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Abstract. One of the most significant challenges introduced by mo-
bile networks is coping with the unpredictable motion and the unreliable

behavior of mobile nodes. In this paper, we define the Virtual Mobile

Node Abstraction, which consists of robust virtual nodes that are both
predictable and reliable. We present the Mobile Point Emulator, a new
algorithm that implements the Virtual Mobile Node Abstraction. This
algorithm replicates each virtual node at a constantly changing set of real
nodes, modifying the set of replicas as the real nodes move in and out of
the path of the virtual node. We show that the Mobile Point Emulator
correctly implements a virtual mobile node, and that it is robust as long
as the virtual node travels through well-populated areas of the network.
The Virtual Mobile Node Abstraction significantly simplifies the design
of efficient algorithms for highly dynamic mobile ad hoc networks.

1 Introduction

Devising algorithms for mobile networks is hard. In this paper we present the
Virtual Mobile Node Abstraction, which can be used to make this process easier.

The key challenge in mobile networks is coping with the completely unpre-
dictable motion of the nodes. This complication is unavoidable: the defining
feature of a mobile network is that the nodes do, in fact, move. The other main
difficulty is the unpredictable availability of nodes that continually join and leave
the system: nodes may fail and recover, or be turned on and off by the user, or
may sometimes choose to sleep and save power.

If mobile nodes were reliable and their motion were predictable, the task
of designing algorithms for mobile networks would be significantly simplified.
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Moreover, if mobile nodes moved in a programmable way, algorithms could take
advantage of the motion, performing even more efficiently than in static net-
works. This idea is illustrated by Hatzis et al. in [10], which defines the notion of
a compulsory protocol, one that requires a subset of the mobile nodes to move in
a pre-specified manner. They present an efficient compulsory protocol for leader
election. The routing protocols of Chatzigiannakis et al. [4] and Li et al. [15]
provide further evidence that compulsory protocols are simple and efficient.

Alas, users of mobile devices are not amenable to following instructions as to
where their devices may travel. It may be difficult to ensure that mobile nodes
move as desired, especially for highly dynamic systems where nodes may fail
or be diverted from the prescribed path. Thus our objectives are (a) to retain
the effectiveness of the compulsory protocols, and (b) to achieve this without
imposing requirements on the motion of the nodes.

Our Contributions

In this paper we introduce the Virtual Mobile Node (VMN) Abstraction, and
show how it can be used to design distributed algorithms for mobile ad hoc
networks. We develop an algorithm, the Mobile Point Emulator, that implements
the VMN abstraction, and show that it is correct and efficient.

Virtual Mobile Nodes. We propose executing algorithms on both virtual mo-
bile nodes (VMNs), abstract nodes that move in a predetermined, predictable
manner, and clients (i.e., real mobile nodes), which move in an unpredictable
manner. The motion of a VMN is determined in advance, and is known to the
programs executing on the mobile nodes. For example, a VMN may traverse the
plane in a regular pattern, or it may perform a pseudorandom walk.

The motion of the virtual nodes may be completely uncorrelated with the
motion of the real nodes: even if all the real nodes are moving in one direction,
the virtual nodes may travel in the opposite direction. Consider, for example,
an application to monitor traffic on a highway: even though all the cars are
driving in one direction, a VMN could move in the opposite direction, notifying
oncoming cars of the traffic ahead.

A virtual node is prone to “crash-reboot” failures. As long as the virtual
node travels through dense areas of the network, the virtual node does not fail.
However, if the VMN moves to an empty spot — where there are no mobile
nodes to act as replicas — a failure may occur. The VMN can recover to its
initial state when it reenters a dense area.

The virtual nodes and the clients communicate using only a local communi-
cation service; no long-distance communication is required.

Implementing Virtual Mobile Nodes. We present the Mobile Point Emulator, a
new algorithm that implements robust VMNs. The main idea of the algorithm is
to allow real nodes traveling near the location of a VMN to assist in emulating
the VMN. In order to achieve robustness, the algorithm replicates the state of a
virtual node at a number of real mobile nodes. As the execution proceeds, the
algorithm continually modifies the set of replicas so that they always remain



near the virtual node. We use a replicated state machine approach, augmented
to support joins, leaves, and recovery, to maintain the consistency of the replicas.

