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Abstract

This paper presents RAMBO, an algorithm that emulates read/write shared objects in a dynamic setting. To
ensure that the data is highly available and long-lived, each object is replicated at several physical locations. To
ensure atomicity, reads and writes are performed using quorum configrations, each of which consists of a set
of members plus sets of read-quorums and write-quorums. The algorithm is reconfigurable: the quorum con-
figurations are allowed to change during a computation, and such changes do not cause violations of atomicity.
Any quorum configuration may be installed at any time—no intersection requirement is imposed on the sets of
members or on the quorums of distinct configurations. The algorithm tolerates processor stopping failures and
message loss.

The algorithm performs three major activities, all concurrently: (1) reading and writing objects, (2) choos-
ing new configurations and notifying members, and (3) identifying and removing (“garbage-collecting”) ob-
solete configurations. The algorithm is composed of two sub-algorithms: a main algorithm, which handles
reading, writing, and garbage-collection, and a reconfiguration algorithm, which handles the selection and
dissemination of new configurations.

The algorithm guarantees atomicity in the presence of arbitrary patterns of asynchrony and failures. The
algorithm satisfies a variety of conditional performance properties, based on a variety of timing and failure
assumptions. In particular, if participants gossip periodically in the background, if garbage-collection is sched-
uled periodically, if reconfiguration is not requested too frequently, and if quorums of active configurations do
not fail, then read and write operations completed within 8d time, where d is the maximum message latency.
Similar results are achieved when these conditions hold eventually at some point in the execution, rather than
throughout the entire execution. That is, the RAMBO protocol rapidly stabilizes, resuming efficient operation,
during intervals in which good conditions hold.
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1 Introduction

This paper presents RAMBO, an algorithm that implements atomic read/write shared memory in a dynamic setting
in which participants may join, leave, or fail during the course of computation. Examples of such settings include
mobile networks and peer-to-peer networks where data survivability is of high concern. One use of this service
might be to provide long-lived data in a dynamic and volatile setting such as a military operation or a disaster
response effort.

In order to achieve availability in the presence of failures, the data objects are replicated at several network
locations. In order to maintain memory consistency in the presence of small and transient changes, the algorithm
uses configurations, each of which consists of a set of members plus sets of read-quorums and write-quorums.
In order to accommodate larger and more permanent changes, the algorithm supports reconfiguration, by which
the set of members and the sets of quorums are modified. Such changes do not cause violations of atomicity.
Any quorum configuration may be installed at any time—no intersection requirement is imposed on the sets of
members or on the quorums of distinct configurations.

We first provide a formal specification for reconfigurable atomic shared memory as a global service. We call
this service RAMBO, which stands for “Reconfigurable Atomic Memory for Basic Objects1.” The rest of the
paper presents our algorithm and its analysis. The algorithm carries out three major activities, all concurrently:
(1) reading and writing objects, (2) choose new configurations and notifying members, and (3) identifying and
removing (“garbage-collecting”) obsolete configurations.

The algorithm is composed of a main algorithm, which handles reading, writing, and garbage-collection,
and a global reconfiguration service, Recon , which provides the main algorithm with a consistent sequence of
configurations. Reconfiguration is only loosely coupled to the main read-write algorithm, in particular, several
configurations may be known to the algorithm at one time, and read and write operations can use them all without
harm.

The main algorithm performs read and write operations requested by clients using a two-phase strategy, where
the first phase gathers information from read-quorums of active configurations and the second phase propagates
information to write-quorums of active configurations. This communication is carried out using background
gossiping, which allows the algorithm to maintain only a small amount of protocol state information. Each phase
is terminated by a fixed point condition that involves a quorum from each active configuration. Different read and
write operations may execute concurrently: the restricted semantics of reads and writes permit the effects of this
concurrency to be sorted out afterwards.

The main algorithm also includes a facility for garbage-collecting old configurations when their use is no
longer necessary for maintaining consistency. Garbage-collection also uses a two-phase strategy, where the first
phase communicates with the old configurations to be removed, while the second phase communicates with a
configuration that remains extant. A garbage-collection operation ensures that both a read-quorum and a write-
quorum of each old configuration learn about the newer configuration, and that the latest value from the old
configurations is conveyed to a write-quorum of the newer configuration.

The reconfiguration service Recon is implemented by a distributed algorithm that uses distributed consensus to
agree on the successive configurations. Any member of the latest configuration cmay propose a new configuration
at any time; different proposals are reconciled by an execution of consensus among the members of c. Consensus
is, in turn, implemented using a version of the Paxos algorithm [36], as described formally in [?]. Although such
consensus executions may be slow—in fact, in some situations, they may not even terminate—they do not cause
any delays for read and write operations.

We specify all services and algorithms, and their interactions, using I/O automata. We show correctness
(atomicity) of the algorithm for arbitrary patterns of asynchrony and failures. On the other hand, we analyze
performance conditionally, based on certain failure and timing assumptions. For example, assuming that gossip
and garbage-collection occur periodically, that reconfiguration is not requested too frequently, and that quorums
of active configuration do not fail, we show that read and write operations complete within 8d, where d is the max-

1Here “Basic” means “Read/Write”, but RAMRWO would not be nearly as compelling an acronym.
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imum latency. Similar results are achieved when these conditions hold eventually at some point in the execution,
rather than throughout the entire execution. That is, the RAMBO protocol rapidly stabilizes, resuming efficient
operation, during intervals in which good conditions hold.

The RAMBO protocol, in many ways, is an architectural template that has formed the basis for a variety of
other algorithms. In Section 12 we summarize the results of other research on optimizations, refinements, and
implementations based on RAMBO.

Comparison with other approaches. Consensus algorithms can be used directly to implement an atomic data
service, by allowing participants to agree on a global total ordering of all operations, as suggested by [36]. In
contrast, we use consensus to agree only on the sequence of configurations and not on the individual read and
write operations. Since reaching consensus is costly, our approach leads to better performance for reads and
writes. Also, in our algorithm, the termination of consensus affects the termination of reconfiguration attempts,
but not of read and write operations: read and writes are guaranteed to complete, provided that currently active
configurations are not disabled by failures.

Group communication services (GCS) [1] can also be used to implement an atomic data service in a dynamic
network. This can be done, for example, by implementing a global totally ordered broadcast service on top of
a view-synchronous GCS [21] using techniques of Amir, Dolev, Keidar, Melliar-Smith and Moser [33, 34, 6].
Our approach compares favorably with these implementations: In most GCS-based implementations, forming a
new view following a crash takes a substantial amount of time, and client-level operations are delayed during
the view-formation period. In contrast, although reconfiguration can be slow in our algorithm, reads and writes
continue to make progress during reconfiguration. Also, in some standard GCS implementations, performance is
degraded even if only one failure occurs. For example, in ring-based implementations like that of Cristian and
Schmuck [13] a single failure triggers the formation of a new view. In contrast, our algorithm uses quorums to
tolerate small numbers of failures.

De Prisco, Fekete, Lynch, and Shvartsman [16] introduced the notion of primary configurations and defined
a dynamic primary configuration group communication service. They also showed how to implement dynamic
atomic memory over such a service, using a version of the algorithm of Attiya, Bar-Noy, and Dolev [8] within
each configuration. That work restricts the set of possible new configurations to those satisfying certain intersec-
tion properties with previous configurations, whereas we impose no such restrictions—we allow arbitrary new
configurations to be installed. Like other solutions based on group communication, the algorithm of [16] delays
reads and writes during reconfiguration.

In earlier work on atomic memory for dynamic networks [40, 20], we considered single reconfigurer ap-
proaches, in which a single designated participant initiates all reconfiguration requests. This approach has the
disadvantage that the failure of the single reconfigurer disables future reconfiguration. In contrast, in our new
approach, any member of the latest configuration may propose the next configuration, and fault-tolerant consen-
sus is used to ensure that a unique next configuration is determined. For well-chosen quorums, this approach
avoids single points of failure: new configurations can continue to be produced, in spite of the failures of some
of the configuration members. Another difference is that in [40, 20], garbage-collection of an old configuration
is tightly coupled to the introduction of a new configuration. Our new approach allows garbage-collection of
old configurations to be carried out in the background, concurrently with other processing. A final difference is
that in [40, 20], information about new configurations is propagated only during the processing of read and write
operations. A client who does not perform any operations for a long while may become “disconnected” from
the latest configuration, if older configurations become disabled. In contrast, in our new algorithm, information
about configurations is gossiped periodically, in the background, which permits all participants to learn about new
configurations and garbage-collect old configurations.

Other related work. Upfal and Wigderson showed the first general scheme for emulating shared-memory in
message-passing systems by using replication and accessing majorities of time-stamped replicas [48]. Attiya,
Bar-Noy and Dolev developed a majority-based emulation of atomic registers that uses bounded time-stamps [8].
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Their algorithm introduced a two-phase paradigm where in the first phase information is gathered from a majority
of processors, and the second phase propagates information to a majority of processors.

Quorums [25] are generalizations of majorities. A quorum system (also called a coterie) is a collection of
sets such that any two sets, called quorums, intersect [22]. Another approach is to separate quorums into read-
quorums and write-quorums, such that any read-quorum intersects any write-quorum, and (sometimes) such that
any two write-quorums intersect. Quorums have been used to implement distributed mutual exclusion [22] and
data replication protocols [14, 29]. Quorums can be used with replicated data in transaction-style synchronization
that limits concurrency (cf. [11]). Many other replication techniques use quorums [2, 9, 18, 19, 26]. An additional
level of fault-tolerance in quorum-based approaches can be achieved using the Byzantine quorum approach [41, 4].

A great variety of research has been carried out on the fault-tolerance of quorum assignments. Probabilistic
approaches such as [7, 37, 44, 45], develop methods to determine the likelihood that progress is achieved given
a non-adaptive quorum system. When processors fail with a known probability, a quorum assignment can be
selected to maximize the probability of progress. This method can also be used with our emulation to allow a
system monitor to evaluate the current configuration and to make decisions concerning its replacement.

Another approach to quorum adaptation is dynamic voting [30, 31, 38]. The approach in [31] relies on locking
and requires that at least a majority of all the processors in some previously updated quorum (or half of all the
processors in some previously updated quorum plus the distinguished site) are still alive. The approach in [38]
does not rely on locking, but requires at least a predefined number of processors to always be alive. The on-line
quorum adaptation of [9] assumes the use of Sanders [47] mutual exclusion algorithm, which again relies on
locking.

Document structure. In Section 2 we present the models and data types used in the sequel. The specification
of the RAMBO is given in Section 3. In Section 4 we overview the structure of the main technical development.
In Section 5, we present the specification for the Recon service. In Section 6, we present the main algorithm
implementing read and write operations. In Section 7, we show that the main algorithm satisfies the safety
properties described in Section 3. In Section 8, we present our implementation of Recon and show that it satisfies
the specified properties. Before presenting the latency analysis, we describe our timed model of computation
and assumptions in Section 9. Section 10 presents results on latency and fault-tolerance under the assumption
that the system is well-behaved. In Section 11, we present similar results for the case where the system may be
initially badly behaved, but is eventually well-behaved. In Section 12 we summarize the results of other research
on optimizations, refinements, and implementations based on RAMBO as an architectural template. We conclude
in Section .

2 Model and Data Types

We use the asynchronous message-passing model, in which uniquely identified asynchronous processes commu-
nicate using point-to-point asynchronous channels. All processes may communicate with each other. Processes
may fail by crashing (stopping without warning). Our safety results do not depend on any assumptions about
message delivery time. However, for our performance results, we assume that messages are delivered in bounded
time.

2.1 Data types

We now describe the data types used in our exposition. We assume two distinguished elements, ⊥ and ±, which
are not in any of the basic types. For any type A, we define new types A⊥ = A∪ {⊥}, and A± = A∪ {⊥,±}. If
A is a partially ordered set, we augment its ordering by assuming that ⊥ < a < ± for every a ∈ A. We assume
the following specific data types and distinguished elements:

• I , the totally-ordered set of locations.
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• T , the set of tags, defined as N× I .
• M , the set of messages.
• X , the set of object identifiers, partitioned into subsets Xi, i ∈ I . Xi is the set of identifiers for objects that

may be created at location i. For any x ∈ X , (i0)x denotes the unique i such that x ∈ Xi.
• For each x ∈ X:

– Vx, the set of values that object x may take on.
– (v0)x ∈ Vx, the initial value of x.

• C, the set of configuration identifiers. We assume only the trivial partial order on C, in which all elements
are incomparable; in the resulting augmented partial ordering of C±, all elements of C are still incompara-
ble.

• For each x ∈ X , (c0)x ∈ C, the initial configuration identifier for x.
• For each c ∈ C we define:

– members(c), a finite subset of I .
– read-quorums(c), a set of finite subsets of members(c).
– write-quorums(c), a set of finite subsets of members(c).

We assume the following constraints:

• members((c0)x) = {(i0)x}. That is, the initial configuration for object x has only a single member, who is
the creator of x.

• For every c, every R ∈ read-quorums(c), and every W ∈ write-quorums(c), R ∩W 6= ∅.

We also define:

• update , a binary function on C±, defined by update(c, c′) = max(c, c′) if c and c′ are comparable (in the
augmented partial ordering of C±), update(c, c′) = c otherwise.

• extend , a binary function on C±, defined by extend(c, c′) = c′ if c = ⊥ and c′ ∈ C, and extend(c, c′) = c
otherwise.

• CMap, the set of configuration maps, defined as the set of mappings from N to C±. We extend the update
and extend operators elementwise to binary operations on CMap.

• truncate , a unary function on CMap, defined by truncate(cm)(k) = ⊥ if there exists ` ≤ k such that
cm(`) = ⊥, truncate(cm)(k) = cm(k) otherwise. This truncates configuration map cm by removing all
the configuration identifiers that follow a ⊥.

• Truncated , the subset of CMap such that cm ∈ Truncated if and only if truncate(cm) = cm .
• Usable , the subset of CMap such that cm ∈ Usable iff the pattern occurring in cm consists of a prefix

of finitely many ±s, followed by an element of C, followed by an infinite sequence of elements of C⊥ in
which all but finitely many elements are ⊥.

Lemma 2.1 If cm ∈ Usable then:

1. If k, ` ∈ N, k ≤ `, and cm(`) = ±, then cm(k) = ±.
2. cm contains finitely many ± entries.
3. cm contains finitely many C entries.
4. If k ∈ N, cm(k) = ±, and cm(k + 1) 6= ±, then cm(k + 1) ∈ C.

2.2 Channel automata

Processes communicate via point to point channels Channelx,i,j , one for each x ∈ X , i, j ∈ I (including the case
where i = j). Channelx,i,j is accessed using send(m)x,i,j input actions, by which a sender at location i submits
message m associated with object x to the channel, and receive(m)x,i,j output actions, by which a receiver at
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location j receives m. When the object x is implicit, we write simply Channel i,j which has actions send(m)i,j

and receive(m)i,j .
Channels may lose, duplicate, and reorder messages, but cannot manufacture new messages. We assume that

message m is an element of the message alphabet M , which we assume includes all the messages that are used by
the protocol. Formally, we model the channel as a multiset. A send adds the message to the multiset, but a receive
does not remove the message.

3 Reconfigurable Atomic Memory Service Specification

In this section, we give the specification for the RAMBO reconfigurable atomic memory service. This specification
consists of an external signature (interface) plus a set of traces that embody RAMBO’s safety properties. No
liveness properties are included in the specification; we replace these with conditional latency bounds, where are
stated and proved in Sections 10 and 11. The external signature appears in Figure 1.

The client at location i requests to join the system for a particular object x by performing a join(rambo, J)x,i

input action. The set J represents the client’s best guess at a set of processes that have already joined the system
for x. If i = (i0)x, the set J is empty, because (i0)x is supposed to be the first process to join the system for x. If
the join attempt is successful, the RAMBO service responds with a join-ack(rambo)x,i output action.

The client at i initiates a read (resp., write) operation using a readi (resp., writei) input action, which the
RAMBO service acknowledges with a read-acki (resp., write-acki) output action. The client initiates a reconfigu-
ration using a reconi input action, which is acknowledged with a recon-acki output action. RAMBO reports a new
configuration to the client using a reporti output action. Finally, a crash at location i is modelled using a faili input
action. We do not explicitly model graceful process “leaves,” but instead we model process departures as failures.

Input:
join(rambo, J)x,i, J a finite subset of I − {i}, x ∈ X , i ∈ I ,

such that if i = (i0)x then J = ∅
readx,i, x ∈ X , i ∈ I
write(v)x,i, v ∈ Vx, x ∈ X , i ∈ I
recon(c, c′)x,i, c, c′ ∈ C, i ∈ members(c), x ∈ X , i ∈ I
faili, i ∈ I

Output:
join-ack(rambo)x,i, x ∈ X , i ∈ I
read-ack(v)x,i, v ∈ Vx, x ∈ X , i ∈ I
write-ackx,i, x ∈ X , i ∈ I
recon-ack(b)x,i, b ∈ {ok, nok}, x ∈ X, i ∈ I
report(c)x,i, c ∈ C, c ∈ X, i ∈ I

Figure 1: RAMBO (x): External signature

Now we define the set of traces describing RAMBO’s safety properties. These traces are defined to be those
that satisfy an implication of the form “environment assumptions imply service guarantees”. The environment
assumptions are simple “well-formedness” conditions on the behavior of the clients:

• Well-formedness:

– For every x and i:
∗ No join(rambo, ∗)x,i, readx,i, write(∗)x,i, or recon(∗, ∗)x,i event is preceded by a faili event.
∗ At most one join(rambo, ∗)x,i event occurs.
∗ Any readx,i, write(∗)x,i, or recon(∗, ∗)x,i event is preceded by a join-ack(rambo)x,i event.
∗ Any readx,i, write(∗)x,i, or recon(∗, ∗)x,i event is preceded by an -ack event for any preceding

event of any of these kinds.
– For every x and c, at most one recon(∗, c)x,∗ event occurs.

This says that configuration identifiers that are proposed in recon events are unique. It does not say
that the membership and/or quorum sets are unique—just the identifiers. The same membership and
quorum sets may be associated with different configuration identifiers.)

– For every c, c′, x, and i, if a recon(c, c′)x,i event occurs, then it is preceded by:
∗ A report(c)x,i event, and
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∗ A join-ack(rambo)x,j event for every j ∈ members(c′).
This says participant i can request reconfiguration from c to c′ only if i has previously received a report
that c is the current configuration identifier, and only if all the members of c′ have already joined.

