a dynamic
network. They then show how the quorum system can be adapted over time as nodes join and leave. In [51] they show how
nodes that gracefully leave the system can hand off data to their neighbors in a dynamic Voronoi diagram, thus allowing for
continued availability. In [3], by contrast, they consider a probabilistic quorum system, and show how to evolve the data as
nodes join and leave to ensure that data remains available. This is accomplished by maintaining a dynamic de Bruijn graph.
Both of these quorum systems have significant potential for use in dynamic systems.

Group Communication Services. Group communication services (GCS) provide another approach for implementing a
distributed shared memory in a dynamic network. This can be done, for example, by implementing a global totally ordered
broadcast service on top of a view-synchronous GCS [20] using techniques of Amir, Dolev, Keidar, Melliar-Smith and
Moser [8, 35, 36].

De Prisco, Fekete, Lynch, and Shvartsman [55] introduce a group communication service that can tolerate a dynamically
changing environment. They introduce the idea of “primary configurations” and defined a dynamic primary configuration
group communication service. Using this group communication service as a building block, they show how to implement a
distributed shared memory in a dynamic environment using a version of the algorithm of Attiya, Bar-Noy, and Dolev [10]
within each configuration (much as is done in RAMBO). Unlike RAMBO, this earlier work restricted the choice of a new
configuration, requiring certain intersection properties between new and old configurations. RAMBO, by contrast, allows
complete flexibility in the choice of a new configuration.

4

In many ways, GCS-based approaches share many of the disadvantages associated with the “replicated state machine
approach” which we discuss in more detail in Section 2.2. These approaches (often) involve a tight coupling between the
reconfiguration mechanism and the main common-case operation; in general, operations are delayed whenever a reconfigu-
ration occurs. These approaches (often) involve agreeing on the order of each operation, which can also be slow.

Single Reconfigurer Approaches. Lynch and Shvartsman [19, 45] also consider a single reconfigurer approach to the
problem of adapting to a dynamic environment. In this model, a single, distinguished device is responsible for initiating all
reconfiguration requests. This approach, however, is inherently not fault tolerant, in that the failure of the single reconfigurer
disables all future reconfiguration. By contrast, in RAMBO, any member of the latest configuration may propose a new
configuration, avoiding any single point of failure. Another difference is that in [19, 45], garbage-collection of old config-
urations is tightly coupled to the introduction of a new configuration. Our approach in this paper allows garbage-collection
of old configurations to be carried out in the background, concurrently with other operations. A final difference is that
in [19, 45], information about new configurations is propagated only during the processing of read and write operations. A
client who does not perform any operations for a long while may become “disconnected” from the latest configuration, if
older configurations become un-viable. By contrast, in RAMBO, information about configurations is gossiped periodically,
in the background, which permits all participants to learn about new configurations and garbage-collect old configurations.
Despite these differences, many of the ideas that appear in RAMBO were pioneered in these early papers.

Reconfiguration Without Consensus: Dynastore. Recently, Aguilera et al. [5] have shown that it is possible to implement
a reconfigurable read/write memory without the need for consensus. By contrast, RAMBO relies on consensus to ensure
that all the replicas agree on the subsequent configuration. Their protocol, called Dynastore, is is of significant theoretical
interest: it implies that fault-tolerant reconfigurable read/write memory can be implemented even in an asynchronous system.
By contrast, reconfigurations can be indefinitely delayed due to asynchrony in RAMBO. To the best of our knowledge, the
Dynastore protocol is currently the only reconfigurable shared memory protocol that can guarantee progress, regardless of
network asynchrony. From a practical perspective, it is somewhat less clear whether the Dynastore approach performs well,
as the protocol is complicated and analyzing the performance remains future work. The Dynatore approach is also somewhat
more limited than RAMBO in that it focuses on majority quorums (rather than allowing for any configuration to be installed).
There is also an implicit limitation on how fast the system can change, as each reconfiguration can only affect at most a
minority of the participants.

2.2 Replicated State Machine Approach
While RAMBO relies on consensus for choosing new configurations, it is possible to use a consensus service directly to
implement a distributed shared memory. This is often referred to as the replicated state machine approach, as originally
proposed by Lamport [38]. It was further developed in the context of Paxos [39, 56], and has since become, perhaps, the
standard technique for implementing fault-tolerance distributed services.

The basic idea underlying the replicated state machine paradigm is as follows. Assume a set of participating devices
is attempting to implement a specific service. Each participant maintains a replica of the basic state associated with that
service. Whenever a client submits an operation to the service, the participants run an agreement protocol, i.e., consensus, in
order to ensure that the replicated state is updated consistently at all the participants. The key requirement of the agreement
protocol is that the participants agree on an ordering of all operations so that each participant performs local updates in the
same order.

In the context of a shared memory implementation, there are two types of operations: read requests and write requests.
Thus, when implemented using the replicated state machine approach, the participants agree on the ordering of these opera-
tions. (Further optimization can allow some portion of these agreement instances to execute in parallel.) Since each read and
write operation is ordered with respect to every other operation, it is immediately clear how to implement a read operation:
each read request returns the value written by the most recent preceding write operation in the ordering.

In this case, reconfiguration can be integrated directly into the same framework: reconfiguration requests are also ordered
in the same way with respect to all other operations. When the participants agree that the next operation should be a recon
operation, the set of participants is modified as specified by the reconfiguration request. In many ways, this approach is
quite elegant, as it relies on only a single mechanism (i.e., consensus). It avoids complicated interactions among concurrent
operations (as may occur in RAMBO) by enforcing a strict ordering of all operations. Recent work [15, 40, 41] has shown
how to achieve very efficient operation in good circumstances, i.e., when a leader has been elected that does not leave or fail,
and when message delays are bounded. In this case, each operation can complete in only two message delays, if there are
sufficiently many correct process, and three message delays, otherwise. It seems clear that in a relatively stable environment,
such as a corporate data center, a replicated state machine solution has many advantages.

5

RAMBO, by contrast, decouples read and write operations from reconfiguration. From a theoretic perspective, the ad-
vantage here is clear: in an asynchronous, fault-prone system, it is impossible to guarantee that an instance of consensus will
terminate [21]. Thus, it is possible for an adversary to delay any operation from completing in a replicated state machine for
an arbitrarily long period of time (even without any of the devices actually failing). In RAMBO, by contrast, read and write
operations can always terminate. No matter what asynchrony is inflicted on the system, read and write operations cannot be
delayed forever. (In both RAMBO and the replicated state machine approaches, the availability of quorums is a pre-requisite
for any operations to terminate.)

From a practical perspective, the non-termination of consensus is rarely a problem. Even so, RAMBO may be preferable
in more dynamic, less stable situations. Replicated state machine solutions tend to be most efficient when a single leader can
be selected. For example, Paxos [39], which is today one of the most common implementations of distributed consensus,
makes progress only when all participants agree on a single (correct) leader. This is often accomplished via failure detectors
and timeout mechanisms that attempt to guess when a particular leader candidate is available. When the network is less
well-behaved, or the participation more dynamic, it is plausible that agreeing on a stable leader may be quite slow. For
example, consider the behavior of a peer-to-peer service that is distributed over a wide-area network. Different participants
on different continents may have different views of the system, and latencies between pairs of nodes may differ significantly.
Over such a wide-area network, message loss is relatively common, and sometimes messages can be significantly delayed.
In such circumstances, it is unclear that a stable leader can be readily and rapidly selected. Similarly, in a wireless mobile
network, communication is remarkably unreliable due to collisions and electromagnetic interference; the highly dynamic
participation may make choosing a stable long-term leader quite difficult.

RAMBO, by contrast, can continue to respond to read and write requests, despite such unpredictable network behav-
ior, as it depends only the quorum system remaining viable. It is certainly plausible to imagine situations (particularly
those involving intermittent connectivity) in which a quorum system may remain viable, but a stable leader may be hard to
find. In RAMBO, consensus is used only to determine the ordering of configurations. Reconfiguration may be (inevitably)
slow, if the network is unpredictable or the participation dynamic. However by decoupling read and write operations from
reconfiguration, RAMBO minimizes the harm caused by a dynamic and unpredictable environment.

Thus, in the end, it seems that both RAMBO and the replicated state machine approaches have their merits, and it remains
to examine experimentally how these approaches work in practice1.

2.3 Extensions of RAMBO

Since the original preliminary RAMBO papers appeared [26, 27, 46], RAMBO has formed the basis for much ongoing re-
search. Some of this research has focused on tailoring RAMBO to specific distributed platforms, ranging from networks-of-
workstations to mobile networks. Other research has used RAMBO as a building block for higher-level applications, and it
has been optimized for improved performance in certain domains.

In many ways, it is the highly non-deterministic and modular nature of RAMBO that makes it so adaptable to various
optimizations. A given implementation of RAMBO has significant flexibility in when to send messages, how many messages
to send, what to include in messages, whether to combine messages, etc. An implementation can substitute a more involved
Joiner protocol, or a different Recon service. In this way, we see the RAMBO algorithm presented in this paper as a template
for implementing a reconfigurable service in a highly dynamic environment.

In this section we overview selected results that are either motivated by RAMBO or that directly use RAMBO as a point
of departure for optimizations and practical implementations [11, 16, 23, 24, 29, 30, 37, 48, 49, 58].

• Long-lived operation of RAMBO service. To make the RAMBO service practical for long-lived settings where the
size and the number of the messages needs to be controlled, Georgiou et al. [24] develop two algorithmic refinements.
The first introduces a leave protocol that allows nodes to gracefully depart from the RAMBO service, hence reduc-
ing the number of, or completely eliminating, messages sent to the departed nodes. The second reduces the size of
messages by introducing an incremental communication protocol. The two combined modifications are proved cor-
rect by showing that the resulting algorithm implements RAMBO. Musial [48, 49] implemented the algorithms on a
network-of-workstations, experimentally showing the value of these modifications.

• Restricting gossiping patterns and enabling operation restarts. To further reduce the volume of gossip messages
in RAMBO, Gramoli et al. [30] constrain the gossip pattern so that gossip messages are sent only by the nodes that
(locally) believe that they have the most recent configuration. To address the side-effect of some nodes potentially be-
coming out-of-date due to reduced gossip (nodes may become out-of-date in RAMBO as well), the modified algorithm

1Recent work by Shraer et al. [60] has compared a variant of Dynastore [5] to a replicated state machine implementation of atomic memory, yielding
interesting observations on the benefits and weaknesses of a replicated state machine approach.

6

allows for non-deterministic operation restarts. The modified algorithm is shown to implement RAMBO, and the ex-
perimental implementation [48,49] is used to illustrate the advantages of this approach. In practice, non-deterministic
operation restarts are most effectively replaced by a heuristic decision based on local observations, such as the duration
of an operation in progress. Of course, any such heuristic preserves correctness.

• Implementing a complete shared memory service. The RAMBO service is specified for a single object, with com-
plete shared memory implemented by composing multiple instances of the algorithm. In practical system implemen-
tations this may result in significant communication overhead. Georgiou et al. [23] developed a variation of RAMBO
that introduces the notion of domains, collections of related objects that share configurations, thus eliminating much
of the overhead incurred by the shared memory obtained through composition of RAMBO instances. A networks-
of-workstations experimental implementation is also provided. Since the specification of the new service includes
domains, the proof of correctness is achieved by adapting the proof we presented here to that service.

• Indirect learning in the absence of all-to-all connectivity. Our RAMBO algorithm assumes that either all nodes are
connected by direct links or that an underlying network layer provides transparent all-to-all connectivity. Assuming
this may be unfeasible or prohibitively expensive to implement in dynamic networks, such as ad hoc mobile settings.
Konwar et al. [37] develop an approach to implementing RAMBO service where all-to-all gossip is replaced by an
indirect learning protocol for information dissemination. The indirect learning scheme is used to improve the liveness
of the service in the settings with uncertain connectivity. The algorithm is proved to implement RAMBO service. The
authors examine deployment strategies for which indirect learning leads to an improvement in communication costs.

• Integrated reconfiguration and garbage collection. The RAMBO algorithm decouples reconfiguration (the issuance
of new configurations) from the garbage collection of obsolete configurations. We have discussed the benefits of this
approach in this paper. In some settings, however, it is beneficial to tightly integrate reconfiguration with garbage
collection. Doing so may reduce the latency of removing old configurations, thus improving robustness when config-
urations may fail rapidly and without warning. Gramoli [29] and Chockler et al. [16] integrate reconfiguration with
garbage collection by “opening” the external consensus service, such as that used by RAMBO, and combining it with
the removal of the old configuration. For this purpose they use the Paxos algorithm [39] as the starting point, and the
RAMBO garbage-collection protocol. The resulting reconfiguration protocol reduces the latency of garbage collection
as compared to RAMBO. The drawback of this approach is that it ties reconfiguration to a specific consensus algo-
rithm, and cause increased delays under some circumstances. In contrast, the loose coupling in RAMBO allows one to
implement specialized Recon services that are most suitable for particular deployment scenarios as we discuss next.

• Dynamic atomic memory in sensor networks. Beal et al. [11] developed an implementation of the RAMBO frame-
work in the context of a wireless ad hoc sensor network. In this context, configurations are defined with respect to a
specific geographic region: every sensor within the geographic region is a member of the configuration, and each quo-
rum consists of a majority of the members. Sensors can store and retrieve data via RAMBO read and write operations,
and the geographic region can migrate via reconfiguration. In addition, reconfiguration can be used to incorporate
newly deployed sensors, and to retire failed sensors. An additional challenge was to efficiently implement the nec-
essary communication (presented in this paper as point-to-point channels) in the context of a wireless network that
supports one-to-many communication.

• Dynamic atomic memory in a peer-to-peer network. Muthitacharoen et al. [50] developed an implementation of the
RAMBO framework, known as Etna, in the context of a peer-to-peer network. Etna guaranteed fault-tolerant, mutable
data in a distributed hash table (DHT), using an optimized variant of RAMBO to maintain the data consistently despite
continual changes in the underlying network.

• Dynamic atomic memory in mobile ad hoc networks. Dolev et al. [18] developed a new approach for implementing
atomic read/write shared memory in mobile ad hoc networks where the individual stationary locations constituting
the members of a fixed number of quorum configurations are implemented by mobile devices. Motivated in part
by RAMBO, their work specializes RAMBO algorithms in two ways. (1) In RAMBO the first (query) phase of write
operations serves to establish a time stamp that is higher than any time stamps of the previously completed writes. If
a global time service is available, then taking a snapshot of the global time value obviates the need for the first phase
in write operations. (2) The full-fledged consensus service is necessary for reconfiguration in RAMBO only when
the universe of possible configurations is unknown. When the set of possible configurations is small and known in
advance, a much simpler algorithm suffices. The resulting approach, called GeoQuorums, yields an algorithm that
efficiently implements read and write operations in a highly dynamic, mobile network.

7

• Distributed enterprise disk arrays. Finally, we note that Hewlett-Packard recently used a variation of RAMBO in
their implementation of a “federated array of bricks” (FAB), a distributed enterprise disk array [6, 58]. In this paper,
we have adopted some of the presentations suggestions found in [6] (and elsewhere), specifically related to the out-of-
order installation of configurations.

3 Preliminaries
In this section, we introduce several fundamental concepts and definitions that we will use throughout the paper. We begin by
discussing the basic computational devices that populate our system. Next, we discuss the shared memory being emulated.
Third, we discuss the underlying communication network. Fourth, we introduce the idea of configurations. Finally, we
conclude with some notational definitions.

Fault-Prone Devices. The system consists of a set of devices communicating via an all-to-all asynchronous message-
passing network. Let I be a totally-ordered (possibly infinite) set of identifiers, each of which represents a device in the
system. We refer to each device as a node. We occasionally refer to a node that has joined the system as a participant.

Each node executes a program consisting of two components: a client component, that is specified by the user of the
distributed shared memory, and the RAMBO component, which executes the RAMBO algorithm for emulating a distributed
shared memory. The client component issues read and write requests, while the RAMBO components responds to these
requests.

Nodes may fail by crashing, i.e., stopping without warning. When this occurs, the program—including both the client
components and the RAMBO components—takes no further steps.

We define T to be a set of tags. That is, T = N× I . These tags are used to order the values written to the system.

Shared Memory Objects. The goal of a distributed shared memory is to provide access to a set of read/write objects. Let
X be a set of object identifiers, each of which represents one such object. For each object x ∈ X , let Vx be the set of values
that object x may take on; let (v0)x be the initial value of object x. We also define (i0)x to be the initial creator of object x,
i.e., the node that is initially responsible for the object. After the first reconfiguration, (i0)x can delegate this responsibility
to a broader set of nodes.

Communication Network. Processes communicate via point to point channels Channelx,i,j , one for each x ∈ X , i, j ∈ I
(including the case where i = j). Let M be the set of messages that can be sent over one of these channels. We assume that
every message used by the RAMBO protocol is included in M .

The channel Channelx,i,j is accessed using send(m)x,i,j input actions, by which a sender at node i submits message
m ∈ M associated with object x to the channel, and receive(m)x,i,j output actions, by which a receiver at node j receives
m ∈M . When the object x is implicit, we write simply Channel i,j which has actions send(m)i,j and receive(m)i,j .

Channels may lose, duplicate, and reorder messages, but cannot manufacture new messages. Formally, we model the
channel as a multiset. A send adds the message to the multiset, and any message in the multiset may be delivered via a
receive. Note, however, that a receive does not remove the message.

Configurations. Let C be a set of identifiers which we refer to as configuration identifiers. Each identifier c ∈ C is
associated with a configuration which consists of three components:

• members(c), a finite subset of I .
• read-quorums(c), a set of finite subsets of members(c).
• write-quorums(c), a set of finite subsets of members(c).

We assume that for every c ∈ C, for every R ∈ read-quorums(c), and for every W ∈ write-quorums(c), R∩W 6= ∅. That
is, every read-quorum intersections every write-quorum.

For each x ∈ X , we define (c0)x to be the initial configuration identifier of x. We assume that members((c0)x) =
{(i0)x}. That is, the initial configuration for object x has only a single member, who is the creator of x.

Partial Orders. We assume two distinguished elements, ⊥ and ±, which are not in any of the basic types. For any type
A, we define new types A⊥ = A ∪ {⊥}, and A± = A ∪ {⊥,±}. If A is a partially ordered set, we augment its ordering by
assuming that ⊥ < a < ± for every a ∈ A.

8

4 Specifications
In Section 4.1, we provide a detailed specification for the behavior of a read/write distributed shared memory. The main goal
of this paper is to present an algorithm that satisfies this specification.

A key subcomponent of the RAMBO algorithm is a reconfiguration service that manages the problem of responding to
reconfiguration requests. In Section 4.2, we provide a specification for such a reconfiguration service.

4.1 Reconfigurable Atomic Memory Specification
In this section, we give a specification for a reconfigurable atomic memory service. This specification consists of an external
signature (i.e., an interface) plus a set of traces that embody the safety properties. No liveness properties are included in
the specification. We provide a conditional performance analysis in Sections 9 and 10. The definition of a distributed
reconfigurable atomic memory can be found in Definition 4.4.

Input:
join(rambo, J)x,i, J a finite subset of I − {i}, x ∈ X , i ∈ I ,

such that if i = (i0)x then J = ∅
readx,i, x ∈ X , i ∈ I
write(v)x,i, v ∈ Vx, x ∈ X , i ∈ I
recon(c, c′)x,i, c, c′ ∈ C, i ∈ members(c), x ∈ X , i ∈ I
faili, i ∈ I

Output:
join-ack(rambo)x,i, x ∈ X , i ∈ I
read-ack(v)x,i, v ∈ Vx, x ∈ X , i ∈ I
write-ackx,i, x ∈ X , i ∈ I
recon-ack()x,i, x ∈ X, i ∈ I
report(c)x,i, c ∈ C, x ∈ X, i ∈ I

Figure 1: External signature for a reconfigurable atomic memory. There are four main request/response pairs: join/join-ack,
read/read-ack, write/write-ack, and recon/recon-ack.

Signature
The external signature for a reconfigurable atomic memory service appears in Figure 1. It consists of four basic operations:
join, read, write, and recon, each of which returns an acknowledgment. It also accepts a fail input, and produces a report
output. We now proceed in more detail. For the rest of this section, consider i ∈ I to be some node in the system.

Node i issues a request to join the system for a particular object x by performing a join(rambo, J)x,i input action. The
set J represents the client’s best guess at a set of processes that have already joined the system for x. We refer to this set
J as the initial world view of i. If the join attempt is successful, the RAMBO service responds with a join-ack(rambo)x,i
response.

Node i initiates a read or write operation by requesting a readi or a writei (respectively), which the RAMBO service
acknowledges with a read-acki response or a write-acki response (respectively).

Node i initiates a reconfiguration by requesting a reconi, which is acknowledged with a recon-acki response. Notice that
when a reconfiguration is acknowledged, this does not imply that the configuration was installed; it simply means that the
request has been processed. New configurations are reported by RAMBO via reporti outputs. Thus a node can determine
whether its reconfiguration request was successful by observing whether the proposed configuration is reported.

Finally, a crash at node i is modelled using a faili input action. We do not explicitly model graceful process “leaves,” but
instead we model process departures as failures.

Safety Properties
We now define the safety guarantees, i.e., the properties that are to be guaranteed by every execution. Under the assumption
that the client requests are well-formed, a reconfigurable atomic memory service guarantees that the responses are also well-
formed, and that the read and write operations satisfy atomic consistency. In order to define these guarantees, we specify a
set of traces that capture exactly the guaranteed behavior.

We now proceed in more detail. We first specify what it means for requests to be well-formed. In particular, we require
that a node i issues no further requests after it fails, that a node i issues a join request before initiating read and write
operations, that node i not begin a new operation until it has received acknowledgments from all previous operations, and
that configurations are unique.

Definition 4.1 (Reconfigurable Atomic Memory Request Well-Formedness) For every object x ∈ X , node i ∈ I , con-
figurations c, c′ ∈ C:

1. Failures: After a faili event, there are no further join(rambo, ∗)x,i, readx,i, write(∗)x,i, or recon(∗, ∗)x,i requests.

9

2. Joining: The client at i issues at most one join(rambo, ∗)x,i request. Any readx,i, write(∗)x,i, or recon(∗, ∗)x,i event
is preceded by a join-ack(rambo)x,i event.

3. Acknowledgments: The client at i does not issue a new readx,i request or writex,i request until there has been a
read-ack or write-ack for any previous read or write request. The client at i does not issue a new reconx,i request until
there has been a recon-ack for any previous reconfiguration request.

4. Configuration Uniqueness: The client at i issues at most one recon(∗, c)x,∗ request. This says that configuration
identifiers are unique. It does not say that the membership and/or quorum sets are unique—just the identifiers. The
same membership and quorum sets may be associated with different configuration identifiers.

5. Configuration Validity: If a recon(c, c′)x,i request occurs, then it is preceded by: (i) a report(c)x,i event, and (ii) a
join-ack(rambo)x,j event for every j ∈ members(c′). This says that the client at i can request reconfiguration from
c to c′ only if i has previously received a report confirming that configuration c has been installed, and only if all the
members of c′ have already joined. Notice that i may have to communicate with the members of c′ to ascertain that
they are ready to participate in a new configuration.

When the requests are well-formed, we require that the responses also be well-formed:

Definition 4.2 (Reconfigurable Atomic Memory Response Well-Formedness) For every object x ∈ X , and node i ∈ I:

1. Failures: After a faili event, there are no further join-ack(rambo)x,i, read-ack(∗)x,i, write-ackx,i, recon-ack()x,i, or
report(∗)x,i outputs.

2. Acknowledgments: Any join-ack(rambo)x,i, read-ack(∗)x,i, write-ackx,i, or recon-ack()x,i outputs has a preceding
join(rambo, ∗)x,i, readx,i, write(∗)x,i, or recon(∗, ∗)x,i request (respectively) with no intervening request or response
for x and i.