Other Related Work

While the idea of executing algorithms on virtual mobile nodes was inspired by
the development of compulsory protocols [10, 4, 15], many of the techniques used
in the Mobile Point Emulator were developed as part of the GeoQuorums algo-
rithm [6, 7], which defines a Focal Point Abstraction in which geographic regions
of the network—focal points—simulate atomic objects. The Virtual Mobile Node
Abstraction differs from the Focal Point Abstraction in four main ways. First, in
the earlier work, the focal points are static: they are limited to fixed, predeter-
mined locations. In this paper, we implement virtual mobile nodes that move,
traveling on an arbitrary, predetermined path. Second, the Focal Point Abstrac-
tion includes only atomic objects, such as read/write registers. In this paper, the
virtual mobile nodes can be arbitrary automata. Third, the focal points can-
not recover, should they fail, whereas the VMN Abstraction supports recovery.
Fourth, the Focal Point Abstraction uses a GeoCast service, a relatively expen-
sive non-local service, to communicate with clients. In the VMN Abstraction,
virtual nodes and clients communicate using only local communication.

This paper also generalizes the PersistentNode abstraction by Beal [1, 2].
A PersistentNode is a virtual entity that travels around a static (rather than
mobile) sensor network. It can carry with it some state, but implements neither
atomic objects (as in GeoQuorums), nor arbitrary automata (as in this paper).

The work of Nath and Niculescu [18] also takes advantage of precalculated
paths to forward messages in dense networks. Messages are routed along trajec-
tories, where nodes on the path forward the messages. Similarly, prior GeoCast
work (for example, [19, 3]) attempts to route data geographically. In many ways,
these strategies are ad hoc attempts to emulate some kind of traveling node. We
provide a more general framework to take advantage of predictably dense areas
of the network to perform arbitrary computation. A significant focus of these
prior papers is determining good trajectories, a problem that we do not address.

Document Structure

We first describe the underlying system model in Section 2, and present the
VMN Abstraction in Section 3. We present the Mobile Point Emulator and the
implementation of the VMN Abstraction in Section 4, and sketch a proof of cor-
rectness in Section 5. In Section 6, we briefly discuss several simple algorithms
that could execute on virtual nodes. Finally, in Section 7, we discuss open prob-
lems and future work. For more details, see [5].

2 Basic System Model

The underlying system model consists of real mobile nodes moving in a bounded
region of a two-dimensional plane. Each mobile node is assigned a unique iden-
tifier from a finite set, I. The real mobile nodes may join and leave the system,



and may fail at any time. (We treat leaves as failures.) The real mobile nodes
can move on any continuous path, with speed bounded by a constant, vmax .

The Geosensor is a component of the environment that maintains the current
location of each mobile node. It also maintains the current real time. A mobile
node receives geo-update(t, ℓ) updates from the Geosensor, notifying it of the
current time and its current location. Throughout this paper, we assume exact
knowledge of the time and location; in fact, all the algorithms presented could be
easily modified to tolerate approximately correct information. In an outdoor set-
ting, the Geosensor can be implemented by a Global Positioning System (GPS)
receiver. In an indoor environment, a Cricket [20] device may be a more effec-
tive Geosensor. In a static sensor network (for which GPS devices may be too
expensive), synthetic coordinates (e.g., [17]) may be sufficient. We assume that
each real mobile node receives an update from its Geosensor at least every tgeo
units of time, where tgeo is a constant.

LocalCast Communication Service

The mobile nodes communicate using a local broadcast service, LocalCast, which
is parameterized by a radius, R. When some node i performs a send(m)i, the
R-LocalCast service delivers the message — by a rcv(m)j — to every mobile
node j within a radius R of the sender. We further assume that every message
is delivered within d time, where d is a constant. The service has the following
properties: (i) Reliable Delivery: Assume that the mobile node i performs a
send(m)i action. Then for every mobile node j that is within distance R of the
location of i when the message is sent, and remains within distance R of that
location for d time and does not fail, a rcv(m)j event occurs within d time,
delivering the message to node j. (ii) Integrity: For any LocalCast message m

and mobile node i, if a rcv(m)i event occurs, then a send(m)j event precedes it,
for some mobile node j. Intuitively, sending a message using this service should
be thought of as making a single wireless broadcast (with a small number of
retries, if necessary, to avoid collisions). We believe that for small R, this service
is a reasonable (if simplistic) model of sending and receiving messages using
wireless broadcast.