The safety guarantees provided by the service are as follows:

• Well-formedness: For every x and i:

– No join-ack(rambo)x,i, read-ack(∗)x,i, write-ackx,i, recon-ack(∗)x,i, or report(∗)x,i event is preceded
by a faili event.

– Any join-ack(rambo)x,i (resp., read-ack(∗)x,i, write-ackx,i, recon-ack(∗)x,i) event has a preceding
join(rambo, ∗)x,i (resp., readx,i, write(∗)x,i, recon(∗, ∗)x,i) event with no intervening invocation or
response action for x and i.

• Atomicity:2 If all the read and write operations that are invoked complete, then the read and write operations
for object x can be partially ordered by an ordering ≺, so that the following conditions are satisfied:

1. No operation has infinitely many other operations ordered before it.
2. The partial order is consistent with the external order of invocations and responses, that is, there do

not exist read or write operations π1 and π2 such that π1 completes before π2 starts, yet π2 ≺ π1.
3. All write operations are totally ordered and every read operation is ordered with respect to all the

writes.
4. Every read operation ordered after any writes returns the value of the last write preceding it in the

partial order; any read operation ordered before all writes returns (v0)x.

4 Overview

The rest of the paper is devoted to presenting our implementation of RAMBO. The implementation can be de-
scribed formally as the composition of a separate implementation for each x. Therefore, throughout the rest of
the paper, we describe an implementation for a particular x, and suppress explicit mention of x. Thus, we write
V , v0, c0, and i0 from now on as shorthand for Vx, (v0)x, (c0)x, and (i0)x, respectively.

Our RAMBO implementation for each object x consists of a main Reader-Writer algorithm and a reconfigu-
ration service, Recon(x); since we are suppressing mention of x, we write this simply as Recon .

In Section 5, we present the specification for the Recon service as an external signature and set of traces,
postponing its implementation to a later section. Our later analysis of the main Reader-Writer algorithm uses
the Recon service as a black box, relying on the specification presented herein.

In Section 6, we present the main Reader-Writer algorithm. This algorithm is at the heart of the RAMBO

protocol, and shows how to perform reads and writes, as well as to garbage-collect old configurations that are
no longer needed. In Section 7, we show that the main Reader-Writer algorithm satisfies the safety properties
described in Section 3.

In Section 8, we present our implementation of Recon and show that it satisfies the specified properties. This
concludes are presentation of the RAMBO algorithm.

In Section 9, we (briefly) describe our timed model of computation, and present a series of assumptions
regarding failures, the frequency of reconfiguration requests, etc. In Section 10, we present a series of results
on latency and fault-tolerance under the assumption that the system is well-behaved. In Section 11, we present
similar results for the case where the system may be initially badly behaved, but is eventually well-behaved.

2Atomicity is often defined in terms of an equivalence with a serial memory. The definition given here implies this equivalence, as
shown, for example, in Lemma 13.16 in [39]. Lemma 13.16 of [39] is presented for a setting with only finitely many locations, whereas
we consider infinitely many locations. However, nothing in Lemma 13.16 or its proof depends on the finiteness of the set of locations, so
the result carries over immediately to our setting. The other relevant results accompanying Lemma 13.16 also carry over to this setting;
in particular, Theorem 13.1, which asserts that atomicity is a safety property, and Lemma 13.10, which asserts that it suffices to consider
executions in which all operations complete, both carry over.
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5 Reconfiguration Service Specification

In this section, we present the specification for the Recon service as an external signature and set of traces. We
present our implementation of Recon later in Section 8, after we present the main Reader-Writer algorithm and
the proof of its safety properties.

The interface for Recon appears in Figure 2. The client of Recon at location i requests to join the reconfig-
uration service by performing a join(recon)i input action. The service acknowledges this with a corresponding
join-acki output action. The client requests to reconfigure the object using a reconi input, which is acknowledged
with a recon-acki output action. RAMBO reports a new configuration to the client using a reporti output action.
Crashes are modeled using fail actions.

Recon also produces outputs of the form new-config(c, k)i, which announce at location i that c is the kth con-
figuration identifier for the object. These outputs are used for communication with the portion of the Reader-Writer
algorithm running at location i. Recon announces consistent information, only one configuration identifier per
index in the configuration identifier sequence. It delivers information about each configuration to members of the
new configuration and of the immediately preceding configuration.

Input:
join(recon)i, i ∈ I
recon(c, c′)i, c, c′ ∈ C, i ∈ members(c)
faili, i ∈ I

Output:
join-ack(recon)i, i ∈ I
recon-ack(b)i, b ∈ {ok, nok}, i ∈ I
report(c)i, c ∈ C, i ∈ I
new-config(c, k)i, c ∈ C, k ∈ N+, i ∈ I

Figure 2: Recon: External signature

Now we define the set of traces describing Recon’s safety properties. Again, these are defined in terms
of environment assumptions and service guarantees. The environment assumptions are simple well-formedness
conditions, consistent with the well-formedness assumptions for RAMBO:

• Well-formedness:

– For every i:
∗ No join(recon)i or recon(∗, ∗)i event is preceded by a faili event.
∗ At most one join(recon)i event occurs.
∗ Any recon(∗, ∗)i event is preceded by a join-ack(recon)i event.
∗ Any recon(∗, ∗)i event is preceded by an -ack for any preceding recon(∗, ∗)i event.

– For every c, at most one recon(∗, c)∗ event occurs.
– For every c, c′, and i, if a recon(c, c′)i event occurs, then it is preceded by:

∗ A report(c)i event, and
∗ A join-ack(recon)j for every j ∈ members(c′).

The safety guarantees provided by the service are as follows:

• Well-formedness: For every i:

– No join-ack(recon)i, recon-ack(∗)i, report(∗)i, or new-config(∗, ∗)i event is preceded by a faili event.
– Any join-ack(recon)i (resp., recon-ack(c)i) event has a preceding join(recon)i (resp., reconi) event

with no intervening invocation or response action for x and i.

• Agreement: If new-config(c, k)i and new-config(c′, k)j both occur, then c = c′. (No disagreement arises
about what the kth configuration identifier is, for any k.)

• Validity: If new-config(c, k)i occurs, then it is preceded by a recon(∗, c)i′ for some i′ for which a matching
recon-ack(nok)i′ does not occur. (Any configuration identifier that is announced was previously requested
by someone who did not receive a negative acknowledgment.)

• No duplication: If new-config(c, k)i and new-config(c, k′)i′ both occur, then k = k′. (The same configura-
tion identifier cannot be assigned to two different positions in the sequence of configuration identifiers.)
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Figure 3: RAMBO architecture: The diagram depicts the Joiner and Reader-Writer automata at i and j, the
Channel automata, and the Recon service.

6 Implementation of RAMBO

Our implementation of RAMBO includes Joinerx,i automata for each x and i, which handle joining of new partic-
ipants, and Reader-Writerx,i automata, which handle reading, writing, and “installing” new configurations. The
Reader-Writer and Joiner automata have access to the asynchronous communication channels Channelx,i,j .
The Reader-Writer automata also interact with an arbitrary implementation of the Recon service. The architec-
ture is depicted in Figure 3.

In this section we present the Joinerx,i and Reader-Writerx,i. As before, since we are suppressing explicit
mention of x, we write simply Joiner i and Reader-Writer i, leaving the object x implicit.

6.1 Joiner automata

The joining protocol is implemented by a separate Joiner i automaton for each i. The signature, state and transi-
tions of Joiner i all appear in Figure 4.

When Joiner i receives a join(rambo, J) request from its environment, it carries out a simple protocol: It
sends join messages to the processes in J (with the hope that they are already participating, and so can help in
the attempt to join). Also, it submits join requests to the local Reader-Writer and Recon components and waits
for acknowledgments for these requests. The join messages that are sent by Joiner automata are not handled by
Joiner automata at other locations, but rather, by Reader-Writer automata, as discussed in the next subsection.

6.2 Reader-Writer automata

The heart, and hardest part, of our RAMBO implementation is the reader-writer algorithm, which handles the pro-
cessing of read and write operations. Each read or write operation is processed using one or more configurations,
which it learns about from the Recon service. The reader-writer protocol also handles the garbage-collection of
older configurations, which ensures that later read and write operations need not use them.

The reader-writer protocol is implemented by a Reader-Writer i automaton for each i. The Reader-Writer i

components interact with the Recon service and communicate using point-to-point asynchronous channels.

6.2.1 Signature and state

The signature and state of Reader-Writer i appear in Figure 5.
The state variables are used as follows. The status variable keeps track of the progress of the component as

it joins the protocol. When status = idle , Reader-Writer i does not respond to any inputs (except for join) and
does not perform any locally controlled actions. When status = joining , Reader-Writer i is receptive to inputs
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Signature:

Input:
join(rambo, J)i, J a finite subset of I − {i}
join-ack(r)i, r ∈ {recon, rw}
faili

Output:
send(join)i,j , j ∈ I − {i}
join(r)i, r ∈ {recon, rw}
join-ack(rambo)i

State:

status ∈ {idle, joining , active}, initially idle
child-status , a mapping from {recon, rw} to {idle, joining , active}, initially everywhere idle
hints ⊆ I , initially ∅
failed , a Boolean, initially false

Transitions:

Input join(rambo, J)i

Effect:
if ¬failed then
if status = idle then
status ← joining
hints ← J

Output send(join)i,j

Precondition:
¬failed
status = joining
j ∈ hints

Effect:
none

Output join(r)i

Precondition:
¬failed
status = joining
child-status(r) = idle

Effect:
child-status(r)← joining

Input join-ack(r)i

Effect:
if ¬failed then

if status = joining then
child-status(r)← active

Output join-ack(rambo)i

Precondition:
¬failed
status = joining
∀r ∈ {recon, rw}:
child-status(r) = active

Effect:
status ← active

Input faili
Effect:

failed ← true

Figure 4: Joiner i

but still does not perform any locally controlled actions. When status = active , the automaton participates fully
in the protocol.

The world variable is used to keep track of all processes that are known to have attempted to join the system.
The value variable contains the current value of the local replica of x, and tag holds the associated tag. The
cmap variable contains information about configurations: If cmap(k) = ⊥, it means that Reader-Writer i has
not yet learned what the kth configuration identifier is. If cmap(k) = c ∈ C, it means that Reader-Writer i

has learned that the kth configuration identifier is c, and it has not yet garbage-collected it. If cmap(k) = ±,
it means that Reader-Writer i has garbage-collected the kth configuration identifier. Reader-Writer i learns
about configuration identifiers either directly, from the Recon service, or indirectly, from other Reader-Writer
processes. The value of cmap is always in Usable , that is, ± for some finite (possibly zero length) prefix of N,
followed by an element of C, followed by elements of C⊥, with only finitely many total elements of C. When
Reader/Writer i processes a read or write operation, it uses all the configurations whose identifier appear in its
cmap up to the first ⊥.

The pnum1 variable and pnum2 array are used to implement a handshake that identifies “recent” messages.
Reader-Writer i uses pnum1 to count the total number of operation “phases” it has initiated overall, including
phases occurring in read, write, and garbage-collection operations. (A “phase” here refers to either a query or
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Signature:

Input:
readi

write(v)i, v ∈ V
new-config(c, k)i, c ∈ C, k ∈ N+

recv(join)j,i, j ∈ I − {i}
recv(m)j,i, m ∈M , j ∈ I
join(rw)i

faili

Output:
join-ack(rw)i

read-ack(v)i, v ∈ V
write-acki

send(m)i,j , m ∈M , j ∈ I

Internal:
query-fixi

prop-fixi

gc(k)i, k ∈ N
gc-query-fix(k)i, k ∈ N
gc-prop-fix(k)i, k ∈ N
gc-ack(k)i, k ∈ N

State:

status ∈ {idle, joining , active, failed}, initially idle
world , a finite subset of I , initially ∅
value ∈ V , initially v0

tag ∈ T , initially (0, i0)
cmap ∈ CMap, initially cmap(0) = c0,

cmap(k) = ⊥ for k ≥ 1
pnum1 ∈ N, initially 0
pnum2 , a mapping from I to N, initially

everywhere 0
failed , a Boolean, initially false

op, a record with fields:
type ∈ {read ,write}
phase ∈ {idle, query , prop, done}, initially idle
pnum ∈ N
cmap ∈ CMap
acc, a finite subset of I
value ∈ V

gc, a record with fields:
phase ∈ {idle, query , prop}, initially idle
pnum ∈ N
acc, a finite subset of I
cmap ∈ CMap,
target ∈ N

Figure 5: Reader-Writer i: Signature and state

propagate phase, as described below.) For every j, including j = i, Reader-Writer i uses pnum2 (j) to record
the largest number of a phase that i has learned that j has started, via a direct message from j to i. Finally, two
records, op and gc, are used to maintain information about a locally-initiated read, write, or garbage-collection
operation in progress.

6.2.2 Transitions

The transitions are presented in three figures: Figure 6 presents the transitions pertaining to joining the protocol
and failing. Figure 7 presents those pertaining to reading and writing, and Figure 8 presents those pertaining to
garbage-collection.

Joining. When a join(rw)i input occurs when status = idle , if i is the object’s creator i0, then status immedi-
ately becomes active , which means that Reader-Writer i is ready for full participation in the protocol. Otherwise,
status becomes joining , which means that Reader-Writer i is receptive to inputs but not ready to perform any
locally controlled actions. In either case, Reader-Writer i records itself as a member of its own world . From this
point on, Reader-Writer i also adds to its world any process from which it receives a join message. (Recall that
these join messages are sent by Joiner automata, not Reader-Writer automata.)

If status = joining , then status becomes active when Reader-Writer i receives a message from another
process. (The code for this appears in the recv transition definition in Figure 7.) At this point, process i has
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acquired enough information to begin participating fully. After status becomes active , process i can perform a
join-ack(rw).

Input join(rw)i

Effect:
if ¬failed then

if status = idle then
if i = i0 then
status ← active

else
status ← joining

world ← world ∪ {i}

Input recv(join)j,i

Effect:
if ¬failed then

if status 6= idle then
world ← world ∪ {j}

Output join-ack(rw)i

Precondition:
¬failed
status = active

Effect:
none

Input faili
Effect:

failed ← true

Figure 6: Reader-Writer i: Join-related and failure transitions

Information propagation. Information is propagated between Reader-Writer processes in the background,
via point-to-point channels that are accessed using send and recv actions. The algorithm uses only one kind of
message, which contains a tuple including the sender’s world , its latest known value and tag , its cmap, and
two phase numbers—the current phase number of the sender, pnum1 , and the latest known phase number of the
receiver, from the pnum2 array. These background messages may be sent at any time, once the sender is active.
They are sent only to processes in the sender’s world set, that is, processes that the sender knows have tried to
join the system at some point.

When Reader-Writer i receives a message, it sets its status to active , if it has not already done so. It adds
incoming information about the world, in W , to its local world set. It compares the incoming tag t to its own tag .
It t is strictly greater, it represents a more recent version of the object; in this case, Reader-Writer i sets its tag
to t and its value to the incoming value v. Reader-Writer i also updates its own configuration map, cmap, with
the information in the incoming configuration map, cm , using the update operator defined in Section 2. That is,
for each k, if cmap(k) = ⊥ and cm(k) is a configuration identifier c ∈ C, process i sets its cmap(k) to c. Also,
if cmap(k) is either ⊥ or a configuration identifier in C, and cm(k) = ±, indicating that the sender knows that
configuration k has already been garbage-collected, then Reader-Writer i sets its cmap(k) to±. Reader-Writer i

also updates its pnum2 (j) component for the sender j to reflect new information about the phase number of the
sender, which appears in the pns components of the message.

When Reader-Writer i is conducting a phase of a read, write, or garbage-collection operation, it verifies that
the incoming message is “recent”, in the sense that the sender j sent it after j received a message from i that
was sent after i began the current phase. Reader-Writer i uses the phase numbers to perform this check: if the
incoming phase number pnr is at least as large as the current operation phase number (op.pnum or gc.pnum),
then process i knows that the message is recent. If the message is recent, then it is used to update the records for
current read, write or garbage-collection operations. For more information about how this is done and why, see
the descriptions of these operations below.

Read and write operations. A read or write operation is performed in two phases: a query phase and a prop-
agation phase. In each phase, Reader-Writer i obtains recent value , tag , and cmap information from “enough”
processes. This information is obtained by sending and receiving messages in the background, as described above.

When Reader-Writer i starts either a query phase or a propagation phase of a read or write, it sets op.cmap
to a CMap whose configurations are intended to be used to conduct the phase. Specifically, Reader-Writer i
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Output send(〈W, v, t, cm, pns, pnr〉)i,j

Precondition:
¬failed
status = active
j ∈ world
〈W, v, t, cm, pns, pnr〉 =
〈world , value, tag , cmap, pnum1 , pnum2 (j)〉

Effect:
none

Input recv(〈W, v, t, cm, pns, pnr〉)j,i

Effect:
if ¬failed then

if status 6= idle then
status ← active
world ← world ∪W
if t > tag then (value, tag)← (v, t)
cmap ← update(cmap, cm)
pnum2 (j)← max(pnum2 (j), pns)
if op.phase ∈ {query , prop} and pnr ≥ op.pnum then

op.cmap ← extend(op.cmap, truncate(cm))
if op.cmap ∈ Truncated then

op.acc ← op.acc ∪ {j}
else

op.acc ← ∅
op.cmap ← truncate(cmap)

if gc.phase ∈ {query , prop} and pnr ≥ gc.pnum then
gc.acc ← gc.acc ∪ {j}

Input new-config(c, k)i

Effect:
if ¬failed then
if status 6= idle then
cmap(k)← update(cmap(k), c)

Input readi

Effect:
if ¬failed then

if status 6= idle then
pnum1 ← pnum1 + 1
〈op.pnum, op.type, op.phase, op.cmap, op.acc〉
← 〈pnum1 , read , query , truncate(cmap), ∅〉

Input write(v)i

Effect:
if ¬failed then

if status 6= idle then
pnum1 ← pnum1 + 1
〈op.pnum, op.type, op.phase, op.cmap, op.acc, op.value〉
← 〈pnum1 ,write, query , truncate(cmap), ∅, v〉

Internal query-fixi

Precondition:
¬failed
status = active
op.type ∈ {read ,write}
op.phase = query
∀k ∈ N, c ∈ C : (op.cmap(k) = c)
⇒ (∃R ∈ read-quorums(c) : R ⊆ op.acc)

Effect:
if op.type = read then op.value ← value
else value ← op.value

tag ← 〈tag .seq + 1, i〉
pnum1 ← pnum1 + 1
op.phase ← prop
op.cmap ← truncate(cmap)
op.acc ← ∅

Internal prop-fixi

Precondition:
¬failed
status = active
op.type ∈ {read ,write}
op.phase = prop
∀k ∈ N, c ∈ C : (op.cmap(k) = c)
⇒ (∃W ∈ write-quorums(c) : W ⊆ op.acc)

Effect:
op.phase = done

Output read-ack(v)i

Precondition:
¬failed
status = active
op.type = read
op.phase = done
v = op.value

Effect:
op.phase = idle

Output write-acki

Precondition:
¬failed
status = active
op.type = write
op.phase = done

Effect:
op.phase = idle

Figure 7: Reader-Writer i: Read/write transitions

chooses the CMap truncate(cmap), which is defined to include all the configuration identifiers in the local
cmap up to the first⊥. When new CMap information arrives during the phase, op.cmap is “extended” by adding
all newly-discovered configuration identifiers, up to the first ⊥ in the incoming CMap cm . If adding these new
configuration identifiers does not create a “gap”, that is, if the extended op.cmap is in Truncated , then the phase
continues using the extended op.cmap. On the other hand, if adding these new configuration identifiers does
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create a gap (that is, the result is not in Truncated ), then Reader-Writer i can infer that it has been conducting
the operation using out-of-date configuration identifiers. In this case, it restarts the phase using the best currently
known CMap, information, which is obtained by computing truncate(cmap) for the latest local cmap.