We also require that the read and write operations satisfy atomicity.

Definition 4.3 (Atomicity) For every object x ∈ X: If all read and write operations complete in an execution, then the read
and write operations for object x can be partially ordered by an ordering ≺, so that the following conditions are satisfied:

1. No operation has infinitely many other operations ordered before it.
2. The partial order is consistent with the external order of requests and responses, that is, there do not exist read or write

operations π1 and π2 such that π1 completes before π2 starts, yet π2 ≺ π1.
3. All write operations are totally ordered and every read operation is ordered with respect to all the writes.
4. Every read operation ordered after any writes returns the value of the last write preceding it in the partial order; any

read operation ordered before all writes returns (v0)x.

Atomicity is often defined in terms of an equivalence with a serial memory. The definition given here implies this equivalence,
as shown, for example, in Lemma 13.16 in [44]2.
We can now specify precisely what it means for an algorithm to implement a reconfigurable atomic memory:

Definition 4.4 (Reconfigurable Atomic Memory) We say that an algorithm A implements a reconfigurable atomic memory
if it has the external signature found in Figure 1 and if every trace β of A satisfies the following:

If requests in β are well-formed (Definition 4.1), then responses are well-formed (Definition 4.2) and operations in β
are atomic (Definition 4.3).

4.2 Reconfiguration Service Specification
In this section, we present the specification for a generic reconfiguration service. The main goal of a reconfiguration service is
to respond to reconfiguration requests and produce a (totally ordered) sequence of configurations. A reconfiguration service
will be used as part of the RAMBO protocol (and we show in Section 7 how to implement it). We proceed by describing its
an external signature, along with a set of traces that define its safety guarantees. The reconfiguration service specification
can be found in Definition 4.8.

2Lemma 13.16 of [44] is presented for a setting with only finitely many nodes, whereas we consider infinitely many nodes. However, nothing in Lemma
13.16 or its proof depends on the finiteness of the set of nodes, so the result carries over immediately to our setting. In addition, Theorem 13.1, which
asserts that atomicity is a safety property, and Lemma 13.10, which asserts that it suffices to consider executions in which all operations complete, both
carry over as well.

10

Input:
join(recon)i, i ∈ I
recon(c, c′)i, c, c′ ∈ C, i ∈ members(c)
request-config(k)i, k ∈ N+, i ∈ I
faili, i ∈ I

Output:
join-ack(recon)i, i ∈ I
recon-ack()i, i ∈ I
report(c)i, c ∈ C, i ∈ I
new-config(c, k)i, c ∈ C, k ∈ N+, i ∈ I

Figure 2: External signature for a reconfiguration service. A reconfiguration service has three main request/response pairs:
join/join-ack, recon/recon-ack, and request-config/new-config.

Signature
The interface for the reconfiguration service appears in Figure 2. Let node i ∈ I be a node in the system. Node i requests to
join the reconfiguration service by performing a join(recon)i request. The service acknowledges this with a corresponding
join-acki response. The client initiates a reconfiguration using a reconi request, which is acknowledged with a recon-acki
response.

A client i issues a request-config(k)i when it is “ready” for the kth configuration in the reconfiguration sequence, that
is, when it has already learned of every configuration preceding k in the sequence. (This ensures that a client learns about
every configuration in the sequence in order.) Once a client has requested the kth configuration, when the kth configuration
has been agreed upon, the reconfiguration service responds with a new-config(c, k)i, announcing configuration c at node i.

The service also announces new configurations to the client, producing a reporti output to provide an update when a new
configuration is installed. (Notice that the report output differs from new-config in that it is externally observable by clients
outside of the RAMBO; by contrast, new-config is an output from the reconfiguration service, but is hidden from clients.
Specifically, the new-config output includes a sequence number k that would be meaningless to an external client.)

Lastly, crashes are modeled using fail input actions.

Safety Properties
Now we define the set of traces describing Recon’s safety properties. Again, these are defined in terms of environment
well-formedness requirements and service guarantees. The well-formedness requirements are as follows:

Definition 4.5 (Recon Request Well-Formedness) For every node i ∈ I , configuration c, c′ ∈ C:

1. Failures: After a faili event, there are no further join(recon)i or recon(∗, ∗)i requests.
2. Joining: At most one join(recon)i request occurs. Any recon(∗, ∗)i request is preceded by a join-ack(recon)i re-

sponse.
3. Acknowledgments: Any recon(∗, ∗)i request is preceded by an recon-ack response for any preceding recon(∗, ∗)i

event.
4. Configuration Uniqueness: For every c, at most one recon(∗, c)∗ event occurs.
5. Configuration Validity: For every c, c′, and i, if a recon(c, c′)i request occurs, then it is preceded by: (i) a report(c)i

output, and (ii) a join-ack(recon)j for every j ∈ members(c′).

We next describe the well-formedness guarantees of the reconfiguration service:

Definition 4.6 (Recon Response Well-Formedness) For every node i ∈ I:

1. Failures: After a faili event, there are no further join-ack(recon)i, recon-ack(∗)i, report(∗)i, or new-config(∗, ∗)i
responses.

2. Acknowledgments: Any join-ack(recon)i or recon-ack(c)i response has a preceding join(recon)i or reconi request
(respectively) with no intervening request or response action for i.

3. Configuration Requests: Any new-config(∗, k)i is preceded by a request-config(k)i.

A reconfiguration service also guarantees that configurations are produced consistently. That is, for every node i, the recon-
figuration service outputs an ordered set of configurations; the configurations are exactly those proposed, and every node is
notified about an identical sequence of configurations.

Definition 4.7 (Configuration Consistency) For every node i ∈ I , configurations c, c′ ∈ C, and index k:

1. Agreement: If new-config(c, k)i and new-config(c′, k)j both occur, then c = c′. Thus, no disagreement arises about
the kth configuration identifier, for any k.

11

2. Validity: If new-config(c, k)i occurs, then it is preceded by a recon(∗, c)i′ request for some i′. Thus, any configuration
identifier that is announced was previously requested.

3. No duplication: If new-config(c, k)i and new-config(c, k′)i′ both occur, then k = k′. Thus, the same configuration
identifier cannot be assigned to two different positions in the sequence of configuration identifiers.

We can now specify precisely what it means to implement a reconfiguration service:

Definition 4.8 (Reconfiguration Service) We say that an algorithm A implements a reconfiguration service if it has the
external signature described in Figure 2 and if every trace β of A satisfies the following:

If β satisfies Recon Request Well-Formedness (Definition 4.5), then it satisfies Recon Response Well-Formedness
(Definition 4.6) and Configuration Consistency (Definition 4.7).

5 The RAMBO Algorithm
In this section, we describe the RAMBO algorithm. The RAMBO algorithm includes three components: (1) Joiner , which
handles the joining of new participants; (2) Reader-Writer , which handles reading, writing, and garbage-collecting old
configurations; and (3) Recon , which produces new configurations.

In this section, we describe the first two components, postponing the description of Recon until Section 7. For the
purpose of this section, we simply assume that some generic reconfiguration service is available that satisfies Definition 4.8.

Notice that we can consider each object x ∈ X separately. The overall shared memory emulation can be described,
formally, as the composition of a separate implementation for each x. Therefore, throughout the rest of the paper, we fix a
particular x ∈ X , and suppress explicit mention of x. Thus, we write V , v0, c0, and i0 from now on as shorthand for Vx,
(v0)x, (c0)x, and (i0)x, respectively.

5.1 Joiner automata
The goal of the Joiner automata is to handle join requests. The signature, state and pseudocode of Joiner i, for node i ∈ I ,
appear in Figure 3.

When Joiner i receives a join(rambo, J) request from its environment (lines 1–5), it carries out a simple protocol. First,
it sets its status to joining (line 4), and sends join messages to the processes in J (lines 14–19), i.e., those in the initial
world view (via send(join)i,∗ actions). It sends these messages with the hope that at least some nodes in J are already
participating, and so can help in the attempt to join. These messages are received by the Reader-Writer automaton by nodes
in J , which then sends a response to the Reader-Writer component at i.

At the same time, it submits join requests to the local Reader-Writer and Recon components (lines 7–12) and waits
for acknowledgments for these requests. The Reader-Writer component completes its join protocol and acknowledges
the join component (lines 20–23) when it receives a response from nodes in J . The Recon service completes its own join
protocol independently and also acknowledges the join component (lines 20–23). When both the Reader-Writer and Recon
components have completed their join protocol, the Joiner automaton performs a join-ack, setting its status to active (lines
25–31).

5.2 Reader-Writer automata
The main part of the RAMBO algorithm is the reader-writer algorithm, which handles read and write requests. Each read
or write operation takes place in the context of one or more configurations. The reader-writer protocol also handles the
garbage-collection of older configurations, which ensures that later read and write operations need not use them.

Signature and state

The signature and state of Reader-Writer i appear in Figure 4. The Reader-Writer signature includes an interface to
process read and write requests: read, read-ack, write, and write-ack. It also includes an interface for communicating with
the Joiner automaton, from which it receives a join(rw) request and returns a join-ack(rw) response. And it includes an
interface for communicating with the reconfiguration service, from which it receives new-config reports whenever a new
configuration is selected. Finally, it includes send and recv actions for communicating with other nodes. Notice that one of
the recv actions is dedicated to receiving join-related messages.

We now describe the state maintained by Reader-Writer . The status variable keeps track of the progress as the node
joins the protocol. When status = idle , Reader-Writer i does not respond to any inputs (except for join) and does not

12

Signature:

Input:
join(rambo, J)i, J a finite subset of I − {i}
join-ack(r)i, r ∈ {recon, rw}
faili

Output:
send(join)i,j , j ∈ I − {i}
join(r)i, r ∈ {recon, rw}
join-ack(rambo)i

State:
status ∈ {idle, joining, active, failed}, initially idle
child-status , a mapping from {recon, rw} to {idle, joining, active}, initially everywhere idle
hints ⊆ I , initially ∅

Transitions:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Input join(rambo, J)i
Effect:

if status = idle then
status ← joining
hints ← J

Output join(r)i
Precondition:

status = joining
child-status(r) = idle

Effect:
child-status(r)← joining

Output send(join)i,j
Precondition:

status = joining
j ∈ hints

Effect:
none

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Input join-ack(r)i
Effect:

if status = joining then
child-status(r)← active

Output join-ack(rambo)i
Precondition:

status = joining
∀r ∈ {recon, rw}:

child-status(r) = active
Effect:

status ← active

Input faili
Effect:

status ← failed

Figure 3: Joiner i: This component of the RAMBO protocol handles join requests. Each join request includes an initial world
view. The main responsibility of the join protocol is to contact at least one node in the initial world view.

perform any locally controlled actions. When status = joining , Reader-Writer i is receptive to inputs but still does not
perform any locally controlled actions. When status = active , the automaton participates fully in the protocol.

The world variable is used to keep track of all nodes that have attempted to join the system. Gossip messages are sent
regularly to every node in world .

The value variable contains the current value of the local replica of x, and tag holds the associated tag. Every value
written to the object x has a unique tag associated with it, and these tags are used to determine the order in which values
have been written.

The cmap variable is a “configuration map” that contains information about configurations. A configuration map is
a function that maps each index k to one of three types: ⊥, a configuration c, or ±. If cmap(k) = ⊥, it means that
Reader-Writer i has not yet learned about the kth configuration. If cmap(k) = c, it means that Reader-Writer i has
learned that the kth configuration identifier is c, and it has not yet garbage-collected it. If cmap(k) = ±, it means that
Reader-Writer i has garbage-collected the kth configuration identifier. Reader-Writer i learns about configuration identi-
fiers either directly, from the Recon service, or indirectly, from other Reader-Writer processes.

Throughout the execution, we ensure that the cmap always has the following form: a finite (possibly zero length)
sequence of indices mapped to ±, followed by at least one, and possibly more, indices mapped to C, followed by an infinite
number of indices mapped to ⊥. That is, such a cmap is of the form:

〈±, ±, . . . , ±,︸ ︷︷ ︸ c, c′, . . . , c′′,︸ ︷︷ ︸ ⊥, ⊥,︸ ︷︷ ︸〉
≥ 0 ≥ 1 ∞

When a cmap satisfies this pattern, we say that it is Usable . When there is some k such that cmap(k) = c, we say that
configuration c is active. When Reader-Writer i processes a read or write operation, it uses all active configurations.

We define the following two functions that combine two different configuration maps. First, the function update simply
merges two cmaps, taking the “more recent” element from each cmap. The update function takes two configuration maps

13

Signature:

Input:
readi

write(v)i, v ∈ V
new-config(c, k)i, c ∈ C, k ∈ N+

join(rw)i
recv(join)j,i, j ∈ I − {i}
recv(m)j,i, m ∈M , j ∈ I
faili

Output:
read-ack(v)i, v ∈ V
write-acki
join-ack(rw)i
request-config(k)i, k ∈ N+

send(m)i,j , m ∈M , j ∈ I

Internal:
query-fixi
prop-fixi
gc(k)i, k ∈ N
gc-query-fix(k)i, k ∈ N
gc-prop-fix(k)i, k ∈ N
gc-ack(k)i, k ∈ N

State:

status ∈ {idle, joining, active, failed}, initially idle
world , a finite subset of I , initially ∅
value ∈ V , initially v0
tag ∈ T , initially (0, i0)
cmap : N→ C±, a configuration map, initially:

cmap(0) = c0,
cmap(k) = ⊥ for k ≥ 1

pnum-local ∈ N, initially 0
pnum-vector , a mapping from I to N, initially

everywhere 0

op, a record with fields:
type ∈ {read ,write}
phase ∈ {idle, query, prop, done}, initially idle
pnum ∈ N
cmap : N→ C±, a configuration map
acc, a finite subset of I
value ∈ V

gc, a record with fields:
phase ∈ {idle, query, prop}, initially idle
pnum ∈ N
cmap : N→ C±, a configuration map
acc, a finite subset of I
target ∈ N

Figure 4: Reader-Writer i: Signature and state for the Reader-Writer component of the RAMBO algorithm. The Reader-
Writer component is responsible for handling read and write requests, as well as for garbage-collecting old configurations.

as input, and returns a new configuration map; it is defined in a point-wise fashion. For all indices k ∈ N:

update(cm1 , cm2)(k) =


± : if cm1 (k) = ± or cm2 (k) = ±;

cm1 (k) : else if cm1 (k) ∈ C;
cm2 (k) : else if cm2 (k) ∈ C;
⊥ : otherwise.

The extend function takes two configuration maps, and includes all the configurations available in both. Unlike the update
function, it includes a configuration that is in one cmap, even if it is garbage collected in the other. Again, extend takes two
configuration maps as input, and returns a new configuration map; it is defined in a point-wise fashion. For all indices k ∈ N:

extend(cm1 , cm2)(k) =

{
cm2 (k) : if cm1 (k) = ⊥;
cm1 (k) : otherwise.

The pnum-local variable and pnum-vector array are used to implement a handshake that identifies “recent” messages3.
Reader-Writer i uses pnum-local to count the total number of “phases” that node i has initiated; a phase can be a part of
a read, write, or garbage-collection operation. For every j, Reader-Writer i records in pnum-vector(j) the largest phase
that j has started, to the best of node i’s knowledge. A message m from i to j is deemed “recent” by j if i knows about j’s
current phase, i.e., if pnum-vector(j)i ≥ pnum-local j . This implies that i has received a message from j that was sent after
j began the new phase and was received prior to i sending the message to j.

Finally, two records, opi and gci, are used to maintain information about read, write, and garbage-collection operation
that were initiated by node i and are still in progress. Each of these records includes a phase , to keep track of the status of the

3Together, pnum-local and pnum-vector implement something akin to a vector clock [38] in that they are used to determine some notion of causality;
however, the usage is simpler and the guarantees weaker than a vector clock.

14

Transitions:
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Input join(rw)i
Effect:

if status = idle then
if i = i0 then

status ← active
else

status ← joining
world ← {i}

Output join-ack(rw)i
Precondition:

status = active
Effect:

none

Input recv(join)j,i
Effect:

if status /∈ {idle, failed} then
world ← world ∪ {j}

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Output request-config(k)i
Precondition:

status = active
∀k′ < k : cmap(k) 6= ⊥
cmap(k) = ⊥

Effect:
none

Input new-config(c, k)i
Effect:

if status /∈ {idle, failed} then
if cmap(k) 6= ± then

cmap(k)← c
op.cmap ← extend(op.cmap, cmap)

Input faili
Effect:

status ← failed

Figure 5: Reader-Writer i: Joining, reconfiguration, and failing.

operation (e.g., idle , in a query phase, in a prop phase, or done). They also maintain the pnum associated with the ongoing
phase (if some operation is in progress), along with an operation-specific cmap. The set acc contains a set of clients that
have sent responses since the phase began. (As described above, the phase numbers are used to verify which messages are
sufficiently recent.) In addition, the op field maintains a value associated with the operation (for example, the value being
written), and the gc field maintains the target of the garbage-collection operation, i.e., the smallest configuration that will
remain after the operation completes.

Pseudocode
The state transitions are presented in three figures: Figure 5 presents the pseudocode pertaining to joining the system, learn-
ing new configurations, and failing (or leaving). Figure 6 presents the pseudocode pertaining to propagating information and
performing read/write operations. Figure 7 presents the pseudocode pertaining to garbage-collection. We divide the discus-
sion into four parts: (1) joining; (2) read and write operations; (3) information propagation; (4) configuration management.

Joining. The pseudocode associated with joining is presented in Figure 5. When a join(rw)i request occurs and status =
idle , node i begins joining the system (lines 1–8). If i is the object’s creator, i.e., if i = i0, then status is immediately
set to active (line 5), which means that Reader-Writer i is ready for full participation in the protocol. Otherwise, status
becomes joining (line 7), which means that Reader-Writer i is receptive to inputs but not ready to perform any locally
initiated actions. In either case, Reader-Writer i records itself as a member of its own view of the world .

From this point on, whenever a recv(join)j,i event occurs at node i (lines 16–19), Reader-Writer i adds j to its world .
(Recall that these join messages are sent by Joiner automata, not Reader-Writer automata.) Information is propagated
lazily to members of the world , so no response is sent here.

The process of joining is completed as soon as Reader-Writer i receives a message from another node that has already
joined. (The code for this appears in the recv transition definition in Figure 6, line 25.) At this point, process i has acquired
enough information to begin participating fully. Thus, status is set to active , after which process i performs a join-ack(rw)
(lines 10–14).

Read and write operations. The pseudocode associated with read and write operations is in Figure 6. A read or write
operation is performed in two phases: a query phase and a propagation phase. In each phase, Reader-Writer i contacts a
set of quorums, one for each active configuration, to obtain recent value, tag , and cmap information. This information is
obtained by sending and receiving messages in the background, as described below.

Each phase takes place in the context of a set of active configurations, i.e., the configurations that are available in the
configuration map cmap. When Reader-Writer i starts either a query phase or a propagation phase of a read or write, it
sets op.cmap to the configuration map cmap (see line 8, line 18, and line 64); this specifies which configurations are to be
used to conduct the phase. For example, during a read request, the query phase begins (i.e., op.phase is set to query) and
op.cmap is set to cmap (line 8). As the phase progresses, newly discovered configurations are added to op.cmap (line 28).

15

Transitions:
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Input readi
Effect:

if status /∈ {idle, failed} then
pnum-local ← pnum-local + 1
op.pnum ← pnum-local
op.type ← read
op.phase ← query
op.cmap ← cmap
op.acc ← ∅

Input write(v)i
Effect:

if status /∈ {idle, failed} then
pnum-local ← pnum-local + 1
op.pnum ← pnum-local
op.type ← write
op.phase ← query
op.cmap ← cmap
op.acc ← ∅
op.value ← v

Input recv(〈world′, v, t, cm, snder-phase, rcver-phase〉)j,i
Effect:

if status /∈ {idle, failed} then
status ← active
world ← world ∪ world ′

if t > tag then (value, tag)← (v, t)
cmap ← update(cmap, cm)
pnum-vector(j)← max(pnum-vector(j), snder-phase)
if op.phase ∈ {query, prop} and rcver-phase ≥ op.pnum then

op.cmap ← extend(op.cmap, cm)
if op.cmap ∈ Usable then

op.acc ← op.acc ∪ {j}
else

pnum-local ← pnum-local + 1
op.acc ← ∅
op.cmap ← cmap

else if gc.phase ∈ {query, prop} and rcver-phase ≥ gc.pnum
gc.acc ← gc.acc ∪ {j}

Output send(〈world ′, v, t, cm, snder-phase, rcver-phase〉)i,j
Precondition:

status = active
j ∈ world
〈world ′, v, t, cm, snder-phase, rcver-phase〉 =
〈world , value, tag, cmap, pnum-local , pnum-vector(j)〉

Effect:
none

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

Internal query-fixi
Precondition:

status = active
op.type ∈ {read ,write}
op.phase = query
∀k ∈ N, c ∈ C : (op.cmap(k) = c)
⇒ (∃R ∈ read-quorums(c) : R ⊆ op.acc)

Effect:
if op.type = read then

op.value ← value
else

value ← op.value
tag ← 〈tag.seq + 1, i〉
pnum-local ← pnum-local + 1

op.phase ← prop
op.cmap ← cmap
op.acc ← ∅

Internal prop-fixi
Precondition:

status = active
op.type ∈ {read ,write}
op.phase = prop
∀k ∈ N, c ∈ C : (op.cmap(k) = c)
⇒ (∃W ∈ write-quorums(c) :W ⊆ op.acc)

Effect:
op.phase = done

Output read-ack(v)i
Precondition:

status = active
op.type = read
op.phase = done
v = op.value

Effect:
op.phase ← idle

Output write-acki
Precondition:

status = active
op.type = write
op.phase = done

Effect:
op.phase ← idle

Figure 6: Reader-Writer i: Read/write transitions

Node i begins a query phase by initializing the op structure (lines 5–9 and lines 15–20). (This occurs when a read or
write is requested, or when a query phase restarts during a recv—lines 35–37—which is discussed below.) Throughout the
phase, node i collects information from nodes, attempting to find a quorum. Whenever node i receives new information from
a node j, it adds it to op.acc (line 33). The phase terminates when a sufficient number of responses have been received. More
specifically, this happens when Reader-Writer i has received recent responses from some read-quorum of each configuration
in op.cmap. That is, for every configuration c ∈ op.cmapi, there exists a read-quorum R such that R ⊆ op.acci (lines
54–55). When this occurs, a query-fixi event occurs (lines 49–65). We refer to this as a “fixed point” since it captures some
notion of convergence: as i collects messages from nodes in read-quorums, it may also learn about new configurations,
which then requires that it contact more quorums. Eventually, when the fixed point is reached, node i has contacted all the
configurations that are known to any of the configurations which it has contacted.

Let v and t denote process i’s value and tag at the query fixed-point, respectively. Then we know that t is at least as
great as the tag value that each process in each of these read-quorums had at the start of the query phase. This implies that v
is at least the most recent value of any operation that preceded the ongoing read operation.

16

If the operation is a read operation, then value v is an appropriate value to return to the client. However, before returning
this value, process i embarks upon the propagation phase of the read operation, whose purpose is to make sure that enough
processes have acquired tags that are at least as great as t (along with the associated value). Again, the information is
propagated in the background, and op.cmap is managed in the same way. The propagation phase ends once a “propagation
fixed point” is reached, when process i has received recent responses from some write-quorum of each configuration in the
current op.cmap (lines 72–73). At this point, a prop-fix i event occurs (lines 67–75), meaning that the tag value of each
process in each node of the write-quorums is at least as great as t.

