Autonomous Virtual Mobile Nodes
(Extended Abstract)

Shlomi Dolev Seth Gilbert Elad Schillett Alex Shvartsma¥fi Jennifer Welch

June 3, 2005

Abstract

This paper presents a new abstraction for virtual infrastme in mobile ad hoc networks. An Au-
tonomous Virtual Mobile Node (AVMN) is a robust and relialeletity that is designed to cope with the
inherent difficulties caused by processors arriving, legvand moving according to their own agendas,
as well as with failures and energy limitations. There areyrtgpes of applications that may make use
of the AVMN infrastructure: tracking, supporting mobileauis, or searching for energy sources.

The AVMN extends the focal point abstraction in [9] and theual mobile node abstraction in [10].
The new abstraction is that of a virtual general-purposeptging entity, an automaton that can make
autonomous on-line decisions concerning its own movenvgatescribe a self-stabilizing implementa-
tion of this new abstraction that is resilient to the chabé&bavior of the physical processors and provides
automatic recovery from any corrupted state of the system.

1 Introduction

Ad hoc infrastructure for mobile ad hoc networks is despdyateeded to make these systems usable by ap-
plications, allowing developers to overcome the numeraberient difficulties, such as processors arriving,
leaving and moving according to their own agendas, as wdlydailures and energy limitations.

This paper introduces a new abstraction that extends tre fmint abstraction in [9] and the virtual
mobile node abstraction in [10]. The new abstraction is tiiat virtual general-purpose computing entity,
an automaton that can make autonomous on-line decisiorseong its own movement. We call this
abstraction an Autonomous Virtual Mobile Node (AVMN). Wesdgbe an implementation of this new
abstraction that is resilient to the chaotic behavior of tineerlying network. Moreover, it guarantees
automatic recovery from any corrupted system state.

*Ben-Gurion University{dol ev, schi | | er }@s. bgu. ac. i |

fMIT CSAIL, {sethg, alex}@heory.lcs.nit.edu

*Research Academic Computer Technology Institsithi | | er @t i . gr

$Department of Computer Science and Engineering, Uniyes$i€onnecticutaas @se. uconn. edu

TTexas A&M Universitywel ch@s. t anu. edu

This work is supported in part by NSF grant CCR-0098305 ané N&R Grant 0121277. The first author and third authors aré&gigr
supported by an IBM faculty award, the Israeli ministry ofetese, NSF, and the Rita Altura trust chair in computer genThe second author is
partially supported by AFOSR Contract #F49620-00-1-0@2XRPA Contract #F33615-01-C-1896, NSF Grant 64961-CS, Ksfant MIT9904-
12. The fourth author is partially supported by the NSF G&888304, 0311368 and by the NSRRREER Award 9984774. The fifth author is
partially supported by NSF Grant 0098305.

At any given point in time, the AVMN resides at a distinct ltoa. The AVMN is implemented by the
processors that happen to be near the AVYMN'’s current lacatius enhancing the robustness as processors
fail and move out of range. The set of processors implemgritie AVMN changes over time as the
AVMN moves and as the implementing processors move (notssacky in the same direction). Despite the
continually changing set of participants, from a clienesgpective, the AVMN acts like a single, monolithic
entity.

One of the primary differences between an AVMN, introduaethis paper, and a virtual mobile node
(see [10]) is that an AVMN can move autonomously, choosingése based on its current state and sensor
inputs from the physical environment. For instance, if theago the west of the AVMN appears deserted,
then it may decide not to move west. On the other hand, the AVivily decide to “hitch a ride” with a
subset of the processors currently emulating it. In coptths virtual mobile node was required to fix a
predetermined path in advance, when the algorithm was geg|dhus significantly limiting the flexibility
of the virtual node.

Allowing the AVMN to move autonomously introduces severhblienges. First, the algorithm must
ensure that a consistent set of processors is used to impiehee AVMN. When an AVMN decides to
move, however, the set of processors participating in thel&ion may change; in transitioning from the
old set of processors to the new set of processors, the enutatst ensure an orderly transition while
maintaining consistency and liveness. The second probiénodiuced by autonomy is the lack afpriori
location at which the AVMN can be found. Therefore, when tM\VIN fails (e.g., due to entering an empty
region of the network where there are no processors to Eatécin the emulation), it can be quite difficult
to detect this failure and restore the AVMN.