In between restarts, while process i is engaged in a single attempt to complete a phase, no configuration
identifier is ever removed from op.cmap, that is, the set of configuration identifiers being used for the phase is
only increased. In particular, if process i learns during a phase that a configuration identifier in op.cmap(k) has
been garbage-collected, it does not remove it from op.cmap, but continues to include it in conducting the phase.

The query phase of a read or write operation terminates when a “query fixed point” is reached. This happens
when Reader-Writer i determines that it has received recent responses from some read-quorum of each config-
uration in its current op.cmap. Let v and t denote process i’s value and tag at the query fixed point. Then we
know that t is at least as great as the tag value that each process in each of these read-quorums had at the start of
the query phase.

If the operation is a read operation, then process i determines at this point that v is the value to be returned
to its client. However, before returning this value, process i embarks upon the propagation phase of the read
operation, whose purpose is to make sure that “enough” processes have acquired tags that are at least as great
as t (and associated values). Again, the information is propagated in the background, and op.cmap is managed
as described above. The propagation phase ends once a “propagation fixed point” is reached, when process i
has received recent responses from some write-quorum of each configuration in the current op.cmap. When this
occurs, we know that the tag value of each process in each of these write-quorums is at least as great as t.

Processing for a write operation, say write(v)i, for a particular i and v, is similar to that for a read operation.
The query phase is conducted exactly as for a read, but processing after the query fixed point is different: Suppose
t, process i’s tag at the query fixed point, is of the form (n, j). Then Reader-Writer i defines the tag for its write
operation to be the pair (n+ 1, i). Reader-Writer i sets its local tag to (n+ 1, i) and its value to v, the value it is
currently writing. Then it performs its propagation phase. Now the purpose of the propagation phase is to ensure
that “enough” processes acquire tags that are at least as great as the new tag (n+ 1, i). The propagation phase is
conducted exactly as for a read operation: Information is propagated in the background, and op.cmap is managed
as described above. The propagation phase is over when the same propagation fixed point condition is satisfied as
for the read operation.

The communication strategy we use for reads and writes is different from what is done in other similar algo-
rithms (e.g., [8, 20, 40]). Typically, process i first determines a tag and value to propagate, and then propagates
it directly to appropriate quorums. In our algorithm, communication occurs in the background, and process i
just checks a fixed point condition. The fixed point condition ensures that enough processes have received recent
messages, which implies that they must have tags at least as large as the one that process i is trying to propagate.

New configurations and garbage collection. When Reader-Writer i hears about a new configuration identifier
via a new-config input action, it simply records it in its cmap. From time to time, configuration identifiers get
garbage-collected at i. The configuration identifiers used in performing query and propagation phases of reads
and writes are those in truncate(cmap), that is, all configurations that have not been garbage-collected and that
appear before the first ⊥.

There are two situations in which Reader-Writer i may garbage-collect a configuration identifier, say, the
one in cmap(k). First, Reader-Writer i can garbage-collect cmap(k) if it ever hears that another process has
already garbage-collected it. This happens when a recv∗,i event occurs in which cm(k) = ±. The second, more
interesting situation is where Reader-Writer i acquires enough information to garbage-collect configuration k
on its own. Reader-Writer i acquires this information by carrying out a garbage-collection operation, which is
a two-phase operation with a structure similar to the read and write operations. Reader-Writer i may initiate a
garbage-collection of all configurations with index ≤ k when both cmap(k) ∈ C and cmap(k + 1) ∈ C, and
when for every index ` ≤ k, cmap(`) 6= ⊥. Garbage-collection operations may proceed concurrently with read
or write operations at the same node.

In the query phase of a garbage-collection operation, process i communicates with both a read-quorum and
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a write-quorum of every active configuration with index ≤ k, that is, every configuration with index ` ≤ k such
that gc.cmap(`) ∈ C. The query phase accomplishes two tasks: First, Reader-Writer i ensures that certain
information is conveyed to the processes in the read- and write-quorums of all active configurations with index
≤ k. In particular, all these processes learn about configuration k+1, and also learn that all configurations smaller
than k + 1 are being garbage-collected. We refer loosely to the fact that they know about configuration k + 1
as the “forwarding pointer” condition—if such a process j, is contacted at a later time by someone who is trying
to access a quorum of configuration k, j is able to tell that process about the existence of the later configuration
k. Second, in the query phase, Reader-Writer i collects tag and value information from the read- and write-
quorums that it accesses. This ensures that, by the end of the query phase, Reader-Writer i’s tag is equal to
some value t that is at least as great as the tag that each of the quorum members had when it sent a message to
Reader-Writer i for the query phase. In the propagation phase, Reader-Writer i ensures that a write-quorum of
the new configuration, k + 1, have acquired tags that are at least as great as t.

Note that the two phases of garbage-collection differ from the two phases of the read and write operations
in that they do not involve “fixed point” tests. In this case, Reader-Writer i does not start with some set of
configurations in op.cmap and extend it as it learns about more configurations. Rather, Reader-Writer i knows
ahead of time which configurations are being used—those that are active in gc.cmap—and uses only quorums
from those configurations.

At any time when Reader-Writer i is carrying out a garbage-collection operation, it may discover that some-
one else has already garbage-collected all the configurations< k; it discovers this by observing that cmap(`) = ±
for all ` < k. When this happens, Reader-Writer i may simply terminate its operation.

Internal gc(k)i

Precondition:
¬failed
status = active
gc.phase = idle
cmap(k) ∈ C
cmap(k − 1) ∈ C
∀` < k : cmap(`) 6= ⊥

Effect:
pnum1 ← pnum1 + 1
gc.phase ← query
gc.pnum ← pnum1
gc.cmap ← truncate(cmap)
gc.acc ← ∅
gc.target ← k

Internal gc-query-fix(k)i

Precondition:
¬failed
status = active
gc.phase = query
gc.target = k
∀` < k : gc.cmap(`) ∈ C
⇒ ∃R ∈ read-quorums(gc.cmap(`)) : R ⊆ gc.acc
∀` < k : gc.cmap(`) ∈ C
⇒ ∃W ∈ write-quorums(gc.cmap(`)) : W ⊆ gc.acc

Effect:
pnum1 ← pnum1 + 1
gc.pnum ← pnum1
gc.phase ← prop
gc.acc ← ∅

Internal gc-prop-fix(k)i

Precondition:
¬failed
status = active
gc.phase = prop
gc.target = k
∃W ∈ write-quorums(gc.cmap(k)) : W ⊆ gc.acc

Effect:
for ` < k do
cmap(`)← ±

Internal gc-ack(k)i

Precondition:
¬failed
status = active
gc.target = k
∀` < k : cmap(`) = ±

Effect:
gc.phase = idle

Figure 8: Reader-Writer i: Garbage-collection transitions

14



6.3 The complete algorithm

The complete implementation S is the composition of all the automata defined above—the Joiner i and Reader-Writer i

automata for all i, all the channels, and any automaton whose traces satisfy the Recon safety specification—with
all the actions that are not external actions of RAMBO hidden.

7 Safety Proof

In this section, we show that our implementation S satisfies the safety guarantees of RAMBO, as given in Section 3,
assuming the environment safety assumptions. That is, we prove the following theorem:

Theorem 7.1 Let β be a trace of the system S. If β satisfy the RAMBO environment assumptions, then β satisfies
the RAMBO service guarantees (well-formedness and atomicity).

The proof of well-formedness is straightforward based on inspection of the code, so the rest of this section is
devoted to the proof of the atomicity property. To prove atomicity, we consider a trace β of S that satisfies the
RAMBO environment assumptions and in which all read and write operations complete. We show the existence of
a partial order on the operations in β satisfying the conditions listed in the atomicity definition in Section 3.

The proof is carried out in several stages. First, in Section 7.1, we establish some notational conventions and
define some useful history variables. In Sections 7.2 and 7.3, we present some basic invariants and guarantees.
The following two subsections describe information propagation between operations: in Section 7.4 we establish
a relationship between garbage-collection operations; in Section 7.5 we show how information is propagated from
read/write operations to garbage-collection operations, and vice versa. In Section 7.6, we consider the relationship
between two read or write operations, culminating in Lemma 7.17, which says that tags are monotonic with respect
to non-concurrent read or write operations. Finally, Section 7.7 uses the tags to define a partial order on operations
and verifies the four properties required for atomicity.

Throughout this section, we consider executions of S whose trace satisfies the RAMBO environment assump-
tions. We call these good executions. In particular, an “invariant” in this section is a statement that is true of all
states that are reachable in good executions of S.

7.1 Notational conventions

Before diving into the proof, we introduce some notational conventions and add certain history variables to the
global state of the system S.

An operation is a pair (n, i) consisting of a natural number n and an index i ∈ I . Here, i is the index of the
process running the operation, and n is the value of pnum1 i just after the read, write, or gc event of the operation
occurs. We introduce the following history variables:

• in-transit , a set of messages, initially ∅.
A message is added to the set when it is sent by any Reader-Writer i to any Reader-Writer j . No message
is ever removed from this set.

• For every k ∈ N:

1. c(k) ∈ C, initially undefined.
This is set when the first new-config(c, k)i occurs, for some c and i. It is set to the c that appears as
the first argument of this action.

• For every operation π:

1. tag(π) ∈ T , initially undefined.
This is set to the value of tag at the process running π, at the point right after π’s query-fix or
gc-query-fix event occurs. If π is a read or garbage-collection operation, this is the highest tag that
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it encounters during the query phase. If π is a write operation, this is the new tag that is selected for
performing the write.

• For every read or write operation π:

1. query-cmap(π), a CMap, initially undefined.
This is set in the query-fix step of π, to the value of op.cmap in the pre-state.

2. R(π, k), for k ∈ N, a subset of I , initially undefined.
This is set in the query-fix step of π, for each k such that query-cmap(π)(k) ∈ C. It is set to an
arbitrary R ∈ read-quorums(c(k)) such that R ⊆ op.acc in the pre-state.

3. prop-cmap(π), a CMap, initially undefined.
This is set in the prop-fix step of π, to the value of op.cmap in the pre-state.

4. W (π, k), for k ∈ N, a subset of I , initially undefined.
This is set in the prop-fix step of π, for each k such that prop-cmap(π)(k) ∈ C. It is set to an arbitrary
W ∈ write-quorums(c(k)) such that W ⊆ op.acc in the pre-state.

• For every garbage-collection operation γ:

1. removal-set(γ), a subset of N, initially undefined.
This is set in the gc(k) step of γ, to the set {` : ` < k, cmap(`) 6= ±} in the pre-state.

2. target(γ), a configuration, initially undefined.
This is set in the gc(k) step of γ to k.

3. R(γ, `), for ` ∈ N, a subset of I , initially undefined.
This is set in the gc-query-fix step of γ, for each ` ∈ removal-set(γ), to an arbitrary read-quorum
R ∈ read-quorums(c(`)) such that R ⊆ gc.acc in the pre-state.

4. W1(γ, `), for ` ∈ N, a subset of I , initially undefined.
This is set in the gc-query-fix step of γ, for each ` ∈ removal-set(γ), to an arbitrary write-quorum
W ∈ write-quorums(c(`)) such that W ⊆ gc.acc in the pre-state.

5. W2(γ), a subset of I , initially undefined.
This is set in the gc-prop-fix step of γ, to an arbitrary W ∈ write-quorums(c(k)) such that W ⊆
gc.acc in the pre-state.

In any good execution α, we define the following events (more precisely, we are giving additional names to
some existing events):

1. For every read or write operation π:

(a) query-phase-start(π), initially undefined.
This is defined in the query-fix step of π, to be the unique earlier event at which the collection of query
results was started and not subsequently restarted. This is either a read, write, or recv event.

(b) prop-phase-start(π), initially undefined.
This is defined in the prop-fix step of π, to be the unique earlier event at which the collection of
propagation results was started and not subsequently restarted. This is either a query-fix or recv event.

7.2 Configuration map invariants

In this section, we give invariants describing the kinds of configuration maps that may appear in various places in
the state of S. We begin with a lemma saying that various operations yield or preserve the “usable” property:

Lemma 7.2 (1) If cm, cm ′ ∈ Usable then update(cm, cm ′) ∈ Usable . (2) If cm ∈ Usable , k ∈ N , c ∈ C, and
cm ′ is identical to cm except that cm ′(k) = update(cm(k), c), then cm ′ ∈ Usable . (3) If cm, cm ′ ∈ Usable
then extend(cm, cm ′) ∈ Usable . (4) If cm ∈ Usable then truncate(cm) ∈ Usable .

Proof. Immediate, by the definition of update , extend , and truncate . �
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The next invariant (recall that this means a property of all states that arise in good executions of S) describes
some properties of cmapi that hold while Reader-Writer i is conducting a garbage-collection operation:

Invariant 1 If gc.phasei 6= idle and gc.target i = k, then: (1) ∀` : ` ≤ k ⇒ cmap(`)i ∈ C ∪ {±}. (2) If
k1 = min{` : ` ≤ k and gc.cmap(`) 6= ±} then k1 = 0 or cmap(k1 − 1)i = ±.

Proof. The precondition of gc(k)i ensures that this property holds when a garbage-collection begins, and the
monotonicity of updates to the cmapi ensures that it is maintained. �

We next proceed to describe the patterns of C, ⊥, and ± values that may occur in configuration maps in
various places in the system state.

Invariant 2 Let cm be a CMap that appears as one of the following: (1) The cm component of some message in
in-transit; (2) cmapi for any i ∈ I; op.cmapi for some i ∈ I for which op.phase 6= idle; query-cmap(π) or
prop-cmap(π) for any operation π; gc.cmapi for some i ∈ I for which gc.phase 6= idle . Then cm ∈ Usable .

Proof. By induction on the length of a finite good execution: it is easily observed that no action causes a CMap
to become unusable. �

We now strengthen Invariant 2 to say more about the form of the CMaps that are used for read and write
operations:

Invariant 3 Let cm be a CMap that appears as op.cmapi for some i ∈ I for which op.phasei 6= idle , or as
query-cmap(π) or prop-cmap(π) for any operation π. Then: (1) cm ∈ Truncated , and (2) cm consists of
finitely many ± entries followed by finitely many C entries followed by an infinite number of ⊥ entries.

Proof. The claim for op.cmapi with respect to Part 1 follows by induction: during readi, writei or query-fixi

events, op.cmapi is set to truncate(cmapi), i.e., to a value in Truncated . Every recvi event maintains this. The
same properties for query-cmapi and prop-cmapi follow by definition. Part 2 holds by the fact that cm ∈ Usable ,
as per Invariant 2. �

7.3 Phase guarantees

In this section, we present results saying what is achieved by the individual operation phases. We give four
lemmas, describing the messages that must be sent and received and the information flow that must occur during
the two phases of read and write operations, and during the two phases of garbage collection. Specifically, each
of these lemmas asserts that when some node i completes a phase, then for every node j in some quorum (or pair
of quorums), there is some pair of messages m and m′ such that:

1. m is sent from i to j after the phase begins.
2. m′ is sent from j to i after j receives m.
3. m′ is received by i before the end of the phase.
4. If the tag is a query phase, then the tag of the operation or garbage collection is at least as large as the tag

of j when message m′ is sent. If the phase is a propagate phase, then the tag of j is at least as large as the
tag of the operation or garbage collection.

Additionally, these lemmas make claims about the cmap associated with the operation or garbage collection.
Note that these lemmas treat the case where j = i uniformly with the case where j 6= i. This is because, in

the Reader-Writer algorithm, communication from a location to itself is treated uniformly with communication
between two different locations.

We first consider the query phase of read and write operations:
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Lemma 7.3 Suppose that a query-fixi event for a read or write operation π occurs in an execution α. Let k, k′ ∈
N. Suppose query-cmap(π)(k) ∈ C and j ∈ R(π, k). Then there exist messages m from i to j and m′ from j to
i such that:

1. m is sent after the query-phase-start(π) event.
2. m′ is sent after j receives m.
3. m′ is received before the query-fix event of π.
4. If t is the value of tagj in any state before j sends m′, then:

(a) tag(π) ≥ t.
(b) If π is a write operation then tag(π) > t.

5. If cmap(`)j 6= ⊥ for all ` ≤ k′ in any state before j sends m′, then query-cmap(π)(`) ∈ C for some
` ≥ k′.

Proof. The phase number discipline implies the existence of the claimed messages m and m′. It is then easy to
see that the tag component of message m′ is ≥ t, ensuring that tag(π) ≥ t, or, in the case of a write operation,
tag(π) > t.