Consider, now, a write operation that has completed its query phase. Suppose t, process i’s tag at the query fixed point, is
of the form (n, j). Then Reader-Writer i increments the tag, defining the tag for its write operation to be the pair (n+ 1, i)
(line 61); that is, it increments the counter, and uses its own identifier to ensure that the new tag is unique. Reader-Writer i

also sets its local value to v, the value it is currently writing. Then it performs a propagation phase. As before, the purpose of
the propagation phase is to ensure that enough processes acquire tags that are at least as great as the new tag (n+ 1, i). The
propagation phase is conducted exactly as for a read operation. The propagation phase is over when the same propagation
fixed point condition is satisfied as for the read operation, i.e., there is some write quorum for every active configuration that
has received a message from i and sent a response (lines 72–73).

Information propagation. Information is propagated between Reader-Writer processes in the background (lines 41–48).
The algorithm uses only one kind of message (lines 45–46), which contains a tuple including the sender’s world , its latest
known value and tag , its cmap, and two phase numbers—the current phase number of the sender, pnum-local , and the
latest known phase number of the receiver, from the pnum-vector array. These background messages may be sent at any
time, once the sender is active. They are sent only to processes in the sender’s world set, that is, processes that the sender
knows have tried to join the system at some point. In follow-up papers, Georgiou et al. [24] and Gramoli et al. [30] study the
problem of reducing message size, sending gossip “incrementally”, and reducing gossip frequency.

When Reader-Writer i receives a message (see the recv transition, Figure 6, lines 22–39), the first step it takes is to set
its status to active , if it has not already done so (line 25). It then adds any new information about the world contained in
the message to its local world set (line 26). Next, it compares the incoming tag t to its own tag . If t is strictly greater than
tag , that means that the incoming message contains a more recent version of the object; in this case, Reader-Writer i sets
its tag to t and its value to the incoming value v (line 27). Reader-Writer i then updates its own configuration map, cmap,
with the information in the incoming configuration map, cm , using the update operator to merge the two configuration
maps (line 28). In this way, node i learns about any new configurations that were known to the sender, and learns about
any configurations that have been garbage collected. Next, Reader-Writer i updates its pnum-vector(j) component for the
sender j to reflect new information about the phase number of the sender, which appears in the snder-phase components of
the message (line 29).

The rest of the recv transition is dedicated to processing read, write, and garbage-collection operations. In each phase of
each operation, the Reader-Writer collects messages from a quorum of each active configuration. The set op.acc stores the
set of nodes from which i has received a message since the operation began. More specifically, node i needs to verify that a
message is sufficiently “recent”, in the sense that the sender j sent it after j received a message from i that was sent after i
began the current phase. This is accomplished by checking if the incoming phase number rcver-phase is at least as large as
the current operation phase number (op.pnum , see line 30), which ensures that node j has received a message from i since
the operation began. If the message is recent, then it is used to update the record associated with the operation (lines 31–37).

The first step, if an operation is ongoing and the message is sufficiently recent, is to update the cmap associated with that
operation (which is stored in op.cmap). In this case, we use the extend function to merge the new configuration map with
the old configuration map (line 31). This ensures that the extended configuration map includes every configuration that was
in the old op.cmap, as well as every configuration in the newly received cm .

Notice that node i must contact a quorum from every new configuration that it learns about in this manner. Even though
it may have already contacted quorums from the “old” set of configurations, there is no guarantee that this information was
propagated to the new configuration: garbage collection operations are used to transfer information from old configurations
to new configurations, but i cannot determine whether or not there is a concurrent garbage collection, and if there is, whether
it has come before or after i’s access to the old configuration. Thus, to be sure that it has up-to-date information, i must also
contact the newer configuration.

It is also important that i continue to access an old configuration, even if it discovers that it has already been garbage-
collected. To see why, consider the following example: assume that node i begins a read operation with both configurations
c and c′ active, where c′ is a newly installed configuration that has not yet received the most up-to-date tag/value; node i then
receives messages from a quorum of nodes in c′, but messages to/from c are lost; next, node j garbage-collects configuration
c, propagating the most recent tag/value from c to c′. Notice that at this point, there is no guarantee that i has received the
most recent tag/value, as it has only received messages from c′, which may have been out-of-date at the time. Thus, if i

17

proceeds without contacting configuration c, then i would risk returning out-of-date data. (Another alternative is to re-start
the operation instead.)

After extending the op.cmap, the Reader-Writer i needs to verify that the op.cmap is still in an appropriate form, i.e.,
it is still Usable (line 32). Recall that we maintain the invariant that both op.cmap and the cm received in the message
are Usable . However, after extending the configuration map, it may no longer be Usable . Consider the case where the two
(usable) configuration maps are as follows:

op.cmap = 〈±,±, c1, c2,⊥,⊥,⊥,⊥,⊥,⊥, . . .〉
cm = 〈±,±,±,±,±,±,±, c3,⊥,⊥, . . .〉

Notice that when these two configurations maps are combined using the extend function, we end up with:

〈±,±, c2, c2,±,±,±, c3,⊥,⊥, . . .〉

The resulting configuration map is not usable. This can in fact happen when node i gets too far out-of-date, i.e., all messages
to and from i are lost for a longer period of time, during which multiple configurations are installed and removed. When this
happens, the processing of any ongoing read/write operation must be restarted, beginning again the phase in progress (lines
35–37). (The concept of restarting is only with respect to internal progress while processing of the read/write operations, and
has no affect on the standard atomic semantics of read/write operations: from a client’s perspective, the restart is invisible.)

When the configuration map becomes unusable, the process of accessing quorums is started again (lines 35–37): the
local phase number is incremented, the set op.acc is reset to ∅, and the op.cmap is reset to cmap, the most recently known
configuration map. Otherwise, if there is no need for a restart, then the sender of the message is added to op.acc (line 33).

As in the case of a read or write operation, the garbage collection operation also requires Reader-Writer i to collect a set
of recent messages from other nodes. Thus, the last step in the the recv transition is to check if the message is recent with
respect to gc.pnum , and if so, add the sender to gc.acc (lines 38–39). In this case, there is no need to update any of the other
gc fields, and there is never a need to restart the phase; if the configuration in question has already been removed, then the
garbage-collection operation can simply terminate.

New configurations and garbage collection. When a node has learned about all configurations with index smaller than k,
then it informs the Recon service that it is ready for configuration k via a request-config(k) request (Figure 5, lines 20–26).
This ensures that the Recon service informs the Reader-Writer of configurations in order, ensuring that there are no gaps
in the configuration map.

Eventually, the Recon service may inform the Reader-Writer i of a new configuration via a new-config(c, k) event
(Figure 5, lines 28-33). When Reader-Writer i hears about a new configuration identifier via a new-config input action, it
simply records it in its cmap and updates the op.cmap (in case an operation is active). The pseudocode associated with
interactions with the Recon service is in Figure 5.

From time to time, configuration identifiers get garbage-collected at i. It is during this garbage-collection process that
information is propagated from one configuration to the next, and that enables the installation of disjoint configurations, i.e.,
configurations that have no overlapping quorums. The pseudocode associated with configuration management is in Figure 7.

There are two situations in which Reader-Writer i may remove a configuration c. First, Reader-Writer i can remove c
if it ever hears that another process has already garbage-collected it. For example, assume that at node i cmap(k − 1) = c,
and that node i then receives a gossip message where cm(k − 1) = ±; in this case, node i can set cmap(k) = ±, and we
say that configuration c has been garbage collected. (This occurs in Figure 6, line 28.)

The second situaiton where Reader-Writer i may remove configuration c is when it itself initiates a garbage-collection
operation (lines 1–14). For example, assume that cmap(k − 1) = c at node i, and assume that i has learned about a new
configuration, i.e., cmap(k) 6= ⊥. In this case, Reader-Writer i may initiate a garbage-collection of all configurations with
index less than k (see the gc transition in Figure 7). Garbage collection is a two-phase operation with a structure similar
to the read and write operations. In addition, garbage-collection operations may proceed concurrently with read or write
operations at the same node.

In the query phase of a garbage-collection operation, process i communicates with both a read-quorum and a write-
quorum of every active configuration with index smaller than k, that is, every configuration such that for ` < k, gc.cmap(`) ∈
C (lines 21–24). The query phase accomplishes two tasks. First, Reader-Writer i ensures that sufficient information is
conveyed to the processes in the read-quorums and write-quorums of other active configurations with index smaller than k.
In particular, all these processes in “old” configurations learn about the existence of configuration k, and also learn that all
configurations smaller than k are being garbage-collected. We refer loosely to the fact that they know about configuration
k as the “forwarding pointer” condition—if a node j that has such a forwarding pointer is contacted at a later time by

18

Transitions:
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Internal gc(k)i
Precondition:

status = active
gc.phase = idle
cmap(k) ∈ C
cmap(k − 1) ∈ C
∀` < k : cmap(`) 6= ⊥

Effect:
pnum-local ← pnum-local + 1
gc.phase ← query
gc.pnum ← pnum-local
gc.cmap ← cmap
gc.acc ← ∅
gc.target ← k

Internal gc-query-fix(k)i
Precondition:

status = active
gc.phase = query
gc.target = k
∀` < k : gc.cmap(`) ∈ C
⇒ ∃R ∈ read-quorums(gc.cmap(`)) : R ⊆ gc.acc

∀` < k : gc.cmap(`) ∈ C
⇒ ∃W ∈ write-quorums(gc.cmap(`)) :W ⊆ gc.acc

Effect:
pnum-local ← pnum-local + 1
gc.pnum ← pnum-local
gc.phase ← prop
gc.acc ← ∅

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Internal gc-prop-fix(k)i
Precondition:

status = active
gc.phase = prop
gc.target = k
∃W ∈ write-quorums(gc.cmap(k)) :W ⊆ gc.acc

Effect:
for ` < k do

cmap(`)← ±

Internal gc-ack(k)i
Precondition:

status = active
gc.target = k
∀` < k : cmap(`) = ±

Effect:
gc.phase ← idle

Figure 7: Reader-Writer i: Garbage-collection transitions

someone who is trying to access a quorum of configuration k− 1, node j is able to inform it about the existence of the newer
configuration k. This ensures that operations can continue to make progress, even as configurations are removed.

The second purpose of the query phase is to collect recent tag and value information from the old configurations (i.e.,
line 27). This ensures that, by the end of the query phase, Reader-Writer i has received a value as recent as any written prior
to the garbage collection beginning. More precisely, it’s tag is equal to some value t that is at least as great as the tag that
each of the quorum members had when it sent a message to Reader-Writer i for the query phase.

The propagation phase of a garbage-collection operation is straightforward: Reader-Writer i ensures that the tag and
value are propagated to a write-quorum of the new configuration k (line 35). This ensures that the new configuration is
appropriately informed of preceding operations, and that future operations can safely rely on configuration k.

Note that the two phases of garbage-collection differ from the two phases of the read and write operations in that they do
not involve “fixed point” tests. In this case, Reader-Writer i does not extend op.cmap as it learns about more configurations.
Rather, Reader-Writer i knows ahead of time which configurations are being used—those that are active in gc.cmap—and
uses only quorums from those configurations.

At any time when Reader-Writer i is carrying out a garbage-collection operation, it may discover that someone else
has already garbage-collected all the configurations smaller than k; it discovers this by observing that cmap(`) = ± for all
` < k. When this happens, Reader-Writer i may simply terminate its garbage-collection operation (lines 40–46).

5.3 The complete algorithm
The complete implementation S is the composition of all the automata defined above—the Joiner i and Reader-Writer i

automata for all i, all the channels, and any automaton that implements a reconfiguration service, as described in Defini-
tion 4.8—with all the actions that are not part of the reconfigurable atomic memory interface hidden.

6 Proof of Safety
In this section, we show that our implementation S satisfies the safety guarantees of RAMBO, as given in Section 4, assuming
the environment safety assumptions. That is, we prove the following theorem:

19

Theorem 6.1 RAMBO implements a reconfigurable atomic memory, as in Definition 4.4. That is, let β be a trace of the
system S. If requests in β are well-formed (as in Definition 4.1), then responses are well-formed (as in Definition 4.2) and
operations in β are atomic (as in Definition 4.3). That is, S is a Reconfigurable Atomic Memory (Definition 4.4).

The proof of well-formedness is straightforward based on inspection of the code, and based on the properties of the
Recon service (which ensure that configurations are installed sequentially). The rest of this section is devoted to the proof
of atomicity. We consider a trace β of S that satisfies the well-formedness assumptions and in which all read and write
operations complete. We show the existence of a partial order on operations in β that satisfies the conditions listed in
Definition 4.3.

6.1 Proof Overview
We begin with an overview of the basic structure of the proof. Recall that each read and write operation has a tag associated
with it. For a write operation, this tag is chosen by the node that is executing the operation. For a read operation, this tag is
the largest tag discovered during the first phase of the operation. These tags define a partial order in which operations are
ordered based on their tags; operations with the same tag are unordered with respect to each other. We show that this partial
order satisfies the requisite properties needed to ensure atomicity.

The key claim regarding this partial order is the following: if one operation completes before a second operation begins,
then the second operation is not ordered before the first, i.e., the tag associated with the second operation is at least as large as
the tag associated with the first operation. If the first operation is a write operation, then the first operation is ordered before
the second operation, i.e., the tag of the first operation is strictly less than the tag of the second operation. (The remaining
three properties are relatively straightforward.)

If two operations share a configuration, then this claim is easily proven. Consider two such operations, the second of
which begins after the first completes. During the propagation phase, the first operation conveys its tag and value to a write
quorum. During the query phase, the second operation retrieves tags from a read quorum. Since these two quorums intersect,
we can be sure that the second operation find a tag at least as large as the first, implying the desired ordering of operations.

A more careful argument is needed when the two operations do not share a configurations. For example, it is possible that
all the configurations accessed by the first operation have been garbage-collected (and removed) prior to the beginning of the
second operation. In this case, the two operations may access an entirely disjoint set of quorums. The key to the proof, then,
is showing that the tag is propagated from the first operation to the second operation by the intervening garbage-collection
operations. To this end, there are three key claims.

Claim 1. The first claim is that the tag is correctly propagated from the first operation to some configuration. During the
propagation phase, the tag associated with a read/write operation is sent to every configuration that is used by the operation.
Some of these configurations may have already been garbage-collected prior to the operation beginning; some of these
configurations may be in the process of being garbage-collect concurrently. We need to show that the tag is propagated
to a configuration that is still active, i.e., has not yet been garbage-collected. (This is proved as part of Lemma 6.17.)
Consider the case where an operation uses some configuration ck, but does not use configuration ck+1 (or any larger-indexed
configuration). In addition, assume that some (possibly concurrent) garbage-collection operation removes ck. We can
ascertain that there is some node i that is accessed by both the read/write operation and the garbage-collection. In order
for the tag to be propagated correctly, we must show that i learns about the read/write operation before responding to the
garbage-collection, thus ensuring that ck+1 learns about the read/write operation. However, if this were not the case, then
i would send a response indicating the existence of configuration ck+1, and the read/write operation would use the new
configuration. From this we conclude that the tag is successfully propagated.

Claim 2. The second claim, Corollary 6.11, shows that once a tag is known to some configuration ck that is still active, then
it is correctly propagated from one configuration to the next. Here, the key is to show that each garbage-collection discovers
the relevant tags during its query phase, and relays them during its propagation phase. In many ways, the main machinery in
the proof lies in showing this claim.

Claim 3. The third claim, Lemma 6.14, shows that the tag is propagated to the second operation. Specifically, it identifies
a configuration that must be active when the second operation begins, and shows that the second operation retrieves the tag
from this configuration during its query phase.

Putting these three claims together, we show in Lemma 6.17 that the tags induce the desired ordering, and hence that
operations are atomic.

20

Overview. The proof is carried out in several stages. First, in Section 6.2, we establish some notational conventions and
define some useful history variables. In Sections 6.3 and 6.4, we present some basic invariants and guarantees. Next,
in Section 6.5 we show that tags are propagated from one configuration to the next by garbage-collection operations. In
Section 6.6 we show how tags are propagated between read/write operations and configurations. In Section 6.7, we show
that tags are properly ordered by consider the relationship between two read or write operations. Finally, Section 6.8 uses
the tags to define a partial order on operations and verifies the four properties required for atomicity.

Throughout this section, we consider executions of S whose requests are well-formed (as per Definition 4.1). We call
these good executions. In particular, an “invariant” in this section is a statement that is true of all states that are reachable in
good executions of S.

6.2 Notational conventions
Before diving into the proof, we introduce some notational conventions and add certain history variables to the global state
of the system S.

An operation is a pair (n, i) consisting of a natural number n and an index i ∈ I . Here, i is the index of the process
running the operation, and n is the value of pnum-local i just after the read, write, or gc event of the operation occurs. We
introduce the following history variables:

• in-transit , a set of messages, initially ∅.
A message is added to the set when it is sent by any Reader-Writer i to any Reader-Writer j . No message is ever
removed from this set.

• For every k ∈ N:

– c(k) ∈ C, initially undefined.
This is set when the first new-config(c, k)i occurs, for some c and i. It is set to the c that appears as the first
argument of this action. Since, by assumption, the Recon service guarantees agreement, we know that the same
configuration c(k) is installed at every participant that is notified of configuration k.

• For every operation π:

– tag(π) ∈ T , initially undefined.
This is set to the value of tag at the process running π, at the point right after π’s query-fix or gc-query-fix event
occurs. If π is a read or garbage-collection operation, this is the highest tag that it encounters during the query
phase. If π is a write operation, this is the new tag that is selected for performing the write.

• For every read or write operation π:

– query-cmap(π), a configuration map, initially undefined.
This is set in the query-fix step of π, to the value of op.cmap in the pre-state.

– R(π, k), for k ∈ N, a subset of I , initially undefined.
This is set in the query-fix step of π, for each k such that query-cmap(π)(k) ∈ C. It is set to an arbitrary
R ∈ read-quorums(c(k)) such that R ⊆ op.acc in the pre-state.

– prop-cmap(π), a configuration map, initially undefined.
This is set in the prop-fix step of π, to the value of op.cmap in the pre-state.

– W (π, k), for k ∈ N, a subset of I , initially undefined.
This is set in the prop-fix step of π, for each k such that prop-cmap(π)(k) ∈ C. It is set to an arbitrary
W ∈ write-quorums(c(k)) such that W ⊆ op.acc in the pre-state.

• For every garbage-collection operation γ:

– removal-set(γ), a subset of N, initially undefined.
This is set in the gc(k) step of γ, to the set {` : ` < k, cmap(`) 6= ±} in the pre-state.

– target(γ), a configuration, initially undefined.
This is set in the gc(k) step of γ to k.

– R(γ, `), for ` ∈ N, a subset of I , initially undefined.
This is set in the gc-query-fix step of γ, for each ` ∈ removal-set(γ), to an arbitrary read-quorum R ∈
read-quorums(c(`)) such that R ⊆ gc.acc in the pre-state.

– W1(γ, `), for ` ∈ N, a subset of I , initially undefined.
This is set in the gc-query-fix step of γ, for each ` ∈ removal-set(γ), to an arbitrary write-quorum W ∈
write-quorums(c(`)) such that W ⊆ gc.acc in the pre-state.

21

– W2(γ), a subset of I , initially undefined.
This is set in the gc-prop-fix step of γ, to an arbitrary W ∈ write-quorums(c(k)) such that W ⊆ gc.acc in the
pre-state.

In any good execution α, we define the following events (more precisely, we are giving additional names to some existing
events):

• For every read or write operation π:

– query-phase-start(π), initially undefined.
This is defined in the query-fix step of π, to be the unique earlier event at which the collection of query results
was started and not subsequently restarted. This is either a read, write, or recv event.

– prop-phase-start(π), initially undefined.
This is defined in the prop-fix step of π, to be the unique earlier event at which the collection of propagation
results was started and not subsequently restarted. This is either a query-fix or recv event.

6.3 Configuration map invariants
In this section, we give invariants showing that the configuration maps remain usable. This implies that there is always some
active configuration available. We begin with a lemma saying that the update operation on configuration maps preserves
usability:

Lemma 6.2 If cm, cm ′ ∈ Usable then update(cm, cm ′) ∈ Usable .

Proof. Immediate, by the definition of update. �

We next show that configuration maps remain usable:

Invariant 1 Let cm be a configuration map that appears as one of the following: (1) The cm component of some message
in in-transit; (2) cmapi for any i ∈ I; (3) op.cmapi for some i ∈ I for which op.phase 6= idle; (4) query-cmap(π) or
prop-cmap(π) for any operation π; (5) gc.cmapi for some i ∈ I for which gc.phase 6= idle . Then cm ∈ Usable .

Proof. By induction on the length of a finite good execution: it is easily observed that no action causes a configuration map
to become unusable. �

6.4 Phase guarantees
In this section, we present results on the behavior of query and propagation phases for both read/write operations and garbage
collection operations. We give four lemmas, describing the information flow during each phase. Specifically, each of these
lemmas asserts that when some node i completes a phase, then for every node j in some set of quorums, there are some
messages m and m′ that convey information from i to j and back from j to i, that is:

• m is sent from i to j after the phase begins.
• m′ is sent from j to i after j receives m.
• m′ is received by i before the end of the phase.
• In the case of a query phase, the tag of i at the end of the phase is at least as large as the tag of j when message m′

is sent. In the case of a propagate phase, then the tag of j at the end of the phase is at least as large as the tag of the
read/write/garbage-collection operation.

Additionally, these lemmas make claims about the cmap associated with the operation or garbage collection. Essentially,
these lemmas argue that the handshake protocol for determining a “recent” message (based on phase numbers) works cor-
rectly.

Note that these lemmas treat the case where j = i uniformly with the case where j 6= i. This is because, in the
Reader-Writer algorithm, communication from a node to itself is treated uniformly with communication between two
different nodes.

We first consider the query phase of read and write operations:

Lemma 6.3 Suppose that a query-fixi event for a read or write operation π occurs in an execution α. Let k, k′ ∈ N. Suppose
query-cmap(π)(k) ∈ C and j ∈ R(π, k). Then there exist messages m from i to j and m′ from j to i such that:

1. m is sent after the query-phase-start(π) event.

22

2. m′ is sent after j receives m.
3. m′ is received before the query-fix event of π.
4. If t is the value of tagj in any state before j sends m′, then:

(a) tag(π) ≥ t.
(b) If π is a write operation then tag(π) > t.

5. If cmap(`)j 6= ⊥ for all ` ≤ k′ in any state before j sends m′, then query-cmap(π)(`) ∈ C for some ` ≥ k′.

Proof. The phase number discipline implies the existence of the claimed messages m and m′. It is then easy to see that the
tag component of message m′ is ≥ t, ensuring that tag(π) ≥ t, or, in the case of a write operation, tag(π) > t.

Next, assume that cmap(`)j 6= ⊥ for all ` ≤ k′ prior to j sending message m′. Since i receives m′ after the
query-phase-start(π) event, we can conclude that after receiving m′, op.cmap(`)i 6= ⊥ for all ` ≤ k′. Since op.cmapi is
Usable , as per Invariant 1, we conclude that op.cmapi(`) ∈ C for some ` ≥ k′, implying the desired claim. �

Next, we consider the propagation phase of read and write operations:

Lemma 6.4 Suppose that a prop-fixi event for a read operation or write operation π occurs in an execution α. Suppose
prop-cmap(π)(k) ∈ C and j ∈W (π, k). Then there exist messages m from i to j and m′ from j to i such that:

1. m is sent after the prop-phase-start(π) event.
2. m′ is sent after j receives m.
3. m′ is received before the prop-fix event of π.
4. In any state after j receives m, tagj ≥ tag(π).
5. If cmap(`)j 6= ⊥ for all ` ≤ k′ in any state before j sends m′, then prop-cmap(π)(`) ∈ C for some ` ≥ k′.