Our AVMN implementation is also self-stabilizing, in thatcan tolerate the processors’ starting from
an arbitrary configuration. If a state corruption causes different sets of processors to begin emulating
the same AVMN, the emulation algorithm detects this sitratind corrects it. Moreover, if the emulating
processors become inconsistent (for example, due to nebmormalities), the emulator can recover from
the state corruption, and continue to operate correctly.

Roadmap. In the rest of this section, we discuss prior work, in patiicéocusing on virtual infrastructures

in wireless ad hoc networks. In Section 2, we present therlyidg model for wireless ad hoc networks.
In Section 3, we define the required properties of an AVMN irrendetail. We then proceed to present a
self-stabilizing algorithm to emulate an AVMN. Our implentation consists of two parts. The first part,
a basic emulator that operates correctly once the set atipartts is consistent, is presented in Section 4.
The second part ensures that the set of participants eWgrdtabilizes to a consistent set, and is presented
in Section 5. We present some discussion and optimizatroSgction 6.

Previouswork. In[9], we presented a new approach, called GeoQuorumanjgementing atomic read-
/write shared registers in mobibd hocnetworks. This approach is based on associating absti@oicat
objects with certain geographic locations called “focahgsl. These geographic locations are assumed to
be normally populated by mobile processors. In [10], we gaized our approach from [9] from stationary
atomic objects to mobile virtual nodes. We assumed thatithgaV node moves on a fixed trajectory that is
globally known in advance. We presented a new replicated stachine algorithm to implement the virtual
node using a constantly changing set of processors in tir@tyiof the virtual node’s current location.

In contrast with [10], our current work relaxes the assuompthat the trajectory of each virtual entity is
fixed and known in advance. Furthermore, the new abstraigiself-stabilizing and automatically regener-

ating. Fixed-location self-stabilizing virtual statiogeautomata for different settings appear in [11, 8]. As
discussed above, the introduction of autonomy introdueesral new difficulties.

The idea of executing algorithms on virtual mobile entitiess inspired by compulsory protocols [15, 6,
19], which assume that some subset of the processors caoldteir own motion. They showed that this
assumption significantly simplifies the design of protocotsnpared to an environment in which processors
move in an unpredictable or adversarial manner. The workdhgn virtual mobile nodes generalizes Beal’s
Persistent Node abstraction [1, 2], in which nodes travalstatic network carrying limited state. The work
of Nath and Niculescu [22], in which messages are routedgatoparticular trajectory, and Geocast (e.g.,
[23, 5, 17]), in which data is routed geographically, areremted to this work in that they can be seen as
attempts to simulate a traveling processor with limiteccfionality.

2 Basic System Model

The system consists of a set of communicating mobile estitidhich we callprocessors We denote the
set of processors by, where|P| = n < N andN is an upper bound on the number of processors that is
known to the processors. In addition we assume that evepepsor has a unique identifier.

The processors communicate among themselves using a loealdast primitive, with radiug;,. The
local broadcast is assumed to be reliable, meaning thay pvecessor that stays within distanBg, of the
sending processor is guaranteed to receive the messagly exae, and to ensure delivery withéhtime.
This is an abstraction of some Ethernet-like service. Theampns are denoted LBcast and LBrecv.

There is a Geocast service, by which a processor can sendsageds® all processors in some specified
geographic area. We also assume the Geocast is reliabldainthére is an upper bourdd > d on the
latency of Geocast messages. A number of Geocast routitgcpite have been proposed for mobile ad hoc
networks (see [25] for a survey and comparison). The operaitire denoted Geocast and Georecv.

Finally, we assume that there is a reliable time and locat@mice available to each processor, such as
would be provided by GPS. The existence of a reliable time@eation service makes it easy to implement
the local broadcast and Geocast communication serviceseti-atabilizing way, by differentiating current
messages from previous (possibly corrupted) messages.

Severabrocessegan run in a single processor. The inputs to a process intheleeceipt of a message
destined for itself, either from another processor or fromdame processor. For instance, there could be a
process associated with a sensor on the processor thatdaade another process on the same processor.
Every processop; executes a program that is a sequencsteps For ease of description, we assume the
interleaving model where steps are executed atomicallyyglesstep at any given time. Each steppgfs
triggered by an input, which is either the receipt of a messa@ timer going off. Thetates; of a processor
p; consists of the value of all the variables of the processduding the value of its program counter. The
execution of a step in the algorithm can change the state iGegsor.