Formally, we assume that the LocalCast service has one or more sets of
send/receive ports for each mobile node, and contains one or more message
buffers. More specifically, we assume that the real nodes support an RRMN -
LocalCast service, for a constant RRMN , which we call the RMN-LocalCast
service. The RMN-LocalCast service has two sets of ports for each mobile node.
The service contains two sets of message buffers, messages [i] and mpe-messages [i]
for each i ∈ I, each of which temporarily hold messages destined for node i.

3 Virtual Mobile Nodes

The VMN Abstraction consists of both client mobile nodes and virtual mobile
nodes (VMNs, also referred to as “virtual nodes”), which communicate using a
LocalCast service. Throughout this paper, the term mobile node refers to any
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Fig. 1. Components of the VMN Abstraction. The VMN communicates with the clients
using the VMN-LocalCast communication service.

node in the abstraction, a client or a VMN. Each mobile node is an arbitrary
I/O automaton [16] (without tasks or fairness)5. A mobile node is prone to
“crash-reboot” failures: a node may fail and recover. When a node recovers, it
begins again in its initial state. A mobile node receives frequent updates from a
Geosensor regarding the current time and its current location.

The key difference between clients and virtual nodes is that VMNs move in
a predictable, predetermined path that is chosen in advance when the algorithm
is specified. Clients, on the other hand, travel on an arbitrary path. Moreover,
virtual nodes are robust. If the path of a VMN goes through a sparse region
of the network, then the VMN fails during that interval of time; as soon as it
reenters a dense region, it recovers.

For the rest of this paper, we assume that there is only a single VMN, com-
municating with several clients, as is depicted in Figure 1. Our results extend
naturally to a model containing an arbitrary number of virtual nodes.

Formally, the VMN has two main state components: VMN .val , which repre-
sents the abstract state of the VMN I/O automaton, and VMN .buffer , a buffer
that holds outgoing messages until they are ready to be sent.

Clients and virtual nodes communicate by sending messages using a Local-
Cast service, as defined in Section 26. Recall that the LocalCast service is param-
eterized by a radius, R. The VMN Abstraction implements an RVMN -LocalCast
service, for some fixed constant RVMN , which we call VMN-LocalCast. We call
the message buffers in the VMN-LocalCast service messages [i], for each i ∈ I,
each of which holds messages destined for node i. If i is the identifier of the
VMN, we refer to the messages [i] message buffer as VMN-messages .

5 We expect that it is a simple extension to support timed and hybrid virtual nodes,
instead of just I/O automata.

6 Formally, we restrict the I/O automata to only two possible input actions:
geo-update(t, ℓ) and rcv(m), and one possible output action: send(m).
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Fig. 2. Components of the VMN Abstraction implementation. The clients communi-
cate with the MPE components using the RMN-LocalCast service; the MPE maintains
consistent replicas using the TOBcast service.

4 Implementing the VMN Abstraction

In this section we present our implementation of the VMN abstraction. Recall
that the VMN Abstraction consists of three components: virtual nodes, clients,
and the VMN-LocalCast service. Our implementation consists of the Mobile
Point Emulator (MPE) and the TOBcast service, which together implement
the VMN and the VMN-LocalCast service. (The client automata, along with
the automata to execute on the virtual node, are provided by the application
developer, and hence no further discussion is necessary.) Formally, the MPE
consists of one automaton, MPE i, for every real node i. The relationship between
these components is depicted in Figure 2.

Simple VMN Implementation

The simplest way to implement a VMN is by using a mobile “agent”. An agent
is a dynamic process that jumps from one real node to another, moving in the
direction specified by the VMN path. An agent “hitches a ride” with a host that
is near to the specified location of the VMN. This strategy has been used in the
past to implement various services, such as group communication (see [8]). It
can be generalized to support arbitrary I/O automata.