Proof. The phase number discipline implies the existence of the claimed messages m and m′. It is then easy to see that
tag component of message m is ≥ tag(π), ensuring that after j receives message m, tagj ≤ tag(π). The final conclusion is
identical to Lemma 6.3, with respect to the prop-cmap(π) rather than the query-cmap(π). �

In the following two lemmas, we consider the behavior of the two phases of a garbage-collection operation. We begin with
the query phase:

Lemma 6.5 Suppose that a gc-query-fix(k)i event for garbage-collection operation γ occurs in an execution α and k′ ∈
removal-set(γ). Suppose j ∈ R(γ, k′) ∪W1(γ, k

′). Then there exist messages m from i to j and m′ from j to i such that:

1. m is sent after the gc(k)i event of γ.
2. m′ is sent after j receives m.
3. m′ is received before the gc-query-fix(k)i event of γ.
4. If t is the value of tagj in any state before j sends m′, then tag(γ) ≥ t.
5. In any state after j receives m, cmap(`)j 6= ⊥ for all ` ≤ k.

Proof. The phase number discipline implies the existence of the claimed messages m and m′. It is then easy to see that the
tag component of message m′ is ≥ t, ensuring that tag(γ) ≥ t.

The final claim holds since, when the gc(k)i event occurs, we know that cmap(`)i 6= ⊥ for all ` ≤ k according to the
precondition. Thus the same property holds for the cm component of message m, and hence for j after receiving message
m. �

Finally, we consider the propagation phase of a garbage-collection operation:

Lemma 6.6 Suppose that a gc-prop-fix(k)i event for a garbage-collection operation γ occurs in an execution α. Suppose
that j ∈W2(γ). Then there exist messages m from i to j and m′ from j to i such that:

1. m is sent after the gc-query-fix(k)i event of γ.
2. m′ is sent after j receives m.
3. m′ is received before the gc-prop-fix(k)i event of γ.
4. In any state after j receives m, tagj ≥ tag(γ).

Proof. The phase number discipline implies the existence of the claimed messages m and m′. It is then easy to see that the
tag component of message m is ≥ tag(γ), ensuring that after j receives message m, tagj ≥ tag(γ). �

23

6.5 Garbage collection
This section establishes lemmas describing information flow between garbage-collection operations. The key result in this
section is Lemma 6.9, which asserts the existence of a sequence of garbage-collection operations γ0, . . . , γk which have
certain key properties. In particular, the sequence of garbage-collection operations removes all the configurations installed
in an execution, except for the last, and the tags associated with the garbage-collection operations are monotonically non-
decreasing, guaranteeing that value/tag information is propagated to newer configurations.

We say that a sequence of garbage-collection operations γ`, . . . , γk in some execution α is an (`, k)-gc-sequence if it
satisfies the following three properties:

1. ∀ s : ` ≤ s ≤ k, s ∈ removal-set(γs),
2. ∀ s : ` ≤ s < k, if γs 6= γs+1, then the gc-prop-fix event of γs occurs in α and precedes the gc event of γs+1, and
3. ∀ s : ` ≤ s < k, if γs 6= γs+1, then target(γs) ∈ removal-set(γs+1).

Notice that an (`, k)-gc-sequence may well contain the same garbage-collection operation multiple times. If, however,
two elements in the sequence are distinct operations, then the earlier operation in the sequence completes before the later
operation is initiated. Also, the target of an operation in the sequence is removed by the next distinct operation in the
sequence. These properties imply that the garbage-collection process obeys a sequential discipline.

We begin by showing that if there is no garbage-collection operation with target k, then configurations with index k − 1
and k are always removed together.

Lemma 6.7 Suppose that k > 0, and α is an execution in which no gc-prop-fix(k) event occurs in α. Suppose that cm is a
configuration map that appears as one of the following, for some state in α:

1. The cm component of some message in in-transit .
2. cmapi, for any i ∈ I .
3. The op.cmapi, for any i ∈ I .
4. The gc.cmapi, for any i ∈ I .

If cm(k − 1) = ± then cm(k) = ±.

Proof. The proof follows by induction on events in α. The base case is trivially true. In the inductive step, notice that the
only event that can set a configuration map cm(k−1) = ± without also setting cm(k) = ± is a gc-prop-fix(k) event, which
we have assumed does not occur in α. �

The following corollary says that if a gc(k) event occurs in α and k′ is the smallest configuration in the removal set, then
there is some garbage collection γ′ that completes before the gc(k) event with target k′.

Corollary 6.8 Assume that a gc(k)i event occurs in an execution α, associated with garbage collection γ. Let k′ =
min{removal-set(γ)}, and assume k′ > 0. Then for some j, a gc-prop-fix(k′)j event occurs in α and precedes the gc(k)i
event.

Proof. Immediately prior to the gc event, cmap(k′ − 1)i = ± and cmap(k′)i 6= ±. Lemma 6.7 implies that some
gc-prop-fix(k′) event for some operation γ′ occurs in α, and this event necessarily precedes the gc event. �

The next lemma says that if some garbage-collection operation γ removes a configuration with index k in an execution
α, then there exists a (0, k)-gc-sequence of garbage-collection operations. The lemma constructs such a sequence: for every
configuration with an index smaller than k, it identifies a single garbage-collection operation that removes that configuration,
and adds it to the sequence.

Lemma 6.9 If a gci event for garbage-collection operation γ occurs in an execution α such that k ∈ removal-set(γ), then
there exists a (0, k)-gc-sequence (possibly containing repeated elements) of garbage-collection operations.

Proof. We construct the sequence in reverse order, first defining γk, and then at each step defining the preceding element.
We prove the lemma by backward induction on `, for ` = k down to ` = 0, maintaining the property that γ`, . . . , γk is an
(`, k)-gc-sequence. To begin the induction, we define γk = γ, satisfying the property that k ∈ removal-set(γk); the other
two properties are vacuously true.

For the inductive step, we assume that γ` has been defined and that γ`, . . . , γk is an (`, k)-gc-sequence. If ` = 0, then γ0
has been defined, and we are done. Otherwise, we need to define γ`−1. If `− 1 ∈ removal-set(γ`), then let γ`−1 = γ`, and
all the necessary properties still hold.

24

Otherwise, ` − 1 /∈ removal-set(γ`) and ` ∈ removal-set(γ`), which implies that ` = min{removal-set(γ`)}. By
Corollary 6.8, there occurs in α a garbage-collection operation that we label γ`−1 with the following properties: (i) the
gc-prop-fix event of γ`−1 precedes the gc event of γ`, and (ii) target(γ`−1) = min{k′ : k′ ∈ removal-set(γ`)}, i.e.,
target(γ`−1) = `.

Since removal-set(γ`−1) 6= ∅, by definition and as a result of the precondition of a gc event, this implies that ` − 1 ∈
removal-set(γ`−1), proving Property 1 of the (`− 1, k)-gc-sequence definition. Property 2 and Property 3 follow similarly
from the choice of γ`−1. �

The sequential nature of garbage collection has a nice consequence for propagation of tags: for any (`, k)-gc-sequence
of garbage-collection operations, tag(γs) is nondecreasing in s.

Lemma 6.10 Let γ`, . . . , γk be an (`, k)-gc-sequence of garbage-collection operations. Then ∀ s : ` ≤ s < k, tag(γs) ≤
tag(γs+1).

Proof. If γs = γs+1, then the claim follows trivially. Therefore assume that γs 6= γs+1; this implies that the gc-prop-fix
event of γs precedes the gc event of γs+1. Let k2 be the target of γs. We know by assumption that k2 ∈ removal-set(γs+1).
Therefore, W2(γs), a write-quorum of configuration c(k2), has at least one element in common with R(γs+1, k2); label this
node j. By Lemma 6.6, and the monotonicity of tagj , after the gc-prop-fix event of γs we know that tagj ≥ tag(γs). Then
by Lemma 6.5 tag(γs+1) ≥ tagj . Therefore tag(γs) ≤ tag(γs+1). �

Corollary 6.11 Let γ`, . . . , γk be an (`, k)-gc-sequence of garbage-collection operations. Then ∀ s, s′ : ` ≤ s ≤ s′ ≤ k,
tag(γs) ≤ tag(γs′)

Proof. This follows immediately from Lemma 6.10 by induction. �

6.6 Behavior of a read or a write following a garbage collection
Now we describe the relationship between a garbage collection operation and a later read or write operation.. The key result
in this section, Lemma 6.14, shows that if a garbage-collection operation completes prior to some read or write operation,
then the tag of the garbage collection is less then or equal to the tag of the read or write operation.

The first lemma considers a read/write operation that does not use some configuration with index k−1; in this case, there
must be some garbage collection operation that removes configuration k − 1 prior to the operation. More specifically, if, for
some read or write operation, k is the smallest index such that query-cmap(k) ∈ C, then some garbage-collection operation
with target k precedes the read or write operation.

Lemma 6.12 Let π be a read or write operation whose query-fix event occurs in an execution α. Let k be the smallest
element such that query-cmap(π)(k) ∈ C. Assume k > 0. Then there exists a garbage-collection operation γ such that
k = target(γ), and the gc-prop-fix event of γ precedes the query-phase-start(π) event.

Proof. This follows immediately from (the contrapositive of) Lemma 6.7. �

Second, in this case where some read/write operation does not use configuration k − 1, then there is some configuration
with index ≥ k that is used by the read/write operation. More specifically, if a garbage collection that removes k − 1
completes before the query-phase-start event of a read or write operation, then some configuration with index ≥ k must be
included in the query-cmap of the later read or write operation. (If this were not the case, then the read or write operation
would have no extant configurations available to it.)

Lemma 6.13 Let γ be a garbage-collection operation such that k−1 ∈ removal-set(γ). Let π be a read or write operation
whose query-fix event occurs in an execution α. Suppose that the gc-prop-fix event of γ precedes the query-phase-start(π)
event in α. Then query-cmap(π)(`) ∈ C for some ` ≥ k.

Proof. Suppose, for the sake of contradiction, that the conclusion does not hold, i.e., that query-cmap(π)(`) /∈ C for all
` ≥ k. Fix k′ = max({`′ : query-cmap(π)(`′) ∈ C}). Then k′ < k.

Let γ0, . . . , γk−1 be a (0, k−1)-gc-sequence of garbage-collection operations whose existence is asserted by Lemma 6.9,
where γk−1 = γ. Then, k′ ∈ removal-set(γk′), and the gc-prop-fix event of γk′ precedes (or is equal to) the gc-prop-fix
event of γ in α, and hence precedes the query-phase-start(π) event in α.

Since k′ ∈ removal-set(γk′), write-quorum W1(γk′ , k′) is defined. Since query-cmap(k′) ∈ C, the read-quorum
R(π, k′) is defined. Choose j ∈ W1(γk′ , k′) ∩ R(π, k′). Assume that kt = target(γk′). Notice that k′ < kt. Then
Lemma 6.5 and monotonicity of cmap imply that in the state just prior to the gc-query-fix event of γk′ , cmap(`)j 6= ⊥ for
all ` ≤ kt. Then Lemma 6.3 implies that query-cmap(π)(`) ∈ C for some ` ≥ kt. But this contradicts the choice of k′. �

25

Finally, we show that the tag is correctly propagated from a garbage-collection operation to a following read or write
operation. For this lemma, we assume that query-cmap(k) ∈ C, where k is the target of the garbage collection.

Lemma 6.14 Let γ be a garbage-collection operation, and assume that k = target(γ). Let π be a read or write operation
whose query-fix event occurs in an execution α. Suppose that the gc-prop-fix event of γ precedes the query-phase-start(π)
event in execution α. Suppose also that query-cmap(π)(k) ∈ C. Then:

1. tag(γ) ≤ tag(π).
2. If π is a write operation then tag(γ) < tag(π).

Proof. The propagation phase of γ accesses write-quorum W2(γ) of c(k), whereas the query phase of π accesses read-
quorum R(π, k). Since both are quorums of configuration c(k), they have a nonempty intersection; choose j ∈ W2(γ) ∩
R(π, k).

Lemma 6.6 implies that, in any state after the gc-prop-fix event for γ, tagj ≥ tag(γ). Since the gc-prop-fix event of γ
precedes the query-phase-start(π) event, we have that t ≥ tag(γ), where t is defined to be the value of tagj just before
the query-phase-start(π) event. Then Lemma 6.3 implies that tag(π) ≥ t, and if π is a write operation, then tag(π) > t.
Combining the inequalities yields both conclusions of the lemma. �

6.7 Behavior of sequential reads and writes
We focus on the case where two read/write operations execute sequentially (i.e., the first completes before the second be-
gins), and we prove some relationships between their configuration maps and and tags. The first lemma says that for two
such read/write operations, the second operation uses configurations with indices at least as large as those used by the first
operation. More specifically, it shows that the smallest configuration index used in the propagation phase of the first opera-
tion is no greater than the largest index used in the query phase of the second. Thus, we cannot have a situation in which the
second operation’s query phase executes using only configurations with indices that are strictly less than any used in the first
operation’s propagation phase.

Lemma 6.15 Assume π1 and π2 are two read or write operations, such that: (1) The prop-fix event of π1 occurs in an
execution α. (2) The query-fix event of π2 occurs in α. (3) The prop-fix event of π1 precedes the query-phase-start(π2)
event. Then min({` : prop-cmap(π1)(`) ∈ C}) ≤ max({` : query-cmap(π2)(`) ∈ C}).

Proof. Suppose for the sake of contradiction that min({` : prop-cmap(π1)(`) ∈ C}) > k, where k is defined to be
max({` : query-cmap(π2)(`) ∈ C}). Then in particular, prop-cmap(π1)(k) /∈ C. The form of prop-cmap(π1), as
expressed in Invariant 1, implies that prop-cmap(π1)(k) = ±.

This implies that some gc-prop-fix event for some garbage-collection operation γ such that k ∈ removal-set(γ) oc-
curs prior to the prop-fix event of π1, and hence prior to the query-phase-start(π2) event signalling the beginning of π2.
Lemma 6.13 then implies that query-cmap(π2)(`) ∈ C for some ` ≥ k + 1. But this contradicts the choice of k. �

The next lemma describes propagation of tag information in the case where the propagation phase of the first operation
and the query phase of the second operation share a configuration.

Lemma 6.16 Assume π1 and π2 are two read or write operations, and k ∈ N, such that: (1) The prop-fix event of π1 occurs
in an execution α. (2) The query-fix event of π2 occurs in α. (3) The prop-fix event of π1 precedes the query-phase-start(π2)
event. (4) prop-cmap(π1)(k) and query-cmap(π2)(k) are both in C. Then:

1. tag(π1) ≤ tag(π2).
2. If π2 is a write then tag(π1) < tag(π2).

Proof. The hypotheses imply that prop-cmap(π1)(k) = query-cmap(π2)(k) = c(k). Then W (π1, k) and R(π2, k)
are both defined in α. Since they are both quorums of configuration c(k), they have a nonempty intersection; choose
j ∈W (π1, k) ∩R(π2, k).

Lemma 6.4 implies that, in any state after the prop-fix event of π1, tagj ≥ tag(π1). Since the prop-fix event of π1
precedes the query-phase-start(π2) event, we have that t ≥ tag(π1), where t is defined to be the value of tagj just before
the query-phase-start(π2) event. Then Lemma 6.3 implies that tag(π2) ≥ t, and if π2 is a write operation, then tag(π2) > t.
Combining the inequalities yields both conclusions. �

The final lemma is similar to the previous one, but it does not assume that the propagation phase of the first operation and
the query phase of the second operation share a configuration. The main focus of the proof is on the situation where all the
configuration indices used in the query phase of the second operation are greater than those used in the propagation phase of
the first operation.

26

Lemma 6.17 Assume π1 and π2 are two read or write operations, such that: (1) The prop-fix of π1 occurs in an execution
α. (2) The query-fix of π2 occurs in α. (3) The prop-fix event of π1 precedes the query-phase-start(π2) event. Then:

1. tag(π1) ≤ tag(π2).
2. If π2 is a write then tag(π1) < tag(π2).

Proof. Let i1 and i2 be the indices of the processes that run operations π1 and π2, respectively. Let cm1 = prop-cmap(π1)
and cm2 = query-cmap(π2). If there exists k such that cm1(k) ∈ C and cm2(k) ∈ C, then Lemma 6.16 implies the
conclusions of the lemma. So from now on, we assume that no such k exists.

Lemma 6.15 implies that min({` : cm1(`) ∈ C}) ≤ max({` : cm2(`) ∈ C}). Invariant 1 implies that the set of indices
used in each phase consists of consecutive integers. Since the intervals have no indices in common, it follows that s1 < s2,
where s1 is defined to be max({` : cm1(`) ∈ C}) and s2 is defined to be min({` : cm2(`) ∈ C}).

Lemma 6.12 implies that there exists a garbage-collection operation that we will call γs2−1 such that s2 = target(γs2−1),
and the gc-prop-fix of γs2−1 precedes the query-phase-start(π2) event. Then by Lemma 6.14, tag(γs2−1) ≤ tag(π2), and if
π2 is a write operation then tag(γs2−1) < tag(π2).

Next we will demonstrate a chain of garbage-collection operations with non-decreasing tags. Lemma 6.9, in con-
junction with the already defined γs2−1, implies the existence of a (0, s2 − 1)-gc-sequence of garbage-collection oper-
ations γ0, . . . , γs2−1. Since s1 ≤ s2 − 1, we know that s1 ∈ removal-set(γs1). Then Corollary 6.11 implies that
tag(γs1) ≤ tag(γs2−1).

It remains to show that the tag of π1 is no greater than the tag of γs1 . Therefore we focus now on the relationship
between operation π1 and garbage-collection operation γs1 . The propagation phase of π1 accesses write-quorum W (π1, s1)
of configuration c(s1), whereas the query phase of γs1 accesses read-quorum R(γs1 , s1) of configuration c(s1). Since
W (π1, s1) ∩R(γs1 , s1) 6= ∅, we may fix some j ∈W (π1, s1) ∩R(γs1 , s1).

Let message m1 from i1 to j and message m′1 from j to i1 be as in Lemma 6.4 for the propagation phase of γs1 . Let
message m2 be the message from the process running γs1 to j, and let message m′2 be the message from j to the process
running γs1 , as must exist according to Lemma 6.5 for the query phase of γs1 .

We claim that j sends m′1, its message for π1, before it sends m′2, its message for γs1 . Suppose for the sake of contradic-
tion that j sends m′2 before it sends m′1. Assume that st = target(γs1). Notice that st > s1, since s1 ∈ removal-set(γs1).
Lemma 6.5 implies that in any state after j receives m2, before j sends m′2, cmap(k)j 6= ⊥ for all k ≤ st. Since j sends
m′2 before it sends m′1, monotonicity of cmap implies that just before j sends m′1, cmap(k)j 6= ⊥ for all k ≤ st. Then
Lemma 6.4 implies that prop-cmap(π1)(`) ∈ C for some ` ≥ st. But this contradicts the choice of s1, since s1 < st. This
implies that j sends m′1 before it sends m′2.

Since j sends m′1 before it sends m′2, Lemma 6.4 implies that, at the time j sends m′2, tag(π1) ≤ tagj . Then Lemma 6.5
implies that tag(π1) ≤ tag(γs1). From above, we know that tag(γs1) ≤ tag(γs2−1), and tag(γs2−1) ≤ tag(π2), and if π2
is a write operation then tag(γs2−1) < tag(π2). Combining the various inequalities then yields both conclusions. �

6.8 Atomicity
Let β be a well-formed trace of S that satisfies Definition 4.1, and assume that all read and write operations complete in β.
Consider any particular (good) execution α of S whose trace is β. We define a partial order ≺ on read and write operations
in β, in terms of the operations’ tags in α. Namely, we totally order the writes in order of their tags, and we order each read
with respect to all the writes as follows: a read with tag t is ordered after all writes with tags no larger than t and before all
writes with tags larger than t.

Lemma 6.18 The ordering ≺ is well-defined.

Proof. We need to show that no two write operations are assigned the same tag. This is clearly true for two writes that
are initiated at different nodes, because the low-order tiebreaker identifiers are different. For two writes at the same node,
Lemma 6.17 implies that the tag of the second is greater than the tag of the first. �

Lemma 6.19 ≺ satisfies the four conditions in the definition of atomicity in Definition 4.3.

Proof. We begin with Property 2, which as usual in such proofs, is the most interesting thing to show. Suppose for the sake
of contradiction that π1 completes before π2 starts, yet π2 ≺ π1. We consider two cases:

1. π2 is a write operation.
Since π1 completes before π2 starts, Lemma 6.17 implies that tag(π2) > tag(π1). On the other hand, the fact that
π2 ≺ π1 implies that tag(π2) ≤ tag(π1). This yields a contradiction.

27

2. π2 is a read operation.
Since π1 completes before π2 starts, Lemma 6.17 implies that tag(π2) ≥ tag(π1). On the other hand, the fact that
π2 ≺ π1 implies that tag(π2) < tag(π1). This yields a contradiction.

Since we have a contradiction in either case, Property 2 must hold. Property 1 follows from Property 2. Properties 3 follows
from the fact that each write has a unique tag associated with it; as a result, all write operations are ordered. (By the definition
of the partial ordering, each read operation is ordered with respect to each write operation.)

Property 4 can be observed as follows. For each read operation πR, there is clearly some write operation πW where
tag(πR) = tag(πW). It is easy to see that the read operation πR returns the value that was written by πW , as tags and values
are propagated together by gossip messages. Moreover, by the manner in which the partial order ≺ is defined, πW is the
“largest” write operation that precedes πR, and hence Property 4 is satisfied. �

Putting everything together, we conclude with Theorem 6.1.

Theorem 6.1 RAMBO implements a reconfigurable atomic memory, as in Definition 4.4. That is, let β be a trace of the
system S. If requests in β are well-formed (as in Definition 4.1), then responses are well-formed (as in Definition 4.2) and
operations in β are atomic (as in Definition 4.3). That is, S is a Reconfigurable Atomic Memory (Definition 4.4).

Proof. Let β be a trace of S that satisfies Definitions 4.1. We argue that β satisfies Definitions 4.2 and 4.3. The proof that
β satisfies the RAMBO well-formedness guarantees is straightforward from the code. To show that β satisfies the atomicity
condition, assume that all read and write operations complete in β. Let α be an execution of S whose trace is β. Define the
ordering ≺ on the read and write operations in β as above, using the chosen α. Then Lemma 6.19 says that ≺ satisfies the
four conditions in the definition of atomicity. Thus, β satisfies the atomicity condition, as needed. �

7 Implementation of the Reconfiguration Service
In this section, we describe a distributed algorithm that implements the Recon service. The reconfiguration service is built
using a collection of global consensus services Cons(k, c), one for each k ≥ 1 and for each c ∈ C. The protocol presented
in this section is responsible for coordinating the various consensus instances.

First, in Section 7.1, we describe the consensus service Cons(k, c), which can be implemented using the Paxos con-
sensus algorithm [39]. We then in Section 7.2 describe the Recon automata that, together with the consensus components,
implement the reconfiguration service.

7.1 Consensus service
In this subsection, we specify the behavior of the consensus service Cons(k, c) for a fixed k ≥ 1 and c ∈ C. The external
signature of Cons(k, c) is given in Figure 8. The goal of the consensus service is to reach agreement among members of

Input:
init(v)k,c,i, v ∈ V , c ∈ C, i ∈ members(c)
faili, c ∈ C, i ∈ members(c)

Output:
decide(v)k,c,i, v ∈ V , c ∈ C, i ∈ members(c)

Figure 8: Cons(k, c): External signature

configuration c. The protocol is initiated when members of configuration c submit proposals (via init inputs) for the next
configuration. Eventually, the consensus service outputs one of the proposals as its decision (via decide outputs).