We let the undirected grapf(V, £) denote the current communication graph of the system, where
is the set of processors, together with their coordinatethenplane, and there is an edgedrbetween
processorg; andp; if and only if the two processors can communicate with eablerot(This depends on
whether the two processors are wittiyp, of each other). Notice th& changes over time.

The termsystem configuratiors used for a tuple of the forrtsy, 2, -, sp,, G(V, E)), where eacls;
is the state of processgr (including messages in transit fpy)andG(V, €) is the current communication
topology. Therefore the vector of individual processotestaand the current communication graph fully
describes the system state.

We define arexecutionE = c¢y, sty, c1, st1, ... as an alternating sequence of system configuratpns
and stepsst;, such that each configuratiaf,; (except the initial configurationg) is obtained from the
preceding configuration; by the execution of the stegt;. In addition, st; may reflect a change in the
communication graph. Thus, the only components that carheged due to the execution &f are the
state ofp, the state of a neighbor gfand the communication gragh(V, £). An execution idair if every
processor executes a step infinitely often.

In some of our algorithms, random walks are used for broduhcpmformation. We consider the subset
of fair executions in which a message sent in a random walidassucceeds in arriving at all processors
in the system in a timely fashion. Aice executions defined [12] to be an execution in which a message
sent in a random walk fashion arrives at every processor maast everyM consecutive message send
operations, wher@/ is a constant that depends nnThe probability of having a nice execution in several
common cases is computed in [12] using techniques from ranvdalks. (See, for example, [20] for standard
calculations of cover times in various graphs). The prdighs calculated assuming an arbitrary initial
configuration and relies on known results about the cover tfmandom walks in graphs. For our algorithms
that use random walks, we prove that every nice executiasfieatthe desired conditions (defined as the
requirements below).

3 Autonomous Virtual Mobile Nodes

An Autonomous Virtual Mobile Node (AVMN) is an arbitrary auhaton that resides, at any given time,
at a specific location in the network; it can communicate wigarby processors, using the local broadcast
service, and send and receive Geocast messages in the sgras aveeal processor residing at its location.
The AVMN is specified in terms of (1) a set of stat&s,(2) an initial statueyy, (3) a set of inputsinputs,

(4) a set of outputsutputs, and (5) a transition functiord, mapping from states and inputs to states and
outputs. An algorithm implementing an AVMN must satisfy folowing property:

Property 1 (Correct emulation of the AVMN) The execution of the AVMN implementation produces an
external trace that is consistent with a state change sezpidéimat is correct according to the transition
function,d, of the AVMN.

Unlike a processor, an AVYMN controls its own motion: an AVMNoves in discrete steps from one
location to another. An AVMN specification, then, also ird#s a movement functionalculate — location,
which determines a new location for the AVMN as a functiontsfourrent location and current state.

Finally, AVMNs are robust. As long as there are real processear the AVMN, it remains alive.
There are two ways an AVMN can fail: either it enters an empgion of the network, or it suffers a state
corruption, potentially causing multiple copies of the Ao appear in the network. In either case, it can
recover.

Property 2 (Exactly one AVMN lacation) Eventually there is exactly one copy of an AYMN in the network

An AVMN is self-stabilizing in that in every fair/nice execution that starts in an aabjt configuration
there is a suffix in which Properties 1 and 2 are satisfied.

The program (including the AVMN code) of the processors suated to be (hardwired and) correct,
namely, we do not assume Byzantine behavior of the processate that an AVMN-simulation process
needs to be running all the time, even if just listening to sages to see if it should start participating.

We also assume that the program consists of informationeromg IV, the upper bound on the number of
processors and the identifier of the processor.

We remark that the application that uses the AVMN as a comguilatform should be self-stabilizing
as well, since the AVMN may start correct execution of theligggion from an arbitrary state.

4 Sdf-Stabilizing | mplementation of an AVMN

In this section we describe the basic algorithm to emulat@\&N, assuming all the participants in the
emulation are near, within some fixdtl,,,, < Ry Of, the unique location of the AVMN, that is, if the
AVMN has aconsistent sedf participants. In Section 5, we show how to ensure thaetien consistent
set of participants. The pseudocode for the basic AVMN etoukgppears in Figure 1 (and all line numbers
refer to this figure).

