
Brief Announcement: Autonomous Virtual Mobile Nodes
∗

Shlomi Dolev† Seth Gilbert‡ Elad Schiller†‖ Alex Shvartsman‡§ Jennifer Welch¶

Categories & Subject Descriptors: F.1.1 [Models of
Computation]: Automata
General Terms: Algorithms, Design, Reliability, Theory,
Verification.

We present a new abstraction for mobile ad hoc networks
designed to cope with inherent difficulties caused by proces-
sors arriving, leaving, and moving according to their own
agendas, as well as with failures. An Autonomous Virtual
Mobile Node (AVMN) is a robust and reliable entity that
serves as part of an ad hoc middleware infrastructure. The
AVMN extends the focal point abstraction in [1] and the
virtual mobile node abstraction in [2]. The new abstrac-
tion is that of a virtual general-purpose computing entity,
an automaton, that can make autonomous on-line decisions
concerning its own movement. We describe a self-stabilizing
implementation of this new abstraction that provides auto-
matic recovery from any corrupted state of the system.

At any given point in time, the AVMN resides at a distinct
location. The AVMN is implemented by the processors that
happen to be near the AVMN’s current location. The set
of processors implementing the AVMN changes over time
as it moves and as the implementing processors move (not
necessarily in the same direction). The AVMN decides to
move based on its current state and sensor inputs from the
physical environment. For instance, if the area to the west
of the AVMN appears deserted, then it may decide not to
move west. Or, the AVMN may decide to “hitch a ride”
with a subset of the processors currently emulating it.

In order for the algorithm to be self-stabilizing, it must be
able to tolerate starting from an arbitrary configuration, in
which there may be several (undesired) copies of the same
AVMN, or none at all. In the former case, we must eliminate
all but one copy, and in the latter case we must generate a
single copy. Since the AVMN moves autonomously, there is

∗
This work is supported in part by NSF (grants CCR-0098305, NSF

ITR-0121277, 64961-CS, MIT9904-12, 9988304, 0311368, 0098305,

and Career Award 9984774), AFOSR #F49620-00-1-0097, DARPA

#F33615-01-C-1896, IBM faculty award, Israeli ministry of defense,

Rita Altura trust chair in computer sciences, and EU COMBSTRU.
†Ben-Gurion University, {dolev,schiller}@cs.bgu.ac.il ‡MIT

CSAIL,{sethg,alex}@theory.lcs.mit.edu §University of Connecticut,

aas@cse.uconn.edu
¶Texas A&M University, welch@cs.tamu.edu‖CTI,

schiller@cti.gr

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’05, July 18–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1581139861/05/0007 ...$5.00.

no predictable location to search for the AVMN, making it
difficult to determine the required corrective action.
Ensuring exactly one instance of an AVMN. Three
schemes are considered. (1) Use a Virtual Stationary Au-
tomaton (VSA) [3] to keep track of the AVMN. The AVMN
uses a GeoCast (e.g., [4]) service to send alive messages to
the fixed known location of the VSA. If the VSA does not re-
ceive alive messages for too long a period, the VSA creates a
new AVMN. The VSA is also responsible for the elimination
of undesired copies of an AVMN. Each alive message carries
the location of the AVMN and the timestamp at which the
message was sent. The VSA can easily detect that more
than one AVMN exists and send an elimination message to
all but one of them. (2) The AVMN sending alive mes-
sages in a random walk fashion. A processor that doesn’t
receive an alive message for, say, twice the expected cover
time generates a formation token that carries the identifier
of the processor and traverses the network in a random walk
fashion. When formation tokens collide, the lists of initiator
ids carried by the formation tokens are merged. When a to-
ken contains ⌈(N +1)/2⌉ ids (where N is an upper bound on
the number of processors), the (single) processor that holds
the token creates a new AVMN. (3) Processors periodically
send stay alive messages that should arrive at the AVMN by
means of a random walk. The AVMN must collect at least
⌈(N + 1)/2⌉ stay alive messages in order to survive.
Self-Stabilizing Implementation. Each participating
processor keeps a replica of the AVMN’s current state and
a buffer of input events waiting to be applied to the state.
To ensure that the replica states remain identical among all
the processors that emulate the AVMN, in spite of faults,
each processor, at a fixed interval, sends its replica state
to all the other emulating processors. Upon receiving all
the messages for the current round, a predetermined (reset)
function, such as majority, is used to resolve conflicts, in
case the states are not identical.

References
[1] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, J. Welch. GeoQuo-
rums: Implementing Atomic Memory in Mobile Ad Hoc Networks.
DISC’03: 306–320.
[2] S. Dolev, S. Gilbert, N. Lynch, E. Schiller, A. Shvartsman, J.
Welch. Virtual Mobile Nodes for Mobile Ad Hoc Networks. DISC’04:
230–244.
[3] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, T. Nolte. Virtual
Stationary Automata for Mobile Networks. T.R. MIT-LCS-TR-979,
Jan. 2005.
[4] J. Navas, T. Imielinski Geocast – geographic addressing and rout-
ing, MobiCom‘97.