We begin by stating the environmental well-formedness assumptions:

Definition 7.1 (Consensus Input Well-Formedness) For every integer k and configuration c, for every i ∈ members(c):

1. Failures: After a faili event, there are no further init(∗)k,c,i events.
2. Initialization: There is at most one init(∗)k,c,i event.

In every execution satisfying the well-formedness properties, the consensus service guarantees the following safety proper-
ties:

Definition 7.2 (Consensus Safety) For every integer k and configuration c:

1. Well-formedness: For every i ∈ members(c):

28

Signature:

Input:
join(recon)i
recon(c, c′)i, c, c′ ∈ C, i ∈ members(c)
request-config(k)i, k ∈ N+

decide(c)k,i, c ∈ C, k ∈ N+

recv(〈config, c, k〉)j,i, c ∈ C, k ∈ N+,
i ∈ members(c), j ∈ I

recv(〈init , c, c′, k〉)j,i, c, c′ ∈ C, k ∈ N+,
i, j ∈ members(c)

faili

Output:
join-ack(recon)i
new-config(c, k)i, c ∈ C, k ∈ N+

init(c, c′)k,i, c, c′ ∈ C, k ∈ N+, i ∈ members(c)
recon-acki
report(c)i, c ∈ C
send(〈config, c, k〉)i,j , c ∈ C, k ∈ N+,
j ∈ members(c)

send(〈init , c, c′, k〉)i,j , c, c′ ∈ C, k ∈ N+,
i, j ∈ members(c)

State:
status ∈ {idle, active, failed}, initially idle.
rec-cmap : N→ C±, a configuration map, initially:

rec-cmap(0) = c0
rec-cmap(k) = ⊥ for all k 6= 0.

did-init ⊆ N+, initially ∅
ready-new-config ⊆ N+, initially ∅
did-new-config ⊆ N+, initially ∅

cons-data ∈ (N+ → (C × C)): initially ⊥ everywhere
rec-status ∈ {idle} ∪ (active × N+), initially idle
reported ⊆ C, initially ∅

Figure 9: Reconi: Signature and state

• After a faili event, there are no further decide(∗)k,c,i events.
• At most one decide(∗)k,c,i event occurs.
• If a decide(∗)k,c,i event occurs, then it is preceded by an init(∗)k,c,i event.

2. Agreement: If decide(v)k,c,i and decide(v′)k,c,i′ events occur, then v = v′.
3. Validity: If a decide(v)k,c,i event occurs, then it is preceded by an init(v)k,c,j .

Each consensus service Cons(k, c) can be implemented using a separate instance of the Paxos algorithm [39]. This satisfies
the safety guarantees described above:

Theorem 7.3 If for some k and c, β is a trace of Paxos that satisfies Definition 7.1, then β also satisfies the well-formedness,
agreement, and validity guarantees (Definition 7.2).

7.2 Recon automata
The Recon automata coordinate the collection of consensus services, translating a reconfiguration request into an input for
the appropriate consensus service, and translating decisions into an appropriate (ordered) sequence of configurations. The
signature and state of Reconi appear in Figures 9, and the transitions in Figure 10.

We now briefly review the interface of the reconfiguration service, which was specified in Section 4.2. Recall that the
the service is activated by the joining protocol, which performs a join input (lines 1–4). When the service is activated,
it responds with a join-ack response (lines 6–10). The reconfiguration service accepts recon requests (lines 53–64), and
responds with recon-ack responses (lines 63–70), irregardless of whether the reconfiguration has succeeded or not. When a
new configuration is chosen, the service outputs report(c), indicating that configuration c has been agreed upon (lines 26–32).
In response to request-config(k) requests (lines 12–15), it also specifies the ordering of configurations via new-config(c, k)
outputs (lines 17–24), which specify that c is the kth configuration. The fail input (lines 102–104) indicates that the node on
which the automaton is executing has failed.

The Recon automaton at node i also has some additional interface components for communicating with the consensus
services Cons(k, c) and the communication channels. For each integer k and configuration c, it has an output initk,i,c to
initialize Cons(k, c) (lines 72–79), and an input decidek,i,c for receiving decisions from the consensus service (lines 81–84).
It sends and receives messages from node j via sendi,j and recvj,i actions. Notice that unlike the Reader-Writer automata,
the Recon automata do not keep track of all the active participants in the system; thus messages are sent and received only
among members of known configurations.

In terms of state, each Recon automaton maintains its current status , either idle , active , or failed , and also the
rec-status , which indicates whether a reconfiguration request has been submitted, and if so, with respect to which con-
figuration index. It also maintains a configuration map rec-cmap which tracks the configuration assigned to each index k.
The set did-init keeps track of the set of integers k such that the automaton has submitted an init request to Cons(k, ·). The
set ready-new-config keeps track of the set of integers k for which a configuration has been requested by the clinet. The

29

set did-new-config keeps track of the set of integers k such that it has produced an output new-config(k, ·). The cons-data
map stores any ongoing reconfiguration request: if cons-data(k) = 〈c, c′〉, that indicates that a reconfiguration has been
requested from configuration c, the kth configuration, to configuration c′, which will become the k + 1st configuration. The
set reported indicates which configuration have been produced via the report output.

The operation of the automaton is straightforward. When it receives a recon(c, c′) request (lines 53–61), it sets up the
reconfiguration, first finding the appropriate index k of configuration c (line 58) and updating the cons-data map (lines
59–60). This then causes an init(c′)k,c,i (lines 72–79), initiating the Cons(k, c) consensus service with a proposal for new
configuration c′. (It only proceeds with this initialization after all previous configurations have been output, and only if there
has been no prior initialization for Cons(k, ·).) When the consensus instance completes, the Recon automaton is notified via
a decide(c′′)k,c,i as to the new configuration (lines 81–84). This new configuration is then stored in the configuration map
rec-cmap (line 84), and the reconfiguration request completes with a recon-ack (lines 63–70). The new configuration is first
installed via a new-config (once it is requested via lines 12–15), and then reported to the client via a report (lines 26–32).

Lastly, notice that the rec-cmap and the cons-data are both continuously sent to other nodes via background gossip
(lines 34–40). This gossip ensures that if some configuration c is chosen to be the kth configuration, then every node in
configuration c eventually learns about the installation of configuration c; and the gossip ensures that if some node proposes
a recon(c, c′), then eventually every member of configuration c learns about the proposed reconfiguration and issues an init
to begin the appropriate consensus instance.

It is easy to see that the reconfiguration service meets the required specification:

Theorem 7.4 The Recon automata implement a reconfiguration service (as per Definition 4.8).

8 Performance and Fault-Tolerance Hypotheses
In this and the following two sections, Sections 9 and 10, we present our conditional performance results—an analysis of the
latency of RAMBO operations under various assumptions about timing, failures, and the patterns of requests. We present the
results in two groups: Section 9 contains results for executions in which “normal timing behavior” is observed throughout the
execution; Section 10 contains results for executions that “stabilize” so that “normal timing behavior” is observed from some
point onward. In this section, we define what we mean by “normal timing behavior,” presenting a series of timing-related
assumptions used in the context of both sections.

We formulate these results for the full RAMBO system S′ consisting of Reader-Writer i and Joiner i for all i, Reconimpl

(which consists of Reconi for all i and Cons(k, c) for all k and c), and channels between all i and j. Since we are dealing
here with timing, we “convert” all these automata to general timed automata as defined in [44] by allowing arbitrary amounts
of time to pass in any state, without changing the state.

This section is divided into the following parts. First, in Section 8.1, we restrict the nondeterminism in RAMBO, ensuring
that locally-controlled events occur in a timely fashion. Next, in Section 8.2 we specify the behavior or the network, assuming
that (eventually), messages are delivered in some bounded time. Finally, in Sections 8.3–8.7, we present assumptions on the
viability of installed configurations, the rate at which nodes join, and the rate of reconfiguration.

8.1 Restricting nondeterminism
RAMBO in its full generality is a highly nondeterministic algorithm. For example, it allows sending of gossip messages
at arbitrary times. For the remainder of this paper, we restrict RAMBO’s nondeterminism so that messages are sent at the
earliest possible time and at regular intervals thereafter. We also assume that locally controlled events unrelated to sending
messages occur just once, as soon as they are enabled. We now proceed in more detail.

We begin by fixing a constant d > 0, which we refer to as the normal message delay. We assume a restricted version
of RAMBO in which each Reader-Writer i, Joiner i, and Reconi automaton has a real-valued local clock, which evolves
according to a continuous, monotone increasing function from nonnegative reals to reals. Local clocks of different automata
may run at different rates. Moreover, the following conditions hold in all admissible timed executions (those timed executions
in which the limit time is∞):

• Periodic gossip: Each Joiner i whose statusi = joining sends join messages to everyone in its hintsi set every
time d, according to its local clock. Each Reader-Writer i sends messages to everyone in its world i set every time d,
according to its local clock.

• Important Joiner messages: Whenever the Joiner i service at node i receives a join(rambo, J)i request, it immediately
sends a join request to node j, without any time passing on its local clock, for every j ∈ J .

30

Transitions:
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Input join(recon)i
Effect:

if status = idle then
status ← active

Output join-ack(recon)i
Precondition:

status = active
Effect:

none

Input request-config(k)i
Effect:

if status /∈ {idle, failed} then
ready-new-config ← ready-new-config ∪ {k}

Output new-config(c, k)i
Precondition:

status = active
rec-cmap(k) = c
k ∈ ready-new-config
k /∈ did-new-config

Effect:
did-new-config ← did-new-config ∪ {k}

Output report(c)i
Precondition:

status = active
c 6∈ reported
c ∈ did-new-config

Effect:
reported ← reported ∪ {c}

Output send(〈config, c, k〉)i,j
Precondition:

status = active
j ∈ members(c)
rec-cmap(k) = c

Effect:
none

Input recv(〈config, c, k〉)j,i
Effect:

if status = active then
rec-cmap(k)← c

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Input recon(c, c′)i
Effect:

if status = active then
let S = {` : rec-cmap(`) ∈ C}
if S 6= ∅ then

let k = max(S)
if c = rec-cmap(k) and cons-data(k + 1) = ⊥ then

cons-data(k + 1)← 〈c, c′〉
rec-status ← 〈active, k + 1〉

Output recon-ack()i
Precondition:

status = active
rec-status = 〈active, k〉
rec-cmap(k) 6= ⊥

Effect:
rec-status ← idle
outcome ← ⊥

Output init(c′)k,c,i
Precondition:

status = active
cons-data(k) = 〈c, c′〉
if k ≥ 1 then k − 1 ∈ did-new-config
k 6∈ did-init

Effect:
did-init ← did-init ∪ {k}

Input decide(c′)k,c,i
Effect:

if status = active then
rec-cmap(k)← c′

Output send(〈init, c, c′, k〉)i,j
Precondition:

status = active
j ∈ members(c)
cons-data(k) = 〈c, c′〉
k ∈ did-init

Effect:
none

Input recv(〈init, c, c′, k〉)j,i
Effect:

if status = active then
if rec-cmap(k − 1) = ⊥ then rec-cmap(k − 1)← c
if cons-data(k) = ⊥ then cons-data(k)← 〈c, c′〉

Input faili
Effect:

status ← failed

Figure 10: Reconi transitions.

31

• Important Reader-Writer messages: Each Reader-Writer i sends a message immediately to node j, without any time
passing on its clock, in each of the following situations:

– Just after a recv(join)j,i event occurs, if statusi = active .
– Just after a recv(∗, ∗, ∗, ∗, snder-phase, ∗)j,i event occurs, if snder-phase > pnum-vector(j)i and statusi =

active .
– Just after a new-config(c, k)i event occurs if statusi = active and j ∈ world i.
– Just after a readi, writei, or query-fixi event, or a recv event that resets op.acc to ∅, if j ∈ members(c), for some
c that appears in the new op.cmapi.

– Just after a gc(k)i event occurs, if j ∈ members(cmap(k)i).
– Just after a gc-query-fix(k)i event occurs, if j ∈ members(cmap(k)i).

• Important Recon messages: Each Reconi sends a message immediately to j, without any time passing on its clock, in
the following situations:

– The message is of the form (config , c, k), and a decide(c)k,∗,i event has just occurred, for j ∈ members(c)−{i}.
– The message is of the form (init , c, c′, k), and an init(c′)k,c,i event has just occurred, for j ∈ members(c)−{i}.

• Non-communication events: Any non-send locally controlled action of any RAMBO automaton that has no effect on
the state is performed only once, and before any time passes on the local clock.

We also assume that every garbage-collection operation removes the maximal number of obsolete configurations:

• If a gc(k)i event occurs, then immediately prior to the event, there is no k′ > k such that gc(k′)i is enabled.

An alternative to listing these properties is to add appropriate bookkeeping to the various RAMBO automata to ensure
these properties. We avoid this approach for the sake of simplicity: adding such restrictions would unnecessarily complicate
the pseudocode (for example, necessitating the use of TIOA [34] to capture timing behavior).

8.2 Normal timing behavior
We now define “normal timing behavior,” restricting the timing anomalies observed in an execution, specifically, the relia-
bility of the clocks and the latency of message delivery. We define executions that satisfy this normal timing behavior from
some point onwards. An execution that always satisfies normal timing behavior is viewed as a special case. Throughout this
section we use the following notation: given an execution prefix α′, we define `time(α′) to be the time of the last event in
α′.

Let α be an admissible timed execution, and α′ a finite prefix of α. Arbitrary timing behavior is allowed in α′: messages
may be lost or delivered late, clocks may run at arbitrary rates, and in general any asynchronous behavior may occur. We
assume that after α′, good behavior resumes.

Definition 8.1 We say that α is an α′-normal execution if the following assumptions hold:

1. Initial time: A join-acki0 event occurs at time 0, completing the join protocol for node i0, the node that created the
data object.

2. Regular timing: The local clocks of all RAMBO automata (i.e., Reader-Writer i,Reconi, Joiner i) at all nodes in the
system progress at exactly the rate of real time, after the prefix α′. (Notice that this does not imply that the clocks are
synchronized.)

Recall from Section 8.1 that the timing of gossip messages and the performance of other locally-controlled events rely
on the local clocks. Thus, this single assumptions implies that all locally-controlled events occur subject to appropriate
timing constraints.

3. Reliable message delivery: No message sent in α after α′ is lost.

4. Message delay bound: If a message is sent at time t in α and if it is delivered, then it is delivered no later than time
max(t, `time(α′)) + d.

32

8.3 Join-Connectivity
In the remainder of this section, we present several hypotheses that we need for our latency bound results. Notice that none
of the assumptions depend on time in α′, i.e., during the portion of the execution in which time cannot be reliably measured.

The first hypothesis bounds the time for two participants that join the system to learn about each other. If they join during
a period of normal timing behavior, they learn about each other within e time. If the network is unstable, then within e time
of the network stabilizing, they learn about each other.

Definition 8.2 Let α be an α′-normal execution, e ∈ R≥0. We say that α satisfies (α′,e)-join-connectivity provided that:
for any time t and nodes i, j such that a join-ack(rambo)i and a join-ack(rambo)j occur no later than time t, if neither i nor
j fails at or before max(t, `time(α′)) + e, then by time max(t, `time(α′)) + e, i ∈ world j .

We say that α satisfies e-join-connectivity when it satisfies (∅, e)-join-connectivity.
We do not think of join-connectivity as a primitive assumption. Rather, it is a property one might expect to show is

satisfied by a good join protocol, under certain more fundamental assumptions, for example, sufficient spacing between join
requests. We leave it as an open problem to develop and carefully analyze a more involved join protocol.

8.4 Configuration Viability
The next hypothesis, configuration-viability, is a reliability property for configurations, specifically for the quorums that
make up each configuration. In general in systems that use quorums, operations are guaranteed to terminate only if certain
quorums do not fail. (If no quorums remain available, it is impossible for a quorum-based algorithm to make progress.)

Similarly in this paper, in order to guarantee the termination of read operations, write operations, reconfiguration, and
garbage collection, we assume that at least some of the available quorums do not fail. Because our algorithm uses different
configurations at different times, our notion of configuration-viability takes into account which configurations might still be
in use.

Intuitively, we say that a configuration is viable if some of its quorums survive until sufficiently long after the next
configuration is installed. The definition is parameterized by a variable τ that indicates for how long a configuration is
viable after the next configuration is installed. Notice, however, that during intervals when all messages are lost (i.e., during
the unstable prefix of an execution), there is no time τ that is long enough. Thus, an additional requirement is that some
quorums remain viable until sufficiently long after the network stabilizes, i.e., after α′. (Thus, α′ is also a parameter of
the configuration-viability definition). In fact, after the network stabilizes, it may take some time for the join protocol to
complete; some quorums must remain extant until sufficiently long after the join protocol completes. A third parameter e
captures how long it takes the join protocol to complete.

Installation. We now proceed more formally, first defining the point at which a configuration c is installed; configuration-
viability specifies how long prior configurations must remain extant after configuration c is installed. Ifα is a timed execution,
we say that configuration c is installed in α: (i) initially at time 0, if c = c0; or (ii) when for some k > 0, for every
i ∈ members(c(k − 1)), either a new-config(c, k)i event or a faili event occurs in α. That is, configuration c0 is installed
initially (i.e., always), and a later configuration c is installed when every non-failed member of the prior configuration is
notified via a new-config event of the new configuration. (Notice that the definition of installation is derived from the
behavior of the reconfiguration service, independent of the remaining RAMBO components, and is tied to the ordering of
configurations; thus it relies on the new-config event.)

Viability. We now define what it means for an execution to be (α′, e, τ)-configuration-viable:

Definition 8.3 Let α be an admissible timed execution, and let α′ be a finite prefix of α. Let e, τ ∈ R≥0. Then α is
(α′, e, τ)-configuration-viable if the following holds:
For every configuration c for which a report(c)i event occurs for some i, there exist R ∈ read-quorums(c) and W ∈
write-quorums(c) such that at least one of the following holds:

1. No process in R ∪W fails in α.

2. Fix k such that c is the kth configuration (as determined by the sequence of reconfigurations). There exists a finite
prefix αinstall of α such that (a) for all ` ≤ k+1, configuration c(`) is installed in αinstall , (b) no process inR∪W fails
in α at or before time `time(α′)+ e+2d+ τ , (c) no process in R∪W fails in α at or before time `time(αinstall)+ τ .

33

Notice, then, that if a configuration is viable, there is at least one read-quorum and at least one write-quorum that survives
until either time e + 2d + τ after the network stabilizes (i.e., after α′), or at least time τ after the next configuration is
installed.4

We say simply that α satisfies τ -configuration-viability if α satisfies (∅, 0, τ)-configuration viability, i.e., configuration-
viability holds from the beginning of the execution.

Choosing configurations. A natural question that arises is how to choose configurations that will remain viable, and when
to initiate reconfigurations so as to ensure viability. In general, this is not a trivial problem and it is well outside the scope of
this paper. Even so, it is a critical issue that arises in implementing RAMBO, or any dynamic quorum-based system. In part,
we believe that configuration-viability is a reasonable assumption (and a problem outside the scope of this paper) as it seems
a necessary property of any dynamic quorum-based system.

The algorithm responsible for initiating reconfiguration is responsible for observing when sufficiently many nodes have
failed to jeopardize a configuration, and to propose a new configuration sufficiently early that it can be installed prior to the
old configuration failing. This task can be divided into three components:

1. First, the reconfigurer must monitor the availability of quorums to determine whether a configuration is at risk. (This
monitoring may take the form of a failure detector (see [14]) which guesses when other nodes in the system have
crashed. Failure detectors can achieve sufficient reliability when the network is stable.)

2. It must also evaluate the rate at which failures occur, in order to determine how long the remaining quorums can be
expected to survive. (This estimate of how long a given node is likely to survive can also enable the selection of new
configurations with maximum viability.)

3. Finally, it must estimate the network latencies and rate of message loss, in order to gauge how long it will take to install
the new configuration: when the network is stable, consensus (and hence reconfiguration) can be quite fast; when the
network is unstable, it might be quite slow. (Notice, then, that configuration viability depends on the operation of the
Recon service, in that a new configuration must be proposed sufficiently far in advance for Recon to install it prior
to the previous configuration failing; a well-implemented Recon service can provide the necessary latency guarantees
during periods of network stability.)

Thus, we believe that if intervals of network instability are of bounded length, and if the rate of node failures is bounded, and
if the rate of newly joining nodes is sufficient to compensate for failures, then it should be possible to ensure configuration
viability. We leave it as an open problem to determine under what precise conditions configuration viability can be achieved,
and how to achieve it.

8.5 Recon-Spacing
The next hypothesis states that recon events do not occur too frequently: a recon(c, ∗) that initiates a transition from config-
uration c to a new configuration is only initiated sufficiently long after configuration c was proposed, and after sufficiently
many nodes have learned about configuration c. This ensures that successful recon events are not spaced too closely, and
that the nodes participating in the recon event are ready to choose a new configuration.

As in the case of configuration viability, the recon-spacing assumption is parameterized by α′, the prefix during which
timing assumptions may not hold, and e, a constant that indicates how long it takes a new node to join the system.

Definition 8.4 Let α be an α′-normal execution, and e ∈ R≥0. We say that α satisfies (α′,e)-recon-spacing if

1. recon-spacing-1: For any recon(c, ∗)i event in α there exists a write-quorum W ∈ write-quorums(c) such that for all
j ∈W , report(c)j precedes the recon(c, ∗)i event in α.5

2. recon-spacing-2: For any recon(c, ∗)i event in α after α′ the preceding report(c)i event occurs at least time e earlier.

We say simply that α satisfies e-recon-spacing if it satisfies (∅, e)-recon-spacing.

4The e+2d time captures the additional time after the network stabilizes that a quorum must survive. This additional time allows sufficient information
to propagate to everyone: within time e after the network stabilizes, each pair of nodes is aware of each other; within a further d time each node sends a
gossip message; within a further d time, the gossip messages are received.

5Notice that this property does not depend on a node’s local clock; it can be verified simply by collecting gossip from other nodes for which a report(c)
event has occurred.

34

8.6 Recon-Readiness
The next hypothesis says that when a configuration c is proposed by some client, every member of configuration c has already
joined the system sufficiently long ago.

Definition 8.5 An α′-normal execution α satisfies (α′, e)-recon-readiness if the following property holds: if a recon(∗, c)∗
event occurs at time t, then for every j ∈ members(c):

• A join-ackj event occurs prior to the recon event.

• If the recon occurs after α′, then a join-ackj event occurs no later than time t− (e+ 3d).

The delay of e + 3d allows time for the join protocol to complete, and for sufficient information to be exchange with other
participants. We say simply that α satisfies e-recon-readiness if it satisfies (∅, e)-recon-readiness.

8.7 GC-Readiness
The last hypothesis ensures that after the system stabilizes, a node initiates a read, write, or garbage-collection operation
only if it has joined sufficiently long ago.

Definition 8.6 We say that an α′-normal execution α satisfies (α′, e, d)-gc-readiness if the following property holds: if
for some i a gci event occurs in α after α′ at time t, then a join-ackj event occurs no later than time t− (e+ 3d).

The delay of e + 3d allows time for the join protocol to complete, and for sufficient information to be exchange with other
participants. Notice that the gc action is an internally-controlled action, and hence in this case, the hypothesis could be
readily enforced via explicit reference to the local clock.

9 Latency and Fault-Tolerance: Normal Timing Behavior
In this section, we present conditional performance results for the case where normal timing behavior is satisfied throughout
the execution. The main result of this section, Theorem 9.7, shows that every read and write operation completes within 8d
time, despite concurrent failures and reconfigurations. In fact, each phase (i.e., query or propagation) takes at most time 4d,
as each round-trip takes at most 2d, and a given phase may require two round-trips (if a new configuration is installed during
the phase, requiring a new quorum be contacted). Since each operation takes two phases, the result is an 8d bound on each
operation. (Notice that if there are no new configurations produced by the Recon service during a read or write operation, it
is easy to see that the operation completes in time 4d.)