Replication. Each participating processor keeps a replica of the AVMNisent state and a buffer of input
events waiting to be applied to the state. It is sufficientdegkonly the events that have occurred within the
last2d time units, wherel is an upper bound on the latency of the local broadcast servic

The emulation protocol must ensure that state transitibriseoAVMN are atomic and identical in all
replicas. A state transition can be triggered by inputshsas the messages arriving (via Geocast) at a
participating processor, sensor inputs, or the clock liegch certain value. When a processor receives a
Geocast message or detects a sensor input, it broadcasssageeising the LBcast service indicating that
an event occurred (lines 27 and 30). On receiving a messags (19-24), an additional delay df the
maximum broadcast delay, is imposed (via a timer—Iline 24)yisure that all processors process the events
in the same order. This ensures that the state is updatetstemntly.

To ensure that the replica states remain identical amorthealbrocessors that emulate the AVMN, in
spite of faults, each processor, at a fixed interval, sesdejilica state (or a hash function thereof) to all the
other emulating processors (lines 32-35). Upon receivilntp@ messages, at leastime after the time at
which the checkpoints were sent, a processor checks if #rerany conflicts, that is, the states received are
not identical (line 64). In this case, a predetermined repgp¥unction is applied (line 65), and the buffers
are flushed (lines 67-72).

Joining. When a processor enters the “sphere of influence” of an AVMBlL is, within Ry, it should
start participating in the simulation of the AVMN (lines B4). The joining processor sets is status to
joining, and waits for a state refresh. During this time, it listeseying the events in its buffer. Aftet
time passes, it has the same buffer as all other activelicjpating processors. Therefore, the first time the
processor receives a state refresh that was initiatedsitdéiane after it began listening, it can complete the
join protocol by adopting the new state (lines 73-75). (Nbtg in an optimized version where only a hash
is sent, the joining processor will have to request the stapdicitly.)

Suppose, as in Figure 2, the joiner starts the join proceaiutienet (setting its owrnlast — refresh
to t). The joiner takes the first replica state that it receivah winestamp (i.e.1r) at leastt + d. Call this
timestampt’. It collects all the replica states with timestartipchecking for consistency. The joiner then
adopts this state and replays all messages that it has edosith timestamp greater thén — d using the
usual delivery algorithm, processing the messages in afdéeir timestamp, ignoring message sent in the
lastd time and breaking ties in some consistent way.

Navigation. A key feature of the AVMN is that it can decide autonomouslyevwehto move. The deci-
sion is a function of the current state of the AVMN, which maigcede information concerning the current

o g~ W N P

Figurel: AYMN Emulator

Variables:
status in {idle, joining, active}
state state of the replica
location, current VMN location
buffer, buffer for incoming messages
last—refresh last time a state refresh occurred
clock real time clock

88
89
90
91
92
93

Externally specified functions/constants:

Vo, the initial state of the AVMN

4, the AVMN transition function

calculate—location(. . .), calculates the next location of the AVMN
recover(. . .), deterministically chooses a new state from a set of oléstat
tmove, frequency of movement

trefresh, a State refresh intervale

tprocess, Speed at which AVMN takes spontaneous steps

init(¢)
location<+ ¢
state« vp
buffer« 0
last—refresh« clock
status«— active
settimer(next—multiple(t,c fresn) ,Refresh)
settimer(next—multiple(tyrocess),Process)
settimer(next—multiple(tove) ,Move)

LBrecv(m)
if (m= (new—loc,¢)) and (status= idle) then
location< ¢
else
buffer« bufferu (m,clock)
settimer(clock+d,NewMessage)

Georecv(m)
LBcast({sim,Georecv(m)))

onSensor(m)
LBcast({sim,Sensor(m)))

onTimer(RefreshState)
LBcast({state,stateclock))
last—refresh< clock

settimer(next—multiple(t,. fresn) ,RefreshState)

onTimer(Process)
if 3x: d(stateGeocast(x)) # Lthen
Ibcast(geo,x)
if V(mt) € buffer: t < clock—2d then
buffer« buffer\ (m;t)
settimer(next—multiple(t,rocess),Process)

onTimer(Move)
LBcast(move,locationclock)
settimer(next—multiple(tmove) ,MoVe)