This simple algorithm meets one of the two goals of a VMN implementation:
the movement of the virtual node is predictable. However, the host of the agent
may fail, and therefore the VMN is not robust. For some applications, such as



TOBcasti
Input TOBcast(m)i, m a message

2Input rcv(m)i, m an internal message
Output TOBcast-rcv(m)i, m a message

4Output send(m)i, m an internal message

6State:

clock, current real time
8location, current location

incoming, initially ∅
10outgoing, initially ∅

12Input TOBcast(m)i

Effect:
14outgoing ← outgoing ∪

{〈m, i, clock, location〉}
16

Output send(m)i

18Precondition:
m ∈ outgoing

20Effect:
outgoing ← outgoing / {m}

22

Input rcv(〈m, j, t, ℓ 〉)i

24Effect:
incoming ← incoming ∪ {〈m, j, t, ℓ 〉}

26

Output TOBcast-rcv(m)i

28Precondition:
〈m, j, t, ℓ 〉∈ incoming

30t+d+1 = clock

6 ∃ 〈m′, j′, t′, ∗〉 ∈ incoming s.t. j′ < j

32Effect:
incoming ← incoming \ {〈m, j, t, ℓ 〉}

34

Trajectories:
36satisfies

d(time) = 1
38d(location[i ]) is arbitrary

constant incoming, outgoing

40stops when

∃ 〈m, j, t, ℓ 〉∈ incoming such that:
42t+d+1 = time

∃ 〈m, j, t, ℓ 〉∈ outgoing

Fig. 3. The TOBcast service imple-
mentation.

simple routing, this may be sufficient.
For many applications, however, this
lack of robustness is undesirable. We
use replication to solve this problem.

Mobile Points

We define a mobile point to be a
circular region, of radius Rmp , that
moves on the same path as the VMN:
at time t, the center of the mobile
point coincides with the preplanned
location of the VMN at time t. (Even
if the VMN has “failed”, the mo-
bile point—and the defunct VMN—
conceptually continue along the pre-
specified path.) Every real node that
resides within a mobile point repli-
cates the state of the virtual node.

Totally-Ordered Broadcast

Since the state of the VMN is repli-
cated at multiple real nodes, the mo-
bile point algorithm must maintain
consistency among the replicas. We
use the RMN-LocalCast communi-
cation service and the synchronized
clocks to implement a totally-ordered
broadcast service, which we call TO-
Bcast, within the region defined by
the mobile point.7

We use a standard technique to
implement the totally-ordered broad-
cast. A timestamp is affixed to each
message, defining a total order. (Each
node only sends a single message for
each real time, and ties are broken us-
ing node identifiers.) Before deliver-
ing a message, the mobile node waits
until at least time d + 1 has elapsed
since the message was sent, ensuring
that all earlier messages are received
first. See Figure 3 for the pseudocode

7 The TOBcast service takes the place of the “LBcast” service used in [6].



mp-location, a location, continuously updated, defining the location of the VMN
status ∈ {idle, joining, listening, active}, initially active if i ∈ mp-location , else idle

val ∈ states, holds state of the simulated I/O automaton, initially start
anwered-joins, set of ids of answered join requests, initially ∅
join-id, a tuple of time and a node id, a unique id for a join request, initially 〈0, i0〉
pending-actions, queue of actions waiting to be simulated, initially ∅
completed-actions, queue of actions that have been simulated, initially ∅
TOBcast-out, queue of outgoing TOBcast messages, initially ∅
local-out, queue of outgoing client messages, initially ∅

clock ∈ R≥0, current time, initially 0, continuously updated by the Geosensor
location, current location, continuously updated by the Geosensor

Fig. 4. MPE State for Node i and VMN h for IOA τ = 〈sig , states , start , δ〉

(using the TIOA formalism [11]) that implements the totally-ordered broadcast
service, which we call TOBcast.

Theorem 1. The TOBcast service guarantees that messages are delivered in the
order in which they are sent (according to real time), and if a real node within
a mobile point sends a message, then every other real node in the mobile point
(that resides in the mobile point for the duration of the broadcast) receives the
message.