For this entire section, we fix α to be an α′-normal admissible timed execution where α′ is an empty execution. That is,
α exhibits normal timing behavior throughout the execution. For a timed execution α, we let time(π) stand for the real time
at which the event π occurs in α.

9.1 Performance Hypotheses
The claims in this section depend on the various hypotheses presented in Section 8. In this section, we list these assumptions,
and provide some brief explanation as to how each is used in the analysis. Specifically, we assume that α satisfies: e-join-
connectivity, e-recon-readiness, 11d-configuration-viability, and 13d-recon-spacing. We now proceed in more detail.

First, we fix e ∈ R≥0 such that e-join-connectivity holds in α. The hypothesis of join-connectivity states that two
nodes are aware of each other soon after they complete the join protocol. Key to the analysis is the fact that information
propagates rapidly through the system: whenever a new configuration is installed or an old configuration garbage-collected,
this information is soon received by a sufficient subset of the participants (see Lemma 9.1). In order to take advantage of
join-connectivity, though, we have to argue that the participants all joined sufficiently long ago.

To this end, we assume that α satisfies e-recon-readiness. This implies that if a node is part of configuration c, and if it
has received a report about configuration c, then it must have joined sufficiently long ago (Lemma 9.2).

Perhaps the most important performance hypothesis is configuration-viability: we assume that execution α satisfies 11d-
configuration-viability. That is, we assume that each configuration is viable for at least 11d after the subsequent configuration
is installed. The reason we need a configuration to remain viable for 11d is to allow sufficient time for a query or propagation
phase of an operation to complete.

In order to illustrate this point, assume that some node i is executing a read or write operation. Assume that some new
configuration c is installed at time t, and that node i uses some prior configuration c′ during either the query or propagation
phase. We need to guarantee that quorums of this prior configuration survives for sufficiently long for the phase to complete.

35

The 11d time of viability can be broken down into four components. (1) Time d may elapse from when configuration c
is installed to when configuration c is reported. (2) Time 6d may elapse during which the old configuration c′ is garbage-
collection (Lemmas 9.5 and 9.6). (3) Time 2d further may elapse while this information is propagated to node i. Notice
that any phase that begins after this point will not use any configuration previous to c. Thus we can assume that the query
or propagation phase initiated by i begins no later than this point. (4) Time 2d may elapse during the query or propagation
phase, while i contacts a quorum of c and receives a response. Thus it is sufficient for configuration c′ to remain viable for
11d from the point at which configuration c is installed.

The last assumption is recon-spacing: we assume that execution α satisfies 13d-recon-spacing. The recon-spacing
assumption ensures that a given phase of a read or write operation is interrupted at most once by a new configuration. Recall
that whenever a new configuration is discovered, the initiator of the phase must contact a quorum from the new configuration.
Thus, each time a new configuration is discovered, the phase may be delivered by a further 2d time.

Again, consider the previous example, where some new configuration c is installed at time t, and assume that some phase
of a read or write operation uses an old configuration c′. As we just argued, if the query or propagation phase uses old
configuration c′, then it begins at latest at time t+8d. Thus, the recon-spacing hypothesis ensures that no other configuration
is installed until after t+12d, which gives the phase at least time 4d to complete. Since there are at most two configurations
to contact (i.e., configurations c and c′), we can be certain that the phase will complete by time t+12, and hence 13d-recon-
spacing is sufficient.

9.2 Propagation of information
In this section, we show how information is propagated amongst various participants. Specifically, if two nodes both joined
sufficiently long ago, then join-connectivity ensures that they exchange information frequently. Thus, if one learns about a
new configuration, or learns that a configuration has been garbage collected, then the other learns this as well. One corollary
of this is that if a new configuration is installed, soon thereafter every other participant that joined sufficiently long ago learns
about the new configuration.

We begin by showing that all participants succeed in exchanging information about configurations, within a short time.
If both i and j are “old enough,” i.e., have joined at least time e ago, and do not fail, then any information that i has about
configurations is conveyed to j within time 2d.

Lemma 9.1 Assume that α satisfies e-join-connectivity, t ∈ R≥0, t ≥ e. Suppose:

1. join-ack(rambo)i and join-ack(rambo)j both occur in α by time t− e.
2. Process i does not fail by time t+ d and j does not fail by time t+ 2d.

Then the following hold:

1. If by time t, cmap(k)i 6= ⊥, then by time t+ 2d, cmap(k)j 6= ⊥.
2. If by time t, cmap(k)i = ±, then by time t+ 2d, cmap(k)j = ±.

Proof. Follows by join-connectivity and regular gossip. �

This next lemma says that a process receiving a report must be “old enough”, that is, they have joined at least time e
earlier. When combined with Lemma 9.1, this leads to the conclusion that information on newly installed configurations is
rapidly propagated.

Lemma 9.2 Assume that α satisfies e-recon-readiness, c ∈ C, c 6= c0, i ∈ members(c). Suppose that a report(c)i event
occurs at time t in α. Then a join-ack(rambo)i event occurs by time t− e.

Proof. Since c 6= c0, we can conclude that the report(c)i event is preceded by a recon(∗, c)∗ event. The conclusion follows
immediately from e-recon-readiness. �

The last lemma in this section combines the two previous results to show that if a report(c)i event occurs at i and if i does
not fail, then another process j that joined sufficiently long ago learns about c soon thereafter.

Lemma 9.3 Assume that α satisfies satisfying e-recon-readiness and e-join-connectivity, c ∈ C, k ∈ N, i, j,∈ I , t, t′ ∈
R≥0. Suppose:

1. A report(c)i occurs at time t in α, where c = rec-cmap(k)i, and i does not fail by t+ d.
2. join-ack(rambo)j occurs in α by time t− e, and j does not fail by time t+ 2d.

36

Then by time t+ 2d, cmap(k)j 6= ⊥.

Proof. The case where k = 0 is trivial to prove, because everyone’s cmap(0) is always non-⊥. So assume that k ≥ 1.
Lemma 9.2 implies that join-ack(rambo)i occurs by time t− e. By assumption, join-ack(rambo)j occurs by time t− e.

Also by assumption, i does not fail by time t+ d, and j does not fail by time t+ 2d. Furthermore, we claim that, by time t,
cmap(k)i 6= ⊥ because the report(c)i occurs at time t; within 0 time, this information gets conveyed to Reader-Writer i.

Therefore, we may apply Lemma 9.1, to conclude that by time t+ 2d, cmap(k)j 6= ⊥. �

9.3 Garbage collection
The results of this section show that old configurations are garbage-collected just as fast as new configurations are installed.
Specifically, if a new configuration c is reported at time t, then by time t + 6d all prior configurations have been garbage
collected. In order to show that an old configuration c′ is garbage collected within time 6d, there are three steps. First, in
Lemma 9.4, we argue that some member of the old configuration c′ survives sufficiently long, i.e., at least time 4d. Next,
in Lemma 9.5, we show that by time t + 6d, some set of nodes has garbage collected the old configuration. Finally, in
Lemma 9.6, we conclude that in fact every non-failed member of configuration c has removed the old configuration.

We begin by showing that at least one member of the old configuration does not fail for 4d time after a new configuration
is reported. This follows from the assumption of configuration viability.

Lemma 9.4 Assume that α satisfies 5d-configuration-viability, c ∈ C, k ∈ N, k ≥ 1, i ∈ members(c) and j ∈ I , t ∈ R≥0.
Suppose:

1. A report(c)i event occurs at time t in α, where c = rec-cmap(k)i.
2. c′ is configuration k − 1 in α.

Then there exists j ∈ members(c′) such that j does not fail by time t+ 4d.

Proof. The behavior of the Recon algorithm implies that the time at which Reconi learns about c being configuration k
is not more than d after the time of the last reportk,c,` event at a node ` ∈ members(c′). Once Reconi learns about c, it
performs the report(c)i event without any further time passage. Then 5d-viability ensures that at least one member of c′ does
not fail by time t+ 4d. �

The next lemma says that a node that has joined sufficiently long ago succeeds in garbage collecting all configurations
earlier than c within time 6d after the report for configuration c. The argument is structured inductively: assume, for some k,
that all configurations prior to c(k) were garbage-collected within time 6d of when c(k) was installed; then configuration c(k)
is garbage-collected within time 6d of configuration c(k + 1) being installed. This lemma relies on recon-spacing to ensure
that by the time c(k + 1) is installed, all configurations prior to c(k) have been garbage collected; thus there are no earlier
configurations that need to be involved in the garbage-collection of c(k). Lemma 9.4 then ensures that some member of c(k)
survives long enough to perform the garbage collection. The remaining details involve ensuring that sufficient information
is propagated for the garbage collection to begin and complete.

Lemma 9.5 Let α be an admissible timed execution satisfying e-recon-readiness, e-join-connectivity, 6d-recon-spacing and
5d-configuration-viability, c ∈ C, k ∈ N, i ∈ members(c), j ∈ I , t ∈ R≥0. Suppose:

1. A report(c)i event occurs at time t in α, where c = rec-cmap(k)i.
2. join-ack(rambo)j occurs in α by time t− e.

Then:

1. If k > 0 and j does not fail by time t+2d, then by time t+2d: (a) cmap(k− 1)j 6= ⊥ and (b) cmap(`)j = ± for all
` < k − 1.

2. If i does not fail by t + d and j does not fail by time t + 6d, then by time t + 6d: (a) cmap(k)j 6= ⊥ and (b)
cmap(`)j = ± for all ` < k.

Proof. By induction on k. Base: k = 0. Part 1 is vacuously true. The clause (a) of Part 2 follows because cmap(0)j 6= ⊥
in all reachable states, and the clause (b) is vacuously true.
Inductive step: Assume k ≥ 1, assume the conclusions for indices ≤ k − 1, and show them for k. Fix c, i, j, t as above.
Part 1: Assume the hypotheses of Part 1, that is, that k > 0 and that j does not fail by time t + 2d. If k = 1 then the
conclusions are easily seen to be true: for clause (a), cmap(0)j 6= ⊥ in all reachable states, and the clause (b) of the claim
is vacuously true. So from now on in the proof of Part 1, we assume that k ≥ 2.

37

Since c is the kth configuration and k ≥ 1, the given report(c)i event is preceded by a recon(∗, c)∗ event. Fix the first
recon(∗, c)∗ event, and suppose it is of the form recon(c′, c)i′ . Then c′ must be the k−1st configuration. Lemma 9.4 implies
that at least one member of c′, say, i′′, does not fail by time t+ 4d.

The recon(c′, c)i′ event must be preceded by a report(c′)i′ event. Since k − 1 ≥ 1, e-recon-readiness implies that
a join-ack(rambo)i′′ event occurs at least time e prior to the report(c′)i′ event. Then by inductive hypothesis, Part 2,
by time time(report(c′)i′) + 6d, cmap(k − 1)i′′ 6= ⊥ and cmap(`)i′′ = ± for all ` < k − 1. By 6d-recon-spacing,
time(recon(c′, c)i′) ≥ time(report(c′)i′)+ 6d, and so t = time(report(c)i) ≥ time(report(c′)i′)+ 6d. Therefore, by time
t, cmap(k − 1)i′′ 6= ⊥ and cmap(`)i′′ = ± for all ` < k − 1.

Now we apply Lemma 9.1 to i′′ and j, with t in the statement of Lemma 9.1 set to the current t. This allows us to
conclude that, by time t+ 2d, cmap(k − 1)j 6= ⊥ and cmap(`)j = ± for all ` < k − 1. This is as needed for Part 1.
Part 2: (Recall that we are assuming here that k ≥ 1.) Assume the hypotheses of Part 2, that is, that i does not fail by time
t + d and j does not fail by time t + 6d. Lemma 9.3 applied to i and j and with t and t′ both instantiated as the current t,
implies that by time t+ 2d, cmap(k)j 6= ⊥. Part 1 implies that by time t+ 2d, cmap(`)j = ± for all ` < k − 1. It remains
to bound the time for cmap(k − 1)j to become ±.

By time t + 2d, j initiates a garbage-collection where k − 1 is in the removal set (unless cmap(k − 1)j is already ±).
This terminates within time 4d. After garbage-collection, cmap(`)j = ± for all ` < k, as needed. The fact that this succeeds
depends on quorums of configuration k− 1 remaining alive throughout the first phase of the garbage-collection. 5d-viability
ensures this.

The calculation for 5d is as follows: t is at most d larger than the time of the last new-config(∗, k) in configuration
c(k − 1). The time at which the garbage-collection is started is no later than t+ 2d. Thus, at most 3d time may elapse from
the last new-config for configuration k until the garbage-collection operation begins. Then an additional 2d time suffices to
complete the first phase of the garbage-collection. �

The following lemma specializes the previous one to members of the newly-reported configuration.

Lemma 9.6 Let α be an admissible timed execution satisfying e-recon-readiness, e-join-connectivity, 6d-recon-spacing and
5d-configuration-viability, c ∈ C, k ∈ N, i ∈ members(c), j ∈ I , t ∈ R≥0. Suppose:

1. A report(c)i event occurs at time t in α, where c = rec-cmap(k)i.
2. j ∈ members(c).

Then:

1. If k > 0 and j does not fail by time t + 2d, then by time t + 2d, cmap(k − 1)j 6= ⊥ and cmap(`)j = ± for all
` < k − 1.

2. If i does not fail by t+ d and j does not fail by time t+ 6d, then by time t+ 6d, cmap(k)j 6= ⊥ and cmap(`)j = ±
for all ` < k.

Proof. If k = 0, the conclusions follow easily. If k ≥ 1, then e-recon-readiness implies that join-ack(rambo)j occurs in α
by time t− e. Then the conclusions follow from Lemma 9.5. �

9.4 Reads and writes
The final theorem bounds the time for read and write operations. There are two key parts to the argument. The first part shows
that, due to recon-spacing, each phase of a read or write operation is required to access at most two configurations. This fact
follows from Lemma 9.6, which shows that old configurations are removed soon after a new configuration is installed, and
thus sufficiently prior to the next reconfiguration. The second part shows that quorums of the relevant configurations survive
sufficiently long; this follows from the configuration viability hypothesis.

Theorem 9.7 Assume that α satisfies e-recon-readiness, e-join-connectivity, 13d-recon-spacing, and 11d-configuration-
viability, i ∈ I , t ∈ R+. Assume that a readi (resp., write(∗)i) event occurs at time t, and join-acki occurs strictly before
time t− (e+ 8d). Then the corresponding read-acki (resp., write-ack(∗)i) event occurs by time t+ 8d.

Proof. Let c0, c1, c2, . . . denote the (possibly infinite) sequence of successive configurations decided upon in α. For each
k ≥ 0, if configurations ck and ck+1 exist, let πk be the first recon(ck, ck+1)∗ event in α, let ik be the node at which
this occurs, and let φk be the corresponding, preceding report(ck)ik event. (The special case of this notation for k = 0 is
consistent with our usage elsewhere.) Also, for each k ≥ 0, if configuration ck exists, choose sk ∈ members(ck) such that:
(1) if configuration ck+1 exists, then sk does not fail by time 10d after the time of φk+1; (2) otherwise, sk does not fail in α.

38

The fact that this is possible follows from 11d-viability (because if there is no configuration ck+1, then configuration ck is
viable forever; otherwise, the report event φk+1 happens at most time d after the final new-config for configuration k + 1).

We show that the time for each phase of the read or write operation is no more than 4d—this will yield the bound we
need. Consider one of the two phases, and let ψ be the readi, writei or query-fixi event that begins the phase.

We claim that time(ψ) > time(φ0) + 8d, that is, that ψ occurs more than 8d time after the report(0)i0 event: We have
that time(ψ) ≥ t, and t > time(join-acki) + 8d by assumption. Also, time(join-acki) ≥ time(join-acki0). Furthermore,
time(join-acki0) ≥ time(φ0), that is, when join-acki0 occurs, report(0)i0 occurs with no time passage.

Fix k to be the largest number such that time(ψ) > time(φk) + 8d. The claim in the preceding paragraph shows that
such k exists.

Next, we claim that by time(φk)+6d, cmap(k)sk 6= ⊥ and cmap(`)sk = ± for all ` < k; this follows from Lemma 9.6,
Part 2, applied with i = ik and j = sk, because ik does not fail before πk, and because sk does not fail by time 10d after
φk+1.

Next, we show that in the pre-state of ψ, cmap(k)i 6= ⊥ and cmap(`)i = ± for all ` < k: We apply Lemma 9.1
to sk and i, with t in that lemma set to max (time(φk) + 6d, time(join-acki) + e). This yields that, no later than time
max (time(φk) + 6d, time(join-acki) + e) + 2d, cmap(k)i 6= ⊥ and cmap(`)i = ± for all ` < k. Our choice of k implies
that time(φk)+8d < time(ψ). Also, by assumption, time(join-acki)+e+2d < t. And t ≤ time(ψ). So, time(join-acki)+
e + 2d < time(ψ). Putting these inequalities together, we obtain that max (time(φk) + 6d, time(join-acki) + e) + 2d <
time(ψ). It follows that, in the pre-state of ψ, cmap(k)i 6= ⊥ and cmap(`)i = ± for all ` < k, as needed.

Now, by choice of k, we know that time(ψ) ≤ time(φk+1) + 8d. The recon-spacing condition implies that time(πk+1)
(the first recon event that requests the creation of the (k + 2)nd configuration) is > time(φk+1) + 12d. Therefore, for an
interval of time of length > 4d after ψ, the largest index of any configuration that appears anywhere in the system is k + 1.
This implies that the phase of the read or write operation that starts with ψ completes with at most one additional delay (of
2d) for learning about a new configuration. This yields a total time of at most 4d for the phase, as we claimed.

We use 11d-viability here: First at most time d elapses from the last new-config(∗, k + 1) in configuration c(k) until
φk+1. Then at most 8d time elapses from φk+1 until ψ. At time(ψ), configuration k is already known (but configuration
k+1 may not be known). Therefore we need a quorum of configuration k to stay alive only for the first 2d time of the phase,
altogether yielding 11d. �

10 Latency and Fault-Tolerance: Eventually-Normal Timing Behavior
In this section, we present conditional performance results for the case where eventually the network stabilizes and normal
timing behavior is satisfied from some point on. The main result of this section, Theorem 10.20, is analogous to Theorem 9.7
in that it shows that every read and write operation completes within 8d time, despite concurrent failures and reconfigurations.
Unlike Theorem 9.7, however, we do not assume that normal timing behavior always holds; instead, we show that good
performance is achieve by read/write operations that occur when normal timing behavior resumes.

For this entire section, we fix α to be an α′-normal executions. That is, α exhibits normal timing behavior after α′. We
fix e ∈ R≥0. We assume throughout this section that execution α satisfies the following hypotheses:

• (α′, e)-join-connectivity,
• (α′, e)-recon-readiness,
• (α′, e, 22d)-configuration-viability,
• (α′, 13d)-recon-spacing,
• (α′, e)-gc-readiness,

As in Section 9, the join-connectivity assumption ensures that data is rapidly propagated after a node joins the system,
and the recon-readiness/gc-readiness assumptions ensure that members of each configuration, especially those initiating
garbage-collections, have joined sufficiently long ago. Configuration viability is used to ensure that each configuration
remains viable for sufficiently long. The 22d time that a configuration should remain viable can be broken down into the
following components: (a) 6d time from when the new configuration is installed until a garbage-collection operation begins;
(b) 8d time for the old configuration to be garbage collected: 4d for any ongoing garbage-collection operations to complete,
and 4d for a new garbage-collection operation to remove the old configuration; (c) 5d time for the information to propagate
appropriately6; and (d) 3d time for quorums of the old configuration to send responses for any ongoing read/write operations.
Finally, recon-spacing ensures that each phase of a read/write operation is interrupted at most once with a new configuration.
(The constant 12d is chosen for reasons discussed previously in Section 9.)

6Notice that a tighter analysis might be able to reduce the propagation time somewhat.

39

As a point of notation, throughout this section we let TGST = `time(α′) + e + 2d. That is, TGST represents the time
(e + 2d) after the system has stabilized. This allows for sufficient time after normal timing behavior resumes for the join
protocol to complete, and for nodes to exchange information.

Also, when we refer s as the state after time t, we mean that s is the last state in a prefix of α that includes every event
that occurs at or prior to time t, and no events that occur after time t. When we refer to s as the state at time t, we mean that
s is the last state in some prefix of α that ends at time t; it may include any subset of events that occur exactly at time t.

10.1 Overview
There are two key claims that we need to prove, before we can analyze read and write operations: (1) every garbage-collection
completes within time 4d, when good timing behavior holds; and (2) every configuration that is still in use remains viable. In
fact, these two key claims are closely related, as per the following argument: (1) Soon after a new configuration is installed,
RAMBO can begin to garbage collect the old configurations; we refer to this as the gc-ready event. (2) We know, due
to configuration viability, that an old configuration survives for sufficiently long after a new configuration is installed; thus,
each configuration survives until sufficiently long after the gc-ready event. (3) Thus, soon after the gc-ready event, a garbage-
collection operation begins and contacts the old configuration, which remains viable; soon thereafter, the garbage collection
completes and the old configuration is removed. (4) Finally, we conclude that the old configuration has sufficient viability
remaining that it will survive until any other ongoing operation completes. A key obstacle in this argument, however, is
that older configurations can delay the garbage collection of more recent configurations. Thus, the proof is structured as
an inductive argument in which we show that if every previous garbage-collection operation has completed in 4d, then the
current garbage collection also completes in 4d. Putting the pieces together, this leads to the two main claims described
above. We can then conclude that read and write operations terminate within 8d using an argument similar to that presented
in Theorem 9.7.

Before we can proceed with the main proof, we first, in Section 10.2, prove a sequence of results regarding the propaga-
tion of information. This simplifies our later argument in that we can reason easily about what different nodes in the system
know. We then define the gc-ready event in Section 10.3, and show that each configuration remains viable for sufficiently
long after the associated gc-ready event. Finally, we proceed to the main argument in Section 10.4, where we show that every
garbage-collection operation completes in 4d. We also show as a corollary that every configuration survives for as long as it
is in use. We then conclude in Section 10.5, showing that read and write operations terminate in 8d.

10.2 Propagation of information
We begin by introducing the notion of information being in the “mainstream.” When every non-failed node that has joined
sufficiently long ago learns about some configuration map cm , we say that cm is in the mainstream:

Definition 10.1 Let cm be a configuration map, and t ≥ 0 a time. We say that cm is mainstream after t if the following
condition holds: For every i such that (1) a join-acki occurs no later than t− e− 2d, and (2) i does not fail until after time t:
cm ≤ cmapi after time t.

We focus on nodes that joined at least time e + 2d ago as this is the set of nodes that have completed the join protocol and
had time to exchange information with other participants. In addition, recon-readiness ensures that each member of each
configuration has joined at least time e+ 2d ago, and hence is aware of every mainstream configuration map.

The main result in this subsection is Theorem 10.6, which shows that once a configuration map is mainstream, then it
remains mainstream (despite nodes joining and leaving, and despite ongoing reconfiguration). More specifically, if some
configuration map cm is mainstream at some time t1, then at all times t2 ≥ t1 + 2d, configuration map cm remains
mainstream. This result is critical in that it allows for a simplified analysis of how information is propagated: instead of
arguing about low-level data propagation, we can simply focus on proving that some configuration map is mainstream. We
can then rely on Theorem 10.6 to show that, at some later point in time, information regarding this configuration map is
known to the participants.

We begin with a straightforward lemma regarding members of configuration c, showing that (as a result of recon-
readiness), they have information on all mainstream configuration maps:

Lemma 10.2 Assume that cm is mainstream after some time t ≥ 0. If c is a configuration that was initially proposed no
later than time t, then for every non-failed i ∈ members(c), cm ≤ cmapi after time max(t, TGST).