48
49
50
51
52
53
54
55
56
57
58

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

onTimer(NewMessage)
let m= min(m: {mt) € buffer, t = clock—d)
if (m= (new—loc,¢)) then
location+<— ¢
if (status= active) then
if m= (sim,x) then
states« & (state m)
elseif m= (geo,x) then
states« 4 (state m)
Geocast(x)
elseif m= (move,loc,move-time) then
if (loc = location) then
location«+ calculate—location(location, state
LBcast(new—loc,¢)
elseif m= (state x,Ir) then
let S= {m: m= (state,y,Ir)}
if (| > 1) or (status= joining) then
state« recover(S)
let 3= {{mt) € buffer: Ir—d <t < clock-d}
whileJ # 0
let M = min(J)
if M = (sim,y) then
states« d(statey)
J« I\
buffer« buffer\ m’
if (status= joining) and (last—refresh+d < Ir) then
status«— active
settimer(next—multiple(t,¢ rresr) ,RefreshState)

onNewLocaction(¢)
if (¢ —location) < Rthen
if (status= idle) then
status« joining
last—refresh« clock
cleartimers()
else
status«— idle

;715

active } } ‘F }
\\\\ (state, t")
joiner | | | N
\ \ \mimj (
time ¢ t—d t t' +d
' >t+d

Figure 2: The joiner adopts state received at tithe- d, quickly replays then;, m; messages, and then is caught up.
Note that in the figure, they;, m; messages arentin the intervalt’ — d, '] and delivered itit’, t' + d.

environment. With a fixed frequenc¥m,ove, @ processor participating in the emulation initiates a enov
(lines 44-46). Notice that this broadcast message doeschatlly specify the location, as might be ex-
pected. In fact, each processor independently calculagesdw location, based on the old location, the
time of the move, and the current state (line 60). The prinpampose of this broadcast message is to or-
der the movement with respect to the other messages andé&eing processed, in order to ensure that the
move occurs consistently at all processors. As a resulthwhienew location is calculated all the processors
have the same replicated state, and therefore choose tleengawriocation.

After the new location is calculated, a broadcast messaggnisnotifying all the processors of the new
AVMN location (line 61). Only participating processors cealculate the new location themselves; other
processors that are not participating receiveriétve — loc message, updating them on the current location.
Without this additional message, no new nodes would be agfare new location and would be unable to
join the emulation.

In order that enough old nodes remain participants, andethaigh nodes near the new location can
receive the notification, we impose an additional limitatan the speed of motion. Letbe the maximum
distance moved by the AVMN in a single transition. Then wauassthatR;, > 2 - Ryymn + €.

Theorem 3 If at some point in the execution there is a consistent seadigipants, then from that point
on the trace is consistent with a state change sequencestleatiiect according to the input and transition
functions.

Proof. (sketch) First, notice that every participating processor that i, of the AVMN location
processes messages in the same order. That is, there ewristiscrdering of all messages, based on the time
they were sent; every processor removes them from the boftbiat order: before processing a message,
m, a processor delaystime, therefore by the time: is removed from the buffer, every message sent prior
to m has been received.

Figure 3: a) Processop participates in a AVMN at locatioiX and informs processa@rabout relocation td{’ using
an R, broadcast. b) Processgparticipates in a AVMN at new locatioi’ that ise distance units away.

7

The proof then follows by induction on the sequence of messagocessed. The following two invari-
ants are maintained: (1) all processors have the sameaegéite after processing messagg (2) the set
of participating processors is consistent. This followsalgase analysis of the messages processedy, If
is asim message or geo message, then the state is consistently updated at allgzarseby applyingn
to the current state, which by induction and consistent aggsgrdering is the same at all nodesmlf is
astate message, then either the states are already consisteeizavery begins. In the latter case, each
processor has the same set of state messages in its butfahearame set of other old messages, and so
chooses the same new state. (Note this also shows thatgdmsuccessful.) lfn, is amove message,
then each processor that receives the message is eitheeatilthe new center, in which case it remains a
participant, or it is far from the new center, in which casedves. Ifm; is anew — loc message ang; is
not active, it simply adopts the new location; since it was/usly not a participant, the set of participants
is still consistent.