The Mobile Point Emulator

The Mobile Point Emulator is based on a replicated state machine technique
similar to that originally presented in [14], augmented to support joins, leaves,
and recovery. The MPE replicates the state of the VMN at every node within the
mobile point’s region. It uses the total ordering of messages to ensure that the
replicas are updated consistently. The state of each MPE i is given in Figure 4,
and the signature of each MPE i is given in Figure 5. The algorithm itself is in
Figure 4. (All the line numbers in this section refer to Figure 4.)

MPE State. The status of the Mobile Point Emulator at node i transitions
between four status value: idle, indicating that the real node is not within the
mobile point, joining or listening, indicating that the real node is in the process
of joining the VMN, or active, indicating that the real node is participating in
the VMN emulation.

When a node is active in the mobile point, it maintains a replicated copy of
the state of the virtual node, val . The MPE maintains a queue of pending-actions ,
which are processed in order. The TOBcast service is used to ensure that each
MPE processes the pending actions in the same order. The completed-actions and
answered-joins store information on which actions have already been processed,
thus preventing a message from being processed twice. The join-id is used during
the join protocol.



Signature:

Input:
rcv(m)i, m a client message
TOBcast-rcv(m)i, m a TOBcast message
geo-update(l, t)i, l a location, t ∈ R>0

reset()i

Output:
send(m)i, m a client message
TOBcast(m)i m a TOBcast message

Internal:
join()i

init-action(act)i, act ∈ sig

simulate-action(act)i, act ∈ sig

Fig. 5. Mobile Point Emulator Signa-
ture for real node i and VMN h for
IOA τ = 〈sig , states , start , δ〉

The mp-location variable main-
tains the current location of the cen-
ter of the mobile point. This may
be continually changing, however it
is a predetermined function of time.
The location variable maintains the
current location of the real node on
which the MPE is executnig. The
clock maintains the current real time.

MPE Transitions. The MPE i mod-
ifies the replicated state, val only
when the real node receives a TO-
Bcast message indicating that a par-
ticular action should be performed.
Since all active nodes process the
TOBcast messages in the same or-
der, all nodes modify their state in
the same way, thus maintaining con-
sistent replicas.

When an active node, i, receives
a message destined for the VMN—that is, a rcvi occurs—it immediately resends
it to the other replicas using the TOBcast service (lines 1–4). When the TOBcast
service delivers the message, each node modifies its replica, performing a VMN
rcv of that message (lines 65–69 and lines 48–61).

Sometimes, a VMN chooses to initiate an internal or output action. In this
case, an active node determines that a certain action is enabled, and broadcasts
a message to the other replicas (lines 12–20). As in the previous case, when the
TOBcast service delivers the message, each node modifies the state of its replica,
performing the specified VMN action (again, lines 65–69 followed by lines 48–61).
In some cases, this causes the VMN itself to send a message (line 61).

Joining a Mobile Point. Whenever a real node is within the perimeter defined by
the mobile point, it initiates the join protocol (lines 22–30); whenever a real node
is outside of a mobile point, it executes the leave protocol, which reinitializes its
states and sets its status to idle (lines 42–46). The maximum speed of the VMN
is effectively determined by the speed of the join protocol and the speed of the
real nodes: the mobile point must move slowly enough so that new nodes can
enter and join the mobile point before the old nodes leave.

The join protocol for node i begins when i broadcasts a join-req, requesting
a copy of the current state (line 30). When node i receives the TOBcast for its
own join request, it enters the listening state (lines 71–72). This indicates that
node i can begin to monitor the messages in the system. In particular, it saves
any messages that it cannot yet process in pending-actions .

When some active node, j, receives a join request, it sends a join acknowledg-
ment, join-ack (lines 73–78). This acknowledgment includes a copy of its replica



of the virtual node, val j . When i receives the join acknowledgment, it copies the
replicated state (lines 79–84), and begins to process its pending-actions .