Proof. Fix some i ∈ members(c). By recon-readiness, we know that a join-acki occurs no later than time t − (e + 3d)
if t > `time(α′), and no later than time `time(α′), otherwise. Thus the claim follows from the definition of “mainstream”
with respect to time max(t, TGST). �

40

Similarly, if i is a member of some configuration c, then eventually its cmapi becomes mainstream:

Lemma 10.3 Let c be a configuration that is initially proposed no later than time t, and assume that i ∈ members(c). If
i does not fail until after time max(t, TGST) + d and cm = cmapi at time max(t, TGST), then cm is mainstream after
max(t, TGST) + 2d.

Proof. By recon-readiness, we know that i performs a join-acki no later than time max(t − (e + 3d), TGST − (e + 2d)).
In order to show that cm is mainstream, we need to show that cm ≤ cmapj for every j that performs a join-ackj no later
than time max(t, TGST) − e and that does not fail by time max(t, TGST) + 2d. Fix some such j. By join-connectivity,
we know that j is in world i by time max(t, TGST). From this we conclude that j receives a message from i by time
max(t, TGST) + 2d, resulting in the desired outcome. �

We now proceed to show that once data has become mainstream, it remains mainstream. The main idea is to show that
mainstream information is continually propagated forward from members of one configuration to the next. Thus, the first
step is to identify the sequence of configurations that are installed and the recon events that proposed them.

Definition 10.4 We say that a recon(∗, c) event is successful if at some time afterwards a decide(c)k,i event occurs for some
k and i.

We first consider a special case of Theorem 10.6: we assume that a configuration map cm is mainstream after t1, and
show that it remains mainstream after time t2 ≥ t1 + 2d, under the condition that a successful recon event occurs precisely
at time t2. Essentially, the successful recon events that occur after time t1 pass the information from one configuration
to the next. Thus at time t2, when the successful recon event occurs, we can ensure that some non-failed node is aware
of the mainstream configuration map, and within 2d time this non-failed node can propagate the information to the other
participants.

Lemma 10.5 Fix times t2 ≥ t1 ≥ TGST + 2d. Assume that some configuration map cm is mainstream after t1 and that a
successful recon∗ event occurs at time t2. Then cm is mainstream after t2 + 2d.

Proof. We prove the result by induction on the number of successful recon events that occur at or after time t1.
We consider both the base case and the inductive step simultaneously (with differences in the base case in parentheses).

Consider the (n + 1)st successful recon event in α that occurs at or after time t1. (For the base case, n = 0.) Assume this
event occurs at time trec ; fix h as the old configuration and h′ as the new configuration. Inductively assume the following:
if event π is one of the first n successful recon events in α that occur at some time tpre ≥ t1, then cm is mainstream after
tpre + 2d.

We need to show that cm is mainstream after trec + 2d. That is, we need to show that after time trec + 2d, cm ≤ cmapi

for every i such that (1) a join-acki occurs by time trec − e, and (2) i does not fail by time trec + 2d. Fix some such i.
If n > 0, let tpre be the time of the nth successful recon(∗, h) event. (In the base case, let tpre = t1.) If n > 0, the

inductive hypothesis shows that cm is mainstream after tpre + 2d. (In the base case, by assumption cm is mainstream after
tpre .)

Choose some node j ∈ members(h) such that j does not fail at or before trec + 2d; configuration-viability ensures
that such a node exists. Since h is the old configuration, we can conclude that it was initially proposed no later than time
tpre ≤ tpre +2d, and thus Lemma 10.2 implies that cm ≤ cmapj after time tpre +2d. (In the base case, it is easy to see that
configuration h was proposed no later than time tpre , as we are considering the first recon event after time t1 = tpre , and
hence it follows that cm ≤ cmapj after time tpre .) Recon-spacing ensures that tpre + 2d ≤ trec , and hence cm ≤ cmapj

after time trec .
Finally, recon-readiness guarantees that a join-ackj occurs no later than time tpre − (e + 2d), and hence by join-

connectivity, we conclude that i ∈ world j by time trec , and hence sometime in the interval (trec , trec + d], j sends a
gossip message to i, ensuring that i receives cm no later than time trec + 2d. �

We now generalize this result to all times t2. We know from Lemma 10.5 that the configuration map cm is mainstream
after some earlier successful recon event (unless there have been no earlier reconfigurations). It remains to show that this
information is then propagated to the other participants.

Theorem 10.6 Assume that t1 and t2 are times such that:

• t1 ≥ TGST + 2d;
• t2 ≥ TGST + 6d; and
• t2 ≥ t1 + 2d.

41

If configuration map cm is mainstream after t1, then cm is mainstream after t2.

Proof. Choose configuration c to be the configuration with the largest index such that a successful recon(∗, c) event occurs
at or before time t2 − 4d. If no such configuration exists, let c = c0. Assume that this successful recon(∗, c) event occurs at
time trec. Note that by the choice of c, no successful recon(c, ∗) event occur at or before time t2 − 4d. We now show that
for every non-failed i ∈ members(c), cm ≤ cmapi after t2 − 2d. Fix some such i. There are three cases to consider.

1. c = c0:
Recall that i0 is the only member of c0, and performs a join-acki0 at time 0. Since cm is mainstream after t1, and we
have assumed that i = i0 does not fail until after t1 ≥ e + 2d, then cm ≤ cmapi0 after time t1, and hence also after
time t2 − 2d.

2. The successful recon(∗, c) event occurs after time t1:
Since trec > t1, Lemma 10.5 shows that cm is mainstream after trec + 2d. Since c was initially proposed at time
trec < trec + 2d, Lemma 10.2 implies that for every non-failed member i of configuration c, cm ≤ cmapi after time
trec + 2d, and hence after time t2 − 2d ≥ trec + 2d.

3. The successful recon(∗, c) event occurs at or before time t1:
Since cm is mainstream after t1, and since configuration c was proposed no later than time t1, we can conclude by
Lemma 10.2 that for every non-failed i ∈ members(c), cm ≤ cmapi after time t1, and hence after t2 − 2d.

Configuration-viability guarantees that some member of configuration c does not fail until at least 4d after the next configu-
ration is installed. Since no successful recon(c, ∗) event occurs at or before time t2 − 4d, we can conclude that some node,
j ∈ members(c) does not fail at or before time t2.

Since configuration c is proposed no later than time t2− 4d, and since j does not fail until after time t2, we can conclude
from Lemma 10.3 that cmapi after time t2 − 2d is mainstream after time t2. Since cm ≤ cmapi at time t2 − 2d, the result
follows. �

10.3 Configuration viability
In this subsection, we show that each configuration remains viable for sufficiently long due to configuration viability. We
first define an event gc-ready(k), for every k > 0; we will show that some garbage collection for configuration c(k − 1)
begins no later than the gc-ready(k) event. (Garbage-collection operations may, however, occur prior to this event.) We then
show in Theorem 10.11 that for every k ≥ 0, configuration c(k−1) remains viable for at least 16d time after the gc-ready(k)
event.

We say that a configuration with index k is gc-ready when every smaller configuration can be safely garbage collected,
i.e., every smaller configuration has been installed, and members of configuration c(k− 1) have learned about configuration
c(k).

Definition 10.7 Define the gc-ready(k) event for k > 0 to be the first event in α after which, ∀` ≤ k, the following hold: (i)
configuration c(`) is installed, and (ii) for all non-failed i ∈ members(c(k − 1)), cmap(`)i 6= ⊥.

The first lemma shows that soon after a configuration is installed, every node that joined sufficiently long ago learns
about the new configuration. More specifically, we show that a configuration map containing the new configuration c(k)
becomes mainstream soon after the new configuration is installed.

Lemma 10.8 Assume that configuration c(k) is installed at time t ≥ 0. Then there exists a configuration map cm such that
cm(k) 6= ⊥ and cm is mainstream after max(t, TGST) + 2d.

Proof. Configuration-viability guarantees that there exists a read-quorum R ∈ read-quorums(c(k− 1)) such that no node
in R fails at or before time max(t, TGST) + d. Choose some node j ∈ R.

Since configuration c(k) is installed at time t, we can conclude that after time t, and hence also after time max(t, TGST),
cmap(k)j 6= ⊥. Since configuration c(k − 1) is initially proposed no later than time max(t, TGST), we conclude by
Lemma 10.3 that cmap(k)j is mainstream after time max(t, TGST) + 2d. �

Since our goal is to show that configuration c(k − 1) is viable for sufficiently long after the gc-ready(k) event, and since
configuration-viability only guarantees viability for a period of time after configuration c(k) is installed, we need to show
that the gc-ready(k) event occurs soon after configuration c(k) (and all prior configurations) are installed. The next lemma
shows exactly this, i.e., that a gc-ready(k) event occurs soon after all configurations with index smaller than k have been
installed. The key is to show that every member of configuration c(k − 1) has learned about configuration c(k), as well as

42

every prior configuration. We demonstrate that, for each configuration c(`) where ` ≤ k, a configuration map containing the
configuration c(`) is mainstream by no later than max(t, TGST)+2d, and thus by time max(t, TGST)+6d, the gc-ready(k)
event occurs. Notice that in this case, the 6d delay arises from the fact that in Theorem 10.6, we can only determine that a
configuration map is mainstream after time TGST + 6d.

Lemma 10.9 Let c be a configuration with index k, and assume that for all ` ≤ k, configuration c(`) is installed in α by
time t. Then gc-ready(k) occurs by time max(t, TGST) + 6d.

Proof. Recall that gc-ready(k) is the first event after which (i) all configurations with index ≤ k have been installed, and
(ii) for all ` < k, for all non-failed members of configuration c(k − 1), cmap(`) 6= ⊥. The first part occurs by time t by
assumption. We need to show that the second part holds by time max(t, TGST) + 6d.

For every configuration c(`) with index ` ≤ k, let t` be the time at which configuration c(`) is installed; by assumption
max(ti) ≤ t.

For each ` ≤ k, we can conclude by Lemma 10.8 that there is some cm where cm(`) 6= ⊥ that is mainstream after
max(t`, TGST) + 2d. We conclude from Theorem 10.6 that cm` is still mainstream after max(t, TGST) + 6d.

Since configuration c(k− 1) was proposed and installed prior to time max(t, TGST) + 6d, we conclude by Lemma 10.2
that for every non-failed j ∈ members(c(k−1)), for every ` ≤ k, cm` ≤ cmapj after time max(t, TGST)+6d, as required.

�

As a corollary, we notice that if no gc-ready(k + 1) occurs in α, then configuration c(k) is always viable.

Corollary 10.10 For some k ≥ 0, assume that no gc-ready(k + 1) event occurs in α. Then there exists a read-quorum R
and a write-quorum W of configuration c(k) such that no node in R ∪W fails in α.

Proof. Assume that for some ` ≤ k + 1, configuration c(`) is not installed in α. Then the claim follows immediately from
configuration viability. Assume, instead, that for every ` ≤ k+1, configuration c(`) is installed in α. Then by Lemma 10.9,
an gc-ready(k + 1) event occurs in α, contradicting the hypothesis. �

Finally, we show that if a gc-ready(k + 1) event does occur, then configuration c(k) remains viable until at least 16d after
the gc-ready(k + 1) event. This relies on the fact that the gc-ready(k + 1) event occurs within 6d of the time at which all
configurations ≤ c(k + 1) have been installed, and the fact that by assumption configuration c(k) is viable for at least time
22d after configuration c(k + 1) is installed.

Theorem 10.11 For some k ≥ 0, assume that gc-ready(k + 1) occurs at time t. Then there exists a read-quorum R and a
write-quorum W of configuration c(k) such that no node in R ∪W fails by time max(t, TGST) + 16d.

Proof. Let t′ be the minimal time such that every configuration with index ≤ k + 1 is installed no later than time t′. We
conclude from Lemma 10.9 that the gc-ready(k+1) event occurs by time max(t′, TGST)+6d; that is, t ≤ max(t′, TGST)+
6d.

Configuration-viability guarantees that there exists a read-quorum R and a write-quorum W of configuration c(k) such
that either: Case (1): no process in R ∪W fails in α, or Case (2): there exists a finite prefix, αinstall of α such that for all
` ≤ k+ 1, configuration c(`) is installed in αinstall and no process in R ∪W fails in α by: (a) `time(αinstall) + 22d, or (b)
TGST + 22d. In Case 1, we are done.

We now consider the second case. Since t′ is the minimal time such that every configuration ≤ k+1 is installed by time
t′, we can conclude that t′ ≤ `time(αinstall), from which the claim follows immediately. �

10.4 Garbage collection
In this subsection, we analyze the performance of garbage-collection operations. The main result of this section, Theo-
rem 10.17, shows that every garbage-collection operation completes within 4d time. The key challenge lies in showing that
every configuration included in a given garbage collection remains viable; if the viability of some configuration expires, then
the garbage collection will never terminate. Thus, in the process, we show that each configuration is garbage collected soon
after the next configuration is installed.

An important corollary is that every configuration that remains when a read/write operation phase begins remains viable
for at least time 3d, i.e., for sufficiently long for the phase to complete. This is shown in Corollary 10.18, which relies on:
(1) the fact that a garbage collection for configuration c(k − 1) begins soon after the gc-ready(k) event, (2) the conclusion
that the garbage-collection operation completes within time 4d, and (3) the configuration viability hypothesis.

The main proof is structured as an induction argument: if every earlier garbage collection has completed within 4d time,
then the next garbage collection completes within 4d time. More specifically:

43

Definition 10.12 For time t ≥ 0, we say that execution α satisfies the gc-completes hypothesis at time t if every gc event ρ
that satisfies the following conditions completes no later than max(time(ρ), TGST) + 4d:

• time(ρ) < t.
• Event ρ is performed by some node that does not fail prior to time max(time(ρ), TGST) + 4d.

In order to ensure that configurations remain viable, we have to show that each configuration is garbage collected soon
after a new configuration is installed. The proof proceeds through the following steps. First, we describe some circumstances
under which a garbage collection operation begins, for example, that a new configuration is available and that no garbage
collection is ongoing. Next we show that, if we assume the gc-completes hypothesis, then within 8d of a gc-ready(k +
1) event, configuration c(k) has been garbage collected (along with all prior configurations). This argument essentially
acts as the inductive step in the main proof. The third step is to show that if the gc-completes hypothesis holds, then
configurations remain viable for sufficiently long. Finally, we show the main result, that is, that every garbage-collection
operation completes within 4d time.

The first step of the proof is to show that under certain circumstances, a garbage-collection operation begins. We consider
some prefix of execution α that ends in some event ρ, and show that if the state after ρ satisfies certain conditions (e.g., there
is no ongoing garbage collection, and there is garbage to collect), then a garbage-collection begins immediately.

Lemma 10.13 For some node i, for times t1, t2 ∈ R≥0, for some k > 0, for some event ρ that occurs at time t2, assume
that:

1. A gc-ready(k) event occurs at time t1.
2. Event ρ occurs after the gc-ready(k) event.
3. i does not fail at or before time t2.
4. i is a member of configuration c(k − 1).
5. (No garbage collection is ongoing:) Immediately after event ρ, gc.phasei = idle.
6. (There is garbage to collect:) After time t2, cmap(k − 1)i 6= ±.

Then for some k′ ≥ k, i performs a gc(k′)i at time t2.

Proof. Assume for the sake of contradiction that no gc(∗)i event occurs at time t2 after event ρ. We examine in turn the
preconditions for gc(k)i immediately after all the events that occur at time t2. Let s be the state of the system after time t2.

1. ¬s.failed i: By Assumption 3 on i.
2. s.statusi = active: Node i is a member of configuration c(k− 1) (Assumption 4), which is proposed and installed no

later than time t1 when the gc-ready(k) event occurs. Hence, by recon-readiness we conclude that a join-acki occurs
no later than time t1 − (e+ 3d), and hence prior to t2. This also satisfies the gc-readiness hypothesis.

3. s.gc.phasei = idle: By Assumption 5 no garbage collection is ongoing immediately after ρ; by assumption no
garbage collection is initiated by i at time t2 after the event ρ.

4. ∀` < k : s.cmap(`)i 6= ⊥: By the definition of gc-ready(k), Part (ii), we know that for all ` ≤ k, for all non-failed
j ∈ members(c(k− 1)), cmap(`)j 6= ⊥ immediately after the gc-ready(k) event. Node i satisfies both requirements,
and later updates do not change this fact.

5. s.cmap(k−1)i ∈ C: We have already shown (Part 4) that s.cmap(k−1)i 6= ⊥. By Assumption 6, s.cmap(k−1)i 6=
±.

6. s.cmap(k)i ∈ C: We have already shown (Part 4) that s.cmap(k)i 6= ⊥. Since s.cmapi ∈ Usable (Invariant 1), and
since s.cmap(k − 1)i 6= ± (Assumption 6), we can conclude that s.cmap(k)i 6= ±.

Since enabled events occur in zero time (by assumption), we conclude that a gc(k′)i event occurs at time t2, contradicting
our assumption that no such event occurs. Moreover, by the restrictions on non-determinism (Section 8.1), we conclude that
k′ ≥ k. �

Next, we show that if we assume the gc-completes hypothesis, then within 8d after a gc-ready(k + 1) event, some node
in configuration c(k) has already removed configuration c(k). Essentially, this lemma relies on Lemma 10.13 to show that
some garbage collection is started, and the gc-completes hypothesis to show that the garbage collection completes.

Lemma 10.14 For some time t2 ≥ 0, assume that α satisfies the gc-completes hypothesis for time t2. Assume that for some
k ≥ 0, a gc-ready(k + 1) event occurs at time t1 such that max(t1, TGST) + 4d < t2.

Then for some node i ∈ members(c(k)) that does not fail at or before time max(t1, TGST) + 10d: we conclude that
cmap(k)i = ± after time max(t1, TGST) + 8d.

44

Proof. We know from Theorem 10.11 that there exists a read-quorum R and a write-quorum W of configuration c(k) such
that no node in R ∪W fails at or before time max(t1, TGST) + 16d. Choose i ∈ R ∪W .

Assume for the sake of contradiction that cmap(k)i 6= ± after time max(t1, TGST) + 8d. We argue that i begins a
garbage-collection operation no later than max(t1, TGST) + 4d; the contradiction—and conclusion—then follow from the
gc-completes hypothesis. There are two cases depending on whether gc.phasei = idle or active immediately after the
gc-ready(k + 1) event:

• Case 1: Assume that gc.phasei = idle immediately after the gc-ready(k + 1) event:
Notice that all the conditions of Lemma 10.13 are satisfied: (1) a gc-ready(k + 1) event occurs at time t1; (2) let ρ be
the gc-ready(k + 1) event; (3) i does not fail at or before time t1; (4) i is a member of configuration c(k); (5) there is
no ongoing garbage collection at i (by Case 1 assumption); (6) and cmap(k)i 6= ±, since we assumed for the sake of
contradiction that cmap(k)i 6= ± at some time > t1 and later updates do not invalidate this fact. Thus we conclude
that i performs a gc(k′)i event for some k′ > k at time t1.

• Case 2: Assume that gc.phasei = active immediately after the gc-ready(k + 1) event:
This implies that some event ρ = gc(∗)i with no matching gc-ack occurs no later than time t1. By the gc-completes
hypothesis, since (1) time(ρ) ≤ t1 < t2; and (2) i does not fail at or before time max(t1, TGST) + 4d: we conclude
that a gc-acki occurs at some time tack such that tack ≤ max(t1, TGST) + 4d.

At this point, we again invoke Lemma 10.13: (1) a gc-ready(k + 1) event occurs at time t1; (2) let ρ be the gc-ack
event; (3) i does not fail at or before time tack ; (4) i is a member of configuration c(k); (5) there is no ongoing garbage
collection at i; (6) and cmap(k)i 6= ±, since we assumed for the sake of contradiction that cmap(k)i 6= ± at some
time > t1 and later updates do not invalidate this fact. We conclude that i performs a gc(k′)i event for some k′ > k at
time tack .

In either case, i performs a gc(k′) event for some k′ > k no later than time max(t1, TGST) + 4d < t2. Moreover, i does not
fail at or before max(t1, TGST) + 8d. We conclude via the gc-completes hypothesis that a gc-ack(k′)i event occurs no later
than max(t1, TGST) + 8d, resulting in cmap(k)i = ± after max(t1, TGST) + 8d. �

We now show that, if the gc-completes hypothesis holds, every configuration remains viable for as long as it is being
used by any cmap. This lemma depends on Lemma 10.14 to show that a configuration with index k is garbage collected
soon after the gc-ready(k + 1) event, and also Theorem 10.11 to show that configuration c(k) remain viable long enough
after the gc-ready(k+1) event; finally, it uses Theorem 10.6 to show that once a configuration is removed, every other node
learns about it sufficiently rapidly.

Lemma 10.15 Fix a time t ≥ TGST + 13d, and assume that α satisfies the gc-completes hypothesis for time t. Assume that
for some non-failed node i that performs a join-ack no later than time t− (e+ 3d), for some k ≥ 0, cmap(k)i ∈ C at time
t. Then there exists a read-quorum R and a write-quorum W of configuration c(k) such that no node in R∪W fails by time
t+ 3d.

Proof. First, consider the case where no gc-ready(k + 1) event occurs in α. Corollary 10.10 implies that there exists a
read-quorum R and a write-quorum W of configuration c(k) such that no node in R ∪W fails in α.

Next, consider the case where a gc-ready(k + 1) event occurs in α at some time tready ≥ t− 13d. Then Theorem 10.11
implies that there exists a read-quorum R and a write-quorum W of configuration c(k) such that no node in R ∪W fails by
time max(tready , TGST) + 16d, implying the desired result.

Finally, consider the case where a gc-ready(k + 1) event occurs in α at some time tready < t− 13d. We will show that
this implies that cmap(k)i = ± by time t, resulting in a contradiction. That is, this third case cannot occur.

To begin with, Lemma 10.14 demonstrates that for some j ∈ members(c(k)) that does not fail at or before time
max(tready , TGST) + 10d, the following holds: cmap(k)j = ± after max(tready , TGST) + 8d. Let cm be j’s cmap at
this point. Since configuration c(k) is proposed prior to time tready , Lemma 10.3 indicates that cm is mainstream after
max(tready , TGST) + 10d. And since t − d ≥ max(tready , TGST) + 12d, we conclude by Theorem 10.6 that cm is still
mainstream after time t− d. Since i performs a join-acki no later than time t− (e+3d) and does not fail prior to time t, we
conclude that cm ≤ cmap(k)i after time t− d, resulting in a contradiction. �

We can now analyze the actual latency of a garbage-collection operation. We first show that if sufficient configurations
remain viable, then the operation completes with 4d time. There are two cases, depending on whether the garbage collection
begins before or after the network stabilizes; in either case, since sufficient quorums remain viable, the operation completes
in time 4d.

45

Lemma 10.16 Let t ≥ 0 be a time. Let i be a node that does not fail at or before time max(t, TGST) + 4d. Assume that i
initiates garbage-collection operation γ at time t with a gc(k)i event.

Additionally, assume that for every ` ∈ removal-set(γ) ∪ {k}, there exists a read-quorum R` and a write-quorum W`

of configuration c(`) such that no node in R` ∪W` fails by time max(t, TGST) + 3d.
Then a gc-ack(k)i event occurs no later than max(t, TGST) + 4d.

Proof. There are two cases to consider:

• t > TGST − d: At time t > `time(α′), node i begins the garbage collection. By triggered gossip, node i immediately
sends out messages to every node in world i. Node i receives responses from every node in R` ∪W` within 2d time,
for every ` such that c(`) is in the gc.cmapi, beginning the propagation phase, which likewise ends a further 2d later.
• t ≤ TGST − d: At time t, node i begins the garbage collection. By occasional gossip, i sends out messages to every

node in world i no later than time TGST . By time TGST + 2d, node i receives responses from every node in R` ∪W`,
for every ` such that c(`) is in the gc.cmapi, beginning the propagation phase, which likewise ends a further 4d later.