At this point, it is easy to show that the trace is consisteitit an AVMN execution, based on the states
after each message is received. Hence, any externallyevedtion, such as a Geocast, is consistent.m

5 Ensuring Existence of Exactly One AVMN

Recall that Theorem 3 guarantee a consistent executiontfratrpoint at which there is a consistent set of
participants. In this section, we describe how to stabitinea consistent set of processors to emulate the
AVMN, presenting three schemes for ensuring the existehegaxtly one instance of an AVMN.

Virtual Stationary Automata Scheme. The first scheme uses a virtual stationary automaton (VSkeep
track of the AVMN. A VSA is another type of virtual infrastriuze component, introduced in [11]. Unlike
an AVMN, it is stationary, fixed in a single predetermineddton. Much like an AVMN, it is emulated
by a set of continually changing participants. Since it&ishary, however, the issues of autonomy do not
arise. In particular, for a VSA it is trivial to ensure a caient set of participants: they are exactly the
set of participants that are near the VSA's fixed locatione ©ould therefore implement a VSA using the
algorithm in Section 3, instead of the algorithm in [11].

A VSA, if available, can be used to simplify the problem of ntaining a consistent set of participants
in an AVMN. The AVMN uses a Geocast service to send “| am aliregssages to the region containing
the VSA. If the VSA does not receive an “| am alive” messagetéar long a period, the VSA creates a
new AVMN. The VSA is also responsible for the elimination ofdesired copies of an AVMN. Each “l am
alive” message carries the location of the AVMN and the tita®p at which the message was sent. The
VSA can easily detect that more than one copy of the AVMN existd send an elimination message to
all but one of them. The scheme can be naturally extended tora fault tolerant, distributed version in
which several VSAs are responsible for the existence of ¥WdN, each having a different time-out period
to avoid simultaneous creation of multiple copies.

Lemma4 Starting from an arbitrary initial state, the VSA Schemeuees a consistent set of participants.

Proof. (sketch) If there is no AVMN in the network, then eventually the VSA gsareceiving “I am alive”
messages and creates a unique new one. If there is more tha®/&N in the network, then eventually
the VSA eliminates all but one. [

We note that, in the VSA Scheme, starting from an arbitrarnfigaration, we reach a consistent set of
participants within: (1) the time it take the VSA to stabdljplus (2) the Geocast time.

8

Token Random Walk Scheme. In the second scheme, the mobile processors themselvéstiierexistence

of the AVMN, without relying on an auxiliary VSA. The AVMN regatedly sends out a token containing the
message “| am alive.” The token travels on a random walk tindhe ad hoc network, until its time-to-live
expires. If a processor does not receive an “l am alive” tdkersay twice, the expected random walk cover
time (see [20, 12], for example, for cover time bounds), tih@enerates a token containing a “formation”
message and the processor’s identifier and a time-to-ligeltbunds the token’s lifetime. The formation
token itself travels on a random walk. When two formationetok collide, they merge, maintaining a
collection of processor identifiers. When a formation tokentains[(N + 1)/2] processor identifiers, the
(single) processor that holds the token creates a new AVMN.

To ensure that there is eventually only one copy of the AVMagheAVMN monitors the “l am alive”
messages in the network, each of which includes a timestacdhp bbcation. The AVMN, which maintains a
bounded location history, can thus determine if a tokenrgsdo a duplicate AVMN, and determine using a
deterministic function whether to eliminate itself. Onlp@unded history is needed since there exist bounds
on how long it takes a token to cover the network in nice exenst

Lemma5 Starting from an arbitrary initial state, the Token RandoralM\Scheme ensures a consistent set
of participants.

Proof. (sketch) If there is no AVMN in the system, eventually each processodpces a formation token.
Eventually, the formation tokens collide, forming a unighéMN. If there is more than one AVMN, even-
tually each AVMN receives “I am alive” tokens from the otheéVMNs. All but one AVMN will then be
eliminated. [

We note that, in the Token Random Walk Scheme, starting frorrkitrary configuration, we reach a
consistent set of participants within ordef time, whereM is the time it takes for a random walk to visit
every node (see [12]).