Next, assume that cmap(`)j 6= ⊥ for all ` ≤ k′ prior to j sending message m′. Since i receives m′ after the
query-phase-start(π) event, we can conclude that after receiving m′, truncate(op.cmapi)(`) 6= ⊥ for all ` ≤ k′.
Since op.cmapi is Usable , as per Invariant 2, we conclude that op.cmapi(`) ∈ C for some ` ≥ k′, implying the
desired claim. �

Next, we consider the propagation phase of read and write operations:

Lemma 7.4 Suppose that a prop-fixi event for a read or write operation π occurs in an execution α. Suppose
prop-cmap(π)(k) ∈ C and j ∈W (π, k). Then there exist messages m from i to j and m′ from j to i such that:

1. m is sent after the prop-phase-start(π) event.
2. m′ is sent after j receives m.
3. m′ is received before the prop-fix event of π.
4. In any state after j receives m, tagj ≥ tag(π).
5. If cmap(`)j 6= ⊥ for all ` ≤ k′ in any state before j sendsm′, then prop-cmap(π)(`) ∈ C for some ` ≥ k′.

Proof. The phase number discipline implies the existence of the claimed messages m and m′. It is then easy to
see that tag component of message m is ≥ tag(π), ensuring that after j receives message m, tagj ≤ tag(π). The
final conclusion is identical to Lemma 7.3, with respect to the prop-cmap(π) rather than the query-cmap(π). �

In the following two lemmas, we consider the behavior of the two phases of a garbage-collection operation. We
begin with the query phase:

Lemma 7.5 Suppose that a gc-query-fix(k)i event for garbage-collection operation γ occurs in an execution α
and k′ ∈ removal-set(γ). Suppose j ∈ R(γ, k′) ∪W1(γ, k′). Then there exist messages m from i to j and m′

from j to i such that:

1. m is sent after the gc(k)i event of γ.
2. m′ is sent after j receives m.
3. m′ is received before the gc-query-fix(k)i event of γ.
4. If t is the value of tagj in any state before j sends m′, then tag(γ) ≥ t.
5. In any state after j receives m, cmap(`)j 6= ⊥ for all ` ≤ k.

Proof. The phase number discipline implies the existence of the claimed messages m and m′. It is then easy to
see that the tag component of message m′ is ≥ t, ensuring that tag(γ) ≥ t.

The final claim holds since, when the gc(k)i event occurs, we know that cmap(`)i 6= ⊥ for all ` ≤ k according
to the precondition. Thus the same property holds for the cm component of message m, and hence for j after
receiving message m. �
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Finally, we consider the propagation phase of a garbage-collection operation:

Lemma 7.6 Suppose that a gc-prop-fix(k)i event for a garbage-collection operation γ occurs in an execution α.
Suppose that j ∈W2(γ). Then there exist messages m from i to j and m′ from j to i such that:

1. m is sent after the gc-query-fix(k)i event of γ.
2. m′ is sent after j receives m.
3. m′ is received before the gc-prop-fix(k)i event of γ.
4. In any state after j receives m, tagj ≥ tag(γ).

Proof. The phase number discipline implies the existence of the claimed messages m and m′. It is then easy to
see that the tag component of message m is ≥ tag(γ), ensuring that after j receives message m, tagj ≥ tag(γ).

�

7.4 Garbage collection

This section establishes lemmas describing information flow between garbage-collection operations. The key
result in this section is Lemma 7.9, which asserts the existence of a sequence of garbage-collection operations
γ0, . . . , γk which have certain key properties. In particular, the sequence of garbage-collection operations removes
all the configurations installed in an execution, except for the last, and the tags associated with the garbage-
collection operations are monotonically non-decreasing, guaranteeing that value/tag information is propagated to
newer configurations.

We say that a sequence of garbage-collection operations γ`, . . . , γk in some execution α is an (`, k)-gc-
sequence if it satisfies the following three properties:

1. ∀ s : ` ≤ s ≤ k, s ∈ removal-set(γs),
2. ∀ s : ` ≤ s < k, if γs 6= γs+1, then the gc-prop-fix event of γs occurs in α and precedes the gc event of
γs+1, and

3. ∀ s : ` ≤ s < k, if γs 6= γs+1, then target(γs) ∈ removal-set(γs+1).

Notice that an (`, k)-gc-sequence may well contain the same garbage-collection operation multiple times. If two
elements in the sequence are distinct operations, then the earlier operation in the sequence completes before the
later operation is initiated. Also, the target of an operation in the sequence is removed by the next distinct operation
in the sequence. These properties imply that the garbage-collection process obeys a sequential discipline.

We begin by showing that if there is no garbage-collection operation with target k, then configurations with
index k − 1 and k are always removed together.

Lemma 7.7 Suppose that k > 0, and α is an execution in which no gc-prop-fix(k) event occurs in α. Suppose
that cm is a CMap that appears as one of the following, for some state in α:

1. The cm component of some message in in-transit .
2. cmapi, for any i ∈ I .
3. The op.cmapi, for any i ∈ I .
4. The gc.cmapi, for any i ∈ I .

If cm(k − 1) = ± then cm(k) = ±.

Proof. The proof follows by induction on events in α. The base case is trivially true. In the inductive step, notice
that the only event that can set a CMap cm(k−1) = ± without also setting cm(k) = ± is a gc-prop-fix(k) event,
which we have assumed does not occur in α. �

The following corollary says that if a gc(k) event occurs in α and k′ is the smallest configuration in the
removal set, then there is some garbage collection γ′ that completes before the gc(k) event with target k′.
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Corollary 7.8 Assume that a gc(k)i event occurs in an execution α, associated with garbage collection γ. Let
k′ = min{removal-set(γ)}, and assume k′ > 0. Then for some j, a gc-prop-fix(k′)j event occurs in α and
precedes the gc(k)i event.

Proof. Immediately prior to the gc event, cmap(k′ − 1)i = ± and cmap(k′)i 6= ±. Lemma 7.7 implies that
some gc-prop-fix(k′) event for some operation γ′ occurs in α, and this event necessarily precedes the gc event. �

The next lemma says that if some garbage-collection operation γ removes a configuration with index k in an
execution α, then there exists a (0, k)-gc-sequence of garbage-collection operations. The lemma constructs such a
sequence: for every configuration with an index smaller than k, it identifies a single garbage-collection operation
that removes that configuration, and adds it to the sequence.

Lemma 7.9 If a gci event for garbage-collection operation γ occurs in an executionα such that k ∈ removal-set(γ),
then there exists a (0, k)-gc-sequence (possibly containing repeated elements) of garbage-collection operations.

Proof. We construct the sequence in reverse order, first defining γk, and then at each step defining the preceding
element. We prove the lemma by backward induction on `, for ` = k down to ` = 0, maintaining the property
that γ`, . . . , γk is an (`, k)-gc-sequence. To begin the induction, we define γk = γ, satisfying the property that
k ∈ removal-set(γk); the other two properties are vacuously true.

For the inductive step, we assume that γ` has been defined and that γ`, . . . , γk is an (`, k)-gc-sequence. If
` = 0, then γ0 has been defined, and we are done. Otherwise, we need to define γ`−1. If `−1 ∈ removal-set(γ`),
then let γ`−1 = γ`, and all the necessary properties still hold.

Otherwise, `−1 /∈ removal-set(γ`) and ` ∈ removal-set(γ`), which implies that ` = min{removal-set(γ`)}.
By Corollary 7.8, there occurs in α a garbage-collection operation that we label γ`−1 with the following prop-
erties: (i) the gc-prop-fix event of γ`−1 precedes the gc event of γ`, and (ii) target(γ`−1) = min{k′ : k′ ∈
removal-set(γ`)}, i.e., target(γ`−1) = `.

Since removal-set(γ`−1) 6= ∅, by definition and the precondition of a gc event, this implies that ` − 1 ∈
removal-set(γ`−1), proving Property 1 of the (`− 1, k)-gc-sequence definition. Property 2 and Property 3 follow
similarly from the choice of γ`−1. �

The sequential nature of garbage collection has a nice consequence for propagation of tags: for any (`, k)-gc-
sequence of garbage-collection operations, tag(γs) is nondecreasing in s.

Lemma 7.10 Let γ`, . . . , γk be an (`, k)-gc-sequence of garbage-collection operations. Then ∀ s : ` ≤ s <
k, tag(γs) ≤ tag(γs+1).

Proof. If γs = γs+1, then the claim follows trivially. Therefore assume that γs 6= γs+1; this implies that the
gc-prop-fix event of γs precedes the gc event of γs+1. Let k2 be the target of γs. We know by assumption that
k2 ∈ removal-set(γs+1). Therefore, W2(γs), a write-quorum of configuration c(k2), has at least one element in
common with R(γs+1, k2); label this node j. By Lemma 7.6, and the monotonicity of tagj , after the gc-prop-fix
event of γs we know that tagj ≥ tag(γs). Then by Lemma 7.5 tag(γs+1) ≥ tagj . Therefore tag(γs) ≤
tag(γs+1). �

Corollary 7.11 Let γ`, . . . , γk be an (`, k)-gc-sequence of garbage-collection operations. Then ∀ s, s′ : 0 ≤ s ≤
s′ ≤ k, tag(γs) ≤ tag(γs′)

Proof. This follows immediately from Lemma 7.10 by induction. �
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7.5 Behavior of a read or a write following a garbage collection

Now we describe the relationship between a read or write operation and a preceding garbage-collection operation.
The key result in this section, Lemma 7.14, shows that if a garbage-collection operation completes prior to some
read or write operation, then the tag of the read or write operation is no smaller than the tag of the garbage
collection.

The first lemma shows that if, for some read or write operation, k is the smallest index such that query-cmap(k) ∈
C, then some garbage-collection operation with target k precedes the read or write operation.

Lemma 7.12 Let π be a read or write operation whose query-fix event occurs in an execution α. Let k be the
smallest element such that query-cmap(π)(k) ∈ C. Assume k > 0. Then there exists a garbage-collection
operation γ such that k = target(γ), and the gc-prop-fix event of γ precedes the query-phase-start(π) event.

Proof. This follows immediately from (the contrapositive of) Lemma 7.7. �

Second, if a garbage collection that removes k completes before the query-phase-start event of a read or write
operation, then some configuration with index ≥ k + 1 must be included in the query-cmap of the later read or
write operation. (Otherwise, the read or write operation would have no extant configurations available to it.)

Lemma 7.13 Let γ be a garbage-collection operation such that k ∈ removal-set(γ). Let π be a read or write
operation whose query-fix event occurs in an execution α. Suppose that the gc-prop-fix event of γ precedes the
query-phase-start(π) event in α. Then query-cmap(π)(`) ∈ C for some ` ≥ k + 1.

Proof. Suppose for the sake of contradiction that query-cmap(π)(`) /∈ C for all ` ≥ k+ 1. Fix k′ = max({`′ :
query-cmap(π)(`′) ∈ C}). Then k′ ≤ k.

Let γ0, . . . , γk be a (0, k)-gc-sequence of garbage-collection operations whose existence is asserted by Lemma 7.9,
where γk = γ. Then, k′ ∈ removal-set(γk′), and the gc-prop-fix event of γk′ does not come after the gc-prop-fix
event of γ in α, and hence precedes the query-phase-start(π) event in α.

Since k′ ∈ removal-set(γk′), write-quorum W1(γk′ , k
′) is defined. Since query-cmap(k′) ∈ C, the read-

quorum R(π, k′) is defined. Choose j ∈ W1(γk′ , k
′) ∩ R(π, k′). Assume that kt = target(γk′). Notice that

k′ < kt. Then Lemma 7.5 and monotonicity of cmap imply that, in the state just prior to the gc-query-fix event
of γk′ , cmap(`)j 6= ⊥ for all ` ≤ kt. Then Lemma 7.3 implies that query-cmap(π)(`) ∈ C for some ` ≥ kt. But
this contradicts the choice of k′. �

Finally, we show that the tag is correctly propagated from a garbage-collection operation to a following read
or write operation. For this lemma, we assume that query-cmap(k) ∈ C, where k is the target of the garbage
collection.

Lemma 7.14 Let γ be a garbage-collection operation, and assume that k = target(γ). Let π be a read or write
operation whose query-fix event occurs in an execution α. Suppose that the gc-prop-fix event of γ precedes the
query-phase-start(π) event in execution α. Suppose also that query-cmap(π)(k) ∈ C. Then:

1. tag(γ) ≤ tag(π).
2. If π is a write operation then tag(γ) < tag(π).

Proof. The propagation phase of γ accesses write-quorumW2(γ) of c(k), whereas the query phase of π accesses
read-quorum R(π, k). Since both are quorums of configuration c(k), they have a nonempty intersection; choose
j ∈W2(γ) ∩R(π, k).

Lemma 7.6 implies that, in any state after the gc-prop-fix event for γ, tagj ≥ tag(γ). Since the gc-prop-fix
event of γ precedes the query-phase-start(π) event, we have that t ≥ tag(γ), where t is defined to be the value
of tagj just before the query-phase-start(π) event. Then Lemma 7.3 implies that tag(π) ≥ t, and if π is a write
operation, then tag(π) > t. Combining the inequalities yields both conclusions of the lemma. �
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7.6 Behavior of sequential reads and writes

Read or write operations that originate at different locations may proceed concurrently. However, in the special
case where they execute sequentially, we now prove some relationships between their query-cmaps, prop-cmaps,
and tags. The first lemma says that, when two read or write operations execute sequentially, the smallest con-
figuration index used in the propagation phase of the first operation is no greater than the largest index used in
the query phase of the second. In other words, we cannot have a situation in which the second operation’s query
phase executes using only configurations with indices that are strictly less than any used in the first operation’s
propagation phase.

Lemma 7.15 Assume π1 and π2 are two read or write operations, such that: (1) The prop-fix event of π1 oc-
curs in an execution α. (2) The query-fix event of π2 occurs in α. (3) The prop-fix event of π1 precedes the
query-phase-start(π2) event. Then min({` : prop-cmap(π1)(`) ∈ C}) ≤ max({` : query-cmap(π2)(`) ∈ C}).

Proof. Suppose for the sake of contradiction that min({` : prop-cmap(π1)(`) ∈ C}) > k, where k is de-
fined to be max({` : query-cmap(π2)(`) ∈ C}). Then in particular, prop-cmap(π1)(k) /∈ C. The form of
prop-cmap(π1), as expressed in Invariant 3, implies that prop-cmap(π1)(k) = ±.

This implies that some gc-prop-fix event for some garbage-collection operation γ such that k ∈ removal-set(γ)
occurs prior to the prop-fix of π1, and hence prior to the query-phase-start(π2) event. Lemma 7.13 then implies
that query-cmap(π2)(`) ∈ C for some ` ≥ k + 1. But this contradicts the choice of k. �

The next lemma describes propagation of tag information in the case where the propagation phase of the first
operation and the query phase of the second operation share a configuration.

Lemma 7.16 Assume π1 and π2 are two read or write operations, and k ∈ N, such that: (1) The prop-fix event
of π1 occurs in an execution α. (2) The query-fix event of π2 occurs in α. (3) The prop-fix event of π1 precedes
the query-phase-start(π2) event. (4) prop-cmap(π1)(k) and query-cmap(π2)(k) are both in C. Then:

1. tag(π1) ≤ tag(π2).
2. If π2 is a write then tag(π1) < tag(π2).

Proof. The hypotheses imply that prop-cmap(π1)(k) = query-cmap(π2)(k) = c(k). Then W (π1, k) and
R(π2, k) are both defined in α. Since they are both quorums of configuration c(k), they have a nonempty inter-
section; choose j ∈W (π1, k) ∩R(π2, k).

Lemma 7.4 implies that, in any state after the prop-fix event of π1, tagj ≥ tag(π1). Since the prop-fix event
of π1 precedes the query-phase-start(π2) event, we have that t ≥ tag(π1), where t is defined to be the value of
tagj just before the query-phase-start(π2) event. Then Lemma 7.3 implies that tag(π2) ≥ t, and if π2 is a write
operation, then tag(π2) > t. Combining the inequalities yields both conclusions. �

The final lemma is similar to the previous one, but it does not assume that the propagation phase of the first
operation and the query phase of the second operation share a configuration. The main focus of the proof is on
the situation where all the configuration indices used in the query phase of the second operation are greater than
those used in the propagation phase of the first operation.

Lemma 7.17 Assume π1 and π2 are two read or write operations, such that: (1) The prop-fix of π1 occurs in an
execution α. (2) The query-fix of π2 occurs in α. (3) The prop-fix event of π1 precedes the query-phase-start(π2)
event. Then:

1. tag(π1) ≤ tag(π2).
2. If π2 is a write then tag(π1) < tag(π2).
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Proof. Let i1 and i2 be the indices of the processes that run operations π1 and π2, respectively. Let cm1 =
prop-cmap(π1) and cm2 = query-cmap(π2). If there exists k such that cm1(k) ∈ C and cm2(k) ∈ C, then
Lemma 7.16 implies the conclusions of the lemma. So from now on, we assume that no such k exists.

Lemma 7.15 implies that min({` : cm1(`) ∈ C}) ≤ max({` : cm2(`) ∈ C}). Invariant 3 implies that
the set of indices used in each phase consists of consecutive integers. Since the intervals have no indices in
common, it follows that s1 < s2, where s1 is defined to be max({` : cm1(`) ∈ C}) and s2 is defined to be
min({` : cm2(`) ∈ C}).

Lemma 7.12 implies that there exists a garbage-collection operation that we will call γs2−1 such that s2 =
target(γs2−1), and the gc-prop-fix of γs2−1 precedes the query-phase-start(π2) event. Then by Lemma 7.14,
tag(γs2−1) ≤ tag(π2), and if π2 is a write operation then tag(γs2−1) < tag(π2).

Next we will demonstrate a chain of garbage-collection operations with non-decreasing tags. Lemma 7.9,
in conjunction with the already defined γs2−1, implies the existence of a (0, s2 − 1)-gc-sequence of garbage-
collection operations γ0, . . . , γs2−1. Since s1 ≤ s2−1, we know that s1 ∈ removal-set(γs1). Then Corollary 7.11
implies that tag(γs1) ≤ tag(γs2−1).

It remains to show that the tag of π1 is no greater than the tag of γs1 . Therefore we focus now on the
relationship between operation π1 and garbage-collection operation γs1 . The propagation phase of π1 accesses
write-quorum W (π1, s1) of configuration c(s1), whereas the query phase of γs1 accesses read-quorum R(γs1 , s1)
of configuration c(s1). Since W (π1, s1) ∩ R(γs1 , s1) 6= ∅, we may fix some j ∈ W (π1, s1) ∩ R(γs1 , s1). Let
message m1 from i1 to j and message m′

1 from j to i1 be as in Lemma 7.4 for the propagation phase of γs1 .
Let message m2 from the process running γs1 to j and message m′

2 from j to the process running γs1 be the
messages whose existence is asserted in Lemma 7.5 for the query phase of γs1 .