�

We can now present the main result of this section which shows that every garbage-collection operation completes within
4d time. The proof proceeds by induction, with the gc-completes hypothesis as the inductive hypothesis. Lemma 10.16
shows that we need only demonstrate that appropriate quorums remain viable, and Lemma 10.15 guarantees the requisite
viability.

Theorem 10.17 Assume that for some node i, a gc(k)i event occurs at time t ≥ 0. Assume that i does not fail by time
max(t, TGST) + 4d. Then a gc-ack(k)i occurs no later than time max(t, TGST) + 4d.

Proof. By (strong) induction on the number of gc events in α: assume inductively that if ρ is one of the first n ≥ 0 gc
events in α and that ρ is initiated by node j at time t′ and that j does not fail by time max(t′, TGST) + 4d, then there is a
matching gc-ackj by time max(t′, TGST) + 4d.

We examine the inductive step: Consider the (n + 1)st gc(∗) event in α. Let γ be the garbage-collection operation
initiated by the gc event; let j be the node that initiates γ, let k be the target of γ and let tgc be the time at which γ begins. If
j fails by max(tgc , TGST) + 4d, then the conclusion is vacuously true. Consider the case where j does not fail at or before
max(tgc , TGST) + 4d.

Lemma 10.16 shows that proving the following is sufficient: for every configuration ` ∈ removal-set(γ) ∪ {k} there
exists a read-quorum R and a write-quorum W of configuration c(`) such that no node in R∪W fails by max(tgc, TGST)+
3d. There are two cases to consider:

• Case 1: tgc ≤ TGST + 13d.
This follows immediately from configuration viability.

• Case 2: tgc > TGST + 13d.
Let αpre be the prefix of α ending with the gc event of γ. Fix some configuration ` ∈ removal-set(γ) ∪ {k}.
We now apply Lemma 10.15: Notice that cmap(`) ∈ C at time tgc , by the choice of ` in the removal-set(γ). Also,
notice by gc-readiness that j performs a join-ackj no later than time tgc − (e+3d). Finally, observe that the inductive
hypothesis implies immediately that α satisfies the gc-completes hypothesis for tgc , since every garbage-collection
operation that begins before time tgc is necessarily one of the first n garbage collections in α. Thus we conclude from
Lemma 10.15 that there exists a read-quorum R and a write-quorum W of configuration c(`) such that no node in
R ∪W fails by max(tgc , TGST) + 3d. �

We conclude this subsection with a corollary that shows the following: as long as a configuration is in use by an cmap, it
remains viable. This is simply an unconditional version of Lemma 10.15, that is, a version that does not depend on assuming
the gc-completes hypothesis. This corollary is critical in showing that read and write operations complete efficiently, as it
ensures that quorums remain viable throughout the operation.

Corollary 10.18 Fix a time t ≥ 0. Assume that for some non-failed node i that performs a join-acki no later than t−(e+3d),
for some k ≥ 0, cmap(k)i ∈ C at time t. Then there exists a read-quorum R and a write-quorum W of configuration c(k)
such that no node in R ∪W fails by max(t, TGST) + 3d.

Proof. Consider the case where t > TGST + 13d. Notice that the only condition of Lemma 10.15 that is not assumed here
is that α satisfies the gc-completes hypothesis for t. This follows immediately from Theorem 10.17, implying the desired
conclusion. Alternatively, if t ≤ `time(α′) + 13d, the claim follows immediately from configuration-viability. �

46

10.5 Reads and writes
In this section, we prove the main result which states that every read or write operation completes in time 8d. Before
presenting the main result of this section, we need one further lemma which shows that every node learns rapidly about a
newly produced configuration.

Lemma 10.19 Assume that a report(c(`))i event occurs at time t for some i ∈ members(c(`)) and some index `. Then there
exists a configuration map cm such that: (i) cm(`) 6= ⊥, and (ii) cm is mainstream after max(t, TGST) + 6d.

Proof. Recon-spacing guarantees that there exists a write-quorum W ∈ write-quorums(c(`)) such that for every node
j ∈ W , a report(c(`))j occurs in α prior to the first recon(c(`), ∗) event. By configuration-viability, there exists some read-
quorum R ∈ read-quorums(c(`)) such that no node in R fails at or before time max(t, TGST) + 5d. Choose j ∈ R ∩W .
Since the report action notifies i of the configuration c(`) at time t, and since both i and j are members of c(`), we can
conclude that by time max(t, TGST) + 2d, cmap(`)j 6= ⊥. Let cm = cmapj after time max(t, TGST) + 4d.

Since j does not fail until after max(t, TGST)+5d, and j is a member of configuration c(`), which was initially proposed
no later than time t, we conclude by Lemma 10.3 that cm is mainstream after max(t, TGST) + 6d. �

We now show that every read and write operation terminates within 8d time. This theorem is quite similar in form to
Theorem 9.7: we show that each phase of a read or write operation is interrupted at most once by a new configuration due to
recon-spacing; and Corollary 10.18 ensures that configurations remain viable for sufficiently long. Recall that this theorem
relies on the previously stated hypotheses: (α′, e)-join-connectivity, (α′, e)-recon-readiness, (α′, e, 22d)-configuration-
viability, (α′, 13d)-recon-spacing, and (α′, e)-gc-readiness.

Theorem 10.20 Let t > TGST + 16d, and assume a read or write operation starts at time t at some node i. Assume that
i performs a join-acki no later than time t − (e + 8d) and does not fail until the read or write operation completes7. Then
node i completes the read or write operation by time t+ 8d.

Proof. Let c0, c1, c2, . . . denote the (possibly) infinite sequence of successive configurations decided upon in α. For each
k ≥ 0, let πk be the first recon(ck, ck+1)∗ event in α, if such an event occurs; let ik be the node at which this occurs; let φk
be the corresponding, preceding report(ck)ik event.

We show that the time for each phase of the read or write operation is no more than 4d – this will yield the bound we
need. Consider one of the two phases, and let ψ be the readi, writei or query-fixi event that begins the phase.

We claim that time(ψ) > time(φ0) + 8d, that is, that ψ occurs more than 8d time after the report(0)i0 event: We have
that time(ψ) ≥ t, and t > time(join-acki) + 8d, by assumption. Also, time(join-acki) ≥ time(join-acki0). Furthermore,
time(join-acki0) ≥ time(φ0), that is, when join-acki0 occurs, report(0)i0 occurs with no time passage. Putting these
inequalities together we see that time(ψ) > time(φ0) + 8d.

Fix k to be the largest number such that time(ψ) > time(φk) + 8d. The claim in the preceding paragraph shows that
such k exists.

Next, we show that before any further time passes after ψ, cmap(`)i 6= ⊥ for all ` ≤ k. (It is at this point that the proof
diverges from that of Theorem 9.7.) Fix any ` ≤ k. We apply Lemma 10.19 to conclude that there exists a configuration
map cm such that: (i) cm(`) 6= ⊥, and (ii) cm is mainstream after max(time(φ`), `time(α′) + e+ d) + 6d. We next apply
Theorem 10.6 to conclude that cm is mainstream after time(ψ). Finally, since i performs a join-acki at least time e + 2d
prior to time(ψ), we conclude that after time(ψ), cm ≤ cmapi.

Now, by choice of k, we know that time(ψ) ≤ time(φk+1)+8d. The recon-spacing hypothesis implies that time(πk+1)
(the first recon event that requests the creation of the (k + 2)nd configuration) is > time(φk+1) + 12d. Therefore, for an
interval of time of length > 4d after ψ, the largest index of any configuration that appears anywhere in the system is k + 1.
This implies that the phase of the read or write operation that starts with ψ completes with at most one additional delay
(of 2d) for learning about a new configuration. This yields a total time of at most 4d for the phase, as claimed. Finally,
Corollary 10.18 shows that the configurations remain viable for sufficiently long. �

11 Conclusions
In this paper, we have presented RAMBO, an algorithm for implementing a reconfigurable read/write shared memory in an
asynchronous message-passing system. RAMBO guarantees that read and write operations will always be executed atomi-
cally, regardless of network instability or timing asynchrony, and it guarantees that when the network is stable, operations
will complete rapidly, subject to some reasonable assumptions.

7Formally, we assume that i does not fail in α, and then notice that if i fails after the operation terminates, that has no effect on the claim at hand.

47

RAMBO’s Goals
An important goal of RAMBO was to decouple the implementation of read/write operations from the problem of configu-
ration management. (As discussed in Section 2.2, this is in direct contrast to the more integrated “replicated state machine
approach,” in which both read/write operations and reconfigurations are implemented via the same agreement mechanism.)
We believe that decoupling these two problems can result in better performance, especially in networks that experience
highly variable message delays, such as wide-area networks and wireless networks. In such systems, reconfiguration may
be delayed due to unpredictable asynchronies; in RAMBO, read and write operations can continue, unaffected by network
instability. We also believe that decoupling read/write operations from reconfiguration may allow for the independent opti-
mization of these two services; it may be possible that better performance is achieved by optimizing these services separately,
rather than together.

Another important goal of RAMBO was to allow the client complete flexibility in choosing new configurations. This
flexibility should allow clients to more easily choose good configurations, for example, those that will have good viability
for a long period of time. Or, as another example, clients may choose configurations based on geography; in [11], for
example, each configuration consists of a set of nodes that lie in a specific region.

Finally, we have described RAMBO in an abstract and non-deterministic manner, which allows RAMBO to be easily
adapted for use in a given system. When implementing RAMBO, there is significant flexibility in when messages are sent,
to whom messages are sent, how nodes join the system, and how reconfiguration is implemented. This flexibility, along
with the unrestricted choice of configurations, has led to several extensions and implementations of RAMBO, as discussed in
Section 2.3 (for example, [11,18,30,48–50,58]). In this way, we see RAMBO as an architectural template for future systems.

Technical Challenges
Perhaps the key technical challenge addressed by RAMBO is the problem of coordinating concurrent read/write operations
with the ongoing configuration management process. For example, even as a read or write operation attempts to access the
system, the configuration management process may be reconfiguring the system, removing old participants and introducing
new participants. Unlike in other approaches, read/write operations are not halted when the system is reconfigured. Algorith-
mically, this has two main implications. First, read and write operations must be flexible in choosing which configurations to
use, adopting any and every new configuration that is discovered during an operation. Second, garbage-collection operations
must ensure that ongoing operations discover any new configuration that is installed, prior to removing an old configuration;
at the same time, they have to propagate information from one configuration to the next. Together, these two techniques
ensure that changes in the underlying set of participants has no effect on read and write operations.

A second technical challenge addressed by RAMBO is the problem of tolerating network instability. RAMBO ensures
good performance of read and write operations during periods of network stability, and guarantees rapid stabilization after
periods of network instability. This is achieved primarily through the rapid dissemination of information, and the rapid
adoption of any new information. Gossip messages are sent continuously and frequently, and this ensures that nodes receive
up-to-date information relatively quickly. (This may be contrasted to an algorithm in which messages are sent only during
read and write operations, for example.) Moreover, as soon as a node learns about a new configuration, or the removal of an
old configuration, it updates it view of the system to reflect this new information. Thus, changes to the system are rapidly
integrated into local views, allowing for nodes to catch up rapidly when the system stabilizes.

In fact, an important contribution of this paper is the performance analysis of RAMBO, along with the techniques and tools
developed to facilitate this analysis. As part of this analysis, we developed a set of hypotheses that define the dynamics of the
system and bound the instability of the network during good intervals. For example, we introduced the idea of configuration
viability to capture the notion that some quorums from each configuration need to survive until the next configuration has
been installed. We believe that these hypotheses may be useful in analyzing other dynamic systems.

Open Questions and Ongoing Research
The results in this paper raise several interesting research questions. The first natural question is whether the RAMBO
approach can be applied to other types of data objects. While RAMBO implements a read/write distributed shared memory,
it may be possible to implement stronger distributed objects, such as sets, queues, snapshot objects, etc. In fact, we believe
that it is possible to adopt any quorum-based algorithm to fit the RAMBO paradigm. (For a more powerful object, such as
a compare-and-swap, there may be fewer advantages from decoupling the configuration management process; however, the
modularity may still be beneficial.)

A second important question relates to the strategy for choosing new configurations. Any quorum-based algorithm can
be only as robust as the underlying configuration viability. Thus, it is imperative that clients choose good configurations that

48

have sufficient viability, and that clients initiate reconfiguration sufficiently frequently to ensure that configurations always
remain available. We believe that as long as periods of instability are sufficiently low, and as long as the rate of failures is
sufficiently low, then it is possible to ensure good configuration viability.

The choice of configurations, along with many other aspects of RAMBO implementations, depends significantly on the
underlying environment in which the system is executing. For example, in a peer-to-peer distributed hash table (see [50]),
the configurations may depend on how data is distributed in the network; in a wireless ad hoc network, the configurations
may depend on the geographic distribution of devices (see [11]). And, in many other ways as well, the RAMBO algorithm
contains only the outlines for a real implementation: How often should nodes exchange information? With whom should
a node exchange information? How much information should they send in each message? How should nodes join the
system? Each of these questions depends greatly on the underlying application. Answering these questions will require
implementing RAMBO in various contexts, optimizing for the most important concerns, and understanding the trade-offs that
arise in translating the RAMBO architectural template into a real system.

Overall, we anticipate that the approach presented in this paper will continue to influence follow on research and practical
implementations of robust algorithms for highly dynamic systems.

Acknowledgments. The authors thank Ken Birman, Alan Demers, Rui Fan, Butler Lampson, and Peter Musial for helpful
and insightful discussions. We would also like to thank the anonymous reviewers for their valuable suggestions.

References
[1] A. El Abbadi, D. Skeen, and F. Cristian. An efficient fault-tolerant protocol for replicated data management. In

Proceedings of the Symposium on Principles of Databases, pages 215–228, 1985.

[2] A. El Abbadi and S. Toueg. Maintaining availability in partitioned replicated databases. Transactions on Database
Systems, 14(2):264–290, 1989.

[3] I. Abraham and D. Malkhi. Probabilistic quorums for dynamic systems. Distributed Computing, 18(2):113–124, 2005.

[4] D. Agrawal and A. El Abbadi. Resilient logical structures for efficient management of replicated data. In Proceedings
of the International Conference on Very Large Data Bases, pages 151–162, 1992.

[5] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic storage without consensus. In Proceedings of
the Symposium on Principles of Distributed Computing, pages 17–25, 2009.

[6] J. R. Albrecht and Y. Saito. RAMBO for dummies. Technical Report HPL-2005-39, Hewlett-Packard, 2005.

[7] L. Alvisi, D. Malkhi, E. T. Pierce, and M. K. Reiter. Fault detection for Byzantine quorum systems. Transactions on
Parallel and Distributed Systems, 12(9):996–1007, 2001.

[8] Y. Amir, D. Dolev, P. M. Melliar-Smith, and L. Moser. Robust and efficient replication using group communication.
Technical Report 1994-20, Hebrew University, 1994.

[9] Y. Amir and A. Wool. Evaluating quorum systems over the internet. In Proceedings of the International Symposium
on Fault-Tolerant Computing, pages 26–35, 1996.

[10] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing systems. Journal of the ACM,
42(1):124–142, 1995.

[11] J. Beal and S. Gilbert. RamboNodes for the metropolitan ad hoc network. In Workshop on Dependability Issues in
Wireless Ad Hoc Networks and Sensor Networks, 2004.

[12] M. Bearden and R. P. Bianchini Jr. A fault-tolerant algorithm for decentralized on-line quorum adaptation. In Proceed-
ings of the International Symposium on Fault-Tolerant Computing Systems, pages 262–271, 1998.

[13] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[14] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the ACM,
43(2):225–267, 1996.

49

[15] B. Charron-Bost and A. Schiper. Improving fast Paxos: being optimistic with no overhead. In Proceedings of the
Pacific Rim International Symposium on Dependable Computing, pages 287–295, 2006.

[16] G. Chockler, S. Gilbert, V. Gramoli, P. M. Musial, and A. A. Shvartsman. Reconfigurable distributed storage for
dynamic networks. In Proceedings of the International Conference on Principles of Distributed Systems, pages 214–
219, 2005.

[17] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in partitioned networks. ACM Computing Surveys,
17(3):341–370, 1985.

[18] S. Dolev, S. Gilbert, N. A. Lynch, A. A. Shvartsman, and J. L. Welch. Geoquorums: implementing atomic memory in
mobile ad hoc networks. Distributed Computing, 18(2):125–155, 2005.

[19] B. Englert and A. A. Shvartsman. Graceful quorum reconfiguration in a robust emulation of shared memory. In
Proceedings of the International Conference on Distributed Computer Systems, pages 454–463, 2000.

[20] A. Fekete, N. A. Lynch, and A. A. Shvartsman. Specifying and using a partitionable group communication service.
Transaction on Computer Systems, 19(2):171–216, 2001.

[21] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process. Journal
of the ACM, 32(2):374–382, 1985.

[22] H. Garcia-Molina and D Barbara. How to assign votes in a distributed system. Journal of the ACM, 32(4):841–860,
1985.

[23] C. Georgiou, P. M. Musial, and A. A. Shvartsman. Developing a consistent domain-oriented distributed object service.
In Proceedings of the International Symposium on Network Computing and Applications, pages 149–158, 2005.

[24] C. Georgiou, P. M. Musial, and A. A. Shvartsman. Long-lived RAMBO: Trading knowledge for communication.
Theoretical Computer Science, 383(1):59–85, 2007.

[25] D. K. Gifford. Weighted voting for replicated data. In Proceedings of the Symposium on Operating Systems Principles,
pages 150–162, 1979.

[26] S. Gilbert. RAMBO II: Rapidly reconfigurable atomic memory for dynamic networks. Master’s thesis, MIT, 2003.

[27] S. Gilbert, N. A. Lynch, and A. A. Shvartsman. RAMBO II: Rapidly reconfigurable atomic memory for dynamic
networks. In Proceedings of the International Conference on Dependable Systems and Networks, pages 259–268,
2003.

[28] K. Goldman and N. A. Lynch. Quorum consensus in nested transaction systems. Transactions on Database Systems,
19(4):537–585, 1994.

[29] V. Gramoli. RAMBO III: Speeding-up the reconfiguration of an atomic memory service in dynamic distributed system.
Master’s thesis, Université Paris Sud–Orsay, 2004.

[30] V. C. Gramoli, P. M. Musial, and A. A. Shvartsman. Operation liveness and gossip management in a dynamic distributed
atomic data service. In Proceedings of the International Conference on Parallel and Distributed Computing Systems,
pages 206–211, 2005.

[31] M. Herlihy. Replication Methods for Abstract Data Types. PhD thesis, Massachusettes Institute of Technology, 1984.

[32] M. Herlihy. Dynamic quorum adjustment for partitioned data. Transactions on Database Systems, 12(2):170–194,
1987.

[33] S. Jajodia and D. Mutchler. Dynamic voting algorithms for maintaining the consistency of a replicated database.
Transactions on Database Systems, 15(2):230–280, 1990.

[34] D. K. Kaynar, N. A. Lynch, R. Segala, and F. Vaandrager. The theory of timed I/O automata. Technical Report
MIT-LCS-TR-917a, MIT, 2004.

[35] I. Keidar. A highly available paradigm for consistent object replication. Master’s thesis, Hebrew University, Jerusalem,
1994.

50

[36] I. Keidar and D. Dolev. Efficient message ordering in dynamic networks. In Proceedings of the Symposium on Princi-
ples of Distributed Domputing, pages 68–76, 1996.

[37] K. M. Konwar, P. M. Musial, N. C. Nicolaou, and A. A. Shvartsman. Implementing atomic data through indirect learn-
ing in dynamic networks. In Proceedings of the International Symposium on Network Computing and Applications,
pages 223–230, 2007.

[38] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7):558–
565, 1978.

[39] L. Lamport. The part-time parliament. Transactions on Computer Systems, 16(2):133–169, 1998.

[40] L. Lamport. Fast Paxos. Technical Report MSR-TR-2005-12, Microsoft, 2005.

[41] L. Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, 2006.

[42] M. Liu, D. Agrawal, and A. El Abaddi. On the implementation of the quorum consensus protocol. In Proceedings of
the International Conference on Parallel and Distributed Computing Systems, pages 318–325, 1995.

[43] E. Y. Lotem, I. Keidar, and D. Dolev. Dynamic voting for consistent primary components. In Proceedings of the
Symposium on Principles of Distributed Computing, pages 63–71, 1997.

[44] N. A. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

[45] N. A. Lynch and A. A. Shvartsman. Robust emulation of shared memory using dynamic quorum-acknowledged broad-
casts. In Proceedings of the International Symposium on Fault-Tolerant Computing, pages 272–281, 1997.

[46] N. A. Lynch and A. A. Shvartsman. RAMBO: A reconfigurable atomic memory service for dynamic networks. In
Proceedings of the International Symposium on Distributed Computing, pages 173–190, 2002.

[47] D. Malkhi and M. K. Reiter. Byzantine quorum systems. In Proceedings of the Symposium on Theory of Computing,
pages 569–578, 1997.

[48] P. M. Musial. From High Level Specification to Executable Code: Specification, Refinement, and Implementation of a
Survivable and Consistent Data Service for Dynamic Networks. PhD thesis, University of Connecticut, Storrs, 2007.

[49] P. M. Musial and A. A. Shvartsman. Implementing a reconfigurable atomic memory service for dynamic networks. In
Proceedings of the International Parallel and Distributed Processing Symposium, page 208b, 2004.

[50] A. Muthitacharoen, S. Gilbert, and R. Morris. Etna: a fault-tolerant algorithm for atomic mutable DHT data. Technical
Report MIT-LCS-TR-993, MIT, 2005.

[51] M. Naor and U. Wieder. Scalable and dynamic quorum systems. In Proceedings of the Symposium on Principles of
Distributed Computing, pages 114–122, 2003.

[52] M. Naor and A. Wool. The load, capacity, and availability of quorum systems. Journal on Computing, 27(2):423–447,
1998.

[53] D. Peleg and A. Wool. The availability of quorum systems. Information and Computation, 123(2):210–223, 1995.

[54] D. Peleg and A. Wool. How to be an efficient snoop, or the probe complexity of quorum systems. In Proceedings of
the Symposium on Principles of Distributed Computing, pages 290–299, 1996.

[55] R. De Prisco, A. Fekete, N. A. Lynch, and A. A. Shvartsman. A dynamic primary configuration group communication
service. In Proceedings of the International Symposium on Distributed Computing, pages 64–78, 1999.

[56] R. De Priso, B. Lampson, and N. Lynch. Revisiting the Paxos algorithm. Theoretical Computer Science, 243(1–2):35–
91, 2000.

[57] S. Rangarajan and S. Tripathi. A robust distributed mutual exclusion algorithm. In Proceedings of the International
Workshop on Distributed Algorithms, pages 295–308, 1991.

51

[58] Y. Saito, S. Frølund, A. C. Veitch, A. Merchant, and S. Spence. FAB: building distributed enterprise disk arrays from
commodity components. In Proceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 48–58, 2004.

[59] B. A. Sanders. The information structure of distributed mutual exclusion algorithms. Transactions on Computer
Systems, 5(3):284–299, 1987.

[60] A. Shraer, J.-P. Martin, D. Malkhi, and I. Keidar. Data-centric reconfiguration with network attached disks. In Pro-
ceedings of LADIS, 2010.

[61] E. Upfal and A. Wigderson. How to share memory in a distributed system. Journal of the ACM, 34(1):116–127, 1987.

52