Stay Alive Scheme. The third scheme is different in the sense that the AVMNitdeés not send messages.
Instead, processors at predefined times (say every houredmotlr) send tokens containing a “stay alive”
message on a random walk of the network. Eventually the AVMbL& receive the tokens. In every time
period the AYMN must collect at lea${NV +1) /2] stay alive tokens in order to survive the next time period.
Notice that if there is more than one copy of the AYMN, at most s able to collect a majority of stay alive
tokens in a time period. If a stay alive token survives forltow without finding an AVMN, it begins to act
like a formation token in the Token Random Walk scheme: whemstay alive formation tokens collide,
they merge, and when a majority of stay alive formation tekieave merged, they form a new AVMN.

Lemma6 Starting from an arbitrary initial state, the Stay Alive 8ohe ensures a consistent set of partici-
pants.

Proof. (sketch) If there is no AVMN in the system, eventually the tokens altd@e formation tokens, and
eventually all merge and form a new AVMN. If there is more tlwenAVMN in the system, at most one is
able to collect a majority of the tokens, and therefore attrane AVMN survives. [

As in the Token Random Walk Scheme, in the Stay Alive Schenfenvwstarting from an arbitrary
configuration, we reach a consistent set of participantlimvibrder M time, whereM is the time for a
random walk to visit every processor.

Trade-Offs. The VSA scheme is the most efficient, in terms of messagesreelquUnlike the other two
schemes, messages can be sent directly to a known locattbey than performing a random walk of the
network. For the same reason, the VSA scheme is able to régpost rapidly to abnormalities in the
system. In fact, the simplicity of this scheme is yet anothemple of the utility of having virtual, reliable
infrastructure in a mobile ad hoc network.

On the other hand, the VSA scheme requires maintaining sy virtual automaton. The Token
Random Walk scheme is also relatively message efficienhanih the stable state when there exists one
AVMN, there only needs to be a small number of tokens perfogmandom walks in the network. Itis only
in the case of formation that all the processors need toete&éns.

The Stay Alive scheme is the least efficient, in terms of ng=sa All the processors need to create
tokens at all times. However, it is simpler than the Tokend®am Walk scheme, in that only one type of
token is needed. Moreover, the AVMN does not have to send aastlieat messages.

Using any of the three schemes, we can conclude our maingimeor

Theorem 7 The AVYMN emulator, using any of the three schemes, is ataeifizing implementation of an
arbitrary automaton.

6 Discussion

We have discussed how to implement a single AVMN; one coudtead have multiple AVMNS, possibly
dynamically created by AVMN cloning, performing differetatsks, and collaborating among themselves.
Moreover, AVMNs can be organized into a hierarchy, and bel @serobust entities for tracking, updat-
ing, communicating and more, in the scope UAVS, sensor n&sy@d-hoc networks, and RFID tags (for
instance, the AYMN may follow the energy source/beam oftligh

There are a number of ways to optimize the movement of the AVddNas to minimize the energy
needed during a broadcast. First, the processor can ex@nmearent location and only use the minimum
amount of power necessary to reach everyone at the new AVM&titm. Second, we can use the mobile
processors that are closer to the new AVMN location to perftire broadcast. Hence, only these need to use
more broadcast power. Third, if the AVMN motion can be degegnan the mobile processor’s motion (for
example, in the case of tracking), then we can take advamiipe movement of the mobile processors to
minimize the energy needed. In some application domaiesfi¥MN is allowed decide to start controlling
the movement of the mobile nodes that implement it (e.g1387,14, 16]).

The algorithm presented can be optimized in many ways, famgte, the communication overhead can
be significantly reduced by using checksums (instead ofisgrtke entire state) and/or using randomization
to limit the number of processors broadcasting consistehegk messages. When an inconsistency is
detected, we can use an ethernet-like algorithm to choos®naly which replica will survive (it will be the
first that succeeds in performing local broadcast).

We also note that there are ways to change the AVMN programsitaassumed to be hardwired in each
processor. One way to do so is by using a super-user messdge $kent to all the processors (say, with the
assistance of VSAS) to replace their code.

Our approach can also be generalized to work in three dimesisrather than two — instead of a disc
around the AVMNs location, we may consider a ball.

10

References

(1]
(2]
(3]

(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]
(23]
[24]
[25]

J. Beal, “Persistent nodes for reliable memory in gepgreally local networks,” TR AIM-2003-11, MIT, 2003.
J. Beal, “A robust amorphous hierarchy from persisterdes,’Proc. of Communication Systems and Netwp?Pk®)3.