We claim that j sends m′
1, its message for π1, before it sends m′

2, its message for γs1 . Suppose for the
sake of contradiction that j sends m′

2 before it sends m′
1. Assume that st = target(γs1 . Notice that st > s1,

since s1 ∈ removal-set(γs1). Lemma 7.5 implies that in any state after j receives m2, before j sends m′
2,

cmap(k)j 6= ⊥ for all k ≤ st. Since j sends m′
2 before it sends m′

1, monotonicity of cmap implies that just
before j sendsm′

1, cmap(k)j 6= ⊥ for all k ≤ st. Then Lemma 7.4 implies that prop-cmap(π1)(`) ∈ C for some
` ≥ st. But this contradicts the choice of s1, since s1 < st. This implies that j sends m′

1 before it sends m′
2.

Since j sends m′
1 before it sends m′

2, Lemma 7.4 implies that, at the time j sends m′
2, tag(π1) ≤ tagj .

Then Lemma 7.5 implies that tag(π1) ≤ tag(γs1). From above, we know that tag(γs1) ≤ tag(γs2−1), and
tag(γs2−1) ≤ tag(π2), and if π2 is a write operation then tag(γs2−1) < tag(π2). Combining the various inequal-
ities then yields both conclusions. �

7.7 Atomicity

Let β be a trace of S that satisfies the RAMBO environment assumptions, and assume that all read and write
operations complete in β. Consider any particular (good) execution α of S whose trace is β.3 We define a partial
order ≺ on read and write operations in β, in terms of the operations’ tags in α. Namely, we totally order the
writes in order of their tags, and we order each read with respect to all the writes as follows: a read with tag t is
ordered after all writes with tags ≤ t and before all writes with tags > t.

Lemma 7.18 The ordering ≺ is well-defined.

Proof. The key is to show that no two write operations get assigned the same tag. This is obviously true for two
writes that are initiated at different locations, because the low-order tiebreaker identifiers are different. For two
writes at the same location, Lemma 7.17 implies that the tag of the second is greater than the tag of the first. �

Lemma 7.19 ≺ satisfies the four conditions in the definition of atomicity.

Proof. We begin with Property 2, which as usual in such proofs, is the most interesting thing to show. Suppose
for the sake of contradiction that π1 completes before π2 starts, yet π2 ≺ π1. We consider two cases:

3The “scope” of these definitions of α and β is just the following two lemmas and their proofs.
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1. π2 is a write operation.
Since π1 completes before π2 starts, Lemma 7.17 implies that tag(π2) > tag(π1). On the other hand, the
fact that π2 ≺ π1 implies that tag(π2) ≤ tag(π1). This yields a contradiction.

2. π2 is a read operation.
Since π1 completes before π2 starts, Lemma 7.17 implies that tag(π2) ≥ tag(π1). On the other hand, the
fact that π2 ≺ π1 implies that tag(π2) < tag(π1). This yields a contradiction.

Since we have a contradiction in either case, Property 2 must hold. Property 1 follows from Property 2. Properties
3 and 4 are straightforward. �

Tieing everything together, we conclude with Theorem 7.1.

Theorem 7.1 Let β be a trace of the system S. If β satisfy the RAMBO environment assumptions, then β satisfies
the RAMBO service guarantees (well-formedness and atomicity).

Proof. Let β be a trace of S that satisfies the RAMBO environment assumptions. We argue that β satisfies the
RAMBO service guarantees. The proof that β satisfies the RAMBO well-formedness guarantees is straightforward
from the code. To show that β satisfies the atomicity condition (as defined in Section 3), assume that all read and
write operations complete in β. Let α be an execution of S whose trace is β. Define the ordering ≺ on the read
and write operations in β as above, using the chosen α. Then Lemma 7.19 says that≺ satisfies the four conditions
in the definition of atomicity. Thus, β satisfies the atomicity condition, as needed. �

8 Implementation of the Reconfiguration Service

In this section, we describe a distributed algorithm that implements the Recon service for a particular object x
(and we suppress mention of x). This algorithm is considerably simpler than the Reader-Writer algorithm. It
consists of a Reconi automaton for each location i, which interacts with a collection of global consensus services
Cons(k, c), one for each k ≥ 1 and each c ∈ C, and with a point-to-point communication service.

Cons(k, c) accepts inputs from members of configuration c, which it assumes to be the k− 1st configuration.
These inputs are proposed new configurations. The decision reached by Cons(k, c), which must be one of the
proposed configurations, is determined to be the kth configuration.

Reconi is activated by the joining protocol. It processes reconfiguration requests using the consensus services,
and records the new configurations that the consensus services determine. Reconi also conveys information
about new configurations to the members of those configurations, and releases new configurations for use by
Reader-Writer i. It returns acknowledgments and configuration reports to its client.

We first describe the consensus service Cons(k, c) in Section 8.1, which can be implemented using the Paxos
consensus algorithm [36]. We then in Section 8.2 describe the Recon automata that, together with the consensus
services, implement the reconfiguration service.

8.1 Consensus services

In this subsection, we specify the behavior we assume for consensus service Cons(k, c), for a fixed k ≥ 1 and
c ∈ C. This behavior can be achieved using the Paxos consensus algorithm [36], as described formally in [?]. (In
the implementation of the Recon service, V will be instantiated as C.) The external signature of Cons(k, c) is
given in Figure 9.

We describe the safety properties of Cons(k, c) in terms of properties of a trace β of actions in the external
signature. Namely, we define the client safety assumptions:

• Well-formedness: For any i ∈ members(c):

– No init(∗)k,c,i event is preceded by a fail(i) event.
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Input:
init(v)k,c,i, v ∈ V , i ∈ members(c)
faili, i ∈ members(c)

Output:
decide(v)k,c,i, v ∈ V , i ∈ members(c)

Figure 9: Cons(k, c): External signature

– At most one init(∗)k,c,i event occurs in β.

And we define the consensus safety guarantees:

• Well-formedness: For any i ∈ members(c):

– No decide(∗)k,c,i event is preceded by a fail(i) event.
– At most one decide(∗)k,c,i event occurs in β.
– If a decide(∗)k,c,i event occurs in β, then it is preceded by an init(∗)k,c,i event.

• Agreement: If decide(v)k,c,i and decide(v′)k,c,i′ events occur in β, then v = v′.
• Validity: If a decide(v)k,c,i event occurs in β, then it is preceded by an init(v)k,c,j .

We assume that the Cons(k, c) service is implemented using the Paxos algorithm [36], as described formally
in [?]. This satisfies the safety guarantees described above, based on the safety assumptions:

Theorem 8.1 If β is a trace of Paxos that satisfies the safety assumptions of Cons(k, c), then β also satisfies the
(well-formedness, agreement, and validity) safety guarantees of Cons(k, c).

8.2 Recon automata

A Reconi process is responsible for initiating consensus executions to help determine new configurations, for
telling the local Reader-Writer i process about a newly-determined configuration, and for disseminating infor-
mation about newly-determined configurations to the members of those configurations. The signature and state of
Reconi appear in Figures 10, and the transitions in Figure 11.

Signature:

Input:
join(recon)i

recon(c, c′)i, c, c
′ ∈ C, i ∈ members(c)

decide(c)k,i, c ∈ C, k ∈ N+

recv(〈config , c, k〉)j,i, c ∈ C, k ∈ N+,
i ∈ members(c), j ∈ I − {i}

recv(〈init , c, c′, k〉)j,i, c, c′ ∈ C, k ∈ N+,
i, j ∈ members(c), j 6= i

faili

Output:
join-ack(recon)i

new-config(c, k)i, c ∈ C, k ∈ N+

init(c, c′)k,i, c, c′ ∈ C, k ∈ N+, i ∈ members(c)
recon-ack(b)i, b ∈ {ok, nok}
report(c)i, c ∈ C
send(〈config , c, k〉)i,j , c ∈ C, k ∈ N+,

j ∈ members(c)− {i}
send(〈init , c, c′, k〉)i,j , c, c

′ ∈ C, k ∈ N+,
i, j ∈ members(c), j 6= i

State:

status ∈ {idle, active}, initially idle .
rec-cmap ∈ CMap, initially rec-cmap(0) = c0

and rec-cmap(k) = ⊥ for all k 6= 0.
did-init ⊆ N+, initially ∅
did-new-config ⊆ N+, initially ∅

cons-data ∈ (N+ → (C × C)): initially ⊥ everywhere
rec-status ∈ {idle, active}, initially idle
outcome ∈ {ok, nok,⊥}, initially ⊥
reported ⊆ C, initially ∅
failed , a Boolean, initially false

Figure 10: Reconi: Signature and state

Location i joins the Recon service when a join(recon) input occurs. Reconi responds with a join-ack. Reconi

includes a state variable rec-cmap, which holds a CMap: rec-cmap(k) = c indicates that i knows that c is the
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Input join(recon)i

Effect:
if ¬failed then

if status = idle then
status ← active

Output join-ack(recon)i

Precondition:
¬failed
status = active

Effect:
none

Output new-config(c, k)i

Precondition:
¬failed
status = active
rec-cmap(k) = c
k /∈ did-new-config

Effect:
did-new-config ← did-new-config ∪ {k}

Output send(〈config , c, k〉)i,j

Precondition:
¬failed
status = active
rec-cmap(k) = c

Effect:
none

Input recv(〈config , c, k〉)j,i

Effect:
if ¬failed then

if status = active then
rec-cmap(k)← c

Output report(c)i

Precondition:
¬failed
status = active
c 6∈ reported
S = {` : rec-cmap(`) ∈ C}
c = rec-cmap(max(S))

Effect:
reported ← reported ∪ {c}

Input recon(c, c′)i

Effect:
if ¬failed then

if status = active then
rec-status ← active
let S = {` : rec-cmap(`) ∈ C}
if S 6= ∅ and c = rec-cmap(max(S))

and cons-data(max(S) + 1) = ⊥ then
cons-data(max(S) + 1)← 〈c, c′〉

else outcome ← nok

Output init(c′)k,c,i

Precondition:
¬failed
status = active
cons-data(k) = 〈c, c′〉
if k ≥ 1 then k ∈ did-new-config
k 6∈ did-init

Effect:
did-init ← did-init ∪ {k}

Output send(〈init, c, c′, k〉)i,j

Precondition:
¬failed
status = active
cons-data(k) = 〈c, c′〉
k ∈ did-init

Effect:
none

Input recv(〈init, c, c′, k〉)j,i

Effect:
if ¬failed then

if status = active then
if rec-cmap(k − 1) = ⊥ then rec-cmap(k − 1)← c
if cons-data(k) = ⊥ then cons-data(k)← 〈c, c′〉

Input decide(c′)k,c,i

Effect:
if ¬failed then

if status = active then
rec-cmap(k)← c′

if rec-status = active then
if cons-data(k) = 〈c, c′〉 then outcome ← ok
else outcome ← nok

Output recon-ack(b)i

Precondition:
¬failed
status = active
rec-status = active
b = outcome

Effect:
rec-status = idle
outcome ← ⊥

Input faili
Effect:

failed ← true

Figure 11: Reconi: Transitions.
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kth configuration identifier. If Reconi has learned that c is the kth configuration identifier, it can convey this to
its local Reader-Writer i process using a new-config(c, k)i output action, and it can inform any other Reconj

process, j ∈ members(c), by sending a 〈config , c, k〉 message. Reconi learns about new configurations either by
receiving a decide input from a Cons service, or by receiving a config or init message from another process.

Reconi receives a reconfiguration request from its environment via a recon(c, c′)i event. Upon receiving such
a request, Reconi determines whether (a) i is a member of the known configuration c with the largest index k− 1
and (b) it has not already prepared data for a consensus for the next larger index k. If both (a) and (b) hold,
Reconi prepares such data, consisting of the pair 〈c, c′〉, where c is the k − 1st configuration identifier and c′ is
the proposed configuration identifier. Otherwise, Reconi responds negatively to the new reconfiguration request.

Reconi initiates participation in a Cons(k, c) algorithm when its consensus data are prepared. After initiating
participation in a consensus algorithm, it sends init messages to inform the other members of c about its initiation
of consensus. The other members use this information to prepare to participate in the same consensus algorithm
(and also to update their rec-cmap if necessary). Thus, there are two ways in which Reconi can initiate partic-
ipation in consensus: as a result of a local recon event, or by receiving an init message from another Reconj

process.
When Reconi receives a decide(c′)k,i directly from Cons(k, c), it records configuration c′ in rec-cmap It

also determines if a response to its local client is necessary (if a local reconfiguration operation is active), and
determines the response based on whether the consensus decision is the same as the locally-proposed configuration
identifier.

Each consensus service Cons(k, c) is responsible for conveying consensus decisions to members(c). The
Reconi components are responsible for telling members(c′) about c′ by sending new-config messages.

Theorem 8.2 The Recon implementation guarantees well-formedness, agreement, and validity.

9 Latency and Fault-Tolerance Assumptions

In this and the following two Sections 10 and 11, we present our conditional performance results—latency re-
sults for the various operations performed by RAMBO under various assumptions about timing, failures, and the
patterns of requests. We present the results in two groups: Section 10 contains results for executions in which
“normal timing behavior” is observed throughout the execution, and Section 11 contains results for executions
that “stabilize” so that “normal timing behavior” is observed from some point onward. In this section, we present
a series of timing-related assumptions used in the context of both sections.

We formulate these results for the full RAMBO system S′ consisting of Reader-Writer i and Joiner i for all
i, Recon impl (which consists of Reconi for all i and Cons(k, c) for all k and c), and channels between all i and
j. Since we are dealing here with timing, we “convert” all these automata to general timed automata as defined
in [39] by allowing arbitrary amounts of time to pass in any state, without changing the state.

9.1 Restricting nondeterminism

RAMBO in its full generality is a highly nondeterministic algorithm. For example, it allows sending of gossip mes-
sages at arbitrary times. For the remainder of this paper, we restrict RAMBO’s nondeterminism so that messages
are sent at the earliest possible time and at regular intervals thereafter, and so that non-send locally controlled
events occur just once, as soon as they are enabled.

More precisely, fix d > 0, the normal message delay. We assume a restricted version of RAMBO in which
each Reader-Writer i, Joiner i, and Reconi automaton has a real-valued local clock, which evolves according to
a continuous, monotone increasing function from nonnegative reals to reals. Local clocks of different automata
may run at different rates. Moreover, the following conditions hold in all admissible timed executions (those timed
executions in which the limit time is ∞):
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• Periodic gossip: Each Joiner i whose status = joining sends join messages to everyone in its hints set,
every time d, according to its local clock. Each Reader-Writer i sends messages to everyone in its world
set every time d, according to its local clock.

• Important Joiner messages: Each Joiner i sends a join message immediately to location j, without any
time passing on its local clock, when a join(rambo, J)i event occurs, if j ∈ J .

• Important Reader-Writer messages: Each Reader-Writer i sends a message immediately to location j,
without any time passing on its clock, in each of the following situations:

– Just after a recv(join)j,i event occurs, if status i = active .
– Just after a recv(∗, ∗, ∗, ∗, pns, ∗)j,i event occurs, if pns > pnum2 (j)i and status i = active .
– Just after a new-config(c, k)i event occurs if status i = active and j ∈ world i.
– Just after a readi, writei, or query-fixi event, or a recv event that resets op.acc to ∅, if j ∈ members(c),

for some c that appears in the new op.cmapi.
– Just after a gc(k)i event occurs, if j ∈ members(cmap(k)i).
– Just after a gc-query-fix(k)i event occurs, if j ∈ members(cmap(k)i).

• Important Recon messages: Each Reconi sends a message immediately to j, without any time passing on
its clock, in the following situations:

– The message is of the form (config , c, k), and a decide(c)k,∗,i event has just occurred, for j ∈
members(c)− {i}.

– The message is of the form (init , c, c′, k), and an init(c′)k,c,i event has just occurred, for j ∈
members(c)− {i}.

• Non-communication events: Any non-send locally controlled action of any RAMBO automaton that has no
effect on the state is performed only once, and before any time passes on the local clock.

We also assume that every garbage-collection operation removes the maximal number of obsolete configura-
tions:

• If a gc(k)i event occurs, then immediately prior to the event, there is no k′ > k such that gc(k′)i is enabled.

An alternative to listing these properties is to add appropriate bookkeeping to the various RAMBO automata
to ensure these properties. We avoid this approach for the sake of simplicity.

9.2 Normal timing behavior

We also restrict the timing anomalies observed in an execution, specifically, the reliability of the clocks and the
latency of message delivery. We define executions that satisfy some “normal” timing behavior from some point
onwards. An execution that always satisfies normal timing behavior is viewed as a special case.

Let α be an admissible timed execution, and α′ a finite prefix of α. Arbitrary timing behavior is allowed in
α′: messages may be lost or delivered late, clocks may run at arbitrary rates, and in general any asynchronous
behavior may occur. However we assume that after α′, good behavior resumes.

Definition 9.1 We say that α is an α′-normal execution if the following assumptions hold:

1. Initial time: The join-acki0 event occurs at time 0, completing the join protocol for node i0, the node that
created the data object.

2. Regular timing: The local clocks of all RAMBO automata (i.e., Reader-Writer i,Reconi, Joiner i) at all
nodes progress at exactly the rate of real time, after α′. Recall from Section 9.1 that the timing of gossip
messages and the performance of other locally-controlled events rely on the local clocks. Thus, this single
assumptions implies that the timing of all locally-controlled events observes real-time constraints after α′.

3. Reliable message delivery: No message sent in α after α′ is lost.
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4. Message delay bound: If a message is sent at time t in α and it is delivered, then it is delivered by time
max(t, `time(α′)) + d.

9.3 Hypotheses for latency results

We now proceed to list various hypotheses that we need for our latency bound results. Notice that none of the
assumptions depend on time in α′, i.e., during the portion of the execution in which time cannot be reliably
measured.

Configuration-Viability. The first hypothesis we define, configuration-viability, is a reliability property for
quorums. In general in systems that use quorum configurations, operations that use quorums are guaranteed to
terminate only if certain quorums do not fail. Similarly in this paper, our termination guarantees for reconfigura-
tion, garbage collection, and read and write operations all require assumptions that say that some quorums do not
fail. Because our algorithm uses different configurations at different times, our notion of configuration-viability
takes into account which configurations might still be in use.