Recovery. The Mobile Point Emulator simulates VMNs that are quite robust:
they fail only when they enter a depopulated region of the network. However,
as soon as all the nodes leave a mobile point, the virtual node loses its state.
The Mobile Point Emulator contains a recovery mechanism that restarts the
virtual node in this case. When a real node enters the mobile point and cannot
communicate with any other active nodes, it can choose to broadcast a reset

message (lines 32–35). (Should it choose not to, the VMN may not recover.)
When a node receives a reset message it reinitializes its state (lines 85–87). In
particular, when the node that discovers the mobile point has failed receives its
own reset message, it restarts the mobile point.

VMN-LocalCast

When a client sends a message to the VMN using the VMN-LocalCast service,
three steps occur: first, the client uses the RMN-LocalCast service to send the
message to a real node in the VMN; second, the real node in the VMN rebroad-
casts the message using the TOBcast service; finally, each node in the mobile
point processes the message, and the VMN receives the message. Therefore, if the
underlying real nodes deliver messages within time d, then the VMN-LocalCast
guarantees that messages are delivered within time 2d+1: it takes time d for the
real node to receive the message from the client, and an additional time d + 1
for the TOBcast service to redeliver the message.

The same process occurs (partially in reverse) when the VMN sends a mes-
sage to a client: first a real node in the VMN broadcasts the intent of the VMN
to send a message using the TOBcast service; second, the real nodes in the
VMN process the message (at which point the VMN has buffered the outgoing
message); third, some real node uses the RMN-LocalCast service to send the
message to the client.

Recall that the VMN-LocalCast service has a range of RV MN and the RMN-
LocalCast service has a range of RRMN . In order for the algorithm to be correct
we assume that:

R ≥ 2RV MN + 2tgeo · vmax .

There are two reasons why the extra broadcast range is necessary. First, a real
node that is at distance RV MN from the center must be able to send a message
to any client that is at distance RV MN from (the center of) the VMN; thus a
radius of 2RV MN is necessary. Second, a real node only receives updates about
its location every tgeo time units; therefore, a real node may be an additional
tgeo · vmax distance outside the mobile point before detecting that it is no longer
a part of the VMN emulation.

VMN Performance

Each step of the VMN automata requires at most one TOBcast message to be
sent, which takes time d + 1; no other delay is incurred. Therefore, the Mobile



Input rcv(m)i

2 Effect:
TOBcast-out ← TOBcast-out ∪

4 {〈simulate, 〈rcv, m〉, ⊥〉}

6 Output send(m)h,i

Precondition:
8 m ∈ local-out

Effect:
10 local-out ← local-out / {m}

12 Internal init-action(act)h,i

Precondition:
14 status = active

|mp-location − location| < R

16 δ(val, act) 6= ⊥
Effect:

18 temp-oid ← 〈clock, i〉
TOBcast-out ← TOBcast-out ∪

20 {〈simulate, act, temp-oid〉}

22 Internal join()i

Precondition:
24 |mp-location − location| < R

status = idle

26 Effect:
join-id ← 〈clock, i〉

28 status ← joining

TOBcast-out ← TOBcast-out ∪
30 {〈join-req, ⊥, join-id〉}

32 Input reset()i

Effect:
34 TOBcast-out ← TOBcast-out ∪

{〈reset〉}
36 Input geo-update(ℓ , t)i

Effect:
38 location ← ℓ

clock ← t

40 val ← δ(val,
〈geo-update, t, mp-location〉)

42 if (|mp-location−location| ≥ R)
and (status 6= idle) then

44 status ← idle

val ← start(τ)
46 pending-actions ← ∅

48Internal simulate-action(act)i

Precondition:
50status = active

|mp-location − location| < R

52head(pending-actions) = 〈simulate, act, oid〉
Effect:

54Dequeue(pending-actions)
if (〈simulate, act, oid〉 ∈ completed-actions)

56then continue;
if (δ(val, act) = ⊥) then continue;

58val ← δ(val, act)
completed-actions ← completed-actions ∪

60{〈simulate, act, oid〉}
if (act = 〈send, m〉) then send(m)