0. B. Bayazit, J.-M. Lien, and N. M. Amato, “Roadmap-Bddelocking for Complex EnvironmentsProc. 10th Pacific
Conference on Computer Graphics and Applications (PG’2ap2.

J. Bohn and F. Mattern, “Super-Distributed RFID Tag &diructers,” TR, Institute of Pervasive Computing, ETH)£20

T. Camp and Y. Liu, “An adaptive mesh-based protocol feogast routing,Journal of Parallel and Distributed Computing:
Special Issue on Mobile Ad-hoc Networking and Computipg 196—213, 2002.

I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis) &ficient communication strategy for ad-hoc mobile neksgrProc.
15th International Symposium on Distributed Computi2@01.

P. Chandler and M. Pachter, “Hierarchical Control fort&womous Teams’AIAA Guidance, Navigation, and Control Con-
ference and Exhihit2001.

S. Dolev and O. Gersten, “Robust Active Super Tier SysterRroc. of the IEEE International Conference on Software-
Science, Technology and & Engineeri2§05.

S. Doley, S. Gilbert, N. Lynch, A. Shvartsman, and J. L.loke “GeoQuorums: Implementing Atomic Memory in Ad
Hoc Networks”,Proc. 17th International Symposium on Distributed Commt{DISC) pp. 306-320, 2003. To appear in
Distributed Computing

S. Dolev, S. Gilbert, N. Lynch, E. Schiller, A. Shvartam and J. L. Welch, “Virtual Mobile Nodes for Mobile Ad Hoc
Networks,”Proc. 18th International Symposium on Distributed Commm{DISC) pp. 230—244, 2004.

S. Doley, S. Gilbert, L. Lahiani, N. Lynch, and T. Nolt&/irtual Stationary Automata for Mobile Networks”, TR MITCS-
TR-979, MIT CSAIL, Cambridge, MA 02139, January 2005.

S. Doley, E. Schiller, and J. L. Welch, “Random Walk f@lfSStabilizing Group Communication in Ad-Hoc NetworkBfoc.
21st Symp. on Reliable Distributed Systepps,70-79, 2002. To appeariBEE Transactions on Mobile Computing

D. Gillen and D. Jaques, “Cooperative Behavior Schefoebnproving the Effectiveness of Autonomous Wide ArearsSba
Munitions”, Proceedings of the Cooperative Control Worksh®@00.

J. Hebert, “Cooperative Control of UAVSAIAA Guidance, Navigation, and Control Conference and Bixh2001.

K. P. Hatzis, G. P. Pentaris, P. G. Spirakis, V. T. Tangskand R. B. Tan, “Fundamental control algorithms in mobile
networks,”Proc. of the 11th ACM Symposium on Parallel Algorithms anchectures archiveSaint Malo, France, 1999.

E. Kivelevich and P. Gurfil “UAV Flock Taxonomy and Migsi Execution PerformanceProc. of the 45th Israeli Conference
on Aerospace Sciengez005.

F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger.,é@netric Ad-Hoc Routing: Of Theory and Practic€toc. of the
22nd Symp. on the Principles of Distributed Computihgy 2003.

L. Lamport, “Time, clocks, and the ordering of eventsidistributed systemCommunications of the ACN1(7):558-565,
1978.

Q. Liand D. Rus, “Sending messages to mobile users todisected ad-hoc wireless network8roc. 6th MobiCom?2000.
R. Motwani and P.Raghavan, “Randomized Algorithmsahtridge University Press, 1995.

R. Nagpal, H. Shrobe, and J. Bachrach, “Organizing dajlcoordinate system from local information on an ad hoseen
network,”2nd Workshop on Information Processing in Sensor Netw@®@3.

B. Nath and D. Niculescu, “Routing on a curvdCM SIGCOMM Computer Communication Revi8&(1):150 — 160, 2003.
J. C. Navas and T. Imielinski. “Geocast — geographiaessing and routingProc. of the 3rd MobiComl997.
N. B. Priyantha, A. Chakraborty, H. Balakrishnan. “Te¢récket location-support systeniroc. 6th ACM MOBICOM?2000.

P. Yao, E. Krohne, and T. Camp, “Performance CompariéfdBeocast Routing Protocols for a MANERYoc. of the 13th
IEEE International Conference on Computer Communicatamd Networks (IC3N)pp. 213-220, 2004.

11