If α is a timed execution, we say that configuration c is installed in α when for some k ≥ 0 either of the
following holds: (i) c = c0 or (ii) for every i ∈ members(c(k−1)), either a decide(c)k,c(k−1),i event or a faili event
occurs in α. That is, configuration c is installed when every non-failed member of some configuration c(k − 1)
performs a decide(c(k)) event. We now define what it means for an execution to be (α′, e, τ )-configuration-viable:

Definition 9.2 Let α be an admissible timed execution, and let α′ be a finite prefix of α. Let e, τ ∈ R≥0. Then α
is (α′, e, τ )-configuration-viable if the following holds:
For all i, c, k such that cmap(k)i = c in some state inα, there existR ∈ read-quorums(c) andW ∈ write-quorums(c)
such that at least one of the following holds:

1. No process in R ∪W fails in α.

2. There exists a finite prefix αinstall of α such that (a) for all ` ≤ k + 1, configuration c(`) is installed in
αinstall , (b) no process in R ∪W fails in α at or before time `time(α′) + e + 2d + τ , (c) no process in
R ∪W fails in α at or before time `time(αinstall ) + τ .

We say simply thatα satisfies τ -configuration-viability ifα satisfies (∅, 0, τ)-configuration viability, i.e., configuration-
viability holds from the beginning of the execution.

We believe that the configuration-viability assumption is reasonable for a reconfigurable algorithms such as
RAMBO, as the system can be reconfigured when quorums seem to be in danger of failing. New configurations
should be chosen to minimize the likelihood of failures.

Recon-Spacing. The next property says recon events do not occur too frequently: a recon(c, ∗) is only initiated
if some quorum of configuration c has received report(c) events, and after α′, each node waits sufficiently long
between initiating recon events:

Definition 9.3 Let α be an α′-normal execution, and e ∈ R≥0. We say that α satisfies (α′,e)-recon-spacing if

1. recon-spacing-1: For any recon(c, ∗)i event in α there exists a write-quorum W ∈ write-quorums(c) such
that for all j ∈W , report(c)j precedes the recon(c, ∗)i event in α.4

2. recon-spacing-2: For any recon(c, ∗)i event in α after α′ the preceding report(c)i event occurs at least time
e earlier.

We say simply that α satisfies e-recon-spacing if it satisfies (∅, e)-recon-spacing.

4Notice that this property does not depend on a node’s local clock; it can be verified simply by collecting gossip from other nodes for
which a report(c) event has occurred.
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Join-Connectivity. The hypothesis of join-connectivity states a bound on the time for two participants that join
the system to learn about each other.

Definition 9.4 Let α be an α′-normal execution, e ∈ R≥0. We say that α satisfies (α′,e)-join-connectivity
provided that: for any time t and nodes i, j such that a join-ack(rambo)i and a join-ack(rambo)j occur no later
than time t, if neither i nor j fails at or before max(t, `time(α′)) + e, then by time max(t, `time(α′)) + e,
i ∈ world j .

We say that α satisfies e-join-connectivity when it satisfies (∅, e)-join-connectivity.
We do not think of join-connectivity as a primitive assumption. Rather, it is a property one might expect to

show is satisfied by a good join protocol, under certain more fundamental assumptions, for example, sufficient
spacing between join requests. We leave it as an open problem to develop and carefully analyze a more involved
join protocol.

Recon-Readiness. The next hypothesis says that when a configuration c is proposed by some client, every
member of configuration c must have already joined the system at least some time ago.

Definition 9.5 An α′-normal execution α satisfies (α′, e)-recon-readiness if the following property holds: if a
recon(∗, c)∗ event occurs at time t, then for every j ∈ members(c):

• A join-ackj event occurs prior to the recon event.

• If the recon occurs after α′, then a join-ackj event occurs no later than time t− (e+ 3d).

We say simply that α satisfies e-recon-readiness if it satisfies (∅, e)-recon-readiness.

GC-Readiness. The last hypothesis ensures that after the system stabilizes, a node initiates a read, write, or
garbage-collection operation only if it has joined sufficiently long ago.

Definition 9.6 We say that an α′-normal execution α satisfies (α′, e, d)-gc-readiness if the following property
holds: if for some i a gci event occurs in α after α′ at time t, then a join-ackj event occurs no later than time
t− (e+ 3d).

Notice that the gc action is an internally-controlled action, and hence in this case, the hypothesis could be enforced
via explicit reference to the local clock.

Infinite reconfiguration. Finally, the following property says that infinitely many configurations are produced.
This is simply a technical assumption that is sued to simplify some of our results.

Definition 9.7 Let α be an admissible timed execution. We say that α satisfies infinite reconfiguration provided
for every k ∈ N+, α contains a decide(∗)k,∗,∗ event.

10 Latency and Fault-Tolerance: Normal Timing Behavior

In this section, we present conditional performance results for the case where normal timing behavior is satisfied
throughout the execution. The main result of this section, Theorem 10.7, shows that every read and write operation
completes within 8d time, despite concurrent failures and reconfigurations.

For this entire section, we fix α to be an α′-normal admissible timed execution where α′ is an empty execu-
tion. That is, α exhibits normal timing behavior throughout the execution. We fix e ∈ R≥0. Also, for a timed
execution α, we let time(π) stand for the real time at which the event π occurs in α.
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10.1 Joining

This first lemma says that a process receiving a report must be “old enough”, that is, they have joined at least time
e earlier.

Lemma 10.1 Assume that α satisfies e-recon-readiness, c ∈ C, c 6= c0, i ∈ I . Suppose that a report(c)i event
occurs at time t in α. Then a join-ack(rambo)i event occurs by time t− e.

Proof. Assume that α, c, and i are as given, and that rec-cmap(k)i = c when the report(c)i event occurs,
that is, c is the kth configuration. Since c 6= c0, we have that k ≥ 1. The behavior of Reconi implies that i is
a member either of c or of the k − 1st configuration, say c′. If i ∈ members(c), then the conclusion follows
immediately from e-recon-readiness. If i ∈ members(c′) and c′ 6= c0, then again the conclusion follows from
e-recon-readiness and the fact that c′ was proposed no later than time t.

The only other possibility is that i ∈ members(c′) and c′ = c0. Then a join-acki event occurs at time 0, prior
to any join-ack∗ event by any member of configuration c. But e-recon-readiness implies that every member of
configuration c performs a join-ack no later than time t− e, as needed. �

10.2 Propagation of information.

The following result says that all participants succeed in exchanging information about configurations, within a
short time. If both i and j are “old enough” (have joined at least time e ago), and do not fail, then any information
that i has about configurations is conveyed to j within time 2d.

Lemma 10.2 Assume that α satisfies e-join-connectivity, t ∈ R≥0, t ≥ e. Suppose:

1. join-ack(rambo)i and join-ack(rambo)j both occur in α by time t− e.
2. Process i does not fail by time t+ d and j does not fail by time t+ 2d.

Then the following hold:

1. If by time t, cmap(k)i 6= ⊥, then by time t+ 2d, cmap(k)j 6= ⊥.
2. If by time t, cmap(k)i = ±, then by time t+ 2d, cmap(k)j = ±.

Proof. Follows by join-connectivity and regular gossip. �

Next, we show that, if a report(c)i event occurs and i does not fail, then another process j learns about c soon
after the later of (a) the report event and (b) the time of j’s joining.

Theorem 10.3 Assume that α satisfies satisfying e-recon-readiness and e-join-connectivity, c ∈ C, k ∈ N,
i, j,∈ I , t, t′ ∈ R≥0. Suppose:

1. A report(c)i occurs at time t in α, where c = rec-cmap(k)i, and i does not fail by max (t, t′) + d.
2. join-ack(rambo)j occurs in α by time t′ − e, and j does not fail by time max (t, t′) + 2d.

Then by time max (t, t′) + 2d, cmap(k)j 6= ⊥.

Proof. The case where k = 0 is trivial to prove, because everyone’s cmap(0) is always non-⊥. So assume that
k ≥ 1.

Lemma 10.1 implies that join-ack(rambo)i occurs by time t − e ≤ max (t, t′) − e. Also, join-ack(rambo)j

occurs by time t′− e ≤ max (t, t′)− e. By assumption, i does not fail by time max (t, t′) + d, and j does not fail
by time max (t, t′) + 2d. Furthermore, we claim that, by time max (t, t′), cmap(k)i 6= ⊥. This is because the
time of the report(c)i is ≤ max (t, t′), when the report(c)i occurs, rec-cmap(k)i 6= ⊥, and within 0 time, this
information gets conveyed to Reader-Writer i.

Therefore, we may apply Lemma 10.2, with the t in that theorem instantiated to max (t, t′), to conclude that
by time max (t, t′) + 2d, cmap(k)j 6= ⊥. This yields the conclusion. �
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10.3 Garbage collection.

The results of this section show that if reconfiguration requests are spaced sufficiently far apart, and if quorums of
configurations remain alive for sufficiently long, then garbage collection keeps up with reconfiguration. The first
lemma says that, assuming 5d-configuration-viability, following the report of a new configuration, at least one
member of the immediately preceding configuration does not fail for 4d time.

Lemma 10.4 Assume that α satisfies 5d-configuration-viability, c ∈ C, k ∈ N, k ≥ 1, i, j ∈ I , t ∈ R≥0.
Suppose:

1. A report(c)i event occurs at time t in α, where c = rec-cmap(k)i.
2. c′ is configuration k − 1 in α.

Then there exists j ∈ members(c′) such that j does not fail by time t+ 4d.

Proof. The behavior of the Recon algorithm implies that the time at which Reconi learns about c being configu-
ration k is not more than d after the time of the last decidek,c,∗ event in α. Once Reconi learns about c, it performs
the report(c)i event without any further time-passage. Then 5d-viability ensures that at least one member of c′

does not fail by time t+ 4d. �

The following key lemma says that a process that has joined sufficiently long before a particular report(c)∗
event manages to garbage collect all configurations earlier than c within time 6d after the report.

Lemma 10.5 Let α be an admissible timed execution satisfying e-recon-readiness, e-join-connectivity, 6d-recon-
spacing and 5d-configuration-viability, c ∈ C, k ∈ N, i, j ∈ I , t ∈ R≥0. Suppose:

1. A report(c)i event occurs at time t in α, where c = rec-cmap(k)i.
2. join-ack(rambo)j occurs in α by time t− e.

Then:

1. If k > 0 and j does not fail by time t+2d, then by time t+2d: (a) cmap(k−1)j 6= ⊥ and (b) cmap(`)j = ±
for all ` < k − 1.

2. If i does not fail by t+ d and j does not fail by time t+ 6d, then by time t+ 6d: (a) cmap(k)j 6= ⊥ and (b)
cmap(`)j = ± for all ` < k.

Proof. By induction on k. Base: k = 0.
Part 1 is vacuously true. The clause (a) of Part 2 follows because cmap(0)j 6= ⊥ in all reachable states, and the
clause (b) is vacuously true.
Inductive step: Assume k ≥ 1, assume the conclusions for indices ≤ k − 1, and show them for k. Fix c, i, j, t as
above.
Part 1: Assume the hypotheses of Part 1, that is, that k > 0 and that j does not fail by time t+ 2d. If k = 1 then
the conclusions are easily seen to be true: for clause (a), cmap(0)j 6= ⊥ in all reachable states, and the clause (b)
of the claim is vacuously true. So from now on in the proof of Part 1, we assume that k ≥ 2.

Since c is the kth configuration and k ≥ 1, the given report(c)i event is preceded by a recon(∗, c)∗ event. Fix
the first recon(∗, c)∗ event, and suppose it is of the form recon(c′, c)i′ . Then c′ must be the k − 1st configuration.
Lemma 10.4 implies that at least one member of c′, say, i′′, does not fail by time t+ 4d.

The recon(c′, c)i′ event must be preceded by a report(c′)i′ event. Since k − 1 ≥ 1, e-recon-readiness implies
that a join-ack(rambo)i′′ event occurs at least time e prior to the report(c′)i′ event. Then by inductive hypothesis,
Part 2, by time time(report(c′)i′) + 6d, cmap(k− 1)i′′ 6= ⊥ and cmap(`)i′′ = ± for all ` < k− 1. By 6d-recon-
spacing, time(recon(c′, c)i′) ≥ time(report(c′)i′) + 6d, and so t = time(report(c)i) ≥ time(report(c′)i′) + 6d.
Therefore, by time t, cmap(k − 1)i′′ 6= ⊥ and cmap(`)i′′ = ± for all ` < k − 1.
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Now we apply Lemma 10.2 to i′′ and j, with t in the statement of Lemma 10.2 set to the current t. This allows
us to conclude that, by time t+ 2d, cmap(k − 1)j 6= ⊥ and cmap(`)j = ± for all ` < k − 1. This is as needed
for Part 1.
Part 2: (Recall that we are assuming here that k ≥ 1.) Assume the hypotheses of Part 2, that is, that i does not fail
by time t+d and j does not fail by time t+6d. Theorem 10.3 applied to i and j and with t and t′ both instantiated
as the current t, implies that by time t + 2d, cmap(k)j 6= ⊥. Part 1 implies that by time t + 2d, cmap(`)j = ±
for all ` < k − 1. It remains to bound the time for cmap(k − 1)j to become ±.

By time t + 2d, j initiates a garbage-collection where k − 1 is in the removal set (unless cmap(k − 1)j is
already ±). This terminates within time 4d. After garbage-collection, cmap(`)j = ± for all ` < k, as needed.
The fact that this succeeds depends on quorums of configuration k − 1 remaining alive throughout the first phase
of the garbage-collection. 5d-viability ensures this.

The calculation for 5d is as follows: t is at most d larger than the time of the last decide for configuration k.
The time at which the garbage-collection is started is ≤ t + 2d. Thus, at most 3d time may elapse from the last
decide for configuration k until the garbage-collection operation begins. Then an additional 2d time suffices to
complete the first phase of the garbage-collection. �

The following lemma specializes the previous one to members of the newly-reported configuration.

Lemma 10.6 Let α be an admissible timed execution satisfying e-recon-readiness, e-join-connectivity, 6d-recon-
spacing and 5d-configuration-viability, c ∈ C, k ∈ N, i, j ∈ I , t ∈ R≥0. Suppose:

1. A report(c)i event occurs at time t in α, where c = rec-cmap(k)i.
2. j ∈ members(c).

Then:

1. If k > 0 and j does not fail by time t+ 2d, then by time t+ 2d, cmap(k− 1)j 6= ⊥ and cmap(`)j = ± for
all ` < k − 1.

2. If i does not fail by t + d and j does not fail by time t + 6d, then by time t + 6d, cmap(k)j 6= ⊥ and
cmap(`)j = ± for all ` < k.

Proof. If k = 0, the conclusions follow easily. If k ≥ 1, then e-recon-readiness implies that join-ack(rambo)j

occurs in α by time t− e. Then the conclusions follow from Lemma 10.5. �

10.4 Reads and writes.

The final theorem bounds the time for read and write operations in the “steady-state” case, where reconfigurations
do not stop, but are spaced sufficiently far apart.

Theorem 10.7 Assume that α satisfies e-recon-readiness, e-join-connectivity, (12d + ε)-recon-spacing, 11d-
configuration-viability, and infinite reconfiguration, i ∈ I , ε, t ∈ R+. Assume that a readi (resp., write(∗)i) event
occurs at time t, and join-acki occurs strictly before time t− (e+ 8d). Then the corresponding read-acki (resp.,
write-ack(∗)i) event occurs by time t+ 8d.

Proof. Let c0, c1, c2, . . . denote the infinite sequence of successive configurations decided upon in α; by infinite
reconfiguration, this sequence exists. For each k ≥ 0, let πk be the first recon(ck, ck+1)∗ event in α, let ik be the
location at which this occurs, and let φk be the corresponding, preceding report(ck)ik event. (The special case of
this notation for k = 0 is consistent with our usage elsewhere.) Also, for each k ≥ 0, choose sk ∈ members(ck)
such that sk does not fail by time 10d after the time of φk+1. The fact that this is possible follows from 11d-
viability (because the report event φk+1 happens at most time d after the final decide for configuration k + 1).

We show that the time for each phase of the read or write operation is ≤ 4d—this will yield the bound we
need. Consider one of the two phases, and let ψ be the readi, writei or query-fixi event that begins the phase.
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We claim that time(ψ) > time(φ0) + 8d, that is, that ψ occurs more than 8d time after the report(0)i0

event: We have that time(ψ) ≥ t, and t > time(join-acki) + 8d by assumption. Also, time(join-acki) ≥
time(join-acki0). Furthermore, time(join-acki0) ≥ time(φ0), that is, when join-acki0 occurs, report(0)i0 occurs
with no time passage.

Fix k to be the largest number such that time(ψ) > time(φk) + 8d. The claim in the preceding paragraph
shows that such k exists.

Next, we claim that by time(φk) + 6d, cmap(k)sk
6= ⊥ and cmap(`)sk

= ± for all ` < k; this follows from
Lemma 10.6, Part 2, applied with i = ik and j = sk, because ik does not fail befire πk, and because sk does not
fail by time 10d after φk+1.

Next, we show that in the pre-state of ψ, cmap(k)i 6= ⊥ and cmap(`)i = ± for all ` < k: We apply
Lemma 10.2 to sk and i, with t in that lemma set to max (time(φk) + 6d, time(join-acki) + e). This yields that,
by time max (time(φk) + 6d, time(join-acki) + e) + 2d, cmap(k)i 6= ⊥ and cmap(`)i = ± for all ` < k. Our
choice of k implies that time(φk) + 8d < time(ψ). Also, by assumption, time(join-acki) + e + 2d < t. And
t ≤ time(ψ). So, time(join-acki) + e + 2d < time(ψ). Putting these inequalities together, we obtain that
max (time(φk) + 6d, time(join-acki) + e)+2d < time(ψ). It follows that, in the pre-state of ψ, cmap(k)i 6= ⊥
and cmap(`)i = ± for all ` < k, as needed.

Now, by choice of k, we know that time(ψ) ≤ time(φk+1) + 8d. The recon-spacing condition implies that
time(πk+1) (the first recon event that requests the creation of the (k+2)nd configuration) is> time(φk+1)+12d.
Therefore, for an interval of time of length > 4d after ψ, the largest index of any configuration that appears
anywhere in the system is k + 1. This implies that the phase of the read or write operation that starts with ψ
completes with at most one additional delay (of 2d) for learning about a new configuration. This yields a total
time of at most 4d for the phase, as we claimed.