62

Input TOBcast-rcv(〈optype, param, oid〉)i

64Effect:
if (optype = simulate) then

66if (status 6= listening or active) then

continue;
68else Enqueue(pending-actions,

〈simulate, param, oid〉)
70else if (optype = join-req) then

if ((status = joining) and (oid = join-id))
72then status ← listening

if ((status = active) then

74if (oid ∈ answered-joins)) then

continue;
76else if (|mp-location − location| < R)

then TOBcast(〈join-ack,
78〈val, completed-actions〉, oid〉)

else if (optype = join-ack)
80answered-joins ← answered-joins ∪ {oid}

if (status = listening) then

82if (oid = join-id)) then

status ← active

84〈val, completed-actions〉 ← param

else if (optype = reset) then

86status ← active

pending-actions ← ∅
88

Output TOBcast(m)i

90Precondition:
m ∈ TOBcast-out

92Effect:
TOBcast-out ← TOBcast-out / {m}

Fig. 6. Automaton MPEh,i running on node i implementing the VMN executing
IOA τ = 〈sig , states , start , δ〉



Point Emulator ensures that a program executing on a VMN is slowed by at
most a factor of d + 1.

Theorem 2. The Mobile Point Emulator and the TOBcast service (and the
trivial client implementation) correctly implement the VMN Abstraction. More
formally: let A be the abstract VMN model, and let S be the implementation.
Then timed-traces(S) ⊆ timed-traces(A)8.

5 Correctness of the Mobile Point Emulator

In this section, we present a sketch of the proof that the Mobile Point Emulator
correctly implements the VMN abstraction. We demonstrate a forward simula-
tion relation [11] between the implementation described in Section 4 and the
VMN Abstraction described in Section 3, which implies the correctness of our
algorithm. For more details, see [5].

The simulation relation consists of five main conditions. The first two condi-
tions relate messages in the RMN-LocalCast service and messages in the VMN-
LocalCast service. Condition 1 relates incoming messages: if m is a message in
RMN-LocalCast .mpe-messages [i] waiting to be delivered to some mobile node
i, then message m is also waiting in VMN-LocalCast .VMN-messages to be de-
livered to the VMN. Condition 2 relates outgoing messages: if m is a message
in RMN-LocalCast .messages [i] being sent by some Mobile Point automaton to
node i, then message m is also in VMN-LocalCast .messages [i].

Condition 3 relates the replicated state of a Mobile Point Emulator to the
state of the abstract VMN: for all active mobile nodes i that have completed the
join protocol, if you start with the state represented by MPE .val i, and process all
the pending actions in MPE .pending-actions i in the order they are stored in the
queue and all the messages waiting in the TOBcast queue TOBcast .outgoing [i]
(again, in the order they are stored in the queue), then the resulting value is
equivalent to the state of the VMN, VMN .val .

Condition 4 is used to show that the join protocol works: if v is a state
contained in a join acknowledgment message stored anywhere in the system,
then if you start with the state represented by v and process all the messages in
the MPE .pending-actions i queue that are sent after the associated join request,
then the resulting value is equal to the state of the VMN, VMN .val .

Condition 5 ensures that if the implementation initiates a send, then the
VMN can perform a send: if m is a message indicating that a send(x) is to occur,
and m is either in a TOBcast queue (TOBcast .messages [i]) or waiting to be
performed (in MPE .pending-actions i), then the message x is in VMN .buffer .

We claim that the Mobile Point Emulator correctly implements the VMN
abstraction, in that any service built on the VMN abstraction runs correctly on
the Mobile Point Emulator:

8 The timed-traces of a system capture the externally visible behavior and the times
at which the external visible events occur.



Proof of Theorem 2 (sketch). In the initial state, the five conditions de-
scribed above hold: all the message queues and buffers are empty, and the
MPE .val component of the replicated automata is set to the initial state, as
is the VMN .val component.

We proceed by induction, examining all possible actions in the implementa-
tion, and determining a suitable sequence of actions in the abstract model. For
example, assume that a client attempts to send a message to the VMN. In the
implementation, this results in a message being added to the communication
service’s message queues; in the abstract model, this results in a message being
added to the high-level communication service’s VMN message queue, preserving
Condition 1.