We use 11d-viability here: First at most time d elapses from the last decidek+1,∗,∗ until φk+1. Then at most
8d time elapses from φk+1 until ψ. At time(ψ), configuration k is already known (but configuration k + 1 may
not be known). Therefore we need a quorum of configuration k to stay alive only for the first 2d time of the phase.
Altogether yielding 11d. �

11 Latency and Fault-Tolerance: Eventually-Normal Timing Behavior

In this section, we present conditional performance results for the case where eventually the network stabilizes
and normal timing behavior is satisfied from some point on. The main result of this section, Theorem 11.20, is
analogous to Theorem 10.7 in that it shows that every read and write operation completes within 8d time, despite
concurrent failures and reconfigurations. Unlike Theorem 10.7, it shows that this good performance is achieved
despite the fact that initially, good timing behavior does not hold. Good performance is achieved by every read
and write operation that begins sufficiently long after normal timing behavior resumes.

For this entire section, we fix α to be an α′-normal executions. That is, α exhibits normal timing behavior
after α′. We fix e ∈ R≥0. We assume throughout this section that execution α satisfies the following hypotheses:

• (α′, e)-join-connectivity,
• (α′, e)-recon-readiness,
• (α′, e)-gc-readiness,
• (α′, 13d)-recon-spacing,
• (α′, e, 22d)-configuration-viability,
• infinite-reconfiguration.

As a point of notation, throughout this section we let TGST = `time(α′) + e+ 2d. That is, TGST represents the
time (e+ 2d) after the system has stabilized.

Also, when we refer s as the state after time t, we mean that s is the last state in a prefix of α that includes
every event that occurs at or prior to time t, and no events that occur after time t. When we refer to s as the state at
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time t, we mean that s is the last state in some prefix of α that ends at time t; it may include any subset of events
that occur exactly at time t.

11.1 Propagation of information.

We begin by introducing the notion of information being in the “mainstream.” When every non-failed node that
has joined sufficiently long ago learns about some CMap cm , we say that cm is in the mainstream:

Definition 11.1 Let cm be a CMap, and t ≥ 0 a time. We say that cm is mainstream after t if the following
condition holds:
For every i such that (1) a join-acki occurs no later than t − e − 2d, and (2) i does not fail until after time t:
cm ≤ cmapi after time t.

This concept will be useful in a variety of contexts throughout this section. For example, it allows us to deter-
mine precisely what is known at time max(t, TGST ) to the members of some configuration c initially proposed at
time t:

Lemma 11.2 Assume that cm is mainstream after some time t ≥ 0. If c is a configuration that was initially
proposed no later than time t, then for every non-failed i ∈ members(c), cm ≤ cmapi after time max(t, TGST ).

Proof. Fix some i ∈ members(c). By recon-readiness, we know that a join-acki occurs no later than time
t − (e + 3d) if t > `time(α′), and no later than time `time(α′), otherwise. Thus the claim follows from the
definition of “mainstream” with respect to time max(t, TGST ). �

Similarly, we conclude that if i is a member of some configuration c, then we can specify certain conditions under
which cmapi becomes mainstream:

Lemma 11.3 Let c be a configuration that is initially proposed no later than time t, and assume that i ∈
members(c). If i does not fail until after time max(t, TGST ) + d and cm = cmapi at time max(t, TGST ),
then cm is mainstream after max(t, TGST ) + 2d.

Proof. By recon-readiness, we know that i performs a join-acki no later than time max(t − (e + 3d), TGST −
(e+ 2d)). In order to show that cm is mainstream, we need to show that cm ≤ cmapj for every j that performs
a join-ackj no later than time max(t, TGST ) − e and that does not fail by time max(t, TGST ) + 2d. Fix some
such j. By join-connectivity, we know that j is in world i by time max(t, TGST ). From this we conclude that j
receives a message from i by time max(t, TGST ) + 2d, resulting in the desired outcome. �

The main result in this subsection is Theorem 11.6, which shows that if some CMap cm is mainstream at some
time t1, then at all times t2 ≥ t1 + 2d, CMap cm remains mainstream. We focus on times that occur sufficiently
after TGST ; prior to TGST , there may be no propagation of information.

Definition 11.4 We say that a recon(∗, c) event is successful if at some time afterwards a decide(c)k,i event occurs
for some k and i.

We first consider a special case of Theorem 11.6 where a successful recon event occurs at time t2.

Lemma 11.5 Fix times t2 ≥ t1 ≥ TGST + 2d. Assume that some CMap cm is mainstream after t1 and that a
successful recon∗ event occurs at time t2. Then cm is mainstream after t2 + 2d.

Proof. We prove the result by induction on the number of successful recon events that occur at or after time t1.
We consider both the base case and the inductive step simultaneously (with differences in the base case in

parentheses). Consider the (n+1)st successful recon event in α that occurs at or after time t1. (For the base case,
n = 0.) Assume this event occurs at time trec ; fix h as the old configuration and h′ as the new configuration.
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Inductively assume the following: if event π is one of the first n successful recon events in α that occur at some
time tpre ≥ t1, then cm is mainstream after tpre + 2d.

We need to show that cm is mainstream after trec + 2d. That is, we need to show that after time trec + 2d,
cm ≤ cmapi for every i such that (1) a join-acki occurs by time trec − e, and (2) i does not fail by time trec + 2d.
Fix some such i.

If n > 0, let tpre be the time of the nth successful recon(∗, h) event. (In the base case, let tpre = t1.) If n > 0,
the inductive hypothesis shows that cm is mainstream after tpre + 2d. (In the base case, by assumption cm is
mainstream after tpre .)

Choose some node j ∈ members(h) such that j does not fail at or before trec + 2d; configuration-viability
ensures that such a node exists. Since h is the old configuration, we can conclude that it was initially proposed no
later than time tpre ≤ tpre + 2d, and thus Lemma 11.2 implies that cm ≤ cmapj after time tpre + 2d. (In the
base case, it is easy to see that configuration h was proposed no later than time tpre , as we are considering the first
recon event after time t1 = tpre , and hence it follows that cm ≤ cmapj after time tpre .) Recon-spacing ensures
that tpre + 2d ≤ trec , and hence cm ≤ cmapj after time trec .

Finally, recon-readiness guarantees that a join-ackj occurs no later than time tpre − (e + 2d), and hence by
join-connectivity, we conclude that i ∈ world j by time trec , and hence sometime in the interval (trec , trec + d], j
sends a gossip message to i, ensuring that i receives cm no later than time trec + 2d. �

We now generalize this result to all times t2:

Theorem 11.6 Assume that t1 and t2 are times such that:

• t1 ≥ TGST + 2d;
• t2 ≥ TGST + 6d; and
• t2 ≥ t1 + 2d.

If CMap cm is mainstream after t1, then cm is mainstream after t2.

Proof. Choose configuration c to be the configuration with the largest index such that a successful recon(∗, c)
event occurs at or before time t2 − 4d. If no such configuration exists, let c = c0. Assume that this successful
recon(∗, c) event occurs at time trec. Note that by the choice of c, no successful recon(c, ∗) event occur at or
before time t2 − 4d. We now show that for every non-failed i ∈ members(c), cm ≤ cmapi after t2 − 2d. Fix
some such i. There are three cases to consider.

1. c = c0:
Recall that i0 is the only member of c0, and performs a join-acki0 at time 0. Since cm is mainstream after
t1, and we have assumed that i = i0 does not fail until after t1 ≥ e+ 2d, then cm ≤ cmapi0 after time t1,
and hence also after time t2 − 2d.

2. The successful recon(∗, c) event occurs after time t1:
Since trec > t1, Lemma 11.5 shows that cm is mainstream after trec + 2d. Since c was initially proposed
at time trec < trec + 2d, Lemma 11.2 implies that for every non-failed member i of configuration c,
cm ≤ cmapi after time trec + 2d, and hence after time t2 − 2d ≥ trec + 2d.

3. The successful recon(∗, c) event occurs at or before time t1:
Since cm is mainstream after t1, and since configuration c was proposed no later than time t1, we can
conclude by Lemma 11.2 that for every non-failed i ∈ members(c), cm ≤ cmapi after time t1, and hence
after t2 − 2d.

Configuration-viability guarantees that some member of configuration c does not fail until at least 4d after the next
configuration is installed. Since no successful recon(c, ∗) event occurs at or before time t2− 4d, we can conclude
that some node, j ∈ members(c) does not fail at or before time t2.

Since configuration c is proposed no later than time t2 − 4d, and since j does not fail until after time t2, we
can conclude from Lemma 11.3 that cmapi after time t2 − 2d is mainstream after time t2. Since cm ≤ cmapi at
time t2 − 2d, the result follows. �
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11.2 Configuration viability.

In this subsection, we first define an event gc-ready(k), for every k > 0, that indicates when a gc(k)∗ event may
occur. (Garbage-collection operations may, however, occur prior to this event.) We then show in Theorem 11.11
that for every k ≥ 0, configuration c(k) remains viable for at least 16d time after the gc-ready(k + 1) event.

Definition 11.7 Define the gc-ready(k) event for k > 0 to be the first event in α after which, ∀` ≤ k, the following
hold: (i) configuration c(`) is installed, and (ii) for all non-failed i ∈ members(c(k − 1)), cmap(`)i 6= ⊥.

The first lemma shows that soon after a configuration is installed, every node that joined sufficiently long ago
learns about the new configuration.

Lemma 11.8 Assume that configuration c(k) is installed at time t ≥ 0. Then there exists a CMap cm such that
cm(k) 6= ⊥ and cm is mainstream after max(t, TGST ) + 2d.

Proof. Configuration-viability guarantees that there exists a read-quorum R ∈ read-quorums(c(k − 1)) such
that no node in R fails at or before time max(t, TGST ) + d. Choose some node j ∈ R.

Since configuration c(k) is installed at time t, we can conclude that after time t, and hence also after time
max(t, TGST ), cmap(k)j 6= ⊥. Since configuration c(k−1) is initially proposed no later than time max(t, TGST ),
we conclude by Lemma 11.3 that cmap(k)j is mainstream after time max(t, TGST ) + 2d. �

The next lemma shows that for configuration with index k, soon after all configurations smaller than k are installed,
a gc-ready(k) event occurs.

Lemma 11.9 Let c be a configuration with index k, and assume that for all ` ≤ k, configuration c(`) is installed
in α by time t. Then gc-ready(k) occurs by time max(t, TGST ) + 6d.

Proof. Recall that gc-ready(k) is the first event after which (i) all configurations with index ≤ k have been
installed, and (ii) for all ` < k, for all non-failed members of configuration c(k− 1), cmap(`) 6= ⊥. The first part
occurs by time t by assumption. We need to show that the second part holds by time max(t, TGST ) + 6d.

For every configuration c(`) with index ` ≤ k, let t` be the time at which configuration c(`) is installed; by
assumption max(ti) ≤ t.

For each ` ≤ k, we can conclude by Lemma 11.8 that there is some cm where cm(`) 6= ⊥ that is mainstream
after max(t`, TGST )+2d. We conclude from Theorem 11.6 that cm` is still mainstream after max(t, TGST )+6d.

Since configuration c(k − 1) was proposed and installed prior to time max(t, TGST ) + 6d, we conclude by
Lemma 11.2 that for every non-failed j ∈ members(c(k − 1)), for every ` ≤ k, cm` ≤ cmapj after time
max(t, TGST ) + 6d, as required. �

As a corollary, we notice that if no gc-ready(k + 1) occurs in α, then configuration c(k) is always viable.

Corollary 11.10 For some k ≥ 0, assume that no gc-ready(k + 1) event occurs in α. Then there exists a read-
quorum R and a write-quorum W of configuration c(k) such that no node in R ∪W fails in α.

Proof. Assume that for some ` ≤ k + 1, configuration c(`) is not installed in α. Then the claim follows
immediately from configuration viability. Assume, instead, that for every ` ≤ k+1, configuration c(`) is installed
in α. Then by Lemma 11.9, an gc-ready(k + 1) event occurs in α, contradicting the hypothesis. �

Finally, we show that if a gc-ready(k + 1) event does occur, then configuration c(k) remains viable until at least
16d after the gc-ready(k + 1) event.

Theorem 11.11 For some k ≥ 0, assume that gc-ready(k+ 1) occurs at time t. Then there exists a read-quorum
R and a write-quorum W of configuration c(k) such that no node in R ∪W fails by time max(t, TGST ) + 16d.
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Proof. Let t′ be the minimal time such that every configuration with index ≤ k + 1 is installed no later than
time t′. We conclude from Lemma 11.9 that the gc-ready(k + 1) event occurs by time max(t′, TGST ) + 6d; that
is, t ≤ max(t′, TGST ) + 6d.

Configuration-viability guarantees that there exists a read-quorum R and a write-quorum W of configuration
c(k) such that either: Case (1): no process in R ∪W fails in α, or Case (2): there exists a finite prefix, αinstall of
α such that for all ` ≤ k + 1, configuration c(`) is installed in αinstall and no process in R ∪W fails in α by: (a)
`time(αinstall ) + 22d, or (b) TGST + 22d. In Case 1, we are done.

We now consider the second case. Since t′ is the minimal time such that every configuration ≤ k + 1 is
installed by time t′, we can conclude that t′ ≤ `time(αinstall ), from which the claim follows immediately. �

11.3 Garbage collection.

In this subsection, we analyze the performance of garbage-collection operations. The main result of this section,
Theorem 11.17, shows that every garbage-collection operation completes within 4d time. The proof is structured
as an induction argument: if every earlier garbage collection has completed within 4d time, then the next garbage
collection completes within 4d time. More specifically:

Definition 11.12 For time t ≥ 0, we say that execution α satisfies the gc-completes hypothesis at time t if every
gc event ρ that satisfies the following conditions completes no later than max(time(ρ), TGST ) + 4d:

• time(ρ) < t.
• Event ρ is performed by some node that does not fail prior to time max(time(ρ), TGST ) + 4d.

We first show that under certain circumstances, a garbage-collection operation begins. We consider some prefix
of execution α that ends in some event ρ, and show that if the state after ρ satisfies certain conditions (e.g., there
is no ongoing garbage collection, and there is garbage to collect), then a garbage-collection begins immediately.

Lemma 11.13 For some node i, for times t1, t2 ∈ R≥0, for some k > 0, for some event ρ that occurs at time t2,
assume that:

1. A gc-ready(k) event occurs at time t1.
2. Event ρ occurs after the gc-ready(k) event.
3. i does not fail at or before time t2.
4. i is a member of configuration c(k − 1).
5. (No garbage collection is ongoing:) Immediately after event ρ, gc.phasei = idle.
6. (There is garbage to collect:) After time t2, cmap(k − 1)i 6= ±.

Then for some k′ ≥ k, i performs a gc(k′)i at time t2.

Proof. Assume for the sake of contradiction that no gc(∗)i event occurs at time t2 after event ρ. We examine in
turn the preconditions for gc(k)i immediately after all the events that occur at time t2. Let s be the state of the
system after time t2.

1. ¬s.failed i: By Assumption 3 on i.
2. s.status i = active: Node i is a member of configuration c(k − 1) (Assumption 4), which is proposed and

installed no later than time t1 when the gc-ready(k) event occurs. Hence, by recon-readiness we conclude
that a join-acki occurs no later than time t1 − (e + 3d), and hence prior to t2. This also satisfies the
gc-readiness hypothesis.

3. s.gc.phasei = idle: By Assumption 5 no garbage collection is ongoing immediately after ρ; by assumption
no garbage collection is initiated by i at time t2 after the event ρ.

4. ∀` < k : s.cmap(`)i 6= ⊥: By the definition of gc-ready(k), Part (ii), we know that for all ` ≤ k, for
all non-failed j ∈ members(c(k − 1)), cmap(`)j 6= ⊥ immediately after the gc-ready(k) event. Node i
satisfies both requirements, and later CMap updates do not change this fact.
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5. s.cmap(k − 1)i ∈ C: We have already shown (Part 4) that s.cmap(k − 1)i 6= ⊥. By Assumption 6,
s.cmap(k − 1)i 6= ±.

6. s.cmap(k)i ∈ C: We have already shown (Part 4) that s.cmap(k)i 6= ⊥. Since s.cmapi ∈ Usable (Invari-
ant 2), and since s.cmap(k−1)i 6= ± (Assumption 6), we can conclude (Lemma 2.1) that s.cmap(k)i 6= ±.

Since enabled events occur in zero time (by assumption), we conclude that a gc(k′)i event occurs at time t2,
contradicting our assumption that no such event occurs. Moreover, by the restrictions on non-determinism (Sec-
tion 9.1), we conclude that k′ ≥ k. �

Next, we show that if we assume the gc-completes hypothesis, then within 8d after a gc-ready(k + 1) event,
some node in configuration c(k) has already removed configuration c(k). Essentially, this lemma relies on
Lemma 11.13 to show that some garbage collection is started, and the gc-completes hypothesis to show that
the garbage collection completes.

Lemma 11.14 For some time t2 ≥ 0, assume that α satisfies the gc-completes hypothesis for time t2. Assume
that for some k ≥ 0, a gc-ready(k + 1) event occurs at time t1 such that max(t1, TGST ) + 4d < t2.

Then for some node i ∈ members(c(k)) that does not fail at or before time max(t1, TGST ) + 10d: we
conclude that cmap(k)i = ± after time max(t1, TGST ) + 8d.

Proof. We know from Theorem 11.11 that there exists a read-quorumR and a write-quorumW of configuration
c(k) such that no node in R ∪W fails at or before time max(t1, TGST ) + 16d. Choose i ∈ R ∪W .

Assume for the sake of contradiction that cmap(k)i 6= ± after time max(t1, TGST ) + 8d. We argue that i
begins a garbage-collection operation no later than max(t1, TGST )+4d; the contradiction—and conclusion—then
follow from the gc-completes hypothesis. There are two cases depending on whether gc.phasei = idle or active
immediately after the gc-ready(k + 1) event:

• Case 1: Assume that gc.phasei = idle immediately after the gc-ready(k + 1) event:
Notice that all the conditions of Lemma 11.13 are satisfied: (1) a gc-ready(k + 1) event occurs at time
t1; (2) let ρ be the gc-ready(k + 1) event; (3) i does not fail at or before time t1; (4) i is a member
of configuration c(k); (5) there is no ongoing garbage collection at i (by Case 1 assumption); (6) and
cmap(k)i 6= ±, since we assumed for the sake of contradiction that cmap(k)i 6= ± at some time > t1 and
CMap updates do not invalidate this fact. Thus we conclude that i performs a gc(k′)i event for some k′ > k
at time t1.