One interesting case occurs when a mobile node broadcasts a message using
the TOBcast service indicating that a transition of the VMN automaton should
occur. In the low-level implementation, a message is added to TOBcast .messages [i],
for all nodes i. In order to maintain Condition 5, it is necessary to immedi-
ately perform the required transition in the VMN, updating VMN .val . If the
required transition is an output action, the VMN sends a message, placing it in
VMN .buffer , thus maintaining Condition 5. We omit the many remaining cases.

The conditions are also maintained when time passes: if a node is far enough
away that it does not receive a LocalCast message, then it has left the focal
point. We conclude that Conditions 1–5 are a forward simulation relation. �

6 Algorithms for Virtual Mobile Nodes

To demonstrate the utility of the new approach, we briefly discuss several basic
algorithms that use VMNs to solve interesting problems simply and efficiently.
For more details, see [5].

Consider the problem of routing messages. The simplest algorithm to route
message relies on a single virtual node traversing the network collecting mes-
sages and delivering them. It is possible to adapt the compulsory protocols of
Chatzigiannakis et al. [4], yielding alternate message delivery services that can
operate in a non-compulsory framework. Routing a message to a virtual node is
even simpler: the current location of a virtual node is known in advance, so we
can route messages directly to the predicted location of the virtual node.

Virtual nodes can also be used to collect sensor data, traversing the network.
Instead of maintaining a complicated dynamic data structure of sensor readings,
a virtual node can aggregate data as it is collected and process complex queries.

Finally, we suggest that VMNs may be useful for a number of common generic
services. Group communication services (e.g., as in [9, 12, 13]) can be imple-
mented by adapting the strategy in [8] to use a robust virtual node, instead
of a fragile token, to collect and deliver group information. An atomic memory
service can be constructed using the approach developed in [6]; in this case,
however, the data can be programmed to travel around the network.



7 Discussion and Concluding Remarks

We have presented a new technique for implementing algorithms in mobile ad
hoc networks. In general, it is difficult to devise algorithms for such chaotic,
unpredictable environments. The VMN abstraction makes the task easier by
providing robust virtual nodes that move in a predictable manner. Moreover,
we have presented the Mobile Point Emulator, a new algorithm that allows real
mobile nodes to emulate reliable virtual nodes, using location information and
a basic (though powerful) local communication service.

We believe that the VMN abstraction and low-level algorithms similar to the
Mobile Point Emulator can significantly simplify the development of application-
level algorithms for mobile networks.

There are a number of limitations, however, to the Mobile Point Emulator.
It depends on a powerful local communication service, and the correctness of the
algorithm depends on both the reliability and timeliness of the service. Moreover,
it assumes that the algorithm is executing in a trusted environment; it remains an
open question to consider the security implications, and whether such a solution
could work in a more hostile environment. Finally, the Mobile Point Emulator
is an expensive algorithm, requiring significant amounts of communication and
power consumption.

Engineering and Experimentation. There are many ways in which the Mobile
Point Emulator can be optimized for implementation purposes. For example, if
a (temporary) leader is elected within a mobile point, and the leader initiates
all the transitions for the replica, conflicting requests are avoided and power is
saved. As a second example, when a node leaves a mobile point, it need not
wholly reset its replica state; on rejoining the mobile point, the join acknowl-
edgment only needs to contain the changes in the state. It would be interesting
to experiment with a real implementation of VMNs to determine the extent to
which the algorithms can be optimized, and whether the utility outweighs the
implementation overhead.

Self-Stabilizing VMNs. Long-term robustness of the VMN abstraction could
be improved if the virtual nodes could tolerate transient faults, such as state-
corruption or a violation of the broadcast assumptions. It is an interesting open
question whether the Mobile Point Emulator can be made self-stabilizing.

Dynamic Virtual Mobile Nodes. We have assumed that the set of VMNs and
their paths are fixed in advance. For some applications, this is sufficient; however,
for others, it would be useful if the paths of the VMNs could be determined on-
the-fly. For example, one can imagine using a VMN to follow a moving entity,
either performing a service for that entity, or tracking the location of the entity.
Dynamic paths can also be used to help VMNs avoid unpopulated areas of the
mobile network, thus improving robustness. It may also be useful to generate
virtual nodes dynamically; for example, a new VMN might be generated to track
every entity that enters a certain geographical area.
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