• Case 2: Assume that gc.phasei = active immediately after the gc-ready(k + 1) event:
This implies that some event ρ = gc(∗)i with no matching gc-ack occurs no later than time t1. By
the gc-completes hypothesis, since (1) time(ρ) ≤ t1 < t2; and (2) i does not fail at or before time
max(t1, TGST )+4d: we conclude that a gc-acki occurs at some time tack such that tack ≤ max(t1, TGST )+
4d.

At this point, we again invoke Lemma 11.13: (1) a gc-ready(k + 1) event occurs at time t1; (2) let ρ be the
gc-ack event; (3) i does not fail at or before time tack ; (4) i is a member of configuration c(k); (5) there is
no ongoing garbage collection at i; (6) and cmap(k)i 6= ±, since we assumed for the sake of contradiction
that cmap(k)i 6= ± at some time > t1 and CMap updates do not invalidate this fact. We conclude that i
performs a gc(k′)i event for some k′ > k at time tack .

In either case, i performs a gc(k′) event for some k′ > k no later than time max(t1, TGST ) + 4d < t2. Moreover,
i does not fail at or before max(t1, TGST ) + 8d. We conclude via the gc-completes hypothesis that a gc-ack(k′)i

event occurs no later than max(t1, TGST ) + 8d, resulting in cmap(k)i = ± after max(t1, TGST ) + 8d. �

We now show that, if the gc-completes hypothesis holds, every configuration remains viable for as long as it
is being used by any cmap. This lemma depends on Lemma 11.14 to show that a configuration with index k is
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removed soon after the gc-ready(k + 1) event, and also Theorem 11.11 to show that configuration c(k) remain
viable long enough after the gc-ready(k+1) event; finally, it uses Theorem 11.6 to show that once a configuration
is removed, every other node learns about it sufficiently rapidly.

Lemma 11.15 Fix a time t ≥ TGST + 13d, and assume that α satisfies the gc-completes hypothesis for time t.
Assume that for some non-failed node i that performs a join-ack no later than time t− (e+ 3d), for some k ≥ 0,
cmap(k)i ∈ C at time t. Then there exists a read-quorum R and a write-quorum W of configuration c(k) such
that no node in R ∪W fails by time t+ 3d.

Proof. First, consider the case where no gc-ready(k + 1) event occurs in α. Corollary 11.10 implies that there
exists a read-quorum R and a write-quorum W of configuration c(k) such that no node in R ∪W fails in α.

Next, consider the case where a gc-ready(k + 1) event occurs in α at some time tready ≥ t − 13d. Then
Theorem 11.11 implies that there exists a read-quorum R and a write-quorum W of configuration c(k) such that
no node in R ∪W fails by time max(tready , TGST ) + 16d, implying the desired result.

Finally, consider the case where a gc-ready(k+ 1) event occurs in α at some time tready < t− 13d. We show
that this implies that cmap(k)i = ± by time t, resulting in a contradiction. That is, this third case cannot occur.

To begin with, Lemma 11.14 demonstrates that for some j ∈ members(c(k)) that does not fail at or before
time max(tready , TGST ) + 10d, cmap(k)j = ± after max(tready , TGST ) + 8d. Let cm be j’s cmap at this
point. Since configuration c(k) is proposed prior to time tready , Lemma 11.3 indicates that cm is mainstream after
max(tready , TGST ) + 10d. And since t− d ≥ max(tready , TGST ) + 12d, we conclude by Theorem 11.6 that cm
is still mainstream after time t− d. Since i performs a join-acki no later than time t− (e+ 3d) and does not fail
prior to time t, we conclude that cm ≤ cmap(k)i after time t− d, resulting in a contradiction. �

We can now begin to analyze the actual latency of a garbage-collection operation. We first show that if
sufficient configurations remain viable, then the operation completes with 4d time.

Lemma 11.16 Let t ≥ 0 be a time. Let i be a node that does not fail at or before time max(t, TGST ) + 4d.
Assume that i initiates garbage-collection operation γ at time t with a gc(k)i event.

Additionally, assume that for every ` ∈ removal-set(γ) ∪ {k}, there exists a read-quorum R` and a write-
quorum W` of configuration c(`) such that no node in R` ∪W` fails by time max(t, TGST ) + 3d.

Then a gc-ack(k)i event occurs no later than max(t, TGST ) + 4d.

Proof. There are two cases to consider:

• t > TGST − d: At time t > `time(α′), node i begins the garbage collection. By triggered gossip, node
i immediately sends out messages to every node in world i. Node i receives responses from every node in
R` ∪W` within 2d time, for every ` such that c(`) is in the gc.cmapi, beginning the propagation phase,
which likewise ends a further 2d later.

• t ≤ TGST − d: At time t, node i begins the garbage collection. By occasional gossip, i sends out messages
to every node in world i no later than time TGST . By time TGST +2d, node i receives responses from every
node in R` ∪W`, for every ` such that c(`) is in the gc.cmapi, beginning the propagation phase, which
likewise ends a further 4d later.

�

We can now present the main result of this section which shows that every garbage-collection operation com-
pletes within 4d time:

Theorem 11.17 Assume that for some node i, a gc(k)i event occurs at time t ≥ 0. Assume that i does not fail by
time max(t, TGST ) + 4d. Then a gc-ack(k)i occurs no later than time max(t, TGST ) + 4d.
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Proof. By (strong) induction on the number of gc events in α: assume inductively that if ρ is one of the first
n ≥ 0 gc events in α and that ρ is initiated by node j at time t′ and that j does not fail by time max(t′, TGST )+4d,
then there is a matching gc-ackj by time max(t′, TGST ) + 4d.

We examine the inductive step: Consider the (n + 1)st gc(∗) event in α. Let γ be the garbage-collection
operation initiated by the gc event; let j be the node that initiates γ, let k be the target of γ and let tgc be the time
at which γ begins. If j fails by max(tgc , TGST ) + 4d, then the conclusion is vacuously true. Consider the case
where j does not fail at or before max(tgc , TGST ) + 4d.

Lemma 11.16 shows that proving the following is sufficient: for every configuration ` ∈ removal-set(γ)∪{k}
there exists a read-quorum R and a write-quorum W of configuration c(`) such that no node in R ∪W fails by
max(tgc, TGST ) + 3d. There are two cases to consider:

• Case 1: tgc ≤ TGST + 13d.
This follows immediately from configuration viability.

• Case 2: tgc > TGST + 13d.
Let αpre be the prefix of α ending with the gc event of γ. Fix some configuration ` ∈ removal-set(γ)∪{k}.

We now apply Lemma 11.15: Notice that cmap(`) ∈ C at time tgc , by the choice of ` in the removal-set(γ).
Also, notice by gc-readiness that j performs a join-ackj no later than time tgc − (e+ 3d). Finally, observe
that the inductive hypothesis implies immediately that α satisfies the gc-completes hypothesis for tgc , since
every garbage-collection operation that begins at a time < tgc is necessarily one of the first n garbage
collections in α. Thus we conclude from Lemma 11.15 that there exists a read-quorum R and a write-
quorum W of configuration c(`) such that no node in R ∪W fails by max(tgc , TGST ) + 3d. �

We now present one additional corollary, an unconditional version of Lemma 11.15, which states that as long as
any configuration is in use by any cmap, it remains viable:

Corollary 11.18 Fix a time t ≥ 0. Assume that for some non-failed node i that performs a join-acki no later than
t − (e + 3d), for some k ≥ 0, cmap(k)i ∈ C at time t. Then there exists a read-quorum R and a write-quorum
W of configuration c(k) such that no node in R ∪W fails by max(t, TGST ) + 3d.

Proof. Consider the case where t > TGST + 13d. Notice that the only condition of Lemma 11.15 that is not
assumed here is that α satisfies the gc-completes hypothesis for t. This follows immediately from Theorem 11.17,
implying the desired conclusion. Alternatively, if t ≤ `time(α′) + 13d, the claim follows immediately from
configuration-viability. �

11.4 Reads and writes.

Before presenting the main result of this section, we need one further lemma which shows that every node learns
rapidly about a newly produced configuration:

Lemma 11.19 For a given index `, let π be the first recon(c(`), ∗) event, and let i be the node at which it occurs.
Let φ be the preceding report(c(`))i event, and assume that φ occurs at time t. Then there exists a CMap cm such
that: (i) cm(`) 6= ⊥, and (ii) cm is mainstream after max(t, TGST ) + 6d.

Proof. Recon-spacing guarantees that there exists a write-quorum W ∈ write-quorums(c(`)) such that for
every node j ∈ W , a report(c(`))j occurs in α prior to π. By configuration-viability, there exists some read-
quorum R ∈ read-quorums(c(`)) such that no node in R fails at or before time max(t, TGST ) + 5d. Choose
j ∈ R ∩W . Since the report action notifies j of the configuration c(`) prior to π, we conclude that after time t,
cmap(`)j 6= ⊥. Let cm = cmapj after time max(t, TGST ) + 4d.

Since j does not fail until after max(t, TGST )+5d, and j is a member of configuration c(`), which was initially
proposed no later than time t, we conclude by Lemma 11.3 that cm is mainstream after max(t, TGST ) + 6d. �
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We now show that every read and write operation terminates within 8d time. This theorem is quite similar in
form to Theorem 10.7.

Theorem 11.20 Let t > TGST + 16d, and assume a read or write operation starts at time t at some node i.
Assume that i performs a join-acki no later than time t − (e + 8d) and does not fail until the read or write
operation completes5. Then node i completes the read or write operation by time t+ 8d.

Proof. Let c0, c1, c2, . . . denote the infinite sequence of successive configurations decided upon in α; by infinite
reconfiguration, this sequence exists. For each k ≥ 0, let πk be the first recon(ck, ck+1)∗ event in α, let ik be the
location at which this occurs, and let φk be the corresponding, preceding report(ck)ik event. (The special case of
this notation for k = 0 is consistent with our usage elsewhere.)

We show that the time for each phase of the read or write operation is ≤ 4d – this will yield the bound we
need. Consider one of the two phases, and let ψ be the readi, writei or query-fixi event that begins the phase.

We claim that time(ψ) > time(φ0) + 8d, that is, that ψ occurs more than 8d time after the report(0)i0

event: We have that time(ψ) ≥ t, and t > time(join-acki) + 8d, by assumption. Also, time(join-acki) ≥
time(join-acki0). Furthermore, time(join-acki0) ≥ time(φ0), that is, when join-acki0 occurs, report(0)i0 occurs
with no time passage. Putting these inequalities together we see that time(ψ) > time(φ0) + 8d.

Fix k to be the largest number such that time(ψ) > time(φk) + 8d. The claim in the preceding paragraph
shows that such k exists.

Next, we show that before any further time passes after ψ, cmap(`)i 6= ⊥ for all ` ≤ k. (It is at this point that
the proof diverges from that of Theorem 10.7.) Fix any ` ≤ k. We apply Lemma 11.19 to conclude that there exists
a CMap cm such that: (i) cm(`) 6= ⊥, and (ii) cm is mainstream after max(time(φ`), `time(α′)+e+d)+6d. We
next apply Theorem 11.6 to conclude that cm is mainstream after time(ψ). Finally, since i performs a join-acki

at least time e+ 2d prior to time(ψ), we conclude that after time(ψ), cm ≤ cmapi

Now, by choice of k, we know that time(ψ) ≤ time(φk+1) + 8d. The recon-spacing hypothesis implies that
time(πk+1) (the first recon event that requests the creation of the (k+2)nd configuration) is> time(φk+1)+12d.
Therefore, for an interval of time of length > 4d after ψ, the largest index of any configuration that appears
anywhere in the system is k + 1. This implies that the phase of the read or write operation that starts with ψ
completes with at most one additional delay (of 2d) for learning about a new configuration. This yields a total
time of at most 4d for the phase, as claimed. Finally, Corollary 11.18 shows that the configurations remain viable
for sufficiently long. �

12 RAMBO as an Architectural Template

We have presented a specification for RAMBO, a new reconfigurable atomic memory for read/write objects, and
have presented and analyzed a new, highly nondeterministic, asynchronous message-passing algorithm that im-
plements RAMBO. Our presentation of the specification and of the algorithm had additional goals of clarity,
succinctness, and mathematical elegance. At the same time, we view RAMBO as an architectural template for tar-
geted implementations of the service on a variety of distributed platforms, ranging from networks-of-workstations
to mobile networks. In fact several related works substantiate our claims that RAMBO is a practical service that
is implementable as a distributed system service, in turn making it suitable as a building block for dynamic dis-
tributed applications. In this section we overview selected results that are either motivated by RAMBO or that
directly use RAMBO as a point of departure for optimizations and practical implementations.

Long-lived operation of RAMBO service. To make RAMBO service practical for long-lived settings where the
size and the number of the messages needs to controlled, Georgiou et al. [23] develop two algorithmic refinements.
The first introduces a leave protocol that allows nodes to gracefully depart from the RAMBO service, hence

5Formally, we assume that i does not fail in α, and then notice that if i fails after the operation terminates, that has no effect on the
claim at hand.
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reducing the number of, or completely eliminating messages sent to the departed nodes. The second reduces the
size of messages by introducing an incremental communication protocol. The two combined modifications are
proved correct by showing that the resulting algorithm implements RAMBO. Musial [42, 43] implemented the
algorithms on a network-of-stations, experimentally showing the value of these modifications.

Restricting gossiping patterns and enabling operation restarts. To further reduce the volume of gossip mes-
sages in RAMBO, Gramoli et al. [28] constrain the gossip pattern so that gossip messages are sent only by the
nodes that (locally) believe that they have the most recent configuration. To address the side-effect of some nodes
potentially becoming out-of-date due to reduced gossip (nodes may become out-of-date in in RAMBO as well),
the modified algorithm allows for a non-deterministic operation restarts. The modified algorithm is proved to be
implementing RAMBO, and the experimental implementation [42, 43] is used to illustrate th advantage of the ap-
proach. In practice, non-deterministic operation restart is most effectively replaced by a heuristic decision based
on local observations, such as the duration of an operation in progress. Of course any such heuristic preserves
correctness.

Implementing a complete shared memory service. The RAMBO service is specified for a single object, with
complete shared memory implemented by composing multiple instances of the algorithm. In practical system
implementations this may result in significant communication overhead. Georgiou et al. [24] developed a variation
of RAMBO that introduces the notion of domains, collections of related objects that share configurations, thus
eliminating much of the overhead incurred by the shared memory obtained through composition of RAMBO

instances. A networks-of-workstations experimental implementation is also provided. Since the specification of
the new service includes domains, the proof of correctness is achieved by adapting the proof we presented here to
that service.

Indirect learning in the absence of all-to-all connecticity. Our RAMBO algorithm assumes that either all nodes
are connected by direct links or that an underlying network layer provides transparent all-to-all connectivity.
Assuming this may be unfeasible or prohibitively expensive to implement in dynamic networks, such ad hoc
mobile settings. Konwar et al. [35] develop an approach to implementing RAMBO service where all-to-all gossip
is replaced by an indirect learning protocol for information dissemination. The indirect learning scheme is used
to improve the liveness of the service in the settings with uncertain connectivity. The algorithm is proved to
implement RAMBO service. The authors examine deployment strategies for which indirect learning leads to an
improvement in communication costs,

Integrated reconfiguration and garbage collection. The RAMBO algorithm decouples reconfiguration (the
issuance of new configurations) from the garbage collection of obsolete configurations. We have discussed the
benefits of this approach in this paper. In some settings it is beneficial to tightly integrate reconfiguration with
garbage collection. Doing so in the settings where there is a concern for imminent failure of the current config-
uration may reduce the latency of removing such configuration. Gramoli [27] and Chockler et al. [12] integrate
reconfiguration with garbage collection by “opening” the external consensus service, such as that used by RAMBO,
and combining it with the removal of the old configuration. For this purpose they use Paxos algorithm [36] as the
starting point, and the RAMBO configuration upgrade protocol. The resulting reconfiguration protocol reduces the
latency of garbage collection as compared to RAMBO. The drawback of this approach is that it ties reconfiguration
to a specific consensus algorithm. In contrast, the loose coupling in RAMBO allows one to implement specialized
Recon services that are most suitable for particular deployment scenarios as we discuss next.

Dynamic atomic memory in sensor networks. Beal et al. [10] developed an implementation of the RAMBO

framework in the context of a wireless ad hoc sensor network. In this context, configurations are defined with re-
spect to a specific geographic region: every sensor within the geographic region is a member of the configuration,
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and each quorum consists of a majority of the members. Sensors can store and retrieve data via RAMBO read and
write operations, and the geographic region can migrate via reconfiguration. In addition, reconfiguration can be
used to incorporate newly deployed sensors, and to retire failed sensors. An additional challenge was to efficiently
implement the necessary communication (presented in this paper as point-to-point channels) in the context of a
wireless network that supports one-to-many communication.

Dynamic atomic memory in mobile ad hoc networks. Dolev et al. [17] developed a new approach for imple-
menting atomic read/write shared memory in mobile ad hoc networks where the individual stationary locations
constituing the members of a fixed number of quorum configurations are implemented by mobile devices. Moti-
vated in part by RAMBO, their work specializes RAMBO algorithms in two ways. (1) In RAMBO the first (query)
phase of write operations serves to establish a timestamp that is higher than any timestamps of the previously
completed writes. If a global time service is available, then taking a snapshot of the global time value obviates the
need for the first phase in write operations. (2) The full-fledged consensus service is necessary for reconfiguration
in RAMBO only when the universe of possible configurations is unknown. When the set of possible configurations
is small and known in advance, a much simpler algorithm suffices. The resulting approach, called GeoQuorums,
yields an algorithm that efficiently implements read and write operations in a highly dynamic, mobile network.

Distributed enterprise disk arrays. Finally, we note that Hewlett-Packard recently used a variation of RAMBO

in their implementation of a “federated array of bricks” (FAB), a distributed enterprise disk array [3, 46].

13 Conclusions

We presented a specification for a new reconfigurable atomic memory for read/write objects; we call it RAMBO.
We also presented an analyzed an asynchronous message-passing algorithm that implements RAMBO. The algo-
rithm is highly dynamic and we show its correctness (safety) in the presence of any pattern of asynchrony and
failures. Some of our liveness properties depend on assumed message delay bounds and limited failure. Our anal-
ysis is very conservative and there are many possibilities for using weaker assumptions. Our RAMBO framework,
viewed as an architectural template, allows for a variety of optimizations and implementations in specific tar-
get networks, from networks-of-workstations to ad hoc mobile networks to enterprise disk arrays. We anticipate
that the approach defined and presented in this paper will continue to influence follow on research and practical
implementations of atomic memory services in dynamic systems.
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